MyArxiv
Computation and Language 76
☆ Requirements Elicitation Follow-Up Question Generation
Interviews are a widely used technique in eliciting requirements to gather stakeholder needs, preferences, and expectations for a software system. Effective interviewing requires skilled interviewers to formulate appropriate interview questions in real time while facing multiple challenges, including lack of familiarity with the domain, excessive cognitive load, and information overload that hinders how humans process stakeholders' speech. Recently, large language models (LLMs) have exhibited state-of-the-art performance in multiple natural language processing tasks, including text summarization and entailment. To support interviewers, we investigate the application of GPT-4o to generate follow-up interview questions during requirements elicitation by building on a framework of common interviewer mistake types. In addition, we describe methods to generate questions based on interviewee speech. We report a controlled experiment to evaluate LLM-generated and human-authored questions with minimal guidance, and a second controlled experiment to evaluate the LLM-generated questions when generation is guided by interviewer mistake types. Our findings demonstrate that, for both experiments, the LLM-generated questions are no worse than the human-authored questions with respect to clarity, relevancy, and informativeness. In addition, LLM-generated questions outperform human-authored questions when guided by common mistakes types. This highlights the potential of using LLMs to help interviewers improve the quality and ease of requirements elicitation interviews in real time.
comment: 13 pages, 2 figures, accepted at the 33rd IEEE International Requirements Engineering 2025
☆ Answer Matching Outperforms Multiple Choice for Language Model Evaluation
Multiple choice benchmarks have long been the workhorse of language model evaluation because grading multiple choice is objective and easy to automate. However, we show multiple choice questions from popular benchmarks can often be answered without even seeing the question. These shortcuts arise from a fundamental limitation of discriminative evaluation not shared by evaluations of the model's free-form, generative answers. Until recently, there appeared to be no viable, scalable alternative to multiple choice--but, we show that this has changed. We consider generative evaluation via what we call answer matching: Give the candidate model the question without the options, have it generate a free-form response, then use a modern language model with the reference answer to determine if the response matches the reference. To compare the validity of different evaluation strategies, we annotate MMLU-Pro and GPQA-Diamond to obtain human grading data, and measure the agreement of each evaluation approach. We find answer matching using recent models--even small ones--achieves near-perfect agreement, in the range of inter-annotator agreement. In contrast, both multiple choice evaluation and using LLM-as-a-judge without reference answers aligns poorly with human grading. Improving evaluations via answer matching is not merely a conceptual concern: the rankings of several models change significantly when evaluating their free-form responses with answer matching. In light of these findings, we discuss how to move the evaluation ecosystem from multiple choice to answer matching.
comment: 34 pages, Code is available at https://github.com/nikhilchandak/answer-matching
☆ MOTIF: Modular Thinking via Reinforcement Fine-tuning in LLMs
Recent advancements in the reasoning capabilities of large language models (LLMs) show that employing group relative policy optimization (GRPO) algorithm for reinforcement learning (RL) training allows the models to use more thinking/reasoning tokens for generating better responses. However, LLMs can generate only a finite amount of tokens while maintaining attention to the previously generated tokens. This limit, also known as the context size of an LLM, is a bottleneck in LLM reasoning with arbitrarily large number of tokens. To think beyond the limit of context size, an LLM must employ a modular thinking strategy to reason over multiple rounds. In this work, we propose $\textbf{MOTIF: Modular Thinking via Reinforcement Finetuning}$ -- an RL training method for generating thinking tokens in multiple rounds, effectively allowing the model to think with additional context size. We trained the open-source model Qwen2.5-3B-Instruct on GSM8K dataset via parameter efficient fine-tuning and tested its accuracy on MATH500 and AIME2024 benchmarks. Our experiments show 3.8\% and 3.3\% improvements over vanilla GRPO based training in the respective benchmarks. Furthermore, this improvement was achieved with only 15\% of samples, thus demonstrating sample efficiency of MOTIF. Our code and models are available at https://github.com/purbeshmitra/MOTIF and https://huggingface.co/purbeshmitra/MOTIF, respectively.
LLM Hypnosis: Exploiting User Feedback for Unauthorized Knowledge Injection to All Users
We describe a vulnerability in language models (LMs) trained with user feedback, whereby a single user can persistently alter LM knowledge and behavior given only the ability to provide prompts and upvote / downvote feedback on LM outputs. To implement the attack, the attacker prompts the LM to stochastically output either a "poisoned" or benign response, then upvotes the poisoned response or downvotes the benign one. When feedback signals are used in a subsequent preference tuning behavior, LMs exhibit increased probability of producing poisoned responses even in contexts without malicious prompts. We show that this attack can be used to (1) insert factual knowledge the model did not previously possess, (2) modify code generation patterns in ways that introduce exploitable security flaws, and (3) inject fake financial news. Our finding both identifies a new qualitative feature of language model preference tuning (showing that it even highly restricted forms of preference data can be used to exert fine-grained control over behavior), and a new attack mechanism for LMs trained with user feedback (extending work on pretraining-time data poisoning and deployment-time prompt injection).
