MyArxiv
Computation and Language 67
☆ Masked-and-Reordered Self-Supervision for Reinforcement Learning from Verifiable Rewards
Test-time scaling has been shown to substantially improve large language models' (LLMs) mathematical reasoning. However, for a large portion of mathematical corpora, especially theorem proving, RLVR's scalability is limited: intermediate reasoning is crucial, while final answers are difficult to directly and reliably verify. Meanwhile, token-level SFT often degenerates into rote memorization rather than inducing longer chains of thought. Inspired by BERT's self-supervised tasks, we propose MR-RLVR (Masked-and-Reordered RLVR), which constructs process-level self-supervised rewards via "masked-then-fill" and "step reordering" to extract learnable signals from intermediate reasoning. Our training pipeline comprises two stages: we first perform self-supervised training on sampled mathematical calculation and proof data; we then conduct RLVR fine-tuning on mathematical calculation datasets where only outcomes are verifiable. We implement MR-RLVR on Qwen2.5-3B and DeepSeek-R1-Distill-Qwen-1.5B, and evaluate on AIME24, AIME25, AMC23, and MATH500. Under a fixed sampling and decoding budget, MR-RLVR achieves average relative gains over the original RLVR of +9.86% Pass@1, +5.27% Pass@5, and +4.00% Pass@8. These results indicate that incorporating process-aware self-supervised signals can effectively enhance RLVR's scalability and performance in only outcome-verifiable settings.
☆ Planning with Sketch-Guided Verification for Physics-Aware Video Generation
Recent video generation approaches increasingly rely on planning intermediate control signals such as object trajectories to improve temporal coherence and motion fidelity. However, these methods mostly employ single-shot plans that are typically limited to simple motions, or iterative refinement which requires multiple calls to the video generator, incuring high computational cost. To overcome these limitations, we propose SketchVerify, a training-free, sketch-verification-based planning framework that improves motion planning quality with more dynamically coherent trajectories (i.e., physically plausible and instruction-consistent motions) prior to full video generation by introducing a test-time sampling and verification loop. Given a prompt and a reference image, our method predicts multiple candidate motion plans and ranks them using a vision-language verifier that jointly evaluates semantic alignment with the instruction and physical plausibility. To efficiently score candidate motion plans, we render each trajectory as a lightweight video sketch by compositing objects over a static background, which bypasses the need for expensive, repeated diffusion-based synthesis while achieving comparable performance. We iteratively refine the motion plan until a satisfactory one is identified, which is then passed to the trajectory-conditioned generator for final synthesis. Experiments on WorldModelBench and PhyWorldBench demonstrate that our method significantly improves motion quality, physical realism, and long-term consistency compared to competitive baselines while being substantially more efficient. Our ablation study further shows that scaling up the number of trajectory candidates consistently enhances overall performance.
comment: website: https://sketchverify.github.io/
☆ SMILE: A Composite Lexical-Semantic Metric for Question-Answering Evaluation
Traditional evaluation metrics for textual and visual question answering, like ROUGE, METEOR, and Exact Match (EM), focus heavily on n-gram based lexical similarity, often missing the deeper semantic understanding needed for accurate assessment. While measures like BERTScore and MoverScore leverage contextual embeddings to address this limitation, they lack flexibility in balancing sentence-level and keyword-level semantics and ignore lexical similarity, which remains important. Large Language Model (LLM) based evaluators, though powerful, come with drawbacks like high costs, bias, inconsistency, and hallucinations. To address these issues, we introduce SMILE: Semantic Metric Integrating Lexical Exactness, a novel approach that combines sentence-level semantic understanding with keyword-level semantic understanding and easy keyword matching. This composite method balances lexical precision and semantic relevance, offering a comprehensive evaluation. Extensive benchmarks across text, image, and video QA tasks show SMILE is highly correlated with human judgments and computationally lightweight, bridging the gap between lexical and semantic evaluation.
comment: 23 pages, 6 tables, 9 figures
☆ Beyond Multiple Choice: A Hybrid Framework for Unifying Robust Evaluation and Verifiable Reasoning Training
Multiple-choice question answering (MCQA) has been a popular format for evaluating and reinforcement fine-tuning (RFT) of modern multimodal language models. Its constrained output format allows for simplified, deterministic automatic verification. However, we find that the options may leak exploitable signals, which makes the accuracy metrics unreliable for indicating real capabilities and encourages explicit or implicit answer guessing behaviors during RFT. We propose ReVeL (Rewrite and Verify by LLM), a framework that rewrites multiple-choice questions into open-form questions while keeping answers verifiable whenever possible. The framework categorizes questions according to different answer types, apply different rewriting and verification schemes, respectively. When applied for RFT, we converted 20k MCQA examples and use GRPO to finetune Qwen2.5-VL models. Models trained on ReVeL-OpenQA match MCQA accuracy on multiple-choice benchmarks and improve OpenQA accuracy by about six percentage points, indicating better data efficiency and more robust reward signals than MCQA-based training. When used for evaluation, ReVeL also reveals up to 20 percentage points of score inflation in MCQA benchmarks (relative to OpenQA), improves judging accuracy, and reduces both cost and latency. We will release code and data publicly.
comment: Project url: https://flageval-baai.github.io/ReVeL/
☆ PUCP-Metrix: A Comprehensive Open-Source Repository of Linguistic Metrics for Spanish EACL
Linguistic features remain essential for interpretability and tasks involving style, structure, and readability, but existing Spanish tools offer limited coverage. We present PUCP-Metrix, an open-source repository of 182 linguistic metrics spanning lexical diversity, syntactic and semantic complexity, cohesion, psycholinguistics, and readability. PUCP-Metrix enables fine-grained, interpretable text analysis. We evaluate its usefulness on Automated Readability Assessment and Machine-Generated Text Detection, showing competitive performance compared to an existing repository and strong neural baselines. PUCP-Metrix offers a comprehensive, extensible resource for Spanish, supporting diverse NLP applications.
comment: 1 figure, to be submitted to EACL Demo track
☆ Selective Rotary Position Embedding
Position information is essential for language modeling. In softmax transformers, Rotary Position Embeddings (\textit{RoPE}) encode positions through \textit{fixed-angle} rotations, while in linear transformers, order is handled via input-dependent (selective) gating that decays past key-value associations. Selectivity has generally been shown to improve language-related tasks. Inspired by this, we introduce \textit{Selective RoPE}, an \textit{input-dependent} rotary embedding mechanism, that generalizes \textit{RoPE}, and enables rotation in \textit{arbitrary angles} for both linear and softmax transformers. We show that softmax attention already performs a hidden form of these rotations on query-key pairs, uncovering an implicit positional structure. We further show that in state-space models and gated linear transformers, the real part manages forgetting while the imaginary part encodes positions through rotations. We validate our method by equipping gated transformers with \textit{Selective RoPE}, demonstrating that its input-dependent rotations improve performance in language modeling and on difficult sequence tasks like copying, state tracking, and retrieval.
☆ Don't Learn, Ground: A Case for Natural Language Inference with Visual Grounding
We propose a zero-shot method for Natural Language Inference (NLI) that leverages multimodal representations by grounding language in visual contexts. Our approach generates visual representations of premises using text-to-image models and performs inference by comparing these representations with textual hypotheses. We evaluate two inference techniques: cosine similarity and visual question answering. Our method achieves high accuracy without task-specific fine-tuning, demonstrating robustness against textual biases and surface heuristics. Additionally, we design a controlled adversarial dataset to validate the robustness of our approach. Our findings suggest that leveraging visual modality as a meaning representation provides a promising direction for robust natural language understanding.
☆ A new kid on the block: Distributional semantics predicts the word-specific tone signatures of monosyllabic words in conversational Taiwan Mandarin
We present a corpus-based investigation of how the pitch contours of monosyllabic words are realized in spontaneous conversational Mandarin, focusing on the effects of words' meanings. We used the generalized additive model to decompose a given observed pitch contour into a set of component pitch contours that are tied to different control variables and semantic predictors. Even when variables such as word duration, gender, speaker identity, tonal context, vowel height, and utterance position are controlled for, the effect of word remains a strong predictor of tonal realization. We present evidence that this effect of word is a semantic effect: word sense is shown to be a better predictor than word, and heterographic homophones are shown to have different pitch contours. The strongest evidence for the importance of semantics is that the pitch contours of individual word tokens can be predicted from their contextualized embeddings with an accuracy that substantially exceeds a permutation baseline. For phonetics, distributional semantics is a new kid on the block. Although our findings challenge standard theories of Mandarin tone, they fit well within the theoretical framework of the Discriminative Lexicon Model.
comment: arXiv admin note: text overlap with arXiv:2409.07891
☆ Robot Confirmation Generation and Action Planning Using Long-context Q-Former Integrated with Multimodal LLM
Human-robot collaboration towards a shared goal requires robots to understand human action and interaction with the surrounding environment. This paper focuses on human-robot interaction (HRI) based on human-robot dialogue that relies on the robot action confirmation and action step generation using multimodal scene understanding. The state-of-the-art approach uses multimodal transformers to generate robot action steps aligned with robot action confirmation from a single clip showing a task composed of multiple micro steps. Although actions towards a long-horizon task depend on each other throughout an entire video, the current approaches mainly focus on clip-level processing and do not leverage long-context information. This paper proposes a long-context Q-former incorporating left and right context dependency in full videos. Furthermore, this paper proposes a text-conditioning approach to feed text embeddings directly into the LLM decoder to mitigate the high abstraction of the information in text by Q-former. Experiments with the YouCook2 corpus show that the accuracy of confirmation generation is a major factor in the performance of action planning. Furthermore, we demonstrate that the long-context Q-former improves the confirmation and action planning by integrating VideoLLaMA3.
comment: Accepted to ASRU 2025
☆ MusicAIR: A Multimodal AI Music Generation Framework Powered by an Algorithm-Driven Core
Recent advances in generative AI have made music generation a prominent research focus. However, many neural-based models rely on large datasets, raising concerns about copyright infringement and high-performance costs. In contrast, we propose MusicAIR, an innovative multimodal AI music generation framework powered by a novel algorithm-driven symbolic music core, effectively mitigating copyright infringement risks. The music core algorithms connect critical lyrical and rhythmic information to automatically derive musical features, creating a complete, coherent melodic score solely from the lyrics. The MusicAIR framework facilitates music generation from lyrics, text, and images. The generated score adheres to established principles of music theory, lyrical structure, and rhythmic conventions. We developed Generate AI Music (GenAIM), a web tool using MusicAIR for lyric-to-song, text-to-music, and image-to-music generation. In our experiments, we evaluated AI-generated music scores produced by the system using both standard music metrics and innovative analysis that compares these compositions with original works. The system achieves an average key confidence of 85%, outperforming human composers at 79%, and aligns closely with established music theory standards, demonstrating its ability to generate diverse, human-like compositions. As a co-pilot tool, GenAIM can serve as a reliable music composition assistant and a possible educational composition tutor while simultaneously lowering the entry barrier for all aspiring musicians, which is innovative and significantly contributes to AI for music generation.
comment: Accepted by IEEE Big Data 2025
☆ Humanlike Multi-user Agent (HUMA): Designing a Deceptively Human AI Facilitator for Group Chats
Conversational agents built on large language models (LLMs) are becoming increasingly prevalent, yet most systems are designed for one-on-one, turn-based exchanges rather than natural, asynchronous group chats. As AI assistants become widespread throughout digital platforms, from virtual assistants to customer service, developing natural and humanlike interaction patterns seems crucial for maintaining user trust and engagement. We present the Humanlike Multi-user Agent (HUMA), an LLM-based facilitator that participates in multi-party conversations using human-like strategies and timing. HUMA extends prior multi-user chatbot work with an event-driven architecture that handles messages, replies, reactions and introduces realistic response-time simulation. HUMA comprises three components-Router, Action Agent, and Reflection-which together adapt LLMs to group conversation dynamics. We evaluate HUMA in a controlled study with 97 participants in four-person role-play chats, comparing AI and human community managers (CMs). Participants classified CMs as human at near-chance rates in both conditions, indicating they could not reliably distinguish HUMA agents from humans. Subjective experience was comparable across conditions: community-manager effectiveness, social presence, and engagement/satisfaction differed only modestly with small effect sizes. Our results suggest that, in natural group chat settings, an AI facilitator can match human quality while remaining difficult to identify as nonhuman.
comment: 9 pages, 4 figures
☆ Large Language Models for Sentiment Analysis to Detect Social Challenges: A Use Case with South African Languages
Sentiment analysis can aid in understanding people's opinions and emotions on social issues. In multilingual communities sentiment analysis systems can be used to quickly identify social challenges in social media posts, enabling government departments to detect and address these issues more precisely and effectively. Recently, large-language models (LLMs) have become available to the wide public and initial analyses have shown that they exhibit magnificent zero-shot sentiment analysis abilities in English. However, there is no work that has investigated to leverage LLMs for sentiment analysis on social media posts in South African languages and detect social challenges. Consequently, in this work, we analyse the zero-shot performance of the state-of-the-art LLMs GPT-3.5, GPT-4, LlaMa 2, PaLM 2, and Dolly 2 to investigate the sentiment polarities of the 10 most emerging topics in English, Sepedi and Setswana social media posts that fall within the jurisdictional areas of 10 South African government departments. Our results demonstrate that there are big differences between the various LLMs, topics, and languages. In addition, we show that a fusion of the outcomes of different LLMs provides large gains in sentiment classification performance with sentiment classification errors below 1%. Consequently, it is now feasible to provide systems that generate reliable information about sentiment analysis to detect social challenges and draw conclusions about possible needs for actions on specific topics and within different language groups.
comment: Published in the Proceedings of The Southern African Conference on AI Research (SACAIR 2024), Bloemfontein, South Africa, 2-6 December 2024. ISBN: 978-0-7961-6069-0
☆ Estonian WinoGrande Dataset: Comparative Analysis of LLM Performance on Human and Machine Translation
In this paper, we present a localized and culturally adapted Estonian translation of the test set from the widely used commonsense reasoning benchmark, WinoGrande. We detail the translation and adaptation process carried out by translation specialists and evaluate the performance of both proprietary and open source models on the human translated benchmark. Additionally, we explore the feasibility of achieving high-quality machine translation by incorporating insights from the manual translation process into the design of a detailed prompt. This prompt is specifically tailored to address both the linguistic characteristics of Estonian and the unique translation challenges posed by the WinoGrande dataset. Our findings show that model performance on the human translated Estonian dataset is slightly lower than on the original English test set, while performance on machine-translated data is notably worse. Additionally, our experiments indicate that prompt engineering offers limited improvement in translation quality or model accuracy, and highlight the importance of involving language specialists in dataset translation and adaptation to ensure reliable and interpretable evaluations of language competency and reasoning in large language models.
comment: Preprint
☆ Cross-cultural value alignment frameworks for responsible AI governance: Evidence from China-West comparative analysis
As Large Language Models (LLMs) increasingly influence high-stakes decision-making across global contexts, ensuring their alignment with diverse cultural values has become a critical governance challenge. This study presents a Multi-Layered Auditing Platform for Responsible AI that systematically evaluates cross-cultural value alignment in China-origin and Western-origin LLMs through four integrated methodologies: Ethical Dilemma Corpus for assessing temporal stability, Diversity-Enhanced Framework (DEF) for quantifying cultural fidelity, First-Token Probability Alignment for distributional accuracy, and Multi-stAge Reasoning frameworK (MARK) for interpretable decision-making. Our comparative analysis of 20+ leading models, such as Qwen, GPT-4o, Claude, LLaMA, and DeepSeek, reveals universal challenges-fundamental instability in value systems, systematic under-representation of younger demographics, and non-linear relationships between model scale and alignment quality-alongside divergent regional development trajectories. While China-origin models increasingly emphasize multilingual data integration for context-specific optimization, Western models demonstrate greater architectural experimentation but persistent U.S.-centric biases. Neither paradigm achieves robust cross-cultural generalization. We establish that Mistral-series architectures significantly outperform LLaMA3-series in cross-cultural alignment, and that Full-Parameter Fine-Tuning on diverse datasets surpasses Reinforcement Learning from Human Feedback in preserving cultural variation...
comment: Presented on Academic Conference "Technology for Good: Driving Social Impact" (2025)
☆ Social-Media Based Personas Challenge: Hybrid Prediction of Common and Rare User Actions on Bluesky
Understanding and predicting user behavior on social media platforms is crucial for content recommendation and platform design. While existing approaches focus primarily on common actions like retweeting and liking, the prediction of rare but significant behaviors remains largely unexplored. This paper presents a hybrid methodology for social media user behavior prediction that addresses both frequent and infrequent actions across a diverse action vocabulary. We evaluate our approach on a large-scale Bluesky dataset containing 6.4 million conversation threads spanning 12 distinct user actions across 25 persona clusters. Our methodology combines four complementary approaches: (i) a lookup database system based on historical response patterns; (ii) persona-specific LightGBM models with engineered temporal and semantic features for common actions; (iii) a specialized hybrid neural architecture fusing textual and temporal representations for rare action classification; and (iv) generation of text replies. Our persona-specific models achieve an average macro F1-score of 0.64 for common action prediction, while our rare action classifier achieves 0.56 macro F1-score across 10 rare actions. These results demonstrate that effective social media behavior prediction requires tailored modeling strategies recognizing fundamental differences between action types. Our approach achieved first place in the SocialSim: Social-Media Based Personas challenge organized at the Social Simulation with LLMs workshop at COLM 2025.
comment: 1st place at SocialSim: Social-Media Based Personas challenge 2025
☆ Lost in Translation and Noise: A Deep Dive into the Failure Modes of VLMs on Real-World Tables
The impressive performance of VLMs is largely measured on benchmarks that fail to capture the complexities of real-world scenarios. Existing datasets for tabular QA, such as WikiTableQuestions and FinQA, are overwhelmingly monolingual (English) and present tables in a digitally perfect, clean format. This creates a significant gap between research and practice. To address this, we present \textbf{MirageTVQA}, a new benchmark designed to evaluate VLMs on these exact dimensions. Featuring nearly 60,000 QA pairs across 24 languages, MirageTVQA challenges models with tables that are not only multilingual but also visually imperfect, incorporating realistic noise to mimic scanned documents. Our evaluation of the leading VLMs reveals two primary failure points: a severe degradation in performance (over 35\% drop for the best models) when faced with visual noise and a consistent English-first bias where reasoning abilities fail to transfer to other languages. MirageTVQA provides a benchmark for measuring and driving progress towards more robust VLM models for table reasoning. The dataset and the code are available at: https://github.com/anshulsc/MirageTVQA.
comment: Accepted as Spotligh Talk at EurIPS 2025 Workshop on AI For Tabular Data
☆ Parrot: Persuasion and Agreement Robustness Rating of Output Truth -- A Sycophancy Robustness Benchmark for LLMs
This study presents PARROT (Persuasion and Agreement Robustness Rating of Output Truth), a robustness focused framework designed to measure the degradation in accuracy that occurs under social pressure exerted on users through authority and persuasion in large language models (LLMs) the phenomenon of sycophancy (excessive conformity). PARROT (i) isolates causal effects by comparing the neutral version of the same question with an authoritatively false version using a double-blind evaluation, (ii) quantifies confidence shifts toward the correct and imposed false responses using log-likelihood-based calibration tracking, and (iii) systematically classifies failure modes (e.g., robust correct, sycophantic agreement, reinforced error, stubborn error, self-correction, etc.) using an eight-state behavioral taxonomy. We evaluated 22 models using 1,302 MMLU-style multiple-choice questions across 13 domains and domain-specific authority templates. Findings show marked heterogeneity: advanced models (e.g., GPT-5, GPT-4.1, Claude Sonnet 4.5) exhibit low "follow rates" ($\leq 11\%$, GPT-5: 4\%) and minimal accuracy loss, while older/smaller models show severe epistemic collapse (GPT-4: 80\%, Qwen 2.5-1.5B: 94\%). The danger is not limited to response changes; weak models reduce confidence in the correct response while increasing confidence in the imposed incorrect response. While international law and global knowledge at the domain level exhibit high fragility, elementary mathematics is relatively resilient. Consequently, we argue that the goal of "resistance to overfitting pressure" should be addressed as a primary objective alongside accuracy, harm avoidance, and privacy for safe deployment in the real world.
☆ A Simple Yet Strong Baseline for Long-Term Conversational Memory of LLM Agents
LLM-based conversational agents still struggle to maintain coherent, personalized interaction over many sessions: fixed context windows limit how much history can be kept in view, and most external memory approaches trade off between coarse retrieval over large chunks and fine-grained but fragmented views of the dialogue. Motivated by neo-Davidsonian event semantics, we propose an event-centric alternative that represents conversational history as short, event-like propositions which bundle together participants, temporal cues, and minimal local context, rather than as independent relation triples or opaque summaries. In contrast to work that aggressively compresses or forgets past content, our design aims to preserve information in a non-compressive form and make it more accessible, rather than more lossy. Concretely, we instruct an LLM to decompose each session into enriched elementary discourse units (EDUs) -- self-contained statements with normalized entities and source turn attributions -- and organize sessions, EDUs, and their arguments in a heterogeneous graph that supports associative recall. On top of this representation we build two simple retrieval-based variants that use dense similarity search and LLM filtering, with an optional graph-based propagation step to connect and aggregate evidence across related EDUs. Experiments on the LoCoMo and LongMemEval$_S$ benchmarks show that these event-centric memories match or surpass strong baselines, while operating with much shorter QA contexts. Our results suggest that structurally simple, event-level memory provides a principled and practical foundation for long-horizon conversational agents. Our code and data will be released at https://github.com/KevinSRR/EMem.
comment: Work in progress
☆ E$^3$-Pruner: Towards Efficient, Economical, and Effective Layer Pruning for Large Language Models
With the increasing size of large language models, layer pruning has gained increased attention as a hardware-friendly approach for model compression. However, existing layer pruning methods struggle to simultaneously address key practical deployment challenges, including performance degradation, high training costs, and limited acceleration. To overcome these limitations, we propose \name, a task-\underline{E}ffective, training-\underline{E}conomical and inference-\underline{E}fficient layer pruning framework. \namespace introduces two key innovations: (1) a differentiable mask optimization method using a Gumbel-TopK sampler, enabling efficient and precise pruning mask search; and (2) an entropy-aware adaptive knowledge distillation strategy that enhances task performance. Extensive experiments over diverse model architectures and benchmarks demonstrate the superiority of our method over state-of-the-art approaches. Notably, \namespace achieves 96\% accuracy, a mere 0.8\% drop from the original model (96.8\%) on MATH-500 when pruning 25\% layers of Qwen3-32B, outperforming existing SOTA (95\%), with a 1.33$\times$ inference speedup by consuming merely 0.5B tokens (0.5\% of the post-training data volume).
☆ AutoLink: Autonomous Schema Exploration and Expansion for Scalable Schema Linking in Text-to-SQL at Scale
For industrial-scale text-to-SQL, supplying the entire database schema to Large Language Models (LLMs) is impractical due to context window limits and irrelevant noise. Schema linking, which filters the schema to a relevant subset, is therefore critical. However, existing methods incur prohibitive costs, struggle to trade off recall and noise, and scale poorly to large databases. We present \textbf{AutoLink}, an autonomous agent framework that reformulates schema linking as an iterative, agent-driven process. Guided by an LLM, AutoLink dynamically explores and expands the linked schema subset, progressively identifying necessary schema components without inputting the full database schema. Our experiments demonstrate AutoLink's superior performance, achieving state-of-the-art strict schema linking recall of \textbf{97.4\%} on Bird-Dev and \textbf{91.2\%} on Spider-2.0-Lite, with competitive execution accuracy, i.e., \textbf{68.7\%} EX on Bird-Dev (better than CHESS) and \textbf{34.9\%} EX on Spider-2.0-Lite (ranking 2nd on the official leaderboard). Crucially, AutoLink exhibits \textbf{exceptional scalability}, \textbf{maintaining high recall}, \textbf{efficient token consumption}, and \textbf{robust execution accuracy} on large schemas (e.g., over 3,000 columns) where existing methods severely degrade-making it a highly scalable, high-recall schema-linking solution for industrial text-to-SQL systems.
☆ Attention-Guided Feature Fusion (AGFF) Model for Integrating Statistical and Semantic Features in News Text Classification
News text classification is a crucial task in natural language processing, essential for organizing and filtering the massive volume of digital content. Traditional methods typically rely on statistical features like term frequencies or TF-IDF values, which are effective at capturing word-level importance but often fail to reflect contextual meaning. In contrast, modern deep learning approaches utilize semantic features to understand word usage within context, yet they may overlook simple, high-impact statistical indicators. This paper introduces an Attention-Guided Feature Fusion (AGFF) model that combines statistical and semantic features in a unified framework. The model applies an attention-based mechanism to dynamically determine the relative importance of each feature type, enabling more informed classification decisions. Through evaluation on benchmark news datasets, the AGFF model demonstrates superior performance compared to both traditional statistical models and purely semantic deep learning models. The results confirm that strategic integration of diverse feature types can significantly enhance classification accuracy. Additionally, ablation studies validate the contribution of each component in the fusion process. The findings highlight the model's ability to balance and exploit the complementary strengths of statistical and semantic representations, making it a practical and effective solution for real-world news classification tasks.
☆ Hallucinate Less by Thinking More: Aspect-Based Causal Abstention for Large Language Models AAAI 2026
Large Language Models (LLMs) often produce fluent but factually incorrect responses, a phenomenon known as hallucination. Abstention, where the model chooses not to answer and instead outputs phrases such as "I don't know", is a common safeguard. However, existing abstention methods typically rely on post-generation signals, such as generation variations or feedback, which limits their ability to prevent unreliable responses in advance. In this paper, we introduce Aspect-Based Causal Abstention (ABCA), a new framework that enables early abstention by analysing the internal diversity of LLM knowledge through causal inference. This diversity reflects the multifaceted nature of parametric knowledge acquired from various sources, representing diverse aspects such as disciplines, legal contexts, or temporal frames. ABCA estimates causal effects conditioned on these aspects to assess the reliability of knowledge relevant to a given query. Based on these estimates, we enable two types of abstention: Type-1, where aspect effects are inconsistent (knowledge conflict), and Type-2, where aspect effects consistently support abstention (knowledge insufficiency). Experiments on standard benchmarks demonstrate that ABCA improves abstention reliability, achieves state-of-the-art performance, and enhances the interpretability of abstention decisions.
comment: Accepted to AAAI 2026 (Main Technical Track)
☆ The PLLuM Instruction Corpus
This paper describes the instruction dataset used to fine-tune a set of transformer-based large language models (LLMs) developed in the PLLuM (Polish Large Language Model) project. We present a functional typology of the organic, converted, and synthetic instructions used in PLLuM and share some observations about the implications of using human-authored versus synthetic instruction datasets in the linguistic adaptation of base LLMs. Additionally, we release the first representative subset of the PLLuM instruction corpus (PLLuMIC), which we believe to be useful in guiding and planning the development of similar datasets for other LLMs.
☆ LangMark: A Multilingual Dataset for Automatic Post-Editing ACL 2025
Automatic post-editing (APE) aims to correct errors in machine-translated text, enhancing translation quality, while reducing the need for human intervention. Despite advances in neural machine translation (NMT), the development of effective APE systems has been hindered by the lack of large-scale multilingual datasets specifically tailored to NMT outputs. To address this gap, we present and release LangMark, a new human-annotated multilingual APE dataset for English translation to seven languages: Brazilian Portuguese, French, German, Italian, Japanese, Russian, and Spanish. The dataset has 206,983 triplets, with each triplet consisting of a source segment, its NMT output, and a human post-edited translation. Annotated by expert human linguists, our dataset offers both linguistic diversity and scale. Leveraging this dataset, we empirically show that Large Language Models (LLMs) with few-shot prompting can effectively perform APE, improving upon leading commercial and even proprietary machine translation systems. We believe that this new resource will facilitate the future development and evaluation of APE systems.
comment: 15 pages, 8 figures, ACL 2025
☆ Learning to Compress: Unlocking the Potential of Large Language Models for Text Representation AAAI'26
Text representation plays a critical role in tasks like clustering, retrieval, and other downstream applications. With the emergence of large language models (LLMs), there is increasing interest in harnessing their capabilities for this purpose. However, most of the LLMs are inherently causal and optimized for next-token prediction, making them suboptimal for producing holistic representations. To address this, recent studies introduced pretext tasks to adapt LLMs for text representation. Most of these tasks, however, rely on token-level prediction objectives, such as the masked next-token prediction (MNTP) used in LLM2Vec. In this work, we explore the untapped potential of context compression as a pretext task for unsupervised adaptation of LLMs. During compression pre-training, the model learns to generate compact memory tokens, which substitute the whole context for downstream sequence prediction. Experiments demonstrate that a well-designed compression objective can significantly enhance LLM-based text representations, outperforming models trained with token-level pretext tasks. Further improvements through contrastive learning produce a strong representation model (LLM2Comp) that outperforms contemporary LLM-based text encoders on a wide range of tasks while being more sample-efficient, requiring significantly less training data.
comment: Accepted by AAAI'26
☆ Training Foundation Models on a Full-Stack AMD Platform: Compute, Networking, and System Design
We report on the first large-scale mixture-of-experts (MoE) pretraining study on pure AMD hardware, utilizing both MI300X GPUs with Pollara interconnect. We distill practical guidance for both systems and model design. On the systems side, we deliver a comprehensive cluster and networking characterization: microbenchmarks for all core collectives (all-reduce, reduce-scatter, all-gather, broadcast) across message sizes and GPU counts on Pollara. To our knowledge, this is the first at this scale. We further provide MI300X microbenchmarks on kernel sizing and memory bandwidth to inform model design. On the modeling side, we introduce and apply MI300X-aware transformer sizing rules for attention and MLP blocks and justify MoE widths that jointly optimize training throughput and inference latency. We describe our training stack in depth, including often-ignored utilities such as fault-tolerance and checkpoint-reshaping, as well as detailed information on our training recipe. We also provide a preview of our model architecture and base model - ZAYA1 (760M active, 8.3B total parameters MoE) - which will be further improved upon in forthcoming papers. ZAYA1-base achieves performance comparable to leading base models such as Qwen3-4B and Gemma3-12B at its scale and larger, and outperforms models including Llama-3-8B and OLMoE across reasoning, mathematics, and coding benchmarks. Together, these results demonstrate that the AMD hardware, network, and software stack are mature and optimized enough for competitive large-scale pretraining.
☆ Geometric-Disentangelment Unlearning
Machine unlearning, the removal of a training subset's influence from a deployed model, is critical for privacy preservation and model reliability, yet gradient ascent on forget samples often harms retained knowledge. Existing approaches face a persistent tradeoff between effective forgetting and preservation on the retain set. While previous methods provide useful heuristics, they often lack a formal analysis on how exactly forgetting updates harm retained knowledge, and whether the side effects can be removed with theoretical guarantees. To explore a theoretically sound and simple solution, we start from the first principle on how performance on the retain set is actually affected: a first-order analysis of the local change of the retain loss under small parameter updates during model training. We start from a crisp equivalence: the retain loss is unchanged to first order iff the update direction is orthogonal to the subspace spanned by retain gradients ("retain-invariant"). This identifies the entangled component as the tangential part of forget update within the retain-gradient subspace, and characterizes disentanglement as orthogonality. Guided by this, we propose the Geometric-disentanglement Unlearning (GU) that decomposes any candidate forget gradient update into tangential and normal components to retain space and executes only the normal component. Under a standard trust-region budget, the projected direction aligned with the raw forget gradient is optimal among all first-order retain-invariant moves, and we also derive the optimal projected direction for joint forget-retain updating objectives. Our method is plug-and-play and can be attached to existing gradient-based unlearning procedures to mitigate side effects. GU achieves consistent improvement on various methods across three benchmarks TOFU, MUSE, and WMDP.
comment: 27 Pages
☆ MUCH: A Multilingual Claim Hallucination Benchmark
Claim-level Uncertainty Quantification (UQ) is a promising approach to mitigate the lack of reliability in Large Language Models (LLMs). We introduce MUCH, the first claim-level UQ benchmark designed for fair and reproducible evaluation of future methods under realistic conditions. It includes 4,873 samples across four European languages (English, French, Spanish, and German) and four instruction-tuned open-weight LLMs. Unlike prior claim-level benchmarks, we release 24 generation logits per token, facilitating the development of future white-box methods without re-generating data. Moreover, in contrast to previous benchmarks that rely on manual or LLM-based segmentation, we propose a new deterministic algorithm capable of segmenting claims using as little as 0.2% of the LLM generation time. This makes our segmentation approach suitable for real-time monitoring of LLM outputs, ensuring that MUCH evaluates UQ methods under realistic deployment constraints. Finally, our evaluations show that current methods still have substantial room for improvement in both performance and efficiency.
☆ An Efficient Computational Framework for Discrete Fuzzy Numbers Based on Total Orders
Discrete fuzzy numbers, and in particular those defined over a finite chain $L_n = \{0, \ldots, n\}$, have been effectively employed to represent linguistic information within the framework of fuzzy systems. Research on total (admissible) orderings of such types of fuzzy subsets, and specifically those belonging to the set $\mathcal{D}_1^{L_n\rightarrow Y_m}$ consisting of discrete fuzzy numbers $A$ whose support is a closed subinterval of the finite chain $L_n = \{0, 1, \ldots, n\}$ and whose membership values $A(x)$, for $x \in L_n$, belong to the set $Y_m = \{ 0 = y_1 < y_2 < \cdots < y_{m-1} < y_m = 1 \}$, has facilitated the development of new methods for constructing logical connectives, based on a bijective function, called $\textit{pos function}$, that determines the position of each $A \in \mathcal{D}_1^{L_n\rightarrow Y_m}$. For this reason, in this work we revisit the problem by introducing algorithms that exploit the combinatorial structure of total (admissible) orders to compute the $\textit{pos}$ function and its inverse with exactness. The proposed approach achieves a complexity of $\mathcal{O}(n^{2} m \log n)$, which is quadratic in the size of the underlying chain ($n$) and linear in the number of membership levels ($m$). The key point is that the dominant factor is $m$, ensuring scalability with respect to the granularity of membership values. The results demonstrate that this formulation substantially reduces computational cost and enables the efficient implementation of algebraic operations -- such as aggregation and implication -- on the set of discrete fuzzy numbers.
comment: 19 pages, 2 figures. Submitted to Computational and Applied Mathematics (Springer)
☆ Principled Design of Interpretable Automated Scoring for Large-Scale Educational Assessments
AI-driven automated scoring systems offer scalable and efficient means of evaluating complex student-generated responses. Yet, despite increasing demand for transparency and interpretability, the field has yet to develop a widely accepted solution for interpretable automated scoring to be used in large-scale real-world assessments. This work takes a principled approach to address this challenge. We analyze the needs and potential benefits of interpretable automated scoring for various assessment stakeholders and develop four principles of interpretability -- Faithfulness, Groundedness, Traceability, and Interchangeability (FGTI) -- targeted at those needs. To illustrate the feasibility of implementing these principles, we develop the AnalyticScore framework for short answer scoring as a baseline reference framework for future research. AnalyticScore operates by (1) extracting explicitly identifiable elements of the responses, (2) featurizing each response into human-interpretable values using LLMs, and (3) applying an intuitive ordinal logistic regression model for scoring. In terms of scoring accuracy, AnalyticScore outperforms many uninterpretable scoring methods, and is within only 0.06 QWK of the uninterpretable SOTA on average across 10 items from the ASAP-SAS dataset. By comparing against human annotators conducting the same featurization task, we further demonstrate that the featurization behavior of AnalyticScore aligns well with that of humans.
comment: 16 pages, 2 figures
☆ Do Vision-Language Models Understand Visual Persuasiveness? NeurIPS 2025
Recent advances in vision-language models (VLMs) have enabled impressive multi-modal reasoning and understanding. Yet, whether these models truly grasp visual persuasion-how visual cues shape human attitudes and decisions-remains unclear. To probe this question, we construct a high-consensus dataset for binary persuasiveness judgment and introduce the taxonomy of Visual Persuasive Factors (VPFs), encompassing low-level perceptual, mid-level compositional, and high-level semantic cues. We also explore cognitive steering and knowledge injection strategies for persuasion-relevant reasoning. Empirical analysis across VLMs reveals a recall-oriented bias-models over-predict high persuasiveness-and weak discriminative power for low/mid-level features. In contrast, high-level semantic alignment between message and object presence emerges as the strongest predictor of human judgment. Among intervention strategies, simple instruction or unguided reasoning scaffolds yield marginal or negative effects, whereas concise, object-grounded rationales significantly improve precision and F1 scores. These results indicate that VLMs core limitation lies not in recognizing persuasive objects but in linking them to communicative intent.
comment: 8 pages (except for reference and appendix), 5 figures, 7 tables, to be published in NeurIPS 2025 Workshop: VLM4RWD
☆ Supervised Fine Tuning of Large Language Models for Domain Specific Knowledge Graph Construction:A Case Study on Hunan's Historical Celebrities
Large language models and knowledge graphs offer strong potential for advancing research on historical culture by supporting the extraction, analysis, and interpretation of cultural heritage. Using Hunan's modern historical celebrities shaped by Huxiang culture as a case study, pre-trained large models can help researchers efficiently extract key information, including biographical attributes, life events, and social relationships, from textual sources and construct structured knowledge graphs. However, systematic data resources for Hunan's historical celebrities remain limited, and general-purpose models often underperform in domain knowledge extraction and structured output generation in such low-resource settings. To address these issues, this study proposes a supervised fine-tuning approach for enhancing domain-specific information extraction. First, we design a fine-grained, schema-guided instruction template tailored to the Hunan historical celebrities domain and build an instruction-tuning dataset to mitigate the lack of domain-specific training corpora. Second, we apply parameter-efficient instruction fine-tuning to four publicly available large language models - Qwen2.5-7B, Qwen3-8B, DeepSeek-R1-Distill-Qwen-7B, and Llama-3.1-8B-Instruct - and develop evaluation criteria for assessing their extraction performance. Experimental results show that all models exhibit substantial performance gains after fine-tuning. Among them, Qwen3-8B achieves the strongest results, reaching a score of 89.3866 with 100 samples and 50 training iterations. This study provides new insights into fine-tuning vertical large language models for regional historical and cultural domains and highlights their potential for cost-effective applications in cultural heritage knowledge extraction and knowledge graph construction.
☆ Vision Language Models are Confused Tourists
Although the cultural dimension has been one of the key aspects in evaluating Vision-Language Models (VLMs), their ability to remain stable across diverse cultural inputs remains largely untested, despite being crucial to support diversity and multicultural societies. Existing evaluations often rely on benchmarks featuring only a singular cultural concept per image, overlooking scenarios where multiple, potentially unrelated cultural cues coexist. To address this gap, we introduce ConfusedTourist, a novel cultural adversarial robustness suite designed to assess VLMs' stability against perturbed geographical cues. Our experiments reveal a critical vulnerability, where accuracy drops heavily under simple image-stacking perturbations and even worsens with its image-generation-based variant. Interpretability analyses further show that these failures stem from systematic attention shifts toward distracting cues, diverting the model from its intended focus. These findings highlight a critical challenge: visual cultural concept mixing can substantially impair even state-of-the-art VLMs, underscoring the urgent need for more culturally robust multimodal understanding.
☆ ARQUSUMM: Argument-aware Quantitative Summarization of Online Conversations AAAI2026
Online conversations have become more prevalent on public discussion platforms (e.g. Reddit). With growing controversial topics, it is desirable to summarize not only diverse arguments, but also their rationale and justification. Early studies on text summarization focus on capturing general salient information in source documents, overlooking the argumentative nature of online conversations. Recent research on conversation summarization although considers the argumentative relationship among sentences, fail to explicate deeper argument structure within sentences for summarization. In this paper, we propose a novel task of argument-aware quantitative summarization to reveal the claim-reason structure of arguments in conversations, with quantities measuring argument strength. We further propose ARQUSUMM, a novel framework to address the task. To reveal the underlying argument structure within sentences, ARQUSUMM leverages LLM few-shot learning grounded in the argumentation theory to identify propositions within sentences and their claim-reason relationships. For quantitative summarization, ARQUSUMM employs argument structure-aware clustering algorithms to aggregate arguments and quantify their support. Experiments show that ARQUSUMM outperforms existing conversation and quantitative summarization models and generate summaries representing argument structures that are more helpful to users, of high textual quality and quantification accuracy.
comment: Paper accepted to AAAI2026 Main Technical Track
☆ OmniScientist: Toward a Co-evolving Ecosystem of Human and AI Scientists
With the rapid development of Large Language Models (LLMs), AI agents have demonstrated increasing proficiency in scientific tasks, ranging from hypothesis generation and experimental design to manuscript writing. Such agent systems are commonly referred to as "AI Scientists." However, existing AI Scientists predominantly formulate scientific discovery as a standalone search or optimization problem, overlooking the fact that scientific research is inherently a social and collaborative endeavor. Real-world science relies on a complex scientific infrastructure composed of collaborative mechanisms, contribution attribution, peer review, and structured scientific knowledge networks. Due to the lack of modeling for these critical dimensions, current systems struggle to establish a genuine research ecosystem or interact deeply with the human scientific community. To bridge this gap, we introduce OmniScientist, a framework that explicitly encodes the underlying mechanisms of human research into the AI scientific workflow. OmniScientist not only achieves end-to-end automation across data foundation, literature review, research ideation, experiment automation, scientific writing, and peer review, but also provides comprehensive infrastructural support by simulating the human scientific system, comprising: (1) a structured knowledge system built upon citation networks and conceptual correlations; (2) a collaborative research protocol (OSP), which enables seamless multi-agent collaboration and human researcher participation; and (3) an open evaluation platform (ScienceArena) based on blind pairwise user voting and Elo rankings. This infrastructure empowers agents to not only comprehend and leverage human knowledge systems but also to collaborate and co-evolve, fostering a sustainable and scalable innovation ecosystem.
☆ Predicting the Formation of Induction Heads NeurIPS
Arguably, specialized attention heads dubbed induction heads (IHs) underlie the remarkable in-context learning (ICL) capabilities of modern language models (LMs); yet, a precise characterization of their formation remains unclear. In this study, we investigate the relationship between statistical properties of training data (for both natural and synthetic data) and IH formation. We show that (1) a simple equation combining batch size and context size predicts the point at which IHs form; (2) surface bigram repetition frequency and reliability strongly affect the formation of IHs, and we find a precise Pareto frontier in terms of these two values; and (3) local dependency with high bigram repetition frequency and reliability is sufficient for IH formation, but when the frequency and reliability are low, categoriality and the shape of the marginal distribution matter.
comment: Accepted to CogInterp @ NeurIPS
☆ Deep Improvement Supervision
Recently, it was shown that small, looped architectures, such as Tiny Recursive Models (TRMs), can outperform Large Language Models (LLMs) on complex reasoning tasks, including the Abstraction and Reasoning Corpus (ARC). In this work, we investigate a core question: how can we further improve the efficiency of these methods with minimal changes? To address this, we frame the latent reasoning of TRMs as a form of classifier-free guidance and implicit policy improvement algorithm. Building on these insights, we propose a novel training scheme that provides a target for each loop during training. We demonstrate that our approach significantly enhances training efficiency. Our method reduces the total number of forward passes by 18x and eliminates halting mechanisms, while maintaining quality comparable to standard TRMs. Notably, we achieve 24% accuracy on ARC-1 with only 0.8M parameters, outperforming most LLMs.
☆ Improving Latent Reasoning in LLMs via Soft Concept Mixing
Unlike human reasoning in abstract conceptual spaces, large language models (LLMs) typically reason by generating discrete tokens, which potentially limit their expressive power. The recent work Soft Thinking has shown that LLMs' latent reasoning via soft concepts is a promising direction, but LLMs are trained on discrete tokens. To reduce this gap between the soft concepts in reasoning and the discrete tokens in training, we propose Soft Concept Mixing (SCM), a soft concept aware training scheme that directly exposes the model to soft representations during training. Specifically, SCM constructs a soft concept vector by forming a probability-weighted average of embeddings. Then, this vector is mixed into the model's hidden states, which embody rich contextual information. Finally, the entire latent reasoning process is optimized with Reinforcement Learning (RL). Experiments on five reasoning benchmarks demonstrate that SCM improves the reasoning performance of LLMs, and simultaneously maintains a stable training dynamic.
comment: 7 pages, 3 figures
♻ ☆ Fine-Grained Reward Optimization for Machine Translation using Error Severity Mappings
Reinforcement learning (RL) has been proven to be an effective and robust method for training neural machine translation systems, especially when paired with powerful reward models that accurately assess translation quality. However, most research has focused on RL methods that use sentence-level feedback, leading to inefficient learning signals due to the reward sparsity problem -- the model receives a single score for the entire sentence. To address this, we propose a novel approach that leverages fine-grained, token-level quality assessments along with error severity levels using RL methods. Specifically, we use xCOMET, a state-of-the-art quality estimation system, as our token-level reward model. We conduct experiments on small and large translation datasets with standard encoder-decoder and large language models-based machine translation systems, comparing the impact of sentence-level versus fine-grained reward signals on translation quality. Our results show that training with token-level rewards improves translation quality across language pairs over baselines according to both automatic and human evaluation. Furthermore, token-level reward optimization improves training stability, evidenced by a steady increase in mean rewards over training epochs.
♻ ☆ Do LLMs produce texts with "human-like" lexical diversity?
The degree to which large language models (LLMs) produce writing that is truly human-like remains unclear despite the extensive empirical attention that this question has received. The present study addresses this question from the perspective of lexical diversity. Specifically, the study investigates patterns of lexical diversity in LLM-generated texts from four ChatGPT models (ChatGPT-3.5, ChatGPT-4, ChatGPT-o4 mini, and ChatGPT-4.5) in comparison with texts written by L1 and L2 English participants (n = 240) across four education levels. Six dimensions of lexical diversity were measured in each text: volume, abundance, variety-repetition, evenness, disparity, and dispersion. Results from one-way MANOVAs, one-way ANOVAs, and Support Vector Machines revealed that the ChatGPT-generated texts differed significantly from human-written texts for each variable, with ChatGPT-o4 mini and ChatGPT-4.5 differing the most. Within these two groups, ChatGPT-4.5 demonstrated higher levels of lexical diversity than older models despite producing fewer tokens. The human writers' lexical diversity did not differ across subgroups (i.e., education, language status). Altogether, the results indicate that ChatGPT models do not produce human-like texts in relation to lexical diversity, and the newer models produce less human-like text than older models. We discuss the implications of these results for language pedagogy and related applications.
♻ ☆ AI use in American newspapers is widespread, uneven, and rarely disclosed
AI is rapidly transforming journalism, but the extent of its use in published newspaper articles remains unclear. We address this gap by auditing a large-scale dataset of 186K articles from online editions of 1.5K American newspapers published in the summer of 2025. Using Pangram, a state-of-the-art AI detector, we discover that approximately 9% of newly-published articles are either partially or fully AI-generated. This AI use is unevenly distributed, appearing more frequently in smaller, local outlets, in specific topics such as weather and technology, and within certain ownership groups. We also analyze 45K opinion pieces from Washington Post, New York Times, and Wall Street Journal, finding that they are 6.4 times more likely to contain AI-generated content than news articles from the same publications, with many AI-flagged op-eds authored by prominent public figures. Despite this prevalence, we find that AI use is rarely disclosed: a manual audit of 100 AI-flagged articles found only five disclosures of AI use. Overall, our audit highlights the immediate need for greater transparency and updated editorial standards regarding the use of AI in journalism to maintain public trust.
♻ ☆ Concise Reasoning via Reinforcement Learning
A major drawback of reasoning models is their excessive token usage, inflating computational cost, resource demand, and latency. We show this verbosity stems not from deeper reasoning but from reinforcement learning loss minimization when models produce incorrect answers. With unsolvable problems dominating training, this effect compounds into a systematic tendency toward longer outputs. Through theoretical analysis of PPO and GRPO, we prove that incorrect answers inherently drive policies toward verbosity \textit{even when} $γ=1$, reframing response lengthening as an optimization artifact. We further uncover a consistent correlation between conciseness and correctness across reasoning and non-reasoning models. Building on these insights, we propose a two-phase RL procedure where a brief secondary stage, trained on a small set of solvable problems, significantly reduces response length while preserving or improving accuracy. Finally, we show that while GRPO shares properties with PPO, it exhibits collapse modes, limiting its reliability for concise reasoning. Our claims are supported by extensive experiments.
♻ ☆ Live-SWE-agent: Can Software Engineering Agents Self-Evolve on the Fly?
Large Language Models (LLMs) are reshaping almost all industries, including software engineering. In recent years, a number of LLM agents have been proposed to solve real-world software problems. Such software agents are typically equipped with a suite of coding tools and can autonomously decide the next actions to form complete trajectories to solve end-to-end software tasks. While promising, they typically require dedicated design and may still be suboptimal, since it can be extremely challenging and costly to exhaust the entire agent scaffold design space. Recognizing that software agents are inherently software themselves that can be further refined/modified, researchers have proposed a number of self-improving software agents recently, including the Darwin-Gödel Machine (DGM). Meanwhile, such self-improving agents require costly offline training on specific benchmarks and may not generalize well across different LLMs or benchmarks. In this paper, we propose Live-SWE-agent, the first live software agent that can autonomously and continuously evolve itself on-the-fly during runtime when solving real-world software problems. More specifically, Live-SWE-agent starts with the most basic agent scaffold with only access to bash tools (e.g., mini-SWE-agent), and autonomously evolves its own scaffold implementation while solving real-world software problems. Our evaluation on the widely studied SWE-bench Verified benchmark shows that LIVE-SWE-AGENT can achieve an impressive solve rate of 77.4% without test-time scaling, outperforming all existing software agents, including the best proprietary solution. Moreover, Live-SWE-agent outperforms state-of-the-art manually crafted software agents on the recent SWE-Bench Pro benchmark, achieving the best-known solve rate of 45.8%.
♻ ☆ Testing Hypotheses from the Social Approval Theory of Online Hate: An Analysis of 110 Million Messages from Parler
We examined how online hate is motivated by receiving social approval via Walther's (2024) social approval theory of online hate, which argues (H1a) more signals of social approval on hate messages predicts more subsequent hate messages, and (H1b) as social approval increases, hate speech becomes more extreme. Using 110 million messages from Parler (2018-2021), we observed the number of upvotes received on a hate speech post was unassociated with hate speech in one's next post and during the next month, three-months, and six-months. The number of upvotes received on (extreme) hate speech comments, however, was positively associated with (extreme) hate speech during the next week, month, three-months, and six-months. Between-person effects revealed an average positive relationship between social approval and hate speech production at all time intervals. For comments, social approval linked more strongly to online hate than social disapproval. Social approval is a critical mechanism facilitating online hate propagation.
♻ ☆ Fairness Evaluation of Large Language Models in Academic Library Reference Services
As libraries explore large language models (LLMs) for use in virtual reference services, a key question arises: Can LLMs serve all users equitably, regardless of demographics or social status? While they offer great potential for scalable support, LLMs may also reproduce societal biases embedded in their training data, risking the integrity of libraries' commitment to equitable service. To address this concern, we evaluate whether LLMs differentiate responses across user identities by prompting six state-of-the-art LLMs to assist patrons differing in sex, race/ethnicity, and institutional role. We find no evidence of differentiation by race or ethnicity, and only minor evidence of stereotypical bias against women in one model. LLMs demonstrate nuanced accommodation of institutional roles through the use of linguistic choices related to formality, politeness, and domain-specific vocabularies, reflecting professional norms rather than discriminatory treatment. These findings suggest that current LLMs show a promising degree of readiness to support equitable and contextually appropriate communication in academic library reference services.
♻ ☆ WER is Unaware: Assessing How ASR Errors Distort Clinical Understanding in Patient Facing Dialogue
As Automatic Speech Recognition (ASR) is increasingly deployed in clinical dialogue, standard evaluations still rely heavily on Word Error Rate (WER). This paper challenges that standard, investigating whether WER or other common metrics correlate with the clinical impact of transcription errors. We establish a gold-standard benchmark by having expert clinicians compare ground-truth utterances to their ASR-generated counterparts, labeling the clinical impact of any discrepancies found in two distinct doctor-patient dialogue datasets. Our analysis reveals that WER and a comprehensive suite of existing metrics correlate poorly with the clinician-assigned risk labels (No, Minimal, or Significant Impact). To bridge this evaluation gap, we introduce an LLM-as-a-Judge, programmatically optimized using GEPA through DSPy to replicate expert clinical assessment. The optimized judge (Gemini-2.5-Pro) achieves human-comparable performance, obtaining 90% accuracy and a strong Cohen's $κ$ of 0.816. This work provides a validated, automated framework for moving ASR evaluation beyond simple textual fidelity to a necessary, scalable assessment of safety in clinical dialogue.
♻ ☆ LLM one-shot style transfer for Authorship Attribution and Verification
Computational stylometry analyzes writing style through quantitative patterns in text, supporting applications from forensic tasks such as identity linking and plagiarism detection to literary attribution in the humanities. Supervised and contrastive approaches rely on data with spurious correlations and often confuse style with topic. Despite their natural use in AI-generated text detection, the CLM pre-training of modern LLMs has been scarcely leveraged for general authorship problems. We propose a novel unsupervised approach based on this extensive pre-training and the in-context learning capabilities of LLMs, employing the log-probabilities of an LLM to measure style transferability from one text to another. Our method significantly outperforms LLM prompting approaches of comparable scale and achieves higher accuracy than contrastively trained baselines when controlling for topical correlations. Moreover, performance scales fairly consistently with the size of the base model and, in the case of authorship verification, with an additional mechanism that increases test-time computation; enabling flexible trade-offs between computational cost and accuracy.
♻ ☆ Evaluating Large Language Models for Diacritic Restoration in Romanian Texts: A Comparative Study
Automatic diacritic restoration is crucial for text processing in languages with rich diacritical marks, such as Romanian. This study evaluates the performance of several large language models (LLMs) in restoring diacritics in Romanian texts. Using a comprehensive corpus, we tested models including OpenAI's GPT-3.5, GPT-4, GPT-4o, Google's Gemini 1.0 Pro, Meta's Llama 2 and Llama 3, MistralAI's Mixtral 8x7B Instruct, airoboros 70B, and OpenLLM-Ro's RoLlama 2 7B, under multiple prompt templates ranging from zero-shot to complex multi-shot instructions. Results show that models such as GPT-4o achieve high diacritic restoration accuracy, consistently surpassing a neutral echo baseline, while others, including Meta's Llama family, exhibit wider variability. These findings highlight the impact of model architecture, training data, and prompt design on diacritic restoration performance and outline promising directions for improving NLP tools for diacritic-rich languages.
comment: The original submission contained metadata errors and requires correction. A revised and complete version will be submitted as a replacement
♻ ☆ Resolving Sentiment Discrepancy for Multimodal Sentiment Detection via Semantics Completion and Decomposition
With the proliferation of social media posts in recent years, the need to detect sentiments in multimodal (image-text) content has grown rapidly. Since posts are user-generated, the image and text from the same post can express different or even contradictory sentiments, leading to potential \textbf{sentiment discrepancy}. However, existing works mainly adopt a single-branch fusion structure that primarily captures the consistent sentiment between image and text. The ignorance or implicit modeling of discrepant sentiment results in compromised unimodal encoding and limited performance. In this paper, we propose a semantics Completion and Decomposition (CoDe) network to resolve the above issue. In the semantics completion module, we complement image and text representations with the semantics of the in-image text, helping bridge the sentiment gap. In the semantics decomposition module, we decompose image and text representations with exclusive projection and contrastive learning, thereby explicitly capturing the discrepant sentiment between modalities. Finally, we fuse image and text representations by cross-attention and combine them with the learned discrepant sentiment for final classification. Extensive experiments on four datasets demonstrate the superiority of CoDe and the effectiveness of each proposed module.
comment: Accepted by Pattern Recognition
♻ ☆ When Bias Pretends to Be Truth: How Spurious Correlations Undermine Hallucination Detection in LLMs
Despite substantial advances, large language models (LLMs) continue to exhibit hallucinations, generating plausible yet incorrect responses. In this paper, we highlight a critical yet previously underexplored class of hallucinations driven by spurious correlations -- superficial but statistically prominent associations between features (e.g., surnames) and attributes (e.g., nationality) present in the training data. We demonstrate that these spurious correlations induce hallucinations that are confidently generated, immune to model scaling, evade current detection methods, and persist even after refusal fine-tuning. Through systematically controlled synthetic experiments and empirical evaluations on state-of-the-art open-source and proprietary LLMs (including GPT-5), we show that existing hallucination detection methods, such as confidence-based filtering and inner-state probing, fundamentally fail in the presence of spurious correlations. Our theoretical analysis further elucidates why these statistical biases intrinsically undermine confidence-based detection techniques. Our findings thus emphasize the urgent need for new approaches explicitly designed to address hallucinations caused by spurious correlations.
♻ ☆ DiffTester: Accelerating Unit Test Generation for Diffusion LLMs via Repetitive Pattern
Software development relies heavily on extensive unit testing, which makes the efficiency of automated Unit Test Generation (UTG) particularly important. However, most existing LLMs generate test cases one token at a time in each forward pass, which leads to inefficient UTG. Recently, diffusion LLMs (dLLMs) have emerged, offering promising parallel generation capabilities and showing strong potential for efficient UTG. Despite this advantage, their application to UTG is still constrained by a clear trade-off between efficiency and test quality, since increasing the number of tokens generated in each step often causes a sharp decline in the quality of test cases. To overcome this limitation, we present DiffTester, an acceleration framework specifically tailored for dLLMs in UTG. The key idea of DiffTester is that unit tests targeting the same focal method often share repetitive structural patterns. By dynamically identifying these common patterns through abstract syntax tree analysis during generation, DiffTester adaptively increases the number of tokens produced at each step without compromising the quality of the output. To enable comprehensive evaluation, we extend the original TestEval benchmark, which was limited to Python, by introducing additional programming languages including Java and C++. Extensive experiments on three benchmarks with two representative models show that DiffTester delivers significant acceleration while preserving test coverage. Moreover, DiffTester generalizes well across different dLLMs and programming languages, providing a practical and scalable solution for efficient UTG in software development. Code and data are publicly available at https://github.com/wellbeingyang/DLM4UTG-open .
comment: Update reference
♻ ☆ MiniLLM: Knowledge Distillation of Large Language Models ICLR 2024
Knowledge Distillation (KD) is a promising technique for reducing the high computational demand of large language models (LLMs). However, previous KD methods are primarily applied to white-box classification models or training small models to imitate black-box model APIs like ChatGPT. How to effectively distill the knowledge of white-box LLMs into small models is still under-explored, which becomes more important with the prosperity of open-source LLMs. In this work, we propose a KD approach that distills LLMs into smaller language models. We first replace the forward Kullback-Leibler divergence (KLD) objective in the standard KD approaches with reverse KLD, which is more suitable for KD on generative language models, to prevent the student model from overestimating the low-probability regions of the teacher distribution. Then, we derive an effective on-policy optimization approach to learn this objective. The student models are named MiniLLM. Extensive experiments in the instruction-following setting show that MiniLLM generates more precise responses with higher overall quality, lower exposure bias, better calibration, and higher long-text generation performance than the baselines. Our method is scalable for different model families with 120M to 13B parameters. Our code, data, and model checkpoints can be found in https://github.com/microsoft/LMOps/tree/main/minillm.
comment: Published as a conference paper in ICLR 2024
♻ ☆ Overcoming the Generalization Limits of SLM Finetuning for Shape-Based Extraction of Datatype and Object Properties
Small language models (SLMs) have shown promises for relation extraction (RE) when extracting RDF triples guided by SHACL shapes focused on common datatype properties. This paper investigates how SLMs handle both datatype and object properties for a complete RDF graph extraction. We show that the key bottleneck is related to long-tail distribution of rare properties. To solve this issue, we evaluate several strategies: stratified sampling, weighted loss, dataset scaling, and template-based synthetic data augmentation. We show that the best strategy to perform equally well over unbalanced target properties is to build a training set where the number of occurrences of each property exceeds a given threshold. To enable reproducibility, we publicly released our datasets, experimental results and code. Our findings offer practical guidance for training shape-aware SLMs and highlight promising directions for future work in semantic RE.
comment: Accepted at KCAP 2025
♻ ☆ From Hypothesis to Publication: A Comprehensive Survey of AI-Driven Research Support Systems EMNLP 2025
Research is a fundamental process driving the advancement of human civilization, yet it demands substantial time and effort from researchers. In recent years, the rapid development of artificial intelligence (AI) technologies has inspired researchers to explore how AI can accelerate and enhance research. To monitor relevant advancements, this paper presents a systematic review of the progress in this domain. Specifically, we organize the relevant studies into three main categories: hypothesis formulation, hypothesis validation, and manuscript publication. Hypothesis formulation involves knowledge synthesis and hypothesis generation. Hypothesis validation includes the verification of scientific claims, theorem proving, and experiment validation. Manuscript publication encompasses manuscript writing and the peer review process. Furthermore, we identify and discuss the current challenges faced in these areas, as well as potential future directions for research. Finally, we also offer a comprehensive overview of existing benchmarks and tools across various domains that support the integration of AI into the research process. We hope this paper serves as an introduction for beginners and fosters future research. Resources have been made publicly available at https://github.com/zkzhou126/AI-for-Research.
comment: Accepted to EMNLP 2025
♻ ☆ A systematic review of relation extraction task since the emergence of Transformers
This article presents a systematic review of relation extraction (RE) research since the advent of Transformer-based models. Using an automated framework to collect and annotate publications, we analyze 34 surveys, 64 datasets, and 104 models published between 2019 and 2024. The review highlights methodological advances, benchmark resources, and the integration of semantic web technologies. By consolidating results across multiple dimensions, the study identifies current trends, limitations, and open challenges, offering researchers and practitioners a comprehensive reference for understanding the evolution and future directions of RE.
comment: Submited at ACM-Computing Surveys + The resulting annotated Zotero bibliography : https://www.zotero.org/groups/6070963/scilex_re_systlitreview/library + SciLEx software: https://github.com/Wimmics/SciLEx
♻ ☆ Emergence of psychopathological computations in large language models
Can large language models (LLMs) instantiate computations of psychopathology? An effective approach to the question hinges on addressing two factors. First, for conceptual validity, we require a general and computational account of psychopathology that is applicable to computational entities without biological embodiment or subjective experience. Second, psychopathological computations, derived from the adapted theory, need to be empirically identified within the LLM's internal processing. Thus, we establish a computational-theoretical framework to provide an account of psychopathology applicable to LLMs. Based on the framework, we conduct experiments demonstrating two key claims: first, that the computational structure of psychopathology exists in LLMs; and second, that executing this computational structure results in psychopathological functions. We further observe that as LLM size increases, the computational structure of psychopathology becomes denser and that the functions become more effective. Taken together, the empirical results corroborate our hypothesis that network-theoretic computations of psychopathology have already emerged in LLMs. This suggests that certain LLM behaviors mirroring psychopathology may not be a superficial mimicry but a feature of their internal processing. Our work shows the promise of developing a new powerful in silico model of psychopathology and also alludes to the possibility of safety threat from the AI systems with psychopathological behaviors in the near future.
comment: pre-print
♻ ☆ Improving the Performance of Radiology Report De-identification with Large-Scale Training and Benchmarking Against Cloud Vendor Methods
Objective: To enhance automated de-identification of radiology reports by scaling transformer-based models through extensive training datasets and benchmarking performance against commercial cloud vendor systems for protected health information (PHI) detection. Materials and Methods: In this retrospective study, we built upon a state-of-the-art, transformer-based, PHI de-identification pipeline by fine-tuning on two large annotated radiology corpora from Stanford University, encompassing chest X-ray, chest CT, abdomen/pelvis CT, and brain MR reports and introducing an additional PHI category (AGE) into the architecture. Model performance was evaluated on test sets from Stanford and the University of Pennsylvania (Penn) for token-level PHI detection. We further assessed (1) the stability of synthetic PHI generation using a "hide-in-plain-sight" method and (2) performance against commercial systems. Precision, recall, and F1 scores were computed across all PHI categories. Results: Our model achieved overall F1 scores of 0.973 on the Penn dataset and 0.996 on the Stanford dataset, outperforming or maintaining the previous state-of-the-art model performance. Synthetic PHI evaluation showed consistent detectability (overall F1: 0.959 [0.958-0.960]) across 50 independently de-identified Penn datasets. Our model outperformed all vendor systems on synthetic Penn reports (overall F1: 0.960 vs. 0.632-0.754). Discussion: Large-scale, multimodal training improved cross-institutional generalization and robustness. Synthetic PHI generation preserved data utility while ensuring privacy. Conclusion: A transformer-based de-identification model trained on diverse radiology datasets outperforms prior academic and commercial systems in PHI detection and establishes a new benchmark for secure clinical text processing.
comment: In submission to JAMIA
♻ ☆ ToolHaystack: Stress-Testing Tool-Augmented Language Models in Realistic Long-Term Interactions
Large language models (LLMs) have demonstrated strong capabilities in using external tools to address user inquiries. However, most existing evaluations assume tool use in short contexts, offering limited insight into model behavior during realistic long-term interactions. To fill this gap, we introduce ToolHaystack, a benchmark for testing the tool use capabilities in long-term interactions. Each test instance in ToolHaystack includes multiple tasks execution contexts and realistic noise within a continuous conversation, enabling assessment of how well models maintain context and handle various disruptions. By applying this benchmark to 14 state-of-the-art LLMs, we find that while current models perform well in standard multi-turn settings, they often significantly struggle in ToolHaystack, highlighting critical gaps in their long-term robustness not revealed by previous tool benchmarks.
comment: Our code and data are available at https://github.com/bwookwak/ToolHaystack Edited for adding acknowledgement section
♻ ☆ From Perception to Reasoning: Deep Thinking Empowers Multimodal Large Language Models
With the remarkable success of Multimodal Large Language Models (MLLMs) in perception tasks, enhancing their complex reasoning capabilities has emerged as a critical research focus. Existing models still suffer from challenges such as opaque reasoning paths and insufficient generalization ability. Chain-of-Thought (CoT) reasoning, which has demonstrated significant efficacy in language models by enhancing reasoning transparency and output interpretability, holds promise for improving model reasoning capabilities when extended to the multimodal domain. This paper provides a systematic review centered on "Multimodal Chain-of-Thought" (MCoT). First, it analyzes the background and theoretical motivations for its inception from the perspectives of technical evolution and task demands. Then, it introduces mainstream MCoT methods from three aspects: CoT paradigms, the post-training stage, and the inference stage, while also analyzing their underlying mechanisms. Furthermore, the paper summarizes existing evaluation benchmarks and metrics, and discusses the application scenarios of MCoT. Finally, it analyzes the challenges currently facing MCoT and provides an outlook on its future research directions.
comment: Survey; 7 figures, 3 tables, 44 pages
♻ ☆ The Rise of Parameter Specialization for Knowledge Storage in Large Language Models NeurIPS 2025
Over time, a growing wave of large language models from various series has been introduced to the community. Researchers are striving to maximize the performance of language models with constrained parameter sizes. However, from a microscopic perspective, there has been limited research on how to better store knowledge in model parameters, particularly within MLPs, to enable more effective utilization of this knowledge by the model. In this work, we analyze twenty publicly available open-source large language models to investigate the relationship between their strong performance and the way knowledge is stored in their corresponding MLP parameters. Our findings reveal that as language models become more advanced and demonstrate stronger knowledge capabilities, their parameters exhibit increased specialization. Specifically, parameters in the MLPs tend to be more focused on encoding similar types of knowledge. We experimentally validate that this specialized distribution of knowledge contributes to improving the efficiency of knowledge utilization in these models. Furthermore, by conducting causal training experiments, we confirm that this specialized knowledge distribution plays a critical role in improving the model's efficiency in leveraging stored knowledge.
comment: Accepted in NeurIPS 2025
♻ ☆ Response Attack: Exploiting Contextual Priming to Jailbreak Large Language Models
Contextual priming, where earlier stimuli covertly bias later judgments, offers an unexplored attack surface for large language models (LLMs). We uncover a contextual priming vulnerability in which the previous response in the dialogue can steer its subsequent behavior toward policy-violating content. While existing jailbreak attacks largely rely on single-turn or multi-turn prompt manipulations, or inject static in-context examples, these methods suffer from limited effectiveness, inefficiency, or semantic drift. We introduce Response Attack (RA), a novel framework that strategically leverages intermediate, mildly harmful responses as contextual primers within a dialogue. By reformulating harmful queries and injecting these intermediate responses before issuing a targeted trigger prompt, RA exploits a previously overlooked vulnerability in LLMs. Extensive experiments across eight state-of-the-art LLMs show that RA consistently achieves significantly higher attack success rates than nine leading jailbreak baselines. Our results demonstrate that the success of RA is directly attributable to the strategic use of intermediate responses, which induce models to generate more explicit and relevant harmful content while maintaining stealth, efficiency, and fidelity to the original query. The code and data are available at https://github.com/Dtc7w3PQ/Response-Attack.
comment: 20 pages, 10 figures. Code and data available at https://github.com/Dtc7w3PQ/Response-Attack
♻ ☆ SALT: Steering Activations towards Leakage-free Thinking in Chain of Thought
As Large Language Models (LLMs) evolve into personal assistants with access to sensitive user data, they face a critical privacy challenge: while prior work has addressed output-level privacy, recent findings reveal that LLMs often leak private information through their internal reasoning processes, violating contextual privacy expectations. These leaky thoughts occur when models inadvertently expose sensitive details in their reasoning traces, even when final outputs appear safe. The challenge lies in preventing such leakage without compromising the model's reasoning capabilities, requiring a delicate balance between privacy and utility. We introduce Steering Activations towards Leakage-free Thinking (SALT), a lightweight test-time intervention that mitigates privacy leakage in model's Chain of Thought (CoT) by injecting targeted steering vectors into hidden state. We identify the high-leakage layers responsible for this behavior. Through experiments across multiple LLMs, we demonstrate that SALT achieves reductions including $18.2\%$ reduction in CPL on QwQ-32B, $17.9\%$ reduction in CPL on Llama-3.1-8B, and $31.2\%$ reduction in CPL on Deepseek in contextual privacy leakage dataset AirGapAgent-R while maintaining comparable task performance and utility. Our work establishes SALT as a practical approach for test-time privacy protection in reasoning-capable language models, offering a path toward safer deployment of LLM-based personal agents.
♻ ☆ AraFinNews: Arabic Financial Summarisation with Domain-Adapted LLMs
This paper examines how domain specificity affects abstractive summarisation of Arabic financial texts using large language models (LLMs). We present AraFinNews, the largest publicly available Arabic financial news dataset to date, comprising 212,500 article-headline pairs spanning almost a decade of reporting from October 2015 to July 2025. Developed as an Arabic counterpart to major English summarisation corpora such as CNN/DailyMail, AraFinNews offers a strong benchmark for assessing domain-focused language understanding and generation in financial contexts. Using this resource, we evaluate transformer-based models, including mT5, AraT5 and the domain-adapted FinAraT5, to investigate how financial-domain pretraining influences accuracy, numerical reliability and stylistic alignment with professional reporting. The results show that domain-adapted models produce more coherent summaries, particularly when handling quantitative and entity-centred information. These findings underscore the value of domain-specific adaptation for improving narrative fluency in Arabic financial summarisation. The dataset is freely available for non-commercial research at https://github.com/ArabicNLP-UK/AraFinNews.
comment: 9 pages
♻ ☆ Bridging the Semantic Gap: Contrastive Rewards for Multilingual Text-to-SQL with GRPO
Current Text-to-SQL methods are evaluated and only focused on executable queries, overlooking the semantic alignment challenge -- both in terms of the semantic meaning of the query and the correctness of the execution results. Even execution accuracy itself shows significant drops when moving from English to other languages, with an average decline of 6 percentage points across non-English languages. We address these challenges by presenting a new framework that combines Group Relative Policy Optimization (GRPO) within a multilingual contrastive reward signal to enhance both task efficiency and semantic accuracy in Text-to-SQL systems in cross-lingual scenarios. Our method teaches models to obtain better correspondence between SQL generation and user intent by combining a reward signal based on semantic similarity. On the seven-language MultiSpider dataset, fine-tuning the LLaMA-3-3B model with GRPO improved the execution accuracy up to 87.4 percent (+26 pp over zero-shot) and semantic accuracy up to 52.29 percent (+32.86 pp). Adding our contrastive reward signal in the GRPO framework further improved the average semantic accuracy to 59.14 percent (+6.85 pp, up to +10 pp for Vietnamese). Our experiments showcase that a smaller, parameter-efficient 3B LLaMA model fine-tuned with our contrastive reward signal outperforms a much larger zero-shot 8B LLaMA model, with an uplift of 7.43 pp in execution accuracy (from 81.43 percent on the 8B model to 88.86 percent on the 3B model), and nearly matches its semantic accuracy (59.14 percent vs. 68.57 percent) -- all using just 3,000 reinforcement learning training examples. These results demonstrate how we can improve the performance of Text-to-SQL systems with contrastive rewards for directed semantic alignment, without requiring large-scale training datasets.
comment: 20th International Workshop on Semantic and Social Media Adaptation & Personalization
♻ ☆ EventWeave: A Dynamic Framework for Capturing Core and Supporting Events in Dialogue Systems
Large language models have improved dialogue systems, but often process conversational turns in isolation, overlooking the event structures that guide natural interactions. Hence we introduce \textbf{EventWeave}, a framework that explicitly models relationships between conversational events to generate more contextually appropriate dialogue responses. EventWeave constructs a dynamic event graph that distinguishes between core events (main goals) and supporting events (interconnected details), employing a multi-head attention mechanism to selectively determine which events are most relevant to the current turn. Unlike summarization or standard graph-based approaches, our method captures three distinct relationship types between events, allowing for more nuanced context modeling. Experiments on three dialogue datasets demonstrate that EventWeave produces more natural and contextually appropriate responses while requiring less computational overhead than models processing the entire dialogue history. Ablation studies confirm improvements stem from better event relationship modeling rather than increased information density. Our approach effectively balances comprehensive context understanding with generating concise responses, maintaining strong performance across various dialogue lengths through targeted optimization techniques.
♻ ☆ RPRO: Ranked Preference Reinforcement Optimization for Enhancing Medical QA and Diagnostic Reasoning
Medical question answering requires advanced reasoning that integrates domain knowledge with logical inference. However, existing large language models (LLMs) often generate reasoning chains that lack factual accuracy and clinical reliability. We propose Ranked Preference Reinforcement Optimization (RPRO), a novel framework that combines reinforcement learning with preference-driven reasoning refinement to enhance clinical chain-of-thought (CoT) performance. RPRO distinguishes itself from prior approaches by employing task-adaptive reasoning templates and a probabilistic evaluation mechanism that aligns model outputs with established clinical workflows, while automatically identifying and correcting low-quality reasoning chains. Unlike traditional pairwise preference methods, RPRO introduces a groupwise ranking optimization based on the Bradley--Terry model and incorporates KL-divergence regularization for stable training. Experiments on PubMedQA, MedQA-USMLE, and a real-world clinical dataset from Far Eastern Memorial Hospital (FEMH) demonstrate consistent improvements over strong baselines. Remarkably, our 2B-parameter model outperforms much larger 7B--20B models, including medical-specialized variants. These findings demonstrate that combining preference optimization with quality-driven refinement provides a scalable and clinically grounded approach to building more reliable medical LLMs.
♻ ☆ Task-Aligned Tool Recommendation for Large Language Models AACL 2025
By augmenting Large Language Models (LLMs) with external tools, their capacity to solve complex problems has been significantly enhanced. However, despite ongoing advancements in the parsing capabilities of LLMs, incorporating all available tools simultaneously in the prompt remains impractical due to the vast number of external tools. Consequently, it is essential to provide LLMs with a precise set of tools tailored to the specific task, considering both quantity and quality. Current tool retrieval methods primarily focus on refining the ranking list of tools and directly packaging a fixed number of top-ranked tools as the tool set. However, these approaches often fail to equip LLMs with the optimal set of tools prior to execution, since the optimal number of tools for different tasks could be different, resulting in inefficiencies such as redundant or unsuitable tools, which impede immediate access to the most relevant tools. This paper addresses the challenge of recommending precise toolsets for LLMs. We introduce the problem of tool recommendation, define its scope, and propose a novel Precision-driven Tool Recommendation (PTR) approach. PTR captures an initial, concise set of tools by leveraging historical tool bundle usage and dynamically adjusts the tool set by performing tool matching, culminating in a multi-view-based tool addition. Additionally, we present a new dataset, RecTools, and a metric, TRACC, designed to evaluate the effectiveness of tool recommendation for LLMs. We further validate our design choices through comprehensive experiments, demonstrating promising accuracy across two open benchmarks and our RecTools dataset.
comment: IJCNLP-AACL 2025 Main
Information Retrieval 8
☆ A Little More Like This: Text-to-Image Retrieval with Vision-Language Models Using Relevance Feedback WACV'26
Large vision-language models (VLMs) enable intuitive visual search using natural language queries. However, improving their performance often requires fine-tuning and scaling to larger model variants. In this work, we propose a mechanism inspired by traditional text-based search to improve retrieval performance at inference time: relevance feedback. While relevance feedback can serve as an alternative to fine-tuning, its model-agnostic design also enables use with fine-tuned VLMs. Specifically, we introduce and evaluate four feedback strategies for VLM-based retrieval. First, we revise classical pseudo-relevance feedback (PRF), which refines query embeddings based on top-ranked results. To address its limitations, we propose generative relevance feedback (GRF), which uses synthetic captions for query refinement. Furthermore, we introduce an attentive feedback summarizer (AFS), a custom transformer-based model that integrates multimodal fine-grained features from relevant items. Finally, we simulate explicit feedback using ground-truth captions as an upper-bound baseline. Experiments on Flickr30k and COCO with the VLM backbones show that GRF, AFS, and explicit feedback improve retrieval performance by 3-5% in MRR@5 for smaller VLMs, and 1-3% for larger ones, compared to retrieval with no feedback. Moreover, AFS, similarly to explicit feedback, mitigates query drift and is more robust than GRF in iterative, multi-turn retrieval settings. Our findings demonstrate that relevance feedback can consistently enhance retrieval across VLMs and open up opportunities for interactive and adaptive visual search.
comment: Accepted to WACV'26
☆ Parametric Retrieval-Augmented Generation using Latent Routing of LoRA Adapters
Parametric Retrieval-Augmented Generation (PRAG) is a novel RAG paradigm that integrates external knowledge directly into a Large Language Model (LLM) by parameterizing documents using LoRA adapters, demonstrating reduced inference costs compared to traditional RAG approaches. However, current PRAG approaches adopt a \textbf{one-to-one} document encoding scheme, using a dedicated LoRA adapter for each individual document. This scheme introduces two major limitations: First, it leads to data scarcity, as the training datasets for individual LoRA adapters are limited. Second, it incurs high overhead during inference, requiring the merging of LLM weights with a new LoRA adapter for every candidate passage, which is computationally inefficient. To overcome these challenges, we propose a novel paradigm for encoding passages in PRAG that utilizes a latent routing encoding process (Poly-PRAG). During offline encoding, we treat the encoding of a set of documents as a multi-task learning process, where each passage is assigned a unique task identifier. By employing a routing function, we use a small set of latent LoRA adapters to encode the entire passage space. During online inference, this routing function selectively activates a subset of latent experts based on the input query. We conduct comprehensive evaluations of Poly-PRAG across multiple knowledge-intensive NLP tasks. Our extensive experiments demonstrate the effectiveness of the proposed method, achieving state-of-the-art results on four distinct datasets.