☆ Legal Requirements Translation from Law
Software systems must comply with legal regulations, which is a resource-intensive task, particularly for small organizations and startups lacking dedicated legal expertise. Extracting metadata from regulations to elicit legal requirements for software is a critical step to ensure compliance. However, it is a cumbersome task due to the length and complex nature of legal text. Although prior work has pursued automated methods for extracting structural and semantic metadata from legal text, key limitations remain: they do not consider the interplay and interrelationships among attributes associated with these metadata types, and they rely on manual labeling or heuristic-driven machine learning, which does not generalize well to new documents. In this paper, we introduce an approach based on textual entailment and in-context learning for automatically generating a canonical representation of legal text, encodable and executable as Python code. Our representation is instantiated from a manually designed Python class structure that serves as a domain-specific metamodel, capturing both structural and semantic legal metadata and their interrelationships. This design choice reduces the need for large, manually labeled datasets and enhances applicability to unseen legislation. We evaluate our approach on 13 U.S. state data breach notification laws, demonstrating that our generated representations pass approximately 89.4% of test cases and achieve a precision and recall of 82.2 and 88.7, respectively.
comment: 13 pages, 7 figures, Accepted at the 33rd IEEE International Requirements Engineering 2025
☆ Visual Contextual Attack: Jailbreaking MLLMs with Image-Driven Context Injection
With the emergence of strong visual-language capabilities, multimodal large language models (MLLMs) have demonstrated tremendous potential for real-world applications. However, the security vulnerabilities exhibited by the visual modality pose significant challenges to deploying such models in open-world environments. Recent studies have successfully induced harmful responses from target MLLMs by encoding harmful textual semantics directly into visual inputs. However, in these approaches, the visual modality primarily serves as a trigger for unsafe behavior, often exhibiting semantic ambiguity and lacking grounding in realistic scenarios. In this work, we define a novel setting: visual-centric jailbreak, where visual information serves as a necessary component in constructing a complete and realistic jailbreak context. Building on this setting, we propose the VisCo (Visual Contextual) Attack. VisCo fabricates contextual dialogue using four distinct visual-focused strategies, dynamically generating auxiliary images when necessary to construct a visual-centric jailbreak scenario. To maximize attack effectiveness, it incorporates automatic toxicity obfuscation and semantic refinement to produce a final attack prompt that reliably triggers harmful responses from the target black-box MLLMs. Specifically, VisCo achieves a toxicity score of 4.78 and an Attack Success Rate (ASR) of 85% on MM-SafetyBench against GPT-4o, significantly outperforming the baseline, which performs a toxicity score of 2.48 and an ASR of 22.2%. The code is available at https://github.com/Dtc7w3PQ/Visco-Attack.
comment: 16 pages
☆ StepHint: Multi-level Stepwise Hints Enhance Reinforcement Learning to Reason
Reinforcement learning with verifiable rewards (RLVR) is a promising approach for improving the complex reasoning abilities of large language models (LLMs). However, current RLVR methods face two significant challenges: the near-miss reward problem, where a small mistake can invalidate an otherwise correct reasoning process, greatly hindering training efficiency; and exploration stagnation, where models tend to focus on solutions within their ``comfort zone,'' lacking the motivation to explore potentially more effective alternatives. To address these challenges, we propose StepHint, a novel RLVR algorithm that utilizes multi-level stepwise hints to help models explore the solution space more effectively. StepHint generates valid reasoning chains from stronger models and partitions these chains into reasoning steps using our proposed adaptive partitioning method. The initial few steps are used as hints, and simultaneously, multiple-level hints (each comprising a different number of steps) are provided to the model. This approach directs the model's exploration toward a promising solution subspace while preserving its flexibility for independent exploration. By providing hints, StepHint mitigates the near-miss reward problem, thereby improving training efficiency. Additionally, the external reasoning pathways help the model develop better reasoning abilities, enabling it to move beyond its ``comfort zone'' and mitigate exploration stagnation. StepHint outperforms competitive RLVR enhancement methods across six mathematical benchmarks, while also demonstrating superior generalization and excelling over baselines on out-of-domain benchmarks.
☆ ExPO: Unlocking Hard Reasoning with Self-Explanation-Guided Reinforcement Learning
Recent advances in large language models have been driven by reinforcement learning (RL)-style post-training, which improves reasoning by optimizing model outputs based on reward or preference signals. GRPO-style approaches implement this by using self-generated samples labeled by an outcome-based verifier. However, these methods depend heavily on the model's initial ability to produce positive samples. They primarily refine what the model already knows (distribution sharpening) rather than enabling the model to solve problems where it initially fails. This limitation is especially problematic in early-stage RL training and on challenging reasoning tasks, where positive samples are unlikely to be generated. To unlock reasoning ability in such settings, the model must explore new reasoning trajectories beyond its current output distribution. Such exploration requires access to sufficiently good positive samples to guide the learning. While expert demonstrations seem like a natural solution, we find that they are often ineffective in RL post-training. Instead, we identify two key properties of effective positive samples: they should (1) be likely under the current policy, and (2) increase the model's likelihood of predicting the correct answer. Based on these insights, we propose $\textbf{Self-Explanation Policy Optimization (ExPO)}$-a simple and modular framework that generates such samples by conditioning on the ground-truth answer. ExPO enables efficient exploration and guides the model to produce reasoning trajectories more aligned with its policy than expert-written CoTs, while ensuring higher quality than its own (incorrect) samples. Experiments show that ExPO improves both learning efficiency and final performance on reasoning benchmarks, surpassing expert-demonstration-based methods in challenging settings such as MATH level-5, where the model initially struggles the most.
☆ Generalizing Verifiable Instruction Following
A crucial factor for successful human and AI interaction is the ability of language models or chatbots to follow human instructions precisely. A common feature of instructions are output constraints like ``only answer with yes or no" or ``mention the word `abrakadabra' at least 3 times" that the user adds to craft a more useful answer. Even today's strongest models struggle with fulfilling such constraints. We find that most models strongly overfit on a small set of verifiable constraints from the benchmarks that test these abilities, a skill called precise instruction following, and are not able to generalize well to unseen output constraints. We introduce a new benchmark, IFBench, to evaluate precise instruction following generalization on 58 new, diverse, and challenging verifiable out-of-domain constraints. In addition, we perform an extensive analysis of how and on what data models can be trained to improve precise instruction following generalization. Specifically, we carefully design constraint verification modules and show that reinforcement learning with verifiable rewards (RLVR) significantly improves instruction following. In addition to IFBench, we release 29 additional new hand-annotated training constraints and verification functions, RLVR training prompts, and code.
comment: 11 pages
☆ SynapseRoute: An Auto-Route Switching Framework on Dual-State Large Language Model
With the widespread adoption of large language models (LLMs) in practical applications, selecting an appropriate model requires balancing not only performance but also operational cost. The emergence of reasoning-capable models has further widened the cost gap between "thinking" (high reasoning) and "non-thinking" (fast, low-cost) modes. In this work, we reveal that approximately 58% of medical questions can be accurately answered by the non-thinking mode alone, without requiring the high-cost reasoning process. This highlights a clear dichotomy in problem complexity and suggests that dynamically routing queries to the appropriate mode based on complexity could optimize accuracy, cost-efficiency, and overall user experience. Based on this, we further propose SynapseRoute, a machine learning-based dynamic routing framework that intelligently assigns input queries to either thinking or non-thinking modes. Experimental results on several medical datasets demonstrate that SynapseRoute not only improves overall accuracy (0.8390 vs. 0.8272) compared to the thinking mode alone but also reduces inference time by 36.8% and token consumption by 39.66%. Importantly, qualitative analysis indicates that over-reasoning on simpler queries can lead to unnecessary delays and even decreased accuracy, a pitfall avoided by our adaptive routing. Finally, this work further introduces the Accuracy-Inference-Token (AIT) index to comprehensively evaluate the trade-offs among accuracy, latency, and token cost.
☆ Multimodal Mathematical Reasoning with Diverse Solving Perspective
Recent progress in large-scale reinforcement learning (RL) has notably enhanced the reasoning capabilities of large language models (LLMs), especially in mathematical domains. However, current multimodal LLMs (MLLMs) for mathematical reasoning often rely on one-to-one image-text pairs and single-solution supervision, overlooking the diversity of valid reasoning perspectives and internal reflections. In this work, we introduce MathV-DP, a novel dataset that captures multiple diverse solution trajectories for each image-question pair, fostering richer reasoning supervision. We further propose Qwen-VL-DP, a model built upon Qwen-VL, fine-tuned with supervised learning and enhanced via group relative policy optimization (GRPO), a rule-based RL approach that integrates correctness discrimination and diversity-aware reward functions. Our method emphasizes learning from varied reasoning perspectives and distinguishing between correct yet distinct solutions. Extensive experiments on the MathVista's minitest and Math-V benchmarks demonstrate that Qwen-VL-DP significantly outperforms prior base MLLMs in both accuracy and generative diversity, highlighting the importance of incorporating diverse perspectives and reflective reasoning in multimodal mathematical reasoning.
comment: 8 pages
☆ Is Reasoning All You Need? Probing Bias in the Age of Reasoning Language Models
Reasoning Language Models (RLMs) have gained traction for their ability to perform complex, multi-step reasoning tasks through mechanisms such as Chain-of-Thought (CoT) prompting or fine-tuned reasoning traces. While these capabilities promise improved reliability, their impact on robustness to social biases remains unclear. In this work, we leverage the CLEAR-Bias benchmark, originally designed for Large Language Models (LLMs), to investigate the adversarial robustness of RLMs to bias elicitation. We systematically evaluate state-of-the-art RLMs across diverse sociocultural dimensions, using an LLM-as-a-judge approach for automated safety scoring and leveraging jailbreak techniques to assess the strength of built-in safety mechanisms. Our evaluation addresses three key questions: (i) how the introduction of reasoning capabilities affects model fairness and robustness; (ii) whether models fine-tuned for reasoning exhibit greater safety than those relying on CoT prompting at inference time; and (iii) how the success rate of jailbreak attacks targeting bias elicitation varies with the reasoning mechanisms employed. Our findings reveal a nuanced relationship between reasoning capabilities and bias safety. Surprisingly, models with explicit reasoning, whether via CoT prompting or fine-tuned reasoning traces, are generally more vulnerable to bias elicitation than base models without such mechanisms, suggesting reasoning may unintentionally open new pathways for stereotype reinforcement. Reasoning-enabled models appear somewhat safer than those relying on CoT prompting, which are particularly prone to contextual reframing attacks through storytelling prompts, fictional personas, or reward-shaped instructions. These results challenge the assumption that reasoning inherently improves robustness and underscore the need for more bias-aware approaches to reasoning design.
☆ From Long Videos to Engaging Clips: A Human-Inspired Video Editing Framework with Multimodal Narrative Understanding
The rapid growth of online video content, especially on short video platforms, has created a growing demand for efficient video editing techniques that can condense long-form videos into concise and engaging clips. Existing automatic editing methods predominantly rely on textual cues from ASR transcripts and end-to-end segment selection, often neglecting the rich visual context and leading to incoherent outputs. In this paper, we propose a human-inspired automatic video editing framework (HIVE) that leverages multimodal narrative understanding to address these limitations. Our approach incorporates character extraction, dialogue analysis, and narrative summarization through multimodal large language models, enabling a holistic understanding of the video content. To further enhance coherence, we apply scene-level segmentation and decompose the editing process into three subtasks: highlight detection, opening/ending selection, and pruning of irrelevant content. To facilitate research in this area, we introduce DramaAD, a novel benchmark dataset comprising over 800 short drama episodes and 500 professionally edited advertisement clips. Experimental results demonstrate that our framework consistently outperforms existing baselines across both general and advertisement-oriented editing tasks, significantly narrowing the quality gap between automatic and human-edited videos.