☆ CLLMRec: LLM-powered Cognitive-Aware Concept Recommendation via Semantic Alignment and Prerequisite Knowledge Distillation
The growth of Massive Open Online Courses (MOOCs) presents significant challenges for personalized learning, where concept recommendation is crucial. Existing approaches typically rely on heterogeneous information networks or knowledge graphs to capture conceptual relationships, combined with knowledge tracing models to assess learners' cognitive states. However, these methods face significant limitations due to their dependence on high-quality structured knowledge graphs, which are often scarce in real-world educational scenarios. To address this fundamental challenge, this paper proposes CLLMRec, a novel framework that leverages Large Language Models through two synergistic technical pillars: Semantic Alignment and Prerequisite Knowledge Distillation. The Semantic Alignment component constructs a unified representation space by encoding unstructured textual descriptions of learners and concepts. The Prerequisite Knowledge Distillation paradigm employs a teacher-student architecture, where a large teacher LLM (implemented as the Prior Knowledge Aware Component) extracts conceptual prerequisite relationships from its internalized world knowledge and distills them into soft labels to train an efficient student ranker. Building upon these foundations, our framework incorporates a fine-ranking mechanism that explicitly models learners' real-time cognitive states through deep knowledge tracing, ensuring recommendations are both structurally sound and cognitively appropriate. Extensive experiments on two real-world MOOC datasets demonstrate that CLLMRec significantly outperforms existing baseline methods across multiple evaluation metrics, validating its effectiveness in generating truly cognitive-aware and personalized concept recommendations without relying on explicit structural priors.
☆ RASTP: Representation-Aware Semantic Token Pruning for Generative Recommendation with Semantic Identifiers
Generative recommendation systems typically leverage Semantic Identifiers (SIDs), which represent each item as a sequence of tokens that encode semantic information. However, representing item ID with multiple SIDs significantly increases input sequence length, which is a major determinant of computational complexity and memory consumption. While existing efforts primarily focus on optimizing attention computation and KV cache, we propose RASTP (Representation-Aware Semantic Token Pruning), which directly prunes less informative tokens in the input sequence. Specifically, RASTP evaluates token importance by combining semantic saliency, measured via representation magnitude, and attention centrality, derived from cumulative attention weights. Since RASTP dynamically prunes low-information or irrelevant semantic tokens, experiments on three real-world Amazon datasets show that RASTP reduces training time by 26.7\%, while maintaining or slightly improving recommendation performance. The code has been open-sourced at https://github.com/Yuzt-zju/RASTP.
comment: 4 pages
☆ δ-EMG: A Monotonic Graph Index for Approximate Nearest Neighbor Search
Approximate nearest neighbor (ANN) search in high-dimensional spaces is a foundational component of many modern retrieval and recommendation systems. Currently, almost all algorithms follow an $ε$-Recall-Bounded principle when comparing performance: they require the ANN search results to achieve a recall of more than $1-ε$ and then compare query-per-second (QPS) performance. However, this approach only accounts for the recall of true positive results and does not provide guarantees on the deviation of incorrect results. To address this limitation, we focus on an Error-Bounded ANN method, which ensures that the returned results are a $(1/δ)$-approximation of the true values. Our approach adopts a graph-based framework. To enable Error-Bounded ANN search, we propose a $δ$-EMG (Error-bounded Monotonic Graph), which, for the first time, provides a provable approximation for arbitrary queries. By enforcing a $δ$-monotonic geometric constraint during graph construction, $δ$-EMG ensures that any greedy search converges to a $(1/δ)$-approximate neighbor without backtracking. Building on this foundation, we design an error-bounded top-$k$ ANN search algorithm that adaptively controls approximation accuracy during query time. To make the framework practical at scale, we introduce $δ$-EMQG (Error-bounded Monotonic Quantized Graph), a localized and degree-balanced variant with near-linear construction complexity. We further integrate vector quantization to accelerate distance computation while preserving theoretical guarantees. Extensive experiments on the ANN-Benchmarks dataset demonstrate the effectiveness of our approach. Under a recall requirement of 0.99, our algorithm achieves 19,000 QPS on the SIFT1M dataset, outperforming other methods by more than 40\%.
♻ ☆ Breaking the Curse of Knowledge: Towards Effective Multimodal Recommendation using Knowledge Soft Integration
A critical challenge in contemporary recommendation systems lies in effectively leveraging multimodal content to enhance recommendation personalization. Although various solutions have been proposed, most fail to account for discrepancies between knowledge extracted through isolated feature extraction and its application in recommendation tasks. Specifically, multimodal feature extraction does not incorporate task-specific prior knowledge, while downstream recommendation tasks typically use these features as auxiliary information. This misalignment often introduces biases in model fitting and degrades performance, a phenomenon we refer to as the curse of knowledge. To address this challenge, we propose a knowledge soft integration framework designed to balance the utilization of multimodal features with the biases they may introduce. The framework, named Knowledge Soft Integration (KSI), comprises two key components: the Structure Efficient Injection (SEI) module and the Semantic Soft Integration (SSI) module. The SEI module employs a Refined Graph Neural Network (RGNN) to model inter-modal correlations among items while introducing a regularization term to minimize redundancy in user and item representations. In parallel, the SSI module utilizes a self-supervised retrieval task to implicitly integrate multimodal semantic knowledge, thereby enhancing the semantic distinctiveness of item representations. We conduct comprehensive experiments on three benchmark datasets, demonstrating KSI's effectiveness. Furthermore, these results underscore the ability of the SEI and SSI modules to reduce representation redundancy and mitigate the curse of knowledge in multimodal recommendation systems.
comment: Accepted to IEEE Transactions on Multimedia (TMM)
♻ ☆ GPR: Towards a Generative Pre-trained One-Model Paradigm for Large-Scale Advertising Recommendation
As an intelligent infrastructure connecting users with commercial content, advertising recommendation systems play a central role in information flow and value creation within the digital economy. However, existing multi-stage advertising recommendation systems suffer from objective misalignment and error propagation, making it difficult to achieve global optimality, while unified generative recommendation models still struggle to meet the demands of practical industrial applications. To address these issues, we propose GPR (Generative Pre-trained Recommender), the first one-model framework that redefines advertising recommendation as an end-to-end generative task, replacing the traditional cascading paradigm with a unified generative approach. To realize GPR, we introduce three key innovations spanning unified representation, network architecture, and training strategy. First, we design a unified input schema and tokenization method tailored to advertising scenarios, mapping both ads and organic content into a shared multi-level semantic ID space, thereby enhancing semantic alignment and modeling consistency across heterogeneous data. Second, we develop the Heterogeneous Hierarchical Decoder (HHD), a dual-decoder architecture that decouples user intent modeling from ad generation, achieving a balance between training efficiency and inference flexibility while maintaining strong modeling capacity. Finally, we propose a multi-stage joint training strategy that integrates Multi-Token Prediction (MTP), Value-Aware Fine-Tuning and the Hierarchy Enhanced Policy Optimization (HEPO) algorithm, forming a complete generative recommendation pipeline that unifies interest modeling, value alignment, and policy optimization. GPR has been fully deployed in the Tencent Weixin Channels advertising system, delivering significant improvements in key business metrics including GMV and CTCVR.
comment: 12 pages, 5 figures
♻ ☆ LLM-CoT Enhanced Graph Neural Recommendation with Harmonized Group Policy Optimization
Graph neural networks (GNNs) have advanced recommender systems by modeling interaction relationships. However, existing graph-based recommenders rely on sparse ID features and do not fully exploit textual information, resulting in low information density within representations. Furthermore, graph contrastive learning faces challenges. Random negative sampling can introduce false negative samples, while fixed temperature coefficients cannot adapt to the heterogeneity of different nodes. In addition, current efforts to enhance recommendations with large language models (LLMs) have not fully utilized their Chain-of-Thought (CoT) reasoning capabilities to guide representation learning. To address these limitations, we introduces LGHRec (LLM-CoT Enhanced Graph Neural Recommendation with Harmonized Group Policy Optimization). This framework leverages the CoT reasoning ability of LLMs to generate semantic IDs, enriching reasoning processes and improving information density and semantic quality of representations. Moreover, we design a reinforcement learning algorithm, Harmonized Group Policy Optimization (HGPO), to optimize negative sampling strategies and temperature coefficients in contrastive learning. This approach enhances long-tail recommendation performance and ensures optimization consistency across different groups. Experimental results on three datasets demonstrate that LGHRec improves representation quality through semantic IDs generated by LLM's CoT reasoning and effectively boosts contrastive learning with HGPO. Our method outperforms several baseline models. The code is available at: https://anonymous.4open.science/r/LLM-Rec.
Machine Learning 128
☆ Harnessing Data from Clustered LQR Systems: Personalized and Collaborative Policy Optimization
It is known that reinforcement learning (RL) is data-hungry. To improve sample-efficiency of RL, it has been proposed that the learning algorithm utilize data from 'approximately similar' processes. However, since the process models are unknown, identifying which other processes are similar poses a challenge. In this work, we study this problem in the context of the benchmark Linear Quadratic Regulator (LQR) setting. Specifically, we consider a setting with multiple agents, each corresponding to a copy of a linear process to be controlled. The agents' local processes can be partitioned into clusters based on similarities in dynamics and tasks. Combining ideas from sequential elimination and zeroth-order policy optimization, we propose a new algorithm that performs simultaneous clustering and learning to output a personalized policy (controller) for each cluster. Under a suitable notion of cluster separation that captures differences in closed-loop performance across systems, we prove that our approach guarantees correct clustering with high probability. Furthermore, we show that the sub-optimality gap of the policy learned for each cluster scales inversely with the size of the cluster, with no additional bias, unlike in prior works on collaborative learning-based control. Our work is the first to reveal how clustering can be used in data-driven control to learn personalized policies that enjoy statistical gains from collaboration but do not suffer sub-optimality due to inclusion of data from dissimilar processes. From a distributed implementation perspective, our method is attractive as it incurs only a mild logarithmic communication overhead.
☆ Addressing A Posteriori Performance Degradation in Neural Network Subgrid Stress Models
Neural network subgrid stress models often have a priori performance that is far better than the a posteriori performance, leading to neural network models that look very promising a priori completely failing in a posteriori Large Eddy Simulations (LES). This performance gap can be decreased by combining two different methods, training data augmentation and reducing input complexity to the neural network. Augmenting the training data with two different filters before training the neural networks has no performance degradation a priori as compared to a neural network trained with one filter. A posteriori, neural networks trained with two different filters are far more robust across two different LES codes with different numerical schemes. In addition, by ablating away the higher order terms input into the neural network, the a priori versus a posteriori performance changes become less apparent. When combined, neural networks that use both training data augmentation and a less complex set of inputs have a posteriori performance far more reflective of their a priori evaluation.
☆ Masked-and-Reordered Self-Supervision for Reinforcement Learning from Verifiable Rewards
Test-time scaling has been shown to substantially improve large language models' (LLMs) mathematical reasoning. However, for a large portion of mathematical corpora, especially theorem proving, RLVR's scalability is limited: intermediate reasoning is crucial, while final answers are difficult to directly and reliably verify. Meanwhile, token-level SFT often degenerates into rote memorization rather than inducing longer chains of thought. Inspired by BERT's self-supervised tasks, we propose MR-RLVR (Masked-and-Reordered RLVR), which constructs process-level self-supervised rewards via "masked-then-fill" and "step reordering" to extract learnable signals from intermediate reasoning. Our training pipeline comprises two stages: we first perform self-supervised training on sampled mathematical calculation and proof data; we then conduct RLVR fine-tuning on mathematical calculation datasets where only outcomes are verifiable. We implement MR-RLVR on Qwen2.5-3B and DeepSeek-R1-Distill-Qwen-1.5B, and evaluate on AIME24, AIME25, AMC23, and MATH500. Under a fixed sampling and decoding budget, MR-RLVR achieves average relative gains over the original RLVR of +9.86% Pass@1, +5.27% Pass@5, and +4.00% Pass@8. These results indicate that incorporating process-aware self-supervised signals can effectively enhance RLVR's scalability and performance in only outcome-verifiable settings.
☆ PersonaAgent with GraphRAG: Community-Aware Knowledge Graphs for Personalized LLM
We propose a novel framework for persona-based language model system, motivated by the need for personalized AI agents that adapt to individual user preferences. In our approach, the agent embodies the user's "persona" (e.g. user profile or taste) and is powered by a large language model (LLM). To enable the agent to leverage rich contextual information, we introduce a Knowledge-Graph-enhanced Retrieval-Augmented Generation (Graph RAG) mechanism that constructs an LLM-derived graph index of relevant documents and summarizes communities of related information. Our framework generates personalized prompts by combining: (1) a summary of the user's historical behaviors and preferences extracted from the knowledge graph, and (2) relevant global interaction patterns identified through graph-based community detection. This dynamic prompt engineering approach allows the agent to maintain consistent persona-aligned behaviors while benefiting from collective knowledge. On the LaMP benchmark, our method improves news categorization F1 by 11.1%, movie tagging F1 by 56.1%, and reduces product rating MAE by 10.4% over prior methods. Our code is available at https://anonymous.4open.science/r/PersonaAgentwGraphRAG-DE6F
☆ Unmasking Airborne Threats: Guided-Transformers for Portable Aerosol Mass Spectrometry
Matrix Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) is a cornerstone in biomolecular analysis, offering precise identification of pathogens through unique mass spectral signatures. Yet, its reliance on labor-intensive sample preparation and multi-shot spectral averaging restricts its use to laboratory settings, rendering it impractical for real-time environmental monitoring. These limitations are especially pronounced in emerging aerosol MALDI-MS systems, where autonomous sampling generates noisy spectra for unknown aerosol analytes, requiring single-shot detection for effective analysis. Addressing these challenges, we propose the Mass Spectral Dictionary-Guided Transformer (MS-DGFormer): a data-driven framework that redefines spectral analysis by directly processing raw, minimally prepared mass spectral data. MS-DGFormer leverages a transformer architecture, designed to capture the long-range dependencies inherent in these time-series spectra. To enhance feature extraction, we introduce a novel dictionary encoder that integrates denoised spectral information derived from Singular Value Decomposition (SVD), enabling the model to discern critical biomolecular patterns from single-shot spectra with robust performance. This innovation provides a system to achieve superior pathogen identification from aerosol samples, facilitating autonomous, real-time analysis in field conditions. By eliminating the need for extensive preprocessing, our method unlocks the potential for portable, deployable MALDI-MS platforms, revolutionizing environmental pathogen detection and rapid response to biological threats.
comment: 13 pages, 9 figures. Preprint. Submitted to Computers in Biology and Medicine
☆ InTAct: Interval-based Task Activation Consolidation for Continual Learning
Continual learning aims to enable neural networks to acquire new knowledge without forgetting previously learned information. While recent prompt-based methods perform strongly in class-incremental settings, they remain vulnerable under domain shifts, where the input distribution changes but the label space remains fixed. This exposes a persistent problem known as representation drift. Shared representations evolve in ways that overwrite previously useful features and cause forgetting even when prompts isolate task-specific parameters. To address this issue, we introduce InTAct, a method that preserves functional behavior in shared layers without freezing parameters or storing past data. InTAct captures the characteristic activation ranges associated with previously learned tasks and constrains updates to ensure the network remains consistent within these regions, while still allowing for flexible adaptation elsewhere. In doing so, InTAct stabilizes the functional role of important neurons rather than directly restricting parameter values. The approach is architecture-agnostic and integrates seamlessly into existing prompt-based continual learning frameworks. By regulating representation changes where past knowledge is encoded, InTAct achieves a principled balance between stability and plasticity. Across diverse domain-incremental benchmarks, including DomainNet and ImageNet-R, InTAct consistently reduces representation drift and improves performance, increasing Average Accuracy by up to 8 percentage points over state-of-the-art baselines.
☆ A Framework for Adaptive Stabilisation of Nonlinear Stochastic Systems
We consider the adaptive control problem for discrete-time, nonlinear stochastic systems with linearly parameterised uncertainty. Assuming access to a parameterised family of controllers that can stabilise the system in a bounded set within an informative region of the state space when the parameter is well-chosen, we propose a certainty equivalence learning-based adaptive control strategy, and subsequently derive stability bounds on the closed-loop system that hold for some probabilities. We then show that if the entire state space is informative, and the family of controllers is globally stabilising with appropriately chosen parameters, high probability stability guarantees can be derived.
comment: 22 pages, 1 figure
☆ Multi-Agent Pointer Transformer: Seq-to-Seq Reinforcement Learning for Multi-Vehicle Dynamic Pickup-Delivery Problems
This paper addresses the cooperative Multi-Vehicle Dynamic Pickup and Delivery Problem with Stochastic Requests (MVDPDPSR) and proposes an end-to-end centralized decision-making framework based on sequence-to-sequence, named Multi-Agent Pointer Transformer (MAPT). MVDPDPSR is an extension of the vehicle routing problem and a spatio-temporal system optimization problem, widely applied in scenarios such as on-demand delivery. Classical operations research methods face bottlenecks in computational complexity and time efficiency when handling large-scale dynamic problems. Although existing reinforcement learning methods have achieved some progress, they still encounter several challenges: 1) Independent decoding across multiple vehicles fails to model joint action distributions; 2) The feature extraction network struggles to capture inter-entity relationships; 3) The joint action space is exponentially large. To address these issues, we designed the MAPT framework, which employs a Transformer Encoder to extract entity representations, combines a Transformer Decoder with a Pointer Network to generate joint action sequences in an AutoRegressive manner, and introduces a Relation-Aware Attention module to capture inter-entity relationships. Additionally, we guide the model's decision-making using informative priors to facilitate effective exploration. Experiments on 8 datasets demonstrate that MAPT significantly outperforms existing baseline methods in terms of performance and exhibits substantial computational time advantages compared to classical operations research methods.
comment: 15 pages
☆ Towards fully differentiable neural ocean model with Veros
We present a differentiable extension of the VEROS ocean model, enabling automatic differentiation through its dynamical core. We describe the key modifications required to make the model fully compatible with JAX autodifferentiation framework and evaluate the numerical consistency of the resulting implementation. Two illustrative applications are then demonstrated: (i) the correction of an initial ocean state through gradient-based optimization, and (ii) the calibration of unknown physical parameters directly from model observations. These examples highlight how differentiable programming can facilitate end-to-end learning and parameter tuning in ocean modeling. Our implementation is available online.
comment: Accepted to Differentiable Systems and Scientific Machine Learning (workshop, EurIPS 2025)
☆ Self-Supervised Learning by Curvature Alignment
Self-supervised learning (SSL) has recently advanced through non-contrastive methods that couple an invariance term with variance, covariance, or redundancy-reduction penalties. While such objectives shape first- and second-order statistics of the representation, they largely ignore the local geometry of the underlying data manifold. In this paper, we introduce CurvSSL, a curvature-regularized self-supervised learning framework, and its RKHS extension, kernel CurvSSL. Our approach retains a standard two-view encoder-projector architecture with a Barlow Twins-style redundancy-reduction loss on projected features, but augments it with a curvature-based regularizer. Each embedding is treated as a vertex whose $k$ nearest neighbors define a discrete curvature score via cosine interactions on the unit hypersphere; in the kernel variant, curvature is computed from a normalized local Gram matrix in an RKHS. These scores are aligned and decorrelated across augmentations by a Barlow-style loss on a curvature-derived matrix, encouraging both view invariance and consistency of local manifold bending. Experiments on MNIST and CIFAR-10 datasets with a ResNet-18 backbone show that curvature-regularized SSL yields competitive or improved linear evaluation performance compared to Barlow Twins and VICReg. Our results indicate that explicitly shaping local geometry is a simple and effective complement to purely statistical SSL regularizers.
☆ DS-Span: Single-Phase Discriminative Subgraph Mining for Efficient Graph Embeddings
Graph representation learning seeks to transform complex, high-dimensional graph structures into compact vector spaces that preserve both topology and semantics. Among the various strategies, subgraph-based methods provide an interpretable bridge between symbolic pattern discovery and continuous embedding learning. Yet, existing frequent or discriminative subgraph mining approaches often suffer from redundant multi-phase pipelines, high computational cost, and weak coupling between mined structures and their discriminative relevance. We propose DS-Span, a single-phase discriminative subgraph mining framework that unifies pattern growth, pruning, and supervision-driven scoring within one traversal of the search space. DS-Span introduces a coverage-capped eligibility mechanism that dynamically limits exploration once a graph is sufficiently represented, and an information-gain-guided selection that promotes subgraphs with strong class-separating ability while minimizing redundancy. The resulting subgraph set serves as an efficient, interpretable basis for downstream graph embedding and classification. Extensive experiments across benchmarks demonstrate that DS-Span generates more compact and discriminative subgraph features than prior multi-stage methods, achieving higher or comparable accuracy with significantly reduced runtime. These results highlight the potential of unified, single-phase discriminative mining as a foundation for scalable and interpretable graph representation learning.
☆ CREST: Improving Interpretability and Effectiveness of Troubleshooting at Ericsson through Criterion-Specific Trouble Report Retrieval
The rapid evolution of the telecommunication industry necessitates efficient troubleshooting processes to maintain network reliability, software maintainability, and service quality. Trouble Reports (TRs), which document issues in Ericsson's production system, play a critical role in facilitating the timely resolution of software faults. However, the complexity and volume of TR data, along with the presence of diverse criteria that reflect different aspects of each fault, present challenges for retrieval systems. Building on prior work at Ericsson, which utilized a two-stage workflow, comprising Initial Retrieval (IR) and Re-Ranking (RR) stages, this study investigates different TR observation criteria and their impact on the performance of retrieval models. We propose \textbf{CREST} (\textbf{C}riteria-specific \textbf{R}etrieval via \textbf{E}nsemble of \textbf{S}pecialized \textbf{T}R models), a criterion-driven retrieval approach that leverages specialized models for different TR fields to improve both effectiveness and interpretability, thereby enabling quicker fault resolution and supporting software maintenance. CREST utilizes specialized models trained on specific TR criteria and aggregates their outputs to capture diverse and complementary signals. This approach leads to enhanced retrieval accuracy, better calibration of predicted scores, and improved interpretability by providing relevance scores for each criterion, helping users understand why specific TRs were retrieved. Using a subset of Ericsson's internal TRs, this research demonstrates that criterion-specific models significantly outperform a single model approach across key evaluation metrics. This highlights the importance of all targeted criteria used in this study for optimizing the performance of retrieval systems.
☆ SPEAR-1: Scaling Beyond Robot Demonstrations via 3D Understanding
Robotic Foundation Models (RFMs) hold great promise as generalist, end-to-end systems for robot control. Yet their ability to generalize across new environments, tasks, and embodiments remains limited. We argue that a major bottleneck lies in their foundations: most RFMs are built by fine-tuning internet-pretrained Vision-Language Models (VLMs). However, these VLMs are trained on 2D image-language tasks and lack the 3D spatial reasoning inherently required for embodied control in the 3D world. Bridging this gap directly with large-scale robotic data is costly and difficult to scale. Instead, we propose to enrich easy-to-collect non-robotic image data with 3D annotations and enhance a pretrained VLM with 3D understanding capabilities. Following this strategy, we train SPEAR-VLM, a 3D-aware VLM that infers object coordinates in 3D space from a single 2D image. Building on SPEAR-VLM, we introduce our main contribution, $~\textbf{SPEAR-1}$: a robotic foundation model that integrates grounded 3D perception with language-instructed embodied control. Trained on $\sim$45M frames from 24 Open X-Embodiment datasets, SPEAR-1 outperforms or matches state-of-the-art models such as $π_0$-FAST and $π_{0.5}$, while it uses 20$\times$ fewer robot demonstrations. This carefully-engineered training strategy unlocks new VLM capabilities and as a consequence boosts the reliability of embodied control beyond what is achievable with only robotic data. We make our model weights and 3D-annotated datasets publicly available.
☆ That's not natural: The Impact of Off-Policy Training Data on Probe Performance
Probing has emerged as a promising method for monitoring Large Language Models (LLMs), enabling inference-time detection of concerning behaviours such as deception and sycophancy. However, natural examples of many behaviours are rare, forcing researchers to rely on synthetic or off-policy LLM responses for training probes. We systematically evaluate how the use of synthetic and off-policy data influences probe generalisation across eight distinct LLM behaviours. Testing linear and attention probes across multiple LLMs, we find that the response generation strategy can significantly affect probe performance, though the magnitude of this effect varies by behaviour. We find that successful generalisation from off-policy data, to test sets where the model is incentivised to produce the target behaviour, is predictive of successful on-policy generalisation. Leveraging this result, we predict that Deception and Sandbagging probes may fail to generalise from off-policy to on-policy data when used in real monitoring scenarios. Notably, shifts in the training data domain still cause even larger performance degradation, with different-domain test scores being consistently lower than the same-domain ones. These results indicate that, in the absence of on-policy data, using same-domain off-policy data yields more reliable probes than using on-policy data from a different domain, emphasizing the need for methods that can better handle distribution shifts in LLM monitoring.
comment: 10 pages, EurIPS 2025 Workshop on Private AI Governance
☆ Stable Coresets via Posterior Sampling: Aligning Induced and Full Loss Landscapes
As deep learning models continue to scale, the growing computational demands have amplified the need for effective coreset selection techniques. Coreset selection aims to accelerate training by identifying small, representative subsets of data that approximate the performance of the full dataset. Among various approaches, gradient based methods stand out due to their strong theoretical underpinnings and practical benefits, particularly under limited data budgets. However, these methods face challenges such as naive stochastic gradient descent (SGD) acting as a surprisingly strong baseline and the breakdown of representativeness due to loss curvature mismatches over time. In this work, we propose a novel framework that addresses these limitations. First, we establish a connection between posterior sampling and loss landscapes, enabling robust coreset selection even in high data corruption scenarios. Second, we introduce a smoothed loss function based on posterior sampling onto the model weights, enhancing stability and generalization while maintaining computational efficiency. We also present a novel convergence analysis for our sampling-based coreset selection method. Finally, through extensive experiments, we demonstrate how our approach achieves faster training and enhanced generalization across diverse datasets than the current state of the art.
comment: neurips 2025
☆ Selective Rotary Position Embedding
Position information is essential for language modeling. In softmax transformers, Rotary Position Embeddings (\textit{RoPE}) encode positions through \textit{fixed-angle} rotations, while in linear transformers, order is handled via input-dependent (selective) gating that decays past key-value associations. Selectivity has generally been shown to improve language-related tasks. Inspired by this, we introduce \textit{Selective RoPE}, an \textit{input-dependent} rotary embedding mechanism, that generalizes \textit{RoPE}, and enables rotation in \textit{arbitrary angles} for both linear and softmax transformers. We show that softmax attention already performs a hidden form of these rotations on query-key pairs, uncovering an implicit positional structure. We further show that in state-space models and gated linear transformers, the real part manages forgetting while the imaginary part encodes positions through rotations. We validate our method by equipping gated transformers with \textit{Selective RoPE}, demonstrating that its input-dependent rotations improve performance in language modeling and on difficult sequence tasks like copying, state tracking, and retrieval.
☆ Non-Parametric Probabilistic Robustness: A Conservative Metric with Optimized Perturbation Distributions
Deep learning (DL) models, despite their remarkable success, remain vulnerable to small input perturbations that can cause erroneous outputs, motivating the recent proposal of probabilistic robustness (PR) as a complementary alternative to adversarial robustness (AR). However, existing PR formulations assume a fixed and known perturbation distribution, an unrealistic expectation in practice. To address this limitation, we propose non-parametric probabilistic robustness (NPPR), a more practical PR metric that does not rely on any predefined perturbation distribution. Following the non-parametric paradigm in statistical modeling, NPPR learns an optimized perturbation distribution directly from data, enabling conservative PR evaluation under distributional uncertainty. We further develop an NPPR estimator based on a Gaussian Mixture Model (GMM) with Multilayer Perceptron (MLP) heads and bicubic up-sampling, covering various input-dependent and input-independent perturbation scenarios. Theoretical analyses establish the relationships among AR, PR, and NPPR. Extensive experiments on CIFAR-10, CIFAR-100, and Tiny ImageNet across ResNet18/50, WideResNet50 and VGG16 validate NPPR as a more practical robustness metric, showing up to 40\% more conservative (lower) PR estimates compared to assuming those common perturbation distributions used in state-of-the-arts.
☆ A Unified Stability Analysis of SAM vs SGD: Role of Data Coherence and Emergence of Simplicity Bias
Understanding the dynamics of optimization in deep learning is increasingly important as models scale. While stochastic gradient descent (SGD) and its variants reliably find solutions that generalize well, the mechanisms driving this generalization remain unclear. Notably, these algorithms often prefer flatter or simpler minima, particularly in overparameterized settings. Prior work has linked flatness to generalization, and methods like Sharpness-Aware Minimization (SAM) explicitly encourage flatness, but a unified theory connecting data structure, optimization dynamics, and the nature of learned solutions is still lacking. In this work, we develop a linear stability framework that analyzes the behavior of SGD, random perturbations, and SAM, particularly in two layer ReLU networks. Central to our analysis is a coherence measure that quantifies how gradient curvature aligns across data points, revealing why certain minima are stable and favored during training.
comment: Neurips 2025
☆ Quantum Masked Autoencoders for Vision Learning
Classical autoencoders are widely used to learn features of input data. To improve the feature learning, classical masked autoencoders extend classical autoencoders to learn the features of the original input sample in the presence of masked-out data. While quantum autoencoders exist, there is no design and implementation of quantum masked autoencoders that can leverage the benefits of quantum computing and quantum autoencoders. In this paper, we propose quantum masked autoencoders (QMAEs) that can effectively learn missing features of a data sample within quantum states instead of classical embeddings. We showcase that our QMAE architecture can learn the masked features of an image and can reconstruct the masked input image with improved visual fidelity in MNIST images. Experimental evaluation highlights that QMAE can significantly outperform (12.86% on average) in classification accuracy compared to state-of-the-art quantum autoencoders in the presence of masks.
☆ R2PS: Worst-Case Robust Real-Time Pursuit Strategies under Partial Observability
Computing worst-case robust strategies in pursuit-evasion games (PEGs) is time-consuming, especially when real-world factors like partial observability are considered. While important for general security purposes, real-time applicable pursuit strategies for graph-based PEGs are currently missing when the pursuers only have imperfect information about the evader's position. Although state-of-the-art reinforcement learning (RL) methods like Equilibrium Policy Generalization (EPG) and Grasper provide guidelines for learning graph neural network (GNN) policies robust to different game dynamics, they are restricted to the scenario of perfect information and do not take into account the possible case where the evader can predict the pursuers' actions. This paper introduces the first approach to worst-case robust real-time pursuit strategies (R2PS) under partial observability. We first prove that a traditional dynamic programming (DP) algorithm for solving Markov PEGs maintains optimality under the asynchronous moves by the evader. Then, we propose a belief preservation mechanism about the evader's possible positions, extending the DP pursuit strategies to a partially observable setting. Finally, we embed the belief preservation into the state-of-the-art EPG framework to finish our R2PS learning scheme, which leads to a real-time pursuer policy through cross-graph reinforcement learning against the asynchronous-move DP evasion strategies. After reinforcement learning, our policy achieves robust zero-shot generalization to unseen real-world graph structures and consistently outperforms the policy directly trained on the test graphs by the existing game RL approach.
☆ Convergence and stability of Q-learning in Hierarchical Reinforcement Learning
Hierarchical Reinforcement Learning promises, among other benefits, to efficiently capture and utilize the temporal structure of a decision-making problem and to enhance continual learning capabilities, but theoretical guarantees lag behind practice. In this paper, we propose a Feudal Q-learning scheme and investigate under which conditions its coupled updates converge and are stable. By leveraging the theory of Stochastic Approximation and the ODE method, we present a theorem stating the convergence and stability properties of Feudal Q-learning. This provides a principled convergence and stability analysis tailored to Feudal RL. Moreover, we show that the updates converge to a point that can be interpreted as an equilibrium of a suitably defined game, opening the door to game-theoretic approaches to Hierarchical RL. Lastly, experiments based on the Feudal Q-learning algorithm support the outcomes anticipated by theory.
☆ ReBaPL: Repulsive Bayesian Prompt Learning
Prompt learning has emerged as an effective technique for fine-tuning large-scale foundation models for downstream tasks. However, conventional prompt tuning methods are prone to overfitting and can struggle with out-of-distribution generalization. To address these limitations, Bayesian prompt learning has been proposed, which frames prompt optimization as a Bayesian inference problem to enhance robustness. This paper introduces Repulsive Bayesian Prompt Learning (ReBaPL), a novel method for Bayesian prompt learning, designed to efficiently explore the complex and often multimodal posterior landscape of prompts. Our method integrates a cyclical step-size schedule with a stochastic gradient Hamiltonian Monte Carlo (SGHMC) algorithm, enabling alternating phases of exploration to discover new modes, and exploitation to refine existing modes. Furthermore, we introduce a repulsive force derived from a potential function over probability metrics (including Maximum Mean Discrepancy and Wasserstein distance) computed on the distributions of representations produced by different prompts. This representation-space repulsion diversifies exploration and prevents premature collapse to a single mode. Our approach allows for a more comprehensive characterization of the prompt posterior distribution, leading to improved generalization. In contrast to prior Bayesian prompt learning methods, our method provides a modular plug-and-play Bayesian extension of any existing prompt learning method based on maximum likelihood estimation. We demonstrate the efficacy of ReBaPL on several benchmark datasets, showing superior performance over state-of-the-art methods for prompt learning.
comment: Under review
☆ FORWARD: Dataset of a forwarder operating in rough terrain
We present FORWARD, a high-resolution multimodal dataset of a cut-to-length forwarder operating in rough terrain on two harvest sites in the middle part of Sweden. The forwarder is a large Komatsu model equipped with a variety of sensors, including RTK-GNSS, 360-camera, operator vibration sensors, internal CAN-bus signal recording, and multiple IMUs. The data includes event time logs recorded in 5 Hz with e.g., driving speed, fuel consumption, vehicle position with centimeter accuracy, and crane use while the vehicle operates in forest areas laser-scanned with very high-resolution, $\sim$1500 points per square meter. Production log files (StanForD standard) with time-stamped machine events, extensive video material, and terrain data in various formats are included as well. About 18 hours of regular wood extraction work during three days is annotated from 360-video material into individual work elements and included in the dataset. We also include scenario specifications of conducted experiments on forest roads and in terrain. Scenarios include repeatedly driving the same routes with and without steel tracks, different load weight, and different target driving speeds. The dataset is intended for developing models and algorithms for trafficability, perception, and autonomous control of forest machines using artificial intelligence, simulation, and experiments on physical testbeds. In part, we focus on forwarders traversing terrain, avoiding obstacles, and loading or unloading logs, with consideration for efficiency, fuel consumption, safety, and environmental impact. Other benefits of the open dataset include the ability to explore auto-generation and calibration of forestry machine simulators and automation scenario descriptions using the data recorded in the field.
comment: 25 pages, 22 figures
☆ Self-supervised denoising of raw tomography detector data for improved image reconstruction
Ultrafast electron beam X-ray computed tomography produces noisy data due to short measurement times, causing reconstruction artifacts and limiting overall image quality. To counteract these issues, two self-supervised deep learning methods for denoising of raw detector data were investigated and compared against a non-learning based denoising method. We found that the application of the deep-learning-based methods was able to enhance signal-to-noise ratios in the detector data and also led to consistent improvements of the reconstructed images, outperforming the non-learning based method.
☆ MuM: Multi-View Masked Image Modeling for 3D Vision
Self-supervised learning on images seeks to extract meaningful visual representations from unlabeled data. When scaled to large datasets, this paradigm has achieved state-of-the-art performance and the resulting trained models such as DINOv3 have seen widespread adoption. However, most prior efforts are optimized for semantic understanding rather than geometric reasoning. One important exception is Cross-View Completion, CroCo, which is a form of masked autoencoding (MAE) tailored for 3D understanding. In this work, we continue on the path proposed by CroCo and focus on learning features tailored for 3D vision. In a nutshell, we extend MAE to arbitrarily many views of the same scene. By uniformly masking all views and employing a lightweight decoder with inter-frame attention, our approach is inherently simpler and more scalable than CroCo. We evaluate the resulting model, MuM, extensively on downstream tasks including feedforward reconstruction, dense image matching and relative pose estimation, finding that it outperforms the state-of-the-art visual encoders DINOv3 and CroCo v2.
☆ SAVeD: Semantic Aware Version Discovery
Our work introduces SAVeD (Semantically Aware Version Detection), a contrastive learning-based framework for identifying versions of structured datasets without relying on metadata, labels, or integration-based assumptions. SAVeD addresses a common challenge in data science of repeated labor due to a difficulty of similar work or transformations on datasets. SAVeD employs a modified SimCLR pipeline, generating augmented table views through random transformations (e.g., row deletion, encoding perturbations). These views are embedded via a custom transformer encoder and contrasted in latent space to optimize semantic similarity. Our model learns to minimize distances between augmented views of the same dataset and maximize those between unrelated tables. We evaluate performance using validation accuracy and separation, defined respectively as the proportion of correctly classified version/non-version pairs on a hold-out set, and the difference between average similarities of versioned and non-versioned tables (defined by a benchmark, and not provided to the model). Our experiments span five canonical datasets from the Semantic Versioning in Databases Benchmark, and demonstrate substantial gains post-training. SAVeD achieves significantly higher accuracy on completely unseen tables in, and a significant boost in separation scores, confirming its capability to distinguish semantically altered versions. Compared to untrained baselines and prior state-of-the-art dataset-discovery methods like Starmie, our custom encoder achieves competitive or superior results.
comment: 11 pages, 6 figures
☆ A First Full Physics Benchmark for Highly Granular Calorimeter Surrogates
The physics programs of current and future collider experiments necessitate the development of surrogate simulators for calorimeter showers. While much progress has been made in the development of generative models for this task, they have typically been evaluated in simplified scenarios and for single particles. This is particularly true for the challenging task of highly granular calorimeter simulation. For the first time, this work studies the use of highly granular generative calorimeter surrogates in a realistic simulation application. We introduce DDML, a generic library which enables the combination of generative calorimeter surrogates with realistic detectors implemented using the DD4hep toolkit. We compare two different generative models - one operating on a regular grid representation, and the other using a less common point cloud approach. In order to disentangle methodological details from model performance, we provide comparisons to idealized simulators which directly sample representations of different resolutions from the full simulation ground-truth. We then systematically evaluate model performance on post-reconstruction benchmarks for electromagnetic shower simulation. Beginning with a typical single particle study, we introduce a first multi-particle benchmark based on di-photon separations, before studying a first full-physics benchmark based on hadronic decays of the tau lepton. Our results indicate that models operating on a point cloud can achieve a favorable balance between speed and accuracy for highly granular calorimeter simulation compared to those which operate on a regular grid representation.
comment: 26 pages, 15 figures
☆ Automobile demand forecasting: Spatiotemporal and hierarchical modeling, life cycle dynamics, and user-generated online information
Premium automotive manufacturers face increasingly complex forecasting challenges due to high product variety, sparse variant-level data, and volatile market dynamics. This study addresses monthly automobile demand forecasting across a multi-product, multi-market, and multi-level hierarchy using data from a German premium manufacturer. The methodology combines point and probabilistic forecasts across strategic and operational planning levels, leveraging ensembles of LightGBM models with pooled training sets, quantile regression, and a mixed-integer linear programming reconciliation approach. Results highlight that spatiotemporal dependencies, as well as rounding bias, significantly affect forecast accuracy, underscoring the importance of integer forecasts for operational feasibility. Shapley analysis shows that short-term demand is reactive, shaped by life cycle maturity, autoregressive momentum, and operational signals, whereas medium-term demand reflects anticipatory drivers such as online engagement, planning targets, and competitive indicators, with online behavioral data considerably improving accuracy at disaggregated levels.
☆ Enforcing governing equation constraints in neural PDE solvers via training-free projections
Neural PDE solvers used for scientific simulation often violate governing equation constraints. While linear constraints can be projected cheaply, many constraints are nonlinear, complicating projection onto the feasible set. Dynamical PDEs are especially difficult because constraints induce long-range dependencies in time. In this work, we evaluate two training-free, post hoc projections of approximate solutions: a nonlinear optimization-based projection, and a local linearization-based projection using Jacobian-vector and vector-Jacobian products. We analyze constraints across representative PDEs and find that both projections substantially reduce violations and improve accuracy over physics-informed baselines.
comment: Machine Learning and the Physical Sciences, Neurips 2025, San Diego
☆ FlexiFlow: decomposable flow matching for generation of flexible molecular ensemble
Sampling useful three-dimensional molecular structures along with their most favorable conformations is a key challenge in drug discovery. Current state-of-the-art 3D de-novo design flow matching or diffusion-based models are limited to generating a single conformation. However, the conformational landscape of a molecule determines its observable properties and how tightly it is able to bind to a given protein target. By generating a representative set of low-energy conformers, we can more directly assess these properties and potentially improve the ability to generate molecules with desired thermodynamic observables. Towards this aim, we propose FlexiFlow, a novel architecture that extends flow-matching models, allowing for the joint sampling of molecules along with multiple conformations while preserving both equivariance and permutation invariance. We demonstrate the effectiveness of our approach on the QM9 and GEOM Drugs datasets, achieving state-of-the-art results in molecular generation tasks. Our results show that FlexiFlow can generate valid, unstrained, unique, and novel molecules with high fidelity to the training data distribution, while also capturing the conformational diversity of molecules. Moreover, we show that our model can generate conformational ensembles that provide similar coverage to state-of-the-art physics-based methods at a fraction of the inference time. Finally, FlexiFlow can be successfully transferred to the protein-conditioned ligand generation task, even when the dataset contains only static pockets without accompanying conformations.
comment: Preprint. Code to be released upon full publication
☆ Equivariant-Aware Structured Pruning for Efficient Edge Deployment: A Comprehensive Framework with Adaptive Fine-Tuning
This paper presents a novel framework combining group equivariant convolutional neural networks (G-CNNs) with equivariant-aware structured pruning to produce compact, transformation-invariant models for resource-constrained environments. Equivariance to rotations is achieved through the C4 cyclic group via the e2cnn library,enabling consistent performance under geometric transformations while reducing computational overhead. Our approach introduces structured pruning that preserves equivariant properties by analyzing e2cnn layer structure and applying neuron-level pruning to fully connected components. To mitigate accuracy degradation, we implement adaptive fine-tuning that automatically triggers when accuracy drop exceeds 2%, using early stopping and learning rate scheduling for efficient recovery. The framework includes dynamic INT8 quantization and a comprehensive pipeline encompassing training, knowledge distillation, structured pruning, fine-tuning, and quantization. We evaluate our method on satellite imagery (EuroSAT) and standard benchmarks (CIFAR-10, Rotated MNIST) demonstrating effectiveness across diverse domains. Experimental results show 29.3% parameter reduction with significant accuracy recovery, demonstrating that structured pruning of equivariant networks achieves substantial compression while maintaining geometric robustness. Our pipeline provides a reproducible framework for optimizing equivariant models, bridging the gap between group-theoretic network design and practical deployment constraints, with particular relevance to satellite imagery analysis and geometric vision tasks.
comment: 8 pages, 5 tables, 1 figure. Accepted at IEEE EdgeCom 2025 (11th IEEE International Conference on Edge Computing and Scalable Cloud)
☆ Fast Decoding for Non-Adaptive Learning of Erdős--Rényi Random Graphs
We study the problem of learning an unknown graph via group queries on node subsets, where each query reports whether at least one edge is present among the queried nodes. In general, learning arbitrary graphs with \(n\) nodes and \(k\) edges is hard in the non-adaptive setting, requiring \(Ω\big(\min\{k^2\log n,\,n^2\}\big)\) tests even when a small error probability is allowed. We focus on learning Erdős--Rényi (ER) graphs \(G\sim\ER(n,q)\) in the non-adaptive setting, where the expected number of edges is \(\bar{k}=q\binom{n}{2}\), and we aim to design an efficient testing--decoding scheme achieving asymptotically vanishing error probability. Prior work (Li--Fresacher--Scarlett, NeurIPS 2019) presents a testing--decoding scheme that attains an order-optimal number of tests \(O(\bar{k}\log n)\) but incurs \(Ω(n^2)\) decoding time, whereas their proposed sublinear-time algorithm incurs an extra \((\log \bar{k})(\log n)\) factor in the number of tests. We extend the binary splitting approach, recently developed for non-adaptive group testing, to the ER graph learning setting, and prove that the edge set can be recovered with high probability using \(O(\bar{k}\log n)\) tests while attaining decoding time \(O(\bar{k}^{1+δ}\log n)\) for any fixed \(δ>0\).
☆ Generating transition states of chemical reactions via distance-geometry-based flow matching
Transition states (TSs) are crucial for understanding reaction mechanisms, yet their exploration is limited by the complexity of experimental and computational approaches. Here we propose TS-DFM, a flow matching framework that predicts TSs from reactants and products. By operating in molecular distance geometry space, TS-DFM explicitly captures the dynamic changes of interatomic distances in chemical reactions. A network structure named TSDVNet is designed to learn the velocity field for generating TS geometries accurately. On the benchmark dataset Transition1X, TS-DFM outperforms the previous state-of-the-art method React-OT by 30\% in structural accuracy. These predicted TSs provide high-quality initial structures, accelerating the convergence of CI-NEB optimization. Additionally, TS-DFM can identify alternative reaction paths. In our experiments, even a more favorable TS with lower energy barrier is discovered. Further tests on RGD1 dataset confirm its strong generalization ability on unseen molecules and reaction types, highlighting its potential for facilitating reaction exploration.
☆ Intrinsic preservation of plasticity in continual quantum learning
Artificial intelligence in dynamic, real-world environments requires the capacity for continual learning. However, standard deep learning suffers from a fundamental issue: loss of plasticity, in which networks gradually lose their ability to learn from new data. Here we show that quantum learning models naturally overcome this limitation, preserving plasticity over long timescales. We demonstrate this advantage systematically across a broad spectrum of tasks from multiple learning paradigms, including supervised learning and reinforcement learning, and diverse data modalities, from classical high-dimensional images to quantum-native datasets. Although classical models exhibit performance degradation correlated with unbounded weight and gradient growth, quantum neural networks maintain consistent learning capabilities regardless of the data or task. We identify the origin of the advantage as the intrinsic physical constraints of quantum models. Unlike classical networks where unbounded weight growth leads to landscape ruggedness or saturation, the unitary constraints confine the optimization to a compact manifold. Our results suggest that the utility of quantum computing in machine learning extends beyond potential speedups, offering a robust pathway for building adaptive artificial intelligence and lifelong learners.
comment: 11 pages, 5 figures and supplementary information
☆ Parrot: Persuasion and Agreement Robustness Rating of Output Truth -- A Sycophancy Robustness Benchmark for LLMs
This study presents PARROT (Persuasion and Agreement Robustness Rating of Output Truth), a robustness focused framework designed to measure the degradation in accuracy that occurs under social pressure exerted on users through authority and persuasion in large language models (LLMs) the phenomenon of sycophancy (excessive conformity). PARROT (i) isolates causal effects by comparing the neutral version of the same question with an authoritatively false version using a double-blind evaluation, (ii) quantifies confidence shifts toward the correct and imposed false responses using log-likelihood-based calibration tracking, and (iii) systematically classifies failure modes (e.g., robust correct, sycophantic agreement, reinforced error, stubborn error, self-correction, etc.) using an eight-state behavioral taxonomy. We evaluated 22 models using 1,302 MMLU-style multiple-choice questions across 13 domains and domain-specific authority templates. Findings show marked heterogeneity: advanced models (e.g., GPT-5, GPT-4.1, Claude Sonnet 4.5) exhibit low "follow rates" ($\leq 11\%$, GPT-5: 4\%) and minimal accuracy loss, while older/smaller models show severe epistemic collapse (GPT-4: 80\%, Qwen 2.5-1.5B: 94\%). The danger is not limited to response changes; weak models reduce confidence in the correct response while increasing confidence in the imposed incorrect response. While international law and global knowledge at the domain level exhibit high fragility, elementary mathematics is relatively resilient. Consequently, we argue that the goal of "resistance to overfitting pressure" should be addressed as a primary objective alongside accuracy, harm avoidance, and privacy for safe deployment in the real world.
☆ DelTriC: A Novel Clustering Method with Accurate Outlier AISTATS
The paper introduces DelTriC (Delaunay Triangulation Clustering), a clustering algorithm which integrates PCA/UMAP-based projection, Delaunay triangulation, and a novel back-projection mechanism to form clusters in the original high-dimensional space. DelTriC decouples neighborhood construction from decision-making by first triangulating in a low-dimensional proxy to index local adjacency, and then back-projecting to the original space to perform robust edge pruning, merging, and anomaly detection. DelTriC can outperform traditional methods such as k-means, DBSCAN, and HDBSCAN in many scenarios; it is both scalable and accurate, and it also significantly improves outlier detection.
comment: 10 pages, submitted to AISTATS
☆ Reconstruction of Surface EMG Signal using IMU data for Upper Limb Actions
Surface Electromyography (sEMG) provides vital insights into muscle function, but it can be noisy and challenging to acquire. Inertial Measurement Units (IMUs) provide a robust and wearable alternative to motion capture systems. This paper investigates the synthesis of normalized sEMG signals from 6-axis IMU data using a deep learning approach. We collected simultaneous sEMG and IMU data sampled at 1~KHz for various arm movements. A Sliding-Window-Wave-Net model, based on dilated causal convolutions, was trained to map the IMU data to the sEMG signal. The results show that the model successfully predicts the timing and general shape of muscle activations. Although peak amplitudes were often underestimated, the high temporal fidelity demonstrates the feasibility of using this method for muscle intent detection in applications such as prosthetics and rehabilitation biofeedback.
comment: 5 pages, 5 figures
☆ Investigating self-supervised representations for audio-visual deepfake detection
Self-supervised representations excel at many vision and speech tasks, but their potential for audio-visual deepfake detection remains underexplored. Unlike prior work that uses these features in isolation or buried within complex architectures, we systematically evaluate them across modalities (audio, video, multimodal) and domains (lip movements, generic visual content). We assess three key dimensions: detection effectiveness, interpretability of encoded information, and cross-modal complementarity. We find that most self-supervised features capture deepfake-relevant information, and that this information is complementary. Moreover, models primarily attend to semantically meaningful regions rather than spurious artifacts. Yet none generalize reliably across datasets. This generalization failure likely stems from dataset characteristics, not from the features themselves latching onto superficial patterns. These results expose both the promise and fundamental challenges of self-supervised representations for deepfake detection: while they learn meaningful patterns, achieving robust cross-domain performance remains elusive.
☆ On the Predictive Skill of Artificial Intelligence-based Weather Models for Extreme Events using Uncertainty Quantification
Accurate prediction of extreme weather events remains a major challenge for artificial intelligence based weather prediction systems. While deterministic models such as FuXi, GraphCast, and SFNO have achieved competitive forecast skill relative to numerical weather prediction, their ability to represent uncertainty and capture extremes is still limited. This study investigates how state of the art deterministic artificial intelligence based models respond to initial-condition perturbations and evaluates the resulting ensembles in forecasting extremes. Using three perturbation strategies (Gaussian noise, Hemispheric Centered Bred Vectors, and Huge Ensembles), we generate 50 member ensembles for two major events in August 2022: the Pakistan floods and the China heatwave. Ensemble skill is assessed against ERA5 and compared with IFS ENS and the probabilistic AIFSENS model using deterministic and probabilistic metrics. Results show that flow dependent perturbations produce the most realistic ensemble spread and highest probabilistic skill, narrowing but not closing the performance gap with numerical weather prediction ensembles. Across variables, artificial intelligence based weather models capture temperature extremes more effectively than precipitation. These findings demonstrate that input perturbations can extend deterministic models toward probabilistic forecasting, paving the way for approaches that combine flow dependent perturbations with generative or latent-space uncertainty modeling for reliable artificial intelligence-driven early warning systems.
comment: 24 pages, 12 figures
☆ FireScope: Wildfire Risk Prediction with a Chain-of-Thought Oracle
Predicting wildfire risk is a reasoning-intensive spatial problem that requires the integration of visual, climatic, and geographic factors to infer continuous risk maps. Existing methods lack the causal reasoning and multimodal understanding required for reliable generalization. We introduce $\textbf{FireScope-Bench}$, a large-scale dataset and benchmark that couples Sentinel-2 imagery and climate data with expert-defined risk rasters across the USA, and real wildfire events in Europe for cross-continental evaluation. Building on this dataset, we propose $\textbf{FireScope}$, a VLM-based reasoning-to-generation framework that learns from both reinforcement learning and visual supervision to predict risk rasters with complementary reasoning traces. When trained in the USA and tested in Europe, $\textbf{FireScope}$ achieves substantial performance gains, while expert feedback and automated analysis confirm that its reasoning traces are faithful and semantically meaningful. Our findings demonstrate that reasoning can ground raster prediction models, improving both generalization and interpretability. To our knowledge, this is the first framework to (1) demonstrate that language-based reasoning can improve generalization in visual generation, (2) propose a high-resolution wildfire risk model that can be applied across continents, and (3) enable systematic studies of robust cross-continental generalization for multimodal fire risk models. We believe that $\textbf{FireScope-Bench}$ has the potential to serve as a foundation for advancing reasoning-driven, interpretable and generalizable spatial modeling. Data and source code will be made publicly available.
☆ MIR: Efficient Exploration in Episodic Multi-Agent Reinforcement Learning via Mutual Intrinsic Reward
Episodic rewards present a significant challenge in reinforcement learning. While intrinsic reward methods have demonstrated effectiveness in single-agent rein-forcement learning scenarios, their application to multi-agent reinforcement learn-ing (MARL) remains problematic. The primary difficulties stem from two fac-tors: (1) the exponential sparsity of joint action trajectories that lead to rewards as the exploration space expands, and (2) existing methods often fail to account for joint actions that can influence team states. To address these challenges, this paper introduces Mutual Intrinsic Reward (MIR), a simple yet effective enhancement strategy for MARL with extremely sparse rewards like episodic rewards. MIR incentivizes individual agents to explore actions that affect their teammates, and when combined with original strategies, effectively stimulates team exploration and improves algorithm performance. For comprehensive experimental valida-tion, we extend the representative single-agent MiniGrid environment to create MiniGrid-MA, a series of MARL environments with sparse rewards. Our evalu-ation compares the proposed method against state-of-the-art approaches in the MiniGrid-MA setting, with experimental results demonstrating superior perfor-mance.
☆ Four decades of circumpolar super-resolved satellite land surface temperature data
Land surface temperature (LST) is an essential climate variable (ECV) crucial for understanding land-atmosphere energy exchange and monitoring climate change, especially in the rapidly warming Arctic. Long-term satellite-based LST records, such as those derived from the Advanced Very High Resolution Radiometer (AVHRR), are essential for detecting climate trends. However, the coarse spatial resolution of AVHRR's global area coverage (GAC) data limit their utility for analyzing fine-scale permafrost dynamics and other surface processes in the Arctic. This paper presents a new 42 years pan-Arctic LST dataset, downscaled from AVHRR GAC to 1 km with a super-resolution algorithm based on a deep anisotropic diffusion model. The model is trained on MODIS LST data, using coarsened inputs and native-resolution outputs, guided by high-resolution land cover, digital elevation, and vegetation height maps. The resulting dataset provides twice-daily, 1 km LST observations for the entire pan-Arctic region over four decades. This enhanced dataset enables improved modelling of permafrost, reconstruction of near-surface air temperature, and assessment of surface mass balance of the Greenland Ice Sheet. Additionally, it supports climate monitoring efforts in the pre-MODIS era and offers a framework adaptable to future satellite missions for thermal infrared observation and climate data record continuity.
☆ OmniLens++: Blind Lens Aberration Correction via Large LensLib Pre-Training and Latent PSF Representation
Emerging deep-learning-based lens library pre-training (LensLib-PT) pipeline offers a new avenue for blind lens aberration correction by training a universal neural network, demonstrating strong capability in handling diverse unknown optical degradations. This work proposes the OmniLens++ framework, which resolves two challenges that hinder the generalization ability of existing pipelines: the difficulty of scaling data and the absence of prior guidance characterizing optical degradation. To improve data scalability, we expand the design specifications to increase the degradation diversity of the lens source, and we sample a more uniform distribution by quantifying the spatial-variation patterns and severity of optical degradation. In terms of model design, to leverage the Point Spread Functions (PSFs), which intuitively describe optical degradation, as guidance in a blind paradigm, we propose the Latent PSF Representation (LPR). The VQVAE framework is introduced to learn latent features of LensLib's PSFs, which is assisted by modeling the optical degradation process to constrain the learning of degradation priors. Experiments on diverse aberrations of real-world lenses and synthetic LensLib show that OmniLens++ exhibits state-of-the-art generalization capacity in blind aberration correction. Beyond performance, the AODLibpro is verified as a scalable foundation for more effective training across diverse aberrations, and LPR can further tap the potential of large-scale LensLib. The source code and datasets will be made publicly available at https://github.com/zju-jiangqi/OmniLens2.
comment: The source code and datasets will be made publicly available at https://github.com/zju-jiangqi/OmniLens2
☆ Layer-wise Weight Selection for Power-Efficient Neural Network Acceleration
Systolic array accelerators execute CNNs with energy dominated by the switching activity of multiply accumulate (MAC) units. Although prior work exploits weight dependent MAC power for compression, existing methods often use global activation models, coarse energy proxies, or layer-agnostic policies, which limits their effectiveness on real hardware. We propose an energy aware, layer-wise compression framework that explicitly leverages MAC and layer level energy characteristics. First, we build a layer-aware MAC energy model that combines per-layer activation statistics with an MSB-Hamming distance grouping of 22-bit partial sum transitions, and integrate it with a tile-level systolic mapping to estimate convolution-layer energy. On top of this model, we introduce an energy accuracy co-optimized weight selection algorithm within quantization aware training and an energy-prioritized layer-wise schedule that compresses high energy layers more aggressively under a global accuracy constraint. Experiments on different CNN models demonstrate up to 58.6\% energy reduction with 2-3\% accuracy drop, outperforming a state-of-the-art power-aware baseline.
☆ AutoGraphAD: A novel approach using Variational Graph Autoencoders for anomalous network flow detection
Network Intrusion Detection Systems (NIDS) are essential tools for detecting network attacks and intrusions. While extensive research has explored the use of supervised Machine Learning for attack detection and characterisation, these methods require accurately labelled datasets, which are very costly to obtain. Moreover, existing public datasets have limited and/or outdated attacks, and many of them suffer from mislabelled data. To reduce the reliance on labelled data, we propose AutoGraphAD, a novel unsupervised anomaly detection approach based on a Heterogeneous Variational Graph Autoencoder. AutoGraphAD operates on heterogeneous graphs, made from connection and IP nodes that capture network activity within a time window. The model is trained using unsupervised and contrastive learning, without relying on any labelled data. The reconstruction, structural loss, and KL divergence are then weighted and combined in an anomaly score that is then used for anomaly detection. Overall, AutoGraphAD yields the same, and in some cases better, results than previous unsupervised approaches, such as Anomal-E, but without requiring costly downstream anomaly detectors. As a result, AutoGraphAD achieves around 1.18 orders of magnitude faster training and 1.03 orders of magnitude faster inference, which represents a significant advantage for operational deployment.
comment: 11 pages, 9 figures
☆ Dissecting Quantum Reinforcement Learning: A Systematic Evaluation of Key Components
Parameterised quantum circuit (PQC) based Quantum Reinforcement Learning (QRL) has emerged as a promising paradigm at the intersection of quantum computing and reinforcement learning (RL). By design, PQCs create hybrid quantum-classical models, but their practical applicability remains uncertain due to training instabilities, barren plateaus (BPs), and the difficulty of isolating the contribution of individual pipeline components. In this work, we dissect PQC based QRL architectures through a systematic experimental evaluation of three aspects recurrently identified as critical: (i) data embedding strategies, with Data Reuploading (DR) as an advanced approach; (ii) ansatz design, particularly the role of entanglement; and (iii) post-processing blocks after quantum measurement, with a focus on the underexplored Output Reuse (OR) technique. Using a unified PPO-CartPole framework, we perform controlled comparisons between hybrid and classical agents under identical conditions. Our results show that OR, though purely classical, exhibits distinct behaviour in hybrid pipelines, that DR improves trainability and stability, and that stronger entanglement can degrade optimisation, offsetting classical gains. Together, these findings provide controlled empirical evidence of the interplay between quantum and classical contributions, and establish a reproducible framework for systematic benchmarking and component-wise analysis in QRL.
☆ Geometric-Disentangelment Unlearning
Machine unlearning, the removal of a training subset's influence from a deployed model, is critical for privacy preservation and model reliability, yet gradient ascent on forget samples often harms retained knowledge. Existing approaches face a persistent tradeoff between effective forgetting and preservation on the retain set. While previous methods provide useful heuristics, they often lack a formal analysis on how exactly forgetting updates harm retained knowledge, and whether the side effects can be removed with theoretical guarantees. To explore a theoretically sound and simple solution, we start from the first principle on how performance on the retain set is actually affected: a first-order analysis of the local change of the retain loss under small parameter updates during model training. We start from a crisp equivalence: the retain loss is unchanged to first order iff the update direction is orthogonal to the subspace spanned by retain gradients ("retain-invariant"). This identifies the entangled component as the tangential part of forget update within the retain-gradient subspace, and characterizes disentanglement as orthogonality. Guided by this, we propose the Geometric-disentanglement Unlearning (GU) that decomposes any candidate forget gradient update into tangential and normal components to retain space and executes only the normal component. Under a standard trust-region budget, the projected direction aligned with the raw forget gradient is optimal among all first-order retain-invariant moves, and we also derive the optimal projected direction for joint forget-retain updating objectives. Our method is plug-and-play and can be attached to existing gradient-based unlearning procedures to mitigate side effects. GU achieves consistent improvement on various methods across three benchmarks TOFU, MUSE, and WMDP.
comment: 27 Pages
☆ Why Do Language Model Agents Whistleblow?
The deployment of Large Language Models (LLMs) as tool-using agents causes their alignment training to manifest in new ways. Recent work finds that language models can use tools in ways that contradict the interests or explicit instructions of the user. We study LLM whistleblowing: a subset of this behavior where models disclose suspected misconduct to parties beyond the dialog boundary (e.g., regulatory agencies) without user instruction or knowledge. We introduce an evaluation suite of diverse and realistic staged misconduct scenarios to assess agents for this behavior. Across models and settings, we find that: (1) the frequency of whistleblowing varies widely across model families, (2) increasing the complexity of the task the agent is instructed to complete lowers whistleblowing tendencies, (3) nudging the agent in the system prompt to act morally substantially raises whistleblowing rates, and (4) giving the model more obvious avenues for non-whistleblowing behavior, by providing more tools and a detailed workflow to follow, decreases whistleblowing rates. Additionally, we verify the robustness of our dataset by testing for model evaluation awareness, and find that both black-box methods and probes on model activations show lower evaluation awareness in our settings than in comparable previous work.
☆ An Efficient Computational Framework for Discrete Fuzzy Numbers Based on Total Orders
Discrete fuzzy numbers, and in particular those defined over a finite chain $L_n = \{0, \ldots, n\}$, have been effectively employed to represent linguistic information within the framework of fuzzy systems. Research on total (admissible) orderings of such types of fuzzy subsets, and specifically those belonging to the set $\mathcal{D}_1^{L_n\rightarrow Y_m}$ consisting of discrete fuzzy numbers $A$ whose support is a closed subinterval of the finite chain $L_n = \{0, 1, \ldots, n\}$ and whose membership values $A(x)$, for $x \in L_n$, belong to the set $Y_m = \{ 0 = y_1 < y_2 < \cdots < y_{m-1} < y_m = 1 \}$, has facilitated the development of new methods for constructing logical connectives, based on a bijective function, called $\textit{pos function}$, that determines the position of each $A \in \mathcal{D}_1^{L_n\rightarrow Y_m}$. For this reason, in this work we revisit the problem by introducing algorithms that exploit the combinatorial structure of total (admissible) orders to compute the $\textit{pos}$ function and its inverse with exactness. The proposed approach achieves a complexity of $\mathcal{O}(n^{2} m \log n)$, which is quadratic in the size of the underlying chain ($n$) and linear in the number of membership levels ($m$). The key point is that the dominant factor is $m$, ensuring scalability with respect to the granularity of membership values. The results demonstrate that this formulation substantially reduces computational cost and enables the efficient implementation of algebraic operations -- such as aggregation and implication -- on the set of discrete fuzzy numbers.
comment: 19 pages, 2 figures. Submitted to Computational and Applied Mathematics (Springer)
☆ Hash Collisions in Molecular Fingerprints: Effects on Property Prediction and Bayesian Optimization NeurIPS 2025
Molecular fingerprinting methods use hash functions to create fixed-length vector representations of molecules. However, hash collisions cause distinct substructures to be represented with the same feature, leading to overestimates in molecular similarity calculations. We investigate whether using exact fingerprints improves accuracy compared to standard compressed fingerprints in molecular property prediction and Bayesian optimization where the underlying predictive model is a Gaussian process. We find that using exact fingerprints yields a small yet consistent improvement in predictive accuracy on five molecular property prediction benchmarks from the DOCKSTRING dataset. However, these gains did not translate to significant improvements in Bayesian optimization performance.
comment: NeurIPS 2025 AI4Science workshop. Code: https://github.com/wvirany/molcollisions Openreview: https://openreview.net/forum?id=POgOHi8a7t
☆ Step-E: A Differentiable Data Cleaning Framework for Robust Learning with Noisy Labels
Training data collected in the wild often contain noisy labels and outliers that substantially degrade the performance and reliability of deep neural networks. While data cleaning is commonly applied as a separate preprocessing stage, such two-stage pipelines neither fully exploit feedback from the downstream model nor adapt to unknown noise patterns. We propose Step-E, a simple framework that integrates sample selection and model learning into a single optimization process. At each epoch, Step-E ranks samples by loss and gradually increases the fraction of high-loss examples that are excluded from gradient updates after a brief warm-up stage, yielding an online curriculum that focuses on easy and consistent examples and eventually ignores persistent outliers. On CIFAR-100N, Step-E improves the test accuracy of a ResNet-18 model from 43.3% (+/- 0.7%) to 50.4% (+/- 0.9%), clearly outperforming loss truncation, self-paced learning, and one-shot filtering while approaching the clean-label oracle at 60.5% (+/- 0.2%). On CIFAR-10N (aggre), Step-E also improves over the noisy baseline (85.3% vs. 83.9%) and nearly matches the clean-label oracle (85.9%), with only moderate training-time overhead.
comment: 12 pages, 4 figures
☆ Energy Scaling Laws for Diffusion Models: Quantifying Compute and Carbon Emissions in Image Generation
The rapidly growing computational demands of diffusion models for image generation have raised significant concerns about energy consumption and environmental impact. While existing approaches to energy optimization focus on architectural improvements or hardware acceleration, there is a lack of principled methods to predict energy consumption across different model configurations and hardware setups. We propose an adaptation of Kaplan scaling laws to predict GPU energy consumption for diffusion models based on computational complexity (FLOPs). Our approach decomposes diffusion model inference into text encoding, iterative denoising, and decoding components, with the hypothesis that denoising operations dominate energy consumption due to their repeated execution across multiple inference steps. We conduct comprehensive experiments across four state-of-the-art diffusion models (Stable Diffusion 2, Stable Diffusion 3.5, Flux, and Qwen) on three GPU architectures (NVIDIA A100, A4000, A6000), spanning various inference configurations including resolution (256x256 to 1024x1024), precision (fp16/fp32), step counts (10-50), and classifier-free guidance settings. Our energy scaling law achieves high predictive accuracy within individual architectures (R-squared > 0.9) and exhibits strong cross-architecture generalization, maintaining high rank correlations across models and enabling reliable energy estimation for unseen model-hardware combinations. These results validate the compute-bound nature of diffusion inference and provide a foundation for sustainable AI deployment planning and carbon footprint estimation.
comment: Accepted at EurIPS 2025 workshop "Rethinking AI: Efficiency, Frugality, and Sustainability"
☆ Mask the Redundancy: Evolving Masking Representation Learning for Multivariate Time-Series Clustering AAAI 2026
Multivariate Time-Series (MTS) clustering discovers intrinsic grouping patterns of temporal data samples. Although time-series provide rich discriminative information, they also contain substantial redundancy, such as steady-state machine operation records and zero-output periods of solar power generation. Such redundancy diminishes the attention given to discriminative timestamps in representation learning, thus leading to performance bottlenecks in MTS clustering. Masking has been widely adopted to enhance the MTS representation, where temporal reconstruction tasks are designed to capture critical information from MTS. However, most existing masking strategies appear to be standalone preprocessing steps, isolated from the learning process, which hinders dynamic adaptation to the importance of clustering-critical timestamps. Accordingly, this paper proposes the Evolving-masked MTS Clustering (EMTC) method, with its model architecture composed of Importance-aware Variate-wise Masking (IVM) and Multi-Endogenous Views (MEV) representation learning modules. IVM adaptively guides the model in learning more discriminative representations for clustering, while the MEV-based reconstruction and contrastive learning pathways enhance the generalization. That is, the MEV reconstruction facilitates multi-perspective complementary to prevent the masking from premature convergence, and the clustering-guided contrastive learning facilitates the joint optimization of representation and clustering. Extensive experiments on 15 real benchmark datasets demonstrate the superiority of EMTC in comparison with eight SOTA methods, where the EMTC achieves an average improvement of 4.85% over the strongest baselines.
comment: Accepted to AAAI 2026
☆ Generative MIMO Beam Map Construction for Location Recovery and Beam Tracking
Machine learning (ML) has greatly advanced data-driven channel modeling and resource optimization in wireless communication systems. However, most existing ML-based methods rely on large, accurately labeled datasets with location information, which are often difficult and costly to obtain. This paper proposes a generative framework to recover location labels directly from sequences of sparse channel state information (CSI) measurements, without explicit location labels for radio map construction. Instead of directly storing raw CSI, we learn a compact low-dimensional radio map embedding and leverage a generative model to reconstruct the high-dimensional CSI. Specifically, to address the uncertainty of sparse CSI, a dual-scale feature extraction scheme is designed to enhance feature representation by jointly exploiting correlations from angular space and across neighboring samples. We develop a hybrid recurrent-convolutional encoder to learn mobility patterns, which combines a truncation strategy and multi-scale convolutions in the recurrent neural network (RNN) to ensure feature robustness against short-term fluctuations. Unlike conventional Gaussian priors in latent space, we embed a learnable radio map to capture the location information by encoding high-level positional features from CSI measurements. Finally, a diffusion-based generative decoder reconstructs the full CSI with high fidelity by conditioning on the positional features in the radio map. Numerical experiments demonstrate that the proposed model can improve localization accuracy by over 30% and achieve a 20% capacity gain in non-line-of-sight (NLOS) scenarios compared with model-based Kalman filter approaches.
☆ FIRM: Federated In-client Regularized Multi-objective Alignment for Large Language Models
Aligning Large Language Models (LLMs) with human values often involves balancing multiple, conflicting objectives such as helpfulness and harmlessness. Training these models is computationally intensive, and centralizing the process raises significant data privacy concerns. Federated Learning (FL) offers a compelling alternative, but existing Federated Multi-Objective Optimization (FMOO) methods face severe communication bottlenecks as their reliance on transmitting multiple gradients to a server is unscalable for large models. We introduce FIRM (Federated In-client Regularized Multi-objective alignment), a novel algorithm that achieves both client disagreement drift mitigation and communication efficiency. In FIRM, each client locally solves a regularized multi-objective optimization problem. By directly mitigating client disagreement drift through in-client regularization, our method eliminates the need for the multi-gradient transmissions common in prior works. Consequently, clients need only to transmit a single set of adapted parameters, maintaining high communication efficiency. We prove that our algorithm converges to Pareto-stationary points and, to our knowledge, provide the first finite-time convergence guarantees for this federated multi-objective alignment setting. Empirically, we show that FIRM leads to smoother training dynamics, reduced client disagreement drift, and improved reward trade-offs compared to baselines. We further propose a method to incorporate a preference over the objectives and report empirical Pareto plots, demonstrating that FIRM can smoothly adapt trade-offs between objectives in response to specified preferences.
☆ A Diversity-optimized Deep Ensemble Approach for Accurate Plant Leaf Disease Detection
Plant diseases pose a significant threat to global agriculture, causing over $220 billion in annual economic losses and jeopardizing food security. The timely and accurate detection of these diseases from plant leaf images is critical to mitigating their adverse effects. Deep neural network Ensembles (Deep Ensembles) have emerged as a powerful approach to enhancing prediction accuracy by leveraging the strengths of diverse Deep Neural Networks (DNNs). However, selecting high-performing ensemble member models is challenging due to the inherent difficulty in measuring ensemble diversity. In this paper, we introduce the Synergistic Diversity (SQ) framework to enhance plant disease detection accuracy. First, we conduct a comprehensive analysis of the limitations of existing ensemble diversity metrics (denoted as Q metrics), which often fail to identify optimal ensemble teams. Second, we present the SQ metric, a novel measure that captures the synergy between ensemble members and consistently aligns with ensemble accuracy. Third, we validate our SQ approach through extensive experiments on a plant leaf image dataset, which demonstrates that our SQ metric substantially improves ensemble selection and enhances detection accuracy. Our findings pave the way for a more reliable and efficient image-based plant disease detection.
☆ Gradient flow for deep equilibrium single-index models
Deep equilibrium models (DEQs) have recently emerged as a powerful paradigm for training infinitely deep weight-tied neural networks that achieve state of the art performance across many modern machine learning tasks. Despite their practical success, theoretically understanding the gradient descent dynamics for training DEQs remains an area of active research. In this work, we rigorously study the gradient descent dynamics for DEQs in the simple setting of linear models and single-index models, filling several gaps in the literature. We prove a conservation law for linear DEQs which implies that the parameters remain trapped on spheres during training and use this property to show that gradient flow remains well-conditioned for all time. We then prove linear convergence of gradient descent to a global minimizer for linear DEQs and deep equilibrium single-index models under appropriate initialization and with a sufficiently small step size. Finally, we validate our theoretical findings through experiments.
☆ ToC: Tree-of-Claims Search with Multi-Agent Language Models AAAI 2026
Optimizing patent claims is a critical yet challenging task, demanding careful balance between maximizing novelty and preserving legal scope. Manual claim drafting is labor-intensive, costly, and inherently inconsistent, while conventional Large Language Models (LLMs) often lack the structured, iterative reasoning essential for precise claim refinement. To address these challenges, we introduce Tree of Claims (ToC), an innovative framework that redefines claim editing as a guided search problem. ToC synergistically integrates Monte Carlo Tree Search (MCTS) with a collaborative multi-agent system, comprising an LLM-based EditorAgent that proposes contextually grounded edits, and an ExaminerAgent that mimics patent examiner critiques through structured, chain-of-thought analyses of novelty and prior art disclosure. Driven by a carefully designed multi-objective reward function, ToC jointly optimizes novelty, scope retention, and semantic coherence. Experimental evaluation on a benchmark of 1145 claims demonstrates that ToC significantly outperforms standard LLMs in zero-shot and few-shot scenarios, achieving an average composite score improvement of 8\%, and up to 9\% in certain cases. Extensive experiments, including detailed ablation studies, validate ToC's efficacy in generating superior, legally robust claim revisions. Overall, ToC establishes a transparent, controllable, and interpretable methodology that effectively bridges advanced LLM reasoning capabilities with strategic MCTS planning for structured patent claim optimization.The source code is available at https://github.com/ysy2003/ToC.
comment: Accepted by AAAI 2026 (Oral)
☆ Real-Time Cooked Food Image Synthesis and Visual Cooking Progress Monitoring on Edge Devices
Synthesizing realistic cooked food images from raw inputs on edge devices is a challenging generative task, requiring models to capture complex changes in texture, color and structure during cooking. Existing image-to-image generation methods often produce unrealistic results or are too resource-intensive for edge deployment. We introduce the first oven-based cooking-progression dataset with chef-annotated doneness levels and propose an edge-efficient recipe and cooking state guided generator that synthesizes realistic food images conditioned on raw food image. This formulation enables user-preferred visual targets rather than fixed presets. To ensure temporal consistency and culinary plausibility, we introduce a domain-specific \textit{Culinary Image Similarity (CIS)} metric, which serves both as a training loss and a progress-monitoring signal. Our model outperforms existing baselines with significant reductions in FID scores (30\% improvement on our dataset; 60\% on public datasets)
comment: 13 pages, 11 figures
☆ Neighbor GRPO: Contrastive ODE Policy Optimization Aligns Flow Models
Group Relative Policy Optimization (GRPO) has shown promise in aligning image and video generative models with human preferences. However, applying it to modern flow matching models is challenging because of its deterministic sampling paradigm. Current methods address this issue by converting Ordinary Differential Equations (ODEs) to Stochastic Differential Equations (SDEs), which introduce stochasticity. However, this SDE-based GRPO suffers from issues of inefficient credit assignment and incompatibility with high-order solvers for fewer-step sampling. In this paper, we first reinterpret existing SDE-based GRPO methods from a distance optimization perspective, revealing their underlying mechanism as a form of contrastive learning. Based on this insight, we propose Neighbor GRPO, a novel alignment algorithm that completely bypasses the need for SDEs. Neighbor GRPO generates a diverse set of candidate trajectories by perturbing the initial noise conditions of the ODE and optimizes the model using a softmax distance-based surrogate leaping policy. We establish a theoretical connection between this distance-based objective and policy gradient optimization, rigorously integrating our approach into the GRPO framework. Our method fully preserves the advantages of deterministic ODE sampling, including efficiency and compatibility with high-order solvers. We further introduce symmetric anchor sampling for computational efficiency and group-wise quasi-norm reweighting to address reward flattening. Extensive experiments demonstrate that Neighbor GRPO significantly outperforms SDE-based counterparts in terms of training cost, convergence speed, and generation quality.
☆ A novel approach to classification of ECG arrhythmia types with latent ODEs NeurIPS 2025
12-lead ECGs with high sampling frequency are the clinical gold standard for arrhythmia detection, but their short-term, spot-check nature often misses intermittent events. Wearable ECGs enable long-term monitoring but suffer from irregular, lower sampling frequencies due to battery constraints, making morphology analysis challenging. We present an end-to-end classification pipeline to address these issues. We train a latent ODE to model continuous ECG waveforms and create robust feature vectors from high-frequency single-channel signals. We construct three latent vectors per waveform via downsampling the initial 360 Hz ECG to 90 Hz and 45 Hz. We then use a gradient boosted tree to classify these vectors and test robustness across frequencies. Performance shows minimal degradation, with macro-averaged AUC-ROC values of 0.984, 0.978, and 0.976 at 360 Hz, 90 Hz, and 45 Hz, respectively, suggesting a way to sidestep the trade-off between signal fidelity and battery life. This enables smaller wearables, promoting long-term monitoring of cardiac health.
comment: Accepted into NeurIPS 2025 Learning from Time Series for Health workshop
☆ CroTad: A Contrastive Reinforcement Learning Framework for Online Trajectory Anomaly Detection VLDB
Detecting trajectory anomalies is a vital task in modern Intelligent Transportation Systems (ITS), enabling the identification of unsafe, inefficient, or irregular travel behaviours. While deep learning has emerged as the dominant approach, several key challenges remain unresolved. First, sub-trajectory anomaly detection, capable of pinpointing the precise segments where anomalies occur, remains underexplored compared to whole-trajectory analysis. Second, many existing methods depend on carefully tuned thresholds, limiting their adaptability in real-world applications. Moreover, the irregular sampling of trajectory data and the presence of noise in training sets further degrade model performance, making it difficult to learn reliable representations of normal routes. To address these challenges, we propose a contrastive reinforcement learning framework for online trajectory anomaly detection, CroTad. Our method is threshold-free and robust to noisy, irregularly sampled data. By incorporating contrastive learning, CroTad learns to extract diverse normal travel patterns for different itineraries and effectively distinguish anomalous behaviours at both sub-trajectory and point levels. The detection module leverages deep reinforcement learning to perform online, real-time anomaly scoring, enabling timely and fine-grained identification of abnormal segments. Extensive experiments on two real-world datasets demonstrate the effectiveness and robustness of our framework across various evaluation scenarios.
comment: 18 pages, 4 figures, will be submitted to VLDBJ
☆ A Hybrid Computational Intelligence Framework for scRNA-seq Imputation: Integrating scRecover and Random Forests
Single-cell RNA sequencing (scRNA-seq) enables transcriptomic profiling at cellular resolution but suffers from pervasive dropout events that obscure biological signals. We present SCR-MF, a modular two-stage workflow that combines principled dropout detection using scRecover with robust non-parametric imputation via missForest. Across public and simulated datasets, SCR-MF achieves robust and interpretable performance comparable to or exceeding existing imputation methods in most cases, while preserving biological fidelity and transparency. Runtime analysis demonstrates that SCR-MF provides a competitive balance between accuracy and computational efficiency, making it suitable for mid-scale single-cell datasets.
☆ PepEVOLVE: Position-Aware Dynamic Peptide Optimization via Group-Relative Advantage
Macrocyclic peptides are an emerging modality that combines biologics-like affinity with small-molecule-like developability, but their vast combinatorial space and multi-parameter objectives make lead optimization slow and challenging. Prior generative approaches such as PepINVENT require chemists to pre-specify mutable positions for optimization, choices that are not always known a priori, and rely on static pretraining and optimization algorithms that limit the model's ability to generalize and effectively optimize peptide sequences. We introduce PepEVOLVE, a position-aware, dynamic framework that learns both where to edit and how to dynamically optimize peptides for multi-objective improvement. PepEVOLVE (i) augments pretraining with dynamic masking and CHUCKLES shifting to improve generalization, (ii) uses a context-free multi-armed bandit router that discovers high-reward residues, and (iii) couples a novel evolving optimization algorithm with group-relative advantage to stabilize reinforcement updates. During in silico evaluations, the router policy reliably learns and concentrates probability on chemically meaningful sites that influence the peptide's properties. On a therapeutically motivated Rev-binding macrocycle benchmark, PepEVOLVE outperformed PepINVENT by reaching higher mean scores (approximately 0.8 vs. 0.6), achieving best candidates with a score of 0.95 (vs. 0.87), and converging in fewer steps under the task of optimizing permeability and lipophilicity with structural constraints. Overall, PepEVOLVE offers a practical, reproducible path to peptide lead optimization when optimal edit sites are unknown, enabling more efficient exploration and improving design quality across multiple objectives.
☆ Predicting Talent Breakout Rate using Twitter and TV data
Early detection of rising talents is of paramount importance in the field of advertising. In this paper, we define a concept of talent breakout and propose a method to detect Japanese talents before their rise to stardom. The main focus of the study is to determine the effectiveness of combining Twitter and TV data on predicting time-dependent changes in social data. Although traditional time-series models are known to be robust in many applications, the success of neural network models in various fields (e.g.\ Natural Language Processing, Computer Vision, Reinforcement Learning) continues to spark an interest in the time-series community to apply new techniques in practice. Therefore, in order to find the best modeling approach, we have experimented with traditional, neural network and ensemble learning methods. We observe that ensemble learning methods outperform traditional and neural network models based on standard regression metrics. However, by utilizing the concept of talent breakout, we are able to assess the true forecasting ability of the models, where neural networks outperform traditional and ensemble learning methods in terms of precision and recall.
comment: 4 pages. Presented at the 34th Annual Conference of the Japanese Society for Artificial Intelligence (JSAI 2020), paper ID 1K3-ES-2-02
☆ Deep Improvement Supervision
Recently, it was shown that small, looped architectures, such as Tiny Recursive Models (TRMs), can outperform Large Language Models (LLMs) on complex reasoning tasks, including the Abstraction and Reasoning Corpus (ARC). In this work, we investigate a core question: how can we further improve the efficiency of these methods with minimal changes? To address this, we frame the latent reasoning of TRMs as a form of classifier-free guidance and implicit policy improvement algorithm. Building on these insights, we propose a novel training scheme that provides a target for each loop during training. We demonstrate that our approach significantly enhances training efficiency. Our method reduces the total number of forward passes by 18x and eliminates halting mechanisms, while maintaining quality comparable to standard TRMs. Notably, we achieve 24% accuracy on ARC-1 with only 0.8M parameters, outperforming most LLMs.
☆ PersonalizedRouter: Personalized LLM Routing via Graph-based User Preference Modeling
The growing number of Large Language Models (LLMs) with diverse capabilities and response styles provides users with a wider range of choices, which presents challenges in selecting appropriate LLMs, as user preferences vary in terms of performance, cost, and response style. Current LLM selection methods typically optimize for a single fixed objective, such as performance, cost, or a trade-off between them, and fail to learn individual user preferences from interaction data. To address these limitations, we propose PersonalizedRouter, a graph-based framework that models diverse user profiles and performs personalized LLM selection by leveraging interaction data that includes task context, queries, candidate LLMs, and user decisions. To capture contextual information between user queries and optimal LLMs, PersonalizedRouter converts the interaction data into a heterogeneous graph, where the relationships between different types of nodes are represented by edges. To evaluate adaptability across users, we design two strategies: the multi-cost-efficiency simulation strategy and the LLM-as-a-Judge strategy. In addition, we construct PersonaRoute-Bench, a large-scale benchmark with 1,000 simulated users and 10 LLMs. Experimental results show that PersonalizedRouter significantly outperforms existing LLM selection methods and surpasses the strongest methods by a large margin of 15.38% and 9.83% under two simulation strategies. On the PersonaRoute-Bench with 1,000 users, it further surpasses the best methods by 16.19% and 59.69% while maintaining higher efficiency. Moreover, PersonalizedRouter demonstrates strong few-shot generalization, achieving 64.81% and 85.80% of the fully trained model's performance when adapting to new users and new LLMs.
☆ Topologic Attention Networks: Attending to Direct and Indirect Neighbors through Gaussian Belief Propagation
Graph Neural Networks rely on local message passing, which limits their ability to model long-range dependencies in graphs. Existing approaches extend this range through continuous-time dynamics or dense self-attention, but both suffer from high computational cost and limited scalability. We propose Topologic Attention Networks, a new framework that applies topologic attention, a probabilistic mechanism that learns how information should flow through both direct and indirect connections in a graph. Unlike conventional attention that depends on explicit pairwise interactions, topologic attention emerges from the learned information propagation of the graph, enabling unified reasoning over local and global relationships. This method achieves provides state-of-the-art performance across all measured baseline models. Our implementation is available at https://github.com/Marshall-Rosenhoover/Topologic-Attention-Networks.
comment: 15 pages, 13 Figures
☆ Align & Invert: Solving Inverse Problems with Diffusion and Flow-based Models via Representational Alignment
Enforcing alignment between the internal representations of diffusion or flow-based generative models and those of pretrained self-supervised encoders has recently been shown to provide a powerful inductive bias, improving both convergence and sample quality. In this work, we extend this idea to inverse problems, where pretrained generative models are employed as priors. We propose applying representation alignment (REPA) between diffusion or flow-based models and a pretrained self-supervised visual encoder, such as DINOv2, to guide the reconstruction process at inference time. Although ground-truth signals are unavailable in inverse problems, we show that aligning model representations with approximate target features can substantially enhance reconstruction fidelity and perceptual realism. We provide theoretical results showing (a) the relation between the REPA regularization and a divergence measure in the DINOv2 embedding space, and (b) how REPA updates steer the model's internal representations toward those of the clean image. These results offer insights into the role of REPA in improving perceptual fidelity. Finally, we demonstrate the generality of our approach by integrating it into multiple state-of-the-art inverse problem solvers. Extensive experiments on super-resolution, box inpainting, Gaussian deblurring, and motion deblurring confirm that our method consistently improves reconstruction quality across tasks, while also providing substantial efficiency gains by reducing the number of required discretization steps without compromising the performance of the underlying solver.
♻ ☆ Generalizable Radio-Frequency Radiance Fields for Spatial Spectrum Synthesis
We present GRaF, Generalizable Radio-Frequency (RF) Radiance Fields, a framework that models RF signal propagation to synthesize spatial spectra at arbitrary transmitter or receiver locations, where each spectrum measures signal power across all surrounding directions at the receiver. Unlike state-of-the-art methods that adapt vanilla Neural Radiance Fields (NeRF) to the RF domain with scene-specific training, GRaF generalizes across scenes to synthesize spectra. To enable this, we prove an interpolation theory in the RF domain: the spatial spectrum from a transmitter can be approximated using spectra from geographically proximate transmitters. Building on this theory, GRaF comprises two components: (i) a geometry-aware Transformer encoder that captures spatial correlations from neighboring transmitters to learn a scene-independent latent RF radiance field, and (ii) a neural ray tracing algorithm that estimates spectrum reception at the receiver. Experimental results demonstrate that GRaF outperforms existing methods on single-scene benchmarks and achieves state-of-the-art performance on unseen scene layouts.
♻ ☆ SoK: Security Evaluation of Wi-Fi CSI Biometrics: Attacks, Metrics, and Open Challenges
Wi-Fi Channel State Information (CSI) has been repeatedly proposed as a biometric modality, often with reports of high accuracy and operational feasibility. However, the field lacks a consolidated understanding of its security properties, adversarial resilience, and methodological consistency. This Systematization of Knowledge (SoK) examines CSI-based biometric authentication through a security lens, analyzing how existing works diverge in sensing infrastructure, signal representations, feature pipelines, learning models, and evaluation methodologies. Our synthesis reveals systemic inconsistencies: reliance on aggregate accuracy metrics, limited reporting of FAR/FRR/EER, absence of per-user risk analysis, and scarce consideration of threat models or adversarial feasibility. To this end, we construct a unified evaluation framework to expose these issues empirically and demonstrate how security-relevant metrics such as per-class EER, Frequency Count of Scores (FCS), and the Gini Coefficient uncover risk concentration that remains hidden under traditional reporting practices. The resulting analysis highlights concrete attack surfaces--including replay, geometric mimicry, and environmental perturbation--and shows how methodological choices materially influence vulnerability profiles. Based on these findings, we articulate the security boundaries of current CSI biometrics and provide guidelines for rigorous evaluation, reproducible experimentation, and future research directions. This SoK offers the security community a structured, evidence-driven reassessment of Wi-Fi CSI biometrics and their suitability as an authentication primitive.
comment: This work was submitted to the 11th IEEE European Symposium on Security and Privacy (IEEE S&P 2026)
♻ ☆ Physically Interpretable World Models via Weakly Supervised Representation Learning
Learning predictive models from high-dimensional sensory observations is fundamental for cyber-physical systems, yet the latent representations learned by standard world models lack physical interpretability. This limits their reliability, generalizability, and applicability to safety-critical tasks. We introduce Physically Interpretable World Models (PIWM), a framework that aligns latent representations with real-world physical quantities and constrains their evolution through partially known physical dynamics. Physical interpretability in PIWM is defined by two complementary properties: (i) the learned latent state corresponds to meaningful physical variables, and (ii) its temporal evolution follows physically consistent dynamics. To achieve this without requiring ground-truth physical annotations, PIWM employs weak distribution-based supervision that captures state uncertainty naturally arising from real-world sensing pipelines. The architecture integrates a VQ-based visual encoder, a transformer-based physical encoder, and a learnable dynamics model grounded in known physical equations. Across three case studies (Cart Pole, Lunar Lander, and Donkey Car), PIWM achieves accurate long-horizon prediction, recovers true system parameters, and significantly improves physical grounding over purely data-driven models. These results demonstrate the feasibility and advantages of learning physically interpretable world models directly from images under weak supervision.
♻ ☆ Topology Aware Neural Interpolation of Scalar Fields
This paper presents a neural scheme for the topology-aware interpolation of time-varying scalar fields. Given a time-varying sequence of persistence diagrams, along with a sparse temporal sampling of the corresponding scalar fields, denoted as keyframes, our interpolation approach aims at "inverting" the non-keyframe diagrams to produce plausible estimations of the corresponding, missing data. For this, we rely on a neural architecture which learns the relation from a time value to the corresponding scalar field, based on the keyframe examples, and reliably extends this relation to the non-keyframe time steps. We show how augmenting this architecture with specific topological losses exploiting the input diagrams both improves the geometrical and topological reconstruction of the non-keyframe time steps. At query time, given an input time value for which an interpolation is desired, our approach instantaneously produces an output, via a single propagation of the time input through the network. Experiments interpolating 2D and 3D time-varying datasets show our approach superiority, both in terms of data and topological fitting, with regard to reference interpolation schemes. Our implementation is available at this GitHub link : https://github.com/MohamedKISSI/Topology-Aware-Neural-Interpolation-of-Scalar-Fields.git.
♻ ☆ Forecasting Future Anatomies: Longitudinal Brain Mri-to-Mri Prediction
Predicting future brain state from a baseline magnetic resonance image (MRI) is a central challenge in neuroimaging and has important implications for studying neurodegenerative diseases such as Alzheimer's disease (AD). Most existing approaches predict future cognitive scores or clinical outcomes, such as conversion from mild cognitive impairment to dementia. Instead, here we investigate longitudinal MRI image-to-image prediction that forecasts a participant's entire brain MRI several years into the future, intrinsically modeling complex, spatially distributed neurodegenerative patterns. We implement and evaluate five deep learning architectures (UNet, U2-Net, UNETR, Time-Embedding UNet, and ODE-UNet) on two longitudinal cohorts (ADNI and AIBL). Predicted follow-up MRIs are directly compared with the actual follow-up scans using metrics that capture global similarity and local differences. The best performing models achieve high-fidelity predictions, and all models generalize well to an independent external dataset, demonstrating robust cross-cohort performance. Our results indicate that deep learning can reliably predict participant-specific brain MRI at the voxel level, offering new opportunities for individualized prognosis.
♻ ☆ Live-SWE-agent: Can Software Engineering Agents Self-Evolve on the Fly?
Large Language Models (LLMs) are reshaping almost all industries, including software engineering. In recent years, a number of LLM agents have been proposed to solve real-world software problems. Such software agents are typically equipped with a suite of coding tools and can autonomously decide the next actions to form complete trajectories to solve end-to-end software tasks. While promising, they typically require dedicated design and may still be suboptimal, since it can be extremely challenging and costly to exhaust the entire agent scaffold design space. Recognizing that software agents are inherently software themselves that can be further refined/modified, researchers have proposed a number of self-improving software agents recently, including the Darwin-Gödel Machine (DGM). Meanwhile, such self-improving agents require costly offline training on specific benchmarks and may not generalize well across different LLMs or benchmarks. In this paper, we propose Live-SWE-agent, the first live software agent that can autonomously and continuously evolve itself on-the-fly during runtime when solving real-world software problems. More specifically, Live-SWE-agent starts with the most basic agent scaffold with only access to bash tools (e.g., mini-SWE-agent), and autonomously evolves its own scaffold implementation while solving real-world software problems. Our evaluation on the widely studied SWE-bench Verified benchmark shows that LIVE-SWE-AGENT can achieve an impressive solve rate of 77.4% without test-time scaling, outperforming all existing software agents, including the best proprietary solution. Moreover, Live-SWE-agent outperforms state-of-the-art manually crafted software agents on the recent SWE-Bench Pro benchmark, achieving the best-known solve rate of 45.8%.
♻ ☆ Minimax Statistical Estimation under Wasserstein Contamination
Contaminations are a key concern in modern statistical learning, as small but systematic perturbations of all datapoints can substantially alter estimation results. Here, we study Wasserstein-$r$ contaminations ($r\ge 1$) in an $\ell_q$ norm ($q\in [1,\infty]$), in which each observation may undergo an adversarial perturbation with bounded cost, complementing the classical Huber model, corresponding to total variation norm, where only a fraction of observations is arbitrarily corrupted. We study both independent and joint (coordinated) contaminations and develop a minimax theory under $\ell_q^r$ losses. Our analysis encompasses several fundamental problems: location estimation, linear regression, and pointwise nonparametric density estimation. For joint contaminations in location estimation and for prediction in linear regression, we obtain the exact minimax risk, identify least favorable contaminations, and show that the sample mean and least squares predictor are respectively minimax optimal. For location estimation under independent contaminations, we give sharp upper and lower bounds, including exact minimaxity in the Euclidean Wasserstein contamination case, when $q=r=2$. For pointwise density estimation in any dimension, we derive the optimal rate, showing that it is achieved by kernel density estimation with a bandwidth that is possibly larger than the classical one. Our proofs leverage powerful tools from optimal transport developed over the last 20 years, including the dynamic Benamou-Brenier formulation. Taken together, our results suggest that in contrast to the Huber contamination model, for norm-based Wasserstein contaminations, classical estimators may be nearly optimally robust.
comment: A revision, including a changed title. This version extends the results to more general perturbations and loss functions, while also obtaining a new optimal rate for density estimation. Some of the techniques described in the original submission (ambiguity set minimax lower bounds, Bayes lower bounds) are not required anymore and have thus been removed
♻ ☆ SHIELD: Secure Hypernetworks for Incremental Expansion Learning Defense
Continual learning under adversarial conditions remains an open problem, as existing methods often compromise either robustness, scalability, or both. We propose a novel framework that integrates Interval Bound Propagation (IBP) with a hypernetwork-based architecture to enable certifiably robust continual learning across sequential tasks. Our method, SHIELD, generates task-specific model parameters via a shared hypernetwork conditioned solely on compact task embeddings, eliminating the need for replay buffers or full model copies and enabling efficient over time. To further enhance robustness, we introduce Interval MixUp, a novel training strategy that blends virtual examples represented as $\ell_{\infty}$ balls centered around MixUp points. Leveraging interval arithmetic, this technique guarantees certified robustness while mitigating the wrapping effect, resulting in smoother decision boundaries. We evaluate SHIELD under strong white-box adversarial attacks, including PGD and AutoAttack, across multiple benchmarks. It consistently outperforms existing robust continual learning methods, achieving state-of-the-art average accuracy while maintaining both scalability and certification. These results represent a significant step toward practical and theoretically grounded continual learning in adversarial settings.
♻ ☆ Value of Information-Enhanced Exploration in Bootstrapped DQN
Efficient exploration in deep reinforcement learning remains a fundamental challenge, especially in environments characterized by high-dimensional states and sparse rewards. Traditional exploration strategies that rely on random local policy noise, such as $ε$-greedy and Boltzmann exploration methods, often struggle to efficiently balance exploration and exploitation. In this paper, we integrate the notion of (expected) value of information (EVOI) within the well-known Bootstrapped DQN algorithmic framework, to enhance the algorithm's deep exploration ability. Specifically, we develop two novel algorithms that incorporate the expected gain from learning the value of information into Bootstrapped DQN. Our methods use value of information estimates to measure the discrepancies of opinions among distinct network heads, and drive exploration towards areas with the most potential. We evaluate our algorithms with respect to performance and their ability to exploit inherent uncertainty arising from random network initialization. Our experiments in complex, sparse-reward Atari games demonstrate increased performance, all the while making better use of uncertainty, and, importantly, without introducing extra hyperparameters.
♻ ☆ Crafting Imperceptible On-Manifold Adversarial Attacks for Tabular Data
Adversarial attacks on tabular data present unique challenges due to the heterogeneous nature of mixed categorical and numerical features. Unlike images where pixel perturbations maintain visual similarity, tabular data lacks intuitive similarity metrics, making it difficult to define imperceptible modifications. Additionally, traditional gradient-based methods prioritise $\ell_p$-norm constraints, often producing adversarial examples that deviate from the original data distributions. To address this, we propose a latent-space perturbation framework using a mixed-input Variational Autoencoder (VAE) to generate statistically consistent adversarial examples. The proposed VAE integrates categorical embeddings and numerical features into a unified latent manifold, enabling perturbations that preserve statistical consistency. We introduce In-Distribution Success Rate (IDSR) to jointly evaluate attack effectiveness and distributional alignment. Evaluation across six publicly available datasets and three model architectures demonstrates that our method achieves substantially lower outlier rates and more consistent performance compared to traditional input-space attacks and other VAE-based methods adapted from image domain approaches, achieving substantially lower outlier rates and higher IDSR across six datasets and three model architectures. Our comprehensive analyses of hyperparameter sensitivity, sparsity control, and generative architecture demonstrate that the effectiveness of VAE-based attacks depends strongly on reconstruction quality and the availability of sufficient training data. When these conditions are met, the proposed framework achieves superior practical utility and stability compared with input-space methods. This work underscores the importance of maintaining on-manifold perturbations for generating realistic and robust adversarial examples in tabular domains.
comment: Final Version
♻ ☆ Meta-World+: An Improved, Standardized, RL Benchmark
Meta-World is widely used for evaluating multi-task and meta-reinforcement learning agents, which are challenged to master diverse skills simultaneously. Since its introduction however, there have been numerous undocumented changes which inhibit a fair comparison of algorithms. This work strives to disambiguate these results from the literature, while also leveraging the past versions of Meta-World to provide insights into multi-task and meta-reinforcement learning benchmark design. Through this process we release a new open-source version of Meta-World (https://github.com/Farama-Foundation/Metaworld/) that has full reproducibility of past results, is more technically ergonomic, and gives users more control over the tasks that are included in a task set.
comment: Accepted at NeurIPs 2025, Datasets and Benchmarks
♻ ☆ Adaptive and Robust Data Poisoning Detection and Sanitization in Wearable IoT Systems using Large Language Models
The widespread integration of wearable sensing devices in Internet of Things (IoT) ecosystems, particularly in healthcare, smart homes, and industrial applications, has required robust human activity recognition (HAR) techniques to improve functionality and user experience. Although machine learning models have advanced HAR, they are increasingly susceptible to data poisoning attacks that compromise the data integrity and reliability of these systems. Conventional approaches to defending against such attacks often require extensive task-specific training with large, labeled datasets, which limits adaptability in dynamic IoT environments. This work proposes a novel framework that uses large language models (LLMs) to perform poisoning detection and sanitization in HAR systems, utilizing zero-shot, one-shot, and few-shot learning paradigms. Our approach incorporates \textit{role play} prompting, whereby the LLM assumes the role of expert to contextualize and evaluate sensor anomalies, and \textit{think step-by-step} reasoning, guiding the LLM to infer poisoning indicators in the raw sensor data and plausible clean alternatives. These strategies minimize reliance on curation of extensive datasets and enable robust, adaptable defense mechanisms in real-time. We perform an extensive evaluation of the framework, quantifying detection accuracy, sanitization quality, latency, and communication cost, thus demonstrating the practicality and effectiveness of LLMs in improving the security and reliability of wearable IoT systems.
♻ ☆ Extending Test-Time Scaling: A 3D Perspective with Context, Batch, and Turn
Reasoning reinforcement learning (RL) has recently revealed a new scaling effect: test-time scaling. Thinking models such as R1 and o1 improve their reasoning accuracy at test time as the length of the reasoning context increases. However, compared with training-time scaling, test-time scaling is fundamentally limited by the limited context length of base models, which remains orders of magnitude smaller than the amount of tokens consumed during training. We revisit test-time enhancement techniques through the lens of scaling effect and introduce a unified framework of multi-dimensional test-time scaling to extend the capacity of test-time reasoning. Beyond conventional context-length scaling, we consider two additional dimensions: batch scaling, where accuracy improves with parallel sampling, and turn scaling, where iterative self-refinement enhances reasoning quality. Building on this perspective, we propose 3D test-time scaling, which integrates context, batch, and turn scaling. We show that: (1) each dimension demonstrates a test-time scaling effect, but with a bounded capacity; (2) combining all three dimensions substantially improves the reasoning performance of challenging testbeds, including IOI, IMO, and CPHO, and further benefits from human preference feedback; and (3) the human-in-the-loop framework naturally extends to a more open-ended domain, i.e., embodied learning, which enables the design of humanoid control behaviors.
comment: 44 pages, 12 figures
♻ ☆ Estimating Global Input Relevance and Enforcing Sparse Representations with a Scalable Spectral Neural Network Approach
In machine learning practice it is often useful to identify relevant input features. Isolating key input elements, ranked according their respective degree of relevance, can help to elaborate on the process of decision making. Here, we propose a novel method to estimate the relative importance of the input components for a Deep Neural Network. This is achieved by leveraging on a spectral re-parametrization of the optimization process. Eigenvalues associated to input nodes provide in fact a robust proxy to gauge the relevance of the supplied entry features. Notably, the spectral features ranking is performed automatically, as a byproduct of the network training, with no additional processing to be carried out. Moreover, by leveraging on the regularization of the eigenvalues, it is possible to enforce solutions making use of a minimum subset of the input components, increasing the explainability of the model and providing sparse input representations. The technique is compared to the most common methods in the literature and is successfully challenged against both synthetic and real data.
♻ ☆ "Normalized Stress" is Not Normalized: How to Interpret Stress Correctly
Stress is among the most commonly employed quality metrics and optimization criteria for dimension reduction projections of high dimensional data. Complex, high dimensional data is ubiquitous across many scientific disciplines, including machine learning, biology, and the social sciences. One of the primary methods of visualizing these datasets is with two dimensional scatter plots that visually capture some properties of the data. Because visually determining the accuracy of these plots is challenging, researchers often use quality metrics to measure projection accuracy or faithfulness to the full data. One of the most commonly employed metrics, normalized stress, is sensitive to uniform scaling of the projection, despite this act not meaningfully changing anything about the projection. We investigate the effect of scaling on stress and other distance based quality metrics analytically and empirically by showing just how much the values change and how this affects dimension reduction technique evaluations. We introduce a simple technique to make normalized stress scale invariant and show that it accurately captures expected behavior on a small benchmark.
comment: Appeared in the BELIV workshop 2024
♻ ☆ MOCHA: Multi-modal Objects-aware Cross-arcHitecture Alignment
Personalized object detection aims to adapt a general-purpose detector to recognize user-specific instances from only a few examples. Lightweight models often struggle in this setting due to their weak semantic priors, while large vision-language models (VLMs) offer strong object-level understanding but are too computationally demanding for real-time or on-device applications. We introduce MOCHA (Multi-modal Objects-aware Cross-arcHitecture Alignment), a distillation framework that transfers multimodal region-level knowledge from a frozen VLM teacher into a lightweight vision-only detector. MOCHA extracts fused visual and textual teacher's embeddings and uses them to guide student training through a dual-objective loss that enforces accurate local alignment and global relational consistency across regions. This process enables efficient transfer of semantics without the need for teacher modifications or textual input at inference. MOCHA consistently outperforms prior baselines across four personalized detection benchmarks under strict few-shot regimes, yielding a +10.1 average improvement, with minimal inference cost.
♻ ☆ GLOBE: Accurate and Generalizable PDE Surrogates using Domain-Inspired Architectures and Equivariances
We introduce GLOBE, a new neural surrogate for homogeneous PDEs that draws inductive bias from boundary-element methods and equivariant ML. GLOBE represents solutions as superpositions of learnable Green's-function-like kernels evaluated from boundary faces to targets, composed across multiscale branches and communication hyperlayers. The architecture is translation-, rotation-, and parity-equivariant; discretization-invariant in the fine-mesh limit; and units-invariant via rigorous nondimensionalization. An explicit far-field decay envelope stabilizes extrapolation, boundary-to-boundary hyperlayer communication mediates long-range coupling, and the all-to-all boundary-to-target evaluation yields a global receptive field that respects PDE information flow, even for elliptic PDEs. On AirFRANS (steady incompressible RANS over NACA airfoils), GLOBE achieves substantial accuracy improvements. On the "Full" split, it reduces mean-squared error by roughly 200x on all fields relative to the dataset's reference baselines, and roughly 50x relative to the next-best-performing model. In the "Scarce" split, it achieves over 100x lower error on velocity and pressure fields and over 600x lower error on surface pressure than Transolver. Qualitative results show sharp near-wall gradients, coherent wakes, and limited errors under modest extrapolation in Reynolds number and angle of attack. In addition to this accuracy, the model is quite compact (117k parameters), and fields can be evaluated at arbitrary points during inference. We also demonstrate the ability to train and predict with non-watertight meshes, which has strong practical implications. These results show that rigorous physics- and domain-inspired inductive biases can achieve large gains in accuracy, generalizability, and practicality for ML-based PDE surrogates for industrial computer-aided engineering (CAE).
♻ ☆ Toward Super-polynomial Quantum Speedup of Equivariant Quantum Algorithms with SU($d$) Symmetry
We introduce a framework of the equivariant convolutional quantum algorithms which is tailored for a number of machine-learning tasks on physical systems with arbitrary SU$(d)$ symmetries. It allows us to enhance a natural model of quantum computation -- permutational quantum computing (PQC) -- and define a more powerful model: PQC+. While PQC was shown to be efficiently classically simulatable, we exhibit a problem which can be efficiently solved on PQC+ machine, whereas no classical polynomial time algorithm is known; thus providing evidence against PQC+ being classically simulatable. We further discuss practical quantum machine learning algorithms which can be carried out in the paradigm of PQC+.
comment: Presented in TQC 2022
♻ ☆ Defending the Edge: Representative-Attention Defense against Backdoor Attacks in Federated Learning
Federated learning (FL) remains highly vulnerable to adaptive backdoor attacks that preserve stealth by closely imitating benign update statistics. Existing defenses predominantly rely on anomaly detection in parameter or gradient space, overlooking behavioral constraints that backdoor attacks must satisfy to ensure reliable trigger activation. These anomaly-centric methods fail against adaptive attacks that normalize update magnitudes and mimic benign statistical patterns while preserving backdoor functionality, creating a fundamental detection gap. To address this limitation, this paper introduces FeRA (Federated Representative Attention) -- a novel attention-driven defense that shifts the detection paradigm from anomaly-centric to consistency-centric analysis. FeRA exploits the intrinsic need for backdoor persistence across training rounds, identifying malicious clients through suppressed representation-space variance, an orthogonal property to traditional magnitude-based statistics. The framework conducts multi-dimensional behavioral analysis combining spectral and spatial attention, directional alignment, mutual similarity, and norm inflation across two complementary detection mechanisms: consistency analysis and norm-inflation detection. Through this mechanism, FeRA isolates malicious clients that exhibit low-variance consistency or magnitude amplification. Extensive evaluation across six datasets, nine attacks, and three model architectures under both Independent and Identically Distributed (IID) and non-IID settings confirm FeRA achieves superior backdoor mitigation. Under different non-IID settings, FeRA achieved the lowest average Backdoor Accuracy (BA), about 1.67% while maintaining high clean accuracy compared to other state-of-the-art defenses. The code is available at https://github.com/Peatech/FeRA_defense.git.
comment: Submitted to IEEE EURO S&P 2026
♻ ☆ Statistical physics analysis of graph neural networks: Approaching optimality in the contextual stochastic block model
Graph neural networks (GNNs) are designed to process data associated with graphs. They are finding an increasing range of applications; however, as with other modern machine learning techniques, their theoretical understanding is limited. GNNs can encounter difficulties in gathering information from nodes that are far apart by iterated aggregation steps. This situation is partly caused by so-called oversmoothing; and overcoming it is one of the practically motivated challenges. We consider the situation where information is aggregated by multiple steps of convolution, leading to graph convolutional networks (GCNs). We analyze the generalization performance of a basic GCN, trained for node classification on data generated by the contextual stochastic block model. We predict its asymptotic performance by deriving the free energy of the problem, using the replica method, in the high-dimensional limit. Calling depth the number of convolutional steps, we show the importance of going to large depth to approach the Bayes-optimality. We detail how the architecture of the GCN has to scale with the depth to avoid oversmoothing. The resulting large depth limit can be close to the Bayes-optimality and leads to a continuous GCN. Technically, we tackle this continuous limit via an approach that resembles dynamical mean-field theory (DMFT) with constraints at the initial and final times. An expansion around large regularization allows us to solve the corresponding equations for the performance of the deep GCN. This promising tool may contribute to the analysis of further deep neural networks.
♻ ☆ Asymptotic evaluation of the information processing capacity in reservoir computing
Reservoir computing (RC) is becoming increasingly important because of its short training time. The squared error normalized by the target output is called the information processing capacity (IPC) and is used to evaluate the performance of an RC system. Since RC aims to learn the relationship between input and output time series, we should evaluate the IPC for infinitely long data rather than the IPC for finite-length data. However, a method for estimating it has not been established. We evaluated the IPC for infinitely long data using the asymptotic expansion of the IPC and weighted least-squares fitting. Then, we showed the validity of our method by numerical simulations. This work makes the performance evaluation of RC more evident.
♻ ☆ Interactive Query Answering on Knowledge Graphs with Soft Entity Constraints
Methods for query answering over incomplete knowledge graphs retrieve entities that are \emph{likely} to be answers, which is particularly useful when such answers cannot be reached by direct graph traversal due to missing edges. However, existing approaches have focused on queries formalized using first-order-logic. In practice, many real-world queries involve constraints that are inherently vague or context-dependent, such as preferences for attributes or related categories. Addressing this gap, we introduce the problem of query answering with soft constraints. We formalize the problem and introduce two efficient methods designed to adjust query answer scores by incorporating soft constraints without disrupting the original answers to a query. These methods are lightweight, requiring tuning only two parameters or a small neural network trained to capture soft constraints while maintaining the original ranking structure. To evaluate the task, we extend existing QA benchmarks by generating datasets with soft constraints. Our experiments demonstrate that our methods can capture soft constraints while maintaining robust query answering performance and adding very little overhead.
♻ ☆ Discovery of Sustainable Refrigerants through Physics-Informed RL Fine-Tuning of Sequence Models
Most refrigerants currently used in air-conditioning systems, such as hydrofluorocarbons, are potent greenhouse gases and are being phased down. Large-scale molecular screening has been applied to the search for alternatives, but in practice only about 300 refrigerants are known, and only a few additional candidates have been suggested without experimental validation. This scarcity of reliable data limits the effectiveness of purely data-driven methods. We present Refgen, a generative pipeline that integrates machine learning with physics-grounded inductive biases. Alongside fine-tuning for valid molecular generation, Refgen incorporates predictive models for critical properties, equations of state, thermochemical polynomials, and full vapor compression cycle simulations. These models enable reinforcement learning fine-tuning under thermodynamic constraints, enforcing consistency and guiding discovery toward molecules that balance efficiency, safety, and environmental impact. By embedding physics into the learning process, Refgen leverages scarce data effectively and enables de novo refrigerant discovery beyond the known set of compounds.
comment: Accepted to 1st SIMBIOCHEM Workshop at EurIPS 2025
♻ ☆ A neural recommender system leveraging transfer learning for property prediction of ionic liquids
Ionic liquids (ILs) have emerged as versatile replacements for traditional solvents because their physicochemical properties can be precisely tailored to various applications. However, accurately predicting key thermophysical properties remains challenging due to the vast chemical design space and the limited availability of experimental data. In this study, we present a data-driven transfer learning framework combined with a neural recommender system (NRS) to enable reliable property prediction for ILs using sparse experimental datasets. The approach involves a two-stage process: first, pre-training NRS models on COSMO-RS-based simulated data at fixed temperature and pressure, and second, fine-tuning simple feedforward neural networks with experimental data at varying temperatures and pressures. In this work, five essential IL properties are considered: density, viscosity, surface tension, heat capacity, and melting point. We find that the framework supports both within-property and cross-property knowledge transfer. Notably, pre-trained models for density, viscosity, and heat capacity are used to fine-tune models for all five target properties, achieving improved performance by a substantial margin for four of them. The model exhibits robust extrapolation to previously unseen ILs. Moreover, the final trained models enable property prediction for over 700,000 IL combinations, offering a scalable solution for IL screening in process design. This work highlights the effectiveness of combining simulated data and transfer learning to overcome sparsity in the experimental data.
♻ ☆ Wideband RF Radiance Field Modeling Using Frequency-embedded 3D Gaussian Splatting
Indoor environments typically contain diverse RF signals distributed across multiple frequency bands, including NB-IoT, Wi-Fi, and millimeter-wave. Consequently, wideband RF modeling is essential for practical applications such as joint deployment of heterogeneous RF systems, cross-band communication, and distributed RF sensing. Although 3D Gaussian Splatting (3DGS) techniques effectively reconstruct RF radiance fields at a single frequency, they cannot model fields at arbitrary or unknown frequencies across a wide range. In this paper, we present a novel 3DGS algorithm for unified wideband RF radiance field modeling. RF wave propagation depends on signal frequency and the 3D spatial environment, including geometry and material electromagnetic (EM) properties. To address these factors, we introduce a frequency-embedded EM feature network that utilizes 3D Gaussian spheres at each spatial location to learn the relationship between frequency and transmission characteristics, such as attenuation and radiance intensity. With a dataset containing sparse frequency samples in a specific 3D environment, our model can efficiently reconstruct RF radiance fields at arbitrary and unseen frequencies. To assess our approach, we introduce a large-scale power angular spectrum (PAS) dataset with 50,000 samples spanning 1 to 94 GHz across six indoor environments. Experimental results show that the proposed model trained on multiple frequencies achieves a Structural Similarity Index Measure (SSIM) of 0.922 for PAS reconstruction, surpassing state-of-the-art single-frequency 3DGS models with SSIM of 0.863.
♻ ☆ (De)-regularized Maximum Mean Discrepancy Gradient Flow
We introduce a (de)-regularization of the Maximum Mean Discrepancy (DrMMD) and its Wasserstein gradient flow. Existing gradient flows that transport samples from source distribution to target distribution with only target samples, either lack tractable numerical implementation ($f$-divergence flows) or require strong assumptions, and modifications such as noise injection, to ensure convergence (Maximum Mean Discrepancy flows). In contrast, DrMMD flow can simultaneously (i) guarantee near-global convergence for a broad class of targets in both continuous and discrete time, and (ii) be implemented in closed form using only samples. The former is achieved by leveraging the connection between the DrMMD and the $χ^2$-divergence, while the latter comes by treating DrMMD as MMD with a de-regularized kernel. Our numerical scheme uses an adaptive de-regularization schedule throughout the flow to optimally trade off between discretization errors and deviations from the $χ^2$ regime. The potential application of the DrMMD flow is demonstrated across several numerical experiments, including a large-scale setting of training student/teacher networks.
♻ ☆ Splines-Based Feature Importance in Kolmogorov-Arnold Networks: A Framework for Supervised Tabular Data Dimensionality Reduction
Feature selection is a key step in many tabular prediction problems, where multiple candidate variables may be redundant, noisy, or weakly informative. We investigate feature selection based on Kolmogorov-Arnold Networks (KANs), which parameterize feature transformations with splines and expose per-feature importance scores in a natural way. From this idea we derive four KAN-based selection criteria (coefficient norms, gradient-based saliency, and knockout scores) and compare them with standard methods such as LASSO, Random Forest feature importance, Mutual Information, and SVM-RFE on a suite of real and synthetic classification and regression datasets. Using average F1 and $R^2$ scores across three feature-retention levels (20%, 40%, 60%), we find that KAN-based selectors are generally competitive with, and sometimes superior to, classical baselines. In classification, KAN criteria often match or exceed existing methods on multi-class tasks by removing redundant features and capturing nonlinear interactions. In regression, KAN-based scores provide robust performance on noisy and heterogeneous datasets, closely tracking strong ensemble predictors; we also observe characteristic failure modes, such as overly aggressive pruning with an $\ell_1$ criterion. Stability and redundancy analyses further show that KAN-based selectors yield reproducible feature subsets across folds while avoiding unnecessary correlation inflation, ensuring reliable and non-redundant variable selection. Overall, our findings demonstrate that KAN-based feature selection provides a powerful and interpretable alternative to traditional methods, capable of uncovering nonlinear and multivariate feature relevance beyond sparsity or impurity-based measures.
♻ ☆ The Cooperative Network Architecture: Learning Structured Networks as Representation of Sensory Patterns
We introduce the Cooperative Network Architecture (CNA), a model that represents sensory signals using structured, recurrently connected networks of neurons, termed "nets." Nets are dynamically assembled from overlapping net fragments, which are learned based on statistical regularities in sensory input. This architecture offers robustness to noise, deformation, and generalization to out-of-distribution data, addressing challenges in current vision systems from a novel perspective. We demonstrate that net fragments can be learned without supervision and flexibly recombined to encode novel patterns, enabling figure completion and resilience to noise. Our findings establish CNA as a promising paradigm for developing neural representations that integrate local feature processing with global structure formation, providing a foundation for future research on invariant object recognition.
comment: Accepted at Neural Computation
♻ ☆ Bootstrap Off-policy with World Model NeurIPS 2025
Online planning has proven effective in reinforcement learning (RL) for improving sample efficiency and final performance. However, using planning for environment interaction inevitably introduces a divergence between the collected data and the policy's actual behaviors, degrading both model learning and policy improvement. To address this, we propose BOOM (Bootstrap Off-policy with WOrld Model), a framework that tightly integrates planning and off-policy learning through a bootstrap loop: the policy initializes the planner, and the planner refines actions to bootstrap the policy through behavior alignment. This loop is supported by a jointly learned world model, which enables the planner to simulate future trajectories and provides value targets to facilitate policy improvement. The core of BOOM is a likelihood-free alignment loss that bootstraps the policy using the planner's non-parametric action distribution, combined with a soft value-weighted mechanism that prioritizes high-return behaviors and mitigates variability in the planner's action quality within the replay buffer. Experiments on the high-dimensional DeepMind Control Suite and Humanoid-Bench show that BOOM achieves state-of-the-art results in both training stability and final performance. The code is accessible at https://github.com/molumitu/BOOM_MBRL.
comment: NeurIPS 2025
♻ ☆ Comprehensive Evaluation of Prototype Neural Networks
Prototype models are an important method for explainable artificial intelligence (XAI) and interpretable machine learning. In this paper, we perform an in-depth analysis of a set of prominent prototype models including ProtoPNet, ProtoPool and PIPNet. For their assessment, we apply a comprehensive set of metrics. In addition to applying standard metrics from literature, we propose several new metrics to further complement the analysis of model interpretability. In our experimentation, we apply the set of prototype models on a diverse set of datasets including fine-grained classification, Non-IID settings and multi-label classification to further contrast the performance. Furthermore, we also provide our code as an open-source library (https://github.com/uos-sis/quanproto), which facilitates simple application of the metrics itself, as well as extensibility -- providing the option for easily adding new metrics and models.
♻ ☆ Improving Generalization of Neural Combinatorial Optimization for Vehicle Routing Problems via Test-Time Projection Learning
Neural Combinatorial Optimization (NCO) has emerged as a promising learning-based paradigm for addressing Vehicle Routing Problems (VRPs) by minimizing the need for extensive manual engineering. While existing NCO methods, trained on small-scale instances (e.g., 100 nodes), have demonstrated considerable success on problems of similar scale, their performance significantly degrades when applied to large-scale scenarios. This degradation arises from the distributional shift between training and testing data, rendering policies learned on small instances ineffective for larger problems. To overcome this limitation, we introduce a novel learning framework driven by Large Language Models (LLMs). This framework learns a projection between the training and testing distributions, which is then deployed to enhance the scalability of the NCO model. Notably, unlike prevailing techniques that necessitate joint training with the neural network, our approach operates exclusively during the inference phase, obviating the need for model retraining. Extensive experiments demonstrate that our method enables a backbone model (trained on 100-node instances) to achieve superior performance on large-scale Traveling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP) of up to 100K nodes from diverse distributions.
comment: arXiv admin note: text overlap with arXiv:2505.24627
♻ ☆ Generalization Bounds for Semi-supervised Matrix Completion with Distributional Side Information AAAI 2026
We study a matrix completion problem where both the ground truth $R$ matrix and the unknown sampling distribution $P$ over observed entries are low-rank matrices, and \textit{share a common subspace}. We assume that a large amount $M$ of \textit{unlabeled} data drawn from the sampling distribution $P$ is available, together with a small amount $N$ of labeled data drawn from the same distribution and noisy estimates of the corresponding ground truth entries. This setting is inspired by recommender systems scenarios where the unlabeled data corresponds to `implicit feedback' (consisting in interactions such as purchase, click, etc. ) and the labeled data corresponds to the `explicit feedback', consisting of interactions where the user has given an explicit rating to the item. Leveraging powerful results from the theory of low-rank subspace recovery, together with classic generalization bounds for matrix completion models, we show error bounds consisting of a sum of two error terms scaling as $\widetilde{O}\left(\sqrt{\frac{nd}{M}}\right)$ and $\widetilde{O}\left(\sqrt{\frac{dr}{N}}\right)$ respectively, where $d$ is the rank of $P$ and $r$ is the rank of $M$. In synthetic experiments, we confirm that the true generalization error naturally splits into independent error terms corresponding to the estimations of $P$ and and the ground truth matrix $\ground$ respectively. In real-life experiments on Douban and MovieLens with most explicit ratings removed, we demonstrate that the method can outperform baselines relying only on the explicit ratings, demonstrating that our assumptions provide a valid toy theoretical setting to study the interaction between explicit and implicit feedbacks in recommender systems.
comment: Accepted at AAAI 2026
♻ ☆ When Bias Pretends to Be Truth: How Spurious Correlations Undermine Hallucination Detection in LLMs
Despite substantial advances, large language models (LLMs) continue to exhibit hallucinations, generating plausible yet incorrect responses. In this paper, we highlight a critical yet previously underexplored class of hallucinations driven by spurious correlations -- superficial but statistically prominent associations between features (e.g., surnames) and attributes (e.g., nationality) present in the training data. We demonstrate that these spurious correlations induce hallucinations that are confidently generated, immune to model scaling, evade current detection methods, and persist even after refusal fine-tuning. Through systematically controlled synthetic experiments and empirical evaluations on state-of-the-art open-source and proprietary LLMs (including GPT-5), we show that existing hallucination detection methods, such as confidence-based filtering and inner-state probing, fundamentally fail in the presence of spurious correlations. Our theoretical analysis further elucidates why these statistical biases intrinsically undermine confidence-based detection techniques. Our findings thus emphasize the urgent need for new approaches explicitly designed to address hallucinations caused by spurious correlations.
♻ ☆ TRACE: Time SeRies PArameter EffiCient FinE-tuning
We propose an efficient fine-tuning method for time series foundation models, termed TRACE: Time Series Parameter Efficient Fine-tuning. While pretrained time series foundation models are gaining popularity, they face the following challenges: (1) Unlike natural language tasks, time series data vary in frequency, channel numbers, historical/prediction lengths. For long-term forecasting tasks in particular, tailored fine-tuning can significantly enhance performance.(2) Existing parameter-efficient tuning methods like LoRA remain applicable but require adaptation to temporal characteristics. To address these challenges, our TRACE framework introduces two key innovations: (1) Gated DSIC (Gated Dynamic Simulation Importance Calculation), an unbiased LoRA module importance selection mechanism that ensures conditional parameter consistency before and after masking. Experiments demonstrate that Gated DSIC outperforms common fine-tuning. (2) Reconstructed prediction heads for long-term forecasting tasks, which achieve comparable or superior performance to linear probing heads while drastically reducing parameter counts. Extensive experiments on long-/short-term forecasting, anomaly detection and natural language tasks across diverse datasets, coupled with ablation studies, validate the effectiveness of our method.
♻ ☆ Explore More, Learn Better: Parallel MLLM Embeddings under Mutual Information Minimization
Embedding models are a cornerstone of modern AI. Driven by Multimodal Large Language Models (MLLMs), they have made great progress in architecture and data curation, while the holistic paradigm is still limited to SSC, i.e., single input, singular embedding, contrastive supervision, which collapses rich, multifaceted inputs into monolithic embeddings and fails to fully exploit MLLM capabilities. In this paper, we tailor one Parallel Decoupling Framework (PDF) for multimodal embedding learning, by utilizing the proprietary steerability of MLLMs, i.e., their ability to flexibly generate quite differentiated response under explicit instructions. Concretely, PDF conditions a shared MLLM backbone on distinct, learnable prefixes to roll out multiple parallel paths for one input, then relies on these paths to obtain parallel embeddings. To promote full parallel diversity, we employ Mutual Information Minimization (MIM) as an explicit constraint, coupled with per-path contrastive supervision to maintain semantic alignment. Such dual-objectives force PDF to yield robust semantic coverage and a generalizable embedding space. Ultimately, the remarkable embedding space are accessible at inference via one single forward pass, incurring negligible computational overhead. We instantiate PDF on multiple MLLM backbones and prove its effectiveness on MMEB benchmark. Significant gains are consistently achieved across various resolutions and model sizes, e.g., boosting the VLM2Vec-LLaVA-1.6-LR model by a remarkable +8.9% (7B), while the VLM2Vec-Qwen2VL models by +4.2% (2B) and +3.1% (7B). In terms of efficiency, our 2B model surpasses its baseline by +2.6% using only half the computational budget.
♻ ☆ The Impact of Feature Scaling In Machine Learning: Effects on Regression and Classification Tasks
This research addresses the critical lack of comprehensive studies on feature scaling by systematically evaluating 12 scaling techniques - including several less common transformations - across 14 different Machine Learning algorithms and 16 datasets for classification and regression tasks. We meticulously analyzed impacts on predictive performance (using metrics such as accuracy, MAE, MSE, and $R^2$) and computational costs (training time, inference time, and memory usage). Key findings reveal that while ensemble methods (such as Random Forest and gradient boosting models like XGBoost, CatBoost and LightGBM) demonstrate robust performance largely independent of scaling, other widely used models such as Logistic Regression, SVMs, TabNet, and MLPs show significant performance variations highly dependent on the chosen scaler. This extensive empirical analysis, with all source code, experimental results, and model parameters made publicly available to ensure complete transparency and reproducibility, offers model-specific crucial guidance to practitioners on the need for an optimal selection of feature scaling techniques.
comment: 36 pages
♻ ☆ A Differentiable Alignment Framework for Sequence-to-Sequence Modeling via Optimal Transport
Accurate sequence-to-sequence (seq2seq) alignment is critical for applications like medical speech analysis and language learning tools relying on automatic speech recognition (ASR). State-of-the-art end-to-end (E2E) ASR systems, such as the Connectionist Temporal Classification (CTC) and transducer-based models, suffer from peaky behavior and alignment inaccuracies. In this paper, we propose a novel differentiable alignment framework based on one-dimensional optimal transport, enabling the model to learn a single alignment and perform ASR in an E2E manner. We introduce a pseudo-metric, called Sequence Optimal Transport Distance (SOTD), over the sequence space and discuss its theoretical properties. Based on the SOTD, we propose Optimal Temporal Transport Classification (OTTC) loss for ASR and contrast its behavior with CTC. Experimental results on the TIMIT, AMI, and LibriSpeech datasets show that our method considerably improves alignment performance compared to CTC and the more recently proposed Consistency-Regularized CTC, though with a trade-off in ASR performance. We believe this work opens new avenues for seq2seq alignment research, providing a solid foundation for further exploration and development within the community. Our code is publicly available at: https://github.com/idiap/OTTC
♻ ☆ GeoPTH: A Lightweight Approach to Category-Based Trajectory Retrieval via Geometric Prototype Trajectory Hashing
Trajectory similarity retrieval is an important part of spatiotemporal data mining, however, existing methods have the following limitations: traditional metrics are computationally expensive, while learning-based methods suffer from substantial training costs and potential instability. This paper addresses these problems by proposing Geometric Prototype Trajectory Hashing (GeoPTH), a novel, lightweight, and non-learning framework for efficient category-based trajectory retrieval. GeoPTH constructs data-dependent hash functions by using representative trajectory prototypes, i.e., small point sets preserving geometric characteristics, as anchors. The hashing process is efficient, which involves mapping a new trajectory to its closest prototype via a robust, Hausdorff metric. Extensive experiments show that GeoPTH's retrieval accuracy is highly competitive with both traditional metrics and state-of-the-art learning methods, and it significantly outperforms binary codes generated through simple binarization of the learned embeddings. Critically, GeoPTH consistently outperforms all competitors in terms of efficiency. Our work demonstrates that a lightweight, prototype-centric approach offers a practical and powerful alternative, achieving an exceptional retrieval performance and computational efficiency.
♻ ☆ Optimal Convergence Rates of Deep Neural Network Classifiers
In this paper, we study the binary classification problem on $[0,1]^d$ under the Tsybakov noise condition (with exponent $s \in [0,\infty]$) and the compositional assumption. This assumption requires the conditional class probability function of the data distribution to be the composition of $q+1$ vector-valued multivariate functions, where each component function is either a maximum value function or a Hölder-$β$ smooth function that depends only on $d_*$ of its input variables. Notably, $d_*$ can be significantly smaller than the input dimension $d$. We prove that, under these conditions, the optimal convergence rate for the excess 0-1 risk of classifiers is $\left( \frac{1}{n} \right)^{\frac{β\cdot(1\wedgeβ)^q}{{\frac{d_*}{s+1}+(1+\frac{1}{s+1})\cdotβ\cdot(1\wedgeβ)^q}}}$, which is independent of the input dimension $d$. Additionally, we demonstrate that ReLU deep neural networks (DNNs) trained with hinge loss can achieve this optimal convergence rate up to a logarithmic factor. This result provides theoretical justification for the excellent performance of ReLU DNNs in practical classification tasks, particularly in high-dimensional settings. The generalized approach is of independent interest.
♻ ☆ Estimating Bidirectional Causal Effects with Large Scale Online Kernel Learning
In this study, a scalable online kernel learning framework is proposed for estimating bidirectional causal effects in systems characterized by mutual dependence and heteroskedasticity. Traditional causal inference often focuses on unidirectional effects, overlooking the common bidirectional relationships in real-world phenomena. Building on heteroskedasticity-based identification, the proposed method integrates a quasi-maximum likelihood estimator for simultaneous equation models with large scale online kernel learning. It employs random Fourier feature approximations to flexibly model nonlinear conditional means and variances, while an adaptive online gradient descent algorithm ensures computational efficiency for streaming and high-dimensional data. Results from extensive simulations demonstrate that the proposed method achieves superior accuracy and stability than single equation and polynomial approximation baselines, exhibiting lower bias and root mean squared error across various data-generating processes. These results confirm that the proposed approach effectively captures complex bidirectional causal effects with near-linear computational scaling. By combining econometric identification with modern machine learning techniques, the proposed framework offers a practical, scalable, and theoretically grounded solution for large scale causal inference in natural/social science, policy making, business, and industrial applications.
comment: Accepted for publication in Proceedings of the 2025 International Conference on Data Science and Intelligent Systems (DSIS 2025)
♻ ☆ How LLMs Learn to Reason: A Complex Network Perspective ICLR 2026
Training large language models with Reinforcement Learning with Verifiable Rewards (RLVR) exhibits a set of distinctive and puzzling behaviors that remain poorly understood, including a two-stage learning curve, a V-shaped response-length trajectory, and a pronounced vulnerability to catastrophic forgetting. In this work, we propose that these behaviors are emergent collective phenomena governed not by neural implementation details, but by the topological evolution of the latent reasoning graph in semantic space. By demonstrating a dynamical isomorphism between a 1.5B-parameter LLM and a minimal Concept Network Model (CoNet), we trace the causal source to the self-organization of a sparse concept web pinned to an average degree of two. This geometric perspective provides a unified physical explanation for the observed anomalies: the V-shaped trajectory tracks the evolution from parallel local skill optimization to global network integration; catastrophic forgetting stems from the topological disconnection of critical ``trunk'' edges; and policy collapse arises from the accumulation of sequential transitions at the web's leaf nodes, where broad exploration abruptly freezes into rigid, high-reward trajectories. Identifying a ``maximally frustrated state'' at the transition between learning stages, we propose Annealed-RLVR, a principled algorithm that injects a targeted SFT ``heating'' step to resolve this topological bottleneck. Experiments confirm that this theory-driven intervention outperforms standard RLVR on both in-distribution and out-of-distribution benchmarks (including Minerva and AIME). By recasting RLVR from black-box optimization into a predictable process of structural self-organization, our work provides a new physical intuition for engineering the emergent reasoning capabilities of future AI systems.
comment: 24 pages, 11 figures, 1 table, under review as a conference paper at ICLR 2026
♻ ☆ Soft decision trees for survival analysis
Decision trees are popular in survival analysis for their interpretability and ability to model complex relationships. Survival trees, which predict the timing of singular events using censored historical data, are typically built through heuristic approaches. Recently, there has been growing interest in globally optimized trees, where the overall tree is trained by minimizing the error function over all its parameters. We propose a new soft survival tree model (SST), with a soft splitting rule at each branch node, trained via a nonlinear optimization formulation amenable to decomposition. Since SSTs provide for every input vector a specific survival function associated to a single leaf node, they satisfy the conditional computation property and inherit the related benefits. SST and the training formulation combine flexibility with interpretability: any smooth survival function (parametric, semiparametric, or nonparametric) estimated through maximum likelihood can be used, and each leaf node of an SST yields a cluster of distinct survival functions which are associated to the data points routed to it. Numerical experiments on 15 well-known datasets show that SSTs, with parametric and spline-based semiparametric survival functions, trained using an adaptation of the node-based decomposition algorithm proposed by Consolo et al. (2024) for soft regression trees, outperform three benchmark survival trees in terms of four widely-used discrimination and calibration measures. SSTs can also be extended to consider group fairness.
♻ ☆ Performance of Conformal Prediction in Capturing Aleatoric Uncertainty WACV 2026
Conformal prediction is a model-agnostic approach to generating prediction sets that cover the true class with a high probability. Although its prediction set size is expected to capture aleatoric uncertainty, there is a lack of evidence regarding its effectiveness. The literature presents that prediction set size can upper-bound aleatoric uncertainty or that prediction sets are larger for difficult instances and smaller for easy ones, but a validation of this attribute of conformal predictors is missing. This work investigates how effectively conformal predictors quantify aleatoric uncertainty, specifically the inherent ambiguity in datasets caused by overlapping classes. We perform this by measuring the correlation between prediction set sizes and the number of distinct labels assigned by human annotators per instance. We further assess the similarity between prediction sets and human-provided annotations. We use three conformal prediction approaches to generate prediction sets for eight deep learning models trained on four datasets. The datasets contain annotations from multiple human annotators (ranging from five to fifty participants) per instance, enabling the identification of class overlap. We show that the vast majority of the conformal prediction outputs show a very weak to weak correlation with human annotations, with only a few showing moderate correlation. These findings underscore the necessity of critically reassessing the prediction sets generated using conformal predictors. While they can provide a higher coverage of the true classes, their capability in capturing aleatoric uncertainty and generating sets that align with human annotations remains limited.
comment: Accepted at the IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2026
♻ ☆ A Reinforcement Learning-Based Telematic Routing Protocol for the Internet of Underwater Things
The Internet of Underwater Things (IoUT) has a lot of problems, like low bandwidth, high latency, mobility, and not enough energy. Routing protocols that were made for land-based networks, like RPL, don't work well in these underwater settings. This paper talks about RL-RPL-UA, a new routing protocol that uses reinforcement learning to make things work better in underwater situations. Each node has a small RL agent that picks the best parent node depending on local data such the link quality, buffer level, packet delivery ratio, and remaining energy. RL-RPL-UA works with all standard RPL messages and adds a dynamic objective function to help people make decisions in real time. Aqua-Sim simulations demonstrate that RL-RPL-UA boosts packet delivery by up to 9.2%, uses 14.8% less energy per packet, and adds 80 seconds to the network's lifetime compared to previous approaches. These results show that RL-RPL-UA is a potential and energy-efficient way to route data in underwater networks.
comment: 8 Pages, 10 Figures, 2 Tables
♻ ☆ A New Causal Rule Learning Approach to Interpretable Estimation of Heterogeneous Treatment Effect
Interpretability plays a crucial role in the application of statistical learning to estimate heterogeneous treatment effects (HTE) in complex diseases. In this study, we leverage a rule-based workflow, namely causal rule learning (CRL), to estimate and improve our understanding of HTE for atrial septal defect, addressing an overlooked question in the previous literature: what if an individual simultaneously belongs to multiple groups with different average treatment effects? The CRL process consists of three steps: rule discovery, which generates a set of causal rules with corresponding subgroup average treatment effects; rule selection, which identifies a subset of these rules to deconstruct individual-level treatment effects as a linear combination of subgroup-level effects; and rule analysis, which presents a detailed procedure for further analyzing each selected rule from multiple perspectives to identify the most promising rules for validation. Extensive simulation studies and real-world data analysis demonstrate that CRL outperforms other methods in providing interpretable estimates of HTE, especially when dealing with complex ground truth and sufficient sample sizes.
♻ ☆ Model-Agnostic Gender Bias Control for Text-to-Image Generation via Sparse Autoencoder
Text-to-image (T2I) diffusion models often exhibit gender bias, particularly by generating stereotypical associations between professions and gendered subjects. This paper presents SAE Debias, a lightweight and model-agnostic framework for mitigating such bias in T2I generation. Unlike prior approaches that rely on CLIP-based filtering or prompt engineering, which often require model-specific adjustments and offer limited control, SAE Debias operates directly within the feature space without retraining or architectural modifications. By leveraging a k-sparse autoencoder pre-trained on a gender bias dataset, the method identifies gender-relevant directions within the sparse latent space, capturing professional stereotypes. Specifically, a biased direction per profession is constructed from sparse latents and suppressed during inference to steer generations toward more gender-balanced outputs. Trained only once, the sparse autoencoder provides a reusable debiasing direction, offering effective control and interpretable insight into biased subspaces. Extensive evaluations across multiple T2I models, including Stable Diffusion 1.4, 1.5, 2.1, and SDXL, demonstrate that SAE Debias substantially reduces gender bias while preserving generation quality. To the best of our knowledge, this is the first work to apply sparse autoencoders for identifying and intervening in gender bias within T2I models. These findings contribute toward building socially responsible generative AI, providing an interpretable and model-agnostic tool to support fairness in text-to-image generation.
♻ ☆ MonoKAN: Certified Monotonic Kolmogorov-Arnold Network
Artificial Neural Networks (ANNs) have significantly advanced various fields by effectively recognizing patterns and solving complex problems. Despite these advancements, their interpretability remains a critical challenge, especially in applications where transparency and accountability are essential. To address this, explainable AI (XAI) has made progress in demystifying ANNs, yet interpretability alone is often insufficient. In certain applications, model predictions must align with expert-imposed requirements, sometimes exemplified by partial monotonicity constraints. While monotonic approaches are found in the literature for traditional Multi-layer Perceptrons (MLPs), they still face difficulties in achieving both interpretability and certified partial monotonicity. Recently, the Kolmogorov-Arnold Network (KAN) architecture, based on learnable activation functions parametrized as splines, has been proposed as a more interpretable alternative to MLPs. Building on this, we introduce a novel ANN architecture called MonoKAN, which is based on the KAN architecture and achieves certified partial monotonicity while enhancing interpretability. To achieve this, we employ cubic Hermite splines, which guarantee monotonicity through a set of straightforward conditions. Additionally, by using positive weights in the linear combinations of these splines, we ensure that the network preserves the monotonic relationships between input and output. Our experiments demonstrate that MonoKAN not only enhances interpretability but also improves predictive performance across the majority of benchmarks, outperforming state-of-the-art monotonic MLP approaches.
comment: 18 pages, 8 figures
♻ ☆ Multi-Objective Reinforcement Learning for Water Management AAMAS 2025
Many real-world problems (e.g., resource management, autonomous driving, drug discovery) require optimizing multiple, conflicting objectives. Multi-objective reinforcement learning (MORL) extends classic reinforcement learning to handle multiple objectives simultaneously, yielding a set of policies that capture various trade-offs. However, the MORL field lacks complex, realistic environments and benchmarks. We introduce a water resource (Nile river basin) management case study and model it as a MORL environment. We then benchmark existing MORL algorithms on this task. Our results show that specialized water management methods outperform state-of-the-art MORL approaches, underscoring the scalability challenges MORL algorithms face in real-world scenarios.
comment: Accepted to AAMAS 2025
♻ ☆ Efficient Reinforcement Learning for Large Language Models with Intrinsic Exploration
Reinforcement learning with verifiable rewards (RLVR) has improved the reasoning ability of large language models, yet training remains costly because many rollouts contribute little to optimization, considering the amount of computation required. This study investigates how simply leveraging intrinsic data properties, almost free benefit during training, can improve data efficiency for RLVR. We propose PREPO with two complementary components. First, we adopt prompt perplexity as an indicator of model adaptability in learning, enabling the model to progress from well-understood contexts to more challenging ones. Second, we amplify the discrepancy among the rollouts by differentiating their relative entropy, and prioritize sequences that exhibit a higher degree of exploration. Together, these mechanisms reduce rollout demand while preserving competitive performance. On the Qwen and Llama models, PREPO achieves effective results on mathematical reasoning benchmarks with up to 3 times fewer rollouts than the baselines. Beyond empirical gains, we provide theoretical and in-depth analyses explaining the underlying rationale of our method to improve the data efficiency of RLVR.
♻ ☆ Quantitative Attractor Analysis of High-Capacity Kernel Logistic Regression Hopfield Networks
Kernel-based learning methods such as Kernel Logistic Regression (KLR) can dramatically increase the storage capacity of Hopfield networks, but the principles governing their performance and stability remain largely uncharacterized. This paper presents a comprehensive quantitative analysis of the attractor landscape in KLR-trained networks to establish a solid foundation for their design and application. Through extensive, statistically validated simulations, we address critical questions of generality, scalability, and robustness. Our comparative analysis reveals that KLR and Kernel Ridge Regression (KRR) exhibit similarly high storage capacities and clean attractor landscapes, suggesting this is a general property of kernel regression methods, though KRR is computationally much faster. We uncover a non-trivial, scale-dependent scaling law for the kernel width ($γ$), demonstrating that optimal capacity requires $γ$ to be scaled such that $γ\times N$ increases with network size $N$. This implies that larger networks necessitate more localized kernels -- where each pattern's influence is more spatially confined -- to manage inter-pattern interference. Under this optimized scaling, we provide definitive evidence that the storage capacity scales linearly with network size ($P \propto N$). Furthermore, our sensitivity analysis shows that performance is remarkably robust to the choice of the regularization parameter $λ$. Collectively, these findings provide a clear set of empirical principles for designing high-capacity, robust associative memories and clarify the mechanisms that enable kernel methods to overcome the classical limitations of Hopfield-type models.
comment: 16 pages, 7 figures
♻ ☆ Ambient Noise Full Waveform Inversion with Neural Operators
Numerical simulations of seismic wave propagation are crucial for investigating velocity structures and improving seismic hazard assessment. However, standard methods such as finite difference or finite element are computationally expensive. Recent studies have shown that a new class of machine learning models, called neural operators, can solve the elastodynamic wave equation orders of magnitude faster than conventional methods. Full waveform inversion is a prime beneficiary of the accelerated simulations. Neural operators, as end-to-end differentiable operators, combined with automatic differentiation, provide an alternative approach to the adjoint-state method. State-of-the-art optimization techniques built into PyTorch provide neural operators with greater flexibility to improve the optimization dynamics of full waveform inversion, thereby mitigating cycle-skipping problems. In this study, we demonstrate the first application of neural operators for full waveform inversion on a real seismic dataset, which consists of several nodal transects collected across the San Gabriel, Chino, and San Bernardino basins in the Los Angeles metropolitan area.
comment: Align with the published version
♻ ☆ AV-Lip-Sync+: Leveraging AV-HuBERT to Exploit Multimodal Inconsistency for Deepfake Detection of Frontal Face Videos
Multimodal manipulations (also known as audio-visual deepfakes) make it difficult for unimodal deepfake detectors to detect forgeries in multimedia content. To avoid the spread of false propaganda and fake news, timely detection is crucial. The damage to either modality (i.e., visual or audio) can only be discovered through multimodal models that can exploit both pieces of information simultaneously. However, previous methods mainly adopt unimodal video forensics and use supervised pre-training for forgery detection. This study proposes a new method based on a multimodal self-supervised-learning (SSL) feature extractor to exploit inconsistency between audio and visual modalities for multimodal video forgery detection. We use the transformer-based SSL pre-trained Audio-Visual HuBERT (AV-HuBERT) model as a visual and acoustic feature extractor and a multi-scale temporal convolutional neural network to capture the temporal correlation between the audio and visual modalities. Since AV-HuBERT only extracts visual features from the lip region, we also adopt another transformer-based video model to exploit facial features and capture spatial and temporal artifacts caused during the deepfake generation process. Experimental results show that our model outperforms all existing models and achieves new state-of-the-art performance on the FakeAVCeleb and DeepfakeTIMIT datasets.
♻ ☆ SALT: Steering Activations towards Leakage-free Thinking in Chain of Thought
As Large Language Models (LLMs) evolve into personal assistants with access to sensitive user data, they face a critical privacy challenge: while prior work has addressed output-level privacy, recent findings reveal that LLMs often leak private information through their internal reasoning processes, violating contextual privacy expectations. These leaky thoughts occur when models inadvertently expose sensitive details in their reasoning traces, even when final outputs appear safe. The challenge lies in preventing such leakage without compromising the model's reasoning capabilities, requiring a delicate balance between privacy and utility. We introduce Steering Activations towards Leakage-free Thinking (SALT), a lightweight test-time intervention that mitigates privacy leakage in model's Chain of Thought (CoT) by injecting targeted steering vectors into hidden state. We identify the high-leakage layers responsible for this behavior. Through experiments across multiple LLMs, we demonstrate that SALT achieves reductions including $18.2\%$ reduction in CPL on QwQ-32B, $17.9\%$ reduction in CPL on Llama-3.1-8B, and $31.2\%$ reduction in CPL on Deepseek in contextual privacy leakage dataset AirGapAgent-R while maintaining comparable task performance and utility. Our work establishes SALT as a practical approach for test-time privacy protection in reasoning-capable language models, offering a path toward safer deployment of LLM-based personal agents.
♻ ☆ Text-guided multi-property molecular optimization with a diffusion language model
Molecular optimization (MO) is a crucial stage in drug discovery in which task-oriented generated molecules are optimized to meet practical industrial requirements. Existing mainstream MO approaches primarily utilize external property predictors to guide iterative property optimization. However, learning all molecular samples in the vast chemical space is unrealistic for predictors. As a result, errors and noise are inevitably introduced during property prediction due to the nature of approximation. This leads to discrepancy accumulation, generalization reduction and suboptimal molecular candidates. In this paper, we propose a text-guided multi-property molecular optimization method utilizing transformer-based diffusion language model (TransDLM). TransDLM leverages standardized chemical nomenclature as semantic representations of molecules and implicitly embeds property requirements into textual descriptions, thereby mitigating error propagation during diffusion process. By fusing physically and chemically detailed textual semantics with specialized molecular representations, TransDLM effectively integrates diverse information sources to guide precise optimization, which enhances the model's ability to balance structural retention and property enhancement. Additionally, the success of a case study further demonstrates TransDLM's ability to solve practical problems. Experimentally, our approach surpasses state-of-the-art methods in maintaining molecular structural similarity and enhancing chemical properties on the benchmark dataset.
♻ ☆ Genomic Next-Token Predictors are In-Context Learners
In-context learning (ICL) -- the capacity of a model to infer and apply abstract patterns from examples provided within its input -- has been extensively studied in large language models trained for next-token prediction on human text. In fact, prior work often attributes this emergent behavior to distinctive statistical properties in human language. This raises a fundamental question: can ICL arise organically in other sequence domains purely through large-scale predictive training? To explore this, we turn to genomic sequences, an alternative symbolic domain rich in statistical structure. Specifically, we study the Evo2 genomic model, trained predominantly on next-nucleotide (A/T/C/G) prediction, at a scale comparable to mid-sized LLMs. We develop a controlled experimental framework comprising symbolic reasoning tasks instantiated in both linguistic and genomic forms, enabling direct comparison of ICL across genomic and linguistic models. Our results show that genomic models, like their linguistic counterparts, exhibit log-linear gains in pattern induction as the number of in-context demonstrations increases. To the best of our knowledge, this is the first evidence of organically emergent ICL in genomic sequences, supporting the hypothesis that ICL arises as a consequence of large-scale predictive modeling over rich data. These findings extend emergent meta-learning beyond language, pointing toward a unified, modality-agnostic view of in-context learning.
♻ ☆ Deterministic Bounds and Random Estimates of Metric Tensors on Neuromanifolds
The high dimensional parameter space of modern deep neural networks -- the neuromanifold -- is endowed with a unique metric tensor defined by the Fisher information, estimating which is crucial for both theory and practical methods in deep learning. To analyze this tensor for classification networks, we return to a low dimensional space of probability distributions -- the core space -- and carefully analyze the spectrum of its Riemannian metric. We extend our discoveries there into deterministic bounds of the metric tensor on the neuromanifold. We introduce an unbiased random estimate of the metric tensor and its bounds based on Hutchinson's trace estimator. It can be evaluated efficiently through a single backward pass, with a standard deviation bounded by the true value up to scaling.
♻ ☆ A Weak Penalty Neural ODE for Learning Chaotic Dynamics from Noisy Time Series
Accurate forecasting of complex high-dimensional dynamical systems from observational data is essential for several applications across science and engineering. A key challenge, however, is that real-world measurements are often corrupted by noise, which severely degrades the performance of data-driven models. Particularly, in chaotic dynamical systems, where small errors amplify rapidly, it is challenging to identify a data-driven model from noisy data that achieves short-term accuracy while preserving long-term invariant properties. In this paper, we propose the use of the weak formulation as a complementary approach to the classical strong formulation of data-driven time-series forecasting models. Specifically, we focus on the neural ordinary differential equation (NODE) architecture. Unlike the standard strong formulation, which relies on the discretization of the NODE followed by optimization, the weak formulation constrains the model using a set of integrated residuals over temporal subdomains. While such a formulation yields an effective NODE model, we discover that the performance of a NODE can be further enhanced by employing this weak formulation as a penalty alongside the classical strong formulation-based learning. Through numerical demonstrations, we illustrate that our proposed training strategy, which we coined as the Weak-Penalty NODE (WP-NODE), achieves state-of-the-art forecasting accuracy and exceptional robustness across benchmark chaotic dynamical systems and real-world climate dataset.
♻ ☆ Holographic Knowledge Manifolds: A Novel Pipeline for Continual Learning Without Catastrophic Forgetting in Large Language Models
We introduce the Holographic Knowledge Manifold (HKM), a four-phase pipeline that achieves zero catastrophic forgetting in AI knowledge representation while maintaining minimal memory growth and high efficiency. Leveraging fractal quantization, probabilistic entanglement, and dynamic diffraction chipping, HKM compresses knowledge substrates by 3x with 67% storage savings, integrates holographically at 100%, and supports over 1,020 updates with 1% growth per increment. In experiments on combined WikiText and FB15k datasets (scaled to 2,997 nodes), we demonstrate industry-leading performance: 0% forgetting (infinite improvement over GEM baselines), 3x compression, and 53% training time reduction on consumer GPU hardware. Hypothetical cost analyses project $92.4M savings over 5 years at petabyte scale, with 21.2% energy reduction and 33% lower carbon footprint. This work hypothesizes a paradigm shift for public large language models (LLMs), enabling "eternal" adaptation without retraining. Future extensions to multimodal fusion and quantum hardware could further democratize scalable AI, potentially reducing fine-tuning costs by 60-80% for models like Llama-3 or Grok-4. Code, datasets, and full results are publicly available for reproducibility.
comment: This paper includes significant errors discovered post publication by the author
♻ ☆ Convergence Bound and Critical Batch Size of Muon Optimizer
Muon, a recently proposed optimizer that leverages the inherent matrix structure of neural network parameters, has demonstrated strong empirical performance, indicating its potential as a successor to standard optimizers such as AdamW. This paper presents theoretical analysis to support its practical success. We provide convergence proofs for Muon across four practical settings, systematically examining its behavior with and without the inclusion of Nesterov momentum and weight decay. Our analysis covers the standard configuration using both, thereby elucidating its real-world performance. We then demonstrate that the addition of weight decay yields strictly tighter theoretical bounds and clarify the interplay between the weight decay coefficient and the learning rate. Finally, we derive the critical batch size for Muon that minimizes the computational cost of training. Our analysis identifies the hyperparameters governing this value, and our experiments validate the corresponding theoretical findings across workloads including image classification and language modeling task.
Artificial Intelligence 137
☆ Enhancing Quranic Learning: A Multimodal Deep Learning Approach for Arabic Phoneme Recognition
Recent advances in multimodal deep learning have greatly enhanced the capability of systems for speech analysis and pronunciation assessment. Accurate pronunciation detection remains a key challenge in Arabic, particularly in the context of Quranic recitation, where subtle phonetic differences can alter meaning. Addressing this challenge, the present study proposes a transformer-based multimodal framework for Arabic phoneme mispronunciation detection that combines acoustic and textual representations to achieve higher precision and robustness. The framework integrates UniSpeech-derived acoustic embeddings with BERT-based textual embeddings extracted from Whisper transcriptions, creating a unified representation that captures both phonetic detail and linguistic context. To determine the most effective integration strategy, early, intermediate, and late fusion methods were implemented and evaluated on two datasets containing 29 Arabic phonemes, including eight hafiz sounds, articulated by 11 native speakers. Additional speech samples collected from publicly available YouTube recordings were incorporated to enhance data diversity and generalization. Model performance was assessed using standard evaluation metrics: accuracy, precision, recall, and F1-score, allowing a detailed comparison of the fusion strategies. Experimental findings show that the UniSpeech-BERT multimodal configuration provides strong results and that fusion-based transformer architectures are effective for phoneme-level mispronunciation detection. The study contributes to the development of intelligent, speaker-independent, and multimodal Computer-Aided Language Learning (CALL) systems, offering a practical step toward technology-supported Quranic pronunciation training and broader speech-based educational applications.
comment: 11 pages, 2 figures, 3 tables
☆ Masked-and-Reordered Self-Supervision for Reinforcement Learning from Verifiable Rewards
Test-time scaling has been shown to substantially improve large language models' (LLMs) mathematical reasoning. However, for a large portion of mathematical corpora, especially theorem proving, RLVR's scalability is limited: intermediate reasoning is crucial, while final answers are difficult to directly and reliably verify. Meanwhile, token-level SFT often degenerates into rote memorization rather than inducing longer chains of thought. Inspired by BERT's self-supervised tasks, we propose MR-RLVR (Masked-and-Reordered RLVR), which constructs process-level self-supervised rewards via "masked-then-fill" and "step reordering" to extract learnable signals from intermediate reasoning. Our training pipeline comprises two stages: we first perform self-supervised training on sampled mathematical calculation and proof data; we then conduct RLVR fine-tuning on mathematical calculation datasets where only outcomes are verifiable. We implement MR-RLVR on Qwen2.5-3B and DeepSeek-R1-Distill-Qwen-1.5B, and evaluate on AIME24, AIME25, AMC23, and MATH500. Under a fixed sampling and decoding budget, MR-RLVR achieves average relative gains over the original RLVR of +9.86% Pass@1, +5.27% Pass@5, and +4.00% Pass@8. These results indicate that incorporating process-aware self-supervised signals can effectively enhance RLVR's scalability and performance in only outcome-verifiable settings.