☆ Self-Correction Bench: Revealing and Addressing the Self-Correction Blind Spot in LLMs
Although large language models (LLMs) have become transformative, they still make mistakes and can explore unproductive reasoning paths. Self-correction is an important capability for a trustworthy LLM, particularly an autoregressive LLM. While LLMs can identify error in user input, they exhibit a systematic 'Self-Correction Blind Spot' - failing to correct identical error in their own outputs. To systematically study this phenomenon, we introduce Self-Correction Bench, a systematic framework to measure this phenomenon through controlled error injection at three complexity levels. Testing 14 models, we find an average 64.5% blind spot rate. We find multiple evidences that this limitation relates to training data composition: human training demonstrations predominantly show error-free responses rather than error-correction sequences, unlike RL-trained models that learn error correction through outcome feedback. Remarkably, simply appending "Wait" reduces blind spots by 89.3%, suggesting that the capability exists but requires activation. Our work highlights a critical limitation in current LLMs and offers potential avenues for improving their reliability and trustworthiness.
comment: 31 pages, 18 figures
☆ DeSTA2.5-Audio: Toward General-Purpose Large Audio Language Model with Self-Generated Cross-Modal Alignment
We introduce DeSTA2.5-Audio, a general-purpose Large Audio Language Model (LALM) designed for robust auditory perception and instruction-following, without requiring task-specific audio instruction-tuning. Recent LALMs typically augment Large Language Models (LLMs) with auditory capabilities by training on large-scale, manually curated or LLM-synthesized audio-instruction datasets. However, these approaches have often suffered from the catastrophic forgetting of the LLM's original language abilities. To address this, we revisit the data construction pipeline and propose DeSTA, a self-generated cross-modal alignment strategy in which the backbone LLM generates its own training targets. This approach preserves the LLM's native language proficiency while establishing effective audio-text alignment, thereby enabling zero-shot generalization without task-specific tuning. Using DeSTA, we construct DeSTA-AQA5M, a large-scale, task-agnostic dataset containing 5 million training samples derived from 7,000 hours of audio spanning 50 diverse datasets, including speech, environmental sounds, and music. DeSTA2.5-Audio achieves state-of-the-art or competitive performance across a wide range of audio-language benchmarks, including Dynamic-SUPERB, MMAU, SAKURA, Speech-IFEval, and VoiceBench. Comprehensive comparative studies demonstrate that our self-generated strategy outperforms widely adopted data construction and training strategies in both auditory perception and instruction-following capabilities. Our findings underscore the importance of carefully designed data construction in LALM development and offer practical insights for building robust, general-purpose LALMs.
comment: Model and code available at: https://github.com/kehanlu/DeSTA2.5-Audio
☆ Measurement of the Granularity of Vowel Production Space By Just Producible Different (JPD) Limens
A body of work over the past several decades has demonstrated that the complex and coordinated articulatory movements of human vowel production are governed (at least in part)by control mechanisms whose targets are regions of auditory space. Within the target region control at the sub-phonemic level has also been demonstrated. But the degree of accuracy of that control is unknown. The current work investigates this question by asking how far apart must two vowel stimuli lie in auditory space in order to yield reliably different imitations? This distance is termed 'Just Producible Difference' (JPD). The current study uses a vowel mimicry paradigm to derive the first measurement of JPD among two sets of English speakers during front vowel production. JPD is estimated at between 14 and 51 mels in F1 X F2 space. This finding has implications for episodic theories of speech production. It also clarifies the possible structures of human vowel systems, by setting a theoretical lower bound for how close two vowel phonemes may be in a speaker's formant space, and hence a psychophysical explanation of observed trends in number and patterns of possible vowel phonemes.
☆ Early Signs of Steganographic Capabilities in Frontier LLMs
Monitoring Large Language Model (LLM) outputs is crucial for mitigating risks from misuse and misalignment. However, LLMs could evade monitoring through steganography: Encoding hidden information within seemingly benign generations. In this paper, we evaluate the steganography capabilities in frontier LLMs to better understand the risk they pose. We focus on two types of steganography: passing encoded messages and performing encoded reasoning. We find that current models are unable to encode short messages in their outputs without a monitor noticing under standard affordances. They can succeed, however, if given additional affordances such as using an unmonitored scratchpad and coordinating on what encoding scheme to use. We additionally find early signs that models can perform basic encoded reasoning in a simple state-tracking problem. This includes some ability to reason with their own and pre-defined schemes, including encoding schemes such as Hexadecimal. Despite this, they can rarely hide reasoning subtly within a cover task to fool a monitor. Overall, our results indicate that current LLMs exhibit nascent steganographic capabilities. While these capabilities are likely insufficient to bypass well-designed monitors at present, this could change in the future.
☆ Can LLMs Identify Critical Limitations within Scientific Research? A Systematic Evaluation on AI Research Papers
Peer review is fundamental to scientific research, but the growing volume of publications has intensified the challenges of this expertise-intensive process. While LLMs show promise in various scientific tasks, their potential to assist with peer review, particularly in identifying paper limitations, remains understudied. We first present a comprehensive taxonomy of limitation types in scientific research, with a focus on AI. Guided by this taxonomy, for studying limitations, we present LimitGen, the first comprehensive benchmark for evaluating LLMs' capability to support early-stage feedback and complement human peer review. Our benchmark consists of two subsets: LimitGen-Syn, a synthetic dataset carefully created through controlled perturbations of high-quality papers, and LimitGen-Human, a collection of real human-written limitations. To improve the ability of LLM systems to identify limitations, we augment them with literature retrieval, which is essential for grounding identifying limitations in prior scientific findings. Our approach enhances the capabilities of LLM systems to generate limitations in research papers, enabling them to provide more concrete and constructive feedback.