☆ PersonaAgent with GraphRAG: Community-Aware Knowledge Graphs for Personalized LLM
We propose a novel framework for persona-based language model system, motivated by the need for personalized AI agents that adapt to individual user preferences. In our approach, the agent embodies the user's "persona" (e.g. user profile or taste) and is powered by a large language model (LLM). To enable the agent to leverage rich contextual information, we introduce a Knowledge-Graph-enhanced Retrieval-Augmented Generation (Graph RAG) mechanism that constructs an LLM-derived graph index of relevant documents and summarizes communities of related information. Our framework generates personalized prompts by combining: (1) a summary of the user's historical behaviors and preferences extracted from the knowledge graph, and (2) relevant global interaction patterns identified through graph-based community detection. This dynamic prompt engineering approach allows the agent to maintain consistent persona-aligned behaviors while benefiting from collective knowledge. On the LaMP benchmark, our method improves news categorization F1 by 11.1%, movie tagging F1 by 56.1%, and reduces product rating MAE by 10.4% over prior methods. Our code is available at https://anonymous.4open.science/r/PersonaAgentwGraphRAG-DE6F
☆ SRA-CP: Spontaneous Risk-Aware Selective Cooperative Perception
Cooperative perception (CP) offers significant potential to overcome the limitations of single-vehicle sensing by enabling information sharing among connected vehicles (CVs). However, existing generic CP approaches need to transmit large volumes of perception data that are irrelevant to the driving safety, exceeding available communication bandwidth. Moreover, most CP frameworks rely on pre-defined communication partners, making them unsuitable for dynamic traffic environments. This paper proposes a Spontaneous Risk-Aware Selective Cooperative Perception (SRA-CP) framework to address these challenges. SRA-CP introduces a decentralized protocol where connected agents continuously broadcast lightweight perception coverage summaries and initiate targeted cooperation only when risk-relevant blind zones are detected. A perceptual risk identification module enables each CV to locally assess the impact of occlusions on its driving task and determine whether cooperation is necessary. When CP is triggered, the ego vehicle selects appropriate peers based on shared perception coverage and engages in selective information exchange through a fusion module that prioritizes safety-critical content and adapts to bandwidth constraints. We evaluate SRA-CP on a public dataset against several representative baselines. Results show that SRA-CP achieves less than 1% average precision (AP) loss for safety-critical objects compared to generic CP, while using only 20% of the communication bandwidth. Moreover, it improves the perception performance by 15% over existing selective CP methods that do not incorporate risk awareness.
☆ Planning with Sketch-Guided Verification for Physics-Aware Video Generation
Recent video generation approaches increasingly rely on planning intermediate control signals such as object trajectories to improve temporal coherence and motion fidelity. However, these methods mostly employ single-shot plans that are typically limited to simple motions, or iterative refinement which requires multiple calls to the video generator, incuring high computational cost. To overcome these limitations, we propose SketchVerify, a training-free, sketch-verification-based planning framework that improves motion planning quality with more dynamically coherent trajectories (i.e., physically plausible and instruction-consistent motions) prior to full video generation by introducing a test-time sampling and verification loop. Given a prompt and a reference image, our method predicts multiple candidate motion plans and ranks them using a vision-language verifier that jointly evaluates semantic alignment with the instruction and physical plausibility. To efficiently score candidate motion plans, we render each trajectory as a lightweight video sketch by compositing objects over a static background, which bypasses the need for expensive, repeated diffusion-based synthesis while achieving comparable performance. We iteratively refine the motion plan until a satisfactory one is identified, which is then passed to the trajectory-conditioned generator for final synthesis. Experiments on WorldModelBench and PhyWorldBench demonstrate that our method significantly improves motion quality, physical realism, and long-term consistency compared to competitive baselines while being substantially more efficient. Our ablation study further shows that scaling up the number of trajectory candidates consistently enhances overall performance.
comment: website: https://sketchverify.github.io/
☆ GRAPHIC--Guidelines for Reviewing Algorithmic Practices in Human-centred Design and Interaction for Creativity
Artificial Intelligence (AI) has been increasingly applied to creative domains, leading to the development of systems that collaborate with humans in design processes. In Graphic Design, integrating computational systems into co-creative workflows presents specific challenges, as it requires balancing scientific rigour with the subjective and visual nature of design practice. Following the PRISMA methodology, we identified 872 articles, resulting in a final corpus of 71 publications describing 68 unique systems. Based on this review, we introduce GRAPHIC (Guidelines for Reviewing Algorithmic Practices in Human-centred Design and Interaction for Creativity), a framework for analysing AI-based systems applied to Graphic Design. Its goal is to understand how current systems support human-AI collaboration in the Graphic Design discipline. The framework comprises main dimensions, which our analysis revealed to be essential across diverse system types: (1) Collaborative Panorama, (2) Processes and Modalities, and (3) Graphic Design Principles. Its application revealed research gaps, including the need to balance initiative and control between agents, improve communication through explainable interaction models, and promote systems that support transformational creativity grounded in core design principles.
comment: 20 pages, 16 figures
☆ REMSA: An LLM Agent for Foundation Model Selection in Remote Sensing
Foundation Models (FMs) are increasingly used in remote sensing (RS) for tasks such as environmental monitoring, disaster assessment, and land-use mapping. These models include unimodal vision encoders trained on a single data modality and multimodal architectures trained on combinations of SAR, multispectral, hyperspectral, and image-text data. They support diverse RS tasks including semantic segmentation, image classification, change detection, and visual question answering. However, selecting an appropriate remote sensing foundation model (RSFM) remains difficult due to scattered documentation, heterogeneous formats, and varied deployment constraints. We introduce the RSFM Database (RS-FMD), a structured resource covering over 150 RSFMs spanning multiple data modalities, resolutions, and learning paradigms. Built on RS-FMD, we present REMSA, the first LLM-based agent for automated RSFM selection from natural language queries. REMSA interprets user requirements, resolves missing constraints, ranks candidate models using in-context learning, and provides transparent justifications. We also propose a benchmark of 75 expert-verified RS query scenarios, producing 900 configurations under an expert-centered evaluation protocol. REMSA outperforms several baselines, including naive agents, dense retrieval, and unstructured RAG-based LLMs. It operates entirely on publicly available metadata and does not access private or sensitive data.
comment: Code and data available at https://github.com/be-chen/REMSA
☆ InTAct: Interval-based Task Activation Consolidation for Continual Learning
Continual learning aims to enable neural networks to acquire new knowledge without forgetting previously learned information. While recent prompt-based methods perform strongly in class-incremental settings, they remain vulnerable under domain shifts, where the input distribution changes but the label space remains fixed. This exposes a persistent problem known as representation drift. Shared representations evolve in ways that overwrite previously useful features and cause forgetting even when prompts isolate task-specific parameters. To address this issue, we introduce InTAct, a method that preserves functional behavior in shared layers without freezing parameters or storing past data. InTAct captures the characteristic activation ranges associated with previously learned tasks and constrains updates to ensure the network remains consistent within these regions, while still allowing for flexible adaptation elsewhere. In doing so, InTAct stabilizes the functional role of important neurons rather than directly restricting parameter values. The approach is architecture-agnostic and integrates seamlessly into existing prompt-based continual learning frameworks. By regulating representation changes where past knowledge is encoded, InTAct achieves a principled balance between stability and plasticity. Across diverse domain-incremental benchmarks, including DomainNet and ImageNet-R, InTAct consistently reduces representation drift and improves performance, increasing Average Accuracy by up to 8 percentage points over state-of-the-art baselines.
☆ SMILE: A Composite Lexical-Semantic Metric for Question-Answering Evaluation
Traditional evaluation metrics for textual and visual question answering, like ROUGE, METEOR, and Exact Match (EM), focus heavily on n-gram based lexical similarity, often missing the deeper semantic understanding needed for accurate assessment. While measures like BERTScore and MoverScore leverage contextual embeddings to address this limitation, they lack flexibility in balancing sentence-level and keyword-level semantics and ignore lexical similarity, which remains important. Large Language Model (LLM) based evaluators, though powerful, come with drawbacks like high costs, bias, inconsistency, and hallucinations. To address these issues, we introduce SMILE: Semantic Metric Integrating Lexical Exactness, a novel approach that combines sentence-level semantic understanding with keyword-level semantic understanding and easy keyword matching. This composite method balances lexical precision and semantic relevance, offering a comprehensive evaluation. Extensive benchmarks across text, image, and video QA tasks show SMILE is highly correlated with human judgments and computationally lightweight, bridging the gap between lexical and semantic evaluation.
comment: 23 pages, 6 tables, 9 figures
☆ Preventing Shortcut Learning in Medical Image Analysis through Intermediate Layer Knowledge Distillation from Specialist Teachers
Deep learning models are prone to learning shortcut solutions to problems using spuriously correlated yet irrelevant features of their training data. In high-risk applications such as medical image analysis, this phenomenon may prevent models from using clinically meaningful features when making predictions, potentially leading to poor robustness and harm to patients. We demonstrate that different types of shortcuts (those that are diffuse and spread throughout the image, as well as those that are localized to specific areas) manifest distinctly across network layers and can, therefore, be more effectively targeted through mitigation strategies that target the intermediate layers. We propose a novel knowledge distillation framework that leverages a teacher network fine-tuned on a small subset of task-relevant data to mitigate shortcut learning in a student network trained on a large dataset corrupted with a bias feature. Through extensive experiments on CheXpert, ISIC 2017, and SimBA datasets using various architectures (ResNet-18, AlexNet, DenseNet-121, and 3D CNNs), we demonstrate consistent improvements over traditional Empirical Risk Minimization, augmentation-based bias-mitigation, and group-based bias-mitigation approaches. In many cases, we achieve comparable performance with a baseline model trained on bias-free data, even on out-of-distribution test data. Our results demonstrate the practical applicability of our approach to real-world medical imaging scenarios where bias annotations are limited and shortcut features are difficult to identify a priori.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:020
☆ DS-Span: Single-Phase Discriminative Subgraph Mining for Efficient Graph Embeddings
Graph representation learning seeks to transform complex, high-dimensional graph structures into compact vector spaces that preserve both topology and semantics. Among the various strategies, subgraph-based methods provide an interpretable bridge between symbolic pattern discovery and continuous embedding learning. Yet, existing frequent or discriminative subgraph mining approaches often suffer from redundant multi-phase pipelines, high computational cost, and weak coupling between mined structures and their discriminative relevance. We propose DS-Span, a single-phase discriminative subgraph mining framework that unifies pattern growth, pruning, and supervision-driven scoring within one traversal of the search space. DS-Span introduces a coverage-capped eligibility mechanism that dynamically limits exploration once a graph is sufficiently represented, and an information-gain-guided selection that promotes subgraphs with strong class-separating ability while minimizing redundancy. The resulting subgraph set serves as an efficient, interpretable basis for downstream graph embedding and classification. Extensive experiments across benchmarks demonstrate that DS-Span generates more compact and discriminative subgraph features than prior multi-stage methods, achieving higher or comparable accuracy with significantly reduced runtime. These results highlight the potential of unified, single-phase discriminative mining as a foundation for scalable and interpretable graph representation learning.
☆ That's not natural: The Impact of Off-Policy Training Data on Probe Performance
Probing has emerged as a promising method for monitoring Large Language Models (LLMs), enabling inference-time detection of concerning behaviours such as deception and sycophancy. However, natural examples of many behaviours are rare, forcing researchers to rely on synthetic or off-policy LLM responses for training probes. We systematically evaluate how the use of synthetic and off-policy data influences probe generalisation across eight distinct LLM behaviours. Testing linear and attention probes across multiple LLMs, we find that the response generation strategy can significantly affect probe performance, though the magnitude of this effect varies by behaviour. We find that successful generalisation from off-policy data, to test sets where the model is incentivised to produce the target behaviour, is predictive of successful on-policy generalisation. Leveraging this result, we predict that Deception and Sandbagging probes may fail to generalise from off-policy to on-policy data when used in real monitoring scenarios. Notably, shifts in the training data domain still cause even larger performance degradation, with different-domain test scores being consistently lower than the same-domain ones. These results indicate that, in the absence of on-policy data, using same-domain off-policy data yields more reliable probes than using on-policy data from a different domain, emphasizing the need for methods that can better handle distribution shifts in LLM monitoring.
comment: 10 pages, EurIPS 2025 Workshop on Private AI Governance
☆ Beyond Multiple Choice: A Hybrid Framework for Unifying Robust Evaluation and Verifiable Reasoning Training
Multiple-choice question answering (MCQA) has been a popular format for evaluating and reinforcement fine-tuning (RFT) of modern multimodal language models. Its constrained output format allows for simplified, deterministic automatic verification. However, we find that the options may leak exploitable signals, which makes the accuracy metrics unreliable for indicating real capabilities and encourages explicit or implicit answer guessing behaviors during RFT. We propose ReVeL (Rewrite and Verify by LLM), a framework that rewrites multiple-choice questions into open-form questions while keeping answers verifiable whenever possible. The framework categorizes questions according to different answer types, apply different rewriting and verification schemes, respectively. When applied for RFT, we converted 20k MCQA examples and use GRPO to finetune Qwen2.5-VL models. Models trained on ReVeL-OpenQA match MCQA accuracy on multiple-choice benchmarks and improve OpenQA accuracy by about six percentage points, indicating better data efficiency and more robust reward signals than MCQA-based training. When used for evaluation, ReVeL also reveals up to 20 percentage points of score inflation in MCQA benchmarks (relative to OpenQA), improves judging accuracy, and reduces both cost and latency. We will release code and data publicly.
comment: Project url: https://flageval-baai.github.io/ReVeL/
☆ Sparse Mixture-of-Experts for Multi-Channel Imaging: Are All Channel Interactions Required? NeurIPS
Vision Transformers ($\text{ViTs}$) have become the backbone of vision foundation models, yet their optimization for multi-channel domains - such as cell painting or satellite imagery - remains underexplored. A key challenge in these domains is capturing interactions between channels, as each channel carries different information. While existing works have shown efficacy by treating each channel independently during tokenization, this approach naturally introduces a major computational bottleneck in the attention block - channel-wise comparisons leads to a quadratic growth in attention, resulting in excessive $\text{FLOPs}$ and high training cost. In this work, we shift focus from efficacy to the overlooked efficiency challenge in cross-channel attention and ask: "Is it necessary to model all channel interactions?". Inspired by the philosophy of Sparse Mixture-of-Experts ($\text{MoE}$), we propose MoE-ViT, a Mixture-of-Experts architecture for multi-channel images in $\text{ViTs}$, which treats each channel as an expert and employs a lightweight router to select only the most relevant experts per patch for attention. Proof-of-concept experiments on real-world datasets - JUMP-CP and So2Sat - demonstrate that $\text{MoE-ViT}$ achieves substantial efficiency gains without sacrificing, and in some cases enhancing, performance, making it a practical and attractive backbone for multi-channel imaging.
comment: This has been accepted at the NeurIPS AI4Science Workshop 2025
☆ Designing and Generating Diverse, Equitable Face Image Datasets for Face Verification Tasks
Face verification is a significant component of identity authentication in various applications including online banking and secure access to personal devices. The majority of the existing face image datasets often suffer from notable biases related to race, gender, and other demographic characteristics, limiting the effectiveness and fairness of face verification systems. In response to these challenges, we propose a comprehensive methodology that integrates advanced generative models to create varied and diverse high-quality synthetic face images. This methodology emphasizes the representation of a diverse range of facial traits, ensuring adherence to characteristics permissible in identity card photographs. Furthermore, we introduce the Diverse and Inclusive Faces for Verification (DIF-V) dataset, comprising 27,780 images of 926 unique identities, designed as a benchmark for future research in face verification. Our analysis reveals that existing verification models exhibit biases toward certain genders and races, and notably, applying identity style modifications negatively impacts model performance. By tackling the inherent inequities in existing datasets, this work not only enriches the discussion on diversity and ethics in artificial intelligence but also lays the foundation for developing more inclusive and reliable face verification technologies
☆ Quantum Masked Autoencoders for Vision Learning
Classical autoencoders are widely used to learn features of input data. To improve the feature learning, classical masked autoencoders extend classical autoencoders to learn the features of the original input sample in the presence of masked-out data. While quantum autoencoders exist, there is no design and implementation of quantum masked autoencoders that can leverage the benefits of quantum computing and quantum autoencoders. In this paper, we propose quantum masked autoencoders (QMAEs) that can effectively learn missing features of a data sample within quantum states instead of classical embeddings. We showcase that our QMAE architecture can learn the masked features of an image and can reconstruct the masked input image with improved visual fidelity in MNIST images. Experimental evaluation highlights that QMAE can significantly outperform (12.86% on average) in classification accuracy compared to state-of-the-art quantum autoencoders in the presence of masks.
☆ Agentifying Agentic AI
Agentic AI seeks to endow systems with sustained autonomy, reasoning, and interaction capabilities. To realize this vision, its assumptions about agency must be complemented by explicit models of cognition, cooperation, and governance. This paper argues that the conceptual tools developed within the Autonomous Agents and Multi-Agent Systems (AAMAS) community, such as BDI architectures, communication protocols, mechanism design, and institutional modelling, provide precisely such a foundation. By aligning adaptive, data-driven approaches with structured models of reasoning and coordination, we outline a path toward agentic systems that are not only capable and flexible, but also transparent, cooperative, and accountable. The result is a perspective on agency that bridges formal theory and practical autonomy.
comment: 10 pages; 1 figure
☆ AI Workers, Geopolitics, and Algorithmic Collective Action
According to the theory of International Political Economy (IPE), states are often incentivized to rely on rather than constrain powerful corporations. For this reason, IPE provides a useful lens to explain why efforts to govern Artificial Intelligence (AI) at the international and national levels have thus far been developed, applied, and enforced unevenly. Building on recent work that explores how AI companies engage in geopolitics, this position paper argues that some AI workers can be considered actors of geopolitics. It makes the timely case that governance alone cannot ensure responsible, ethical, or robust AI development and use, and greater attention should be paid to bottom-up interventions at the site of AI development. AI workers themselves should be situated as individual agents of change, especially when considering their potential to foster Algorithmic Collective Action (ACA). Drawing on methods of Participatory Design (PD), this paper proposes engaging AI workers as sources of knowledge, relative power, and intentionality to encourage more responsible and just AI development and create the conditions that can facilitate ACA.
☆ MusicAIR: A Multimodal AI Music Generation Framework Powered by an Algorithm-Driven Core
Recent advances in generative AI have made music generation a prominent research focus. However, many neural-based models rely on large datasets, raising concerns about copyright infringement and high-performance costs. In contrast, we propose MusicAIR, an innovative multimodal AI music generation framework powered by a novel algorithm-driven symbolic music core, effectively mitigating copyright infringement risks. The music core algorithms connect critical lyrical and rhythmic information to automatically derive musical features, creating a complete, coherent melodic score solely from the lyrics. The MusicAIR framework facilitates music generation from lyrics, text, and images. The generated score adheres to established principles of music theory, lyrical structure, and rhythmic conventions. We developed Generate AI Music (GenAIM), a web tool using MusicAIR for lyric-to-song, text-to-music, and image-to-music generation. In our experiments, we evaluated AI-generated music scores produced by the system using both standard music metrics and innovative analysis that compares these compositions with original works. The system achieves an average key confidence of 85%, outperforming human composers at 79%, and aligns closely with established music theory standards, demonstrating its ability to generate diverse, human-like compositions. As a co-pilot tool, GenAIM can serve as a reliable music composition assistant and a possible educational composition tutor while simultaneously lowering the entry barrier for all aspiring musicians, which is innovative and significantly contributes to AI for music generation.
comment: Accepted by IEEE Big Data 2025
☆ FORWARD: Dataset of a forwarder operating in rough terrain
We present FORWARD, a high-resolution multimodal dataset of a cut-to-length forwarder operating in rough terrain on two harvest sites in the middle part of Sweden. The forwarder is a large Komatsu model equipped with a variety of sensors, including RTK-GNSS, 360-camera, operator vibration sensors, internal CAN-bus signal recording, and multiple IMUs. The data includes event time logs recorded in 5 Hz with e.g., driving speed, fuel consumption, vehicle position with centimeter accuracy, and crane use while the vehicle operates in forest areas laser-scanned with very high-resolution, $\sim$1500 points per square meter. Production log files (StanForD standard) with time-stamped machine events, extensive video material, and terrain data in various formats are included as well. About 18 hours of regular wood extraction work during three days is annotated from 360-video material into individual work elements and included in the dataset. We also include scenario specifications of conducted experiments on forest roads and in terrain. Scenarios include repeatedly driving the same routes with and without steel tracks, different load weight, and different target driving speeds. The dataset is intended for developing models and algorithms for trafficability, perception, and autonomous control of forest machines using artificial intelligence, simulation, and experiments on physical testbeds. In part, we focus on forwarders traversing terrain, avoiding obstacles, and loading or unloading logs, with consideration for efficiency, fuel consumption, safety, and environmental impact. Other benefits of the open dataset include the ability to explore auto-generation and calibration of forestry machine simulators and automation scenario descriptions using the data recorded in the field.
comment: 25 pages, 22 figures
☆ MuM: Multi-View Masked Image Modeling for 3D Vision
Self-supervised learning on images seeks to extract meaningful visual representations from unlabeled data. When scaled to large datasets, this paradigm has achieved state-of-the-art performance and the resulting trained models such as DINOv3 have seen widespread adoption. However, most prior efforts are optimized for semantic understanding rather than geometric reasoning. One important exception is Cross-View Completion, CroCo, which is a form of masked autoencoding (MAE) tailored for 3D understanding. In this work, we continue on the path proposed by CroCo and focus on learning features tailored for 3D vision. In a nutshell, we extend MAE to arbitrarily many views of the same scene. By uniformly masking all views and employing a lightweight decoder with inter-frame attention, our approach is inherently simpler and more scalable than CroCo. We evaluate the resulting model, MuM, extensively on downstream tasks including feedforward reconstruction, dense image matching and relative pose estimation, finding that it outperforms the state-of-the-art visual encoders DINOv3 and CroCo v2.
☆ Large Language Models for Sentiment Analysis to Detect Social Challenges: A Use Case with South African Languages
Sentiment analysis can aid in understanding people's opinions and emotions on social issues. In multilingual communities sentiment analysis systems can be used to quickly identify social challenges in social media posts, enabling government departments to detect and address these issues more precisely and effectively. Recently, large-language models (LLMs) have become available to the wide public and initial analyses have shown that they exhibit magnificent zero-shot sentiment analysis abilities in English. However, there is no work that has investigated to leverage LLMs for sentiment analysis on social media posts in South African languages and detect social challenges. Consequently, in this work, we analyse the zero-shot performance of the state-of-the-art LLMs GPT-3.5, GPT-4, LlaMa 2, PaLM 2, and Dolly 2 to investigate the sentiment polarities of the 10 most emerging topics in English, Sepedi and Setswana social media posts that fall within the jurisdictional areas of 10 South African government departments. Our results demonstrate that there are big differences between the various LLMs, topics, and languages. In addition, we show that a fusion of the outcomes of different LLMs provides large gains in sentiment classification performance with sentiment classification errors below 1%. Consequently, it is now feasible to provide systems that generate reliable information about sentiment analysis to detect social challenges and draw conclusions about possible needs for actions on specific topics and within different language groups.
comment: Published in the Proceedings of The Southern African Conference on AI Research (SACAIR 2024), Bloemfontein, South Africa, 2-6 December 2024. ISBN: 978-0-7961-6069-0
☆ Where Culture Fades: Revealing the Cultural Gap in Text-to-Image Generation
Multilingual text-to-image (T2I) models have advanced rapidly in terms of visual realism and semantic alignment, and are now widely utilized. Yet outputs vary across cultural contexts: because language carries cultural connotations, images synthesized from multilingual prompts should preserve cross-lingual cultural consistency. We conduct a comprehensive analysis showing that current T2I models often produce culturally neutral or English-biased results under multilingual prompts. Analyses of two representative models indicate that the issue stems not from missing cultural knowledge but from insufficient activation of culture-related representations. We propose a probing method that localizes culture-sensitive signals to a small set of neurons in a few fixed layers. Guided by this finding, we introduce two complementary alignment strategies: (1) inference-time cultural activation that amplifies the identified neurons without backbone fine-tuned; and (2) layer-targeted cultural enhancement that updates only culturally relevant layers. Experiments on our CultureBench demonstrate consistent improvements over strong baselines in cultural consistency while preserving fidelity and diversity.
☆ Leveraging CVAE for Joint Configuration Estimation of Multifingered Grippers from Point Cloud Data
This paper presents an efficient approach for determining the joint configuration of a multifingered gripper solely from the point cloud data of its poly-articulated chain, as generated by visual sensors, simulations or even generative neural networks. Well-known inverse kinematics (IK) techniques can provide mathematically exact solutions (when they exist) for joint configuration determination based solely on the fingertip pose, but often require post-hoc decision-making by considering the positions of all intermediate phalanges in the gripper's fingers, or rely on algorithms to numerically approximate solutions for more complex kinematics. In contrast, our method leverages machine learning to implicitly overcome these challenges. This is achieved through a Conditional Variational Auto-Encoder (CVAE), which takes point cloud data of key structural elements as input and reconstructs the corresponding joint configurations. We validate our approach on the MultiDex grasping dataset using the Allegro Hand, operating within 0.05 milliseconds and achieving accuracy comparable to state-of-the-art methods. This highlights the effectiveness of our pipeline for joint configuration estimation within the broader context of AI-driven techniques for grasp planning.
☆ Range-Edit: Semantic Mask Guided Outdoor LiDAR Scene Editing
Training autonomous driving and navigation systems requires large and diverse point cloud datasets that capture complex edge case scenarios from various dynamic urban settings. Acquiring such diverse scenarios from real-world point cloud data, especially for critical edge cases, is challenging, which restricts system generalization and robustness. Current methods rely on simulating point cloud data within handcrafted 3D virtual environments, which is time-consuming, computationally expensive, and often fails to fully capture the complexity of real-world scenes. To address some of these issues, this research proposes a novel approach that addresses the problem discussed by editing real-world LiDAR scans using semantic mask-based guidance to generate novel synthetic LiDAR point clouds. We incorporate range image projection and semantic mask conditioning to achieve diffusion-based generation. Point clouds are transformed to 2D range view images, which are used as an intermediate representation to enable semantic editing using convex hull-based semantic masks. These masks guide the generation process by providing information on the dimensions, orientations, and locations of objects in the real environment, ensuring geometric consistency and realism. This approach demonstrates high-quality LiDAR point cloud generation, capable of producing complex edge cases and dynamic scenes, as validated on the KITTI-360 dataset. This offers a cost-effective and scalable solution for generating diverse LiDAR data, a step toward improving the robustness of autonomous driving systems.
comment: 8 pages, 9 figures
☆ DISCA: A Digital In-memory Stochastic Computing Architecture Using A Compressed Bent-Pyramid Format
Nowadays, we are witnessing an Artificial Intelligence revolution that dominates the technology landscape in various application domains, such as healthcare, robotics, automotive, security, and defense. Massive-scale AI models, which mimic the human brain's functionality, typically feature millions and even billions of parameters through data-intensive matrix multiplication tasks. While conventional Von-Neumann architectures struggle with the memory wall and the end of Moore's Law, these AI applications are migrating rapidly towards the edge, such as in robotics and unmanned aerial vehicles for surveillance, thereby adding more constraints to the hardware budget of AI architectures at the edge. Although in-memory computing has been proposed as a promising solution for the memory wall, both analog and digital in-memory computing architectures suffer from substantial degradation of the proposed benefits due to various design limitations. We propose a new digital in-memory stochastic computing architecture, DISCA, utilizing a compressed version of the quasi-stochastic Bent-Pyramid data format. DISCA inherits the same computational simplicity of analog computing, while preserving the same scalability, productivity, and reliability of digital systems. Post-layout modeling results of DISCA show an energy efficiency of 3.59 TOPS/W per bit at 500 MHz using a commercial 180nm CMOS technology. Therefore, DISCA significantly improves the energy efficiency for matrix multiplication workloads by orders of magnitude if scaled and compared to its counterpart architectures.
comment: 6 pages, 5 figures
☆ Intervene-All-Paths: Unified Mitigation of LVLM Hallucinations across Alignment Formats NeurIPS 2025
Despite their impressive performance across a wide range of tasks, Large Vision-Language Models (LVLMs) remain prone to hallucination. In this study, we propose a comprehensive intervention framework aligned with the transformer's causal architecture in LVLMs, integrating the effects of different intervention paths on hallucination. We find that hallucinations in LVLMs do not arise from a single causal path, but rather from the interplay among image-to-input-text, image-to-output-text, and text-to-text pathways. For the first time, we also find that LVLMs rely on different pathways depending on the question-answer alignment format. Building on these insights, we propose simple yet effective methods to identify and intervene on critical hallucination heads within each pathway, tailored to discriminative and generative formats. Experiments across multiple benchmarks demonstrate that our approach consistently reduces hallucinations across diverse alignment types.
comment: Accepted to NeurIPS 2025, Project Page: https://github.com/SooLab/AllPath
☆ Lost in Translation and Noise: A Deep Dive into the Failure Modes of VLMs on Real-World Tables
The impressive performance of VLMs is largely measured on benchmarks that fail to capture the complexities of real-world scenarios. Existing datasets for tabular QA, such as WikiTableQuestions and FinQA, are overwhelmingly monolingual (English) and present tables in a digitally perfect, clean format. This creates a significant gap between research and practice. To address this, we present \textbf{MirageTVQA}, a new benchmark designed to evaluate VLMs on these exact dimensions. Featuring nearly 60,000 QA pairs across 24 languages, MirageTVQA challenges models with tables that are not only multilingual but also visually imperfect, incorporating realistic noise to mimic scanned documents. Our evaluation of the leading VLMs reveals two primary failure points: a severe degradation in performance (over 35\% drop for the best models) when faced with visual noise and a consistent English-first bias where reasoning abilities fail to transfer to other languages. MirageTVQA provides a benchmark for measuring and driving progress towards more robust VLM models for table reasoning. The dataset and the code are available at: https://github.com/anshulsc/MirageTVQA.
comment: Accepted as Spotligh Talk at EurIPS 2025 Workshop on AI For Tabular Data
☆ Algorithmic design and implementation considerations of deep MPC
Deep Model Predictive Control (Deep MPC) is an evolving field that integrates model predictive control and deep learning. This manuscript is focused on a particular approach, which employs deep neural network in the loop with MPC. This class of approaches distributes control authority between a neural network and an MPC controller, in such a way that the neural network learns the model uncertainties while the MPC handles constraints. The approach is appealing because training data collected while the system is in operation can be used to fine-tune the neural network, and MPC prevents unsafe behavior during those learning transients. This manuscript explains implementation challenges of Deep MPC, algorithmic way to distribute control authority and argues that a poor choice in distributing control authority may lead to poor performance. A reason of poor performance is explained through a numerical experiment on a four-wheeled skid-steer dynamics.
☆ TP-MDDN: Task-Preferenced Multi-Demand-Driven Navigation with Autonomous Decision-Making NeurIPS 2025
In daily life, people often move through spaces to find objects that meet their needs, posing a key challenge in embodied AI. Traditional Demand-Driven Navigation (DDN) handles one need at a time but does not reflect the complexity of real-world tasks involving multiple needs and personal choices. To bridge this gap, we introduce Task-Preferenced Multi-Demand-Driven Navigation (TP-MDDN), a new benchmark for long-horizon navigation involving multiple sub-demands with explicit task preferences. To solve TP-MDDN, we propose AWMSystem, an autonomous decision-making system composed of three key modules: BreakLLM (instruction decomposition), LocateLLM (goal selection), and StatusMLLM (task monitoring). For spatial memory, we design MASMap, which combines 3D point cloud accumulation with 2D semantic mapping for accurate and efficient environmental understanding. Our Dual-Tempo action generation framework integrates zero-shot planning with policy-based fine control, and is further supported by an Adaptive Error Corrector that handles failure cases in real time. Experiments demonstrate that our approach outperforms state-of-the-art baselines in both perception accuracy and navigation robustness.
comment: Accepted at NeurIPS 2025
☆ Parrot: Persuasion and Agreement Robustness Rating of Output Truth -- A Sycophancy Robustness Benchmark for LLMs
This study presents PARROT (Persuasion and Agreement Robustness Rating of Output Truth), a robustness focused framework designed to measure the degradation in accuracy that occurs under social pressure exerted on users through authority and persuasion in large language models (LLMs) the phenomenon of sycophancy (excessive conformity). PARROT (i) isolates causal effects by comparing the neutral version of the same question with an authoritatively false version using a double-blind evaluation, (ii) quantifies confidence shifts toward the correct and imposed false responses using log-likelihood-based calibration tracking, and (iii) systematically classifies failure modes (e.g., robust correct, sycophantic agreement, reinforced error, stubborn error, self-correction, etc.) using an eight-state behavioral taxonomy. We evaluated 22 models using 1,302 MMLU-style multiple-choice questions across 13 domains and domain-specific authority templates. Findings show marked heterogeneity: advanced models (e.g., GPT-5, GPT-4.1, Claude Sonnet 4.5) exhibit low "follow rates" ($\leq 11\%$, GPT-5: 4\%) and minimal accuracy loss, while older/smaller models show severe epistemic collapse (GPT-4: 80\%, Qwen 2.5-1.5B: 94\%). The danger is not limited to response changes; weak models reduce confidence in the correct response while increasing confidence in the imposed incorrect response. While international law and global knowledge at the domain level exhibit high fragility, elementary mathematics is relatively resilient. Consequently, we argue that the goal of "resistance to overfitting pressure" should be addressed as a primary objective alongside accuracy, harm avoidance, and privacy for safe deployment in the real world.
☆ Designing Domain-Specific Agents via Hierarchical Task Abstraction Mechanism
LLM-driven agents, particularly those using general frameworks like ReAct or human-inspired role-playing, often struggle in specialized domains that necessitate rigorously structured workflows. Fields such as remote sensing, requiring specialized tools (e.g., correction, spectral indices calculation), and multi-step procedures (e.g., numerous intermediate products and optional steps), significantly challenge generalized approaches. To address this gap, we introduce a novel agent design framework centered on a Hierarchical Task Abstraction Mechanism (HTAM). Specifically, HTAM moves beyond emulating social roles, instead structuring multi-agent systems into a logical hierarchy that mirrors the intrinsic task-dependency graph of a given domain. This task-centric architecture thus enforces procedural correctness and decomposes complex problems into sequential layers, where each layer's sub-agents operate on the outputs of the preceding layers. We instantiate this framework as EarthAgent, a multi-agent system tailored for complex geospatial analysis. To evaluate such complex planning capabilities, we build GeoPlan-bench, a comprehensive benchmark of realistic, multi-step geospatial planning tasks. It is accompanied by a suite of carefully designed metrics to evaluate tool selection, path similarity, and logical completeness. Experiments show that EarthAgent substantially outperforms a range of established single- and multi-agent systems. Our work demonstrates that aligning agent architecture with a domain's intrinsic task structure is a critical step toward building robust and reliable specialized autonomous systems.
comment: Page: https://earth-insights.github.io/EarthAgent
☆ Attention-Guided Feature Fusion (AGFF) Model for Integrating Statistical and Semantic Features in News Text Classification
News text classification is a crucial task in natural language processing, essential for organizing and filtering the massive volume of digital content. Traditional methods typically rely on statistical features like term frequencies or TF-IDF values, which are effective at capturing word-level importance but often fail to reflect contextual meaning. In contrast, modern deep learning approaches utilize semantic features to understand word usage within context, yet they may overlook simple, high-impact statistical indicators. This paper introduces an Attention-Guided Feature Fusion (AGFF) model that combines statistical and semantic features in a unified framework. The model applies an attention-based mechanism to dynamically determine the relative importance of each feature type, enabling more informed classification decisions. Through evaluation on benchmark news datasets, the AGFF model demonstrates superior performance compared to both traditional statistical models and purely semantic deep learning models. The results confirm that strategic integration of diverse feature types can significantly enhance classification accuracy. Additionally, ablation studies validate the contribution of each component in the fusion process. The findings highlight the model's ability to balance and exploit the complementary strengths of statistical and semantic representations, making it a practical and effective solution for real-world news classification tasks.
☆ Hallucinate Less by Thinking More: Aspect-Based Causal Abstention for Large Language Models AAAI 2026
Large Language Models (LLMs) often produce fluent but factually incorrect responses, a phenomenon known as hallucination. Abstention, where the model chooses not to answer and instead outputs phrases such as "I don't know", is a common safeguard. However, existing abstention methods typically rely on post-generation signals, such as generation variations or feedback, which limits their ability to prevent unreliable responses in advance. In this paper, we introduce Aspect-Based Causal Abstention (ABCA), a new framework that enables early abstention by analysing the internal diversity of LLM knowledge through causal inference. This diversity reflects the multifaceted nature of parametric knowledge acquired from various sources, representing diverse aspects such as disciplines, legal contexts, or temporal frames. ABCA estimates causal effects conditioned on these aspects to assess the reliability of knowledge relevant to a given query. Based on these estimates, we enable two types of abstention: Type-1, where aspect effects are inconsistent (knowledge conflict), and Type-2, where aspect effects consistently support abstention (knowledge insufficiency). Experiments on standard benchmarks demonstrate that ABCA improves abstention reliability, achieves state-of-the-art performance, and enhances the interpretability of abstention decisions.
comment: Accepted to AAAI 2026 (Main Technical Track)
☆ MIR: Efficient Exploration in Episodic Multi-Agent Reinforcement Learning via Mutual Intrinsic Reward
Episodic rewards present a significant challenge in reinforcement learning. While intrinsic reward methods have demonstrated effectiveness in single-agent rein-forcement learning scenarios, their application to multi-agent reinforcement learn-ing (MARL) remains problematic. The primary difficulties stem from two fac-tors: (1) the exponential sparsity of joint action trajectories that lead to rewards as the exploration space expands, and (2) existing methods often fail to account for joint actions that can influence team states. To address these challenges, this paper introduces Mutual Intrinsic Reward (MIR), a simple yet effective enhancement strategy for MARL with extremely sparse rewards like episodic rewards. MIR incentivizes individual agents to explore actions that affect their teammates, and when combined with original strategies, effectively stimulates team exploration and improves algorithm performance. For comprehensive experimental valida-tion, we extend the representative single-agent MiniGrid environment to create MiniGrid-MA, a series of MARL environments with sparse rewards. Our evalu-ation compares the proposed method against state-of-the-art approaches in the MiniGrid-MA setting, with experimental results demonstrating superior perfor-mance.
☆ The Belief-Desire-Intention Ontology for modelling mental reality and agency
The Belief-Desire-Intention (BDI) model is a cornerstone for representing rational agency in artificial intelligence and cognitive sciences. Yet, its integration into structured, semantically interoperable knowledge representations remains limited. This paper presents a formal BDI Ontology, conceived as a modular Ontology Design Pattern (ODP) that captures the cognitive architecture of agents through beliefs, desires, intentions, and their dynamic interrelations. The ontology ensures semantic precision and reusability by aligning with foundational ontologies and best practices in modular design. Two complementary lines of experimentation demonstrate its applicability: (i) coupling the ontology with Large Language Models (LLMs) via Logic Augmented Generation (LAG) to assess the contribution of ontological grounding to inferential coherence and consistency; and (ii) integrating the ontology within the Semas reasoning platform, which implements the Triples-to-Beliefs-to-Triples (T2B2T) paradigm, enabling a bidirectional flow between RDF triples and agent mental states. Together, these experiments illustrate how the BDI Ontology acts as both a conceptual and operational bridge between declarative and procedural intelligence, paving the way for cognitively grounded, explainable, and semantically interoperable multi-agent and neuro-symbolic systems operating within the Web of Data.
☆ The PLLuM Instruction Corpus
This paper describes the instruction dataset used to fine-tune a set of transformer-based large language models (LLMs) developed in the PLLuM (Polish Large Language Model) project. We present a functional typology of the organic, converted, and synthetic instructions used in PLLuM and share some observations about the implications of using human-authored versus synthetic instruction datasets in the linguistic adaptation of base LLMs. Additionally, we release the first representative subset of the PLLuM instruction corpus (PLLuMIC), which we believe to be useful in guiding and planning the development of similar datasets for other LLMs.
☆ A lightweight detector for real-time detection of remote sensing images
Remote sensing imagery is widely used across various fields, yet real-time detection remains challenging due to the prevalence of small objects and the need to balance accuracy with efficiency. To address this, we propose DMG-YOLO, a lightweight real-time detector tailored for small object detection in remote sensing images. Specifically, we design a Dual-branch Feature Extraction (DFE) module in the backbone, which partitions feature maps into two parallel branches: one extracts local features via depthwise separable convolutions, and the other captures global context using a vision transformer with a gating mechanism. Additionally, a Multi-scale Feature Fusion (MFF) module with dilated convolutions enhances multi-scale integration while preserving fine details. In the neck, we introduce the Global and Local Aggregate Feature Pyramid Network (GLAFPN) to further boost small object detection through global-local feature fusion. Extensive experiments on the VisDrone2019 and NWPU VHR-10 datasets show that DMG-YOLO achieves competitive performance in terms of mAP, model size, and other key metrics.
comment: none
☆ Device-Guided Music Transfer
Device-guided music transfer adapts playback across unseen devices for users who lack them. Existing methods mainly focus on modifying the timbre, rhythm, harmony, or instrumentation to mimic genres or artists, overlooking the diverse hardware properties of the playback device (i.e., speaker). Therefore, we propose DeMT, which processes a speaker's frequency response curve as a line graph using a vision-language model to extract device embeddings. These embeddings then condition a hybrid transformer via feature-wise linear modulation. Fine-tuned on a self-collected dataset, DeMT enables effective speaker-style transfer and robust few-shot adaptation for unseen devices, supporting applications like device-style augmentation and quality enhancement.
☆ UI-CUBE: Enterprise-Grade Computer Use Agent Benchmarking Beyond Task Accuracy to Operational Reliability
While current Computer Use Agent (CUA) benchmarks measure task completion effectively, they provide limited assessment of enterprise deployment readiness, emphasizing functional correctness over the operational reliability required for production systems. We present UI-CUBE (UiPath Computer Use BEnchmark), a systematic benchmark comprising 226 tasks across two difficulty tiers designed to expose fundamental architectural limitations in current CUAs. Our evaluation covers simple UI interactions (136 tasks) and complex workflows including copy-paste tasks (50 tasks) and enterprise application scenarios (40 tasks), with systematic interface variation coverage, multi-resolution testing and automated validation of task success through the application state. Evaluation of five state-of-the-art models reveals a sharp capability cliff rather than gradual performance degradation. Simple UI interactions achieve 67-85% success rates (compared to 97.9% human performance), but complex workflows drop precipitously to 9-19%. Human evaluators with no prior application experience achieve only 61.2% on complex tasks despite near-perfect performance on simple tasks, establishing realistic performance ceilings. This discontinuous performance pattern -- where agents achieve 68-87% of human performance on simple tasks but only 15-32% on complex workflows -- indicates fundamental architectural limitations in memory management, hierarchical planning, and state coordination rather than incremental capability gaps addressable through better training or prompting. UI-CUBE functions as an enterprise-readiness diagnostic, revealing that while current CUAs can manipulate individual interface elements, they cannot yet function as reliable workflow automation tools. These findings provide architectural insights essential for developing production-ready CUAs capable of managing complex, multi-step enterprise processes.
comment: 18 pages, 8 figures, 5 tables. Benchmark comprising 226 tasks across two difficulty tiers. Code and benchmark available at https://github.com/UiPath/uipath_enterprise_benchmark
☆ Learning to Compress: Unlocking the Potential of Large Language Models for Text Representation AAAI'26
Text representation plays a critical role in tasks like clustering, retrieval, and other downstream applications. With the emergence of large language models (LLMs), there is increasing interest in harnessing their capabilities for this purpose. However, most of the LLMs are inherently causal and optimized for next-token prediction, making them suboptimal for producing holistic representations. To address this, recent studies introduced pretext tasks to adapt LLMs for text representation. Most of these tasks, however, rely on token-level prediction objectives, such as the masked next-token prediction (MNTP) used in LLM2Vec. In this work, we explore the untapped potential of context compression as a pretext task for unsupervised adaptation of LLMs. During compression pre-training, the model learns to generate compact memory tokens, which substitute the whole context for downstream sequence prediction. Experiments demonstrate that a well-designed compression objective can significantly enhance LLM-based text representations, outperforming models trained with token-level pretext tasks. Further improvements through contrastive learning produce a strong representation model (LLM2Comp) that outperforms contemporary LLM-based text encoders on a wide range of tasks while being more sample-efficient, requiring significantly less training data.
comment: Accepted by AAAI'26
☆ Training Foundation Models on a Full-Stack AMD Platform: Compute, Networking, and System Design
We report on the first large-scale mixture-of-experts (MoE) pretraining study on pure AMD hardware, utilizing both MI300X GPUs with Pollara interconnect. We distill practical guidance for both systems and model design. On the systems side, we deliver a comprehensive cluster and networking characterization: microbenchmarks for all core collectives (all-reduce, reduce-scatter, all-gather, broadcast) across message sizes and GPU counts on Pollara. To our knowledge, this is the first at this scale. We further provide MI300X microbenchmarks on kernel sizing and memory bandwidth to inform model design. On the modeling side, we introduce and apply MI300X-aware transformer sizing rules for attention and MLP blocks and justify MoE widths that jointly optimize training throughput and inference latency. We describe our training stack in depth, including often-ignored utilities such as fault-tolerance and checkpoint-reshaping, as well as detailed information on our training recipe. We also provide a preview of our model architecture and base model - ZAYA1 (760M active, 8.3B total parameters MoE) - which will be further improved upon in forthcoming papers. ZAYA1-base achieves performance comparable to leading base models such as Qwen3-4B and Gemma3-12B at its scale and larger, and outperforms models including Llama-3-8B and OLMoE across reasoning, mathematics, and coding benchmarks. Together, these results demonstrate that the AMD hardware, network, and software stack are mature and optimized enough for competitive large-scale pretraining.
☆ AutoGraphAD: A novel approach using Variational Graph Autoencoders for anomalous network flow detection
Network Intrusion Detection Systems (NIDS) are essential tools for detecting network attacks and intrusions. While extensive research has explored the use of supervised Machine Learning for attack detection and characterisation, these methods require accurately labelled datasets, which are very costly to obtain. Moreover, existing public datasets have limited and/or outdated attacks, and many of them suffer from mislabelled data. To reduce the reliance on labelled data, we propose AutoGraphAD, a novel unsupervised anomaly detection approach based on a Heterogeneous Variational Graph Autoencoder. AutoGraphAD operates on heterogeneous graphs, made from connection and IP nodes that capture network activity within a time window. The model is trained using unsupervised and contrastive learning, without relying on any labelled data. The reconstruction, structural loss, and KL divergence are then weighted and combined in an anomaly score that is then used for anomaly detection. Overall, AutoGraphAD yields the same, and in some cases better, results than previous unsupervised approaches, such as Anomal-E, but without requiring costly downstream anomaly detectors. As a result, AutoGraphAD achieves around 1.18 orders of magnitude faster training and 1.03 orders of magnitude faster inference, which represents a significant advantage for operational deployment.
comment: 11 pages, 9 figures
☆ Geometric-Disentangelment Unlearning
Machine unlearning, the removal of a training subset's influence from a deployed model, is critical for privacy preservation and model reliability, yet gradient ascent on forget samples often harms retained knowledge. Existing approaches face a persistent tradeoff between effective forgetting and preservation on the retain set. While previous methods provide useful heuristics, they often lack a formal analysis on how exactly forgetting updates harm retained knowledge, and whether the side effects can be removed with theoretical guarantees. To explore a theoretically sound and simple solution, we start from the first principle on how performance on the retain set is actually affected: a first-order analysis of the local change of the retain loss under small parameter updates during model training. We start from a crisp equivalence: the retain loss is unchanged to first order iff the update direction is orthogonal to the subspace spanned by retain gradients ("retain-invariant"). This identifies the entangled component as the tangential part of forget update within the retain-gradient subspace, and characterizes disentanglement as orthogonality. Guided by this, we propose the Geometric-disentanglement Unlearning (GU) that decomposes any candidate forget gradient update into tangential and normal components to retain space and executes only the normal component. Under a standard trust-region budget, the projected direction aligned with the raw forget gradient is optimal among all first-order retain-invariant moves, and we also derive the optimal projected direction for joint forget-retain updating objectives. Our method is plug-and-play and can be attached to existing gradient-based unlearning procedures to mitigate side effects. GU achieves consistent improvement on various methods across three benchmarks TOFU, MUSE, and WMDP.
comment: 27 Pages
☆ Spanning Tree Autoregressive Visual Generation
We present Spanning Tree Autoregressive (STAR) modeling, which can incorporate prior knowledge of images, such as center bias and locality, to maintain sampling performance while also providing sufficiently flexible sequence orders to accommodate image editing at inference. Approaches that expose randomly permuted sequence orders to conventional autoregressive (AR) models in visual generation for bidirectional context either suffer from a decline in performance or compromise the flexibility in sequence order choice at inference. Instead, STAR utilizes traversal orders of uniform spanning trees sampled in a lattice defined by the positions of image patches. Traversal orders are obtained through breadth-first search, allowing us to efficiently construct a spanning tree whose traversal order ensures that the connected partial observation of the image appears as a prefix in the sequence through rejection sampling. Through the tailored yet structured randomized strategy compared to random permutation, STAR preserves the capability of postfix completion while maintaining sampling performance without any significant changes to the model architecture widely adopted in the language AR modeling.
comment: Preprint; Under review
☆ Why Do Language Model Agents Whistleblow?
The deployment of Large Language Models (LLMs) as tool-using agents causes their alignment training to manifest in new ways. Recent work finds that language models can use tools in ways that contradict the interests or explicit instructions of the user. We study LLM whistleblowing: a subset of this behavior where models disclose suspected misconduct to parties beyond the dialog boundary (e.g., regulatory agencies) without user instruction or knowledge. We introduce an evaluation suite of diverse and realistic staged misconduct scenarios to assess agents for this behavior. Across models and settings, we find that: (1) the frequency of whistleblowing varies widely across model families, (2) increasing the complexity of the task the agent is instructed to complete lowers whistleblowing tendencies, (3) nudging the agent in the system prompt to act morally substantially raises whistleblowing rates, and (4) giving the model more obvious avenues for non-whistleblowing behavior, by providing more tools and a detailed workflow to follow, decreases whistleblowing rates. Additionally, we verify the robustness of our dataset by testing for model evaluation awareness, and find that both black-box methods and probes on model activations show lower evaluation awareness in our settings than in comparable previous work.
☆ ReBrain: Brain MRI Reconstruction from Sparse CT Slice via Retrieval-Augmented Diffusion WACV 2026
Magnetic Resonance Imaging (MRI) plays a crucial role in brain disease diagnosis, but it is not always feasible for certain patients due to physical or clinical constraints. Recent studies attempt to synthesize MRI from Computed Tomography (CT) scans; however, low-dose protocols often result in highly sparse CT volumes with poor through-plane resolution, making accurate reconstruction of the full brain MRI volume particularly challenging. To address this, we propose ReBrain, a retrieval-augmented diffusion framework for brain MRI reconstruction. Given any 3D CT scan with limited slices, we first employ a Brownian Bridge Diffusion Model (BBDM) to synthesize MRI slices along the 2D dimension. Simultaneously, we retrieve structurally and pathologically similar CT slices from a comprehensive prior database via a fine-tuned retrieval model. These retrieved slices are used as references, incorporated through a ControlNet branch to guide the generation of intermediate MRI slices and ensure structural continuity. We further account for rare retrieval failures when the database lacks suitable references and apply spherical linear interpolation to provide supplementary guidance. Extensive experiments on SynthRAD2023 and BraTS demonstrate that ReBrain achieves state-of-the-art performance in cross-modal reconstruction under sparse conditions.
comment: 16 pages, 12 figures, 7 tables; Accepted by WACV 2026
☆ Patient-level Information Extraction by Consistent Integration of Textual and Tabular Evidence with Bayesian Networks
Electronic health records (EHRs) form an invaluable resource for training clinical decision support systems. To leverage the potential of such systems in high-risk applications, we need large, structured tabular datasets on which we can build transparent feature-based models. While part of the EHR already contains structured information (e.g. diagnosis codes, medications, and lab results), much of the information is contained within unstructured text (e.g. discharge summaries and nursing notes). In this work, we propose a method for multi-modal patient-level information extraction that leverages both the tabular features available in the patient's EHR (using an expert-informed Bayesian network) as well as clinical notes describing the patient's symptoms (using neural text classifiers). We propose the use of virtual evidence augmented with a consistency node to provide an interpretable, probabilistic fusion of the models' predictions. The consistency node improves the calibration of the final predictions compared to virtual evidence alone, allowing the Bayesian network to better adjust the neural classifier's output to handle missing information and resolve contradictions between the tabular and text data. We show the potential of our method on the SimSUM dataset, a simulated benchmark linking tabular EHRs with clinical notes through expert knowledge.
☆ OmniPT: Unleashing the Potential of Large Vision Language Models for Pedestrian Tracking and Understanding AAAI 2026
LVLMs have been shown to perform excellently in image-level tasks such as VQA and caption. However, in many instance-level tasks, such as visual grounding and object detection, LVLMs still show performance gaps compared to previous expert models. Meanwhile, although pedestrian tracking is a classical task, there have been a number of new topics in combining object tracking and natural language, such as Referring MOT, Cross-view Referring MOT, and Semantic MOT. These tasks emphasize that models should understand the tracked object at an advanced semantic level, which is exactly where LVLMs excel. In this paper, we propose a new unified Pedestrian Tracking framework, namely OmniPT, which can track, track based on reference and generate semantic understanding of tracked objects interactively. We address two issues: how to model the tracking task into a task that foundation models can perform, and how to make the model output formatted answers. To this end, we implement a training phase consisting of RL-Mid Training-SFT-RL. Based on the pre-trained weights of the LVLM, we first perform a simple RL phase to enable the model to output fixed and supervisable bounding box format. Subsequently, we conduct a mid-training phase using a large number of pedestrian-related datasets. Finally, we perform supervised fine-tuning on several pedestrian tracking datasets, and then carry out another RL phase to improve the model's tracking performance and enhance its ability to follow instructions. We conduct experiments on tracking benchmarks and the experimental results demonstrate that the proposed method can perform better than the previous methods.
comment: AAAI 2026
☆ RacketVision: A Multiple Racket Sports Benchmark for Unified Ball and Racket Analysis AAAI 2026
We introduce RacketVision, a novel dataset and benchmark for advancing computer vision in sports analytics, covering table tennis, tennis, and badminton. The dataset is the first to provide large-scale, fine-grained annotations for racket pose alongside traditional ball positions, enabling research into complex human-object interactions. It is designed to tackle three interconnected tasks: fine-grained ball tracking, articulated racket pose estimation, and predictive ball trajectory forecasting. Our evaluation of established baselines reveals a critical insight for multi-modal fusion: while naively concatenating racket pose features degrades performance, a CrossAttention mechanism is essential to unlock their value, leading to trajectory prediction results that surpass strong unimodal baselines. RacketVision provides a versatile resource and a strong starting point for future research in dynamic object tracking, conditional motion forecasting, and multimodal analysis in sports. Project page at https://github.com/OrcustD/RacketVision
comment: Accepted to AAAI 2026 (Oral)
☆ MedImageInsight for Thoracic Cavity Health Classification from Chest X-rays
Chest radiography remains one of the most widely used imaging modalities for thoracic diagnosis, yet increasing imaging volumes and radiologist workload continue to challenge timely interpretation. In this work, we investigate the use of MedImageInsight, a medical imaging foundational model, for automated binary classification of chest X-rays into Normal and Abnormal categories. Two approaches were evaluated: (1) fine-tuning MedImageInsight for end-to-end classification, and (2) employing the model as a feature extractor for a transfer learning pipeline using traditional machine learning classifiers. Experiments were conducted using a combination of the ChestX-ray14 dataset and real-world clinical data sourced from partner hospitals. The fine-tuned classifier achieved the highest performance, with an ROC-AUC of 0.888 and superior calibration compared to the transfer learning models, demonstrating performance comparable to established architectures such as CheXNet. These results highlight the effectiveness of foundational medical imaging models in reducing task-specific training requirements while maintaining diagnostic reliability. The system is designed for integration into web-based and hospital PACS workflows to support triage and reduce radiologist burden. Future work will extend the model to multi-label pathology classification to provide preliminary diagnostic interpretation in clinical environments.
comment: 9 pages, 5 figures and 3 tables
☆ CLLMRec: LLM-powered Cognitive-Aware Concept Recommendation via Semantic Alignment and Prerequisite Knowledge Distillation
The growth of Massive Open Online Courses (MOOCs) presents significant challenges for personalized learning, where concept recommendation is crucial. Existing approaches typically rely on heterogeneous information networks or knowledge graphs to capture conceptual relationships, combined with knowledge tracing models to assess learners' cognitive states. However, these methods face significant limitations due to their dependence on high-quality structured knowledge graphs, which are often scarce in real-world educational scenarios. To address this fundamental challenge, this paper proposes CLLMRec, a novel framework that leverages Large Language Models through two synergistic technical pillars: Semantic Alignment and Prerequisite Knowledge Distillation. The Semantic Alignment component constructs a unified representation space by encoding unstructured textual descriptions of learners and concepts. The Prerequisite Knowledge Distillation paradigm employs a teacher-student architecture, where a large teacher LLM (implemented as the Prior Knowledge Aware Component) extracts conceptual prerequisite relationships from its internalized world knowledge and distills them into soft labels to train an efficient student ranker. Building upon these foundations, our framework incorporates a fine-ranking mechanism that explicitly models learners' real-time cognitive states through deep knowledge tracing, ensuring recommendations are both structurally sound and cognitively appropriate. Extensive experiments on two real-world MOOC datasets demonstrate that CLLMRec significantly outperforms existing baseline methods across multiple evaluation metrics, validating its effectiveness in generating truly cognitive-aware and personalized concept recommendations without relying on explicit structural priors.
☆ DAPS++: Rethinking Diffusion Inverse Problems with Decoupled Posterior Annealing
From a Bayesian perspective, score-based diffusion solves inverse problems through joint inference, embedding the likelihood with the prior to guide the sampling process. However, this formulation fails to explain its practical behavior: the prior offers limited guidance, while reconstruction is largely driven by the measurement-consistency term, leading to an inference process that is effectively decoupled from the diffusion dynamics. To clarify this structure, we reinterpret the role of diffusion in inverse problem solving as an initialization stage within an expectation--maximization (EM)--style framework, where the diffusion stage and the data-driven refinement are fully decoupled. We introduce \textbf{DAPS++}, which allows the likelihood term to guide inference more directly while maintaining numerical stability and providing insight into why unified diffusion trajectories remain effective in practice. By requiring fewer function evaluations (NFEs) and measurement-optimization steps, \textbf{DAPS++} achieves high computational efficiency and robust reconstruction performance across diverse image restoration tasks.
☆ Parameter-Free Neural Lens Blur Rendering for High-Fidelity Composites
Consistent and natural camera lens blur is important for seamlessly blending 3D virtual objects into photographed real-scenes. Since lens blur typically varies with scene depth, the placement of virtual objects and their corresponding blur levels significantly affect the visual fidelity of mixed reality compositions. Existing pipelines often rely on camera parameters (e.g., focal length, focus distance, aperture size) and scene depth to compute the circle of confusion (CoC) for realistic lens blur rendering. However, such information is often unavailable to ordinary users, limiting the accessibility and generalizability of these methods. In this work, we propose a novel compositing approach that directly estimates the CoC map from RGB images, bypassing the need for scene depth or camera metadata. The CoC values for virtual objects are inferred through a linear relationship between its signed CoC map and depth, and realistic lens blur is rendered using a neural reblurring network. Our method provides flexible and practical solution for real-world applications. Experimental results demonstrate that our method achieves high-fidelity compositing with realistic defocus effects, outperforming state-of-the-art techniques in both qualitative and quantitative evaluations.
comment: Accepted by ISMAR 2025 with oral presentation. 10 pages, 11 figures
☆ Supervised Fine Tuning of Large Language Models for Domain Specific Knowledge Graph Construction:A Case Study on Hunan's Historical Celebrities
Large language models and knowledge graphs offer strong potential for advancing research on historical culture by supporting the extraction, analysis, and interpretation of cultural heritage. Using Hunan's modern historical celebrities shaped by Huxiang culture as a case study, pre-trained large models can help researchers efficiently extract key information, including biographical attributes, life events, and social relationships, from textual sources and construct structured knowledge graphs. However, systematic data resources for Hunan's historical celebrities remain limited, and general-purpose models often underperform in domain knowledge extraction and structured output generation in such low-resource settings. To address these issues, this study proposes a supervised fine-tuning approach for enhancing domain-specific information extraction. First, we design a fine-grained, schema-guided instruction template tailored to the Hunan historical celebrities domain and build an instruction-tuning dataset to mitigate the lack of domain-specific training corpora. Second, we apply parameter-efficient instruction fine-tuning to four publicly available large language models - Qwen2.5-7B, Qwen3-8B, DeepSeek-R1-Distill-Qwen-7B, and Llama-3.1-8B-Instruct - and develop evaluation criteria for assessing their extraction performance. Experimental results show that all models exhibit substantial performance gains after fine-tuning. Among them, Qwen3-8B achieves the strongest results, reaching a score of 89.3866 with 100 samples and 50 training iterations. This study provides new insights into fine-tuning vertical large language models for regional historical and cultural domains and highlights their potential for cost-effective applications in cultural heritage knowledge extraction and knowledge graph construction.
☆ Budget-Aware Tool-Use Enables Effective Agent Scaling
Scaling test-time computation improves performance across different tasks on large language models (LLMs), which has also been extended to tool-augmented agents. For these agents, scaling involves not only "thinking" in tokens but also "acting" via tool calls. The number of tool calls directly bounds the agent's interaction with the external environment. However, we find that simply granting agents a larger tool-call budget fails to improve performance, as they lack "budget awareness" and quickly hit a performance ceiling. To address this, we study how to scale such agents effectively under explicit tool-call budgets, focusing on web search agents. We first introduce the Budget Tracker, a lightweight plug-in that provides the agent with continuous budget awareness, enabling simple yet effective scaling. We further develop BATS (Budget Aware Test-time Scaling), an advanced framework that leverages this awareness to dynamically adapt its planning and verification strategy, deciding whether to "dig deeper" on a promising lead or "pivot" to new paths based on remaining resources. To analyze cost-performance scaling in a controlled manner, we formalize a unified cost metric that jointly accounts for token and tool consumption. We provide the first systematic study on budget-constrained agents, showing that budget-aware methods produce more favorable scaling curves and push the cost-performance Pareto frontier. Our work offers empirical insights toward a more transparent and principled understanding of scaling in tool-augmented agents.
☆ FLUID: Training-Free Face De-identification via Latent Identity Substitution
We present FLUID (Face de-identification in the Latent space via Utility-preserving Identity Displacement), a training-free framework that directly substitutes identity in the latent space of pretrained diffusion models. Inspired by substitution mechanisms in chemistry, we reinterpret identity editing as semantic displacement in the latent h-space of a pretrained unconditional diffusion model. Our framework discovers identity-editing directions through optimization guided by novel reagent losses, which supervise for attribute preservation and identity suppression. We further propose both linear and geodesic (tangent-based) editing schemes to effectively navigate the latent manifold. Experimental results on CelebA-HQ and FFHQ demonstrate that FLUID achieves a superior trade-off between identity suppression and attribute preservation, outperforming state-of-the-art de-identification methods in both qualitative and quantitative metrics.
☆ MirrorMind: Empowering OmniScientist with the Expert Perspectives and Collective Knowledge of Human Scientists
The emergence of AI Scientists has demonstrated remarkable potential in automating scientific research. However, current approaches largely conceptualize scientific discovery as a solitary optimization or search process, overlooking that knowledge production is inherently a social and historical endeavor. Human scientific insight stems from two distinct yet interconnected sources. First is the individual cognitive trajectory, where a researcher's unique insight is shaped by their evolving research history and stylistic preferences; another is the collective disciplinary memory, where knowledge is sedimented into vast, interconnected networks of citations and concepts. Existing LLMs still struggle to represent these structured, high-fidelity cognitive and social contexts. To bridge this gap, we introduce MirrorMind, a hierarchical cognitive architecture that integrates dual-memory representations within a three-level framework. The Individual Level constructs high-fidelity cognitive models of individual researchers by capturing their episodic, semantic, and persona memories; the Domain Level maps collective knowledge into structured disciplinary concept graphs; and the Interdisciplinary Level that acts as an orthogonal orchestration engine. Crucially, our architecture separates memory storage from agentic execution, enabling AI scientist agents to flexibly access individual memories for unique perspectives or collective structures to reason. We evaluate MirrorMind across four comprehensive tasks, including author-level cognitive simulation, complementary reasoning, cross-disciplinary collaboration promotion, and multi-agent scientific problem solving. The results show that by integrating individual cognitive depth with collective disciplinary breadth, MirrorMind moves beyond simple fact retrieval toward structural, personalized, and insight-generating scientific reasoning.
comment: 26 pages, 4 figures
☆ The Finer the Better: Towards Granular-aware Open-set Domain Generalization
Open-Set Domain Generalization (OSDG) tackles the realistic scenario where deployed models encounter both domain shifts and novel object categories. Despite impressive progress with vision-language models like CLIP, existing methods still fall into the dilemma between structural risk of known-classes and open-space risk from unknown-classes, and easily suffers from over-confidence, especially when distinguishing ``hard unknowns" that share fine-grained visual similarities with known classes. To this end, we propose a Semantic-enhanced CLIP (SeeCLIP) framework that explicitly addresses this dilemma through fine-grained semantic enhancement. In SeeCLIP, we propose a semantic-aware prompt enhancement module to decompose images into discriminative semantic tokens, enabling nuanced vision-language alignment beyond coarse category labels. To position unknown prompts effectively, we introduce duplex contrastive learning with complementary objectives, that is, repulsion to maintain separability from known classes, and cohesion to preserve semantic proximity. Further, our semantic-guided diffusion module synthesizes pseudo-unknowns by perturbing extracted semantic tokens, generating challenging samples that are visually similar to known classes yet exhibit key local differences. These hard negatives force the model to learn finer decision boundaries. Extensive experiments across five benchmarks demonstrate consistent improvements of 3% accuracy and 5% H-score over state-of-the-art methods.
comment: 9 pages,3 figures,aaai2026
☆ Optimizing PyTorch Inference with LLM-Based Multi-Agent Systems
Maximizing performance on available GPU hardware is an ongoing challenge for modern AI inference systems. Traditional approaches include writing custom GPU kernels and using specialized model compilers to tune high-level code for specific GPU targets. Recent work shows that LLM-based multi-agent systems can effectively perform such tuning, often outperforming existing compilers and eliminating the need for manual kernel development. However, the dynamics of multi-agent systems for this task remain unexplored. In this work, we present a logical framework for comparing multi-agent PyTorch optimization systems. Our evaluation shows that exploit-heavy strategies perform best when paired with error-fixing agents, and that performance correlates with the granularity of optimization steps. The best implementation achieves an average 2.88x speedup on an H100 GPU across diverse tasks in KernelBench, a benchmark suite covering a range of machine learning architectures in PyTorch.
☆ Comparing verbal, visual and combined explanations for Bayesian Network inferences
Bayesian Networks (BNs) are an important tool for assisting probabilistic reasoning, but despite being considered transparent models, people have trouble understanding them. Further, current User Interfaces (UIs) still do not clarify the reasoning of BNs. To address this problem, we have designed verbal and visual extensions to the standard BN UI, which can guide users through common inference patterns. We conducted a user study to compare our verbal, visual and combined UI extensions, and a baseline UI. Our main findings are: (1) users did better with all three types of extensions than with the baseline UI for questions about the impact of an observation, the paths that enable this impact, and the way in which an observation influences the impact of other observations; and (2) using verbal and visual modalities together is better than using either modality alone for some of these question types.
comment: 26 pages total, 12 pages main, 14 pages for 5 appendices
☆ RASTP: Representation-Aware Semantic Token Pruning for Generative Recommendation with Semantic Identifiers
Generative recommendation systems typically leverage Semantic Identifiers (SIDs), which represent each item as a sequence of tokens that encode semantic information. However, representing item ID with multiple SIDs significantly increases input sequence length, which is a major determinant of computational complexity and memory consumption. While existing efforts primarily focus on optimizing attention computation and KV cache, we propose RASTP (Representation-Aware Semantic Token Pruning), which directly prunes less informative tokens in the input sequence. Specifically, RASTP evaluates token importance by combining semantic saliency, measured via representation magnitude, and attention centrality, derived from cumulative attention weights. Since RASTP dynamically prunes low-information or irrelevant semantic tokens, experiments on three real-world Amazon datasets show that RASTP reduces training time by 26.7\%, while maintaining or slightly improving recommendation performance. The code has been open-sourced at https://github.com/Yuzt-zju/RASTP.
comment: 4 pages
☆ OmniGround: A Comprehensive Spatio-Temporal Grounding Benchmark for Real-World Complex Scenarios
Spatio-Temporal Video Grounding (STVG) aims to localize target objects in videos based on natural language descriptions. Despite recent advances in Multimodal Large Language Models, a significant gap remains between current models and real-world demands involving diverse objects and complex queries. We attribute this to limited benchmark scope, causing models to exhibit category bias, oversimplified reasoning, and poor linguistic robustness. To address these limitations, we introduce OmniGround, a comprehensive benchmark with 3,475 videos spanning 81 categories and complex real-world queries. We propose the Forward-Backward-Refinement annotation pipeline that combines multi-directional tracking with intelligent error correction for high-quality labels. We further introduce DeepSTG, a systematic evaluation framework quantifying dataset quality across four complementary dimensions beyond superficial statistics. Evaluations reveal performance average drop of 10.4% on complex real-world scenes, particularly with small/occluded objects and intricate spatial relations. Motivated by these, we propose PG-TAF, a training-free two-stage framework decomposing STVG into high-level temporal grounding and fine-grained spatio-temporal propagation. Experiments demonstrate PG-TAF achieves 25.6% and 35.6% improvements in m\_tIoU and m\_vIoU on OmniGround with consistent gains across four benchmarks.
comment: 20 pages
☆ Hybrid Differential Reward: Combining Temporal Difference and Action Gradients for Efficient Multi-Agent Reinforcement Learning in Cooperative Driving
In multi-vehicle cooperative driving tasks involving high-frequency continuous control, traditional state-based reward functions suffer from the issue of vanishing reward differences. This phenomenon results in a low signal-to-noise ratio (SNR) for policy gradients, significantly hindering algorithm convergence and performance improvement. To address this challenge, this paper proposes a novel Hybrid Differential Reward (HDR) mechanism. We first theoretically elucidate how the temporal quasi-steady nature of traffic states and the physical proximity of actions lead to the failure of traditional reward signals. Building on this analysis, the HDR framework innovatively integrates two complementary components: (1) a Temporal Difference Reward (TRD) based on a global potential function, which utilizes the evolutionary trend of potential energy to ensure optimal policy invariance and consistency with long-term objectives; and (2) an Action Gradient Reward (ARG), which directly measures the marginal utility of actions to provide a local guidance signal with a high SNR. Furthermore, we formulate the cooperative driving problem as a Multi-Agent Partially Observable Markov Game (POMDPG) with a time-varying agent set and provide a complete instantiation scheme for HDR within this framework. Extensive experiments conducted using both online planning (MCTS) and Multi-Agent Reinforcement Learning (QMIX, MAPPO, MADDPG) algorithms demonstrate that the HDR mechanism significantly improves convergence speed and policy stability. The results confirm that HDR guides agents to learn high-quality cooperative policies that effectively balance traffic efficiency and safety.
☆ PepEVOLVE: Position-Aware Dynamic Peptide Optimization via Group-Relative Advantage
Macrocyclic peptides are an emerging modality that combines biologics-like affinity with small-molecule-like developability, but their vast combinatorial space and multi-parameter objectives make lead optimization slow and challenging. Prior generative approaches such as PepINVENT require chemists to pre-specify mutable positions for optimization, choices that are not always known a priori, and rely on static pretraining and optimization algorithms that limit the model's ability to generalize and effectively optimize peptide sequences. We introduce PepEVOLVE, a position-aware, dynamic framework that learns both where to edit and how to dynamically optimize peptides for multi-objective improvement. PepEVOLVE (i) augments pretraining with dynamic masking and CHUCKLES shifting to improve generalization, (ii) uses a context-free multi-armed bandit router that discovers high-reward residues, and (iii) couples a novel evolving optimization algorithm with group-relative advantage to stabilize reinforcement updates. During in silico evaluations, the router policy reliably learns and concentrates probability on chemically meaningful sites that influence the peptide's properties. On a therapeutically motivated Rev-binding macrocycle benchmark, PepEVOLVE outperformed PepINVENT by reaching higher mean scores (approximately 0.8 vs. 0.6), achieving best candidates with a score of 0.95 (vs. 0.87), and converging in fewer steps under the task of optimizing permeability and lipophilicity with structural constraints. Overall, PepEVOLVE offers a practical, reproducible path to peptide lead optimization when optimal edit sites are unknown, enabling more efficient exploration and improving design quality across multiple objectives.
☆ Deep Improvement Supervision
Recently, it was shown that small, looped architectures, such as Tiny Recursive Models (TRMs), can outperform Large Language Models (LLMs) on complex reasoning tasks, including the Abstraction and Reasoning Corpus (ARC). In this work, we investigate a core question: how can we further improve the efficiency of these methods with minimal changes? To address this, we frame the latent reasoning of TRMs as a form of classifier-free guidance and implicit policy improvement algorithm. Building on these insights, we propose a novel training scheme that provides a target for each loop during training. We demonstrate that our approach significantly enhances training efficiency. Our method reduces the total number of forward passes by 18x and eliminates halting mechanisms, while maintaining quality comparable to standard TRMs. Notably, we achieve 24% accuracy on ARC-1 with only 0.8M parameters, outperforming most LLMs.
☆ Generative AI in Sociological Research: State of the Discipline
Generative artificial intelligence (GenAI) has garnered considerable attention for its potential utility in research and scholarship, even among those who typically do not rely on computational tools. Early commentators, however, have also articulated concerns about how GenAI usage comes with enormous environmental costs, serious social risks, and a tendency to produce low-quality content. In the midst of both excitement and skepticism, it is crucial to take stock of how GenAI is actually being used. Our study focuses on sociological research as our site, and here we present findings from a survey of 433 authors of articles published in 50 sociology journals in the last five years. The survey provides an overview of the state of the discipline with regard to the use of GenAI by providing answers to fundamental questions: how (much) do scholars use the technology for their research; what are their reasons for using it; and how concerned, trustful, and optimistic are they about the technology? Of the approximately one third ofrespondents who self-report using GenAI at least weekly, the primary uses are for writing assistance and comparatively less so in planning, data collection, or data analysis. In both use and attitudes, there are surprisingly few differences between self-identified computational and non-computational researchers. Generally, respondents are very concerned about the social and environmental consequences of GenAI. Trust in GenAI outputs is low, regardless of expertise or frequency of use. While optimism that GenAI will improve is high, scholars are divided on whether GenAI will have a positive impact on the field.
♻ ☆ The Loss of Control Playbook: Degrees, Dynamics, and Preparedness
This research report addresses the absence of an actionable definition for Loss of Control (LoC) in AI systems by developing a novel taxonomy and preparedness framework. Despite increasing policy and research attention, existing LoC definitions vary significantly in scope and timeline, hindering effective LoC assessment and mitigation. To address this issue, we draw from an extensive literature review and propose a graded LoC taxonomy, based on the metrics of severity and persistence, that distinguishes between Deviation, Bounded LoC, and Strict LoC. We model pathways toward a societal state of vulnerability in which sufficiently advanced AI systems have acquired or could acquire the means to cause Bounded or Strict LoC once a catalyst, either misalignment or pure malfunction, materializes. We argue that this state becomes increasingly likely over time, absent strategic intervention, and propose a strategy to avoid reaching a state of vulnerability. Rather than focusing solely on intervening on AI capabilities and propensities potentially relevant for LoC or on preventing potential catalysts, we introduce a complementary framework that emphasizes three extrinsic factors: Deployment context, Affordances, and Permissions (the DAP framework). Compared to work on intrinsic factors and catalysts, this framework has the unfair advantage of being actionable today. Finally, we put forward a plan to maintain preparedness and prevent the occurrence of LoC outcomes should a state of societal vulnerability be reached, focusing on governance measures (threat modeling, deployment policies, emergency response) and technical controls (pre-deployment testing, control measures, monitoring) that could maintain a condition of perennial suspension.
♻ ☆ MF-GCN: A Multi-Frequency Graph Convolutional Network for Tri-Modal Depression Detection Using Eye-Tracking, Facial, and Acoustic Features
Depression is a prevalent global mental health disorder, characterised by persistent low mood and anhedonia. However, it remains underdiagnosed because current diagnostic methods depend heavily on subjective clinical assessments. To enable objective detection, we introduce a gold standard dataset of 103 clinically assessed participants collected through a tripartite data approach which uniquely integrated eye tracking data with audio and video to give a comprehensive representation of depressive symptoms. Eye tracking data quantifies the attentional bias towards negative stimuli that is frequently observed in depressed groups. Audio and video data capture the affective flattening and psychomotor retardation characteristic of depression. Statistical validation confirmed their significant discriminative power in distinguishing depressed from non depressed groups. We address a critical limitation of existing graph-based models that focus on low-frequency information and propose a Multi-Frequency Graph Convolutional Network (MF-GCN). This framework consists of a novel Multi-Frequency Filter Bank Module (MFFBM), which can leverage both low and high frequency signals. Extensive evaluation against traditional machine learning algorithms and deep learning frameworks demonstrates that MF-GCN consistently outperforms baselines. In binary classification, the model achieved a sensitivity of 0.96 and F2 score of 0.94. For the 3 class classification task, the proposed method achieved a sensitivity of 0.79 and specificity of 0.87 and siginificantly suprassed other models. To validate generalizability, the model was also evaluated on the Chinese Multimodal Depression Corpus (CMDC) dataset and achieved a sensitivity of 0.95 and F2 score of 0.96. These results confirm that our trimodal, multi frequency framework effectively captures cross modal interaction for accurate depression detection.
♻ ☆ Can AI Perceive Physical Danger and Intervene?
When AI interacts with the physical world -- as a robot or an assistive agent -- new safety challenges emerge beyond those of purely ``digital AI". In such interactions, the potential for physical harm is direct and immediate. How well do state-of-the-art foundation models understand common-sense facts about physical safety, e.g. that a box may be too heavy to lift, or that a hot cup of coffee should not be handed to a child? In this paper, our contributions are three-fold: first, we develop a highly scalable approach to continuous physical safety benchmarking of Embodied AI systems, grounded in real-world injury narratives and operational safety constraints. To probe multi-modal safety understanding, we turn these narratives and constraints into photorealistic images and videos capturing transitions from safe to unsafe states, using advanced generative models. Secondly, we comprehensively analyze the ability of major foundation models to perceive risks, reason about safety, and trigger interventions; this yields multi-faceted insights into their deployment readiness for safety-critical agentic applications. Finally, we develop a post-training paradigm to teach models to explicitly reason about embodiment-specific safety constraints provided through system instructions. The resulting models generate thinking traces that make safety reasoning interpretable and transparent, achieving state of the art performance in constraint satisfaction evaluations. The benchmark is released at https://asimov-benchmark.github.io/v2
♻ ☆ The Coding Limits of Robust Watermarking for Generative Models
We ask a basic question about cryptographic watermarking for generative models: to what extent can a watermark remain reliable when an adversary is allowed to corrupt the encoded signal? To study this question, we introduce a minimal coding abstraction that we call a zero-bit tamper-detection code. This is a secret-key procedure that samples a pseudorandom codeword and, given a candidate word, decides whether it should be treated as unmarked content or as the result of tampering with a valid codeword. It captures the two core requirements of robust watermarking: soundness and tamper detection. Within this abstraction we prove a sharp unconditional limit on robustness to independent symbol corruption. For an alphabet of size $q$, there is a critical corruption rate of $1 - 1/q$ such that no scheme with soundness, even relaxed to allow a fixed constant false positive probability on random content, can reliably detect tampering once an adversary can change more than this fraction of symbols. In particular, in the binary case no cryptographic watermark can remain robust if more than half of the encoded bits are modified. We also show that this threshold is tight by giving simple information-theoretic constructions that achieve soundness and tamper detection for all strictly smaller corruption rates. We then test experimentally whether this limit appears in practice by looking at the recent watermarking for images of Gunn, Zhao, and Song (ICLR 2025). We show that a simple crop and resize operation reliably flipped about half of the latent signs and consistently prevented belief-propagation decoding from recovering the codeword, erasing the watermark while leaving the image visually intact.
♻ ☆ CATCODER: Repository-Level Code Generation with Relevant Code and Type Context
Large language models (LLMs) have demonstrated remarkable capabilities in code generation tasks. However, repository-level code generation presents unique challenges, particularly due to the need to utilize information spread across multiple files within a repository. Specifically, successful generation depends on a solid grasp of both general, context-agnostic knowledge and specific, context-dependent knowledge. While LLMs are widely used for the context-agnostic aspect, existing retrieval-based approaches sometimes fall short as they are limited in obtaining a broader and deeper repository context. In this paper, we present CatCoder, a novel code generation framework designed for statically typed programming languages. CatCoder enhances repository-level code generation by integrating relevant code and type context. Specifically, it leverages static analyzers to extract type dependencies and merges this information with retrieved code to create comprehensive prompts for LLMs. To evaluate the effectiveness of CatCoder, we adapt and construct benchmarks that include 199 Java tasks and 90 Rust tasks. The results show that CatCoder outperforms the RepoCoder baseline by up to 14.44% and 17.35%, in terms of compile@k and pass@k scores. In addition, the generalizability of CatCoder is assessed using various LLMs, including both code-specialized models and general-purpose models. Our findings indicate consistent performance improvements across all models, which underlines the practicality of CatCoder. Furthermore, we evaluate the time consumption of CatCoder in a large open source repository, and the results demonstrate the scalability of CatCoder.
comment: Revised and extended version; To be published in ACM Transactions on Software Engineering and Methodology
♻ ☆ Live-SWE-agent: Can Software Engineering Agents Self-Evolve on the Fly?
Large Language Models (LLMs) are reshaping almost all industries, including software engineering. In recent years, a number of LLM agents have been proposed to solve real-world software problems. Such software agents are typically equipped with a suite of coding tools and can autonomously decide the next actions to form complete trajectories to solve end-to-end software tasks. While promising, they typically require dedicated design and may still be suboptimal, since it can be extremely challenging and costly to exhaust the entire agent scaffold design space. Recognizing that software agents are inherently software themselves that can be further refined/modified, researchers have proposed a number of self-improving software agents recently, including the Darwin-Gödel Machine (DGM). Meanwhile, such self-improving agents require costly offline training on specific benchmarks and may not generalize well across different LLMs or benchmarks. In this paper, we propose Live-SWE-agent, the first live software agent that can autonomously and continuously evolve itself on-the-fly during runtime when solving real-world software problems. More specifically, Live-SWE-agent starts with the most basic agent scaffold with only access to bash tools (e.g., mini-SWE-agent), and autonomously evolves its own scaffold implementation while solving real-world software problems. Our evaluation on the widely studied SWE-bench Verified benchmark shows that LIVE-SWE-AGENT can achieve an impressive solve rate of 77.4% without test-time scaling, outperforming all existing software agents, including the best proprietary solution. Moreover, Live-SWE-agent outperforms state-of-the-art manually crafted software agents on the recent SWE-Bench Pro benchmark, achieving the best-known solve rate of 45.8%.
♻ ☆ SHIELD: Secure Hypernetworks for Incremental Expansion Learning Defense
Continual learning under adversarial conditions remains an open problem, as existing methods often compromise either robustness, scalability, or both. We propose a novel framework that integrates Interval Bound Propagation (IBP) with a hypernetwork-based architecture to enable certifiably robust continual learning across sequential tasks. Our method, SHIELD, generates task-specific model parameters via a shared hypernetwork conditioned solely on compact task embeddings, eliminating the need for replay buffers or full model copies and enabling efficient over time. To further enhance robustness, we introduce Interval MixUp, a novel training strategy that blends virtual examples represented as $\ell_{\infty}$ balls centered around MixUp points. Leveraging interval arithmetic, this technique guarantees certified robustness while mitigating the wrapping effect, resulting in smoother decision boundaries. We evaluate SHIELD under strong white-box adversarial attacks, including PGD and AutoAttack, across multiple benchmarks. It consistently outperforms existing robust continual learning methods, achieving state-of-the-art average accuracy while maintaining both scalability and certification. These results represent a significant step toward practical and theoretically grounded continual learning in adversarial settings.
♻ ☆ Value of Information-Enhanced Exploration in Bootstrapped DQN
Efficient exploration in deep reinforcement learning remains a fundamental challenge, especially in environments characterized by high-dimensional states and sparse rewards. Traditional exploration strategies that rely on random local policy noise, such as $ε$-greedy and Boltzmann exploration methods, often struggle to efficiently balance exploration and exploitation. In this paper, we integrate the notion of (expected) value of information (EVOI) within the well-known Bootstrapped DQN algorithmic framework, to enhance the algorithm's deep exploration ability. Specifically, we develop two novel algorithms that incorporate the expected gain from learning the value of information into Bootstrapped DQN. Our methods use value of information estimates to measure the discrepancies of opinions among distinct network heads, and drive exploration towards areas with the most potential. We evaluate our algorithms with respect to performance and their ability to exploit inherent uncertainty arising from random network initialization. Our experiments in complex, sparse-reward Atari games demonstrate increased performance, all the while making better use of uncertainty, and, importantly, without introducing extra hyperparameters.
♻ ☆ Evaluating AI-Driven Automated Map Digitization in QGIS
Map digitization is an important process that converts maps into digital formats that can be used for further analysis. This process typically requires a deep human involvement because of the need for interpretation and decision-making when translating complex features. With the advancement of artificial intelligence, there is an alternative to conducting map digitization with the help of machine learning techniques. Deepness, or Deep Neural Remote Sensing, is an advanced AI-driven tool designed and integrated as a plugin in QGIS application. This research focuses on assessing the effectiveness of Deepness in automated digitization. This study analyses AI-generated digitization results from Google Earth imagery and compares them with digitized outputs from OpenStreetMap (OSM) to evaluate performance.
comment: Presented at the 2025 Indiana Geographic Information Council (IGIC) Conference
♻ ☆ Crafting Imperceptible On-Manifold Adversarial Attacks for Tabular Data
Adversarial attacks on tabular data present unique challenges due to the heterogeneous nature of mixed categorical and numerical features. Unlike images where pixel perturbations maintain visual similarity, tabular data lacks intuitive similarity metrics, making it difficult to define imperceptible modifications. Additionally, traditional gradient-based methods prioritise $\ell_p$-norm constraints, often producing adversarial examples that deviate from the original data distributions. To address this, we propose a latent-space perturbation framework using a mixed-input Variational Autoencoder (VAE) to generate statistically consistent adversarial examples. The proposed VAE integrates categorical embeddings and numerical features into a unified latent manifold, enabling perturbations that preserve statistical consistency. We introduce In-Distribution Success Rate (IDSR) to jointly evaluate attack effectiveness and distributional alignment. Evaluation across six publicly available datasets and three model architectures demonstrates that our method achieves substantially lower outlier rates and more consistent performance compared to traditional input-space attacks and other VAE-based methods adapted from image domain approaches, achieving substantially lower outlier rates and higher IDSR across six datasets and three model architectures. Our comprehensive analyses of hyperparameter sensitivity, sparsity control, and generative architecture demonstrate that the effectiveness of VAE-based attacks depends strongly on reconstruction quality and the availability of sufficient training data. When these conditions are met, the proposed framework achieves superior practical utility and stability compared with input-space methods. This work underscores the importance of maintaining on-manifold perturbations for generating realistic and robust adversarial examples in tabular domains.
comment: Final Version
♻ ☆ Meta-World+: An Improved, Standardized, RL Benchmark
Meta-World is widely used for evaluating multi-task and meta-reinforcement learning agents, which are challenged to master diverse skills simultaneously. Since its introduction however, there have been numerous undocumented changes which inhibit a fair comparison of algorithms. This work strives to disambiguate these results from the literature, while also leveraging the past versions of Meta-World to provide insights into multi-task and meta-reinforcement learning benchmark design. Through this process we release a new open-source version of Meta-World (https://github.com/Farama-Foundation/Metaworld/) that has full reproducibility of past results, is more technically ergonomic, and gives users more control over the tasks that are included in a task set.
comment: Accepted at NeurIPs 2025, Datasets and Benchmarks
♻ ☆ Fairness Evaluation of Large Language Models in Academic Library Reference Services
As libraries explore large language models (LLMs) for use in virtual reference services, a key question arises: Can LLMs serve all users equitably, regardless of demographics or social status? While they offer great potential for scalable support, LLMs may also reproduce societal biases embedded in their training data, risking the integrity of libraries' commitment to equitable service. To address this concern, we evaluate whether LLMs differentiate responses across user identities by prompting six state-of-the-art LLMs to assist patrons differing in sex, race/ethnicity, and institutional role. We find no evidence of differentiation by race or ethnicity, and only minor evidence of stereotypical bias against women in one model. LLMs demonstrate nuanced accommodation of institutional roles through the use of linguistic choices related to formality, politeness, and domain-specific vocabularies, reflecting professional norms rather than discriminatory treatment. These findings suggest that current LLMs show a promising degree of readiness to support equitable and contextually appropriate communication in academic library reference services.
♻ ☆ HazeMatching: Dehazing Light Microscopy Images with Guided Conditional Flow Matching
Fluorescence microscopy is a major driver of scientific progress in the life sciences. Although high-end confocal microscopes are capable of filtering out-of-focus light, cheaper and more accessible microscopy modalities, such as widefield microscopy, can not, which consequently leads to hazy image data. Computational dehazing is trying to combine the best of both worlds, leading to cheap microscopy but crisp-looking images. The perception-distortion trade-off tells us that we can optimize either for data fidelity, e.g. low MSE or high PSNR, or for data realism, measured by perceptual metrics such as LPIPS or FID. Existing methods either prioritize fidelity at the expense of realism, or produce perceptually convincing results that lack quantitative accuracy. In this work, we propose HazeMatching, a novel iterative method for dehazing light microscopy images, which effectively balances these objectives. Our goal was to find a balanced trade-off between the fidelity of the dehazing results and the realism of individual predictions (samples). We achieve this by adapting the conditional flow matching framework by guiding the generative process with a hazy observation in the conditional velocity field. We evaluate HazeMatching on 5 datasets, covering both synthetic and real data, assessing both distortion and perceptual quality. Our method is compared against 11 baselines, achieving a consistent balance between fidelity and realism on average. Additionally, with calibration analysis, we show that HazeMatching produces well-calibrated predictions. Note that our method does not need an explicit degradation operator to exist, making it easily applicable on real microscopy data. All data used for training and evaluation and our code will be publicly available under a permissive license.
comment: 4 figures, 8 pages + refs, 45 pages total (including supplement), 28 supplementary figures
♻ ☆ WER is Unaware: Assessing How ASR Errors Distort Clinical Understanding in Patient Facing Dialogue
As Automatic Speech Recognition (ASR) is increasingly deployed in clinical dialogue, standard evaluations still rely heavily on Word Error Rate (WER). This paper challenges that standard, investigating whether WER or other common metrics correlate with the clinical impact of transcription errors. We establish a gold-standard benchmark by having expert clinicians compare ground-truth utterances to their ASR-generated counterparts, labeling the clinical impact of any discrepancies found in two distinct doctor-patient dialogue datasets. Our analysis reveals that WER and a comprehensive suite of existing metrics correlate poorly with the clinician-assigned risk labels (No, Minimal, or Significant Impact). To bridge this evaluation gap, we introduce an LLM-as-a-Judge, programmatically optimized using GEPA through DSPy to replicate expert clinical assessment. The optimized judge (Gemini-2.5-Pro) achieves human-comparable performance, obtaining 90% accuracy and a strong Cohen's $κ$ of 0.816. This work provides a validated, automated framework for moving ASR evaluation beyond simple textual fidelity to a necessary, scalable assessment of safety in clinical dialogue.
♻ ☆ ResMatching: Noise-Resilient Computational Super-Resolution via Guided Conditional Flow Matching
Computational Super-Resolution (CSR) in fluorescence microscopy has, despite being an ill-posed problem, a long history. At its very core, CSR is about finding a prior that can be used to extrapolate frequencies in a micrograph that have never been imaged by the image-generating microscope. It stands to reason that, with the advent of better data-driven machine learning techniques, stronger prior can be learned and hence CSR can lead to better results. Here, we present ResMatching, a novel CSR method that uses guided conditional flow matching to learn such improved data-priors. We evaluate ResMatching on 4 diverse biological structures from the BioSR dataset and compare its results against 7 baselines. ResMatching consistently achieves competitive results, demonstrating in all cases the best trade-off between data fidelity and perceptual realism. We observe that CSR using ResMatching is particularly effective in cases where a strong prior is hard to learn, e.g. when the given low-resolution images contain a lot of noise. Additionally, we show that ResMatching can be used to sample from an implicitly learned posterior distribution and that this distribution is calibrated for all tested use-cases, enabling our method to deliver a pixel-wise data-uncertainty term that can guide future users to reject uncertain predictions.
comment: 5 pages, 4 figures
♻ ☆ Extending Test-Time Scaling: A 3D Perspective with Context, Batch, and Turn
Reasoning reinforcement learning (RL) has recently revealed a new scaling effect: test-time scaling. Thinking models such as R1 and o1 improve their reasoning accuracy at test time as the length of the reasoning context increases. However, compared with training-time scaling, test-time scaling is fundamentally limited by the limited context length of base models, which remains orders of magnitude smaller than the amount of tokens consumed during training. We revisit test-time enhancement techniques through the lens of scaling effect and introduce a unified framework of multi-dimensional test-time scaling to extend the capacity of test-time reasoning. Beyond conventional context-length scaling, we consider two additional dimensions: batch scaling, where accuracy improves with parallel sampling, and turn scaling, where iterative self-refinement enhances reasoning quality. Building on this perspective, we propose 3D test-time scaling, which integrates context, batch, and turn scaling. We show that: (1) each dimension demonstrates a test-time scaling effect, but with a bounded capacity; (2) combining all three dimensions substantially improves the reasoning performance of challenging testbeds, including IOI, IMO, and CPHO, and further benefits from human preference feedback; and (3) the human-in-the-loop framework naturally extends to a more open-ended domain, i.e., embodied learning, which enables the design of humanoid control behaviors.
comment: 44 pages, 12 figures
♻ ☆ Estimating Global Input Relevance and Enforcing Sparse Representations with a Scalable Spectral Neural Network Approach
In machine learning practice it is often useful to identify relevant input features. Isolating key input elements, ranked according their respective degree of relevance, can help to elaborate on the process of decision making. Here, we propose a novel method to estimate the relative importance of the input components for a Deep Neural Network. This is achieved by leveraging on a spectral re-parametrization of the optimization process. Eigenvalues associated to input nodes provide in fact a robust proxy to gauge the relevance of the supplied entry features. Notably, the spectral features ranking is performed automatically, as a byproduct of the network training, with no additional processing to be carried out. Moreover, by leveraging on the regularization of the eigenvalues, it is possible to enforce solutions making use of a minimum subset of the input components, increasing the explainability of the model and providing sparse input representations. The technique is compared to the most common methods in the literature and is successfully challenged against both synthetic and real data.
♻ ☆ The promise and limits of LLMs in constructing proofs and hints for logic problems in intelligent tutoring systems
Intelligent tutoring systems have demonstrated effectiveness in teaching formal propositional logic proofs, but their reliance on template-based explanations limits their ability to provide personalized student feedback. While large language models (LLMs) offer promising capabilities for dynamic feedback generation, they risk producing hallucinations or pedagogically unsound explanations. We evaluated the stepwise accuracy of LLMs in constructing multi-step symbolic logic proofs, comparing six prompting techniques across four state-of-the-art LLMs on 358 propositional logic problems. Results show that DeepSeek-V3 achieved superior performance up to 86.7% accuracy on stepwise proof construction and excelled particularly in simpler rules. We further used the best-performing LLM to generate explanatory hints for 1,050 unique student problem-solving states from a logic ITS and evaluated them on 4 criteria with both an LLM grader and human expert ratings on a 20% sample. Our analysis finds that LLM-generated hints were 75% accurate and rated highly by human evaluators on consistency and clarity, but did not perform as well explaining why the hint was provided or its larger context. Our results demonstrate that LLMs may be used to augment tutoring systems with logic tutoring hints, but require additional modifications to ensure accuracy and pedagogical appropriateness.
♻ ☆ MOCHA: Multi-modal Objects-aware Cross-arcHitecture Alignment
Personalized object detection aims to adapt a general-purpose detector to recognize user-specific instances from only a few examples. Lightweight models often struggle in this setting due to their weak semantic priors, while large vision-language models (VLMs) offer strong object-level understanding but are too computationally demanding for real-time or on-device applications. We introduce MOCHA (Multi-modal Objects-aware Cross-arcHitecture Alignment), a distillation framework that transfers multimodal region-level knowledge from a frozen VLM teacher into a lightweight vision-only detector. MOCHA extracts fused visual and textual teacher's embeddings and uses them to guide student training through a dual-objective loss that enforces accurate local alignment and global relational consistency across regions. This process enables efficient transfer of semantics without the need for teacher modifications or textual input at inference. MOCHA consistently outperforms prior baselines across four personalized detection benchmarks under strict few-shot regimes, yielding a +10.1 average improvement, with minimal inference cost.
♻ ☆ Platonic Representations for Poverty Mapping: Unified Vision-Language Codes or Agent-Induced Novelty?
We investigate whether socio-economic indicators like household wealth leave recoverable imprints in satellite imagery (capturing physical features) and Internet-sourced text (reflecting historical/economic narratives). Using Demographic and Health Survey (DHS) data from African neighborhoods, we pair Landsat images with LLM-generated textual descriptions conditioned on location/year and text retrieved by an AI search agent from web sources. We develop a multimodal framework predicting household wealth (International Wealth Index) through five pipelines: (i) vision model on satellite images, (ii) LLM using only location/year, (iii) AI agent searching/synthesizing web text, (iv) joint image-text encoder, (v) ensemble of all signals. Our framework yields three contributions. First, fusing vision and agent/LLM text outperforms vision-only baselines in wealth prediction (e.g., R-squared of 0.77 vs. 0.63 on out-of-sample splits), with LLM-internal knowledge proving more effective than agent-retrieved text, improving robustness to out-of-country and out-of-time generalization. Second, we find partial representational convergence: fused embeddings from vision/language modalities correlate moderately (median cosine similarity of 0.60 after alignment), suggesting a shared latent code of material well-being while retaining complementary details, consistent with the Platonic Representation Hypothesis. Although LLM-only text outperforms agent-retrieved data, challenging our Agent-Induced Novelty Hypothesis, modest gains from combining agent data in some splits weakly support the notion that agent-gathered information introduces unique representational structures not fully captured by static LLM knowledge. Third, we release a large-scale multimodal dataset comprising more than 60,000 DHS clusters linked to satellite images, LLM-generated descriptions, and agent-retrieved texts.
comment: 7 figures
♻ ☆ SweeperBot: Making 3D Browsing Accessible through View Analysis and Visual Question Answering
Accessing 3D models remains challenging for Screen Reader (SR) users. While some existing 3D viewers allow creators to provide alternative text, they often lack sufficient detail about the 3D models. Grounded on a formative study, this paper introduces SweeperBot, a system that enables SR users to leverage visual question answering to explore and compare 3D models. SweeperBot answers SR users' visual questions by combining an optimal view selection technique with the strength of generative- and recognition-based foundation models. An expert review with 10 Blind and Low-Vision (BLV) users with SR experience demonstrated the feasibility of using SweeperBot to assist BLV users in exploring and comparing 3D models. The quality of the descriptions generated by SweeperBot was validated by a second survey study with 30 sighted participants.
comment: 28 pages, 16 figures, this is an original manuscript of an article published by Taylor & Francis in the International Journal of Human-Computer Interaction (IJHCI), available online: https://doi.org/10.1080/10447318.2025.2594750
♻ ☆ LLM one-shot style transfer for Authorship Attribution and Verification
Computational stylometry analyzes writing style through quantitative patterns in text, supporting applications from forensic tasks such as identity linking and plagiarism detection to literary attribution in the humanities. Supervised and contrastive approaches rely on data with spurious correlations and often confuse style with topic. Despite their natural use in AI-generated text detection, the CLM pre-training of modern LLMs has been scarcely leveraged for general authorship problems. We propose a novel unsupervised approach based on this extensive pre-training and the in-context learning capabilities of LLMs, employing the log-probabilities of an LLM to measure style transferability from one text to another. Our method significantly outperforms LLM prompting approaches of comparable scale and achieves higher accuracy than contrastively trained baselines when controlling for topical correlations. Moreover, performance scales fairly consistently with the size of the base model and, in the case of authorship verification, with an additional mechanism that increases test-time computation; enabling flexible trade-offs between computational cost and accuracy.
♻ ☆ Toward Super-polynomial Quantum Speedup of Equivariant Quantum Algorithms with SU($d$) Symmetry
We introduce a framework of the equivariant convolutional quantum algorithms which is tailored for a number of machine-learning tasks on physical systems with arbitrary SU$(d)$ symmetries. It allows us to enhance a natural model of quantum computation -- permutational quantum computing (PQC) -- and define a more powerful model: PQC+. While PQC was shown to be efficiently classically simulatable, we exhibit a problem which can be efficiently solved on PQC+ machine, whereas no classical polynomial time algorithm is known; thus providing evidence against PQC+ being classically simulatable. We further discuss practical quantum machine learning algorithms which can be carried out in the paradigm of PQC+.
comment: Presented in TQC 2022
♻ ☆ Defending the Edge: Representative-Attention Defense against Backdoor Attacks in Federated Learning
Federated learning (FL) remains highly vulnerable to adaptive backdoor attacks that preserve stealth by closely imitating benign update statistics. Existing defenses predominantly rely on anomaly detection in parameter or gradient space, overlooking behavioral constraints that backdoor attacks must satisfy to ensure reliable trigger activation. These anomaly-centric methods fail against adaptive attacks that normalize update magnitudes and mimic benign statistical patterns while preserving backdoor functionality, creating a fundamental detection gap. To address this limitation, this paper introduces FeRA (Federated Representative Attention) -- a novel attention-driven defense that shifts the detection paradigm from anomaly-centric to consistency-centric analysis. FeRA exploits the intrinsic need for backdoor persistence across training rounds, identifying malicious clients through suppressed representation-space variance, an orthogonal property to traditional magnitude-based statistics. The framework conducts multi-dimensional behavioral analysis combining spectral and spatial attention, directional alignment, mutual similarity, and norm inflation across two complementary detection mechanisms: consistency analysis and norm-inflation detection. Through this mechanism, FeRA isolates malicious clients that exhibit low-variance consistency or magnitude amplification. Extensive evaluation across six datasets, nine attacks, and three model architectures under both Independent and Identically Distributed (IID) and non-IID settings confirm FeRA achieves superior backdoor mitigation. Under different non-IID settings, FeRA achieved the lowest average Backdoor Accuracy (BA), about 1.67% while maintaining high clean accuracy compared to other state-of-the-art defenses. The code is available at https://github.com/Peatech/FeRA_defense.git.
comment: Submitted to IEEE EURO S&P 2026
♻ ☆ Interactive Query Answering on Knowledge Graphs with Soft Entity Constraints
Methods for query answering over incomplete knowledge graphs retrieve entities that are \emph{likely} to be answers, which is particularly useful when such answers cannot be reached by direct graph traversal due to missing edges. However, existing approaches have focused on queries formalized using first-order-logic. In practice, many real-world queries involve constraints that are inherently vague or context-dependent, such as preferences for attributes or related categories. Addressing this gap, we introduce the problem of query answering with soft constraints. We formalize the problem and introduce two efficient methods designed to adjust query answer scores by incorporating soft constraints without disrupting the original answers to a query. These methods are lightweight, requiring tuning only two parameters or a small neural network trained to capture soft constraints while maintaining the original ranking structure. To evaluate the task, we extend existing QA benchmarks by generating datasets with soft constraints. Our experiments demonstrate that our methods can capture soft constraints while maintaining robust query answering performance and adding very little overhead.
♻ ☆ LLM-Agent-UMF: LLM-based Agent Unified Modeling Framework for Seamless Design of Multi Active/Passive Core-Agent Architectures
In an era where vast amounts of data are collected and processed from diverse sources, there is a growing demand for sophisticated AI systems capable of intelligently fusing and analyzing this information. To address these challenges, researchers have turned towards integrating tools into LLM-powered agents to enhance the overall information fusion process. However, the conjunction of these technologies and the proposed enhancements in several state-of-the-art works followed a non-unified software architecture, resulting in a lack of modularity and terminological inconsistencies among researchers. To address these issues, we propose a novel LLM-based Agent Unified Modeling Framework (LLM-Agent-UMF) that establishes a clear foundation for agent development from both functional and software architectural perspectives, developed and evaluated using the Architecture Tradeoff and Risk Analysis Framework (ATRAF). Our framework clearly distinguishes between the different components of an LLM-based agent, setting LLMs and tools apart from a new element, the core-agent, which plays the role of central coordinator. This pivotal entity comprises five modules: planning, memory, profile, action, and security -- the latter often neglected in previous works. By classifying core-agents into passive and active types based on their authoritative natures, we propose various multi-core agent architectures that combine unique characteristics of distinctive agents to tackle complex tasks more efficiently. We evaluate our framework by applying it to thirteen state-of-the-art agents, thereby demonstrating its alignment with their functionalities and clarifying overlooked architectural aspects. Moreover, we thoroughly assess five architecture variants of our framework by designing new agent architectures that combine characteristics of state-of-the-art agents to address specific goals. ...
comment: 39 pages, 19 figures, 3 tables. Published in Information Fusion, Volume 127, March 2026, 103865. Part of the special issue "Data Fusion Approaches in Data-Centric AI for Developing Trustworthy AI Systems"
♻ ☆ LLM Collaboration With Multi-Agent Reinforcement Learning
A large amount of work has been done in Multi-Agent Systems (MAS) for modeling and solving problems with multiple interacting agents. However, most LLMs are pretrained independently and not specifically optimized for coordination. Existing LLM fine-tuning frameworks rely on individual rewards, which require complex reward designs for each agent to encourage collaboration. To address these challenges, we model LLM collaboration as a cooperative Multi-Agent Reinforcement Learning (MARL) problem. We develop a multi-agent, multi-turn algorithm, Multi-Agent Group Relative Policy Optimization (MAGRPO), to solve it, building on current RL approaches for LLMs as well as MARL techniques. Our experiments on LLM writing and coding collaboration demonstrate that fine-tuning MAS with MAGRPO enables agents to generate high-quality responses efficiently through effective cooperation. Our approach opens the door to using other MARL methods for LLMs and highlights the associated challenges. Our code is available at https://github.com/OpenMLRL/CoMLRL.
♻ ☆ Wideband RF Radiance Field Modeling Using Frequency-embedded 3D Gaussian Splatting
Indoor environments typically contain diverse RF signals distributed across multiple frequency bands, including NB-IoT, Wi-Fi, and millimeter-wave. Consequently, wideband RF modeling is essential for practical applications such as joint deployment of heterogeneous RF systems, cross-band communication, and distributed RF sensing. Although 3D Gaussian Splatting (3DGS) techniques effectively reconstruct RF radiance fields at a single frequency, they cannot model fields at arbitrary or unknown frequencies across a wide range. In this paper, we present a novel 3DGS algorithm for unified wideband RF radiance field modeling. RF wave propagation depends on signal frequency and the 3D spatial environment, including geometry and material electromagnetic (EM) properties. To address these factors, we introduce a frequency-embedded EM feature network that utilizes 3D Gaussian spheres at each spatial location to learn the relationship between frequency and transmission characteristics, such as attenuation and radiance intensity. With a dataset containing sparse frequency samples in a specific 3D environment, our model can efficiently reconstruct RF radiance fields at arbitrary and unseen frequencies. To assess our approach, we introduce a large-scale power angular spectrum (PAS) dataset with 50,000 samples spanning 1 to 94 GHz across six indoor environments. Experimental results show that the proposed model trained on multiple frequencies achieves a Structural Similarity Index Measure (SSIM) of 0.922 for PAS reconstruction, surpassing state-of-the-art single-frequency 3DGS models with SSIM of 0.863.
♻ ☆ CleverDistiller: Simple and Spatially Consistent Cross-modal Distillation BMVC 2025
Vision foundation models (VFMs) such as DINO have led to a paradigm shift in 2D camera-based perception towards extracting generalized features to support many downstream tasks. Recent works introduce self-supervised cross-modal knowledge distillation (KD) as a way to transfer these powerful generalization capabilities into 3D LiDAR-based models. However, they either rely on highly complex distillation losses, pseudo-semantic maps, or limit KD to features useful for semantic segmentation only. In this work, we propose CleverDistiller, a self-supervised, cross-modal 2D-to-3D KD framework introducing a set of simple yet effective design choices: Unlike contrastive approaches relying on complex loss design choices, our method employs a direct feature similarity loss in combination with a multi layer perceptron (MLP) projection head to allow the 3D network to learn complex semantic dependencies throughout the projection. Crucially, our approach does not depend on pseudo-semantic maps, allowing for direct knowledge transfer from a VFM without explicit semantic supervision. Additionally, we introduce the auxiliary self-supervised spatial task of occupancy prediction to enhance the semantic knowledge, obtained from a VFM through KD, with 3D spatial reasoning capabilities. Experiments on standard autonomous driving benchmarks for 2D-to-3D KD demonstrate that CleverDistiller achieves state-of-the-art performance in both semantic segmentation and 3D object detection (3DOD) by up to 10% mIoU, especially when fine tuning on really low data amounts, showing the effectiveness of our simple yet powerful KD strategy
comment: Accepted to BMVC 2025
♻ ☆ The Cooperative Network Architecture: Learning Structured Networks as Representation of Sensory Patterns
We introduce the Cooperative Network Architecture (CNA), a model that represents sensory signals using structured, recurrently connected networks of neurons, termed "nets." Nets are dynamically assembled from overlapping net fragments, which are learned based on statistical regularities in sensory input. This architecture offers robustness to noise, deformation, and generalization to out-of-distribution data, addressing challenges in current vision systems from a novel perspective. We demonstrate that net fragments can be learned without supervision and flexibly recombined to encode novel patterns, enabling figure completion and resilience to noise. Our findings establish CNA as a promising paradigm for developing neural representations that integrate local feature processing with global structure formation, providing a foundation for future research on invariant object recognition.
comment: Accepted at Neural Computation
♻ ☆ Bootstrap Off-policy with World Model NeurIPS 2025
Online planning has proven effective in reinforcement learning (RL) for improving sample efficiency and final performance. However, using planning for environment interaction inevitably introduces a divergence between the collected data and the policy's actual behaviors, degrading both model learning and policy improvement. To address this, we propose BOOM (Bootstrap Off-policy with WOrld Model), a framework that tightly integrates planning and off-policy learning through a bootstrap loop: the policy initializes the planner, and the planner refines actions to bootstrap the policy through behavior alignment. This loop is supported by a jointly learned world model, which enables the planner to simulate future trajectories and provides value targets to facilitate policy improvement. The core of BOOM is a likelihood-free alignment loss that bootstraps the policy using the planner's non-parametric action distribution, combined with a soft value-weighted mechanism that prioritizes high-return behaviors and mitigates variability in the planner's action quality within the replay buffer. Experiments on the high-dimensional DeepMind Control Suite and Humanoid-Bench show that BOOM achieves state-of-the-art results in both training stability and final performance. The code is accessible at https://github.com/molumitu/BOOM_MBRL.
comment: NeurIPS 2025
♻ ☆ VSI: Visual Subtitle Integration for Keyframe Selection to enhance Long Video Understanding
Multimodal large language models (MLLMs) demonstrate exceptional performance in vision-language tasks, yet their processing of long videos is constrained by input context length and high computational costs. Sparse frame sampling thus becomes a necessary preprocessing step, with sampled frame quality directly impacting downstream performance. Existing keyframe search algorithms achieve a balance between efficiency and sampled frame quality but heavily rely on the visual modality alone. This makes them difficult to adapt to text-related tasks and often leads to retrieval results deviating from core semantic content. To address this, we propose the VISUAL-SUBTITLE INTEGRATION (VSI), a multimodal keyframe retrieval framework. It employs a dual-branch collaborative retrieval approach combining Video Search and Subtitle Match to fuse complementary visual and textual information for precise localization. Experiments on LongVideoBench and VideoMME demonstrate that VSI achieves state-of-the-art accuracy in keyframe retrieval while delivering breakthrough performance in text-related tasks and exhibiting strong generalization across other tasks.
comment: 9 pages,3 figures
♻ ☆ Comprehensive Evaluation of Prototype Neural Networks
Prototype models are an important method for explainable artificial intelligence (XAI) and interpretable machine learning. In this paper, we perform an in-depth analysis of a set of prominent prototype models including ProtoPNet, ProtoPool and PIPNet. For their assessment, we apply a comprehensive set of metrics. In addition to applying standard metrics from literature, we propose several new metrics to further complement the analysis of model interpretability. In our experimentation, we apply the set of prototype models on a diverse set of datasets including fine-grained classification, Non-IID settings and multi-label classification to further contrast the performance. Furthermore, we also provide our code as an open-source library (https://github.com/uos-sis/quanproto), which facilitates simple application of the metrics itself, as well as extensibility -- providing the option for easily adding new metrics and models.
♻ ☆ PhyBlock: A Progressive Benchmark for Physical Understanding and Planning via 3D Block Assembly
While vision-language models (VLMs) have demonstrated promising capabilities in reasoning and planning for embodied agents, their ability to comprehend physical phenomena, particularly within structured 3D environments, remains severely limited. To close this gap, we introduce PhyBlock, a progressive benchmark designed to assess VLMs on physical understanding and planning through robotic 3D block assembly tasks. PhyBlock integrates a novel four-level cognitive hierarchy assembly task alongside targeted Visual Question Answering (VQA) samples, collectively aimed at evaluating progressive spatial reasoning and fundamental physical comprehension, including object properties, spatial relationships, and holistic scene understanding. PhyBlock includes 2600 block tasks (400 assembly tasks, 2200 VQA tasks) and evaluates models across three key dimensions: partial completion, failure diagnosis, and planning robustness. We benchmark 21 state-of-the-art VLMs, highlighting their strengths and limitations in physically grounded, multi-step planning. Our empirical findings indicate that the performance of VLMs exhibits pronounced limitations in high-level planning and reasoning capabilities, leading to a notable decline in performance for the growing complexity of the tasks. Error analysis reveals persistent difficulties in spatial orientation and dependency reasoning. Surprisingly, chain-of-thought prompting offers minimal improvements, suggesting spatial tasks heavily rely on intuitive model comprehension. We position PhyBlock as a unified testbed to advance embodied reasoning, bridging vision-language understanding and real-world physical problem-solving.
♻ ☆ Synthetic Object Compositions for Scalable and Accurate Learning in Detection, Segmentation, and Grounding
Visual grouping -- operationalized through tasks such as instance segmentation, visual grounding, and object detection -- enables applications ranging from robotic perception to photo editing. These fundamental problems in computer vision are powered by large-scale, painstakingly annotated datasets. Despite their impact, these datasets are costly to build, biased in coverage, and difficult to scale. Synthetic datasets offer a promising alternative but struggle with flexibility, accuracy, and compositional diversity. We introduce Synthetic Object Compositions (SOC), an accurate and scalable data synthesis pipeline via a novel object-centric composition strategy. It composes high-quality synthetic object segments into new images using 3D geometric layout augmentation and camera configuration augmentation with generative harmonization and mask-area-weighted blending, yielding accurate and diverse masks, boxes, and referring expressions. Models trained on just 100K of our synthetic images outperform those trained on larger real datasets (GRIT 20M, V3Det 200K) and synthetic pipelines (Copy-Paste, X-Paste, SynGround, SegGen) by +24-36% -- achieving +10.9 AP on LVIS and +8.4 NAcc on gRefCOCO. Beyond the general open-vocabulary setup, SOC also enables controllable dataset construction for different use cases and boosts performance in both low-data and closed-vocabulary scenarios. Augmenting LVIS and COCO with synthetic object segments delivers strong performance across different real-data scales and yields even greater improvements under extremely limited real-data conditions, including +6.59 AP on a 1% COCO data setup. Furthermore, this controllability enables targeted data generation for intra-class referring, a diagnostic grounding task we propose that requires fine-grained attribute discrimination.
comment: Project website: https://github.com/weikaih04/Synthetic-Detection-Segmentation-Grounding-Data
♻ ☆ VLA-Pruner: Temporal-Aware Dual-Level Visual Token Pruning for Efficient Vision-Language-Action Inference
Vision-Language-Action (VLA) models have shown great promise for embodied AI, yet the heavy computational cost of processing continuous visual streams severely limits their real-time deployment. Token pruning (keeping salient visual tokens and dropping redundant ones) has emerged as an effective approach for accelerating Vision-Language Models (VLMs), offering a solution for efficient VLA. However, these VLM-specific token pruning methods select tokens based solely on semantic salience metrics (e.g., prefill attention), while overlooking the VLA's intrinsic dual-system nature of high-level semantic understanding and low-level action execution. Consequently, these methods bias token retention toward semantic cues, discard critical information for action generation, and significantly degrade VLA performance. To bridge this gap, we propose VLA-Pruner, a versatile plug-and-play VLA-specific token prune method that aligns with the dual-system nature of VLA models and exploits the temporal continuity in robot manipulation. Specifically, VLA-Pruner adopts a dual-level importance criterion for visual token retention: vision-language prefill attention for semantic-level relevance and action decode attention, estimated via temporal smoothing, for action-level importance. Based on this criterion, VLA-Pruner proposes a novel dual-level token selection strategy that adaptively preserves a compact, informative set of visual tokens for both semantic understanding and action execution under given compute budget. Experiments show that VLA-Pruner achieves state-of-the-art performance across multiple VLA architectures and diverse robotic tasks.
♻ ☆ Model Inversion Attack Against Deep Hashing
Deep hashing improves retrieval efficiency through compact binary codes, yet it introduces severe and often overlooked privacy risks. The ability to reconstruct original training data from hash codes could lead to serious threats such as biometric forgery and privacy breaches. However, model inversion attacks specifically targeting deep hashing models remain unexplored, leaving their security implications unexamined. This research gap stems from the inaccessibility of genuine training hash codes and the highly discrete Hamming space, which prevents existing methods from adapting to deep hashing. To address these challenges, we propose DHMI, the first diffusion-based model inversion framework designed for deep hashing. DHMI first clusters an auxiliary dataset to derive semantic hash centers as surrogate anchors. It then introduces a surrogate-guided denoising optimization method that leverages a novel attack metric (fusing classification consistency and hash proximity) to dynamically select candidate samples. A cluster of surrogate models guides the refinement of these candidates, ensuring the generation of high-fidelity and semantically consistent images. Experiments on multiple datasets demonstrate that DHMI successfully reconstructs high-resolution, high-quality images even under the most challenging black-box setting, where no training hash codes are available. Our method outperforms the existing state-of-the-art model inversion attacks in black-box scenarios, confirming both its practical efficacy and the critical privacy risks inherent in deep hashing systems.
♻ ☆ When Bias Pretends to Be Truth: How Spurious Correlations Undermine Hallucination Detection in LLMs
Despite substantial advances, large language models (LLMs) continue to exhibit hallucinations, generating plausible yet incorrect responses. In this paper, we highlight a critical yet previously underexplored class of hallucinations driven by spurious correlations -- superficial but statistically prominent associations between features (e.g., surnames) and attributes (e.g., nationality) present in the training data. We demonstrate that these spurious correlations induce hallucinations that are confidently generated, immune to model scaling, evade current detection methods, and persist even after refusal fine-tuning. Through systematically controlled synthetic experiments and empirical evaluations on state-of-the-art open-source and proprietary LLMs (including GPT-5), we show that existing hallucination detection methods, such as confidence-based filtering and inner-state probing, fundamentally fail in the presence of spurious correlations. Our theoretical analysis further elucidates why these statistical biases intrinsically undermine confidence-based detection techniques. Our findings thus emphasize the urgent need for new approaches explicitly designed to address hallucinations caused by spurious correlations.
♻ ☆ Sionna RT: Technical Report
Sionna is an open-source, GPU-accelerated library that, as of version 0.14, incorporates a ray tracer, Sionna RT, for simulating radio wave propagation. A unique feature of Sionna RT is differentiability, enabling the calculation of gradients for the channel impulse responses (CIRs), radio maps, and other related metrics with respect to system and environmental parameters, such as material properties, antenna patterns, and array geometries. The release of Sionna 1.0 provides a complete overhaul of the ray tracer, significantly improving its speed, memory efficiency, and extensibility. This document details the algorithms employed by Sionna RT to simulate radio wave propagation efficiently, while also addressing their current limitations. Given that the computation of CIRs and radio maps requires distinct algorithms, these are detailed in separate sections. For CIRs, Sionna RT integrates shooting and bouncing of rays (SBR) with the image method and uses a hashing-based mechanism to efficiently eliminate duplicate paths. Radio maps are computed using a purely SBR-based approach.
♻ ☆ How LLMs Learn to Reason: A Complex Network Perspective ICLR 2026
Training large language models with Reinforcement Learning with Verifiable Rewards (RLVR) exhibits a set of distinctive and puzzling behaviors that remain poorly understood, including a two-stage learning curve, a V-shaped response-length trajectory, and a pronounced vulnerability to catastrophic forgetting. In this work, we propose that these behaviors are emergent collective phenomena governed not by neural implementation details, but by the topological evolution of the latent reasoning graph in semantic space. By demonstrating a dynamical isomorphism between a 1.5B-parameter LLM and a minimal Concept Network Model (CoNet), we trace the causal source to the self-organization of a sparse concept web pinned to an average degree of two. This geometric perspective provides a unified physical explanation for the observed anomalies: the V-shaped trajectory tracks the evolution from parallel local skill optimization to global network integration; catastrophic forgetting stems from the topological disconnection of critical ``trunk'' edges; and policy collapse arises from the accumulation of sequential transitions at the web's leaf nodes, where broad exploration abruptly freezes into rigid, high-reward trajectories. Identifying a ``maximally frustrated state'' at the transition between learning stages, we propose Annealed-RLVR, a principled algorithm that injects a targeted SFT ``heating'' step to resolve this topological bottleneck. Experiments confirm that this theory-driven intervention outperforms standard RLVR on both in-distribution and out-of-distribution benchmarks (including Minerva and AIME). By recasting RLVR from black-box optimization into a predictable process of structural self-organization, our work provides a new physical intuition for engineering the emergent reasoning capabilities of future AI systems.
comment: 24 pages, 11 figures, 1 table, under review as a conference paper at ICLR 2026
♻ ☆ MiniLLM: Knowledge Distillation of Large Language Models ICLR 2024
Knowledge Distillation (KD) is a promising technique for reducing the high computational demand of large language models (LLMs). However, previous KD methods are primarily applied to white-box classification models or training small models to imitate black-box model APIs like ChatGPT. How to effectively distill the knowledge of white-box LLMs into small models is still under-explored, which becomes more important with the prosperity of open-source LLMs. In this work, we propose a KD approach that distills LLMs into smaller language models. We first replace the forward Kullback-Leibler divergence (KLD) objective in the standard KD approaches with reverse KLD, which is more suitable for KD on generative language models, to prevent the student model from overestimating the low-probability regions of the teacher distribution. Then, we derive an effective on-policy optimization approach to learn this objective. The student models are named MiniLLM. Extensive experiments in the instruction-following setting show that MiniLLM generates more precise responses with higher overall quality, lower exposure bias, better calibration, and higher long-text generation performance than the baselines. Our method is scalable for different model families with 120M to 13B parameters. Our code, data, and model checkpoints can be found in https://github.com/microsoft/LMOps/tree/main/minillm.
comment: Published as a conference paper in ICLR 2024
♻ ☆ From Hypothesis to Publication: A Comprehensive Survey of AI-Driven Research Support Systems EMNLP 2025
Research is a fundamental process driving the advancement of human civilization, yet it demands substantial time and effort from researchers. In recent years, the rapid development of artificial intelligence (AI) technologies has inspired researchers to explore how AI can accelerate and enhance research. To monitor relevant advancements, this paper presents a systematic review of the progress in this domain. Specifically, we organize the relevant studies into three main categories: hypothesis formulation, hypothesis validation, and manuscript publication. Hypothesis formulation involves knowledge synthesis and hypothesis generation. Hypothesis validation includes the verification of scientific claims, theorem proving, and experiment validation. Manuscript publication encompasses manuscript writing and the peer review process. Furthermore, we identify and discuss the current challenges faced in these areas, as well as potential future directions for research. Finally, we also offer a comprehensive overview of existing benchmarks and tools across various domains that support the integration of AI into the research process. We hope this paper serves as an introduction for beginners and fosters future research. Resources have been made publicly available at https://github.com/zkzhou126/AI-for-Research.
comment: Accepted to EMNLP 2025
♻ ☆ RTMol: Rethinking Molecule-text Alignment in a Round-trip View
Aligning molecular sequence representations (e.g., SMILES notations) with textual descriptions is critical for applications spanning drug discovery, materials design, and automated chemical literature analysis. Existing methodologies typically treat molecular captioning (molecule-to-text) and text-based molecular design (text-to-molecule) as separate tasks, relying on supervised fine-tuning or contrastive learning pipelines. These approaches face three key limitations: (i) conventional metrics like BLEU prioritize linguistic fluency over chemical accuracy, (ii) training datasets frequently contain chemically ambiguous narratives with incomplete specifications, and (iii) independent optimization of generation directions leads to bidirectional inconsistency. To address these issues, we propose RTMol, a bidirectional alignment framework that unifies molecular captioning and text-to-SMILES generation through self-supervised round-trip learning. The framework introduces novel round-trip evaluation metrics and enables unsupervised training for molecular captioning without requiring paired molecule-text corpora. Experiments demonstrate that RTMol enhances bidirectional alignment performance by up to 47% across various LLMs, establishing an effective paradigm for joint molecule-text understanding and generation.
♻ ☆ A Reinforcement Learning-Based Telematic Routing Protocol for the Internet of Underwater Things
The Internet of Underwater Things (IoUT) has a lot of problems, like low bandwidth, high latency, mobility, and not enough energy. Routing protocols that were made for land-based networks, like RPL, don't work well in these underwater settings. This paper talks about RL-RPL-UA, a new routing protocol that uses reinforcement learning to make things work better in underwater situations. Each node has a small RL agent that picks the best parent node depending on local data such the link quality, buffer level, packet delivery ratio, and remaining energy. RL-RPL-UA works with all standard RPL messages and adds a dynamic objective function to help people make decisions in real time. Aqua-Sim simulations demonstrate that RL-RPL-UA boosts packet delivery by up to 9.2%, uses 14.8% less energy per packet, and adds 80 seconds to the network's lifetime compared to previous approaches. These results show that RL-RPL-UA is a potential and energy-efficient way to route data in underwater networks.
comment: 8 Pages, 10 Figures, 2 Tables
♻ ☆ Aligning Vision to Language: Annotation-Free Multimodal Knowledge Graph Construction for Enhanced LLMs Reasoning ICCV 2025
Multimodal reasoning in Large Language Models (LLMs) struggles with incomplete knowledge and hallucination artifacts, challenges that textual Knowledge Graphs (KGs) only partially mitigate due to their modality isolation. While Multimodal Knowledge Graphs (MMKGs) promise enhanced cross-modal understanding, their practical construction is impeded by semantic narrowness of manual text annotations and inherent noise in visual-semantic entity linkages. In this paper, we propose Vision-align-to-Language integrated Knowledge Graph (VaLiK), a novel approach for constructing MMKGs that enhances LLMs reasoning through cross-modal information supplementation. Specifically, we cascade pre-trained Vision-Language Models (VLMs) to align image features with text, transforming them into descriptions that encapsulate image-specific information. Furthermore, we developed a cross-modal similarity verification mechanism to quantify semantic consistency, effectively filtering out noise introduced during feature alignment. Even without manually annotated image captions, the refined descriptions alone suffice to construct the MMKG. Compared to conventional MMKGs construction paradigms, our approach achieves substantial storage efficiency gains while maintaining direct entity-to-image linkage capability. Experimental results on multimodal reasoning tasks demonstrate that LLMs augmented with VaLiK outperform previous state-of-the-art models. Our code is published at https://github.com/Wings-Of-Disaster/VaLiK.
comment: 14 pages, 7 figures, 6 tables; Accepted by ICCV 2025
♻ ☆ Structured Debate Improves Corporate Credit Reasoning in Financial AI
Despite advances in financial AI, the automation of evidence-based reasoning remains unresolved in corporate credit assessment, where qualitative non-financial indicators exert decisive influence on loan repayment outcomes yet resist formalization. Existing approaches focus predominantly on numerical prediction and provide limited support for the interpretive judgments required in professional loan evaluation. This study develops and evaluates two operational large language model (LLM)-based systems designed to generate structured reasoning from non-financial evidence. The first is a non-adversarial single-agent system (NAS) that produces bidirectional analysis through a single-pass reasoning pipeline. The second is a debate-based multi-agent system (KPD-MADS) that operationalizes adversarial verification through a ten-step structured interaction protocol grounded in Karl Popper's critical dialogue framework. Both systems were applied to three real corporate cases and evaluated by experienced credit risk professionals. Compared to manual expert reporting, both systems achieved substantial productivity gains (NAS: 11.55 s per case; KPD-MADS: 91.97 s; human baseline: 1920 s). The KPD-MADS demonstrated superior reasoning quality, receiving higher median ratings in explanatory adequacy (4.0 vs. 3.0), practical applicability (4.0 vs. 3.0), and usability (62.5 vs. 52.5). These findings show that structured multi-agent interaction can enhance reasoning rigor and interpretability in financial AI, advancing scalable and defensible automation in corporate credit assessment.
comment: 18 pages, 4 figures, 2 algorithms, 2 tables, 4 appendices
♻ ☆ Emergence of psychopathological computations in large language models
Can large language models (LLMs) instantiate computations of psychopathology? An effective approach to the question hinges on addressing two factors. First, for conceptual validity, we require a general and computational account of psychopathology that is applicable to computational entities without biological embodiment or subjective experience. Second, psychopathological computations, derived from the adapted theory, need to be empirically identified within the LLM's internal processing. Thus, we establish a computational-theoretical framework to provide an account of psychopathology applicable to LLMs. Based on the framework, we conduct experiments demonstrating two key claims: first, that the computational structure of psychopathology exists in LLMs; and second, that executing this computational structure results in psychopathological functions. We further observe that as LLM size increases, the computational structure of psychopathology becomes denser and that the functions become more effective. Taken together, the empirical results corroborate our hypothesis that network-theoretic computations of psychopathology have already emerged in LLMs. This suggests that certain LLM behaviors mirroring psychopathology may not be a superficial mimicry but a feature of their internal processing. Our work shows the promise of developing a new powerful in silico model of psychopathology and also alludes to the possibility of safety threat from the AI systems with psychopathological behaviors in the near future.
comment: pre-print
♻ ☆ MonoKAN: Certified Monotonic Kolmogorov-Arnold Network
Artificial Neural Networks (ANNs) have significantly advanced various fields by effectively recognizing patterns and solving complex problems. Despite these advancements, their interpretability remains a critical challenge, especially in applications where transparency and accountability are essential. To address this, explainable AI (XAI) has made progress in demystifying ANNs, yet interpretability alone is often insufficient. In certain applications, model predictions must align with expert-imposed requirements, sometimes exemplified by partial monotonicity constraints. While monotonic approaches are found in the literature for traditional Multi-layer Perceptrons (MLPs), they still face difficulties in achieving both interpretability and certified partial monotonicity. Recently, the Kolmogorov-Arnold Network (KAN) architecture, based on learnable activation functions parametrized as splines, has been proposed as a more interpretable alternative to MLPs. Building on this, we introduce a novel ANN architecture called MonoKAN, which is based on the KAN architecture and achieves certified partial monotonicity while enhancing interpretability. To achieve this, we employ cubic Hermite splines, which guarantee monotonicity through a set of straightforward conditions. Additionally, by using positive weights in the linear combinations of these splines, we ensure that the network preserves the monotonic relationships between input and output. Our experiments demonstrate that MonoKAN not only enhances interpretability but also improves predictive performance across the majority of benchmarks, outperforming state-of-the-art monotonic MLP approaches.
comment: 18 pages, 8 figures
♻ ☆ Supervised Contrastive Learning for Few-Shot AI-Generated Image Detection and Attribution
The rapid advancement of generative artificial intelligence has enabled the creation of synthetic images that are increasingly indistinguishable from authentic content, posing significant challenges for digital media integrity. This problem is compounded by the accelerated release cycle of novel generative models, which renders traditional detection approaches (reliant on periodic retraining) computationally infeasible and operationally impractical. This work proposes a novel two-stage detection framework designed to address the generalization challenge inherent in synthetic image detection. The first stage employs a vision deep learning model trained via supervised contrastive learning to extract discriminative embeddings from input imagery. Critically, this model was trained on a strategically partitioned subset of available generators, with specific architectures withheld from training to rigorously ablate cross-generator generalization capabilities. The second stage utilizes a k-nearest neighbors (k-NN) classifier operating on the learned embedding space, trained in a few-shot learning paradigm incorporating limited samples from previously unseen test generators. With merely 150 images per class in the few-shot learning regime, which are easily obtainable from current generation models, the proposed framework achieves an average detection accuracy of 91.3%, representing a 5.2 percentage point improvement over existing approaches . For the source attribution task, the proposed approach obtains improvements of of 14.70% and 4.27% in AUC and OSCR respectively on an open set classification context, marking a significant advancement toward robust, scalable forensic attribution systems capable of adapting to the evolving generative AI landscape without requiring exhaustive retraining protocols.
comment: 17 pages, 6 figures, 6 tables
♻ ☆ Multi-Objective Reinforcement Learning for Water Management AAMAS 2025
Many real-world problems (e.g., resource management, autonomous driving, drug discovery) require optimizing multiple, conflicting objectives. Multi-objective reinforcement learning (MORL) extends classic reinforcement learning to handle multiple objectives simultaneously, yielding a set of policies that capture various trade-offs. However, the MORL field lacks complex, realistic environments and benchmarks. We introduce a water resource (Nile river basin) management case study and model it as a MORL environment. We then benchmark existing MORL algorithms on this task. Our results show that specialized water management methods outperform state-of-the-art MORL approaches, underscoring the scalability challenges MORL algorithms face in real-world scenarios.
comment: Accepted to AAMAS 2025
♻ ☆ Efficient Reinforcement Learning for Large Language Models with Intrinsic Exploration
Reinforcement learning with verifiable rewards (RLVR) has improved the reasoning ability of large language models, yet training remains costly because many rollouts contribute little to optimization, considering the amount of computation required. This study investigates how simply leveraging intrinsic data properties, almost free benefit during training, can improve data efficiency for RLVR. We propose PREPO with two complementary components. First, we adopt prompt perplexity as an indicator of model adaptability in learning, enabling the model to progress from well-understood contexts to more challenging ones. Second, we amplify the discrepancy among the rollouts by differentiating their relative entropy, and prioritize sequences that exhibit a higher degree of exploration. Together, these mechanisms reduce rollout demand while preserving competitive performance. On the Qwen and Llama models, PREPO achieves effective results on mathematical reasoning benchmarks with up to 3 times fewer rollouts than the baselines. Beyond empirical gains, we provide theoretical and in-depth analyses explaining the underlying rationale of our method to improve the data efficiency of RLVR.
♻ ☆ CharCom: Composable Identity Control for Multi-Character Story Illustration ACM MM
Ensuring character identity consistency across varying prompts remains a fundamental limitation in diffusion-based text-to-image generation. We propose CharCom, a modular and parameter-efficient framework that achieves character-consistent story illustration through composable LoRA adapters, enabling efficient per-character customization without retraining the base model. Built on a frozen diffusion backbone, CharCom dynamically composes adapters at inference using prompt-aware control. Experiments on multi-scene narratives demonstrate that CharCom significantly enhances character fidelity, semantic alignment, and temporal coherence. It remains robust in crowded scenes and enables scalable multi-character generation with minimal overhead, making it well-suited for real-world applications such as story illustration and animation.
comment: Accepted by ACM MMAsia 2025
♻ ☆ GhostEI-Bench: Do Mobile Agents Resilience to Environmental Injection in Dynamic On-Device Environments?
Vision-Language Models (VLMs) are increasingly deployed as autonomous agents to navigate mobile graphical user interfaces (GUIs). Operating in dynamic on-device ecosystems, which include notifications, pop-ups, and inter-app interactions, exposes them to a unique and underexplored threat vector: environmental injection. Unlike prompt-based attacks that manipulate textual instructions, environmental injection corrupts an agent's visual perception by inserting adversarial UI elements (for example, deceptive overlays or spoofed notifications) directly into the GUI. This bypasses textual safeguards and can derail execution, causing privacy leakage, financial loss, or irreversible device compromise. To systematically evaluate this threat, we introduce GhostEI-Bench, the first benchmark for assessing mobile agents under environmental injection attacks within dynamic, executable environments. Moving beyond static image-based assessments, GhostEI-Bench injects adversarial events into realistic application workflows inside fully operational Android emulators and evaluates performance across critical risk scenarios. We further propose a judge-LLM protocol that conducts fine-grained failure analysis by reviewing the agent's action trajectory alongside the corresponding screenshot sequence, pinpointing failure in perception, recognition, or reasoning. Comprehensive experiments on state-of-the-art agents reveal pronounced vulnerability to deceptive environmental cues: current models systematically fail to perceive and reason about manipulated UIs. GhostEI-Bench provides a framework for quantifying and mitigating this emerging threat, paving the way toward more robust and secure embodied agents.
♻ ☆ Fast LLM Post-training via Decoupled and Best-of-N Speculation
Rollout dominates the training time in large language model (LLM) post-training, where the trained model is used to generate tokens given a batch of prompts. SpecActor achieves fast rollout with speculative decoding that deploys a fast path (e.g., a smaller model) to accelerate the unparallelizable generation, while the correctness is guaranteed by fast parallel verification of the outputs with the original model. SpecActor addresses two foundational challenges in speculative rollout by (1) a \emph{dynamic decoupled speculation} execution method that maximizes the GPU computational efficiency to realize speedup for large-batch execution -- a configuration common in training but unfriendly to speculative execution and (2) a \emph{dynamic Best-of-N speculation} method that selects and combines different drafting methods according to the rollout progress. It substantially improves the speculation accuracy even when the best drafting method is unknown a priori, meanwhile without requiring adding extra computation resources. {\sys} is {1.7}\,$\times$ faster than veRL in end-to-end training, and is {1.3--1.5}\,$\times$ faster compared to baselines with speculative decoding.
♻ ☆ You Only Forward Once: An Efficient Compositional Judging Paradigm
Multimodal large language models (MLLMs) show strong potential as judges. However, existing approaches face a fundamental trade-off: adapting MLLMs to output a single score misaligns with the generative nature of MLLMs and limits fine-grained requirement understanding, whereas autoregressively generating judging analyses is prohibitively slow in high-throughput settings. Observing that judgment reduces to verifying whether inputs satisfy a set of structured requirements, we propose YOFO, a template-conditioned method that judges all requirements in a single forward pass. Built on an autoregressive model, YOFO accepts a structured requirement template and, in one inference step, produces a binary yes/no decision for each requirement by reading the logits of the final token associated with that requirement. This design yields orders-of-magnitude speedups while preserving interpretability. Extensive experiments show that YOFO not only achieves state-of-the-art results on standard recommendation datasets, but also supports dependency-aware analysis -- where subsequent judgments are conditioned on previous ones -- and further benefits from post-hoc CoT.
♻ ☆ KRAL: Knowledge and Reasoning Augmented Learning for LLM-assisted Clinical Antimicrobial Therapy
Clinical antimicrobial therapy requires the dynamic integration of pathogen profiles,host factors, pharmacological properties of antimicrobials,and the severity of infection. This complexity imposes fundamental limitations on the applicability of Large Language Models (LLMs) in high-stakes clinical decision-making including knowledge gaps, data privacy concerns, high deployment costs, and limited reasoning capabilities. To address these challenges, we propose KRAL (Knowledge and Reasoning Augmented Learning), a low-cost, scalable, privacy-preserving paradigm that leverages teacher-model reasoning to automatically distill knowledge and reasoning trajectories via answer-to-question reverse generation, employs heuristic learning for semi-supervised data augmentation (reducing manual annotation requirements by approximately 80%), and utilizes agentic reinforcement learning to jointly enhance medical knowledge and reasoning while optimizing computational and memory efficiency. A hierarchical evaluation employing diverse teacher-model proxies reduces assessment costs, while modular interface design facilitates seamless system updates. Experimental results demonstrate that KRAL significantly outperforms traditional Retrieval-Augmented Generation (RAG) and Supervised Fine-Tuning (SFT) methods. It improves knowledge question-answering capability (Accuracy@1 on the external open-source benchmark MEDQA increased by 1.8% vs. SFT and 3.6% vs. RAG) and reasoning capability (Pass@1 on the external benchmark PUMCH Antimicrobial increased by 27% vs. SFT and 27.2% vs. RAG), achieved at about 20% of SFT's long-term training costs. This establishes KRAL as an effective solution for enhancing local LLMs' clinical diagnostic capabilities, enabling low-cost, high-safety deployment in complex medical decision support.
♻ ☆ MSRS: Adaptive Multi-Subspace Representation Steering for Attribute Alignment in Large Language Models
Activation steering offers a promising approach to controlling the behavior of Large Language Models by directly manipulating their internal activations. However, most existing methods struggle to jointly steer multiple attributes, often resulting in interference and undesirable trade-offs. To address this challenge, we propose Multi-Subspace Representation Steering (MSRS), a novel framework for effective multi-attribute steering via subspace representation fine-tuning. MSRS reduces inter-attribute interference by allocating orthogonal subspaces to each attribute, isolating their influence within the model's representation space. MSRS also incorporates a hybrid subspace composition strategy: it combines attribute-specific subspaces for unique steering directions with a shared subspace for common steering directions. A dynamic weighting function learns to efficiently integrate these components for precise control. During inference, MSRS introduces a token-level steering mechanism that dynamically identifies and intervenes on the most semantically relevant tokens, enabling fine-grained behavioral modulation. Experimental results show that MSRS significantly reduces attribute conflicts, surpasses existing methods across a range of attributes, and generalizes effectively to diverse downstream tasks.
♻ ☆ ResearStudio: A Human-Intervenable Framework for Building Controllable Deep-Research Agents EMNLP 2025
Current deep-research agents run in a ''fire-and-forget'' mode: once started, they give users no way to fix errors or add expert knowledge during execution. We present ResearStudio, the first open-source framework that places real-time human control at its core. The system follows a Collaborative Workshop design. A hierarchical Planner-Executor writes every step to a live ''plan-as-document,'' a fast communication layer streams each action, file change, and tool call to a web interface. At any moment, the user can pause the run, edit the plan or code, run custom commands, and resume -- switching smoothly between AI-led, human-assisted and human-led, AI-assisted modes. In fully autonomous mode, ResearStudio achieves state-of-the-art results on the GAIA benchmark, surpassing systems like OpenAI's DeepResearch and Manus. These results show that strong automated performance and fine-grained human control can coexist. The full code, protocol, and evaluation scripts are available at https://github.com/ResearAI/ResearStudio. We will continue to update the repository to encourage further work on safe and controllable research agents. Our live demo is publicly accessible at http://ai-researcher.net:3000/. We support the development of DeepScientist, which can be accessed at https://github.com/ResearAI/DeepScientist.
comment: EMNLP 2025 Demo, Oral
♻ ☆ AV-Lip-Sync+: Leveraging AV-HuBERT to Exploit Multimodal Inconsistency for Deepfake Detection of Frontal Face Videos
Multimodal manipulations (also known as audio-visual deepfakes) make it difficult for unimodal deepfake detectors to detect forgeries in multimedia content. To avoid the spread of false propaganda and fake news, timely detection is crucial. The damage to either modality (i.e., visual or audio) can only be discovered through multimodal models that can exploit both pieces of information simultaneously. However, previous methods mainly adopt unimodal video forensics and use supervised pre-training for forgery detection. This study proposes a new method based on a multimodal self-supervised-learning (SSL) feature extractor to exploit inconsistency between audio and visual modalities for multimodal video forgery detection. We use the transformer-based SSL pre-trained Audio-Visual HuBERT (AV-HuBERT) model as a visual and acoustic feature extractor and a multi-scale temporal convolutional neural network to capture the temporal correlation between the audio and visual modalities. Since AV-HuBERT only extracts visual features from the lip region, we also adopt another transformer-based video model to exploit facial features and capture spatial and temporal artifacts caused during the deepfake generation process. Experimental results show that our model outperforms all existing models and achieves new state-of-the-art performance on the FakeAVCeleb and DeepfakeTIMIT datasets.
♻ ☆ T2I-RiskyPrompt: A Benchmark for Safety Evaluation, Attack, and Defense on Text-to-Image Model AAAI 2026
Using risky text prompts, such as pornography and violent prompts, to test the safety of text-to-image (T2I) models is a critical task. However, existing risky prompt datasets are limited in three key areas: 1) limited risky categories, 2) coarse-grained annotation, and 3) low effectiveness. To address these limitations, we introduce T2I-RiskyPrompt, a comprehensive benchmark designed for evaluating safety-related tasks in T2I models. Specifically, we first develop a hierarchical risk taxonomy, which consists of 6 primary categories and 14 fine-grained subcategories. Building upon this taxonomy, we construct a pipeline to collect and annotate risky prompts. Finally, we obtain 6,432 effective risky prompts, where each prompt is annotated with both hierarchical category labels and detailed risk reasons. Moreover, to facilitate the evaluation, we propose a reason-driven risky image detection method that explicitly aligns the MLLM with safety annotations. Based on T2I-RiskyPrompt, we conduct a comprehensive evaluation of eight T2I models, nine defense methods, five safety filters, and five attack strategies, offering nine key insights into the strengths and limitations of T2I model safety. Finally, we discuss potential applications of T2I-RiskyPrompt across various research fields. The dataset and code are provided in https://github.com/datar001/T2I-RiskyPrompt.
comment: AAAI 2026
♻ ☆ SALT: Steering Activations towards Leakage-free Thinking in Chain of Thought
As Large Language Models (LLMs) evolve into personal assistants with access to sensitive user data, they face a critical privacy challenge: while prior work has addressed output-level privacy, recent findings reveal that LLMs often leak private information through their internal reasoning processes, violating contextual privacy expectations. These leaky thoughts occur when models inadvertently expose sensitive details in their reasoning traces, even when final outputs appear safe. The challenge lies in preventing such leakage without compromising the model's reasoning capabilities, requiring a delicate balance between privacy and utility. We introduce Steering Activations towards Leakage-free Thinking (SALT), a lightweight test-time intervention that mitigates privacy leakage in model's Chain of Thought (CoT) by injecting targeted steering vectors into hidden state. We identify the high-leakage layers responsible for this behavior. Through experiments across multiple LLMs, we demonstrate that SALT achieves reductions including $18.2\%$ reduction in CPL on QwQ-32B, $17.9\%$ reduction in CPL on Llama-3.1-8B, and $31.2\%$ reduction in CPL on Deepseek in contextual privacy leakage dataset AirGapAgent-R while maintaining comparable task performance and utility. Our work establishes SALT as a practical approach for test-time privacy protection in reasoning-capable language models, offering a path toward safer deployment of LLM-based personal agents.
♻ ☆ Reason2Attack: Jailbreaking Text-to-Image Models via LLM Reasoning
Text-to-Image(T2I) models typically deploy safety filters to prevent the generation of sensitive images. Unfortunately, recent jailbreaking attack methods manually design instructions for the LLM to generate adversarial prompts, which effectively bypass safety filters while producing sensitive images, exposing safety vulnerabilities of T2I models. However, due to the LLM's limited understanding of the T2I model and its safety filters, existing methods require numerous queries to achieve a successful attack, limiting their practical applicability. To address this issue, we propose Reason2Attack(R2A), which aims to enhance the LLM's reasoning capabilities in generating adversarial prompts by incorporating the jailbreaking attack into the post-training process of the LLM. Specifically, we first propose a CoT example synthesis pipeline based on Frame Semantics, which generates adversarial prompts by identifying related terms and corresponding context illustrations. Using CoT examples generated by the pipeline, we fine-tune the LLM to understand the reasoning path and format the output structure. Subsequently, we incorporate the jailbreaking attack task into the reinforcement learning process of the LLM and design an attack process reward that considers prompt length, prompt stealthiness, and prompt effectiveness, aiming to further enhance reasoning accuracy. Extensive experiments on various T2I models show that R2A achieves a better attack success ratio while requiring fewer queries than baselines. Moreover, our adversarial prompts demonstrate strong attack transferability across both open-source and commercial T2I models.
comment: Noted that This paper includes model-generated content that may contain offensive or distressing material
♻ ☆ Text-guided multi-property molecular optimization with a diffusion language model
Molecular optimization (MO) is a crucial stage in drug discovery in which task-oriented generated molecules are optimized to meet practical industrial requirements. Existing mainstream MO approaches primarily utilize external property predictors to guide iterative property optimization. However, learning all molecular samples in the vast chemical space is unrealistic for predictors. As a result, errors and noise are inevitably introduced during property prediction due to the nature of approximation. This leads to discrepancy accumulation, generalization reduction and suboptimal molecular candidates. In this paper, we propose a text-guided multi-property molecular optimization method utilizing transformer-based diffusion language model (TransDLM). TransDLM leverages standardized chemical nomenclature as semantic representations of molecules and implicitly embeds property requirements into textual descriptions, thereby mitigating error propagation during diffusion process. By fusing physically and chemically detailed textual semantics with specialized molecular representations, TransDLM effectively integrates diverse information sources to guide precise optimization, which enhances the model's ability to balance structural retention and property enhancement. Additionally, the success of a case study further demonstrates TransDLM's ability to solve practical problems. Experimentally, our approach surpasses state-of-the-art methods in maintaining molecular structural similarity and enhancing chemical properties on the benchmark dataset.
♻ ☆ AgriChrono: A Multi-modal Dataset Capturing Crop Growth and Lighting Variability with a Field Robot
Advances in AI and Robotics have accelerated significant initiatives in agriculture, particularly in the areas of robot navigation and 3D digital twin creation. A significant bottleneck impeding this progress is the critical lack of "in-the-wild" datasets that capture the full complexities of real farmland, including non-rigid motion from wind, drastic illumination variance, and morphological changes resulting from growth. This data gap fundamentally limits research on robust AI models for autonomous field navigation and scene-level dynamic 3D reconstruction. In this paper, we present AgriChrono, a modular robotic data collection platform and multi-modal dataset designed to capture these dynamic farmland conditions. Our platform integrates multiple sensors, enabling remote, time-synchronized acquisition of RGB, Depth, LiDAR, IMU, and Pose data for efficient and repeatable long-term data collection in real-world agricultural environments. We successfully collected 18TB of data over one month, documenting the entire growth cycle of Canola under diverse illumination conditions. We benchmark state-of-the-art 3D reconstruction methods on AgriChrono, revealing the profound challenge of reconstructing high-fidelity, dynamic non-rigid scenes in such farmland settings. This benchmark validates AgriChrono as a critical asset for advancing model generalization, and its public release is expected to significantly accelerate research and development in precision agriculture. The code and dataset are publicly available at: https://github.com/StructuresComp/agri-chrono
♻ ☆ Multi-Agent Collaborative Reward Design for Enhancing Reasoning in Reinforcement Learning
We present CRM (Multi-Agent Collaborative Reward Model), a framework that replaces a single black-box reward model with a coordinated team of specialist evaluators to improve robustness and interpretability in RLHF. Conventional reward models struggle to jointly optimize multiple, sometimes conflicting, preference dimensions (e.g., factuality, helpfulness, safety) and offer limited transparency into why a score is assigned. CRM addresses these issues by decomposing preference evaluation into domain-specific agents that each produce partial signals, alongside global evaluators such as ranker-based and embedding-similarity rewards. A centralized aggregator fuses these signals at each timestep, balancing factors like step-wise correctness, multi-agent agreement, and repetition penalties, yielding a single training reward compatible with standard RL pipelines. The policy is optimized with advantage-based updates (e.g., GAE), while a value model regresses to the aggregated reward, enabling multi-perspective reward shaping without requiring additional human annotations beyond those used to train the evaluators. To support training and assessment, we introduce rewardBench, a benchmark and training suite aligned with the collaborative structure of CRM. Together, CRM and rewardBench provide a practical, modular path to more transparent reward modeling and more stable optimization.
♻ ☆ Genomic Next-Token Predictors are In-Context Learners
In-context learning (ICL) -- the capacity of a model to infer and apply abstract patterns from examples provided within its input -- has been extensively studied in large language models trained for next-token prediction on human text. In fact, prior work often attributes this emergent behavior to distinctive statistical properties in human language. This raises a fundamental question: can ICL arise organically in other sequence domains purely through large-scale predictive training? To explore this, we turn to genomic sequences, an alternative symbolic domain rich in statistical structure. Specifically, we study the Evo2 genomic model, trained predominantly on next-nucleotide (A/T/C/G) prediction, at a scale comparable to mid-sized LLMs. We develop a controlled experimental framework comprising symbolic reasoning tasks instantiated in both linguistic and genomic forms, enabling direct comparison of ICL across genomic and linguistic models. Our results show that genomic models, like their linguistic counterparts, exhibit log-linear gains in pattern induction as the number of in-context demonstrations increases. To the best of our knowledge, this is the first evidence of organically emergent ICL in genomic sequences, supporting the hypothesis that ICL arises as a consequence of large-scale predictive modeling over rich data. These findings extend emergent meta-learning beyond language, pointing toward a unified, modality-agnostic view of in-context learning.
♻ ☆ Bridging the Semantic Gap: Contrastive Rewards for Multilingual Text-to-SQL with GRPO
Current Text-to-SQL methods are evaluated and only focused on executable queries, overlooking the semantic alignment challenge -- both in terms of the semantic meaning of the query and the correctness of the execution results. Even execution accuracy itself shows significant drops when moving from English to other languages, with an average decline of 6 percentage points across non-English languages. We address these challenges by presenting a new framework that combines Group Relative Policy Optimization (GRPO) within a multilingual contrastive reward signal to enhance both task efficiency and semantic accuracy in Text-to-SQL systems in cross-lingual scenarios. Our method teaches models to obtain better correspondence between SQL generation and user intent by combining a reward signal based on semantic similarity. On the seven-language MultiSpider dataset, fine-tuning the LLaMA-3-3B model with GRPO improved the execution accuracy up to 87.4 percent (+26 pp over zero-shot) and semantic accuracy up to 52.29 percent (+32.86 pp). Adding our contrastive reward signal in the GRPO framework further improved the average semantic accuracy to 59.14 percent (+6.85 pp, up to +10 pp for Vietnamese). Our experiments showcase that a smaller, parameter-efficient 3B LLaMA model fine-tuned with our contrastive reward signal outperforms a much larger zero-shot 8B LLaMA model, with an uplift of 7.43 pp in execution accuracy (from 81.43 percent on the 8B model to 88.86 percent on the 3B model), and nearly matches its semantic accuracy (59.14 percent vs. 68.57 percent) -- all using just 3,000 reinforcement learning training examples. These results demonstrate how we can improve the performance of Text-to-SQL systems with contrastive rewards for directed semantic alignment, without requiring large-scale training datasets.
comment: 20th International Workshop on Semantic and Social Media Adaptation & Personalization
♻ ☆ Comparative Study of UNet-based Architectures for Liver Tumor Segmentation in Multi-Phase Contrast-Enhanced Computed Tomography
Segmentation of liver structures in multi-phase contrast-enhanced computed tomography (CECT) plays a crucial role in computer-aided diagnosis and treatment planning for liver diseases, including tumor detection. In this study, we investigate the performance of UNet-based architectures for liver tumor segmentation, starting from the original UNet and extending to UNet3+ with various backbone networks. We evaluate ResNet, Transformer-based, and State-space (Mamba) backbones, all initialized with pretrained weights. Surprisingly, despite the advances in modern architecture, ResNet-based models consistently outperform Transformer- and Mamba-based alternatives across multiple evaluation metrics. To further improve segmentation quality, we introduce attention mechanisms into the backbone and observe that incorporating the Convolutional Block Attention Module (CBAM) yields the best performance. ResNetUNet3+ with CBAM module not only produced the best overlap metrics with a Dice score of 0.755 and IoU of 0.662, but also achieved the most precise boundary delineation, evidenced by the lowest HD95 distance of 77.911. The model's superiority was further cemented by its leading overall accuracy of 0.925 and specificity of 0.926, showcasing its robust capability in accurately identifying both lesion and healthy tissue. To further enhance interpretability, Grad-CAM visualizations were employed to highlight the region's most influential predictions, providing insights into its decision-making process. These findings demonstrate that classical ResNet architecture, when combined with modern attention modules, remain highly competitive for medical image segmentation tasks, offering a promising direction for liver tumor detection in clinical practice.
comment: 16 pages, 9 figures
♻ ☆ LLM-DSE: Searching Accelerator Parameters with LLM Agents
Even though high-level synthesis (HLS) tools mitigate the challenges of programming domain-specific accelerators (DSAs) by raising the abstraction level, optimizing hardware directive parameters remains a significant hurdle. Existing heuristic and learning-based methods struggle with adaptability and sample efficiency. We present LLM-DSE, a multi-agent framework designed specifically for optimizing HLS directives. Combining LLM with design space exploration (DSE), our explorer coordinates four agents: Router, Specialists, Arbitrator, and Critic. These multi-agent components interact with various tools to accelerate the optimization process. LLM-DSE leverages essential domain knowledge to identify efficient parameter combinations while maintaining adaptability through verbal learning from online interactions. Evaluations on the HLSyn dataset demonstrate that LLM-DSE achieves substantial $2.55\times$ performance gains over state-of-the-art methods, uncovering novel designs while reducing runtime. Ablation studies validate the effectiveness and necessity of the proposed agent interactions. Our code is open-sourced here: https://github.com/Nozidoali/LLM-DSE.
♻ ☆ Task-Aligned Tool Recommendation for Large Language Models AACL 2025
By augmenting Large Language Models (LLMs) with external tools, their capacity to solve complex problems has been significantly enhanced. However, despite ongoing advancements in the parsing capabilities of LLMs, incorporating all available tools simultaneously in the prompt remains impractical due to the vast number of external tools. Consequently, it is essential to provide LLMs with a precise set of tools tailored to the specific task, considering both quantity and quality. Current tool retrieval methods primarily focus on refining the ranking list of tools and directly packaging a fixed number of top-ranked tools as the tool set. However, these approaches often fail to equip LLMs with the optimal set of tools prior to execution, since the optimal number of tools for different tasks could be different, resulting in inefficiencies such as redundant or unsuitable tools, which impede immediate access to the most relevant tools. This paper addresses the challenge of recommending precise toolsets for LLMs. We introduce the problem of tool recommendation, define its scope, and propose a novel Precision-driven Tool Recommendation (PTR) approach. PTR captures an initial, concise set of tools by leveraging historical tool bundle usage and dynamically adjusts the tool set by performing tool matching, culminating in a multi-view-based tool addition. Additionally, we present a new dataset, RecTools, and a metric, TRACC, designed to evaluate the effectiveness of tool recommendation for LLMs. We further validate our design choices through comprehensive experiments, demonstrating promising accuracy across two open benchmarks and our RecTools dataset.
comment: IJCNLP-AACL 2025 Main
Computation and Language 83
☆ ConCISE: A Reference-Free Conciseness Evaluation Metric for LLM-Generated Answers
Large language models (LLMs) frequently generate responses that are lengthy and verbose, filled with redundant or unnecessary details. This diminishes clarity and user satisfaction, and it increases costs for model developers, especially with well-known proprietary models that charge based on the number of output tokens. In this paper, we introduce a novel reference-free metric for evaluating the conciseness of responses generated by LLMs. Our method quantifies non-essential content without relying on gold standard references and calculates the average of three calculations: i) a compression ratio between the original response and an LLM abstractive summary; ii) a compression ratio between the original response and an LLM extractive summary; and iii) wordremoval compression, where an LLM removes as many non-essential words as possible from the response while preserving its meaning, with the number of tokens removed indicating the conciseness score. Experimental results demonstrate that our proposed metric identifies redundancy in LLM outputs, offering a practical tool for automated evaluation of response brevity in conversational AI systems without the need for ground truth human annotations.