☆ Exploring Gender Bias Beyond Occupational Titles
In this work, we investigate the correlation between gender and contextual biases, focusing on elements such as action verbs, object nouns, and particularly on occupations. We introduce a novel dataset, GenderLexicon, and a framework that can estimate contextual bias and its related gender bias. Our model can interpret the bias with a score and thus improve the explainability of gender bias. Also, our findings confirm the existence of gender biases beyond occupational stereotypes. To validate our approach and demonstrate its effectiveness, we conduct evaluations on five diverse datasets, including a Japanese dataset.
comment: Work in progress
☆ ASDA: Audio Spectrogram Differential Attention Mechanism for Self-Supervised Representation Learning
In recent advancements in audio self-supervised representation learning, the standard Transformer architecture has emerged as the predominant approach, yet its attention mechanism often allocates a portion of attention weights to irrelevant information, potentially impairing the model's discriminative ability. To address this, we introduce a differential attention mechanism, which effectively mitigates ineffective attention allocation through the integration of dual-softmax operations and appropriately tuned differential coefficients. Experimental results demonstrate that our ASDA model achieves state-of-the-art (SOTA) performance across multiple benchmarks, including audio classification (49.0% mAP on AS-2M, 41.5% mAP on AS20K), keyword spotting (98.3% accuracy on SPC-2), and environmental sound classification (96.1% accuracy on ESC-50). These results highlight ASDA's effectiveness in audio tasks, paving the way for broader applications.
comment: Accepted at Interspeech2025
☆ OmniDraft: A Cross-vocabulary, Online Adaptive Drafter for On-device Speculative Decoding
Speculative decoding generally dictates having a small, efficient draft model that is either pretrained or distilled offline to a particular target model series, for instance, Llama or Qwen models. However, within online deployment settings, there are two major challenges: 1) usage of a target model that is incompatible with the draft model; 2) expectation of latency improvements over usage and time. In this work, we propose OmniDraft, a unified framework that enables a single draft model to operate with any target model and adapt dynamically to user data. We introduce an online n-gram cache with hybrid distillation fine-tuning to address the cross-vocabulary mismatch across draft and target models; and further improve decoding speed by leveraging adaptive drafting techniques. OmniDraft is particularly suitable for on-device LLM applications where model cost, efficiency and user customization are the major points of contention. This further highlights the need to tackle the above challenges and motivates the \textit{``one drafter for all''} paradigm. We showcase the proficiency of the OmniDraft framework by performing online learning on math reasoning, coding and text generation tasks. Notably, OmniDraft enables a single Llama-68M model to pair with various target models including Vicuna-7B, Qwen2-7B and Llama3-8B models for speculative decoding; and additionally provides up to 1.5-2x speedup.
☆ Decoupled Planning and Execution: A Hierarchical Reasoning Framework for Deep Search
Complex information needs in real-world search scenarios demand deep reasoning and knowledge synthesis across diverse sources, which traditional retrieval-augmented generation (RAG) pipelines struggle to address effectively. Current reasoning-based approaches suffer from a fundamental limitation: they use a single model to handle both high-level planning and detailed execution, leading to inefficient reasoning and limited scalability. In this paper, we introduce HiRA, a hierarchical framework that separates strategic planning from specialized execution. Our approach decomposes complex search tasks into focused subtasks, assigns each subtask to domain-specific agents equipped with external tools and reasoning capabilities, and coordinates the results through a structured integration mechanism. This separation prevents execution details from disrupting high-level reasoning while enabling the system to leverage specialized expertise for different types of information processing. Experiments on four complex, cross-modal deep search benchmarks demonstrate that HiRA significantly outperforms state-of-the-art RAG and agent-based systems. Our results show improvements in both answer quality and system efficiency, highlighting the effectiveness of decoupled planning and execution for multi-step information seeking tasks. Our code is available at https://github.com/ignorejjj/HiRA.
comment: 9 pages
☆ Strategic Intelligence in Large Language Models: Evidence from evolutionary Game Theory
Are Large Language Models (LLMs) a new form of strategic intelligence, able to reason about goals in competitive settings? We present compelling supporting evidence. The Iterated Prisoner's Dilemma (IPD) has long served as a model for studying decision-making. We conduct the first ever series of evolutionary IPD tournaments, pitting canonical strategies (e.g., Tit-for-Tat, Grim Trigger) against agents from the leading frontier AI companies OpenAI, Google, and Anthropic. By varying the termination probability in each tournament (the "shadow of the future"), we introduce complexity and chance, confounding memorisation. Our results show that LLMs are highly competitive, consistently surviving and sometimes even proliferating in these complex ecosystems. Furthermore, they exhibit distinctive and persistent "strategic fingerprints": Google's Gemini models proved strategically ruthless, exploiting cooperative opponents and retaliating against defectors, while OpenAI's models remained highly cooperative, a trait that proved catastrophic in hostile environments. Anthropic's Claude emerged as the most forgiving reciprocator, showing remarkable willingness to restore cooperation even after being exploited or successfully defecting. Analysis of nearly 32,000 prose rationales provided by the models reveals that they actively reason about both the time horizon and their opponent's likely strategy, and we demonstrate that this reasoning is instrumental to their decisions. This work connects classic game theory with machine psychology, offering a rich and granular view of algorithmic decision-making under uncertainty.
comment: 29 pages, 27 tables, 4 figures
☆ MPF: Aligning and Debiasing Language Models post Deployment via Multi Perspective Fusion ICML 2025
Multiperspective Fusion (MPF) is a novel posttraining alignment framework for large language models (LLMs) developed in response to the growing need for easy bias mitigation. Built on top of the SAGED pipeline, an automated system for constructing bias benchmarks and extracting interpretable baseline distributions, MPF leverages multiperspective generations to expose and align biases in LLM outputs with nuanced, humanlike baselines. By decomposing baseline, such as sentiment distributions from HR professionals, into interpretable perspective components, MPF guides generation through sampling and balancing of responses, weighted by the probabilities obtained in the decomposition. Empirically, we demonstrate its ability to align LLM sentiment distributions with both counterfactual baselines (absolute equality) and the HR baseline (biased for Top Univeristy), resulting in small KL divergence, reduction of calibration error and generalization to unseen questions. This shows that MPF offers a scalable and interpretable method for alignment and bias mitigation, compatible with deployed LLMs and requiring no extensive prompt engineering or finetuning.