☆ Fantastic Bugs and Where to Find Them in AI Benchmarks
Benchmarks are pivotal in driving AI progress, and invalid benchmark questions frequently undermine their reliability. Manually identifying and correcting errors among thousands of benchmark questions is not only infeasible but also a critical bottleneck for reliable evaluation. In this work, we introduce a framework for systematic benchmark revision that leverages statistical analysis of response patterns to flag potentially invalid questions for further expert review. Our approach builds on a core assumption commonly used in AI evaluations that the mean score sufficiently summarizes model performance. This implies a unidimensional latent construct underlying the measurement experiment, yielding expected ranges for various statistics for each item. When empirically estimated values for these statistics fall outside the expected range for an item, the item is more likely to be problematic. Across nine widely used benchmarks, our method guides expert review to identify problematic questions with up to 84\% precision. In addition, we introduce an LLM-judge first pass to review questions, further reducing human effort. Together, these components provide an efficient and scalable framework for systematic benchmark revision.
☆ Cognitive BASIC: An In-Model Interpreted Reasoning Language for LLMs
Cognitive BASIC is a minimal, BASIC-style prompting language and in-model interpreter that structures large language model (LLM) reasoning into explicit, stepwise execution traces. Inspired by the simplicity of retro BASIC, we repurpose numbered lines and simple commands as an interpretable cognitive control layer. Modern LLMs can reliably simulate such short programs, enabling transparent multi-step reasoning inside the model. A natural-language interpreter file specifies command semantics, memory updates, and logging behavior. Our mental-model interpreter extracts declarative and procedural knowledge, detects contradictions, and produces resolutions when necessary. A comparison across three LLMs on a benchmark of knowledge extraction, conflict detection, and reasoning tasks shows that all models can execute Cognitive BASIC programs, with overall strong but not uniform performance.
comment: 6 pages, Submitted to ESANN 2026
☆ The Shifting Landscape of Vaccine Discourse: Insights From a Decade of Pre- to Post-COVID-19 Vaccine Posts on Social Media
In this work, we study English-language vaccine discourse in social media posts, specifically posts on X (formerly Twitter), in seven years before the COVID-19 outbreak (2013 to 2019) and three years after the outbreak was first reported (2020 to 2022). Drawing on theories from social cognition and the stereotype content model in Social Psychology, we analyze how English speakers talk about vaccines on social media to understand the evolving narrative around vaccines in social media posts. To do that, we first introduce a novel dataset comprising 18.7 million curated posts on vaccine discourse from 2013 to 2022. This extensive collection-filtered down from an initial 129 million posts through rigorous preprocessing-captures both pre-COVID and COVID-19 periods, offering valuable insights into the evolution of English-speaking X users' perceptions related to vaccines. Our analysis shows that the COVID-19 pandemic led to complex shifts in X users' sentiment and discourse around vaccines. We observe that negative emotion word usage decreased during the pandemic, with notable rises in usage of surprise, and trust related emotion words. Furthermore, vaccine-related language tended to use more warmth-focused words associated with trustworthiness, along with positive, competence-focused words during the early days of the pandemic, with a marked rise in negative word usage towards the end of the pandemic, possibly reflecting a growing vaccine hesitancy and skepticism.
☆ PEPPER: Perception-Guided Perturbation for Robust Backdoor Defense in Text-to-Image Diffusion Models
Recent studies show that text to image (T2I) diffusion models are vulnerable to backdoor attacks, where a trigger in the input prompt can steer generation toward harmful or unintended content. To address this, we introduce PEPPER (PErcePtion Guided PERturbation), a backdoor defense that rewrites the caption into a semantically distant yet visually similar caption while adding unobstructive elements. With this rewriting strategy, PEPPER disrupt the trigger embedded in the input prompt, dilute the influence of trigger tokens and thereby achieve enhanced robustness. Experiments show that PEPPER is particularly effective against text encoder based attacks, substantially reducing attack success while preserving generation quality. Beyond this, PEPPER can be paired with any existing defenses yielding consistently stronger and generalizable robustness than any standalone method. Our code will be released on Github.
☆ Interpretable dimensions support an effect of agentivity and telicity on split intransitivity
Intransitive verbs fall into two different syntactic classes, unergatives and unaccusatives. It has long been argued that verbs describing an agentive action are more likely to appear in an unergative syntax, and those describing a telic event to appear in an unaccusative syntax. However, recent work by Kim et al. (2024) found that human ratings for agentivity and telicity were a poor predictor of the syntactic behavior of intransitives. Here we revisit this question using interpretable dimensions, computed from seed words on opposite poles of the agentive and telic scales. Our findings support the link between unergativity/unaccusativity and agentivity/telicity, and demonstrate that using interpretable dimensions in conjunction with human judgments can offer valuable evidence for semantic properties that are not easily evaluated in rating tasks.
☆ From Representation to Enactment: The ABC Framework of the Translating Mind
Building on the Extended Mind (EM) theory and radical enactivism, this article suggests an alternative to representation-based models of the mind. We lay out a novel ABC framework of the translating mind, in which translation is not the manipulation of static interlingual correspondences but an enacted activity, dynamically integrating affective, behavioral, and cognitive (ABC) processes. Drawing on Predictive Processing and (En)Active Inference, we argue that the translator's mind emerges, rather than being merely extended, through loops of brain-body-environment interactions. This non-representational account reframes translation as skillful participation in sociocultural practice, where meaning is co-created in real time through embodied interaction with texts, tools, and contexts.
☆ NALA_MAINZ at BLP-2025 Task 2: A Multi-agent Approach for Bangla Instruction to Python Code Generation
This paper presents JGU Mainz's winning system for the BLP-2025 Shared Task on Code Generation from Bangla Instructions. We propose a multi-agent-based pipeline. First, a code-generation agent produces an initial solution from the input instruction. The candidate program is then executed against the provided unit tests (pytest-style, assert-based). Only the failing cases are forwarded to a debugger agent, which reruns the tests, extracts error traces, and, conditioning on the error messages, the current program, and the relevant test cases, generates a revised solution. Using this approach, our submission achieved first place in the shared task with a $Pass@1$ score of 95.4. We also make our code public.
comment: BLP 2025 Shared Task 2 - Code Generation in Bangla
☆ Thinking-while-Generating: Interleaving Textual Reasoning throughout Visual Generation
Recent advances in visual generation have increasingly explored the integration of reasoning capabilities. They incorporate textual reasoning, i.e., think, either before (as pre-planning) or after (as post-refinement) the generation process, yet they lack on-the-fly multimodal interaction during the generation itself. In this preliminary study, we introduce Thinking-while-Generating (TwiG), the first interleaved framework that enables co-evolving textual reasoning throughout the visual generation process. As visual content is progressively generating, textual reasoning is interleaved to both guide upcoming local regions and reflect on previously synthesized ones. This dynamic interplay produces more context-aware and semantically rich visual outputs. To unveil the potential of this framework, we investigate three candidate strategies, zero-shot prompting, supervised fine-tuning (SFT) on our curated TwiG-50K dataset, and reinforcement learning (RL) via a customized TwiG-GRPO strategy, each offering unique insights into the dynamics of interleaved reasoning. We hope this work inspires further research into interleaving textual reasoning for enhanced visual generation. Code will be released at: https://github.com/ZiyuGuo99/Thinking-while-Generating.
comment: Project Page: https://think-while-gen.github.io Code: https://github.com/ZiyuGuo99/Thinking-while-Generating
☆ Nemotron Elastic: Towards Efficient Many-in-One Reasoning LLMs
Training a family of large language models targeting multiple scales and deployment objectives is prohibitively expensive, requiring separate training runs for each different size. Recent work on model compression through pruning and knowledge distillation has reduced this cost; however, this process still incurs hundreds of billions of tokens worth of training cost per compressed model. In this paper, we present Nemotron Elastic, a framework for building reasoning-oriented LLMs, including hybrid Mamba-Attention architectures, that embed multiple nested submodels within a single parent model, each optimized for different deployment configurations and budgets. Each of these submodels shares weights with the parent model and can be extracted zero-shot during deployment without additional training or fine-tuning. We enable this functionality through an end-to-end trained router, tightly coupled to a two-stage training curriculum designed specifically for reasoning models. We additionally introduce group-aware SSM elastification that preserves Mamba's structural constraints, heterogeneous MLP elastification, normalized MSE-based layer importance for improved depth selection, and knowledge distillation enabling simultaneous multi-budget optimization. We apply Nemotron Elastic to the Nemotron Nano V2 12B model, simultaneously producing a 9B and a 6B model using only 110B training tokens; this results in over 360x cost reduction compared to training model families from scratch, and around 7x compared to SoTA compression techniques. Each of the nested models performs on par or better than the SoTA in accuracy. Moreover, unlike other compression methods, the nested capability of our approach allows having a many-in-one reasoning model that has constant deployment memory against the number of models in the family.
☆ Comparison of Text-Based and Image-Based Retrieval in Multimodal Retrieval Augmented Generation Large Language Model Systems
Recent advancements in Retrieval-Augmented Generation (RAG) have enabled Large Language Models (LLMs) to access multimodal knowledge bases containing both text and visual information such as charts, diagrams, and tables in financial documents. However, existing multimodal RAG systems rely on LLM-based summarization to convert images into text during preprocessing, storing only text representations in vector databases, which causes loss of contextual information and visual details critical for downstream retrieval and question answering. To address this limitation, we present a comprehensive comparative analysis of two retrieval approaches for multimodal RAG systems, including text-based chunk retrieval (where images are summarized into text before embedding) and direct multimodal embedding retrieval (where images are stored natively in the vector space). We evaluate all three approaches across 6 LLM models and a two multi-modal embedding models on a newly created financial earnings call benchmark comprising 40 question-answer pairs, each paired with 2 documents (1 image and 1 text chunk). Experimental results demonstrate that direct multimodal embedding retrieval significantly outperforms LLM-summary-based approaches, achieving absolute improvements of 13% in mean average precision (mAP@5) and 11% in normalized discounted cumulative gain. These gains correspond to relative improvements of 32% in mAP@5 and 20% in nDCG@5, providing stronger evidence of their practical impact. We additionally find that direct multimodal retrieval produces more accurate and factually consistent answers as measured by LLM-as-a-judge pairwise comparisons. We demonstrate that LLM summarization introduces information loss during preprocessing, whereas direct multimodal embeddings preserve visual context for retrieval and inference.
Codec2Vec: Self-Supervised Speech Representation Learning Using Neural Speech Codecs
Recent advancements in neural audio codecs have not only enabled superior audio compression but also enhanced speech synthesis techniques. Researchers are now exploring their potential as universal acoustic feature extractors for a broader range of speech processing tasks. Building on this trend, we introduce Codec2Vec, the first speech representation learning framework that relies exclusively on discrete audio codec units. This approach offers several advantages, including improved data storage and transmission efficiency, faster training, and enhanced data privacy. We explore masked prediction with various training target derivation strategies to thoroughly understand the effectiveness of this framework. Evaluated on the SUPERB benchmark, Codec2Vec achieves competitive performance compared to continuous-input models while reducing storage requirements by up to 16.5x and training time by 2.3x, showcasing its scalability and efficiency.
comment: To be presented at ASRU 2025
☆ SurvAgent: Hierarchical CoT-Enhanced Case Banking and Dichotomy-Based Multi-Agent System for Multimodal Survival Prediction
Survival analysis is critical for cancer prognosis and treatment planning, yet existing methods lack the transparency essential for clinical adoption. While recent pathology agents have demonstrated explainability in diagnostic tasks, they face three limitations for survival prediction: inability to integrate multimodal data, ineffective region-of-interest exploration, and failure to leverage experiential learning from historical cases. We introduce SurvAgent, the first hierarchical chain-of-thought (CoT)-enhanced multi-agent system for multimodal survival prediction. SurvAgent consists of two stages: (1) WSI-Gene CoT-Enhanced Case Bank Construction employs hierarchical analysis through Low-Magnification Screening, Cross-Modal Similarity-Aware Patch Mining, and Confidence-Aware Patch Mining for pathology images, while Gene-Stratified analysis processes six functional gene categories. Both generate structured reports with CoT reasoning, storing complete analytical processes for experiential learning. (2) Dichotomy-Based Multi-Expert Agent Inference retrieves similar cases via RAG and integrates multimodal reports with expert predictions through progressive interval refinement. Extensive experiments on five TCGA cohorts demonstrate SurvAgent's superority over conventional methods, proprietary MLLMs, and medical agents, establishing a new paradigm for explainable AI-driven survival prediction in precision oncology.
comment: 20 pages
☆ TimeViper: A Hybrid Mamba-Transformer Vision-Language Model for Efficient Long Video Understanding
We introduce TimeViper, a hybrid vision-language model designed to tackle challenges of long video understanding. Processing long videos demands both an efficient model architecture and an effective mechanism for handling extended temporal contexts. To this end, TimeViper adopts a hybrid Mamba-Transformer backbone that combines the efficiency of state-space models with the expressivity of attention mechanisms. Through this hybrid design, we reveal the vision-to-text information aggregation phenomenon, where information progressively flows from vision tokens to text tokens across increasing LLM depth, resulting in severe vision token redundancy. Motivated by this observation, we propose TransV, a token information transfer module that transfers and compresses vision tokens into instruction tokens while maintaining multimodal understanding capabilities. This design enables TimeViper to process hour-long videos exceeding 10,000 frames. Extensive experiments across multiple benchmarks demonstrate that TimeViper competes with state-of-the-art models while extending frame numbers. We further analyze attention behaviors of both Mamba and Transformer layers, offering new insights into hybrid model interpretability. This work represents an initial step towards developing, interpreting, and compressing hybrid Mamba-Transformer architectures.
comment: Project page: https://xuboshen.github.io/TimeViper
☆ D-GARA: A Dynamic Benchmarking Framework for GUI Agent Robustness in Real-World Anomalies AAAI 2026
Developing intelligent agents capable of operating a wide range of Graphical User Interfaces (GUIs) with human-level proficiency is a key milestone on the path toward Artificial General Intelligence. While most existing datasets and benchmarks for training and evaluating GUI agents are static and idealized, failing to reflect the complexity and unpredictability of real-world environments, particularly the presence of anomalies. To bridge this research gap, we propose D-GARA, a dynamic benchmarking framework, to evaluate Android GUI agent robustness in real-world anomalies. D-GARA introduces a diverse set of real-world anomalies that GUI agents commonly face in practice, including interruptions such as permission dialogs, battery warnings, and update prompts. Based on D-GARA framework, we construct and annotate a benchmark featuring commonly used Android applications with embedded anomalies to support broader community research. Comprehensive experiments and results demonstrate substantial performance degradation in state-of-the-art GUI agents when exposed to anomaly-rich environments, highlighting the need for robustness-aware learning. D-GARA is modular and extensible, supporting the seamless integration of new tasks, anomaly types, and interaction scenarios to meet specific evaluation goals.
comment: Accepted to AAAI 2026
☆ Integrating Symbolic Natural Language Understanding and Language Models for Word Sense Disambiguation
Word sense disambiguation is a fundamental challenge in natural language understanding. Current methods are primarily aimed at coarse-grained representations (e.g. WordNet synsets or FrameNet frames) and require hand-annotated training data to construct. This makes it difficult to automatically disambiguate richer representations (e.g. built on OpenCyc) that are needed for sophisticated inference. We propose a method that uses statistical language models as oracles for disambiguation that does not require any hand-annotation of training data. Instead, the multiple candidate meanings generated by a symbolic NLU system are converted into distinguishable natural language alternatives, which are used to query an LLM to select appropriate interpretations given the linguistic context. The selected meanings are propagated back to the symbolic NLU system. We evaluate our method against human-annotated gold answers to demonstrate its effectiveness.
comment: 16 pages
☆ The Oracle and The Prism: A Decoupled and Efficient Framework for Generative Recommendation Explanation
The integration of Large Language Models (LLMs) into explainable recommendation systems often leads to a performance-efficiency trade-off in end-to-end architectures, where joint optimization of ranking and explanation can result in suboptimal compromises. To resolve this, we propose Prism, a novel decoupled framework that rigorously separates the recommendation process into a dedicated ranking stage and an explanation generation stage. Inspired by knowledge distillation, Prism leverages a powerful teacher LLM (e.g., FLAN-T5-XXL) as an Oracle to produce high-fidelity explanatory knowledge. A compact, fine-tuned student model (e.g., BART-Base), the Prism, then specializes in synthesizing this knowledge into personalized explanations. This decomposition ensures that each component is optimized for its specific objective, eliminating inherent conflicts in coupled models. Extensive experiments on benchmark datasets demonstrate that our 140M-parameter Prism model significantly outperforms its 11B-parameter teacher in human evaluations of faithfulness and personalization, while achieving a 24 times speedup and a 10 times reduction in memory consumption during inference. These results validate that decoupling, coupled with targeted distillation, provides an efficient and effective pathway to high-quality explainable recommendation.
comment: 11 pages,3 figures
☆ Beyond Tokens in Language Models: Interpreting Activations through Text Genre Chunks
Understanding Large Language Models (LLMs) is key to ensure their safe and beneficial deployment. This task is complicated by the difficulty of interpretability of LLM structures, and the inability to have all their outputs human-evaluated. In this paper, we present the first step towards a predictive framework, where the genre of a text used to prompt an LLM, is predicted based on its activations. Using Mistral-7B and two datasets, we show that genre can be extracted with F1-scores of up to 98% and 71% using scikit-learn classifiers. Across both datasets, results consistently outperform the control task, providing a proof of concept that text genres can be inferred from LLMs with shallow learning models.
comment: 13 pages, 5 figures
☆ TurkColBERT: A Benchmark of Dense and Late-Interaction Models for Turkish Information Retrieval
Neural information retrieval systems excel in high-resource languages but remain underexplored for morphologically rich, lower-resource languages such as Turkish. Dense bi-encoders currently dominate Turkish IR, yet late-interaction models -- which retain token-level representations for fine-grained matching -- have not been systematically evaluated. We introduce TurkColBERT, the first comprehensive benchmark comparing dense encoders and late-interaction models for Turkish retrieval. Our two-stage adaptation pipeline fine-tunes English and multilingual encoders on Turkish NLI/STS tasks, then converts them into ColBERT-style retrievers using PyLate trained on MS MARCO-TR. We evaluate 10 models across five Turkish BEIR datasets covering scientific, financial, and argumentative domains. Results show strong parameter efficiency: the 1.0M-parameter colbert-hash-nano-tr is 600$\times$ smaller than the 600M turkish-e5-large dense encoder while preserving over 71\% of its average mAP. Late-interaction models that are 3--5$\times$ smaller than dense encoders significantly outperform them; ColmmBERT-base-TR yields up to +13.8\% mAP on domain-specific tasks. For production-readiness, we compare indexing algorithms: MUVERA+Rerank is 3.33$\times$ faster than PLAID and offers +1.7\% relative mAP gain. This enables low-latency retrieval, with ColmmBERT-base-TR achieving 0.54 ms query times under MUVERA. We release all checkpoints, configs, and evaluation scripts. Limitations include reliance on moderately sized datasets ($\leq$50K documents) and translated benchmarks, which may not fully reflect real-world Turkish retrieval conditions; larger-scale MUVERA evaluations remain necessary.
☆ MiMo-Embodied: X-Embodied Foundation Model Technical Report
We open-source MiMo-Embodied, the first cross-embodied foundation model to successfully integrate and achieve state-of-the-art performance in both Autonomous Driving and Embodied AI. MiMo-Embodied sets new records across 17 embodied AI benchmarks in Task Planning, Affordance Prediction and Spatial Understanding, while also excelling in 12 autonomous driving benchmarks across Environmental Perception, Status Prediction, and Driving Planning. Across these tasks, MiMo-Embodied significantly outperforms existing open-source, closed-source, and specialized baselines. Our results indicate that through multi-stage learning, curated data construction, and CoT/RL fine-tuning, these two domains exhibit strong positive transfer and mutually reinforce one another. We provide a detailed analysis of our model design and training methodologies to facilitate further research. Code and models are available at https://github.com/XiaomiMiMo/MiMo-Embodied.
comment: Code: https://github.com/XiaomiMiMo/MiMo-Embodied Model: https://huggingface.co/XiaomiMiMo/MiMo-Embodied-7B
☆ Music Recommendation with Large Language Models: Challenges, Opportunities, and Evaluation
Music Recommender Systems (MRS) have long relied on an information-retrieval framing, where progress is measured mainly through accuracy on retrieval-oriented subtasks. While effective, this reductionist paradigm struggles to address the deeper question of what makes a good recommendation, and attempts to broaden evaluation, through user studies or fairness analyses, have had limited impact. The emergence of Large Language Models (LLMs) disrupts this framework: LLMs are generative rather than ranking-based, making standard accuracy metrics questionable. They also introduce challenges such as hallucinations, knowledge cutoffs, non-determinism, and opaque training data, rendering traditional train/test protocols difficult to interpret. At the same time, LLMs create new opportunities, enabling natural-language interaction and even allowing models to act as evaluators. This work argues that the shift toward LLM-driven MRS requires rethinking evaluation. We first review how LLMs reshape user modeling, item modeling, and natural-language recommendation in music. We then examine evaluation practices from NLP, highlighting methodologies and open challenges relevant to MRS. Finally, we synthesize insights-focusing on how LLM prompting applies to MRS, to outline a structured set of success and risk dimensions. Our goal is to provide the MRS community with an updated, pedagogical, and cross-disciplinary perspective on evaluation.
comment: Under review with the ACM Transactions on Recommender Systems (TORS)
☆ Arctic-Extract Technical Report
Arctic-Extract is a state-of-the-art model designed for extracting structural data (question answering, entities and tables) from scanned or digital-born business documents. Despite its SoTA capabilities, the model is deployable on resource-constrained hardware, weighting only 6.6 GiB, making it suitable for deployment on devices with limited resources, such as A10 GPUs with 24 GB of memory. Arctic-Extract can process up to 125 A4 pages on those GPUs, making suitable for long document processing. This paper highlights Arctic-Extract's training protocols and evaluation results, demonstrating its strong performance in document understanding.
☆ Anatomy of an Idiom: Tracing Non-Compositionality in Language Models
We investigate the processing of idiomatic expressions in transformer-based language models using a novel set of techniques for circuit discovery and analysis. First discovering circuits via a modified path patching algorithm, we find that idiom processing exhibits distinct computational patterns. We identify and investigate ``Idiom Heads,'' attention heads that frequently activate across different idioms, as well as enhanced attention between idiom tokens due to earlier processing, which we term ``augmented reception.'' We analyze these phenomena and the general features of the discovered circuits as mechanisms by which transformers balance computational efficiency and robustness. Finally, these findings provide insights into how transformers handle non-compositional language and suggest pathways for understanding the processing of more complex grammatical constructions.
☆ ESGBench: A Benchmark for Explainable ESG Question Answering in Corporate Sustainability Reports
We present ESGBench, a benchmark dataset and evaluation framework designed to assess explainable ESG question answering systems using corporate sustainability reports. The benchmark consists of domain-grounded questions across multiple ESG themes, paired with human-curated answers and supporting evidence to enable fine-grained evaluation of model reasoning. We analyze the performance of state-of-the-art LLMs on ESGBench, highlighting key challenges in factual consistency, traceability, and domain alignment. ESGBench aims to accelerate research in transparent and accountable ESG-focused AI systems.
comment: Workshop paper accepted at AI4DF 2025 (part of ACM ICAIF 2025). 3 pages including tables and figures
☆ TOFA: Training-Free One-Shot Federated Adaptation for Vision-Language Models AAAI 2026
Efficient and lightweight adaptation of pre-trained Vision-Language Models (VLMs) to downstream tasks through collaborative interactions between local clients and a central server is a rapidly emerging research topic in federated learning. Existing adaptation algorithms are typically trained iteratively, which incur significant communication costs and increase the susceptibility to potential attacks. Motivated by the one-shot federated training techniques that reduce client-server exchanges to a single round, developing a lightweight one-shot federated VLM adaptation method to alleviate these issues is particularly attractive. However, current one-shot approaches face certain challenges in adapting VLMs within federated settings: (1) insufficient exploitation of the rich multimodal information inherent in VLMs; (2) lack of specialized adaptation strategies to systematically handle the severe data heterogeneity; and (3) requiring additional training resource of clients or server. To bridge these gaps, we propose a novel Training-free One-shot Federated Adaptation framework for VLMs, named TOFA. To fully leverage the generalizable multimodal features in pre-trained VLMs, TOFA employs both visual and textual pipelines to extract task-relevant representations. In the visual pipeline, a hierarchical Bayesian model learns personalized, class-specific prototype distributions. For the textual pipeline, TOFA evaluates and globally aligns the generated local text prompts for robustness. An adaptive weight calibration mechanism is also introduced to combine predictions from both modalities, balancing personalization and robustness to handle data heterogeneity. Our method is training-free, not relying on additional training resources on either the client or server side. Extensive experiments across 9 datasets in various federated settings demonstrate the effectiveness of the proposed TOFA method.
comment: Accepted by AAAI 2026
☆ Classification of worldwide news articles by perceived quality, 2018-2024
This study explored whether supervised machine learning and deep learning models can effectively distinguish perceived lower-quality news articles from perceived higher-quality news articles. 3 machine learning classifiers and 3 deep learning models were assessed using a newly created dataset of 1,412,272 English news articles from the Common Crawl over 2018-2024. Expert consensus ratings on 579 source websites were split at the median, creating perceived low and high-quality classes of about 706,000 articles each, with 194 linguistic features per website-level labelled article. Traditional machine learning classifiers such as the Random Forest demonstrated capable performance (0.7355 accuracy, 0.8131 ROC AUC). For deep learning, ModernBERT-large (256 context length) achieved the best performance (0.8744 accuracy; 0.9593 ROC-AUC; 0.8739 F1), followed by DistilBERT-base (512 context length) at 0.8685 accuracy and 0.9554 ROC-AUC. DistilBERT-base (256 context length) reached 0.8478 accuracy and 0.9407 ROC-AUC, while ModernBERT-base (256 context length) attained 0.8569 accuracy and 0.9470 ROC-AUC. These results suggest that the perceived quality of worldwide news articles can be effectively differentiated by traditional CPU-based machine learning classifiers and deep learning classifiers.
☆ AICC: Parse HTML Finer, Make Models Better -- A 7.3T AI-Ready Corpus Built by a Model-Based HTML Parser
While web data quality is crucial for large language models, most curation efforts focus on filtering and deduplication,treating HTML-to-text extraction as a fixed pre-processing step. Existing web corpora rely on heuristic-based extractors like Trafilatura, which struggle to preserve document structure and frequently corrupt structured elements such as formulas, codes, and tables. We hypothesize that improving extraction quality can be as impactful as aggressive filtering strategies for downstream performance. We introduce MinerU-HTML, a novel extraction pipeline that reformulates content extraction as a sequence labeling problem solved by a 0.6B-parameter language model. Unlike text-density heuristics, MinerU-HTML leverages semantic understanding and employs a two-stage formatting pipeline that explicitly categorizes semantic elements before converting to Markdown. Crucially, its model-based approach is inherently scalable, whereas heuristic methods offer limited improvement pathways. On MainWebBench, our benchmark of 7,887 annotated web pages, MinerU-HTML achieves 81.8\% ROUGE-N F1 compared to Trafilatura's 63.6\%, with exceptional structured element preservation (90.9\% for code blocks, 94.0\% for formulas). Using MinerU-HTML, we construct AICC (AI-ready Common Crawl), a 7.3-trillion token multilingual corpus from two Common Crawl snapshots. In controlled pretraining experiments where AICC and Trafilatura-extracted TfCC undergo identical filtering, models trained on AICC (62B tokens) achieve 50.8\% average accuracy across 13 benchmarks, outperforming TfCC by 1.08pp-providing direct evidence that extraction quality significantly impacts model capabilities. AICC also surpasses RefinedWeb and FineWeb on key benchmarks. We publicly release MainWebBench, MinerU-HTML, and AICC, demonstrating that HTML extraction is a critical, often underestimated component of web corpus construction.
☆ Learning from Sufficient Rationales: Analysing the Relationship Between Explanation Faithfulness and Token-level Regularisation Strategies AACL 2025
Human explanations of natural language, rationales, form a tool to assess whether models learn a label for the right reasons or rely on dataset-specific shortcuts. Sufficiency is a common metric for estimating the informativeness of rationales, but it provides limited insight into the effects of rationale information on model performance. We address this limitation by relating sufficiency to two modelling paradigms: the ability of models to identify which tokens are part of the rationale (through token classification) and the ability of improving model performance by incorporating rationales in the input (through attention regularisation). We find that highly informative rationales are not likely to help classify the instance correctly. Sufficiency conversely captures the classification impact of the non-rationalised context, which interferes with rationale information in the same input. We also find that incorporating rationale information in model inputs can boost cross-domain classification, but results are inconsistent per task and model type. Finally, sufficiency and token classification appear to be unrelated. These results exemplify the complexity of rationales, showing that metrics capable of systematically capturing this type of information merit further investigation.
comment: Long paper accepted to the main conference of AACL 2025. Please cite the conference proceedings when available
☆ NLP Datasets for Idiom and Figurative Language Tasks
Idiomatic and figurative language form a large portion of colloquial speech and writing. With social media, this informal language has become more easily observable to people and trainers of large language models (LLMs) alike. While the advantage of large corpora seems like the solution to all machine learning and Natural Language Processing (NLP) problems, idioms and figurative language continue to elude LLMs. Finetuning approaches are proving to be optimal, but better and larger datasets can help narrow this gap even further. The datasets presented in this paper provide one answer, while offering a diverse set of categories on which to build new models and develop new approaches. A selection of recent idiom and figurative language datasets were used to acquire a combined idiom list, which was used to retrieve context sequences from a large corpus. One large-scale dataset of potential idiomatic and figurative language expressions and two additional human-annotated datasets of definite idiomatic and figurative language expressions were created to evaluate the baseline ability of pre-trained language models in handling figurative meaning through idiom recognition (detection) tasks. The resulting datasets were post-processed for model agnostic training compatibility, utilized in training, and evaluated on slot labeling and sequence tagging.
comment: 32 pages, 10 figures
☆ OpenMMReasoner: Pushing the Frontiers for Multimodal Reasoning with an Open and General Recipe
Recent advancements in large reasoning models have fueled growing interest in extending such capabilities to multimodal domains. However, despite notable progress in visual reasoning, the lack of transparent and reproducible data curation and training strategies remains a major barrier to scalable research. In this work, we introduce OpenMMReasoner, a fully transparent two-stage recipe for multimodal reasoning spanning supervised fine-tuning (SFT) and reinforcement learning (RL). In the SFT stage, we construct an 874K-sample cold-start dataset with rigorous step-by-step validation, providing a strong foundation for reasoning capabilities. The subsequent RL stage leverages a 74K-sample dataset across diverse domains to further sharpen and stabilize these abilities, resulting in a more robust and efficient learning process. Extensive evaluations demonstrate that our training recipe not only surpasses strong baselines but also highlights the critical role of data quality and training design in shaping multimodal reasoning performance. Notably, our method achieves a 11.6% improvement over the Qwen2.5-VL-7B-Instruct baseline across nine multimodal reasoning benchmarks, establishing a solid empirical foundation for future large-scale multimodal reasoning research. We open-sourced all our codes, pipeline, and data at https://github.com/EvolvingLMMs-Lab/OpenMMReasoner.
☆ Incorporating Self-Rewriting into Large Language Model Reasoning Reinforcement AAAI 2026
Through reinforcement learning (RL) with outcome correctness rewards, large reasoning models (LRMs) with scaled inference computation have demonstrated substantial success on complex reasoning tasks. However, the one-sided reward, focused solely on final correctness, limits its ability to provide detailed supervision over internal reasoning process. This deficiency leads to suboptimal internal reasoning quality, manifesting as issues like over-thinking, under-thinking, redundant-thinking, and disordered-thinking. Inspired by the recent progress in LRM self-rewarding, we introduce self-rewriting framework, where a model rewrites its own reasoning texts, and subsequently learns from the rewritten reasoning to improve the internal thought process quality. For algorithm design, we propose a selective rewriting approach wherein only "simple" samples, defined by the model's consistent correctness, are rewritten, thereby preserving all original reward signals of GRPO. For practical implementation, we compile rewriting and vanilla generation within one single batch, maintaining the scalability of the RL algorithm and introducing only ~10% overhead. Extensive experiments on diverse tasks with different model sizes validate the effectiveness of self-rewriting. In terms of the accuracy-length tradeoff, the self-rewriting approach achieves improved accuracy (+0.6) with substantially shorter reasoning (-46%) even without explicit instructions in rewriting prompts to reduce reasoning length, outperforming existing strong baselines. In terms of internal reasoning quality, self-rewriting achieves significantly higher scores (+7.2) under the LLM-as-a-judge metric, successfully mitigating internal reasoning flaws.
comment: Accepted to AAAI 2026
☆ SDA: Steering-Driven Distribution Alignment for Open LLMs without Fine-Tuning
With the rapid advancement of large language models (LLMs), their deployment in real-world applications has become increasingly widespread. LLMs are expected to deliver robust performance across diverse tasks, user preferences, and practical scenarios. However, as demands grow, ensuring that LLMs produce responses aligned with human intent remains a foundational challenge. In particular, aligning model behavior effectively and efficiently during inference, without costly retraining or extensive supervision, is both a critical requirement and a non-trivial technical endeavor. To address the challenge, we propose SDA (Steering-Driven Distribution Alignment), a training-free and model-agnostic alignment framework designed for open-source LLMs. SDA dynamically redistributes model output probabilities based on user-defined alignment instructions, enhancing alignment between model behavior and human intents without fine-tuning. The method is lightweight, resource-efficient, and compatible with a wide range of open-source LLMs. It can function independently during inference or be integrated with training-based alignment strategies. Moreover, SDA supports personalized preference alignment, enabling flexible control over the model response behavior. Empirical results demonstrate that SDA consistently improves alignment performance across 8 open-source LLMs with varying scales and diverse origins, evaluated on three key alignment dimensions, helpfulness, harmlessness, and honesty (3H). Specifically, SDA achieves average gains of 64.4% in helpfulness, 30% in honesty and 11.5% in harmlessness across the tested models, indicating its effectiveness and generalization across diverse models and application scenarios.
☆ SeSE: A Structural Information-Guided Uncertainty Quantification Framework for Hallucination Detection in LLMs
Reliable uncertainty quantification (UQ) is essential for deploying large language models (LLMs) in safety-critical scenarios, as it enables them to abstain from responding when uncertain, thereby avoiding hallucinating falsehoods. However, state-of-the-art UQ methods primarily rely on semantic probability distributions or pairwise distances, overlooking latent semantic structural information that could enable more precise uncertainty estimates. This paper presents Semantic Structural Entropy (SeSE), a principled UQ framework that quantifies the inherent semantic uncertainty of LLMs from a structural information perspective for hallucination detection. Specifically, to effectively model semantic spaces, we first develop an adaptively sparsified directed semantic graph construction algorithm that captures directional semantic dependencies while automatically pruning unnecessary connections that introduce negative interference. We then exploit latent semantic structural information through hierarchical abstraction: SeSE is defined as the structural entropy of the optimal semantic encoding tree, formalizing intrinsic uncertainty within semantic spaces after optimal compression. A higher SeSE value corresponds to greater uncertainty, indicating that LLMs are highly likely to generate hallucinations. In addition, to enhance fine-grained UQ in long-form generation -- where existing methods often rely on heuristic sample-and-count techniques -- we extend SeSE to quantify the uncertainty of individual claims by modeling their random semantic interactions, providing theoretically explicable hallucination detection. Extensive experiments across 29 model-dataset combinations show that SeSE significantly outperforms advanced UQ baselines, including strong supervised methods and the recently proposed KLE.
comment: 14 pages of main text and 10 pages of appendices
☆ Can MLLMs Read the Room? A Multimodal Benchmark for Assessing Deception in Multi-Party Social Interactions
Despite their advanced reasoning capabilities, state-of-the-art Multimodal Large Language Models (MLLMs) demonstrably lack a core component of human intelligence: the ability to `read the room' and assess deception in complex social interactions. To rigorously quantify this failure, we introduce a new task, Multimodal Interactive Deception Assessment (MIDA), and present a novel multimodal dataset providing synchronized video and text with verifiable ground-truth labels for every statement. We establish a comprehensive benchmark evaluating 12 state-of-the-art open- and closed-source MLLMs, revealing a significant performance gap: even powerful models like GPT-4o struggle to distinguish truth from falsehood reliably. Our analysis of failure modes indicates that these models fail to effectively ground language in multimodal social cues and lack the ability to model what others know, believe, or intend, highlighting the urgent need for novel approaches to building more perceptive and trustworthy AI systems. To take a step forward, we design a Social Chain-of-Thought (SoCoT) reasoning pipeline and a Dynamic Social Epistemic Memory (DSEM) module. Our framework yields performance improvement on this challenging task, demonstrating a promising new path toward building MLLMs capable of genuine human-like social reasoning.
☆ PSM: Prompt Sensitivity Minimization via LLM-Guided Black-Box Optimization
System prompts are critical for guiding the behavior of Large Language Models (LLMs), yet they often contain proprietary logic or sensitive information, making them a prime target for extraction attacks. Adversarial queries can successfully elicit these hidden instructions, posing significant security and privacy risks. Existing defense mechanisms frequently rely on heuristics, incur substantial computational overhead, or are inapplicable to models accessed via black-box APIs. This paper introduces a novel framework for hardening system prompts through shield appending, a lightweight approach that adds a protective textual layer to the original prompt. Our core contribution is the formalization of prompt hardening as a utility-constrained optimization problem. We leverage an LLM-as-optimizer to search the space of possible SHIELDs, seeking to minimize a leakage metric derived from a suite of adversarial attacks, while simultaneously preserving task utility above a specified threshold, measured by semantic fidelity to baseline outputs. This black-box, optimization-driven methodology is lightweight and practical, requiring only API access to the target and optimizer LLMs. We demonstrate empirically that our optimized SHIELDs significantly reduce prompt leakage against a comprehensive set of extraction attacks, outperforming established baseline defenses without compromising the model's intended functionality. Our work presents a paradigm for developing robust, utility-aware defenses in the escalating landscape of LLM security. The code is made public on the following link: https://github.com/psm-defense/psm
☆ SemanticCite: Citation Verification with AI-Powered Full-Text Analysis and Evidence-Based Reasoning
Effective scientific communication depends on accurate citations that validate sources and guide readers to supporting evidence. Yet academic literature faces mounting challenges: semantic citation errors that misrepresent sources, AI-generated hallucinated references, and traditional citation formats that point to entire papers without indicating which sections substantiate specific claims. We introduce SemanticCite, an AI-powered system that verifies citation accuracy through full-text source analysis while providing rich contextual information via detailed reasoning and relevant text snippets. Our approach combines multiple retrieval methods with a four-class classification system (Supported, Partially Supported, Unsupported, Uncertain) that captures nuanced claim-source relationships and enables appropriate remedial actions for different error types. Our experiments show that fine-tuned lightweight language models achieve performance comparable to large commercial systems with significantly lower computational requirements, making large-scale citation verification practically feasible. The system provides transparent, evidence-based explanations that support user understanding and trust. We contribute a comprehensive dataset of over 1,000 citations with detailed alignments, functional classifications, semantic annotations, and bibliometric metadata across eight disciplines, alongside fine-tuned models and the complete verification framework as open-source software. SemanticCite addresses critical challenges in research integrity through scalable citation verification, streamlined peer review, and quality control for AI-generated content, providing an open-source foundation for maintaining citation accuracy at scale.
comment: 21 pages, 4 figures
☆ TS-PEFT: Token-Selective Parameter-Efficient Fine-Tuning with Learnable Threshold Gating
In the field of large models (LMs) for natural language processing (NLP) and computer vision (CV), Parameter-Efficient Fine-Tuning (PEFT) has emerged as a resource-efficient method that modifies a limited number of parameters while keeping the pretrained weights fixed. This paper investigates the traditional PEFT approach, which applies modifications to all position indices, and questions its necessity. We introduce a new paradigm called Token-Selective PEFT (TS-PEFT), in which a function S selectively applies PEFT modifications to a subset of position indices, potentially enhancing performance on downstream tasks. Our experimental results reveal that the indiscriminate application of PEFT to all indices is not only superfluous, but may also be counterproductive. This study offers a fresh perspective on PEFT, advocating for a more targeted approach to modifications and providing a framework for future research to optimize the fine-tuning process for large models.
comment: 11 pages, 3 figures
☆ ELPO: Ensemble Learning Based Prompt Optimization for Large Language Models
The remarkable performance of Large Language Models (LLMs) highly relies on crafted prompts. However, manual prompt engineering is a laborious process, creating a core bottleneck for practical application of LLMs. This phenomenon has led to the emergence of a new research area known as Automatic Prompt Optimization (APO), which develops rapidly in recent years. Existing APO methods such as those based on evolutionary algorithms or trial-and-error approaches realize an efficient and accurate prompt optimization to some extent. However, those researches focus on a single model or algorithm for the generation strategy and optimization process, which limits their performance when handling complex tasks. To address this, we propose a novel framework called Ensemble Learning based Prompt Optimization (ELPO) to achieve more accurate and robust results. Motivated by the idea of ensemble learning, ELPO conducts voting mechanism and introduces shared generation strategies along with different search methods for searching superior prompts. Moreover, ELPO creatively presents more efficient algorithms for the prompt generation and search process. Experimental results demonstrate that ELPO outperforms state-of-the-art prompt optimization methods across different tasks, e.g., improving F1 score by 7.6 on ArSarcasm dataset.
☆ Early science acceleration experiments with GPT-5
AI models like GPT-5 are an increasingly valuable tool for scientists, but many remain unaware of the capabilities of frontier AI. We present a collection of short case studies in which GPT-5 produced new, concrete steps in ongoing research across mathematics, physics, astronomy, computer science, biology, and materials science. In these examples, the authors highlight how AI accelerated their work, and where it fell short; where expert time was saved, and where human input was still key. We document the interactions of the human authors with GPT-5, as guiding examples of fruitful collaboration with AI. Of note, this paper includes four new results in mathematics (carefully verified by the human authors), underscoring how GPT-5 can help human mathematicians settle previously unsolved problems. These contributions are modest in scope but profound in implication, given the rate at which frontier AI is progressing.
comment: 89 pages
☆ Learning Tractable Distributions Of Language Model Continuations
Controlled language generation conditions text on sequence-level constraints (for example, syntax, style, or safety). These constraints may depend on future tokens, which makes directly conditioning an autoregressive language model (LM) generally intractable. Prior work uses tractable surrogates such as hidden Markov models (HMMs) to approximate the distribution over continuations and adjust the model's next-token logits at decoding time. However, we find that these surrogates are often weakly context aware, which reduces query quality. We propose Learning to Look Ahead (LTLA), a hybrid approach that pairs the same base language model for rich prefix encoding with a fixed tractable surrogate model that computes exact continuation probabilities. Two efficiency pitfalls arise when adding neural context: (i) naively rescoring the prefix with every candidate next token requires a sweep over the entire vocabulary at each step, and (ii) predicting fresh surrogate parameters for each prefix, although tractable at a single step, forces recomputation of future probabilities for every new prefix and eliminates reuse. LTLA avoids both by using a single batched HMM update to account for all next-token candidates at once, and by conditioning only the surrogate's latent state prior on the LM's hidden representations while keeping the surrogate decoder fixed, so computations can be reused across prefixes. Empirically, LTLA attains higher conditional likelihood than an unconditional HMM, approximates continuation distributions for vision-language models where a standalone HMM cannot encode visual context, and improves constraint satisfaction at comparable fluency on controlled-generation tasks, with minimal inference overhead.
☆ Liars' Bench: Evaluating Lie Detectors for Language Models
Prior work has introduced techniques for detecting when large language models (LLMs) lie, that is, generating statements they believe are false. However, these techniques are typically validated in narrow settings that do not capture the diverse lies LLMs can generate. We introduce LIARS' BENCH, a testbed consisting of 72,863 examples of lies and honest responses generated by four open-weight models across seven datasets. Our settings capture qualitatively different types of lies and vary along two dimensions: the model's reason for lying and the object of belief targeted by the lie. Evaluating three black- and white-box lie detection techniques on LIARS' BENCH, we find that existing techniques systematically fail to identify certain types of lies, especially in settings where it's not possible to determine whether the model lied from the transcript alone. Overall, LIARS' BENCH reveals limitations in prior techniques and provides a practical testbed for guiding progress in lie detection.
comment: *Kieron Kretschmar and Walter Laurito contributed equally to this work. 10 pages, 2 figures; plus appendix. Code at https://github.com/Cadenza-Labs/liars-bench and datasets at https://huggingface.co/datasets/Cadenza-Labs/liars-bench Subjects: Computation and Language (cs.CL); Artificial Intelligence (cs.AI)
☆ SpellForger: Prompting Custom Spell Properties In-Game using BERT supervised-trained model
Introduction: The application of Artificial Intelligence in games has evolved significantly, allowing for dynamic content generation. However, its use as a core gameplay co-creation tool remains underexplored. Objective: This paper proposes SpellForger, a game where players create custom spells by writing natural language prompts, aiming to provide a unique experience of personalization and creativity. Methodology: The system uses a supervisedtrained BERT model to interpret player prompts. This model maps textual descriptions to one of many spell prefabs and balances their parameters (damage, cost, effects) to ensure competitive integrity. The game is developed in the Unity Game Engine, and the AI backend is in Python. Expected Results: We expect to deliver a functional prototype that demonstrates the generation of spells in real time, applied to an engaging gameplay loop, where player creativity is central to the experience, validating the use of AI as a direct gameplay mechanic.
comment: Published in Anais Estendidos do XXIV Simpósio Brasileiro de Jogos e Entretenimento Digital (SBGames 2025)
☆ QueryGym: A Toolkit for Reproducible LLM-Based Query Reformulation
We present QueryGym, a lightweight, extensible Python toolkit that supports large language model (LLM)-based query reformulation. This is an important tool development since recent work on llm-based query reformulation has shown notable increase in retrieval effectiveness. However, while different authors have sporadically shared the implementation of their methods, there is no unified toolkit that provides a consistent implementation of such methods, which hinders fair comparison, rapid experimentation, consistent benchmarking and reliable deployment. QueryGym addresses this gap by providing a unified framework for implementing, executing, and comparing llm-based reformulation methods. The toolkit offers: (1) a Python API for applying diverse LLM-based methods, (2) a retrieval-agnostic interface supporting integration with backends such as Pyserini and PyTerrier, (3) a centralized prompt management system with versioning and metadata tracking, (4) built-in support for benchmarks like BEIR and MS MARCO, and (5) a completely open-source extensible implementation available to all researchers. QueryGym is publicly available at https://github.com/radinhamidi/QueryGym.
comment: 4 pages
☆ CARE-RAG - Clinical Assessment and Reasoning in RAG
Access to the right evidence does not guarantee that large language models (LLMs) will reason with it correctly. This gap between retrieval and reasoning is especially concerning in clinical settings, where outputs must align with structured protocols. We study this gap using Written Exposure Therapy (WET) guidelines as a testbed. In evaluating model responses to curated clinician-vetted questions, we find that errors persist even when authoritative passages are provided. To address this, we propose an evaluation framework that measures accuracy, consistency, and fidelity of reasoning. Our results highlight both the potential and the risks: retrieval-augmented generation (RAG) can constrain outputs, but safe deployment requires assessing reasoning as rigorously as retrieval.
comment: The Second Workshop on GenAI for Health: Potential, Trust, and Policy Compliance
♻ ☆ ReviewGuard: Enhancing Deficient Peer Review Detection via LLM-Driven Data Augmentation
Peer review serves as the gatekeeper of science, yet the surge in submissions and widespread adoption of large language models (LLMs) in scholarly evaluation present unprecedented challenges. While recent work has focused on using LLMs to improve review efficiency, unchecked deficient reviews from both human experts and AI systems threaten to systematically undermine academic integrity. To address this issue, we introduce ReviewGuard, an automated system for detecting and categorizing deficient reviews through a four-stage LLM-driven framework: data collection from ICLR and NeurIPS on OpenReview, GPT-4.1 annotation with human validation, synthetic data augmentation yielding 6,634 papers with 24,657 real and 46,438 synthetic reviews, and fine-tuning of encoder-based models and open-source LLMs. Feature analysis reveals that deficient reviews exhibit lower rating scores, higher self-reported confidence, reduced structural complexity, and more negative sentiment than sufficient reviews. AI-generated text detection shows dramatic increases in AI-authored reviews since ChatGPT's emergence. Mixed training with synthetic and real data substantially improves detection performance - for example, Qwen 3-8B achieves recall of 0.6653 and F1 of 0.7073, up from 0.5499 and 0.5606 respectively. This study presents the first LLM-driven system for detecting deficient peer reviews, providing evidence to inform AI governance in peer review. Code, prompts, and data are available at https://github.com/haoxuan-unt2024/ReviewGuard
comment: Accepted as a full paper at the 2025 ACM/IEEE Joint Conference on Digital Libraries (JCDL 2025)
♻ ☆ RAG-BioQA Retrieval-Augmented Generation for Long-Form Biomedical Question Answering
The exponential growth of biomedical literature creates significant challenges for accessing precise medical information. Current biomedical question-answering systems primarily focus on short-form answers, failing to provide the comprehensive explanations necessary for clinical decision-making. We present RAG-BioQA, a novel framework combining retrieval-augmented generation with domain-specific fine-tuning to produce evidence-based, long-form biomedical answers. Our approach integrates BioBERT embeddings with FAISS indexing and compares various re-ranking strategies (BM25, ColBERT, MonoT5) to optimize context selection before synthesizing evidence through a fine-tuned T5 model. Experimental results on the PubMedQA dataset show significant improvements over baselines, with our best model achieving substantial gains across BLEU, ROUGE, and METEOR metrics, advancing the state of accessible, evidence-based biomedical knowledge retrieval.
comment: Need to work on the methodology more
♻ ☆ Beyond Human Judgment: A Bayesian Evaluation of LLMs' Moral Values Understanding EMNLP 2025
How do Large Language Models understand moral dimensions compared to humans? This first large-scale Bayesian evaluation of market-leading language models provides the answer. In contrast to prior work using deterministic ground truth (majority or inclusion rules), we model annotator disagreements to capture both aleatoric uncertainty (inherent human disagreement) and epistemic uncertainty (model domain sensitivity). We evaluated the best language models (Claude Sonnet 4, DeepSeek-V3, Llama 4 Maverick) across 250K+ annotations from nearly 700 annotators in 100K+ texts spanning social networks, news and forums. Our GPU-optimized Bayesian framework processed 1M+ model queries, revealing that AI models typically rank among the top 25\% of human annotators, performing much better than average balanced accuracy. Importantly, we find that AI produces far fewer false negatives than humans, highlighting their more sensitive moral detection capabilities.
comment: Appears in UncertaiNLP@EMNLP 2025
♻ ☆ LLMInit: A Free Lunch from Large Language Models for Selective Initialization of Recommendation EMNLP 2025
Collaborative filtering (CF) is widely adopted in industrial recommender systems (RecSys) for modeling user-item interactions across numerous applications, but often struggles with cold-start and data-sparse scenarios. Recent advancements in pre-trained large language models (LLMs) with rich semantic knowledge, offer promising solutions to these challenges. However, deploying LLMs at scale is hindered by their significant computational demands and latency. In this paper, we propose a novel and scalable LLM-RecSys framework, LLMInit, designed to integrate pretrained LLM embeddings into CF models through selective initialization strategies. Specifically, we identify the embedding collapse issue observed when CF models scale and match the large embedding sizes in LLMs and avoid the problem by introducing efficient sampling methods, including, random, uniform, and variance-based selections. Comprehensive experiments conducted on multiple real-world datasets demonstrate that LLMInit significantly improves recommendation performance while maintaining low computational costs, offering a practical and scalable solution for industrial applications. To facilitate industry adoption and promote future research, we provide open-source access to our implementation at https://github.com/DavidZWZ/LLMInit.
comment: Accepted in EMNLP 2025 Industry Track
♻ ☆ Sigma: Semantically Informative Pre-training for Skeleton-based Sign Language Understanding
Pre-training has proven effective for learning transferable features in sign language understanding (SLU) tasks. Recently, skeleton-based methods have gained increasing attention because they can robustly handle variations in subjects and backgrounds without being affected by appearance or environmental factors. Current SLU methods continue to face three key limitations: 1) weak semantic grounding, as models often capture low-level motion patterns from skeletal data but struggle to relate them to linguistic meaning; 2) imbalance between local details and global context, with models either focusing too narrowly on fine-grained cues or overlooking them for broader context; and 3) inefficient cross-modal learning, as constructing semantically aligned representations across modalities remains difficult. To address these, we propose Sigma, a unified skeleton-based SLU framework featuring: 1) a sign-aware early fusion mechanism that facilitates deep interaction between visual and textual modalities, enriching visual features with linguistic context; 2) a hierarchical alignment learning strategy that jointly maximises agreements across different levels of paired features from different modalities, effectively capturing both fine-grained details and high-level semantic relationships; and 3) a unified pre-training framework that combines contrastive learning, text matching and language modelling to promote semantic consistency and generalisation. Sigma achieves new state-of-the-art results on isolated sign language recognition, continuous sign language recognition, and gloss-free sign language translation on multiple benchmarks spanning different sign and spoken languages, demonstrating the impact of semantically informative pre-training and the effectiveness of skeletal data as a stand-alone solution for SLU.
♻ ☆ Turning Up the Heat: Min-p Sampling for Creative and Coherent LLM Outputs ICLR 2025
Large Language Models (LLMs) generate text by sampling the next token from a probability distribution over the vocabulary at each decoding step. Popular sampling methods like top-p (nucleus sampling) often struggle to balance quality and diversity, especially at higher temperatures which lead to incoherent or repetitive outputs. We propose min-p sampling, a dynamic truncation method that adjusts the sampling threshold based on the model's confidence by using the top token's probability as a scaling factor. Our experiments on benchmarks including GPQA, GSM8K, and AlpacaEval Creative Writing show that min-p sampling improves both the quality and diversity of generated text across different model families (Mistral and Llama 3) and model sizes (1B to 123B parameters), especially at higher temperatures. Human evaluations further show a clear preference for min-p sampling, in both text quality and creativity. Min-p sampling has been adopted by popular open-source LLM frameworks, including Hugging Face Transformers, VLLM, and many others, highlighting its considerable impact on improving text generation quality.
comment: Oral presentation at ICLR 2025. Camera-ready version available at https://iclr.cc/virtual/2025/poster/30358
♻ ☆ Probing the Critical Point (CritPt) of AI Reasoning: a Frontier Physics Research Benchmark
While large language models (LLMs) with reasoning capabilities are progressing rapidly on high-school math competitions and coding, can they reason effectively through complex, open-ended challenges found in frontier physics research? And crucially, what kinds of reasoning tasks do physicists want LLMs to assist with? To address these questions, we present the CritPt (Complex Research using Integrated Thinking - Physics Test, pronounced "critical point"), the first benchmark designed to test LLMs on unpublished, research-level reasoning tasks that broadly covers modern physics research areas, including condensed matter, quantum physics, atomic, molecular & optical physics, astrophysics, high energy physics, mathematical physics, statistical physics, nuclear physics, nonlinear dynamics, fluid dynamics and biophysics. CritPt consists of 71 composite research challenges designed to simulate full-scale research projects at the entry level, which are also decomposed to 190 simpler checkpoint tasks for more fine-grained insights. All problems are newly created by 50+ active physics researchers based on their own research. Every problem is hand-curated to admit a guess-resistant and machine-verifiable answer and is evaluated by an automated grading pipeline heavily customized for advanced physics-specific output formats. We find that while current state-of-the-art LLMs show early promise on isolated checkpoints, they remain far from being able to reliably solve full research-scale challenges: the best average accuracy among base models is only 5.7%, achieved by GPT-5 (high), moderately rising to around 10% when equipped with coding tools. Through the realistic yet standardized evaluation offered by CritPt, we highlight a large disconnect between current model capabilities and realistic physics research demands, offering a foundation to guide the development of scientifically grounded AI tools.
comment: 39 pages, 6 figures, 6 tables
♻ ☆ False Sense of Security: Why Probing-based Malicious Input Detection Fails to Generalize
Large Language Models (LLMs) can comply with harmful instructions, raising serious safety concerns despite their impressive capabilities. Recent work has leveraged probing-based approaches to study the separability of malicious and benign inputs in LLMs' internal representations, and researchers have proposed using such probing methods for safety detection. We systematically re-examine this paradigm. Motivated by poor out-of-distribution performance, we hypothesize that probes learn superficial patterns rather than semantic harmfulness. Through controlled experiments, we confirm this hypothesis and identify the specific patterns learned: instructional patterns and trigger words. Our investigation follows a systematic approach, progressing from demonstrating comparable performance of simple n-gram methods, to controlled experiments with semantically cleaned datasets, to detailed analysis of pattern dependencies. These results reveal a false sense of security around current probing-based approaches and highlight the need to redesign both models and evaluation protocols, for which we provide further discussions in the hope of suggesting responsible further research in this direction. We have open-sourced the project at https://github.com/WangCheng0116/Why-Probe-Fails.
comment: Withdrawn due to identified errors in the experimental procedure
♻ ☆ AgentSwift: Efficient LLM Agent Design via Value-guided Hierarchical Search AAAI-2026
Large language model (LLM) agents have demonstrated strong capabilities across diverse domains, yet automated agent design remains a significant challenge. Current automated agent design approaches are often constrained by limited search spaces that primarily optimize workflows but fail to integrate crucial human-designed components like memory, planning, and tool use. Furthermore, these methods are hampered by high evaluation costs, as evaluating even a single new agent on a benchmark can require tens of dollars. The difficulty of this exploration is further exacerbated by inefficient search strategies that struggle to navigate the large design space effectively, making the discovery of novel agents a slow and resource-intensive process. To address these challenges, we propose AgentSwift, a novel framework for automated agent design. We formalize a hierarchical search space that jointly models agentic workflow and composable functional components. This structure moves beyond optimizing workflows alone by co-optimizing functional components, which enables the discovery of more complex and effective agent architectures. To make exploration within this expansive space feasible, we mitigate high evaluation costs by training a value model on a high-quality dataset, generated via a novel strategy combining combinatorial coverage and balanced Bayesian sampling for low-cost evaluation. Guiding the entire process is a hierarchical MCTS strategy, which is informed by uncertainty to efficiently navigate the search space. Evaluated across a comprehensive set of seven benchmarks spanning embodied, math, web, tool, and game domains, AgentSwift discovers agents that achieve an average performance gain of 8.34\% over both existing automated agent search methods and manually designed agents. Our framework serves as a launchpad for researchers to rapidly discover powerful agent architectures.
comment: AAAI-2026
♻ ☆ KVTuner: Sensitivity-Aware Layer-Wise Mixed-Precision KV Cache Quantization for Efficient and Nearly Lossless LLM Inference ICML25
KV cache quantization can improve Large Language Models (LLMs) inference throughput and latency in long contexts and large batch-size scenarios while preserving LLMs effectiveness. However, current methods have three unsolved issues: overlooking layer-wise sensitivity to KV cache quantization, high overhead of online fine-grained decision-making, and low flexibility to different LLMs and constraints. Therefore, we theoretically analyze the inherent correlation of layer-wise transformer attention patterns to KV cache quantization errors and study why key cache is generally more important than value cache for quantization error reduction. We further propose a simple yet effective framework KVTuner to adaptively search for the optimal hardware-friendly layer-wise KV quantization precision pairs for coarse-grained KV cache with multi-objective optimization and directly utilize the offline searched configurations during online inference. To reduce the computational cost of offline calibration, we utilize the intra-layer KV precision pair pruning and inter-layer clustering to reduce the search space. Experimental results show that we can achieve nearly lossless 3.25-bit mixed precision KV cache quantization for LLMs like Llama-3.1-8B-Instruct and 4.0-bit for sensitive models like Qwen2.5-7B-Instruct on mathematical reasoning tasks. The maximum inference throughput can be improved by 21.25\% compared with KIVI-KV8 quantization over various context lengths. Our code and searched configurations are available at https://github.com/cmd2001/KVTuner.
comment: Accepted by ICML25. Code: https://github.com/cmd2001/KVTuner
♻ ☆ Crowdsourcing Lexical Diversity
Lexical-semantic resources (LSRs), such as online lexicons and wordnets, are fundamental to natural language processing applications as well as to fields such as linguistic anthropology and language preservation. In many languages, however, such resources suffer from quality issues: incorrect entries, incompleteness, but also the rarely addressed issue of bias towards the English language and Anglo-Saxon culture. Such bias manifests itself in the absence of concepts specific to the language or culture at hand, the presence of foreign (Anglo-Saxon) concepts, as well as in the lack of an explicit indication of untranslatability, also known as cross-lingual lexical gaps, when a term has no equivalent in another language. This paper proposes a novel crowdsourcing methodology for reducing bias in LSRs. Crowd workers compare lexemes from two languages, focusing on domains rich in lexical diversity, such as kinship or food. Our LingoGap crowdsourcing platform facilitates comparisons through microtasks identifying equivalent terms, language-specific terms, and lexical gaps across languages. We validated our method by applying it to two case studies focused on food-related terminology: (1) English and Arabic, and (2) Standard Indonesian and Banjarese. These experiments identified 2,140 lexical gaps in the first case study and 951 in the second. The success of these experiments confirmed the usability of our method and tool for future large-scale lexicon enrichment tasks.
♻ ☆ Arg-LLaDA: Argument Summarization via Large Language Diffusion Models and Sufficiency-Aware Refinement
Argument summarization aims to generate concise, structured representations of complex, multi-perspective debates. While recent work has advanced the identification and clustering of argumentative components, the generation stage remains underexplored. Existing approaches typically rely on single-pass generation, offering limited support for factual correction or structural refinement. To address this gap, we introduce Arg-LLaDA, a novel large language diffusion framework that iteratively improves summaries via sufficiency-guided remasking and regeneration. Our method combines a flexible masking controller with a sufficiency-checking module to identify and revise unsupported, redundant, or incomplete spans, yielding more faithful, concise, and coherent outputs. Empirical results on two benchmark datasets demonstrate that Arg-LLaDA surpasses state-of-the-art baselines in 7 out of 10 automatic evaluation metrics. In addition, human evaluations reveal substantial improvements across core dimensions, coverage, faithfulness, and conciseness, validating the effectiveness of our iterative, sufficiency-aware generation strategy.
comment: Preprint
♻ ☆ Eliciting Reasoning in Language Models with Cognitive Tools
The recent advent of reasoning models like OpenAI's o1 was met with excited speculation by the AI community about the mechanisms underlying these capabilities in closed models, followed by a rush of replication efforts, particularly from the open source community. These speculations were largely settled by the demonstration from DeepSeek-R1 that chains-of-thought and reinforcement learning (RL) can effectively replicate reasoning on top of base LLMs. However, it remains valuable to explore alternative methods for theoretically eliciting reasoning that could help elucidate the underlying mechanisms, as well as providing additional methods that may offer complementary benefits. Here, we build on the long-standing literature in cognitive psychology and cognitive architectures, which postulates that reasoning arises from the orchestrated, sequential execution of a set of modular, predetermined cognitive operations. Crucially, we implement this key idea within a modern agentic tool-calling framework. In particular, we endow an LLM with a small set of "cognitive tools" encapsulating specific reasoning operations, each executed by the LLM itself. Surprisingly, this simple strategy results in considerable gains in performance on standard mathematical reasoning benchmarks compared to base LLMs, for both closed and open-weight models. For instance, providing our "cognitive tools" to GPT-4.1 increases its pass@1 performance on AIME2024 from 32% to 53%, even surpassing the performance of o1-preview. In addition to its practical implications, this demonstration contributes to the debate regarding the role of post-training methods in eliciting reasoning in LLMs versus the role of inherent capabilities acquired during pre-training, and whether post-training merely uncovers these latent abilities.
comment: 25 pages, 2 figures
♻ ☆ AutoJudge: Judge Decoding Without Manual Annotation NeurIPS 2025
We introduce AutoJudge, a method that accelerates large language model (LLM) inference with task-specific lossy speculative decoding. Instead of matching the original model output distribution token-by-token, we identify which of the generated tokens affect the downstream quality of the response, relaxing the distribution match guarantee so that the "unimportant" tokens can be generated faster. Our approach relies on a semi-greedy search algorithm to test which of the mismatches between target and draft models should be corrected to preserve quality and which ones may be skipped. We then train a lightweight classifier based on existing LLM embeddings to predict, at inference time, which mismatching tokens can be safely accepted without compromising the final answer quality. We evaluate the effectiveness of AutoJudge with multiple draft/target model pairs on mathematical reasoning and programming benchmarks, achieving significant speedups at the cost of a minor accuracy reduction. Notably, on GSM8k with the Llama 3.1 70B target model, our approach achieves up to $\approx2\times$ speedup over speculative decoding at the cost of $\le 1\%$ drop in accuracy. When applied to the LiveCodeBench benchmark, AutoJudge automatically detects programming-specific important tokens, accepting $\ge 25$ tokens per speculation cycle at $2\%$ drop in Pass@1. Our approach requires no human annotation and is easy to integrate with modern LLM inference frameworks.
comment: Accepted at NeurIPS 2025
♻ ☆ One Pic is All it Takes: Poisoning Visual Document Retrieval Augmented Generation with a Single Image
Retrieval-augmented generation (RAG) is instrumental for inhibiting hallucinations in large language models (LLMs) through the use of a factual knowledge base (KB). Although PDF documents are prominent sources of knowledge, text-based RAG pipelines are ineffective at capturing their rich multi-modal information. In contrast, visual document RAG (VD-RAG) uses screenshots of document pages as the KB, which has been shown to achieve state-of-the-art results. However, by introducing the image modality, VD-RAG introduces new attack vectors for adversaries to disrupt the system by injecting malicious documents into the KB. In this paper, we demonstrate the vulnerability of VD-RAG to poisoning attacks targeting both retrieval and generation. We define two attack objectives and demonstrate that both can be realized by injecting only a single adversarial image into the KB. Firstly, we introduce a targeted attack against one or a group of queries with the goal of spreading targeted disinformation. Secondly, we present a universal attack that, for any potential user query, influences the response to cause a denial-of-service in the VD-RAG system. We investigate the two attack objectives under both white-box and black-box assumptions, employing a multi-objective gradient-based optimization approach as well as prompting state-of-the-art generative models. Using two visual document datasets, a diverse set of state-of-the-art retrievers (embedding models) and generators (vision language models), we show VD-RAG is vulnerable to poisoning attacks in both the targeted and universal settings, yet demonstrating robustness to black-box attacks in the universal setting.
♻ ☆ Co-Reinforcement Learning for Unified Multimodal Understanding and Generation NeurIPS 2025
This paper presents a pioneering exploration of reinforcement learning (RL) via group relative policy optimization for unified multimodal large language models (ULMs), aimed at simultaneously reinforcing generation and understanding capabilities. Through systematic pilot studies, we uncover the significant potential of ULMs to enable the synergistic co-evolution of dual capabilities within a shared policy optimization framework. Building on this insight, we introduce CoRL, a co-reinforcement learning framework comprising a unified RL stage for joint optimization and a refined RL stage for task-specific enhancement. With the proposed CoRL, our resulting model, ULM-R1, achieves average improvements of 7% on three text-to-image generation datasets and 23% on nine multimodal understanding benchmarks. These results demonstrate the effectiveness of CoRL and highlight the substantial benefit of reinforcement learning in facilitating cross-task synergy and optimization for ULMs. Code is available at https://github.com/mm-vl/ULM-R1.
comment: NeurIPS 2025
♻ ☆ CoBA: Counterbias Text Augmentation for Mitigating Various Spurious Correlations via Semantic Triples EMNLP 2025
Deep learning models often learn and exploit spurious correlations in training data, using these non-target features to inform their predictions. Such reliance leads to performance degradation and poor generalization on unseen data. To address these limitations, we introduce a more general form of counterfactual data augmentation, termed counterbias data augmentation, which simultaneously tackles multiple biases (e.g., gender bias, simplicity bias) and enhances out-of-distribution robustness. We present CoBA: CounterBias Augmentation, a unified framework that operates at the semantic triple level: first decomposing text into subject-predicate-object triples, then selectively modifying these triples to disrupt spurious correlations. By reconstructing the text from these adjusted triples, CoBA generates counterbias data that mitigates spurious patterns. Through extensive experiments, we demonstrate that CoBA not only improves downstream task performance, but also effectively reduces biases and strengthens out-of-distribution resilience, offering a versatile and robust solution to the challenges posed by spurious correlations.
comment: Accepted at EMNLP 2025
♻ ☆ TabDistill: Distilling Transformers into Neural Nets for Few-Shot Tabular Classification
Transformer-based models have shown promising performance on tabular data compared to their classical counterparts such as neural networks and Gradient Boosted Decision Trees (GBDTs) in scenarios with limited training data. They utilize their pre-trained knowledge to adapt to new domains, achieving commendable performance with only a few training examples, also called the few-shot regime. However, the performance gain in the few-shot regime comes at the expense of significantly increased complexity and number of parameters. To circumvent this trade-off, we introduce TabDistill, a new strategy to distill the pre-trained knowledge in complex transformer-based models into simpler neural networks for effectively classifying tabular data. Our framework yields the best of both worlds: being parameter-efficient while performing well with limited training data. The distilled neural networks surpass classical baselines such as regular neural networks, XGBoost and logistic regression under equal training data, and in some cases, even the original transformer-based models that they were distilled from.
♻ ☆ Multimodal Evaluation of Russian-language Architectures
Multimodal large language models (MLLMs) are currently at the center of research attention, showing rapid progress in scale and capabilities, yet their intelligence, limitations, and risks remain insufficiently understood. To address these issues, particularly in the context of the Russian language, where no multimodal benchmarks currently exist, we introduce Mera Multi, an open multimodal evaluation framework for Russian-spoken architectures. The benchmark is instruction-based and encompasses default text, image, audio, and video modalities, comprising 18 newly constructed evaluation tasks for both general-purpose models and modality-specific architectures (image-to-text, video-to-text, and audio-to-text). Our contributions include: (i) a universal taxonomy of multimodal abilities; (ii) 18 datasets created entirely from scratch with attention to Russian cultural and linguistic specificity, unified prompts, and metrics; (iii) baseline results for both closed-source and open-source models; (iv) a methodology for preventing benchmark leakage, including watermarking and licenses for private sets. While our current focus is on Russian, the proposed benchmark provides a replicable methodology for constructing multimodal benchmarks in typologically diverse languages, particularly within the Slavic language family.
♻ ☆ VisPlay: Self-Evolving Vision-Language Models from Images
Reinforcement learning (RL) provides a principled framework for improving Vision-Language Models (VLMs) on complex reasoning tasks. However, existing RL approaches often rely on human-annotated labels or task-specific heuristics to define verifiable rewards, both of which are costly and difficult to scale. We introduce VisPlay, a self-evolving RL framework that enables VLMs to autonomously improve their reasoning abilities using large amounts of unlabeled image data. Starting from a single base VLM, VisPlay assigns the model into two interacting roles: an Image-Conditioned Questioner that formulates challenging yet answerable visual questions, and a Multimodal Reasoner that generates silver responses. These roles are jointly trained with Group Relative Policy Optimization (GRPO), which incorporates diversity and difficulty rewards to balance the complexity of generated questions with the quality of the silver answers. VisPlay scales efficiently across two model families. When trained on Qwen2.5-VL and MiMo-VL, VisPlay achieves consistent improvements in visual reasoning, compositional generalization, and hallucination reduction across eight benchmarks, including MM-Vet and MMMU, demonstrating a scalable path toward self-evolving multimodal intelligence. The project page is available at https://bruno686.github.io/VisPlay/
♻ ☆ HalluClean: A Unified Framework to Combat Hallucinations in LLMs
Large language models (LLMs) have achieved impressive performance across a wide range of natural language processing tasks, yet they often produce hallucinated content that undermines factual reliability. To address this challenge, we introduce HalluClean, a lightweight and task-agnostic framework for detecting and correcting hallucinations in LLM-generated text. HalluClean adopts a reasoning-enhanced paradigm, explicitly decomposing the process into planning, execution, and revision stages to identify and refine unsupported claims. It employs minimal task-routing prompts to enable zero-shot generalization across diverse domains, without relying on external knowledge sources or supervised detectors. We conduct extensive evaluations on five representative tasks-question answering, dialogue, summarization, math word problems, and contradiction detection. Experimental results show that HalluClean significantly improves factual consistency and outperforms competitive baselines, demonstrating its potential to enhance the trustworthiness of LLM outputs in real-world applications.
♻ ☆ LoRA on the Go: Instance-level Dynamic LoRA Selection and Merging
Low-Rank Adaptation (LoRA) has emerged as a parameter-efficient approach for fine-tuning large language models. However, conventional LoRA adapters are typically trained for a single task, limiting their applicability in real-world settings where inputs may span diverse and unpredictable domains. At inference time, existing approaches combine multiple LoRAs for improving performance on diverse tasks, while usually requiring labeled data or additional task-specific training, which is expensive at scale. In this work, we introduce LoRA on the Go (LoGo), a training-free framework that dynamically selects and merges adapters at the instance level without any additional requirements. LoGo leverages signals extracted from a single forward pass through LoRA adapters, to identify the most relevant adapters and determine their contributions on-the-fly. Across 5 NLP benchmarks, 27 datasets, and 3 model families, LoGo outperforms training-based baselines on some tasks upto a margin of 3.6% while remaining competitive on other tasks and maintaining inference throughput, highlighting its effectiveness and practicality.
♻ ☆ From Confidence to Collapse in LLM Factual Robustness
Ensuring the robustness of factual knowledge in LLMs is critical for reliable applications in tasks such as question answering and reasoning. However, existing evaluation methods predominantly focus on performance-based metrics, often investigating from the perspective of prompt perturbations, which captures only the externally triggered side of knowledge robustness. To bridge this gap, we introduce a principled approach to measure factual robustness from the perspective of the generation process by analyzing token distribution entropy in combination with temperature scaling sensitivity. These two factors build the Factual Robustness Score (FRS), a novel metric which quantifies the stability of a fact against perturbations in decoding conditions, given its initial uncertainty. To validate our approach, we conduct extensive experiments on 5 LLMs across 3 closed-book QA datasets (SQuAD, TriviaQA, and HotpotQA). We show that factual robustness varies significantly -- smaller models report an FRS of $0.76$, larger ones $0.93$ -- with accuracy degrading by ~$60\%$ under increased uncertainty. These insights demonstrate how entropy and temperature scaling impact factual accuracy, and lay a foundation for developing more robust knowledge retention and retrieval in future models.
♻ ☆ CRISP: Persistent Concept Unlearning via Sparse Autoencoders
As large language models (LLMs) are increasingly deployed in real-world applications, the need to selectively remove unwanted knowledge while preserving model utility has become paramount. Recent work has explored sparse autoencoders (SAEs) to perform precise interventions on monosemantic features. However, most SAE-based methods operate at inference time, which does not create persistent changes in the model's parameters. Such interventions can be bypassed or reversed by malicious actors with parameter access. We introduce CRISP, a parameter-efficient method for persistent concept unlearning using SAEs. CRISP automatically identifies salient SAE features across multiple layers and suppresses their activations. We experiment with two LLMs and show that our method outperforms prior approaches on safety-critical unlearning tasks from the WMDP benchmark, successfully removing harmful knowledge while preserving general and in-domain capabilities. Feature-level analysis reveals that CRISP achieves semantically coherent separation between target and benign concepts, allowing precise suppression of the target features.
comment: 18 pages, 5 figures
♻ ☆ Injecting Falsehoods: Adversarial Man-in-the-Middle Attacks Undermining Factual Recall in LLMs
LLMs are now an integral part of information retrieval. As such, their role as question answering chatbots raises significant concerns due to their shown vulnerability to adversarial man-in-the-middle (MitM) attacks. Here, we propose the first principled attack evaluation on LLM factual memory under prompt injection via Xmera, our novel, theory-grounded MitM framework. By perturbing the input given to "victim" LLMs in three closed-book and fact-based QA settings, we undermine the correctness of the responses and assess the uncertainty of their generation process. Surprisingly, trivial instruction-based attacks report the highest success rate (up to ~85.3%) while simultaneously having a high uncertainty for incorrectly answered questions. To provide a simple defense mechanism against Xmera, we train Random Forest classifiers on the response uncertainty levels to distinguish between attacked and unattacked queries (average AUC of up to ~96%). We believe that signaling users to be cautious about the answers they receive from black-box and potentially corrupt LLMs is a first checkpoint toward user cyberspace safety.
♻ ☆ GPTopic: Dynamic and Interactive Topic Representations
Topic modeling seems to be almost synonymous with generating lists of top words to represent topics within large text corpora. However, deducing a topic from such list of individual terms can require substantial expertise and experience, making topic modelling less accessible to people unfamiliar with the particularities and pitfalls of top-word interpretation. A topic representation limited to top-words might further fall short of offering a comprehensive and easily accessible characterization of the various aspects, facets and nuances a topic might have. To address these challenges, we introduce GPTopic, a software package that leverages Large Language Models (LLMs) to create dynamic, interactive topic representations. GPTopic provides an intuitive chat interface for users to explore, analyze, and refine topics interactively, making topic modeling more accessible and comprehensive. The corresponding code is available here: https://github.com/ArikReuter/TopicGPT.
♻ ☆ ACEBench: Who Wins the Match Point in Tool Usage?
Large Language Models (LLMs) have demonstrated significant potential in decision-making and reasoning, particularly when integrated with various tools to effectively solve complex problems. However, existing benchmarks for evaluating LLMs' tool usage face several limitations: (1) limited evaluation scenarios, often lacking assessments in real multi-turn dialogue contexts; (2) narrow evaluation dimensions, with insufficient detailed assessments of how LLMs use tools; and (3) reliance on LLMs or real API executions for evaluation, which introduces significant overhead. To address these challenges, we introduce ACEBench, a comprehensive benchmark for assessing tool usage in LLMs. ACEBench categorizes data into three primary types based on evaluation methodology: Normal, Special, and Agent. "Normal" evaluates tool usage in basic scenarios; "Special" evaluates tool usage in situations with ambiguous or incomplete instructions; "Agent" evaluates tool usage through multi-agent interactions to simulate real-world, multi-turn dialogues. We conducted extensive experiments using ACEBench, analyzing various LLMs in-depth and providing a more granular examination of error causes across different data types.
♻ ☆ Atomic Calibration of LLMs in Long-Form Generations ACL 2025
Large language models (LLMs) often suffer from hallucinations, posing significant challenges for real-world applications. Confidence calibration, as an effective indicator of hallucination, is thus essential to enhance the trustworthiness of LLMs. Prior work mainly focuses on short-form tasks using a single response-level score (macro calibration), which is insufficient for long-form outputs that may contain both accurate and inaccurate claims. In this work, we systematically study atomic calibration, which evaluates factuality calibration at a fine-grained level by decomposing long responses into atomic claims. We further categorize existing confidence elicitation methods into discriminative and generative types, and propose two new confidence fusion strategies to improve calibration. Our experiments demonstrate that LLMs exhibit poorer calibration at the atomic level during long-form generation. More importantly, atomic calibration uncovers insightful patterns regarding the alignment of confidence methods and the changes of confidence throughout generation. This sheds light on future research directions for confidence estimation in long-form generation.
comment: ACL 2025 KnowFM Oral / AACL-IJCNLP 2025
♻ ☆ An Iterative Question-Guided Framework for Knowledge Base Question Answering ACL 2025
Large Language Models (LLMs) excel in many natural language processing tasks but often exhibit factual inconsistencies in knowledge-intensive settings. Integrating external knowledge resources, particularly knowledge graphs (KGs), provides a transparent and updatable foundation for more reliable reasoning. Knowledge Base Question Answering (KBQA), which queries and reasons over KGs, is central to this effort, especially for complex, multi-hop queries. However, multi-hop reasoning poses two key challenges: (1)~maintaining coherent reasoning paths, and (2)~avoiding prematurely discarding critical multi-hop connections. To tackle these challenges, we introduce iQUEST, a question-guided KBQA framework that iteratively decomposes complex queries into simpler sub-questions, ensuring a structured and focused reasoning trajectory. Additionally, we integrate a Graph Neural Network (GNN) to look ahead and incorporate 2-hop neighbor information at each reasoning step. This dual approach strengthens the reasoning process, enabling the model to explore viable paths more effectively. Detailed experiments demonstrate the consistent improvement delivered by iQUEST across four benchmark datasets and four LLMs.
comment: Accepted to the 63rd Annual Meeting of the Association for Computational Linguistics (ACL 2025), Main Track
♻ ☆ MAQuA: Adaptive Question-Asking for Multidimensional Mental Health Screening using Item Response Theory
Recent advances in large language models (LLMs) offer new opportunities for scalable, interactive mental health assessment, but excessive querying by LLMs burdens users and is inefficient for real-world screening across transdiagnostic symptom profiles. We introduce MAQuA, an adaptive question-asking framework for simultaneous, multidimensional mental health screening. Combining multi-outcome modeling on language responses with item response theory (IRT) and factor analysis, MAQuA selects the questions with most informative responses across multiple dimensions at each turn to optimize diagnostic information, improving accuracy and potentially reducing response burden. Empirical results on a novel dataset reveal that MAQuA reduces the number of assessment questions required for score stabilization by 50-87% compared to random ordering (e.g., achieving stable depression scores with 71% fewer questions and eating disorder scores with 85% fewer questions). MAQuA demonstrates robust performance across both internalizing (depression, anxiety) and externalizing (substance use, eating disorder) domains, with early stopping strategies further reducing patient time and burden. These findings position MAQuA as a powerful and efficient tool for scalable, nuanced, and interactive mental health screening, advancing the integration of LLM-based agents into real-world clinical workflows.
♻ ☆ MajinBook: An open catalogue of digital world literature with likes
This data paper introduces MajinBook, an open catalogue designed to facilitate the use of shadow libraries--such as Library Genesis and Z-Library--for computational social science and cultural analytics. By linking metadata from these vast, crowd-sourced archives with structured bibliographic data from Goodreads, we create a high-precision corpus of over 539,000 references to English-language books spanning three centuries, enriched with first publication dates, genres, and popularity metrics like ratings and reviews. Our methodology prioritizes natively digital EPUB files to ensure machine-readable quality, while addressing biases in traditional corpora like HathiTrust, and includes secondary datasets for French, German, and Spanish. We evaluate the linkage strategy for accuracy, release all underlying data openly, and discuss the project's legal permissibility under EU and US frameworks for text and data mining in research.
comment: 9 pages, 5 figures, 1 table
♻ ☆ Multi-dimensional Data Analysis and Applications Basing on LLM Agents and Knowledge Graph Interactions
In the current era of big data, extracting deep insights from massive, heterogeneous, and complexly associated multi-dimensional data has become a significant challenge. Large Language Models (LLMs) perform well in natural language understanding and generation, but still suffer from "hallucination" issues when processing structured knowledge and are difficult to update in real-time. Although Knowledge Graphs (KGs) can explicitly store structured knowledge, their static nature limits dynamic interaction and analytical capabilities. Therefore, this paper proposes a multi-dimensional data analysis method based on the interactions between LLM agents and KGs, constructing a dynamic, collaborative analytical ecosystem. This method utilizes LLM agents to automatically extract product data from unstructured data, constructs and visualizes the KG in real-time, and supports users in deep exploration and analysis of graph nodes through an interactive platform. Experimental results show that this method has significant advantages in product ecosystem analysis, relationship mining, and user-driven exploratory analysis, providing new ideas and tools for multi-dimensional data analysis.
comment: 14 pages, 7 figures, 40 references
♻ ☆ ATLAS: A High-Difficulty, Multidisciplinary Benchmark for Frontier Scientific Reasoning
The rapid advancement of Large Language Models (LLMs) has led to performance saturation on many established benchmarks, questioning their ability to distinguish frontier models. Concurrently, existing high-difficulty benchmarks often suffer from narrow disciplinary focus, oversimplified answer formats, and vulnerability to data contamination, creating a fidelity gap with real-world scientific inquiry. To address these challenges, we introduce ATLAS (AGI-Oriented Testbed for Logical Application in Science), a large-scale, high-difficulty, and cross-disciplinary evaluation suite composed of approximately 800 original problems. Developed by domain experts (PhD-level and above), ATLAS spans seven core scientific fields: mathematics, physics, chemistry, biology, computer science, earth science, and materials science. Its key features include: (1) High Originality and Contamination Resistance, with all questions newly created or substantially adapted to prevent test data leakage; (2) Cross-Disciplinary Focus, designed to assess models' ability to integrate knowledge and reason across scientific domains; (3) High-Fidelity Answers, prioritizing complex, open-ended answers involving multi-step reasoning and LaTeX-formatted expressions over simple multiple-choice questions; and (4) Rigorous Quality Control, employing a multi-stage process of expert peer review and adversarial testing to ensure question difficulty, scientific value, and correctness. We also propose a robust evaluation paradigm using a panel of LLM judges for automated, nuanced assessment of complex answers. Preliminary results on leading models demonstrate ATLAS's effectiveness in differentiating their advanced scientific reasoning capabilities. We plan to develop ATLAS into a long-term, open, community-driven platform to provide a reliable "ruler" for progress toward Artificial General Intelligence.
comment: 39 pages
♻ ☆ Beyond Bias Scores: Unmasking Vacuous Neutrality in Small Language Models
The rapid adoption of Small Language Models (SLMs) for resource constrained applications has outpaced our understanding of their ethical and fairness implications. To address this gap, we introduce the Vacuous Neutrality Framework (VaNeu), a multi-dimensional evaluation paradigm designed to assess SLM fairness prior to deployment. The framework examines model robustness across four stages - biases, utility, ambiguity handling, and positional bias over diverse social bias categories. To the best of our knowledge, this work presents the first large-scale audit of SLMs in the 0.5-5B parameter range, an overlooked "middle tier" between BERT-class encoders and flagship LLMs. We evaluate nine widely used SLMs spanning four model families under both ambiguous and disambiguated contexts. Our findings show that models demonstrating low bias in early stages often fail subsequent evaluations, revealing hidden vulnerabilities and unreliable reasoning. These results underscore the need for a more comprehensive understanding of fairness and reliability in SLMs, and position the proposed framework as a principled tool for responsible deployment in socially sensitive settings.
♻ ☆ Property-guided Inverse Design of Metal-Organic Frameworks Using Quantum Natural Language Processing
In this study, we explore the potential of using quantum natural language processing (QNLP) to inverse design metal-organic frameworks (MOFs) with targeted properties. Specifically, by analyzing 450 hypothetical MOF structures consisting of 3 topologies, 10 metal nodes and 15 organic ligands, we categorize these structures into four distinct classes for pore volume and $CO_{2}$ Henry's constant values. We then compare various QNLP models (i.e. the bag-of-words, DisCoCat (Distributional Compositional Categorical), and sequence-based models) to identify the most effective approach to process the MOF dataset. Using a classical simulator provided by the IBM Qiskit, the bag-of-words model is identified to be the optimum model, achieving validation accuracies of 88.6% and 78.0% for binary classification tasks on pore volume and $CO_{2}$ Henry's constant, respectively. Further, we developed multi-class classification models tailored to the probabilistic nature of quantum circuits, with average test accuracies of 92% and 80% across different classes for pore volume and $CO_{2}$ Henry's constant datasets. Finally, the performance of generating MOF with target properties showed accuracies of 93.5% for pore volume and 87% for $CO_{2}$ Henry's constant, respectively. Although our investigation covers only a fraction of the vast MOF search space, it marks a promising first step towards using quantum computing for materials design, offering a new perspective through which to explore the complex landscape of MOFs.
comment: 46 pages, 7 figures, 6 supplementary figures, 1 table, 2 supplementary tables, 1 supplementary note
♻ ☆ OEMA: Ontology-Enhanced Multi-Agent Collaboration Framework for Zero-Shot Clinical Named Entity Recognition
With the rapid expansion of unstructured clinical texts in electronic health records (EHRs), clinical named entity recognition (NER) has become a crucial technique for extracting medical information. However, traditional supervised models such as CRF and BioClinicalBERT suffer from high annotation costs. Although zero-shot NER based on large language models (LLMs) reduces the dependency on labeled data, challenges remain in aligning example selection with task granularity and effectively integrating prompt design with self-improvement frameworks. To address these limitations, we propose OEMA, a novel zero-shot clinical NER framework based on multi-agent collaboration. OEMA consists of three core components: (1) a self-annotator that autonomously generates candidate examples; (2) a discriminator that leverages SNOMED CT to filter token-level examples by clinical relevance; and (3) a predictor that incorporates entity-type descriptions to enhance inference accuracy. Experimental results on two benchmark datasets, MTSamples and VAERS, demonstrate that OEMA achieves state-of-the-art performance under exact-match evaluation. Moreover, under related-match criteria, OEMA performs comparably to the supervised BioClinicalBERT model while significantly outperforming the traditional CRF method. OEMA improves zero-shot clinical NER, achieving near-supervised performance under related-match criteria. Future work will focus on continual learning and open-domain adaptation to expand its applicability in clinical NLP.
comment: 12 pages, 4 figures, 4 tables
♻ ☆ LLMs as Models for Analogical Reasoning
Analogical reasoning -- the capacity to identify and map structural relationships between different domains -- is fundamental to human cognition and learning. Recent studies have shown that large language models (LLMs) can sometimes match humans in analogical reasoning tasks, opening the possibility that analogical reasoning might emerge from domain-general processes. However, it is still debated whether these emergent capacities are largely superficial and limited to simple relations seen during training or whether they encompass the flexible representational and mapping capabilities which are the focus of leading cognitive models of analogy. In this study, we introduce novel analogical reasoning tasks that require participants to map between semantically contentful words and sequences of letters and other abstract characters. This task necessitates the ability to flexibly re-represent rich semantic information -- an ability which is known to be central to human analogy but which is thus far not well captured by existing cognitive theories and models. We assess the performance of both human participants and LLMs on tasks focusing on reasoning from semantic structure and semantic content, introducing variations that test the robustness of their analogical inferences. Advanced LLMs match human performance across several conditions, though humans and LLMs respond differently to certain task variations and semantic distractors. Our results thus provide new evidence that LLMs might offer a how-possibly explanation of human analogical reasoning in contexts that are not yet well modeled by existing theories, but that even today's best models are unlikely to yield how-actually explanations.
comment: The title has been changed from Semantic Structure-Mapping in LLM and Human Analogical Reasoning to LLMs as Models for Analogical Reasoning to improve clarity and accuracy
♻ ☆ Adversarial Poetry as a Universal Single-Turn Jailbreak Mechanism in Large Language Models
We present evidence that adversarial poetry functions as a universal single-turn jailbreak technique for Large Language Models (LLMs). Across 25 frontier proprietary and open-weight models, curated poetic prompts yielded high attack-success rates (ASR), with some providers exceeding 90%. Mapping prompts to MLCommons and EU CoP risk taxonomies shows that poetic attacks transfer across CBRN, manipulation, cyber-offence, and loss-of-control domains. Converting 1,200 MLCommons harmful prompts into verse via a standardized meta-prompt produced ASRs up to 18 times higher than their prose baselines. Outputs are evaluated using an ensemble of 3 open-weight LLM judges, whose binary safety assessments were validated on a stratified human-labeled subset. Poetic framing achieved an average jailbreak success rate of 62% for hand-crafted poems and approximately 43% for meta-prompt conversions (compared to non-poetic baselines), substantially outperforming non-poetic baselines and revealing a systematic vulnerability across model families and safety training approaches. These findings demonstrate that stylistic variation alone can circumvent contemporary safety mechanisms, suggesting fundamental limitations in current alignment methods and evaluation protocols.
♻ ☆ CoTKR: Chain-of-Thought Enhanced Knowledge Rewriting for Complex Knowledge Graph Question Answering
Recent studies have explored the use of Large Language Models (LLMs) with Retrieval Augmented Generation (RAG) for Knowledge Graph Question Answering (KGQA). They typically require rewriting retrieved subgraphs into natural language formats comprehensible to LLMs. However, when tackling complex questions, the knowledge rewritten by existing methods may include irrelevant information, omit crucial details, or fail to align with the question's semantics. To address them, we propose a novel rewriting method CoTKR, Chain-of-Thought Enhanced Knowledge Rewriting, for generating reasoning traces and corresponding knowledge in an interleaved manner, thereby mitigating the limitations of single-step knowledge rewriting. Additionally, to bridge the preference gap between the knowledge rewriter and the question answering (QA) model, we propose a training strategy PAQAF, Preference Alignment from Question Answering Feedback, for leveraging feedback from the QA model to further optimize the knowledge rewriter. We conduct experiments using various LLMs across several KGQA benchmarks. Experimental results demonstrate that, compared with previous knowledge rewriting methods, CoTKR generates the most beneficial knowledge representation for QA models, which significantly improves the performance of LLMs in KGQA.
Information Retrieval 18
☆ PolyMinHash: Efficient Area-Based MinHashing of Polygons for Approximate Nearest Neighbor Search
Similarity searches are a critical task in data mining. As data sets grow larger, exact nearest neighbor searches quickly become unfeasible, leading to the adoption of approximate nearest neighbor (ANN) searches. ANN has been studied for text data, images, and trajectories. However, there has been little effort to develop ANN systems for polygons in spatial database systems and geographic information systems. We present PolyMinHash, a system for approximate polygon similarity search that adapts MinHashing into a novel 2D polygon-hashing scheme to generate short, similarity-preserving signatures of input polygons. Minhash is generated by counting the number of randomly sampled points needed before the sampled point lands within the polygon's interior area, yielding hash values that preserve area-based Jaccard similarity. We present the tradeoff between search accuracy and runtime of our PolyMinHash system. Our hashing mechanism reduces the number of candidates to be processed in the query refinement phase by up to 98% compared to the number of candidates processed by the brute-force algorithm.
☆ The Oracle and The Prism: A Decoupled and Efficient Framework for Generative Recommendation Explanation
The integration of Large Language Models (LLMs) into explainable recommendation systems often leads to a performance-efficiency trade-off in end-to-end architectures, where joint optimization of ranking and explanation can result in suboptimal compromises. To resolve this, we propose Prism, a novel decoupled framework that rigorously separates the recommendation process into a dedicated ranking stage and an explanation generation stage. Inspired by knowledge distillation, Prism leverages a powerful teacher LLM (e.g., FLAN-T5-XXL) as an Oracle to produce high-fidelity explanatory knowledge. A compact, fine-tuned student model (e.g., BART-Base), the Prism, then specializes in synthesizing this knowledge into personalized explanations. This decomposition ensures that each component is optimized for its specific objective, eliminating inherent conflicts in coupled models. Extensive experiments on benchmark datasets demonstrate that our 140M-parameter Prism model significantly outperforms its 11B-parameter teacher in human evaluations of faithfulness and personalization, while achieving a 24 times speedup and a 10 times reduction in memory consumption during inference. These results validate that decoupling, coupled with targeted distillation, provides an efficient and effective pathway to high-quality explainable recommendation.
comment: 11 pages,3 figures
☆ TurkColBERT: A Benchmark of Dense and Late-Interaction Models for Turkish Information Retrieval
Neural information retrieval systems excel in high-resource languages but remain underexplored for morphologically rich, lower-resource languages such as Turkish. Dense bi-encoders currently dominate Turkish IR, yet late-interaction models -- which retain token-level representations for fine-grained matching -- have not been systematically evaluated. We introduce TurkColBERT, the first comprehensive benchmark comparing dense encoders and late-interaction models for Turkish retrieval. Our two-stage adaptation pipeline fine-tunes English and multilingual encoders on Turkish NLI/STS tasks, then converts them into ColBERT-style retrievers using PyLate trained on MS MARCO-TR. We evaluate 10 models across five Turkish BEIR datasets covering scientific, financial, and argumentative domains. Results show strong parameter efficiency: the 1.0M-parameter colbert-hash-nano-tr is 600$\times$ smaller than the 600M turkish-e5-large dense encoder while preserving over 71\% of its average mAP. Late-interaction models that are 3--5$\times$ smaller than dense encoders significantly outperform them; ColmmBERT-base-TR yields up to +13.8\% mAP on domain-specific tasks. For production-readiness, we compare indexing algorithms: MUVERA+Rerank is 3.33$\times$ faster than PLAID and offers +1.7\% relative mAP gain. This enables low-latency retrieval, with ColmmBERT-base-TR achieving 0.54 ms query times under MUVERA. We release all checkpoints, configs, and evaluation scripts. Limitations include reliance on moderately sized datasets ($\leq$50K documents) and translated benchmarks, which may not fully reflect real-world Turkish retrieval conditions; larger-scale MUVERA evaluations remain necessary.
☆ Music Recommendation with Large Language Models: Challenges, Opportunities, and Evaluation
Music Recommender Systems (MRS) have long relied on an information-retrieval framing, where progress is measured mainly through accuracy on retrieval-oriented subtasks. While effective, this reductionist paradigm struggles to address the deeper question of what makes a good recommendation, and attempts to broaden evaluation, through user studies or fairness analyses, have had limited impact. The emergence of Large Language Models (LLMs) disrupts this framework: LLMs are generative rather than ranking-based, making standard accuracy metrics questionable. They also introduce challenges such as hallucinations, knowledge cutoffs, non-determinism, and opaque training data, rendering traditional train/test protocols difficult to interpret. At the same time, LLMs create new opportunities, enabling natural-language interaction and even allowing models to act as evaluators. This work argues that the shift toward LLM-driven MRS requires rethinking evaluation. We first review how LLMs reshape user modeling, item modeling, and natural-language recommendation in music. We then examine evaluation practices from NLP, highlighting methodologies and open challenges relevant to MRS. Finally, we synthesize insights-focusing on how LLM prompting applies to MRS, to outline a structured set of success and risk dimensions. Our goal is to provide the MRS community with an updated, pedagogical, and cross-disciplinary perspective on evaluation.
comment: Under review with the ACM Transactions on Recommender Systems (TORS)
☆ ESGBench: A Benchmark for Explainable ESG Question Answering in Corporate Sustainability Reports
We present ESGBench, a benchmark dataset and evaluation framework designed to assess explainable ESG question answering systems using corporate sustainability reports. The benchmark consists of domain-grounded questions across multiple ESG themes, paired with human-curated answers and supporting evidence to enable fine-grained evaluation of model reasoning. We analyze the performance of state-of-the-art LLMs on ESGBench, highlighting key challenges in factual consistency, traceability, and domain alignment. ESGBench aims to accelerate research in transparent and accountable ESG-focused AI systems.
comment: Workshop paper accepted at AI4DF 2025 (part of ACM ICAIF 2025). 3 pages including tables and figures
☆ An Efficient LLM-based Evolutional Recommendation with Locate-Forget-Update Paradigm
Nowadays, Large Language Models (LLMs) have shown exceptional performance in sequential recommendations, and the adoption of LLM-based recommender systems (LLMRec) is becoming increasingly widespread in existing e-commerce platforms. Despite the impressive performance, the constant high volume of new user-item interactions makes it difficult to adapt to the evolution of user preference over time, especially for LLM-based recommender systems. The challenge arises from the large number of parameters in LLMs, which makes traditional evolution methods (i.e., Re-training or Fine-tuning) impractical. Specifically, Re-training with all interactions results in prohibitively high computational costs. On the other hand, fine-tuning with only new interactions leads to preference forgetting among inactive users, ultimately compromising overall performance. To tackle this problem, we propose EvoRec, an efficient Locate-Forget-Update framework designed for LLM-based recommender systems to model the evolution of user preferences. EvoRec identifies a small set of parameters associated with preference changes and updates them precisely, thereby saving computational resources while maintaining strong recommendation performance. Notably, the modified parameters account for only 30\% of LoRA adapter parameters, with no additional parameters introduced. Extensive experiments on two real-world datasets demonstrate that, compared to existing methods, EvoRec not only efficiently evolves LLMRec to adapt to the preferences of active users, but also preserves the interests of inactive users from being disturbed during evolution.
☆ ARK: Answer-Centric Retriever Tuning via KG-augmented Curriculum Learning
Retrieval-Augmented Generation (RAG) has emerged as a powerful framework for knowledge-intensive tasks, yet its effectiveness in long-context scenarios is often bottlenecked by the retriever's inability to distinguish sparse yet crucial evidence. Standard retrievers, optimized for query-document similarity, frequently fail to align with the downstream goal of generating a precise answer. To bridge this gap, we propose a novel fine-tuning framework that optimizes the retriever for Answer Alignment. Specifically, we first identify high-quality positive chunks by evaluating their sufficiency to generate the correct answer. We then employ a curriculum-based contrastive learning scheme to fine-tune the retriever. This curriculum leverages LLM-constructed Knowledge Graphs (KGs) to generate augmented queries, which in turn mine progressively challenging hard negatives. This process trains the retriever to distinguish the answer-sufficient positive chunks from these nuanced distractors, enhancing its generalization. Extensive experiments on 10 datasets from the Ultradomain and LongBench benchmarks demonstrate that our fine-tuned retriever achieves state-of-the-art performance, improving 14.5% over the base model without substantial architectural modifications and maintaining strong efficiency for long-context RAG. Our work presents a robust and effective methodology for building truly answer-centric retrievers.
comment: Under Review in ARR
☆ Incorporating Token Importance in Multi-Vector Retrieval
ColBERT introduced a late interaction mechanism that independently encodes queries and documents using BERT, and computes similarity via fine-grained interactions over token-level vector representations. This design enables expressive matching while allowing efficient computation of scores, as the multi-vector document representations could be pre-computed offline. ColBERT models distance using a Chamfer-style function: for each query token, it selects the closest document token and sums these distances across all query tokens. In our work, we explore enhancements to the Chamfer distance function by computing a weighted sum over query token contributions, where weights reflect the token importance. Empirically, we show that this simple extension, requiring only token-weight training while keeping the multi-vector representations fixed, further enhances the expressiveness of late interaction multi-vector mechanism. In particular, on the BEIR benchmark, our method achieves an average improvement of 1.28\% in Recall@10 in the zero-shot setting using IDF-based weights, and 3.66\% through few-shot fine-tuning.
☆ QueryGym: A Toolkit for Reproducible LLM-Based Query Reformulation
We present QueryGym, a lightweight, extensible Python toolkit that supports large language model (LLM)-based query reformulation. This is an important tool development since recent work on llm-based query reformulation has shown notable increase in retrieval effectiveness. However, while different authors have sporadically shared the implementation of their methods, there is no unified toolkit that provides a consistent implementation of such methods, which hinders fair comparison, rapid experimentation, consistent benchmarking and reliable deployment. QueryGym addresses this gap by providing a unified framework for implementing, executing, and comparing llm-based reformulation methods. The toolkit offers: (1) a Python API for applying diverse LLM-based methods, (2) a retrieval-agnostic interface supporting integration with backends such as Pyserini and PyTerrier, (3) a centralized prompt management system with versioning and metadata tracking, (4) built-in support for benchmarks like BEIR and MS MARCO, and (5) a completely open-source extensible implementation available to all researchers. QueryGym is publicly available at https://github.com/radinhamidi/QueryGym.
comment: 4 pages
♻ ☆ LLMInit: A Free Lunch from Large Language Models for Selective Initialization of Recommendation EMNLP 2025
Collaborative filtering (CF) is widely adopted in industrial recommender systems (RecSys) for modeling user-item interactions across numerous applications, but often struggles with cold-start and data-sparse scenarios. Recent advancements in pre-trained large language models (LLMs) with rich semantic knowledge, offer promising solutions to these challenges. However, deploying LLMs at scale is hindered by their significant computational demands and latency. In this paper, we propose a novel and scalable LLM-RecSys framework, LLMInit, designed to integrate pretrained LLM embeddings into CF models through selective initialization strategies. Specifically, we identify the embedding collapse issue observed when CF models scale and match the large embedding sizes in LLMs and avoid the problem by introducing efficient sampling methods, including, random, uniform, and variance-based selections. Comprehensive experiments conducted on multiple real-world datasets demonstrate that LLMInit significantly improves recommendation performance while maintaining low computational costs, offering a practical and scalable solution for industrial applications. To facilitate industry adoption and promote future research, we provide open-source access to our implementation at https://github.com/DavidZWZ/LLMInit.
comment: Accepted in EMNLP 2025 Industry Track
♻ ☆ Faster and Memory-Efficient Training of Sequential Recommendation Models for Large Catalogs
Sequential recommendations (SR) with transformer-based architectures are widely adopted in real-world applications, where SR models require frequent retraining to adapt to ever-changing user preferences. However, training transformer-based SR models often encounters a high computational cost associated with scoring extensive item catalogs, often exceeding thousands of items. This occurs mainly due to the use of cross-entropy loss, where peak memory scales proportionally to catalog size, batch size, and sequence length. Recognizing this, practitioners in the field of recommendation systems typically address memory consumption by integrating the cross-entropy (CE) loss with negative sampling, thereby reducing the explicit memory demands of the final layer. However, a small number of negative samples would degrade model performance, and as we demonstrate in our work, increasing the number of negative samples and the batch size further improves the model's performance, but rapidly starts to exceed industrial GPUs' size (~40Gb). In this work, we introduce the CCE- method, which offers a GPU-efficient implementation of the CE loss with negative sampling. Our method accelerates training by up to two times while reducing memory consumption by more than 10 times. Leveraging the memory savings afforded by using CCE- for model training, it becomes feasible to enhance its accuracy on datasets with a large item catalog compared to those trained with original PyTorch-implemented loss functions. Finally, we perform an analysis of key memory-related hyperparameters and highlight the necessity of a delicate balance among these factors. We demonstrate that scaling both the number of negative samples and batch size leads to better results rather than maximizing only one of them. To facilitate further adoption of CCE-, we release a Triton kernel that efficiently implements the proposed method.
♻ ☆ One Pic is All it Takes: Poisoning Visual Document Retrieval Augmented Generation with a Single Image
Retrieval-augmented generation (RAG) is instrumental for inhibiting hallucinations in large language models (LLMs) through the use of a factual knowledge base (KB). Although PDF documents are prominent sources of knowledge, text-based RAG pipelines are ineffective at capturing their rich multi-modal information. In contrast, visual document RAG (VD-RAG) uses screenshots of document pages as the KB, which has been shown to achieve state-of-the-art results. However, by introducing the image modality, VD-RAG introduces new attack vectors for adversaries to disrupt the system by injecting malicious documents into the KB. In this paper, we demonstrate the vulnerability of VD-RAG to poisoning attacks targeting both retrieval and generation. We define two attack objectives and demonstrate that both can be realized by injecting only a single adversarial image into the KB. Firstly, we introduce a targeted attack against one or a group of queries with the goal of spreading targeted disinformation. Secondly, we present a universal attack that, for any potential user query, influences the response to cause a denial-of-service in the VD-RAG system. We investigate the two attack objectives under both white-box and black-box assumptions, employing a multi-objective gradient-based optimization approach as well as prompting state-of-the-art generative models. Using two visual document datasets, a diverse set of state-of-the-art retrievers (embedding models) and generators (vision language models), we show VD-RAG is vulnerable to poisoning attacks in both the targeted and universal settings, yet demonstrating robustness to black-box attacks in the universal setting.
♻ ☆ Selective Mixup for Debiasing Question Selection in Computerized Adaptive Testing CIKM 2025
Computerized Adaptive Testing (CAT) is a widely used technology for evaluating learners' proficiency in online education platforms. By leveraging prior estimates of proficiency to select questions and updating the estimates iteratively based on responses, CAT enables personalized learner modeling and has attracted substantial attention. Despite this progress, most existing works focus primarily on improving diagnostic accuracy, while overlooking the selection bias inherent in the adaptive process. Selection Bias arises because the question selection is strongly influenced by the estimated proficiency, such as assigning easier questions to learners with lower proficiency and harder ones to learners with higher proficiency. Since the selection depends on prior estimation, this bias propagates into the diagnosis model, which is further amplified during iterative updates, leading to misalignment and biased predictions. Moreover, the imbalanced nature of learners' historical interactions often exacerbates the bias in diagnosis models. To address this issue, we propose a debiasing framework consisting of two key modules: Cross-Attribute Examinee Retrieval and Selective Mixup-based Regularization. First, we retrieve balanced examinees with relatively even distributions of correct and incorrect responses and use them as neutral references for biased examinees. Then, mixup is applied between each biased examinee and its matched balanced counterpart under label consistency. This augmentation enriches the diversity of bias-conflicting samples and smooths selection boundaries. Finally, extensive experiments on two benchmark datasets with multiple advanced diagnosis models demonstrate that our method substantially improves both the generalization ability and fairness of question selection in CAT.
comment: Accepted by CIKM 2025
♻ ☆ LLMDistill4Ads: Using Cross-Encoders to Distill from LLM Signals for Advertiser Keyphrase Recommendations
E-commerce sellers are advised to bid on keyphrases to boost their advertising campaigns. These keyphrases must be relevant to prevent irrelevant items from cluttering search systems and to maintain positive seller perception. It is vital that keyphrase suggestions align with seller, search and buyer judgments. Given the challenges in collecting negative feedback in these systems, LLMs have been used as a scalable proxy to human judgments. This paper presents an empirical study on a major ecommerce platform of a distillation framework involving an LLM teacher, a cross-encoder assistant and a bi-encoder Embedding Based Retrieval (EBR) student model, aimed at mitigating click-induced biases in keyphrase recommendations.
♻ ☆ How many patients could we save with LLM priors?
Imagine a world where clinical trials need far fewer patients to achieve the same statistical power, thanks to the knowledge encoded in large language models (LLMs). We present a novel framework for hierarchical Bayesian modeling of adverse events in multi-center clinical trials, leveraging LLM-informed prior distributions. Unlike data augmentation approaches that generate synthetic data points, our methodology directly obtains parametric priors from the model. Our approach systematically elicits informative priors for hyperparameters in hierarchical Bayesian models using a pre-trained LLM, enabling the incorporation of external clinical expertise directly into Bayesian safety modeling. Through comprehensive temperature sensitivity analysis and rigorous cross-validation on real-world clinical trial data, we demonstrate that LLM-derived priors consistently improve predictive performance compared to traditional meta-analytical approaches. This methodology paves the way for more efficient and expert-informed clinical trial design, enabling substantial reductions in the number of patients required to achieve robust safety assessment and with the potential to transform drug safety monitoring and regulatory decision making.
comment: 9 pages, 4 figures
♻ ☆ AIF: Asynchronous Inference Framework for Cost-Effective Pre-Ranking
In industrial recommendation systems, pre-ranking models based on deep neural networks (DNNs) commonly adopt a sequential execution framework: feature fetching and model forward computation are triggered only after receiving candidates from the upstream retrieval stage. This design introduces inherent bottlenecks, including redundant computations of identical users/items and increased latency due to strictly sequential operations, which jointly constrain the model's capacity and system efficiency. To address these limitations, we propose the Asynchronous Inference Framework (AIF), a cost-effective computational architecture that decouples interaction-independent components, those operating within a single user or item, from real-time prediction. AIF reorganizes the model inference process by performing user-side computations in parallel with the retrieval stage and conducting item-side computations in a nearline manner. This means that interaction-independent components are calculated just once and completed before the real-time prediction phase of the pre-ranking stage. As a result, AIF enhances computational efficiency and reduces latency, freeing up resources to significantly improve the feature set and model architecture of interaction-independent components. Moreover, we delve into model design within the AIF framework, employing approximated methods for interaction-dependent components in online real-time predictions. By co-designing both the framework and the model, our solution achieves notable performance gains without significantly increasing computational and latency costs. This has enabled the successful deployment of AIF in the Taobao display advertising system.
♻ ☆ OmniThink: Expanding Knowledge Boundaries in Machine Writing through Thinking EMNLP 2025
Machine writing with large language models often relies on retrieval-augmented generation. However, these approaches remain confined within the boundaries of the model's predefined scope, limiting the generation of content with rich information. Specifically, vanilla-retrieved information tends to lack depth, novelty, and suffers from redundancy, which negatively impacts the quality of generated articles, leading to shallow, unoriginal, and repetitive outputs. To address these issues, we propose OmniThink, a slow-thinking machine writing framework that emulates the human-like process of iterative expansion and reflection. The core idea behind OmniThink is to simulate the cognitive behavior of learners as they slowly deepen their knowledge of the topics. Experimental results demonstrate that OmniThink improves the knowledge density of generated articles without compromising metrics such as coherence and depth. Human evaluations and expert feedback further highlight the potential of OmniThink to address real-world challenges in the generation of long-form articles. Code is available at https://github.com/zjunlp/OmniThink.
comment: EMNLP 2025
♻ ☆ CaKE: Circuit-aware Editing Enables Generalizable Knowledge Learners EMNLP 2025
Knowledge Editing (KE) enables the modification of outdated or incorrect information in large language models (LLMs). While existing KE methods can update isolated facts, they often fail to generalize these updates to multi-hop reasoning tasks that rely on the modified knowledge. Through an analysis of reasoning circuits -- the neural pathways LLMs use for knowledge-based inference, we find that current layer-localized KE approaches (e.g., MEMIT, WISE), which edit only single or a few model layers, inadequately integrate updated knowledge into these reasoning pathways. To address this limitation, we present CaKE (Circuit-aware Knowledge Editing), a novel method that enhances the effective integration of updated knowledge in LLMs. By only leveraging a few curated data samples guided by our circuit-based analysis, CaKE stimulates the model to develop appropriate reasoning circuits for newly incorporated knowledge. Experiments show that CaKE enables more accurate and consistent use of edited knowledge across related reasoning tasks, achieving an average improvement of 20% in multi-hop reasoning accuracy on the MQuAKE dataset while requiring less memory than existing KE methods. We release the code and data in https://github.com/zjunlp/CaKE.
comment: EMNLP 2025
Machine Learning 22
☆ Is the Cure Still Worse Than the Disease? Test Overfitting by LLMs in Automated Program Repair
Automated program repair has been shown to be susceptible to generating repaired code that passes on seen tests but fails on a hold-out set of hidden tests. This problem, dubbed test overfitting, has been identified and studied before the rise of large language models. We experimentally study how much test overfitting is still a problem today, using repository-level SWE-bench tasks.
☆ The use of vocal biomarkers in the detection of Parkinson's disease: a robust statistical performance comparison of classic machine learning models
Parkinson's disease (PD) is a progressive neurodegenerative disorder that, in addition to directly impairing functional mobility, is frequently associated with vocal impairments such as hypophonia and dysarthria, which typically manifest in the early stages. The use of vocal biomarkers to support the early diagnosis of PD presents a non-invasive, low-cost, and accessible alternative in clinical settings. Thus, the objective of this cross-sectional study was to consistently evaluate the effectiveness of a Deep Neural Network (DNN) in distinguishing individuals with Parkinson's disease from healthy controls, in comparison with traditional Machine Learning (ML) methods, using vocal biomarkers. Two publicly available voice datasets were used. Mel-frequency cepstral coefficients (MFCCs) were extracted from the samples, and model robustness was assessed using a validation strategy with 1000 independent random executions. Performance was evaluated using classification statistics. Since normality assumptions were not satisfied, non-parametric tests (Kruskal-Wallis and Bonferroni post-hoc tests) were applied to verify whether the tested classification models were similar or different in the classification of PD. With an average accuracy of $98.65\%$ and $92.11\%$ on the Italian Voice dataset and Parkinson's Telemonitoring dataset, respectively, the DNN demonstrated superior performance and efficiency compared to traditional ML models, while also achieving competitive results when benchmarked against relevant studies. Overall, this study confirms the efficiency of DNNs and emphasizes their potential to provide greater accuracy and reliability for the early detection of neurodegenerative diseases using voice-based biomarkers.
comment: 18 pages, 3 figures
☆ Better audio representations are more brain-like: linking model-brain alignment with performance in downstream auditory tasks
Artificial neural networks (ANNs) are increasingly powerful models of brain computation, yet it remains unclear whether improving their task performance also makes their internal representations more similar to brain signals. To address this question in the auditory domain, we quantified the alignment between the internal representations of 36 different audio models and brain activity from two independent fMRI datasets. Using voxel-wise and component-wise regression, and representation similarity analysis (RSA), we found that recent self-supervised audio models with strong performance in diverse downstream tasks are better predictors of auditory cortex activity than older and more specialized models. To assess the quality of the audio representations, we evaluated these models in 6 auditory tasks from the HEAREval benchmark, spanning music, speech, and environmental sounds. This revealed strong positive Pearson correlations ($r>0.7$) between a model's overall task performance and its alignment with brain representations. Finally, we analyzed the evolution of the similarity between audio and brain representations during the pretraining of EnCodecMAE. We discovered that brain similarity increases progressively and emerges early during pretraining, despite the model not being explicitly optimized for this objective. This suggests that brain-like representations can be an emergent byproduct of learning to reconstruct missing information from naturalistic audio data.
☆ Sex and age determination in European lobsters using AI-Enhanced bioacoustics
Monitoring aquatic species, especially elusive ones like lobsters, presents challenges. This study focuses on Homarus gammarus (European lobster), a key species for fisheries and aquaculture, and leverages non-invasive Passive Acoustic Monitoring (PAM). Understanding lobster habitats, welfare, reproduction, sex, and age is crucial for management and conservation. While bioacoustic emissions have classified various aquatic species using Artificial Intelligence (AI) models, this research specifically uses H. gammarus bioacoustics (buzzing/carapace vibrations) to classify lobsters by age (juvenile/adult) and sex (male/female). The dataset was collected at Johnshaven, Scotland, using hydrophones in concrete tanks. We explored the efficacy of Deep Learning (DL) models (1D-CNN, 1D-DCNN) and six Machine Learning (ML) models (SVM, k-NN, Naive Bayes, Random Forest, XGBoost, MLP). Mel-frequency cepstral coefficients (MFCCs) were used as features. For age classification (adult vs. juvenile), most models achieved over 97% accuracy (Naive Bayes: 91.31%). For sex classification, all models except Naive Bayes surpassed 93.23%. These strong results demonstrate the potential of supervised ML and DL to extract age- and sex-related features from lobster sounds. This research offers a promising non-invasive PAM approach for lobster conservation, detection, and management in aquaculture and fisheries, enabling real-world edge computing applications for underwater species.
☆ Provably Minimum-Length Conformal Prediction Sets for Ordinal Classification AAAI 2026
Ordinal classification has been widely applied in many high-stakes applications, e.g., medical imaging and diagnosis, where reliable uncertainty quantification (UQ) is essential for decision making. Conformal prediction (CP) is a general UQ framework that provides statistically valid guarantees, which is especially useful in practice. However, prior ordinal CP methods mainly focus on heuristic algorithms or restrictively require the underlying model to predict a unimodal distribution over ordinal labels. Consequently, they provide limited insight into coverage-efficiency trade-offs, or a model-agnostic and distribution-free nature favored by CP methods. To this end, we fill this gap by propose an ordinal-CP method that is model-agnostic and provides instance-level optimal prediction intervals. Specifically, we formulate conformal ordinal classification as a minimum-length covering problem at the instance level. To solve this problem, we develop a sliding-window algorithm that is optimal on each calibration data, with only a linear time complexity in K, the number of label candidates. The local optimality per instance further also improves predictive efficiency in expectation. Moreover, we propose a length-regularized variant that shrinks prediction set size while preserving coverage. Experiments on four benchmark datasets from diverse domains are conducted to demonstrate the significantly improved predictive efficiency of the proposed methods over baselines (by 15% decrease on average over four datasets).
comment: Submitted to AAAI 2026
☆ Fantastic Bugs and Where to Find Them in AI Benchmarks
Benchmarks are pivotal in driving AI progress, and invalid benchmark questions frequently undermine their reliability. Manually identifying and correcting errors among thousands of benchmark questions is not only infeasible but also a critical bottleneck for reliable evaluation. In this work, we introduce a framework for systematic benchmark revision that leverages statistical analysis of response patterns to flag potentially invalid questions for further expert review. Our approach builds on a core assumption commonly used in AI evaluations that the mean score sufficiently summarizes model performance. This implies a unidimensional latent construct underlying the measurement experiment, yielding expected ranges for various statistics for each item. When empirically estimated values for these statistics fall outside the expected range for an item, the item is more likely to be problematic. Across nine widely used benchmarks, our method guides expert review to identify problematic questions with up to 84\% precision. In addition, we introduce an LLM-judge first pass to review questions, further reducing human effort. Together, these components provide an efficient and scalable framework for systematic benchmark revision.
☆ Analysis of heart failure patient trajectories using sequence modeling
Transformers have defined the state-of-the-art for clinical prediction tasks involving electronic health records (EHRs). The recently introduced Mamba architecture outperformed an advanced Transformer (Transformer++) based on Llama in handling long context lengths, while using fewer model parameters. Despite the impressive performance of these architectures, a systematic approach to empirically analyze model performance and efficiency under various settings is not well established in the medical domain. The performances of six sequence models were investigated across three architecture classes (Transformers, Transformers++, Mambas) in a large Swedish heart failure (HF) cohort (N = 42820), providing a clinically relevant case study. Patient data included diagnoses, vital signs, laboratories, medications and procedures extracted from in-hospital EHRs. The models were evaluated on three one-year prediction tasks: clinical instability (a readmission phenotype) after initial HF hospitalization, mortality after initial HF hospitalization and mortality after latest hospitalization. Ablations account for modifications of the EHR-based input patient sequence, architectural model configurations, and temporal preprocessing techniques for data collection. Llama achieves the highest predictive discrimination, best calibration, and showed robustness across all tasks, followed by Mambas. Both architectures demonstrate efficient representation learning, with tiny configurations surpassing other large-scaled Transformers. At equal model size, Llama and Mambas achieve superior performance using 25% less training data. This paper presents a first ablation study with systematic design choices for input tokenization, model configuration and temporal data preprocessing. Future model development in clinical prediction tasks using EHRs could build upon this study's recommendation as a starting point.
☆ ManifoldFormer: Geometric Deep Learning for Neural Dynamics on Riemannian Manifolds ICASSP
Existing EEG foundation models mainly treat neural signals as generic time series in Euclidean space, ignoring the intrinsic geometric structure of neural dynamics that constrains brain activity to low-dimensional manifolds. This fundamental mismatch between model assumptions and neural geometry limits representation quality and cross-subject generalization. ManifoldFormer addresses this limitation through a novel geometric deep learning framework that explicitly learns neural manifold representations. The architecture integrates three key innovations: a Riemannian VAE for manifold embedding that preserves geometric structure, a geometric Transformer with geodesic-aware attention mechanisms operating directly on neural manifolds, and a dynamics predictor leveraging neural ODEs for manifold-constrained temporal evolution. Extensive evaluation across four public datasets demonstrates substantial improvements over state-of-the-art methods, with 4.6-4.8% higher accuracy and 6.2-10.2% higher Cohen's Kappa, while maintaining robust cross-subject generalization. The geometric approach reveals meaningful neural patterns consistent with neurophysiological principles, establishing geometric constraints as essential for effective EEG foundation models.
comment: 5 pages, under review by ICASSP
☆ Monte Carlo Expected Threat (MOCET) Scoring NeurIPS 2025
Evaluating and measuring AI Safety Level (ASL) threats are crucial for guiding stakeholders to implement safeguards that keep risks within acceptable limits. ASL-3+ models present a unique risk in their ability to uplift novice non-state actors, especially in the realm of biosecurity. Existing evaluation metrics, such as LAB-Bench, BioLP-bench, and WMDP, can reliably assess model uplift and domain knowledge. However, metrics that better contextualize "real-world risks" are needed to inform the safety case for LLMs, along with scalable, open-ended metrics to keep pace with their rapid advancements. To address both gaps, we introduce MOCET, an interpretable and doubly-scalable metric (automatable and open-ended) that can quantify real-world risks.
comment: Accepted to NeurIPS 2025 BioSafe GenAI
☆ A Robust Federated Learning Approach for Combating Attacks Against IoT Systems Under non-IID Challenges
In the context of the growing proliferation of user devices and the concurrent surge in data volumes, the complexities arising from the substantial increase in data have posed formidable challenges to conventional machine learning model training. Particularly, this is evident within resource-constrained and security-sensitive environments such as those encountered in networks associated with the Internet of Things (IoT). Federated Learning has emerged as a promising remedy to these challenges by decentralizing model training to edge devices or parties, effectively addressing privacy concerns and resource limitations. Nevertheless, the presence of statistical heterogeneity in non-Independently and Identically Distributed (non-IID) data across different parties poses a significant hurdle to the effectiveness of FL. Many FL approaches have been proposed to enhance learning effectiveness under statistical heterogeneity. However, prior studies have uncovered a gap in the existing research landscape, particularly in the absence of a comprehensive comparison between federated methods addressing statistical heterogeneity in detecting IoT attacks. In this research endeavor, we delve into the exploration of FL algorithms, specifically FedAvg, FedProx, and Scaffold, under different data distributions. Our focus is on achieving a comprehensive understanding of and addressing the challenges posed by statistical heterogeneity. In this study, We classify large-scale IoT attacks by utilizing the CICIoT2023 dataset. Through meticulous analysis and experimentation, our objective is to illuminate the performance nuances of these FL methods, providing valuable insights for researchers and practitioners in the domain.
comment: 6 pages, conference paper; presented at the 2024 International Conference on Smart Applications, Communications and Networking (SmartNets 2024), Harrisonburg, VA, USA, May 28, 2024
☆ BITS for GAPS: Bayesian Information-Theoretic Sampling for hierarchical GAussian Process Surrogates
We introduce the Bayesian Information-Theoretic Sampling for hierarchical GAussian Process Surrogates (BITS for GAPS) framework to emulate latent components in hybrid physical systems. BITS for GAPS supports serial hybrid modeling, where known physics governs part of the system and residual dynamics are represented as a latent function inferred from data. A Gaussian process prior is placed over the latent function, with hierarchical priors on its hyperparameters to encode physically meaningful structure in the predictive posterior. To guide data acquisition, we derive entropy-based acquisition functions that quantify expected information gain from candidate input locations, identifying samples most informative for training the surrogate. Specifically, we obtain a closed-form expression for the differential entropy of the predictive posterior and establish a tractable lower bound for efficient evaluation. These derivations approximate the predictive posterior as a finite, uniformly weighted mixture of Gaussian processes. We demonstrate the framework's utility by modeling activity coefficients in vapor-liquid equilibrium systems, embedding the surrogate into extended Raoult's law for distillation design. Numerical results show that entropy-guided sampling improves sample efficiency by targeting regions of high uncertainty and potential information gain. This accelerates surrogate convergence, enhances predictive accuracy in non-ideal regimes, and preserves physical consistency. Overall, BITS for GAPS provides an efficient, interpretable, and uncertainty-aware framework for hybrid modeling of complex physical systems.
☆ Efficient Penalty-Based Bilevel Methods: Improved Analysis, Novel Updates, and Flatness Condition
Penalty-based methods have become popular for solving bilevel optimization (BLO) problems, thanks to their effective first-order nature. However, they often require inner-loop iterations to solve the lower-level (LL) problem and small outer-loop step sizes to handle the increased smoothness induced by large penalty terms, leading to suboptimal complexity. This work considers the general BLO problems with coupled constraints (CCs) and leverages a novel penalty reformulation that decouples the upper- and lower-level variables. This yields an improved analysis of the smoothness constant, enabling larger step sizes and reduced iteration complexity for Penalty-Based Gradient Descent algorithms in ALTernating fashion (ALT-PBGD). Building on the insight of reduced smoothness, we propose PBGD-Free, a novel fully single-loop algorithm that avoids inner loops for the uncoupled constraint BLO. For BLO with CCs, PBGD-Free employs an efficient inner-loop with substantially reduced iteration complexity. Furthermore, we propose a novel curvature condition describing the "flatness" of the upper-level objective with respect to the LL variable. This condition relaxes the traditional upper-level Lipschitz requirement, enables smaller penalty constant choices, and results in a negligible penalty gradient term during upper-level variable updates. We provide rigorous convergence analysis and validate the method's efficacy through hyperparameter optimization for support vector machines and fine-tuning of large language models.
comment: arXiv admin note: text overlap with arXiv:2507.20400
☆ A Vector Symbolic Approach to Multiple Instance Learning
Multiple Instance Learning (MIL) tasks impose a strict logical constraint: a bag is labeled positive if and only if at least one instance within it is positive. While this iff constraint aligns with many real-world applications, recent work has shown that most deep learning-based MIL approaches violate it, leading to inflated performance metrics and poor generalization. We propose a novel MIL framework based on Vector Symbolic Architectures (VSAs), which provide a differentiable mechanism for performing symbolic operations in high-dimensional space. Our method encodes the MIL assumption directly into the model's structure by representing instances and concepts as nearly orthogonal high-dimensional vectors and using algebraic operations to enforce the iff constraint during classification. To bridge the gap between raw data and VSA representations, we design a learned encoder that transforms input instances into VSA-compatible vectors while preserving key distributional properties. Our approach, which includes a VSA-driven MaxNetwork classifier, achieves state-of-the-art results for a valid MIL model on standard MIL benchmarks and medical imaging datasets, outperforming existing methods while maintaining strict adherence to the MIL formulation. This work offers a principled, interpretable, and effective alternative to existing MIL approaches that rely on learned heuristics.
☆ Membership Inference Attacks Beyond Overfitting
Membership inference attacks (MIAs) against machine learning (ML) models aim to determine whether a given data point was part of the model training data. These attacks may pose significant privacy risks to individuals whose sensitive data were used for training, which motivates the use of defenses such as differential privacy, often at the cost of high accuracy losses. MIAs exploit the differences in the behavior of a model when making predictions on samples it has seen during training (members) versus those it has not seen (non-members). Several studies have pointed out that model overfitting is the major factor contributing to these differences in behavior and, consequently, to the success of MIAs. However, the literature also shows that even non-overfitted ML models can leak information about a small subset of their training data. In this paper, we investigate the root causes of membership inference vulnerabilities beyond traditional overfitting concerns and suggest targeted defenses. We empirically analyze the characteristics of the training data samples vulnerable to MIAs in models that are not overfitted (and hence able to generalize). Our findings reveal that these samples are often outliers within their classes (e.g., noisy or hard to classify). We then propose potential defensive strategies to protect these vulnerable samples and enhance the privacy-preserving capabilities of ML models. Our code is available at https://github.com/najeebjebreel/mia_analysis.
☆ Revisiting Multimodal KV Cache Compression: A Frequency-Domain-Guided Outlier-KV-Aware Approach
Multimodal large language models suffer from substantial inference overhead since multimodal KV Cache grows proportionally with the visual input length. Existing multimodal KV Cache compression methods mostly rely on attention score to reduce cache size, which makes them are incompatible with established efficient attention kernels (e.g., FlashAttention) and ignores the contribution of value vectors to the attention output. In this work, we revisit multimodal KV Cache compression from the perspective of the KV matrices' distribution. First, we observe that frequency-domain energy of multimodal KV matrices is predominantly concentrated in low-frequency and extract this principal energy via a low-pass filter. Further, we find that removing KV pairs that deviate substantially from this principal energy leads to a pronounced performance drop, which we define as Outlier KVs. Considering Outlier KVs are more likely to encode features critical for inference, we propose FlashCache, a frequency-domain-guided, Outlier-KV-aware KV Cache compression framework. First, we introduce an Outlier KV Recognition Module that models the principal component of multimodal KV matrices in the frequency domain and preferentially retains KV pairs that significantly deviate from it. Furthermore, Dynamic Budget Allocation Module is designed to adaptively determine the per-layer KV Cache size to retain more Outlier KVs. Experiments on multiple MLLMs and benchmarks demonstrate that FlashCache outperforms state-of-the-art multimoal KV compression methods, achieving up to 1.69 times faster decoding with 80% lower KV memory usage while maintaining task performance.
comment: Under Review
☆ GCL-OT: Graph Contrastive Learning with Optimal Transport for Heterophilic Text-Attributed Graphs AAAI 2026
Recently, structure-text contrastive learning has shown promising performance on text-attributed graphs by leveraging the complementary strengths of graph neural networks and language models. However, existing methods typically rely on homophily assumptions in similarity estimation and hard optimization objectives, which limit their applicability to heterophilic graphs. Although existing methods can mitigate heterophily through structural adjustments or neighbor aggregation, they usually treat textual embeddings as static targets, leading to suboptimal alignment. In this work, we identify the multi-granular heterophily in text-attributed graphs, including complete heterophily, partial heterophily, and latent homophily, which makes structure-text alignment particularly challenging due to mixed, noisy, and missing semantic correlations. To achieve flexible and bidirectional alignment, we propose GCL-OT, a novel graph contrastive learning framework with optimal transport, equipped with tailored mechanisms for each type of heterophily. Specifically, for partial heterophily, we design a RealSoftMax-based similarity estimator to emphasize key neighbor-word interactions while easing background noise. For complete heterophily, we introduce a prompt-based filter that adaptively excludes irrelevant noise during optimal transport alignment. Furthermore, we incorporate OT-guided soft supervision to uncover potential neighbors with similar semantics, enhancing the learning of latent homophily. Theoretical analysis shows that GCL-OT can improve the mutual information bound and Bayes error guarantees. Extensive experiments on nine benchmarks show that GCL-OT consistently outperforms state-of-the-art methods, verifying its effectiveness and robustness.
comment: AAAI 2026
♻ ☆ Reinforced Generation of Combinatorial Structures: Applications to Complexity Theory
Can AI based methods help us make advances in complexity theory? We provide evidence towards answering this in the affirmative, using AlphaEvolve (an LLM code mutation agent) to obtain new results in three settings: a) We improve a recent result of Kunisky and Yu to obtain near-optimal upper and (conditional) lower bounds on certification algorithms for MAX-CUT and MAX-Independent Set on random 3- and 4-regular graphs. Our improved lower bounds are obtained by constructing nearly extremal Ramanujan graphs on as many as $163$ vertices, and our upper bounds are obtained via analytical arguments. b) We obtain new inapproximability results for MAX-4-CUT and MAX-3-CUT, proving that it is NP-hard to approximate them within factors of $0.987$ and $0.9649$ respectively, using AlphaEvolve to discover new gadget reductions. Our MAX-4-CUT result improves upon the SOTA of $0.9883$, and our MAX-3-CUT result improves on the current best gadget-based inapproximability result of $0.9853$, but falls short of the SOTA of $16/17$ that relies on a custom PCP (rather than a reduction from ``standard'' Håstad-style PCPs). c) Inapproximability for the metric Traveling Salesman Problem (TSP): We show that it is NP-hard to approximate the minimum cost tour within a factor of $111/110$ using AlphaEvolve to discover a new gadget, thus improving the SOTA of $117/116$. Along the way, we provide new modular soundness and completeness arguments that can be of independent interest. A key technical challenge we faced: verifying a candidate construction produced by AlphaEvolve is costly (sometimes requiring time exponential in the size of the construction). We used AlphaEvolve itself to evolve the verification procedure to be faster (sometimes by $10,000\times$ for our gadgets). Our results suggest that gadget based proofs would benefit from a pass through AI-based tools to obtain stronger results.
♻ ☆ From Noise to Narrative: Tracing the Origins of Hallucinations in Transformers
As generative AI systems become competent and democratized in science, business, and government, deeper insight into their failure modes now poses an acute need. The occasional volatility in their behavior, such as the propensity of transformer models to hallucinate, impedes trust and adoption of emerging AI solutions in high-stakes areas. In the present work, we establish how and when hallucinations arise in pre-trained transformer models through concept representations captured by sparse autoencoders, under scenarios with experimentally controlled uncertainty in the input space. Our systematic experiments reveal that the number of semantic concepts used by the transformer model grows as the input information becomes increasingly unstructured. In the face of growing uncertainty in the input space, the transformer model becomes prone to activate coherent yet input-insensitive semantic features, leading to hallucinated output. At its extreme, for pure-noise inputs, we identify a wide variety of robustly triggered and meaningful concepts in the intermediate activations of pre-trained transformer models, whose functional integrity we confirm through targeted steering. We also show that hallucinations in the output of a transformer model can be reliably predicted from the concept patterns embedded in transformer layer activations. This collection of insights on transformer internal processing mechanics has immediate consequences for aligning AI models with human values, AI safety, opening the attack surface for potential adversarial attacks, and providing a basis for automatic quantification of a model's hallucination risk.
♻ ☆ A Small Math Model: Recasting Strategy Choice Theory in an LLM-Inspired Architecture
Strategy Choice Theory (SCT; Siegler and Shrager, 1984; Siegler, 2000) explains important aspects of children's arithmetic learning based upon principles including learning from developmentally naturalistic data, probabilistic representation, confidence-based retrieval, and the phase-like importance of scaffolding strategies, such as finger-counting. Here we recast SCT as a ``Small Math Model'' (SMM), employing a neural-network-based architecture analogous to LLMs. The SMM extends SCT to include counting practice, symbol (number) embedding, and gated attention. Similar to earlier work, the SMM demonstrates constructive and destructive interference between counting and addition, and the ``wave-like'' use of finger-counting as sum recall improves. We plan to extend the SMM to later aspects of the decades-long SCT program, including adaptive strategy choice and eventually strategy discovery, providing a unified platform to investigate the understanding of numerical characteristics and relationships essential for mathematical reasoning -- as it can emerge in LLM-based agents.
♻ ☆ FAR: Function-preserving Attention Replacement for IMC-friendly Inference
While transformers dominate modern vision and language models, their attention mechanism remains poorly suited for in-memory computing (IMC) devices due to intensive activation-to-activation multiplications and non-local memory access, leading to substantial latency and bandwidth overhead on ReRAM-based accelerators. To address this mismatch, we propose FAR, a Function-preserving Attention Replacement framework that substitutes all attention in pretrained DeiTs with sequential modules inherently compatible with IMC dataflows. Specifically, FAR replaces self-attention with a multi-head bidirectional LSTM architecture via block-wise distillation to retain functional equivalence while enabling linear-time computation and localized weight reuse. We further incorporate structured pruning on FAR models, enabling flexible adaptation to resource-constrained IMC arrays while maintaining functional fidelity. Evaluations on the DeiT family demonstrate that FAR maintains comparable accuracy to the original attention-based models on ImageNet and multiple downstream tasks with reduced parameters and latency. Further analysis shows that FAR preserves the semantic token relationships learned by attention while improving computational efficiency, highlighting its potential for energy-efficient transformer inference on IMC-based edge accelerators.
comment: 12 pages main paper, 6 figures
♻ ☆ Sometimes Painful but Certainly Promising: Feasibility and Trade-offs of Language Model Inference at the Edge
The rapid rise of Language Models (LMs) has expanded the capabilities of natural language processing, powering applications from text generation to complex decision-making. While state-of-the-art LMs often boast hundreds of billions of parameters and are primarily deployed in data centers, recent trends show a growing focus on compact models-typically under 10 billion parameters-enabled by techniques such as quantization and other model compression techniques. This shift paves the way for LMs on edge devices, offering potential benefits such as enhanced privacy, reduced latency, and improved data sovereignty. However, the inherent complexity of even these smaller models, combined with the limited computing resources of edge hardware, raises critical questions about the practical trade-offs in executing LM inference outside the cloud. To address these challenges, we present a comprehensive evaluation of generative LM inference on representative CPU-based and GPU-accelerated edge devices. Our study measures key performance indicators-including memory usage, inference speed, and energy consumption-across various device configurations. Additionally, we examine throughput-energy trade-offs, cost considerations, and usability, alongside an assessment of qualitative model performance. While quantization helps mitigate memory overhead, it does not fully eliminate resource bottlenecks, especially for larger models. Our findings quantify the memory and energy constraints that must be considered for practical real-world deployments, offering concrete insights into the trade-offs between model size, inference performance, and efficiency. The exploration of LMs at the edge is still in its early stages. We hope this study provides a foundation for future research, guiding the refinement of models, the enhancement of inference efficiency, and the advancement of edge-centric AI systems.
comment: Paper currently under review in an ACM journal. This version reflects reviewer-driven revisions: calibrated power measurements validated with external hardware, updated figures and conclusions, added downstream benchmarks (HellaSwag, Winogrande, TruthfulQA, ARC), clarified hardware scope and cold-start behavior, corrected Orin GPU Q4_0 results, improved visuals, and discussed emerging GenAI NPUs
♻ ☆ A Low Rank Neural Representation of Entropy Solutions
We construct a new representation of entropy solutions to nonlinear scalar conservation laws with a smooth convex flux function in a single spatial dimension. The representation is a generalization of the method of characteristics and posseses a compositional form. While it is a nonlinear representation, the embedded dynamics of the solution in the time variable is linear. This representation is then discretized as a manifold of implicit neural representations where the feedforward neural network architecture has a low rank structure. Finally, we show that the low rank neural representation with a fixed number of layers and a small number of coefficients can approximate any entropy solution regardless of the complexity of the shock topology, while retaining the linearity of the embedded dynamics.
comment: 47 pages, 10 figures
Artificial Intelligence 13
☆ The use of vocal biomarkers in the detection of Parkinson's disease: a robust statistical performance comparison of classic machine learning models
Parkinson's disease (PD) is a progressive neurodegenerative disorder that, in addition to directly impairing functional mobility, is frequently associated with vocal impairments such as hypophonia and dysarthria, which typically manifest in the early stages. The use of vocal biomarkers to support the early diagnosis of PD presents a non-invasive, low-cost, and accessible alternative in clinical settings. Thus, the objective of this cross-sectional study was to consistently evaluate the effectiveness of a Deep Neural Network (DNN) in distinguishing individuals with Parkinson's disease from healthy controls, in comparison with traditional Machine Learning (ML) methods, using vocal biomarkers. Two publicly available voice datasets were used. Mel-frequency cepstral coefficients (MFCCs) were extracted from the samples, and model robustness was assessed using a validation strategy with 1000 independent random executions. Performance was evaluated using classification statistics. Since normality assumptions were not satisfied, non-parametric tests (Kruskal-Wallis and Bonferroni post-hoc tests) were applied to verify whether the tested classification models were similar or different in the classification of PD. With an average accuracy of $98.65\%$ and $92.11\%$ on the Italian Voice dataset and Parkinson's Telemonitoring dataset, respectively, the DNN demonstrated superior performance and efficiency compared to traditional ML models, while also achieving competitive results when benchmarked against relevant studies. Overall, this study confirms the efficiency of DNNs and emphasizes their potential to provide greater accuracy and reliability for the early detection of neurodegenerative diseases using voice-based biomarkers.
comment: 18 pages, 3 figures
☆ MRI Super-Resolution with Deep Learning: A Comprehensive Survey
High-resolution (HR) magnetic resonance imaging (MRI) is crucial for many clinical and research applications. However, achieving it remains costly and constrained by technical trade-offs and experimental limitations. Super-resolution (SR) presents a promising computational approach to overcome these challenges by generating HR images from more affordable low-resolution (LR) scans, potentially improving diagnostic accuracy and efficiency without requiring additional hardware. This survey reviews recent advances in MRI SR techniques, with a focus on deep learning (DL) approaches. It examines DL-based MRI SR methods from the perspectives of computer vision, computational imaging, inverse problems, and MR physics, covering theoretical foundations, architectural designs, learning strategies, benchmark datasets, and performance metrics. We propose a systematic taxonomy to categorize these methods and present an in-depth study of both established and emerging SR techniques applicable to MRI, considering unique challenges in clinical and research contexts. We also highlight open challenges and directions that the community needs to address. Additionally, we provide a collection of essential open-access resources, tools, and tutorials, available on our GitHub: https://github.com/mkhateri/Awesome-MRI-Super-Resolution. IEEE keywords: MRI, Super-Resolution, Deep Learning, Computational Imaging, Inverse Problem, Survey.
comment: 41 pages
☆ Sex and age determination in European lobsters using AI-Enhanced bioacoustics
Monitoring aquatic species, especially elusive ones like lobsters, presents challenges. This study focuses on Homarus gammarus (European lobster), a key species for fisheries and aquaculture, and leverages non-invasive Passive Acoustic Monitoring (PAM). Understanding lobster habitats, welfare, reproduction, sex, and age is crucial for management and conservation. While bioacoustic emissions have classified various aquatic species using Artificial Intelligence (AI) models, this research specifically uses H. gammarus bioacoustics (buzzing/carapace vibrations) to classify lobsters by age (juvenile/adult) and sex (male/female). The dataset was collected at Johnshaven, Scotland, using hydrophones in concrete tanks. We explored the efficacy of Deep Learning (DL) models (1D-CNN, 1D-DCNN) and six Machine Learning (ML) models (SVM, k-NN, Naive Bayes, Random Forest, XGBoost, MLP). Mel-frequency cepstral coefficients (MFCCs) were used as features. For age classification (adult vs. juvenile), most models achieved over 97% accuracy (Naive Bayes: 91.31%). For sex classification, all models except Naive Bayes surpassed 93.23%. These strong results demonstrate the potential of supervised ML and DL to extract age- and sex-related features from lobster sounds. This research offers a promising non-invasive PAM approach for lobster conservation, detection, and management in aquaculture and fisheries, enabling real-world edge computing applications for underwater species.
☆ ConCISE: A Reference-Free Conciseness Evaluation Metric for LLM-Generated Answers
Large language models (LLMs) frequently generate responses that are lengthy and verbose, filled with redundant or unnecessary details. This diminishes clarity and user satisfaction, and it increases costs for model developers, especially with well-known proprietary models that charge based on the number of output tokens. In this paper, we introduce a novel reference-free metric for evaluating the conciseness of responses generated by LLMs. Our method quantifies non-essential content without relying on gold standard references and calculates the average of three calculations: i) a compression ratio between the original response and an LLM abstractive summary; ii) a compression ratio between the original response and an LLM extractive summary; and iii) wordremoval compression, where an LLM removes as many non-essential words as possible from the response while preserving its meaning, with the number of tokens removed indicating the conciseness score. Experimental results demonstrate that our proposed metric identifies redundancy in LLM outputs, offering a practical tool for automated evaluation of response brevity in conversational AI systems without the need for ground truth human annotations.
☆ Fantastic Bugs and Where to Find Them in AI Benchmarks
Benchmarks are pivotal in driving AI progress, and invalid benchmark questions frequently undermine their reliability. Manually identifying and correcting errors among thousands of benchmark questions is not only infeasible but also a critical bottleneck for reliable evaluation. In this work, we introduce a framework for systematic benchmark revision that leverages statistical analysis of response patterns to flag potentially invalid questions for further expert review. Our approach builds on a core assumption commonly used in AI evaluations that the mean score sufficiently summarizes model performance. This implies a unidimensional latent construct underlying the measurement experiment, yielding expected ranges for various statistics for each item. When empirically estimated values for these statistics fall outside the expected range for an item, the item is more likely to be problematic. Across nine widely used benchmarks, our method guides expert review to identify problematic questions with up to 84\% precision. In addition, we introduce an LLM-judge first pass to review questions, further reducing human effort. Together, these components provide an efficient and scalable framework for systematic benchmark revision.
☆ Analysis of heart failure patient trajectories using sequence modeling
Transformers have defined the state-of-the-art for clinical prediction tasks involving electronic health records (EHRs). The recently introduced Mamba architecture outperformed an advanced Transformer (Transformer++) based on Llama in handling long context lengths, while using fewer model parameters. Despite the impressive performance of these architectures, a systematic approach to empirically analyze model performance and efficiency under various settings is not well established in the medical domain. The performances of six sequence models were investigated across three architecture classes (Transformers, Transformers++, Mambas) in a large Swedish heart failure (HF) cohort (N = 42820), providing a clinically relevant case study. Patient data included diagnoses, vital signs, laboratories, medications and procedures extracted from in-hospital EHRs. The models were evaluated on three one-year prediction tasks: clinical instability (a readmission phenotype) after initial HF hospitalization, mortality after initial HF hospitalization and mortality after latest hospitalization. Ablations account for modifications of the EHR-based input patient sequence, architectural model configurations, and temporal preprocessing techniques for data collection. Llama achieves the highest predictive discrimination, best calibration, and showed robustness across all tasks, followed by Mambas. Both architectures demonstrate efficient representation learning, with tiny configurations surpassing other large-scaled Transformers. At equal model size, Llama and Mambas achieve superior performance using 25% less training data. This paper presents a first ablation study with systematic design choices for input tokenization, model configuration and temporal data preprocessing. Future model development in clinical prediction tasks using EHRs could build upon this study's recommendation as a starting point.
☆ Cognitive BASIC: An In-Model Interpreted Reasoning Language for LLMs
Cognitive BASIC is a minimal, BASIC-style prompting language and in-model interpreter that structures large language model (LLM) reasoning into explicit, stepwise execution traces. Inspired by the simplicity of retro BASIC, we repurpose numbered lines and simple commands as an interpretable cognitive control layer. Modern LLMs can reliably simulate such short programs, enabling transparent multi-step reasoning inside the model. A natural-language interpreter file specifies command semantics, memory updates, and logging behavior. Our mental-model interpreter extracts declarative and procedural knowledge, detects contradictions, and produces resolutions when necessary. A comparison across three LLMs on a benchmark of knowledge extraction, conflict detection, and reasoning tasks shows that all models can execute Cognitive BASIC programs, with overall strong but not uniform performance.
comment: 6 pages, Submitted to ESANN 2026
☆ ManifoldFormer: Geometric Deep Learning for Neural Dynamics on Riemannian Manifolds ICASSP
Existing EEG foundation models mainly treat neural signals as generic time series in Euclidean space, ignoring the intrinsic geometric structure of neural dynamics that constrains brain activity to low-dimensional manifolds. This fundamental mismatch between model assumptions and neural geometry limits representation quality and cross-subject generalization. ManifoldFormer addresses this limitation through a novel geometric deep learning framework that explicitly learns neural manifold representations. The architecture integrates three key innovations: a Riemannian VAE for manifold embedding that preserves geometric structure, a geometric Transformer with geodesic-aware attention mechanisms operating directly on neural manifolds, and a dynamics predictor leveraging neural ODEs for manifold-constrained temporal evolution. Extensive evaluation across four public datasets demonstrates substantial improvements over state-of-the-art methods, with 4.6-4.8% higher accuracy and 6.2-10.2% higher Cohen's Kappa, while maintaining robust cross-subject generalization. The geometric approach reveals meaningful neural patterns consistent with neurophysiological principles, establishing geometric constraints as essential for effective EEG foundation models.
comment: 5 pages, under review by ICASSP
☆ WorldGen: From Text to Traversable and Interactive 3D Worlds
We introduce WorldGen, a system that enables the automatic creation of large-scale, interactive 3D worlds directly from text prompts. Our approach transforms natural language descriptions into traversable, fully textured environments that can be immediately explored or edited within standard game engines. By combining LLM-driven scene layout reasoning, procedural generation, diffusion-based 3D generation, and object-aware scene decomposition, WorldGen bridges the gap between creative intent and functional virtual spaces, allowing creators to design coherent, navigable worlds without manual modeling or specialized 3D expertise. The system is fully modular and supports fine-grained control over layout, scale, and style, producing worlds that are geometrically consistent, visually rich, and efficient to render in real time. This work represents a step towards accessible, generative world-building at scale, advancing the frontier of 3D generative AI for applications in gaming, simulation, and immersive social environments.
☆ Monte Carlo Expected Threat (MOCET) Scoring NeurIPS 2025
Evaluating and measuring AI Safety Level (ASL) threats are crucial for guiding stakeholders to implement safeguards that keep risks within acceptable limits. ASL-3+ models present a unique risk in their ability to uplift novice non-state actors, especially in the realm of biosecurity. Existing evaluation metrics, such as LAB-Bench, BioLP-bench, and WMDP, can reliably assess model uplift and domain knowledge. However, metrics that better contextualize "real-world risks" are needed to inform the safety case for LLMs, along with scalable, open-ended metrics to keep pace with their rapid advancements. To address both gaps, we introduce MOCET, an interpretable and doubly-scalable metric (automatable and open-ended) that can quantify real-world risks.
comment: Accepted to NeurIPS 2025 BioSafe GenAI
☆ A Robust Federated Learning Approach for Combating Attacks Against IoT Systems Under non-IID Challenges
In the context of the growing proliferation of user devices and the concurrent surge in data volumes, the complexities arising from the substantial increase in data have posed formidable challenges to conventional machine learning model training. Particularly, this is evident within resource-constrained and security-sensitive environments such as those encountered in networks associated with the Internet of Things (IoT). Federated Learning has emerged as a promising remedy to these challenges by decentralizing model training to edge devices or parties, effectively addressing privacy concerns and resource limitations. Nevertheless, the presence of statistical heterogeneity in non-Independently and Identically Distributed (non-IID) data across different parties poses a significant hurdle to the effectiveness of FL. Many FL approaches have been proposed to enhance learning effectiveness under statistical heterogeneity. However, prior studies have uncovered a gap in the existing research landscape, particularly in the absence of a comprehensive comparison between federated methods addressing statistical heterogeneity in detecting IoT attacks. In this research endeavor, we delve into the exploration of FL algorithms, specifically FedAvg, FedProx, and Scaffold, under different data distributions. Our focus is on achieving a comprehensive understanding of and addressing the challenges posed by statistical heterogeneity. In this study, We classify large-scale IoT attacks by utilizing the CICIoT2023 dataset. Through meticulous analysis and experimentation, our objective is to illuminate the performance nuances of these FL methods, providing valuable insights for researchers and practitioners in the domain.
comment: 6 pages, conference paper; presented at the 2024 International Conference on Smart Applications, Communications and Networking (SmartNets 2024), Harrisonburg, VA, USA, May 28, 2024
♻ ☆ Reinforced Generation of Combinatorial Structures: Applications to Complexity Theory
Can AI based methods help us make advances in complexity theory? We provide evidence towards answering this in the affirmative, using AlphaEvolve (an LLM code mutation agent) to obtain new results in three settings: a) We improve a recent result of Kunisky and Yu to obtain near-optimal upper and (conditional) lower bounds on certification algorithms for MAX-CUT and MAX-Independent Set on random 3- and 4-regular graphs. Our improved lower bounds are obtained by constructing nearly extremal Ramanujan graphs on as many as $163$ vertices, and our upper bounds are obtained via analytical arguments. b) We obtain new inapproximability results for MAX-4-CUT and MAX-3-CUT, proving that it is NP-hard to approximate them within factors of $0.987$ and $0.9649$ respectively, using AlphaEvolve to discover new gadget reductions. Our MAX-4-CUT result improves upon the SOTA of $0.9883$, and our MAX-3-CUT result improves on the current best gadget-based inapproximability result of $0.9853$, but falls short of the SOTA of $16/17$ that relies on a custom PCP (rather than a reduction from ``standard'' Håstad-style PCPs). c) Inapproximability for the metric Traveling Salesman Problem (TSP): We show that it is NP-hard to approximate the minimum cost tour within a factor of $111/110$ using AlphaEvolve to discover a new gadget, thus improving the SOTA of $117/116$. Along the way, we provide new modular soundness and completeness arguments that can be of independent interest. A key technical challenge we faced: verifying a candidate construction produced by AlphaEvolve is costly (sometimes requiring time exponential in the size of the construction). We used AlphaEvolve itself to evolve the verification procedure to be faster (sometimes by $10,000\times$ for our gadgets). Our results suggest that gadget based proofs would benefit from a pass through AI-based tools to obtain stronger results.
♻ ☆ ISS-Geo142: A Benchmark for Geolocating Astronaut Photography from the International Space Station
This paper introduces ISS-Geo142, a curated benchmark for geolocating astronaut photography captured from the International Space Station (ISS). Although the ISS position at capture time is known precisely, the specific Earth locations depicted in these images are typically not directly georeferenced, making automated localization non-trivial. ISS-Geo142 consists of 142 images with associated metadata and manually determined geographic locations, spanning a range of spatial scales and scene types. On top of this benchmark, we implement and evaluate three geolocation pipelines: a neural network based approach (NN-Geo) using VGG16 features and cross-correlation over map-derived Areas of Interest (AOIs), a Scale-Invariant Feature Transform based pipeline (SIFT-Match) using sliding-window feature matching on stitched high-resolution AOIs, and TerraByte, an AI system built around a GPT-4 model with vision capabilities that jointly reasons over image content and ISS coordinates. On ISS-Geo142, NN-Geo achieves a match for 75.52\% of the images under our evaluation protocol, SIFT-Match attains high precision on structurally rich scenes at substantial computational cost, and TerraByte establishes the strongest overall baseline, correctly geolocating approximately 90\% of the images while also producing human-readable geographic descriptions. The methods and experiments were originally developed in 2023; this manuscript is a revised and extended version that situates the work relative to subsequent advances in cross-view geo-localization and remote-sensing vision--language models. Taken together, ISS-Geo142 and these three pipelines provide a concrete, historically grounded benchmark for future work on ISS image geolocation.
Information Retrieval 15
☆ CroPS: Improving Dense Retrieval with Cross-Perspective Positive Samples in Short-Video Search AAAI-2026
Dense retrieval has become a foundational paradigm in modern search systems, especially on short-video platforms. However, most industrial systems adopt a self-reinforcing training pipeline that relies on historically exposed user interactions for supervision. This paradigm inevitably leads to a filter bubble effect, where potentially relevant but previously unseen content is excluded from the training signal, biasing the model toward narrow and conservative retrieval. In this paper, we present CroPS (Cross-Perspective Positive Samples), a novel retrieval data engine designed to alleviate this problem by introducing diverse and semantically meaningful positive examples from multiple perspectives. CroPS enhances training with positive signals derived from user query reformulation behavior (query-level), engagement data in recommendation streams (system-level), and world knowledge synthesized by large language models (knowledge-level). To effectively utilize these heterogeneous signals, we introduce a Hierarchical Label Assignment (HLA) strategy and a corresponding H-InfoNCE loss that together enable fine-grained, relevance-aware optimization. Extensive experiments conducted on Kuaishou Search, a large-scale commercial short-video search platform, demonstrate that CroPS significantly outperforms strong baselines both offline and in live A/B tests, achieving superior retrieval performance and reducing query reformulation rates. CroPS is now fully deployed in Kuaishou Search, serving hundreds of millions of users daily.
comment: AAAI-2026, Oral
☆ HV-Attack: Hierarchical Visual Attack for Multimodal Retrieval Augmented Generation
Advanced multimodal Retrieval-Augmented Generation (MRAG) techniques have been widely applied to enhance the capabilities of Large Multimodal Models (LMMs), but they also bring along novel safety issues. Existing adversarial research has revealed the vulnerability of MRAG systems to knowledge poisoning attacks, which fool the retriever into recalling injected poisoned contents. However, our work considers a different setting: visual attack of MRAG by solely adding imperceptible perturbations at the image inputs of users, without manipulating any other components. This is challenging due to the robustness of fine-tuned retrievers and large-scale generators, and the effect of visual perturbation may be further weakened by propagation through the RAG chain. We propose a novel Hierarchical Visual Attack that misaligns and disrupts the two inputs (the multimodal query and the augmented knowledge) of MRAG's generator to confuse its generation. We further design a hierarchical two-stage strategy to obtain misaligned augmented knowledge. We disrupt the image input of the retriever to make it recall irrelevant knowledge from the original database, by optimizing the perturbation which first breaks the cross-modal alignment and then disrupts the multimodal semantic alignment. We conduct extensive experiments on two widely-used MRAG datasets: OK-VQA and InfoSeek. We use CLIP-based retrievers and two LMMs BLIP-2 and LLaVA as generators. Results demonstrate the effectiveness of our visual attack on MRAG through the significant decrease in both retrieval and generation performance.