comment: Accepted at ICML 2025 AIW Workshop
☆ Revisiting Active Learning under (Human) Label Variation
Access to high-quality labeled data remains a limiting factor in applied supervised learning. While label variation (LV), i.e., differing labels for the same instance, is common, especially in natural language processing, annotation frameworks often still rest on the assumption of a single ground truth. This overlooks human label variation (HLV), the occurrence of plausible differences in annotations, as an informative signal. Similarly, active learning (AL), a popular approach to optimizing the use of limited annotation budgets in training ML models, often relies on at least one of several simplifying assumptions, which rarely hold in practice when acknowledging HLV. In this paper, we examine foundational assumptions about truth and label nature, highlighting the need to decompose observed LV into signal (e.g., HLV) and noise (e.g., annotation error). We survey how the AL and (H)LV communities have addressed -- or neglected -- these distinctions and propose a conceptual framework for incorporating HLV throughout the AL loop, including instance selection, annotator choice, and label representation. We further discuss the integration of large language models (LLM) as annotators. Our work aims to lay a conceptual foundation for HLV-aware active learning, better reflecting the complexities of real-world annotation.
☆ WebSailor: Navigating Super-human Reasoning for Web Agent
Transcending human cognitive limitations represents a critical frontier in LLM training. Proprietary agentic systems like DeepResearch have demonstrated superhuman capabilities on extremely complex information-seeking benchmarks such as BrowseComp, a feat previously unattainable. We posit that their success hinges on a sophisticated reasoning pattern absent in open-source models: the ability to systematically reduce extreme uncertainty when navigating vast information landscapes. Based on this insight, we introduce WebSailor, a complete post-training methodology designed to instill this crucial capability. Our approach involves generating novel, high-uncertainty tasks through structured sampling and information obfuscation, RFT cold start, and an efficient agentic RL training algorithm, Duplicating Sampling Policy Optimization (DUPO). With this integrated pipeline, WebSailor significantly outperforms all opensource agents in complex information-seeking tasks, matching proprietary agents' performance and closing the capability gap.
☆ IndianBailJudgments-1200: A Multi-Attribute Dataset for Legal NLP on Indian Bail Orders
Legal NLP remains underdeveloped in regions like India due to the scarcity of structured datasets. We introduce IndianBailJudgments-1200, a new benchmark dataset comprising 1200 Indian court judgments on bail decisions, annotated across 20+ attributes including bail outcome, IPC sections, crime type, and legal reasoning. Annotations were generated using a prompt-engineered GPT-4o pipeline and verified for consistency. This resource supports a wide range of legal NLP tasks such as outcome prediction, summarization, and fairness analysis, and is the first publicly available dataset focused specifically on Indian bail jurisprudence.
comment: 9 pages, 9 figures, 2 tables. Dataset available at Hugging Face and GitHub. Submitted to arXiv for open access
☆ A Cookbook for Community-driven Data Collection of Impaired Speech in LowResource Languages
This study presents an approach for collecting speech samples to build Automatic Speech Recognition (ASR) models for impaired speech, particularly, low-resource languages. It aims to democratize ASR technology and data collection by developing a "cookbook" of best practices and training for community-driven data collection and ASR model building. As a proof-of-concept, this study curated the first open-source dataset of impaired speech in Akan: a widely spoken indigenous language in Ghana. The study involved participants from diverse backgrounds with speech impairments. The resulting dataset, along with the cookbook and open-source tools, are publicly available to enable researchers and practitioners to create inclusive ASR technologies tailored to the unique needs of speech impaired individuals. In addition, this study presents the initial results of fine-tuning open-source ASR models to better recognize impaired speech in Akan.
comment: This version has been reviewed and accepted for presentation at the InterSpeech 2025 conference to be held in Rotterdam from 17 to 21 August. 5 pages and 3 tables
☆ Benchmarking Akan ASR Models Across Domain-Specific Datasets: A Comparative Evaluation of Performance, Scalability, and Adaptability
Most existing automatic speech recognition (ASR) research evaluate models using in-domain datasets. However, they seldom evaluate how they generalize across diverse speech contexts. This study addresses this gap by benchmarking seven Akan ASR models built on transformer architectures, such as Whisper and Wav2Vec2, using four Akan speech corpora to determine their performance. These datasets encompass various domains, including culturally relevant image descriptions, informal conversations, biblical scripture readings, and spontaneous financial dialogues. A comparison of the word error rate and character error rate highlighted domain dependency, with models performing optimally only within their training domains while showing marked accuracy degradation in mismatched scenarios. This study also identified distinct error behaviors between the Whisper and Wav2Vec2 architectures. Whereas fine-tuned Whisper Akan models led to more fluent but potentially misleading transcription errors, Wav2Vec2 produced more obvious yet less interpretable outputs when encountering unfamiliar inputs. This trade-off between readability and transparency in ASR errors should be considered when selecting architectures for low-resource language (LRL) applications. These findings highlight the need for targeted domain adaptation techniques, adaptive routing strategies, and multilingual training frameworks for Akan and other LRLs.
comment: This version has been reviewed and accepted for presentation at the Future Technologies Conference (FTC) 2025, to be held on 6 & 7 November 2025 in Munich, Germany. 17 pages, 4 figures, 1 table
☆ JoyTTS: LLM-based Spoken Chatbot With Voice Cloning
JoyTTS is an end-to-end spoken chatbot that combines large language models (LLM) with text-to-speech (TTS) technology, featuring voice cloning capabilities. This project is built upon the open-source MiniCPM-o and CosyVoice2 models and trained on 2000 hours of conversational data. We have also provided the complete training code to facilitate further development and optimization by the community. On the testing machine seed-tts-zh, it achieves a SS (speaker similarity) score of 0.73 and a WER (Word Error Rate) of 5.09. The code and models, along with training and inference scripts, are available at https://github.com/jdh-algo/JoyTTS.git.
☆ Efficient Code LLM Training via Distribution-Consistent and Diversity-Aware Data Selection
Recent advancements in large language models (LLMs) have significantly improved code generation and program comprehension, accelerating the evolution of software engineering. Current methods primarily enhance model performance by leveraging vast amounts of data, focusing on data quantity while often overlooking data quality, thereby reducing training efficiency. To address this, we introduce an approach that utilizes a parametric model for code data selection, aimed at improving both training efficiency and model performance. Our method optimizes the parametric model to ensure distribution consistency and diversity within the selected subset, guaranteeing high-quality data. Experimental results demonstrate that using only 10K samples, our method achieves gains of 2.4% (HumanEval) and 2.3% (MBPP) over 92K full-sampled baseline, outperforming other sampling approaches in both performance and efficiency. This underscores that our method effectively boosts model performance while significantly reducing computational costs.
☆ QFFN-BERT: An Empirical Study of Depth, Performance, and Data Efficiency in Hybrid Quantum-Classical Transformers
Parameterized quantum circuits (PQCs) have recently emerged as promising components for enhancing the expressibility of neural architectures. In this work, we introduce QFFN-BERT, a hybrid quantum-classical transformer where the feedforward network (FFN) modules of a compact BERT variant are replaced by PQC-based layers. This design is motivated by the dominant parameter contribution of FFNs, which account for approximately two-thirds of the parameters within standard Transformer encoder blocks. While prior studies have primarily integrated PQCs into self-attention modules, our work focuses on the FFN and systematically investigates the trade-offs between PQC depth, expressibility, and trainability. Our final PQC architecture incorporates a residual connection, both $R_Y$ and $R_Z$ rotations, and an alternating entanglement strategy to ensure stable training and high expressibility. Our experiments, conducted on a classical simulator, on the SST-2 and DBpedia benchmarks demonstrate two key findings. First, a carefully configured QFFN-BERT achieves up to 102.0% of the baseline accuracy, surpassing its classical counterpart in a full-data setting while reducing FFN-specific parameters by over 99%. Second, our model exhibits a consistent and competitive edge in few-shot learning scenarios, confirming its potential for superior data efficiency. These results, supported by an ablation study on a non-optimized PQC that failed to learn, confirm that PQCs can serve as powerful and parameter-efficient alternatives to classical FFNs when co-designed with foundational deep learning principles.
☆ Coling-UniA at SciVQA 2025: Few-Shot Example Retrieval and Confidence-Informed Ensembling for Multimodal Large Language Models ACL 2025
This paper describes our system for the SciVQA 2025 Shared Task on Scientific Visual Question Answering. Our system employs an ensemble of two Multimodal Large Language Models and various few-shot example retrieval strategies. The model and few-shot setting are selected based on the figure and question type. We also select answers based on the models' confidence levels. On the blind test data, our system ranks third out of seven with an average F1 score of 85.12 across ROUGE-1, ROUGE-L, and BERTS. Our code is publicly available.
comment: Accepted at 5th Workshop on Scholarly Document Processing @ ACL 2025
☆ DoMIX: An Efficient Framework for Exploiting Domain Knowledge in Fine-Tuning ACL 2025
Domain-Adaptive Pre-training (DAP) has recently gained attention for its effectiveness in fine-tuning pre-trained models. Building on this, continual DAP has been explored to develop pre-trained models capable of incrementally incorporating different domain datasets. However, existing continual DAP methods face several limitations: (1) high computational cost and GPU memory usage during training; (2) sensitivity to incremental data order; and (3) providing a single, generalized model for all end tasks, which contradicts the essence of DAP. In this paper, we propose DoMIX, a novel approach that addresses these challenges by leveraging LoRA modules, a representative parameter-efficient fine-tuning (PEFT) method. Our approach enables efficient and parallel domain-adaptive pre-training that is robust to domain order and effectively utilizes accumulated knowledge to provide tailored pre-trained models for specific tasks. We also demonstrate that our method can be extended beyond the DAP setting to standard LLM fine-tuning scenarios. Code is available at https://github.com/dohoonkim-ai/DoMIX.
comment: 22 pages, 5 figures, ACL 2025 Main
☆ Seeing Through Green: Text-Based Classification and the Firm's Returns from Green Patents
This paper introduces Natural Language Processing for identifying ``true'' green patents from official supporting documents. We start our training on about 12.4 million patents that had been classified as green from previous literature. Thus, we train a simple neural network to enlarge a baseline dictionary through vector representations of expressions related to environmental technologies. After testing, we find that ``true'' green patents represent about 20\% of the total of patents classified as green from previous literature. We show heterogeneity by technological classes, and then check that `true' green patents are about 1\% less cited by following inventions. In the second part of the paper, we test the relationship between patenting and a dashboard of firm-level financial accounts in the European Union. After controlling for reverse causality, we show that holding at least one ``true'' green patent raises sales, market shares, and productivity. If we restrict the analysis to high-novelty ``true'' green patents, we find that they also yield higher profits. Our findings underscore the importance of using text analyses to gauge finer-grained patent classifications that are useful for policymaking in different domains.
☆ MemAgent: Reshaping Long-Context LLM with Multi-Conv RL-based Memory Agent
Despite improvements by length extrapolation, efficient attention and memory modules, handling infinitely long documents with linear complexity without performance degradation during extrapolation remains the ultimate challenge in long-text processing. We directly optimize for long-text tasks in an end-to-end fashion and introduce a novel agent workflow, MemAgent, which reads text in segments and updates the memory using an overwrite strategy. We extend the DAPO algorithm to facilitate training via independent-context multi-conversation generation. MemAgent has demonstrated superb long-context capabilities, being able to extrapolate from an 8K context trained on 32K text to a 3.5M QA task with performance loss < 5% and achieves 95%+ in 512K RULER test.