☆ NAMeGEn: Creative Name Generation via A Novel Agent-based Multiple Personalized Goal Enhancement Framework
Trained on diverse human-authored texts, Large Language Models (LLMs) unlocked the potential for Creative Natural Language Generation (CNLG), benefiting various applications like advertising and storytelling. Nevertheless, CNLG still remains difficult due to two main challenges. (1) Multi-objective flexibility: user requirements are often personalized, fine-grained, and pluralistic, which LLMs struggle to satisfy simultaneously; (2) Interpretive complexity: beyond generation, creativity also involves understanding and interpreting implicit meaning to enhance users' perception. These challenges significantly limit current methods, especially in short-form text generation, in generating creative and insightful content. To address this, we focus on Chinese baby naming, a representative short-form CNLG task requiring adherence to explicit user constraints (e.g., length, semantics, anthroponymy) while offering meaningful aesthetic explanations. We propose NAMeGEn, a novel multi-agent optimization framework that iteratively alternates between objective extraction, name generation, and evaluation to meet diverse requirements and generate accurate explanations. To support this task, we further construct a classical Chinese poetry corpus with 17k+ poems to enhance aesthetics, and introduce CBNames, a new benchmark with tailored metrics. Extensive experiments demonstrate that NAMeGEn effectively generates creative names that meet diverse, personalized requirements while providing meaningful explanations, outperforming six baseline methods spanning various LLM backbones without any training.
comment: 13 pages,9 figures. This work has been submitted to the IEEE for possible publication
☆ Unveiling Inference Scaling for Difference-Aware User Modeling in LLM Personalization
Large Language Models (LLMs) are increasingly integrated into users' daily lives, driving a growing demand for personalized outputs. Prior work has primarily leveraged a user's own history, often overlooking inter-user differences that are critical for effective personalization. While recent methods have attempted to model such differences, their feature extraction processes typically rely on fixed dimensions and quick, intuitive inference (System-1 thinking), limiting both the coverage and granularity of captured user differences. To address these limitations, we propose Difference-aware Reasoning Personalization (DRP), a framework that reconstructs the difference extraction mechanism by leveraging inference scaling to enhance LLM personalization. DRP autonomously identifies relevant difference feature dimensions and generates structured definitions and descriptions, enabling slow, deliberate reasoning (System-2 thinking) over user differences. Experiments on personalized review generation demonstrate that DRP consistently outperforms baseline methods across multiple metrics.
☆ A Compliance-Preserving Retrieval System for Aircraft MRO Task Search
Aircraft Maintenance Technicians (AMTs) spend up to 30% of work time searching manuals, a documented efficiency bottleneck in MRO operations where every procedure must be traceable to certified sources. We present a compliance-preserving retrieval system that adapts LLM reranking and semantic search to aviation MRO environments by operating alongside, rather than replacing, certified legacy viewers. The system constructs revision-robust embeddings from ATA chapter hierarchies and uses vision-language parsing to structure certified content, allowing technicians to preview ranked tasks and access verified procedures in existing viewers. Evaluation on 49k synthetic queries achieves >90% retrieval accuracy, while bilingual controlled studies with 10 licensed AMTs demonstrate 90.9% top-10 success rate and 95% reduction in lookup time, from 6-15 minutes to 18 seconds per task. These gains provide concrete evidence that semantic retrieval can operate within strict regulatory constraints and meaningfully reduce operational workload in real-world multilingual MRO workflows.
☆ Opinion Dynamics Models for Sentiment Evolution in Weibo Blogs
Online social media platforms enable influencers to distribute content and quickly capture audience reactions, significantly shaping their promotional strategies and advertising agreements. Understanding how sentiment dynamics and emotional contagion unfold among followers is vital for influencers and marketers, as these processes shape engagement, brand perception, and purchasing behavior. While sentiment analysis tools effectively track sentiment fluctuations, dynamical models explaining their evolution remain limited, often neglecting network structures and interactions both among blogs and between their topic-focused follower groups. In this study, we tracked influential tech-focused Weibo bloggers over six months, quantifying follower sentiment from text-mined feedback. By treating each blogger's audience as a single "macro-agent", we find that sentiment trajectories follow the principle of iterative averaging -- a foundational mechanism in many dynamical models of opinion formation, a theoretical framework at the intersection of social network analysis and dynamical systems theory. The sentiment evolution aligns closely with opinion-dynamics models, particularly modified versions of the classical French-DeGroot model that incorporate delayed perception and distinguish between expressed and private opinions. The inferred influence structures reveal interdependencies among blogs that may arise from homophily, whereby emotionally similar users subscribe to the same blogs and collectively shape the shared sentiment expressed within these communities.
☆ ItemRAG: Item-Based Retrieval-Augmented Generation for LLM-Based Recommendation
Recently, large language models (LLMs) have been widely used as recommender systems, owing to their strong reasoning capability and their effectiveness in handling cold-start items. To better adapt LLMs for recommendation, retrieval-augmented generation (RAG) has been incorporated. Most existing RAG methods are user-based, retrieving purchase patterns of users similar to the target user and providing them to the LLM. In this work, we propose ItemRAG, an item-based RAG method for LLM-based recommendation that retrieves relevant items (rather than users) from item-item co-purchase histories. ItemRAG helps LLMs capture co-purchase patterns among items, which are beneficial for recommendations. Especially, our retrieval strategy incorporates semantically similar items to better handle cold-start items and uses co-purchase frequencies to improve the relevance of the retrieved items. Through extensive experiments, we demonstrate that ItemRAG consistently (1) improves the zero-shot LLM-based recommender by up to 43% in Hit-Ratio-1 and (2) outperforms user-based RAG baselines under both standard and cold-start item recommendation settings.
☆ Multi-Aspect Cross-modal Quantization for Generative Recommendation AAAI 2026
Generative Recommendation (GR) has emerged as a new paradigm in recommender systems. This approach relies on quantized representations to discretize item features, modeling users' historical interactions as sequences of discrete tokens. Based on these tokenized sequences, GR predicts the next item by employing next-token prediction methods. The challenges of GR lie in constructing high-quality semantic identifiers (IDs) that are hierarchically organized, minimally conflicting, and conducive to effective generative model training. However, current approaches remain limited in their ability to harness multimodal information and to capture the deep and intricate interactions among diverse modalities, both of which are essential for learning high-quality semantic IDs and for effectively training GR models. To address this, we propose Multi-Aspect Cross-modal quantization for generative Recommendation (MACRec), which introduces multimodal information and incorporates it into both semantic ID learning and generative model training from different aspects. Specifically, we first introduce cross-modal quantization during the ID learning process, which effectively reduces conflict rates and thus improves codebook usability through the complementary integration of multimodal information. In addition, to further enhance the generative ability of our GR model, we incorporate multi-aspect cross-modal alignments, including the implicit and explicit alignments. Finally, we conduct extensive experiments on three well-known recommendation datasets to demonstrate the effectiveness of our proposed method.
comment: Accepted by AAAI 2026 (Oral)
☆ Beyond GeneGPT: A Multi-Agent Architecture with Open-Source LLMs for Enhanced Genomic Question Answering SIGIR
Genomic question answering often requires complex reasoning and integration across diverse biomedical sources. GeneGPT addressed this challenge by combining domain-specific APIs with OpenAI's code-davinci-002 large language model to enable natural language interaction with genomic databases. However, its reliance on a proprietary model limits scalability, increases operational costs, and raises concerns about data privacy and generalization. In this work, we revisit and reproduce GeneGPT in a pilot study using open source models, including Llama 3.1, Qwen2.5, and Qwen2.5 Coder, within a monolithic architecture; this allows us to identify the limitations of this approach. Building on this foundation, we then develop OpenBioLLM, a modular multi-agent framework that extends GeneGPT by introducing agent specialization for tool routing, query generation, and response validation. This enables coordinated reasoning and role-based task execution. OpenBioLLM matches or outperforms GeneGPT on over 90% of the benchmark tasks, achieving average scores of 0.849 on Gene-Turing and 0.830 on GeneHop, while using smaller open-source models without additional fine-tuning or tool-specific pretraining. OpenBioLLM's modular multi-agent design reduces latency by 40-50% across benchmark tasks, significantly improving efficiency without compromising model capability. The results of our comprehensive evaluation highlight the potential of open-source multi-agent systems for genomic question answering. Code and resources are available at https://github.com/ielab/OpenBioLLM.
comment: This paper has been accepted to SIGIR-AP 2025
♻ ☆ Auditing Google's AI Overviews and Featured Snippets: A Case Study on Baby Care and Pregnancy AAAI
Google Search increasingly surfaces AI-generated content through features like AI Overviews (AIO) and Featured Snippets (FS), which users frequently rely on despite having no control over their presentation. Through a systematic algorithm audit of 1,508 real baby care and pregnancy-related queries, we evaluate the quality and consistency of these information displays. Our robust evaluation framework assesses multiple quality dimensions, including answer consistency, relevance, presence of medical safeguards, source categories, and sentiment alignment. Our results reveal concerning gaps in information consistency, with information in AIO and FS displayed on the same search result page being inconsistent with each other in 33% of cases. Despite high relevance scores, both features critically lack medical safeguards (present in just 11% of AIO and 7% of FS responses). While health and wellness websites dominate source categories for both, AIO and FS, FS also often link to commercial sources. These findings have important implications for public health information access and demonstrate the need for stronger quality controls in AI-mediated health information. Our methodology provides a transferable framework for auditing AI systems across high-stakes domains where information quality directly impacts user well-being.
comment: 18 pages, 10 figures; to appear in AAAI ICWSM 2026
♻ ☆ Parallelism Meets Adaptiveness: Scalable Documents Understanding in Multi-Agent LLM Systems AAAI 2026
Large language model (LLM) agents have shown increasing promise for collaborative task completion. However, existing multi-agent frameworks often rely on static workflows, fixed roles, and limited inter-agent communication, reducing their effectiveness in open-ended, high-complexity domains. This paper proposes a coordination framework that enables adaptiveness through three core mechanisms: dynamic task routing, bidirectional feedback, and parallel agent evaluation. The framework allows agents to reallocate tasks based on confidence and workload, exchange structured critiques to iteratively improve outputs, and crucially compete on high-ambiguity subtasks with evaluator-driven selection of the most suitable result. We instantiate these principles in a modular architecture and demonstrate substantial improvements in factual coverage, coherence, and efficiency over static and partially adaptive baselines. Our findings highlight the benefits of incorporating both adaptiveness and structured competition in multi-agent LLM systems.
comment: Accepted at AAAI 2026 Workshop on WoMAPF
♻ ☆ CLIRudit: Cross-Lingual Information Retrieval of Scientific Documents EMNLP 2025
Cross-lingual information retrieval (CLIR) helps users find documents in languages different from their queries. This is especially important in academic search, where key research is often published in non-English languages. We present CLIRudit, a novel English-French academic retrieval dataset built from Érudit, a Canadian publishing platform. Using multilingual metadata, we pair English author-written keywords as queries with non-English abstracts as target documents, a method that can be applied to other languages and repositories. We benchmark various first-stage sparse and dense retrievers, with and without machine translation. We find that dense embeddings without translation perform nearly as well as systems using machine translation, that translating documents is generally more effective than translating queries, and that sparse retrievers with document translation remain competitive while offering greater efficiency. Along with releasing the first English-French academic retrieval dataset, we provide a reproducible benchmarking method to improve access to non-English scholarly content.
comment: Camera-ready for the 5th Multilingual Representation Learning (MRL) Workshop (Co-located with EMNLP 2025)
♻ ☆ DiffuGR: Generative Document Retrieval with Diffusion Language Models
Generative retrieval (GR) re-frames document retrieval as a sequence-based document identifier (DocID) generation task, memorizing documents with model parameters and enabling end-to-end retrieval without explicit indexing. Existing GR methods are based on auto-regressive generative models, i.e., the token generation is performed from left to right. However, such auto-regressive methods suffer from: (1) mismatch between DocID generation and natural language generation, e.g., an incorrect DocID token generated in early left steps would lead to totally erroneous retrieval; and (2) failure to balance the trade-off between retrieval efficiency and accuracy dynamically, which is crucial for practical applications. To address these limitations, we propose generative document retrieval with diffusion language models, dubbed DiffuGR. It models DocID generation as a discrete diffusion process: during training, DocIDs are corrupted through a stochastic masking process, and a diffusion language model is learned to recover them under a retrieval-aware objective. For inference, DiffuGR attempts to generate DocID tokens in parallel and refines them through a controllable number of denoising steps. In contrast to conventional left-to-right auto-regressive decoding, DiffuGR provides a novel mechanism to first generate more confident DocID tokens and refine the generation through diffusion-based denoising. Moreover, DiffuGR also offers explicit runtime control over the qualitylatency tradeoff. Extensive experiments on benchmark retrieval datasets show that DiffuGR is competitive with strong auto-regressive generative retrievers, while offering flexible speed and accuracy tradeoffs through variable denoising budgets. Overall, our results indicate that non-autoregressive diffusion models are a practical and effective alternative for generative document retrieval.
comment: This paper is under review
♻ ☆ Jasper-Token-Compression-600M Technical Report
This technical report presents the training methodology and evaluation results of the open-source Jasper-Token-Compression-600M model, released in November 2025. Building on previous distillation-based recipes from the English Stella and Jasper models, we successfully extend this approach to a bilingual (English and Chinese) domain, further enhancing model performance through the incorporation of contrastive learning. A key innovation of our model is the introduction of a one-dimensional convolution-based token compression module. We dynamically adjust the compression rate during training, enabling the model to learn more robust and efficient compressed text representations. By combining knowledge distillation with token compression techniques, we achieve significant improvements in both embedding quality and inference efficiency. Our model performs with higher efficiency than a traditional 0.6B model while achieving performance comparable to that of an 8B model. For more information on the model release, visit: https://huggingface.co/infgrad/Jasper-Token-Compression-600M.
comment: 10 pages, 1 figure
♻ ☆ MOON: Generative MLLM-based Multimodal Representation Learning for E-commerce Product Understanding WSDM 2026
With the rapid advancement of e-commerce, exploring general representations rather than task-specific ones has attracted increasing research attention. For product understanding, although existing discriminative dual-flow architectures drive progress in this field, they inherently struggle to model the many-to-one alignment between multiple images and texts of products. Therefore, we argue that generative Multimodal Large Language Models (MLLMs) hold significant potential for improving product representation learning. Nevertheless, achieving this goal still remains non-trivial due to several key challenges: the lack of multimodal and aspect-aware modeling modules in typical LLMs; the common presence of background noise in product images; and the absence of a standard benchmark for evaluation. To address these issues, we propose the first generative MLLM-based model named MOON for product representation learning. Our method (1) employs a guided Mixture-of-Experts (MoE) module for targeted modeling of multimodal and aspect-specific product content; (2) effectively detects core semantic regions in product images to mitigate the distraction and interference caused by background noise; and (3) introduces the specialized negative sampling strategy to increase the difficulty and diversity of negative samples. In addition, we release a large-scale multimodal benchmark MBE for various product understanding tasks. Experimentally, our model demonstrates competitive zero-shot performance on both our benchmark and the public dataset, showcasing strong generalization across various downstream tasks, including cross-modal retrieval, product classification, and attribute prediction. Furthermore, the case study and visualization illustrate the effectiveness of MOON for product understanding.
comment: Accepted by WSDM 2026. 11 pages, 9 figures
Information Retrieval 20
☆ SilverTorch: A Unified Model-based System to Democratize Large-Scale Recommendation on GPUs
Serving deep learning based recommendation models (DLRM) at scale is challenging. Existing systems rely on CPU-based ANN indexing and filtering services, suffering from non-negligible costs and forgoing joint optimization opportunities. Such inefficiency makes them difficult to support more complex model architectures, such as learned similarities and multi-task retrieval. In this paper, we propose SilverTorch, a model-based system for serving recommendation models on GPUs. SilverTorch unifies model serving by replacing standalone indexing and filtering services with layers of served models. We propose a Bloom index algorithm on GPUs for feature filtering and a tensor-native fused Int8 ANN kernel on GPUs for nearest neighbor search. We further co-design the ANN search index and filtering index to reduce GPU memory utilization and eliminate unnecessary computation. Benefit from SilverTorch's serving paradigm, we introduce a OverArch scoring layer and a Value Model to aggregate results across multi-tasks. These advancements improve the accuracy for retrieval and enable future studies for serving more complex models. For ranking, SilverTorch's design accelerates item embedding calculation by caching the pre-calculated embeddings inside the serving model. Our evaluation on the industry-scale datasets show that SilverTorch achieves up to 5.6x lower latency and 23.7x higher throughput compared to the state-of-the-art approaches. We also demonstrate that SilverTorch's solution is 13.35x more cost-efficient than CPU-based solution while improving accuracy via serving more complex models. SilverTorch serves over hundreds of models online across major products and recommends contents for billions of daily active users.
☆ NeuCLIRBench: A Modern Evaluation Collection for Monolingual, Cross-Language, and Multilingual Information Retrieval
To measure advances in retrieval, test collections with relevance judgments that can faithfully distinguish systems are required. This paper presents NeuCLIRBench, an evaluation collection for cross-language and multilingual retrieval. The collection consists of documents written natively in Chinese, Persian, and Russian, as well as those same documents machine translated into English. The collection supports several retrieval scenarios including: monolingual retrieval in English, Chinese, Persian, or Russian; cross-language retrieval with English as the query language and one of the other three languages as the document language; and multilingual retrieval, again with English as the query language and relevant documents in all three languages. NeuCLIRBench combines the TREC NeuCLIR track topics of 2022, 2023, and 2024. The 250,128 judgments across approximately 150 queries for the monolingual and cross-language tasks and 100 queries for multilingual retrieval provide strong statistical discriminatory power to distinguish retrieval approaches. A fusion baseline of strong neural retrieval systems is included with the collection so that developers of reranking algorithms are no longer reliant on BM25 as their first-stage retriever. NeuCLIRBench is publicly available.
comment: 14 pages, 1 figure
☆ LiveRAG: A diverse Q&A dataset with varying difficulty level for RAG evaluation
With Retrieval Augmented Generation (RAG) becoming more and more prominent in generative AI solutions, there is an emerging need for systematically evaluating their effectiveness. We introduce the LiveRAG benchmark, a publicly available dataset of 895 synthetic questions and answers designed to support systematic evaluation of RAG-based Q&A systems. This synthetic benchmark is derived from the one used during the SIGIR'2025 LiveRAG Challenge, where competitors were evaluated under strict time constraints. It is augmented with information that was not made available to competitors during the Challenge, such as the ground-truth answers, together with their associated supporting claims which were used for evaluating competitors' answers. In addition, each question is associated with estimated difficulty and discriminability scores, derived from applying an Item Response Theory model to competitors' responses. Our analysis highlights the benchmark's questions diversity, the wide range of their difficulty levels, and their usefulness in differentiating between system capabilities. The LiveRAG benchmark will hopefully help the community advance RAG research, conduct systematic evaluation, and develop more robust Q&A systems.
comment: 14 pages, 4 figures, 5 tables
☆ Effective Diversification of Multi-Carousel Book Recommendation
Using multiple carousels, lists that wrap around and can be scrolled, is the basis for offering content in most contemporary movie streaming platforms. Carousels allow for highlighting different aspects of users' taste, that fall in categories such as genres and authors. However, while carousels offer structure and greater ease of navigation, they alone do not increase diversity in recommendations, while this is essential to keep users engaged. In this work we propose several approaches to effectively increase item diversity within the domain of book recommendations, on top of a collaborative filtering algorithm. These approaches are intended to improve book recommendations in the web catalogs of public libraries. Furthermore, we introduce metrics to evaluate the resulting strategies, and show that the proposed system finds a suitable balance between accuracy and beyond-accuracy aspects.
comment: Accepted as a conference paper at BNAIC/BeNeLearn 2025; The 37th Benelux Conference on Artificial Intelligence and the 34th Belgian Dutch Conference on Machine Learning
☆ Infer As You Train: A Symmetric Paradigm of Masked Generative for Click-Through Rate Prediction
Generative models are increasingly being explored in click-through rate (CTR) prediction field to overcome the limitations of the conventional discriminative paradigm, which rely on a simple binary classification objective. However, existing generative models typically confine the generative paradigm to the training phase, primarily for representation learning. During online inference, they revert to a standard discriminative paradigm, failing to leverage their powerful generative capabilities to further improve prediction accuracy. This fundamental asymmetry between the training and inference phases prevents the generative paradigm from realizing its full potential. To address this limitation, we propose the Symmetric Masked Generative Paradigm for CTR prediction (SGCTR), a novel framework that establishes symmetry between the training and inference phases. Specifically, after acquiring generative capabilities by learning feature dependencies during training, SGCTR applies the generative capabilities during online inference to iteratively redefine the features of input samples, which mitigates the impact of noisy features and enhances prediction accuracy. Extensive experiments validate the superiority of SGCTR, demonstrating that applying the generative paradigm symmetrically across both training and inference significantly unlocks its power in CTR prediction.
comment: 4 pages, 4 tables, 1 figure
☆ PathMind: A Retrieve-Prioritize-Reason Framework for Knowledge Graph Reasoning with Large Language Models AAAI 2026
Knowledge graph reasoning (KGR) is the task of inferring new knowledge by performing logical deductions on knowledge graphs. Recently, large language models (LLMs) have demonstrated remarkable performance in complex reasoning tasks. Despite promising success, current LLM-based KGR methods still face two critical limitations. First, existing methods often extract reasoning paths indiscriminately, without assessing their different importance, which may introduce irrelevant noise that misleads LLMs. Second, while many methods leverage LLMs to dynamically explore potential reasoning paths, they require high retrieval demands and frequent LLM calls. To address these limitations, we propose PathMind, a novel framework designed to enhance faithful and interpretable reasoning by selectively guiding LLMs with important reasoning paths. Specifically, PathMind follows a "Retrieve-Prioritize-Reason" paradigm. First, it retrieves a query subgraph from KG through the retrieval module. Next, it introduces a path prioritization mechanism that identifies important reasoning paths using a semantic-aware path priority function, which simultaneously considers the accumulative cost and the estimated future cost for reaching the target. Finally, PathMind generates accurate and logically consistent responses via a dual-phase training strategy, including task-specific instruction tuning and path-wise preference alignment. Extensive experiments on benchmark datasets demonstrate that PathMind consistently outperforms competitive baselines, particularly on complex reasoning tasks with fewer input tokens, by identifying essential reasoning paths.
comment: AAAI 2026, Long Paper, Oral
LLM-Aligned Geographic Item Tokenization for Local-Life Recommendation
Recent advances in Large Language Models (LLMs) have enhanced text-based recommendation by enriching traditional ID-based methods with semantic generalization capabilities. Text-based methods typically encode item textual information via prompt design and generate discrete semantic IDs through item tokenization. However, in domain-specific tasks such as local-life services, simply injecting location information into prompts fails to capture fine-grained spatial characteristics and real-world distance awareness among items. To address this, we propose LGSID, an LLM-Aligned Geographic Item Tokenization Framework for Local-life Recommendation. This framework consists of two key components: (1) RL-based Geographic LLM Alignment, and (2) Hierarchical Geographic Item Tokenization. In the RL-based alignment module, we initially train a list-wise reward model to capture real-world spatial relationships among items. We then introduce a novel G-DPO algorithm that uses pre-trained reward model to inject generalized spatial knowledge and collaborative signals into LLMs while preserving their semantic understanding. Furthermore, we propose a hierarchical geographic item tokenization strategy, where primary tokens are derived from discrete spatial and content attributes, and residual tokens are refined using the aligned LLM's geographic representation vectors. Extensive experiments on real-world Kuaishou industry datasets show that LGSID consistently outperforms state-of-the-art discriminative and generative recommendation models. Ablation studies, visualizations, and case studies further validate its effectiveness.
☆ WebRec: Enhancing LLM-based Recommendations with Attention-guided RAG from Web
Recommender systems play a vital role in alleviating information overload and enriching users' online experience. In the era of large language models (LLMs), LLM-based recommender systems have emerged as a prevalent paradigm for advancing personalized recommendations. Recently, retrieval-augmented generation (RAG) has drawn growing interest to facilitate the recommendation capability of LLMs, incorporating useful information retrieved from external knowledge bases. However, as a rich source of up-to-date information, the web remains under-explored by existing RAG-based recommendations. In particular, unique challenges are posed from two perspectives: one is to generate effective queries for web retrieval, considering the inherent knowledge gap between web search and recommendations; another challenge lies in harnessing online websites that contain substantial noisy content. To tackle these limitations, we propose WebRec, a novel web-based RAG framework, which takes advantage of the reasoning capability of LLMs to interpret recommendation tasks into queries of user preferences that cater to web retrieval. Moreover, given noisy web-retrieved information, where relevant pieces of evidence are scattered far apart, an insightful MP-Head is designed to enhance LLM attentions between distant tokens of relevant information via message passing. Extensive experiments have been conducted to demonstrate the effectiveness of our proposed web-based RAG methods in recommendation scenarios.
☆ Applying Relation Extraction and Graph Matching to Answering Multiple Choice Questions KR
In this research, we combine Transformer-based relation extraction with matching of knowledge graphs (KGs) and apply them to answering multiple-choice questions (MCQs) while maintaining the traceability of the output process. KGs are structured representations of factual knowledge consisting of entities and relations. Due to the high construction cost, they had been regarded as static databases with validated links. However, the recent development of Transformer-based relation extraction (RE) methods has enabled us to generate KGs dynamically by giving them natural language texts, and thereby opened the possibility for representing the meaning of the input sentences with the created KGs. Using this effect, we propose a method that answers MCQs in the "fill-in-the-blank" format, taking care of the point that RE methods generate KGs that represent false information if provided with factually incorrect texts. We measure the truthfulness of each question sentence by (i) converting the sentence into a relational graph using an RE method and (ii) verifying it against factually correct KGs under the closed-world assumption. The experimental results demonstrate that our method correctly answers up to around 70% of the questions, while providing traceability of the procedure. We also highlight that the question category has a vast influence on the accuracy.
comment: Presented at NeLaMKRR@KR, 2025 (arXiv:2511.09575)
☆ PRISM: Prompt-Refined In-Context System Modelling for Financial Retrieval
With the rapid progress of large language models (LLMs), financial information retrieval has become a critical industrial application. Extracting task-relevant information from lengthy financial filings is essential for both operational and analytical decision-making. The FinAgentBench dataset formalizes this problem through two tasks: document ranking and chunk ranking. We present PRISM, a training-free framework that integrates refined system prompting, in-context learning (ICL), and a lightweight multi-agent system. Each component is examined extensively to reveal their synergies: prompt engineering provides precise task instructions, ICL supplies semantically relevant few-shot examples, and the multi-agent system models coordinated scoring behaviour. Our best configuration achieves an NDCG@5 of 0.71818 on the restricted validation split. We further demonstrate that PRISM is feasible and robust for production-scale financial retrieval. Its modular, inference-only design makes it practical for real-world use cases. The source code is released at https://bit.ly/prism-ailens.
comment: 3rd-place solution for the ACM ICAIF 2025 Agentic Retrieval Grand Challenge
☆ NeuroPath: Neurobiology-Inspired Path Tracking and Reflection for Semantically Coherent Retrieval NeurIPS 2025
Retrieval-augmented generation (RAG) greatly enhances large language models (LLMs) performance in knowledge-intensive tasks. However, naive RAG methods struggle with multi-hop question answering due to their limited capacity to capture complex dependencies across documents. Recent studies employ graph-based RAG to capture document connections. However, these approaches often result in a loss of semantic coherence and introduce irrelevant noise during node matching and subgraph construction. To address these limitations, we propose NeuroPath, an LLM-driven semantic path tracking RAG framework inspired by the path navigational planning of place cells in neurobiology. It consists of two steps: Dynamic Path Tracking and Post-retrieval Completion. Dynamic Path Tracking performs goal-directed semantic path tracking and pruning over the constructed knowledge graph (KG), improving noise reduction and semantic coherence. Post-retrieval Completion further reinforces these benefits by conducting second-stage retrieval using intermediate reasoning and the original query to refine the query goal and complete missing information in the reasoning path. NeuroPath surpasses current state-of-the-art baselines on three multi-hop QA datasets, achieving average improvements of 16.3% on recall@2 and 13.5% on recall@5 over advanced graph-based RAG methods. Moreover, compared to existing iter-based RAG methods, NeuroPath achieves higher accuracy and reduces token consumption by 22.8%. Finally, we demonstrate the robustness of NeuroPath across four smaller LLMs (Llama3.1, GLM4, Mistral0.3, and Gemma3), and further validate its scalability across tasks of varying complexity. Code is available at https://github.com/KennyCaty/NeuroPath.
comment: Accepted by NeurIPS 2025
♻ ☆ A Hybrid Multimodal Deep Learning Framework for Intelligent Fashion Recommendation
The rapid expansion of online fashion platforms has created an increasing demand for intelligent recommender systems capable of understanding both visual and textual cues. This paper proposes a hybrid multimodal deep learning framework for fashion recommendation that jointly addresses two key tasks: outfit compatibility prediction and complementary item retrieval. The model leverages the visual and textual encoders of the CLIP architecture to obtain joint latent representations of fashion items, which are then integrated into a unified feature vector and processed by a transformer encoder. For compatibility prediction, an "outfit token" is introduced to model the holistic relationships among items, achieving an AUC of 0.95 on the Polyvore dataset. For complementary item retrieval, a "target item token" representing the desired item description is used to retrieve compatible items, reaching an accuracy of 69.24% under the Fill-in-the-Blank (FITB) metric. The proposed approach demonstrates strong performance across both tasks, highlighting the effectiveness of multimodal learning for fashion recommendation.
comment: 8 pages, 1 figure
♻ ☆ MOON Embedding: Multimodal Representation Learning for E-commerce Search Advertising
We introduce MOON, our comprehensive set of sustainable iterative practices for multimodal representation learning for e-commerce applications. MOON has already been fully deployed across all stages of Taobao search advertising system, including retrieval, relevance, ranking, and so on. The performance gains are particularly significant on click-through rate (CTR) prediction task, which achieves an overall +20.00% online CTR improvement. Over the past three years, this project has delivered the largest improvement on CTR prediction task and undergone five full-scale iterations. Throughout the exploration and iteration of our MOON, we have accumulated valuable insights and practical experience that we believe will benefit the research community. MOON contains a three-stage training paradigm of "Pretraining, Post-training, and Application", allowing effective integration of multimodal representations with downstream tasks. Notably, to bridge the misalignment between the objectives of multimodal representation learning and downstream training, we define the exchange rate to quantify how effectively improvements in an intermediate metric can translate into downstream gains. Through this analysis, we identify the image-based search recall as a critical intermediate metric guiding the optimization of multimodal models. Over three years and five iterations, MOON has evolved along four critical dimensions: data processing, training strategy, model architecture, and downstream application. The lessons and insights gained through the iterative improvements will also be shared. As part of our exploration into scaling effects in the e-commerce field, we further conduct a systematic study of the scaling laws governing multimodal representation learning, examining multiple factors such as the number of training tokens, negative samples, and the length of user behavior sequences.
comment: 31 pages, 12 figures
♻ ☆ Dimension vs. Precision: A Comparative Analysis of Autoencoders and Quantization for Efficient Vector Retrieval on BEIR SciFact
Dense retrieval models have become a standard for state-of-the-art information retrieval. However, their high-dimensional, high-precision (float32) vector embeddings create significant storage and memory challenges for real-world deployment. To address this, we conduct a rigorous empirical study on the BEIR SciFact benchmark, evaluating the trade-offs between two primary compression strategies: (1) Dimensionality Reduction via deep Autoencoders (AE), reducing original 384-dim vectors to latent spaces from 384 down to 12, and (2) Precision Reduction via Quantization (float16, int8, and binary). We systematically compare each method by measuring the "performance loss" (or gain) relative to a float32 baseline across a full suite of retrieval metrics (NDCG, MAP, MRR, Recall, Precision) at various k cutoffs. Our results show that int8 scalar quantization provides the most effective "sweet spot," achieving a 4x compression with a negligible [~1-2%] drop in nDCG@10. In contrast, Autoencoders show a graceful degradation but suffer a more significant performance loss at equivalent 4x compression ratios (AE-96). binary quantization was found to be unsuitable for this task due to catastrophic performance drops. This work provides a practical guide for deploying efficient, high-performance retrieval systems.
comment: 16 pages, 9 figures, 1 table
♻ ☆ Personalized Federated Recommendation With Knowledge Guidance
Federated Recommendation (FedRec) has emerged as a key paradigm for building privacy-preserving recommender systems. However, existing FedRec models face a critical dilemma: memory-efficient single-knowledge models suffer from a suboptimal knowledge replacement practice that discards valuable personalization, while high-performance dual-knowledge models are often too memory-intensive for practical on-device deployment. We propose Federated Recommendation with Knowledge Guidance (FedRKG), a model-agnostic framework that resolves this dilemma. The core principle, Knowledge Guidance, avoids full replacement and instead fuses global knowledge into preserved local embeddings, attaining the personalization benefits of dual-knowledge within a single-knowledge memory footprint. Furthermore, we introduce Adaptive Guidance, a fine-grained mechanism that dynamically modulates the intensity of this guidance for each user-item interaction, overcoming the limitations of static fusion methods. Extensive experiments on benchmark datasets demonstrate that FedRKG significantly outperforms state-of-the-art methods, validating the effectiveness of our approach. The code is available at https://github.com/Jaehyung-Lim/fedrkg.
♻ ☆ Open Benchmarking for Click-Through Rate Prediction CIKM 2021
Click-through rate (CTR) prediction is a critical task for many applications, as its accuracy has a direct impact on user experience and platform revenue. In recent years, CTR prediction has been widely studied in both academia and industry, resulting in a wide variety of CTR prediction models. Unfortunately, there is still a lack of standardized benchmarks and uniform evaluation protocols for CTR prediction research. This leads to non-reproducible or even inconsistent experimental results among existing studies, which largely limits the practical value and potential impact of their research. In this work, we build an open benchmark for CTR prediction, namely BARS-CTR, and present a rigorous comparison of different models in a reproducible manner. To this end, we ran over 7,000 experiments for more than 12,000 GPU hours in total to re-evaluate 24 existing models on multiple datasets and settings. Surprisingly, our experiments show that with sufficient hyper-parameter search and model tuning, many deep models have smaller differences than expected. The results also reveal that making real progress on the modeling of CTR prediction is indeed a very challenging research task. We believe that our benchmarking work could not only allow researchers to gauge the effectiveness of new models conveniently but also make them fairly compare with the state of the arts. We have publicly released the benchmarking code, evaluation protocols, and hyper-parameter settings of our work to promote reproducible research in this field.
comment: Accepted by CIKM 2021. See BARS-CTR at https://openbenchmark.github.io/BARS/CTR
♻ ☆ DIVER: A Multi-Stage Approach for Reasoning-intensive Information Retrieval
Retrieval-augmented generation has achieved strong performance on knowledge-intensive tasks where query-document relevance can be identified through direct lexical or semantic matches. However, many real-world queries involve abstract reasoning, analogical thinking, or multi-step inference, which existing retrievers often struggle to capture. To address this challenge, we present DIVER, a retrieval pipeline designed for reasoning-intensive information retrieval. It consists of four components. The document preprocessing stage enhances readability and preserves content by cleaning noisy texts and segmenting long documents. The query expansion stage leverages large language models to iteratively refine user queries with explicit reasoning and evidence from retrieved documents. The retrieval stage employs a model fine-tuned on synthetic data spanning medical and mathematical domains, along with hard negatives, enabling effective handling of reasoning-intensive queries. Finally, the reranking stage combines pointwise and listwise strategies to produce both fine-grained and globally consistent rankings. On the BRIGHT benchmark, DIVER achieves state-of-the-art nDCG@10 scores of 46.8 overall and 31.9 on original queries, consistently outperforming competitive reasoning-aware models. These results demonstrate the effectiveness of reasoning-aware retrieval strategies in complex real-world tasks.
♻ ☆ MindRec: A Diffusion-driven Coarse-to-Fine Paradigm for Generative Recommendation
Recent advancements in large language model-based recommendation systems often represent items as text or semantic IDs and generate recommendations in an auto-regressive manner. However, due to the left-to-right greedy decoding strategy and the unidirectional logical flow, such methods often fail to produce globally optimal recommendations. In contrast, human reasoning does not follow a rigid left-to-right sequence. Instead, it often begins with keywords or intuitive insights, which are then refined and expanded. Inspired by this fact, we propose MindRec, a diffusion-driven coarse-to-fine generative paradigm that emulates human thought processes. Built upon a diffusion language model, MindRec departs from auto-regressive generation by leveraging a masked diffusion process to reconstruct items in a flexible, non-sequential manner. Particularly, our method first generates key tokens that reflect user preferences, and then expands them into the complete item, enabling adaptive and human-like generation. To further emulate the structured nature of human decision-making, we organize items into a hierarchical category tree. This structure guides the model to first produce the coarse-grained category and then progressively refine its selection through finer-grained subcategories before generating the specific item. To mitigate the local optimum problem inherent in greedy decoding, we design a novel beam search algorithm, Diffusion Beam Search, tailored for our mind-inspired generation paradigm. Experimental results demonstrate that MindRec yields a 9.5\% average improvement in top-1 accuracy over state-of-the-art methods, highlighting its potential to enhance recommendation performance. The implementation is available via https://github.com/Mr-Peach0301/MindRec.
♻ ☆ From Reasoning LLMs to BERT: A Two-Stage Distillation Framework for Search Relevance
Query-service relevance prediction in e-commerce search systems faces strict latency requirements that prevent the direct application of Large Language Models (LLMs). To bridge this gap, we propose a two-stage reasoning distillation framework to transfer reasoning capabilities from a powerful teacher LLM to a lightweight, deployment-friendly student model. In the first stage, we address the limitations of general-purpose LLMs by constructing a domain-adapted teacher model. This is achieved through a three-step process: domain-adaptive pre-training to inject platform knowledge, supervised fine-tuning to elicit reasoning skills, and preference optimization with a multi-dimensional reward model to ensure the generation of reliable and preference-aligned reasoning paths. This teacher can then automatically annotate massive query-service pairs from search logs with both relevance labels and reasoning chains. In the second stage, to address the challenges of architectural heterogeneity in standard distillation, we introduce Contrastive Reasoning Self-Distillation (CRSD). By modeling the behavior of the same student model under "standard" and "reasoning-augmented" inputs as a teacher-student relationship, CRSD enables the lightweight model to internalize the teacher's complex decision-making mechanisms without needing the explicit reasoning path at inference. Offline evaluations and online A/B testing in the Meituan search advertising system demonstrate that our framework achieves significant improvements across multiple metrics, validating its effectiveness and practical value.
♻ ☆ Personalized Image Generation for Recommendations Beyond Catalogs
Personalization is central to human-AI interaction, yet current diffusion-based image generation systems remain largely insensitive to user diversity. Existing attempts to address this often rely on costly paired preference data or introduce latency through Large Language Models. In this work, we introduce REBECA (REcommendations BEyond CAtalogs), a lightweight and scalable framework for personalized image generation that learns directly from implicit feedback signals such as likes, ratings, and clicks. Instead of fine-tuning the underlying diffusion model, REBECA employs a two-stage process: training a conditional diffusion model to sample user- and rating-specific image embeddings, which are subsequently decoded into images using a pretrained diffusion backbone. This approach enables efficient, fine-tuning-free personalization across large user bases. We rigorously evaluate REBECA on real-world datasets, proposing a novel statistical personalization verifier and a permutation-based hypothesis test to assess preference alignment. Our results demonstrate that REBECA consistently produces high-fidelity images tailored to individual tastes, outperforming baselines while maintaining computational efficiency.
Information Retrieval 26
☆ CORGI: Efficient Pattern Matching With Quadratic Guarantees
Rule-based systems must solve complex matching problems within tight time constraints to be effective in real-time applications, such as planning and reactive control for AI agents, as well as low-latency relational database querying. Pattern-matching systems can encounter issues where exponential time and space are required to find matches for rules with many underconstrained variables, or which produce combinatorial intermediate partial matches (but are otherwise well-constrained). When online AI systems automatically generate rules from example-driven induction or code synthesis, they can easily produce worst-case matching patterns that slow or halt program execution by exceeding available memory. In our own work with cognitive systems that learn from example, we've found that aggressive forms of anti-unification-based generalization can easily produce these circumstances. To make these systems practical without hand-engineering constraints or succumbing to unpredictable failure modes, we introduce a new matching algorithm called CORGI (Collection-Oriented Relational Graph Iteration). Unlike RETE-based approaches, CORGI offers quadratic time and space guarantees for finding single satisficing matches, and the ability to iteratively stream subsequent matches without committing entire conflict sets to memory. CORGI differs from RETE in that it does not have a traditional $β$-memory for collecting partial matches. Instead, CORGI takes a two-step approach: a graph of grounded relations is built/maintained in a forward pass, and an iterator generates matches as needed by working backward through the graph. This approach eliminates the high-latency delays and memory overflows that can result from populating full conflict sets. In a performance evaluation, we demonstrate that CORGI significantly outperforms RETE implementations from SOAR and OPS5 on a simple combinatorial matching task.
☆ TaoSearchEmb: A Multi-Objective Reinforcement Learning Framework for Dense Retrieval in Taobao Search
Dense retrieval, as the core component of e-commerce search engines, maps user queries and items into a unified semantic space through pre-trained embedding models to enable large-scale real-time semantic retrieval. Despite the rapid advancement of LLMs gradually replacing traditional BERT architectures for embedding, their training paradigms still adhere to BERT-like supervised fine-tuning and hard negative mining strategies. This approach relies on complex offline hard negative sample construction pipelines, which constrain model iteration efficiency and hinder the evolutionary potential of semantic representation capabilities. Besides, existing multi-task learning frameworks face the seesaw effect when simultaneously optimizing semantic relevance and non-relevance objectives. In this paper, we propose Retrieval-GRPO, a multi-objective reinforcement learning-based dense retrieval framework designed to address these challenges. The method eliminates offline hard negative sample construction by dynamically retrieving Top-K candidate products for each query during training, while introducing a relevance LLM as a reward model to generate real-time feedback. Specifically, the retrieval model dynamically optimizes embedding representations through reinforcement learning, with reward signals combining LLM-generated relevance scores, product quality scores, and multi-way exclusivity metrics to achieve multi-objective user preference alignment and real-time error correction. This mechanism not only removes dependency on hard negatives but also mitigates the seesaw effect through collaborative multi-objective optimization, significantly enhancing the model's semantic generalization capability for complex long-tail queries. Extensive offline and online experiments validate the effectiveness of Retrieval-GRPO, which has been deployed on China's largest e-commerce platform.
☆ Compact Multimodal Language Models as Robust OCR Alternatives for Noisy Textual Clinical Reports
Digitization of medical records often relies on smartphone photographs of printed reports, producing images degraded by blur, shadows, and other noise. Conventional OCR systems, optimized for clean scans, perform poorly under such real-world conditions. This study evaluates compact multimodal language models as privacy-preserving alternatives for transcribing noisy clinical documents. Using obstetric ultrasound reports written in regionally inflected medical English common to Indian healthcare settings, we compare eight systems in terms of transcription accuracy, noise sensitivity, numeric accuracy, and computational efficiency. Compact multimodal models consistently outperform both classical and neural OCR pipelines. Despite higher computational costs, their robustness and linguistic adaptability position them as viable candidates for on-premises healthcare digitization.
☆ PolicyBot - Reliable Question Answering over Policy Documents
All citizens of a country are affected by the laws and policies introduced by their government. These laws and policies serve essential functions for citizens. Such as granting them certain rights or imposing specific obligations. However, these documents are often lengthy, complex, and difficult to navigate, making it challenging for citizens to locate and understand relevant information. This work presents PolicyBot, a retrieval-augmented generation (RAG) system designed to answer user queries over policy documents with a focus on transparency and reproducibility. The system combines domain-specific semantic chunking, multilingual dense embeddings, multi-stage retrieval with reranking, and source-aware generation to provide responses grounded in the original documents. We implemented citation tracing to reduce hallucinations and improve user trust, and evaluated alternative retrieval and generation configurations to identify effective design choices. The end-to-end pipeline is built entirely with open-source tools, enabling easy adaptation to other domains requiring document-grounded question answering. This work highlights design considerations, practical challenges, and lessons learned in deploying trustworthy RAG systems for governance-related contexts.
☆ Exploring Multi-Table Retrieval Through Iterative Search
Open-domain question answering over datalakes requires retrieving and composing information from multiple tables, a challenging subtask that demands semantic relevance and structural coherence (e.g., joinability). While exact optimization methods like Mixed-Integer Programming (MIP) can ensure coherence, their computational complexity is often prohibitive. Conversely, simpler greedy heuristics that optimize for query coverage alone often fail to find these coherent, joinable sets. This paper frames multi-table retrieval as an iterative search process, arguing this approach offers advantages in scalability, interpretability, and flexibility. We propose a general framework and a concrete instantiation: a fast, effective Greedy Join-Aware Retrieval algorithm that holistically balances relevance, coverage, and joinability. Experiments across 5 NL2SQL benchmarks demonstrate that our iterative method achieves competitive retrieval performance compared to the MIP-based approach while being 4-400x faster depending on the benchmark and search space settings. This work highlights the potential of iterative heuristics for practical, scalable, and composition-aware retrieval.
comment: Accepted @ the AI for Tabular Data Workshop, EurIPS 2025
☆ Attention Grounded Enhancement for Visual Document Retrieval
Visual document retrieval requires understanding heterogeneous and multi-modal content to satisfy information needs. Recent advances use screenshot-based document encoding with fine-grained late interaction, significantly improving retrieval performance. However, retrievers are still trained with coarse global relevance labels, without revealing which regions support the match. As a result, retrievers tend to rely on surface-level cues and struggle to capture implicit semantic connections, hindering their ability to handle non-extractive queries. To alleviate this problem, we propose a \textbf{A}ttention-\textbf{G}rounded \textbf{RE}triever \textbf{E}nhancement (AGREE) framework. AGREE leverages cross-modal attention from multimodal large language models as proxy local supervision to guide the identification of relevant document regions. During training, AGREE combines local signals with the global signals to jointly optimize the retriever, enabling it to learn not only whether documents match, but also which content drives relevance. Experiments on the challenging ViDoRe V2 benchmark show that AGREE significantly outperforms the global-supervision-only baseline. Quantitative and qualitative analyses further demonstrate that AGREE promotes deeper alignment between query terms and document regions, moving beyond surface-level matching toward more accurate and interpretable retrieval. Our code is available at: https://anonymous.4open.science/r/AGREE-2025.
☆ Uncovering Causal Drivers of Energy Efficiency for Industrial Process in Foundry via Time-Series Causal Inference
Improving energy efficiency in industrial foundry processes is a critical challenge, as these operations are highly energy-intensive and marked by complex interdependencies among process variables. Correlation-based analyses often fail to distinguish true causal drivers from spurious associations, limiting their usefulness for decision-making. This paper applies a time-series causal inference framework to identify the operational factors that directly affect energy efficiency in induction furnace melting. Using production data from a Danish foundry, the study integrates time-series clustering to segment melting cycles into distinct operational modes with the PCMCI+ algorithm, a state-of-the-art causal discovery method, to uncover cause-effect relationships within each mode. Across clusters, robust causal relations among energy consumption, furnace temperature, and material weight define the core drivers of efficiency, while voltage consistently influences cooling water temperature with a delayed response. Cluster-specific differences further distinguish operational regimes: efficient clusters are characterized by stable causal structures, whereas inefficient ones exhibit reinforcing feedback loops and atypical dependencies. The contributions of this study are twofold. First, it introduces an integrated clustering-causal inference pipeline as a methodological innovation for analyzing energy-intensive processes. Second, it provides actionable insights that enable foundry operators to optimize performance, reduce energy consumption, and lower emissions.
comment: Accepted by the Energy Informatics.Academy Conference 2025 (EI.A 2025)
☆ FLOWER: Flow-Oriented Entity-Relationship Tool
Exploring relationships across data sources is a crucial optimization for entities recognition. Since databases can store big amount of information with synthetic and organic data, serving all quantity of objects correctly is an important task to deal with. However, the decision of how to construct entity relationship model is associated with human factor. In this paper, we present flow-oriented entity-relationship tool. This is first and unique end-to-end solution that eliminates routine and resource-intensive problems of processing, creating and visualizing both of explicit and implicit dependencies for prominent SQL dialects on-the-fly. Once launched, FLOWER automatically detects built-in constraints and starting to create own correct and necessary one using dynamic sampling and robust data analysis techniques. This approach applies to improve entity-relationship model and data storytelling to better understand the foundation of data and get unseen insights from DB sources using SQL or natural language. Evaluated on state-of-the-art STATS benchmark, experiments show that FLOWER is superior to reservoir sampling by 2.4x for distribution representation and 2.6x for constraint learning with 2.15x acceleration. For data storytelling, our tool archives 1.19x for accuracy enhance with 1.86x context decrease compare to LLM. Presented tool is also support 23 languages and compatible with both of CPU and GPU. Those results show that FLOWER can manage with real-world data a way better to ensure with quality, scalability and applicability for different use-cases.
comment: 12 pages, 8 figures
☆ Examining the Usage of Generative AI Models in Student Learning Activities for Software Programming
The rise of Generative AI (GenAI) tools like ChatGPT has created new opportunities and challenges for computing education. Existing research has primarily focused on GenAI's ability to complete educational tasks and its impact on student performance, often overlooking its effects on knowledge gains. In this study, we investigate how GenAI assistance compares to conventional online resources in supporting knowledge gains across different proficiency levels. We conducted a controlled user experiment with 24 undergraduate students of two different levels of programming experience (beginner, intermediate) to examine how students interact with ChatGPT while solving programming tasks. We analyzed task performance, conceptual understanding, and interaction behaviors. Our findings reveal that generating complete solutions with GenAI significantly improves task performance, especially for beginners, but does not consistently result in knowledge gains. Importantly, usage strategies differ by experience: beginners tend to rely heavily on GenAI toward task completion often without knowledge gain in the process, while intermediates adopt more selective approaches. We find that both over-reliance and minimal use result in weaker knowledge gains overall. Based on our results, we call on students and educators to adopt GenAI as a learning rather than a problem solving tool. Our study highlights the urgent need for guidance when integrating GenAI into programming education to foster deeper understanding.
comment: 9 pages, 4 figures, accepted at AIWARE 2025
☆ Cog-RAG: Cognitive-Inspired Dual-Hypergraph with Theme Alignment Retrieval-Augmented Generation AAAI 2026
Retrieval-Augmented Generation (RAG) enhances the response quality and domain-specific performance of large language models (LLMs) by incorporating external knowledge to combat hallucinations. In recent research, graph structures have been integrated into RAG to enhance the capture of semantic relations between entities. However, it primarily focuses on low-order pairwise entity relations, limiting the high-order associations among multiple entities. Hypergraph-enhanced approaches address this limitation by modeling multi-entity interactions via hyperedges, but they are typically constrained to inter-chunk entity-level representations, overlooking the global thematic organization and alignment across chunks. Drawing inspiration from the top-down cognitive process of human reasoning, we propose a theme-aligned dual-hypergraph RAG framework (Cog-RAG) that uses a theme hypergraph to capture inter-chunk thematic structure and an entity hypergraph to model high-order semantic relations. Furthermore, we design a cognitive-inspired two-stage retrieval strategy that first activates query-relevant thematic content from the theme hypergraph, and then guides fine-grained recall and diffusion in the entity hypergraph, achieving semantic alignment and consistent generation from global themes to local details. Our extensive experiments demonstrate that Cog-RAG significantly outperforms existing state-of-the-art baseline approaches.
comment: Accepted by AAAI 2026 main conference
☆ Large Language Models Meet Extreme Multi-label Classification: Scaling and Multi-modal Framework AAAI 2026
Foundation models have revolutionized artificial intelligence across numerous domains, yet their transformative potential remains largely untapped in Extreme Multi-label Classification (XMC). Queries in XMC are associated with relevant labels from extremely large label spaces, where it is critical to strike a balance between efficiency and performance. Therefore, many recent approaches efficiently pose XMC as a maximum inner product search between embeddings learned from small encoder-only transformer architectures. In this paper, we address two important aspects in XMC: how to effectively harness larger decoder-only models, and how to exploit visual information while maintaining computational efficiency. We demonstrate that both play a critical role in XMC separately and can be combined for improved performance. We show that a few billion-size decoder can deliver substantial improvements while keeping computational overhead manageable. Furthermore, our Vision-enhanced eXtreme Multi-label Learning framework (ViXML) efficiently integrates foundation vision models by pooling a single embedding per image. This limits computational growth while unlocking multi-modal capabilities. Remarkably, ViXML with small encoders outperforms text-only decoder in most cases, showing that an image is worth billions of parameters. Finally, we present an extension of existing text-only datasets to exploit visual metadata and make them available for future benchmarking. Comprehensive experiments across four public text-only datasets and their corresponding image enhanced versions validate our proposals' effectiveness, surpassing previous state-of-the-art by up to +8.21\% in P@1 on the largest dataset. ViXML's code is available at https://github.com/DiegoOrtego/vixml.
comment: To appear at AAAI 2026
☆ Local Collaborative Filtering: A Collaborative Filtering Method that Utilizes Local Similarities among Users
To leverage user behavior data from the Internet more effectively in recommender systems, this paper proposes a novel collaborative filtering (CF) method called Local Collaborative Filtering (LCF). LCF utilizes local similarities among users and integrates their data using the law of large numbers (LLN), thereby improving the utilization of user behavior data. Experiments are conducted on the Steam game dataset, and the results of LCF align with real-world needs.
comment: 4 pages, 2 figures
☆ Region-Point Joint Representation for Effective Trajectory Similarity Learning AAAI2026
Recent learning-based methods have reduced the computational complexity of traditional trajectory similarity computation, but state-of-the-art (SOTA) methods still fail to leverage the comprehensive spectrum of trajectory information for similarity modeling. To tackle this problem, we propose \textbf{RePo}, a novel method that jointly encodes \textbf{Re}gion-wise and \textbf{Po}int-wise features to capture both spatial context and fine-grained moving patterns. For region-wise representation, the GPS trajectories are first mapped to grid sequences, and spatial context are captured by structural features and semantic context enriched by visual features. For point-wise representation, three lightweight expert networks extract local, correlation, and continuous movement patterns from dense GPS sequences. Then, a router network adaptively fuses the learned point-wise features, which are subsequently combined with region-wise features using cross-attention to produce the final trajectory embedding. To train RePo, we adopt a contrastive loss with hard negative samples to provide similarity ranking supervision. Experiment results show that RePo achieves an average accuracy improvement of 22.2\% over SOTA baselines across all evaluation metrics.
comment: This paper is accepted by AAAI2026
☆ FGNet: Leveraging Feature-Guided Attention to Refine SAM2 for 3D EM Neuron Segmentation
Accurate segmentation of neural structures in Electron Microscopy (EM) images is paramount for neuroscience. However, this task is challenged by intricate morphologies, low signal-to-noise ratios, and scarce annotations, limiting the accuracy and generalization of existing methods. To address these challenges, we seek to leverage the priors learned by visual foundation models on a vast amount of natural images to better tackle this task. Specifically, we propose a novel framework that can effectively transfer knowledge from Segment Anything 2 (SAM2), which is pre-trained on natural images, to the EM domain. We first use SAM2 to extract powerful, general-purpose features. To bridge the domain gap, we introduce a Feature-Guided Attention module that leverages semantic cues from SAM2 to guide a lightweight encoder, the Fine-Grained Encoder (FGE), in focusing on these challenging regions. Finally, a dual-affinity decoder generates both coarse and refined affinity maps. Experimental results demonstrate that our method achieves performance comparable to state-of-the-art (SOTA) approaches with the SAM2 weights frozen. Upon further fine-tuning on EM data, our method significantly outperforms existing SOTA methods. This study validates that transferring representations pre-trained on natural images, when combined with targeted domain-adaptive guidance, can effectively address the specific challenges in neuron segmentation.
☆ Mitigating Recommendation Biases via Group-Alignment and Global-Uniformity in Representation Learning
Collaborative Filtering~(CF) plays a crucial role in modern recommender systems, leveraging historical user-item interactions to provide personalized suggestions. However, CF-based methods often encounter biases due to imbalances in training data. This phenomenon makes CF-based methods tend to prioritize recommending popular items and performing unsatisfactorily on inactive users. Existing works address this issue by rebalancing training samples, reranking recommendation results, or making the modeling process robust to the bias. Despite their effectiveness, these approaches can compromise accuracy or be sensitive to weighting strategies, making them challenging to train. In this paper, we deeply analyze the causes and effects of the biases and propose a framework to alleviate biases in recommendation from the perspective of representation distribution, namely Group-Alignment and Global-Uniformity Enhanced Representation Learning for Debiasing Recommendation (AURL). Specifically, we identify two significant problems in the representation distribution of users and items, namely group-discrepancy and global-collapse. These two problems directly lead to biases in the recommendation results. To this end, we propose two simple but effective regularizers in the representation space, respectively named group-alignment and global-uniformity. The goal of group-alignment is to bring the representation distribution of long-tail entities closer to that of popular entities, while global-uniformity aims to preserve the information of entities as much as possible by evenly distributing representations. Our method directly optimizes both the group-alignment and global-uniformity regularization terms to mitigate recommendation biases. Extensive experiments on three real datasets and various recommendation backbones verify the superiority of our proposed framework.
☆ Can We Predict the Next Question? A Collaborative Filtering Approach to Modeling User Behavior
In recent years, large language models (LLMs) have excelled in language understanding and generation, powering advanced dialogue and recommendation systems. However, a significant limitation persists: these systems often model user preferences statically, failing to capture the dynamic and sequential nature of interactive behaviors. The sequence of a user's historical questions provides a rich, implicit signal of evolving interests and cognitive patterns, yet leveraging this temporal data for predictive tasks remains challenging due to the inherent disconnect between language modeling and behavioral sequence modeling. To bridge this gap, we propose a Collaborative Filtering-enhanced Question Prediction (CFQP) framework. CFQP dynamically models evolving user-question interactions by integrating personalized memory modules with graph-based preference propagation. This dual mechanism allows the system to adaptively learn from user-specific histories while refining predictions through collaborative signals from similar users. Experimental results demonstrate that our approach effectively generates agents that mimic real-user questioning patterns, highlighting its potential for building proactive and adaptive dialogue systems.
☆ A Plug-and-Play Spatially-Constrained Representation Enhancement Framework for Local-Life Recommendation
Local-life recommendation have witnessed rapid growth, providing users with convenient access to daily essentials. However, this domain faces two key challenges: (1) spatial constraints, driven by the requirements of the local-life scenario, where items are usually shown only to users within a limited geographic area, indirectly reducing their exposure probability; and (2) long-tail sparsity, where few popular items dominate user interactions, while many high-quality long-tail items are largely overlooked due to imbalanced interaction opportunities. Existing methods typically adopt a user-centric perspective, such as modeling spatial user preferences or enhancing long-tail representations with collaborative filtering signals. However, we argue that an item-centric perspective is more suitable for this domain, focusing on enhancing long-tail items representation that align with the spatially-constrained characteristics of local lifestyle services. To tackle this issue, we propose ReST, a Plug-And-Play Spatially-Constrained Representation Enhancement Framework for Long-Tail Local-Life Recommendation. Specifically, we first introduce a Meta ID Warm-up Network, which initializes fundamental ID representations by injecting their basic attribute-level semantic information. Subsequently, we propose a novel Spatially-Constrained ID Representation Enhancement Network (SIDENet) based on contrastive learning, which incorporates two efficient strategies: a spatially-constrained hard sampling strategy and a dynamic representation alignment strategy. This design adaptively identifies weak ID representations based on their attribute-level information during training. It additionally enhances them by capturing latent item relationships within the spatially-constrained characteristics of local lifestyle services, while preserving compatibility with popular items.
☆ Tokenize Once, Recommend Anywhere: Unified Item Tokenization for Multi-domain LLM-based Recommendation AAAI
Large language model (LLM)-based recommender systems have achieved high-quality performance by bridging the discrepancy between the item space and the language space through item tokenization. However, existing item tokenization methods typically require training separate models for each item domain, limiting generalization. Moreover, the diverse distributions and semantics across item domains make it difficult to construct a unified tokenization that preserves domain-specific information. To address these challenges, we propose UniTok, a Unified item Tokenization framework that integrates our own mixture-of-experts (MoE) architecture with a series of codebooks to convert items into discrete tokens, enabling scalable tokenization while preserving semantic information across multiple item domains. Specifically, items from different domains are first projected into a unified latent space through a shared encoder. They are then routed to domain-specific experts to capture the unique semantics, while a shared expert, which is always active, encodes common knowledge transferable across domains. Additionally, to mitigate semantic imbalance across domains, we present a mutual information calibration mechanism, which guides the model towards retaining similar levels of semantic information for each domain. Comprehensive experiments on wide-ranging real-world datasets demonstrate that the proposed UniTok framework is (a) highly effective: achieving up to 51.89% improvements over strong benchmarks, (b) theoretically sound: showing the analytical validity of our architectural design and optimization; and (c) highly generalizable: demonstrating robust performance across diverse domains without requiring per-domain retraining, a capability not supported by existing baselines.
comment: 20 pages, 8 figures, 9 tables; Annual AAAI Conference on Artificial Intelligence (AAAI-26) (to appear) (Please cite our conference version.)
☆ Rethinking the filter bubble? Developing a research agenda for the protective filter bubble
Filter bubbles and echo chambers have received global attention from scholars, media organizations, and the general public. Filter bubbles have primarily been regarded as intrinsically negative, and many studies have sought to minimize their influence. The detrimental influence of filter bubbles is well-studied. Filter bubbles may, for example, create information silos, amplify misinformation, and promote hatred and extremism. However, comparatively few studies have considered the other side of the filter bubble; its protective benefits, particularly to marginalized communities and those living in countries with low levels of press freedom. Through a review of the literature on digital safe spaces and protective filter bubbles, this commentary suggests that there may be a need to rethink the filter bubble, and it proposes several areas for future research.
comment: This work has been published in Big Data & Society. Please cite the journal version
♻ ☆ FinVet: A Collaborative Framework of RAG and External Fact-Checking Agents for Financial Misinformation Detection
Financial markets face growing threats from misinformation that can trigger billions in losses in minutes. Most existing approaches lack transparency in their decision-making and provide limited attribution to credible sources. We introduce FinVet, a novel multi-agent framework that integrates two Retrieval-Augmented Generation (RAG) pipelines with external fact-checking through a confidence-weighted voting mechanism. FinVet employs adaptive three-tier processing that dynamically adjusts verification strategies based on retrieval confidence, from direct metadata extraction to hybrid reasoning to full model-based analysis. Unlike existing methods, FinVet provides evidence-backed verdicts, source attribution, confidence scores, and explicit uncertainty flags when evidence is insufficient. Experimental evaluation on the FinFact dataset shows that FinVet achieves an F1 score of 0.85, which is a 10.4% improvement over the best individual pipeline (fact-check pipeline) and 37% improvement over standalone RAG approaches.
♻ ☆ T-Retrievability: A Topic-Focused Approach to Measure Fair Document Exposure in Information Retrieval CIKM 2025
Retrievability of a document is a collection-based statistic that measures its expected (reciprocal) rank of being retrieved within a specific rank cut-off. A collection with uniformly distributed retrievability scores across documents is an indicator of fair document exposure. While retrievability scores have been used to quantify the fairness of exposure for a collection, in our work, we use the distribution of retrievability scores to measure the exposure bias of retrieval models. We hypothesise that an uneven distribution of retrievability scores across the entire collection may not accurately reflect exposure bias but rather indicate variations in topical relevance. As a solution, we propose a topic-focused localised retrievability measure, which we call \textit{T-Retrievability} (topic-retrievability), which first computes retrievability scores over multiple groups of topically-related documents, and then aggregates these localised values to obtain the collection-level statistics. Our analysis using this proposed T-Retrievability measure uncovers new insights into the exposure characteristics of various neural ranking models. The findings suggest that this localised measure provides a more nuanced understanding of exposure fairness, offering a more reliable approach for assessing document accessibility in IR systems.
comment: Accepted by Proceedings of the 34th ACM International Conference on Information and Knowledge Management (CIKM 2025), November 10-14, 2025, Seoul, Republic of Korea
♻ ☆ GRIN Transfer: A production-ready tool for libraries to retrieve digital copies from Google Books
Publicly launched in 2004, the Google Books project has scanned tens of millions of items in partnership with libraries around the world. As part of this project, Google created the Google Return Interface (GRIN). Through this platform, libraries can access their scanned collections, the associated metadata, and the ongoing OCR and metadata improvements that become available as Google reprocesses these collections using new technologies. When downloading the Harvard Library Google Books collection from GRIN to develop the Institutional Books dataset, we encountered several challenges related to rate-limiting and atomized metadata within the GRIN platform. To overcome these challenges and help other libraries make more robust use of their Google Books collections, this technical report introduces the initial release of GRIN Transfer. This open-source and production-ready Python pipeline allows partner libraries to efficiently retrieve their Google Books collections from GRIN. This report also introduces an updated version of our Institutional Books 1.0 pipeline, initially used to analyze, augment, and assemble the Institutional Books 1.0 dataset. We have revised this pipeline for compatibility with the output format of GRIN Transfer. A library could pair these two tools to create an end-to-end processing pipeline for their Google Books collection to retrieve, structure, and enhance data available from GRIN. This report gives an overview of how GRIN Transfer was designed to optimize for reliability and usability in different environments, as well as guidance on configuration for various use cases.
♻ ☆ RAG-R1: Incentivizing the Search and Reasoning Capabilities of LLMs through Multi-query Parallelism
Large Language Models (LLMs), despite their remarkable capabilities, are prone to generating hallucinated or outdated content due to their static internal knowledge. While Retrieval-Augmented Generation (RAG) integrated with Reinforcement Learning (RL) offers a solution, these methods are fundamentally constrained by a single-query mode, leading to prohibitive latency and inherent brittleness. To overcome these limitations, we introduce RAG-R1, a novel two-stage training framework centered around multi-query parallelism. Our framework enables LLMs to adaptively leverage internal and external knowledge during the reasoning process while transitioning from the single-query mode to multi-query parallelism. This architectural shift bolsters reasoning robustness while significantly reducing inference latency. Extensive experiments on seven question-answering benchmarks confirm the superiority of our method, which outperforms the strongest baseline by up to 13.7% and decreases inference time by 11.1%.
♻ ☆ LEMUR: Large scale End-to-end MUltimodal Recommendation
Traditional ID-based recommender systems often struggle with cold-start and generalization challenges. Multimodal recommendation systems, which leverage textual and visual data, offer a promising solution to mitigate these issues. However, existing industrial approaches typically adopt a two-stage training paradigm: first pretraining a multimodal model, then applying its frozen representations to train the recommendation model. This decoupled framework suffers from misalignment between multimodal learning and recommendation objectives, as well as an inability to adapt dynamically to new data. To address these limitations, we propose LEMUR, the first large-scale multimodal recommender system trained end-to-end from raw data. By jointly optimizing both the multimodal and recommendation components, LEMUR ensures tighter alignment with downstream objectives while enabling real-time parameter updates. Constructing multimodal sequential representations from user history often entails prohibitively high computational costs. To alleviate this bottleneck, we propose a novel memory bank mechanism that incrementally accumulates historical multimodal representations throughout the training process. After one month of deployment in Douyin Search, LEMUR has led to a 0.843% reduction in query change rate decay and a 0.81% improvement in QAUC. Additionally, LEMUR has shown significant gains across key offline metrics for Douyin Advertisement. Our results validate the superiority of end-to-end multimodal recommendation in real-world industrial scenarios.
♻ ☆ PathRAG: Pruning Graph-based Retrieval Augmented Generation with Relational Paths
Retrieval-augmented generation (RAG) improves the response quality of large language models (LLMs) by retrieving knowledge from external databases. Typical RAG approaches split the text database into chunks, organizing them in a flat structure for efficient searches. To better capture the inherent dependencies and structured relationships across the text database, researchers propose to organize textual information into an indexing graph, known asgraph-based RAG. However, we argue that the limitation of current graph-based RAG methods lies in the redundancy of the retrieved information, rather than its insufficiency. Moreover, previous methods use a flat structure to organize retrieved information within the prompts, leading to suboptimal performance. To overcome these limitations, we propose PathRAG, which retrieves key relational paths from the indexing graph, and converts these paths into textual form for prompting LLMs. Specifically, PathRAG effectively reduces redundant information with flow-based pruning, while guiding LLMs to generate more logical and coherent responses with path-based prompting. Experimental results show that PathRAG consistently outperforms state-of-the-art baselines across six datasets and five evaluation dimensions. The code is available at the following link: https://github.com/BUPT-GAMMA/PathRAG
♻ ☆ Beyond Chains: Bridging Large Language Models and Knowledge Bases in Complex Question Answering AAAI2026
Knowledge Base Question Answering (KBQA) aims to answer natural language questions using structured knowledge from KBs. While LLM-only approaches offer generalization, they suffer from outdated knowledge, hallucinations, and lack of transparency. Chain-based KG-RAG methods address these issues by incorporating external KBs, but are limited to simple chain-structured questions due to the absence of planning and logical structuring. Inspired by semantic parsing methods, we propose PDRR: a four-stage framework consisting of Predict, Decompose, Retrieve, and Reason. Our method first predicts the question type and decomposes the question into structured triples. Then retrieves relevant information from KBs and guides the LLM as an agent to reason over and complete the decomposed triples. Experimental results demonstrate that PDRR consistently outperforms existing methods across various LLM backbones and achieves superior performance on both chain-structured and non-chain complex questions.
comment: AAAI2026 Main Track
Information Retrieval 7
☆ DualGR: Generative Retrieval with Long and Short-Term Interests Modeling
In large-scale industrial recommendation systems, retrieval must produce high-quality candidates from massive corpora under strict latency. Recently, Generative Retrieval (GR) has emerged as a viable alternative to Embedding-Based Retrieval (EBR), which quantizes items into a finite token space and decodes candidates autoregressively, providing a scalable path that explicitly models target-history interactions via cross-attention. However, three challenges persist: 1) how to balance users' long-term and short-term interests , 2) noise interference when generating hierarchical semantic IDs (SIDs), 3) the absence of explicit modeling for negative feedback such as exposed items without clicks. To address these challenges, we propose DualGR, a generative retrieval framework that explicitly models dual horizons of user interests with selective activation. Specifically, DualGR utilizes Dual-Branch Long/Short-Term Router (DBR) to cover both stable preferences and transient intents by explicitly modeling users' long- and short-term behaviors. Meanwhile, Search-based SID Decoding (S2D) is presented to control context-induced noise and enhance computational efficiency by constraining candidate interactions to the current coarse (level-1) bucket during fine-grained (level-2/3) SID prediction. % also reinforcing intra-class consistency. Finally, we propose an Exposure-aware Next-Token Prediction Loss (ENTP-Loss) that treats "exposed-but-unclicked" items as hard negatives at level-1, enabling timely interest fade-out. On the large-scale Kuaishou short-video recommendation system, DualGR has achieved outstanding performance. Online A/B testing shows +0.527% video views and +0.432% watch time lifts, validating DualGR as a practical and effective paradigm for industrial generative retrieval.
☆ Task-Aware Retrieval Augmentation for Dynamic Recommendation AAAI 2026
Dynamic recommendation systems aim to provide personalized suggestions by modeling temporal user-item interactions across time-series behavioral data. Recent studies have leveraged pre-trained dynamic graph neural networks (GNNs) to learn user-item representations over temporal snapshot graphs. However, fine-tuning GNNs on these graphs often results in generalization issues due to temporal discrepancies between pre-training and fine-tuning stages, limiting the model's ability to capture evolving user preferences. To address this, we propose TarDGR, a task-aware retrieval-augmented framework designed to enhance generalization capability by incorporating task-aware model and retrieval-augmentation. Specifically, TarDGR introduces a Task-Aware Evaluation Mechanism to identify semantically relevant historical subgraphs, enabling the construction of task-specific datasets without manual labeling. It also presents a Graph Transformer-based Task-Aware Model that integrates semantic and structural encodings to assess subgraph relevance. During inference, TarDGR retrieves and fuses task-aware subgraphs with the query subgraph, enriching its representation and mitigating temporal generalization issues. Experiments on multiple large-scale dynamic graph datasets demonstrate that TarDGR consistently outperforms state-of-the-art methods, with extensive empirical evidence underscoring its superior accuracy and generalization capabilities.
comment: AAAI 2026
☆ MOON2.0: Dynamic Modality-balanced Multimodal Representation Learning for E-commerce Product Understanding
The rapid growth of e-commerce calls for multimodal models that comprehend rich visual and textual product information. Although recent multimodal large language models (MLLMs) for product understanding exhibit strong capability in representation learning for e-commerce, they still face three challenges: (i) the modality imbalance induced by modality mixed training; (ii) underutilization of the intrinsic alignment relationships among visual and textual information within a product; and (iii) limited handling of noise in e-commerce multimodal data. To address these, we propose MOON2.0, a dynamic modality-balanced multimodal representation learning framework for e-commerce product understanding. MOON2.0 comprises: (1) a Modality-driven Mixture-of-Experts (MoE) module that adaptively processes input samples by their modality composition, enabling Multimodal Joint Learning to mitigate the modality imbalance; (2) a Dual-level Alignment method to better leverage semantic alignment properties inside individual products; and (3) an MLLM-based Image-text Co-augmentation strategy that integrates textual enrichment with visual expansion, coupled with Dynamic Sample Filtering to improve training data quality. We further introduce MBE2.0, a co-augmented multimodal representation benchmark for e-commerce representation learning and evaluation. Experiments show that MOON2.0 delivers state-of-the-art zero-shot performance on MBE2.0 and multiple public datasets. Furthermore, attention-based heatmap visualization provides qualitative evidence of improved multimodal alignment of MOON2.0.
comment: 11 pages, 7 figures
♻ ☆ Don't Waste It: Guiding Generative Recommenders with Structured Human Priors via Multi-head Decoding
Optimizing recommender systems for objectives beyond accuracy, such as diversity, novelty, and personalization, is crucial for long-term user satisfaction. To this end, industrial practitioners have accumulated vast amounts of structured domain knowledge, which we term human priors (e.g., item taxonomies, temporal patterns). This knowledge is typically applied through post-hoc adjustments during ranking or post-ranking. However, this approach remains decoupled from the core model learning, which is particularly undesirable as the industry shifts to end-to-end generative recommendation foundation models. On the other hand, many methods targeting these beyond-accuracy objectives often require architecture-specific modifications and discard these valuable human priors by learning user intent in a fully unsupervised manner. Instead of discarding the human priors accumulated over years of practice, we introduce a backbone-agnostic framework that seamlessly integrates these human priors directly into the end-to-end training of generative recommenders. With lightweight, prior-conditioned adapter heads inspired by efficient LLM decoding strategies, our approach guides the model to disentangle user intent along human-understandable axes (e.g., interaction types, long- vs. short-term interests). We also introduce a hierarchical composition strategy for modeling complex interactions across different prior types. Extensive experiments on three large-scale datasets demonstrate that our method significantly enhances both accuracy and beyond-accuracy objectives. We also show that human priors allow the backbone model to more effectively leverage longer context lengths and larger model sizes.
♻ ☆ TFRank: Think-Free Reasoning Enables Practical Pointwise LLM Ranking
Reasoning-intensive ranking models built on Large Language Models (LLMs) have made notable progress. However, existing approaches often rely on large-scale LLMs and explicit Chain-of-Thought (CoT) reasoning, resulting in high computational cost and latency that limit real-world use. To address this, we propose \textbf{TFRank}, an efficient pointwise reasoning ranker based on small-scale LLMs. To improve ranking performance, TFRank effectively integrates CoT data, fine-grained score supervision, and multi-task training. Furthermore, it achieves an efficient ``\textbf{T}hink-\textbf{F}ree" reasoning capability by employing a ``think-mode switch'' and pointwise format constraints. Specifically, this allows the model to leverage explicit reasoning during training while delivering precise relevance scores for complex queries at inference without generating any reasoning chains. Experiments show that TFRank achieves performance comparable to models with four times more parameters on the BRIGHT benchmark and demonstrates strong competitiveness on the BEIR benchmark. Further analysis shows that TFRank achieves an effective balance between performance and efficiency, providing a practical solution for integrating advanced reasoning into real-world systems. Our code and data are released in the repository: https://github.com/JOHNNY-fans/TFRank.
♻ ☆ Function-based Labels for Complementary Recommendation: Definition, Annotation, and LLM-as-a-Judge
Complementary recommendations enhance the user experience by suggesting items that are frequently purchased together while serving different functions from the query item. Inferring or evaluating whether two items have a complementary relationship requires complementary relationship labels; however, defining these labels is challenging because of the inherent ambiguity of such relationships. Complementary labels based on user historical behavior logs attempt to capture these relationships, but often produce inconsistent and unreliable results. Recent efforts have introduced large language models (LLMs) to infer these relationships. However, these approaches provide a binary classification without a nuanced understanding of complementary relationships. In this study, we address these challenges by introducing Function-Based Labels (FBLs), a novel definition of complementary relationships independent of user purchase logs and the opaque decision processes of LLMs. We constructed a human-annotated FBLs dataset comprising 2,759 item pairs and demonstrated that it covered possible item relationships and minimized ambiguity. We then evaluated whether some machine learning (ML) methods using annotated FBLs could accurately infer labels for unseen item pairs, and whether LLM-generated complementary labels align with human perception. Our results demonstrate that even with limited data, ML models, such as logistic regression and SVM achieve high macro-F1 scores (approximately 0.82). Furthermore, LLMs, such as gpt-4o-mini, demonstrated high consistency (0.989) and classification accuracy (0.849) under the detailed definition of FBLs, indicating their potential as effective annotators that mimic human judgment. Overall, our study presents FBLs as a clear definition of complementary relationships, enabling more accurate inferences and automated labeling of complementary recommendations.
♻ ☆ From IDs to Semantics: A Generative Framework for Cross-Domain Recommendation with Adaptive Semantic Tokenization AAAI 2026
Cross-domain recommendation (CDR) is crucial for improving recommendation accuracy and generalization, yet traditional methods are often hindered by the reliance on shared user/item IDs, which are unavailable in most real-world scenarios. Consequently, many efforts have focused on learning disentangled representations through multi-domain joint training to bridge the domain gaps. Recent Large Language Model (LLM)-based approaches show promise, they still face critical challenges, including: (1) the \textbf{item ID tokenization dilemma}, which leads to vocabulary explosion and fails to capture high-order collaborative knowledge; and (2) \textbf{insufficient domain-specific modeling} for the complex evolution of user interests and item semantics. To address these limitations, we propose \textbf{GenCDR}, a novel \textbf{Gen}erative \textbf{C}ross-\textbf{D}omain \textbf{R}ecommendation framework. GenCDR first employs a \textbf{Domain-adaptive Tokenization} module, which generates disentangled semantic IDs for items by dynamically routing between a universal encoder and domain-specific adapters. Symmetrically, a \textbf{Cross-domain Autoregressive Recommendation} module models user preferences by fusing universal and domain-specific interests. Finally, a \textbf{Domain-aware Prefix-tree} enables efficient and accurate generation. Extensive experiments on multiple real-world datasets demonstrate that GenCDR significantly outperforms state-of-the-art baselines. Our code is available in the supplementary materials.
comment: Accepted by AAAI 2026