comment: Project Page: https://memagent-sialab.github.io/
☆ GDC Cohort Copilot: An AI Copilot for Curating Cohorts from the Genomic Data Commons
Motivation: The Genomic Data Commons (GDC) provides access to high quality, harmonized cancer genomics data through a unified curation and analysis platform centered around patient cohorts. While GDC users can interactively create complex cohorts through the graphical Cohort Builder, users (especially new ones) may struggle to find specific cohort descriptors across hundreds of possible fields and properties. However, users may be better able to describe their desired cohort in free-text natural language. Results: We introduce GDC Cohort Copilot, an open-source copilot tool for curating cohorts from the GDC. GDC Cohort Copilot automatically generates the GDC cohort filter corresponding to a user-input natural language description of their desired cohort, before exporting the cohort back to the GDC for further analysis. An interactive user interface allows users to further refine the generated cohort. We develop and evaluate multiple large language models (LLMs) for GDC Cohort Copilot and demonstrate that our locally-served, open-source GDC Cohort LLM achieves better results than GPT-4o prompting in generating GDC cohorts. Availability and implementation: The standalone docker image for GDC Cohort Copilot is available at https://quay.io/repository/cdis/gdc-cohort-copilot. Source code is available at https://github.com/uc-cdis/gdc-cohort-copilot. GDC Cohort LLM weights are available at https://huggingface.co/uc-ctds.
comment: 11 pages, 1 figure, 7 tables
☆ SciGA: A Comprehensive Dataset for Designing Graphical Abstracts in Academic Papers
Graphical Abstracts (GAs) play a crucial role in visually conveying the key findings of scientific papers. While recent research has increasingly incorporated visual materials such as Figure 1 as de facto GAs, their potential to enhance scientific communication remains largely unexplored. Moreover, designing effective GAs requires advanced visualization skills, creating a barrier to their widespread adoption. To tackle these challenges, we introduce SciGA-145k, a large-scale dataset comprising approximately 145,000 scientific papers and 1.14 million figures, explicitly designed for supporting GA selection and recommendation as well as facilitating research in automated GA generation. As a preliminary step toward GA design support, we define two tasks: 1) Intra-GA recommendation, which identifies figures within a given paper that are well-suited to serve as GAs, and 2) Inter-GA recommendation, which retrieves GAs from other papers to inspire the creation of new GAs. We provide reasonable baseline models for these tasks. Furthermore, we propose Confidence Adjusted top-1 ground truth Ratio (CAR), a novel recommendation metric that offers a fine-grained analysis of model behavior. CAR addresses limitations in traditional ranking-based metrics by considering cases where multiple figures within a paper, beyond the explicitly labeled GA, may also serve as GAs. By unifying these tasks and metrics, our SciGA-145k establishes a foundation for advancing visual scientific communication while contributing to the development of AI for Science.
comment: 21 pages, 15 figures, 4 tables. Project Page: https://iyatomilab.github.io/SciGA/
♻ ☆ Improved Unbiased Watermark for Large Language Models ACL 2025
As artificial intelligence surpasses human capabilities in text generation, the necessity to authenticate the origins of AI-generated content has become paramount. Unbiased watermarks offer a powerful solution by embedding statistical signals into language model-generated text without distorting the quality. In this paper, we introduce MCmark, a family of unbiased, Multi-Channel-based watermarks. MCmark works by partitioning the model's vocabulary into segments and promoting token probabilities within a selected segment based on a watermark key. We demonstrate that MCmark not only preserves the original distribution of the language model but also offers significant improvements in detectability and robustness over existing unbiased watermarks. Our experiments with widely-used language models demonstrate an improvement in detectability of over 10% using MCmark, compared to existing state-of-the-art unbiased watermarks. This advancement underscores MCmark's potential in enhancing the practical application of watermarking in AI-generated texts.
comment: ACL 2025 Main Conference
♻ ☆ From Web Search towards Agentic Deep Research: Incentivizing Search with Reasoning Agents
Information retrieval is a cornerstone of modern knowledge acquisition, enabling billions of queries each day across diverse domains. However, traditional keyword-based search engines are increasingly inadequate for handling complex, multi-step information needs. Our position is that Large Language Models (LLMs), endowed with reasoning and agentic capabilities, are ushering in a new paradigm termed Agentic Deep Research. These systems transcend conventional information search techniques by tightly integrating autonomous reasoning, iterative retrieval, and information synthesis into a dynamic feedback loop. We trace the evolution from static web search to interactive, agent-based systems that plan, explore, and learn. We also introduce a test-time scaling law to formalize the impact of computational depth on reasoning and search. Supported by benchmark results and the rise of open-source implementations, we demonstrate that Agentic Deep Research not only significantly outperforms existing approaches, but is also poised to become the dominant paradigm for future information seeking. All the related resources, including industry products, research papers, benchmark datasets, and open-source implementations, are collected for the community in https://github.com/DavidZWZ/Awesome-Deep-Research.
♻ ☆ GPAS: Accelerating Convergence of LLM Pretraining via Gradient-Preserving Activation Scaling
Modern Large Language Models, such as the LLaMA, Qwen and DeepSeek series, predominantly adopt the Pre-LayerNorm (Pre-LN) Transformer architecture. While being stable during pretraining and scalable to large model sizes, Pre-LN suffers from an exponential growth in activation variance across layers, causing the shortcut to dominate over sub-layer outputs in the residual connection and limiting the learning capacity of deeper layers. To mitigate this issue, we propose Gradient-Preserving Activation Scaling (GPAS), a simple technique that can be used in combination with existing approaches. GPAS works by scaling down the intermediate activations while keeping their gradients unchanged. This leaves information in the activations intact, and avoids the gradient vanishing problem associated with gradient downscaling. Extensive experiments across various model sizes from 71M to 1B show that GPAS achieves consistent performance gains. Beyond enhancing Pre-LN Transformers, GPAS also shows promise in improving alternative architectures such as Sandwich-LN and DeepNorm, demonstrating its versatility and potential for improving training dynamics in a wide range of settings. Our code is available at https://github.com/dandingsky/GPAS.
♻ ☆ Enhancing Clinical Multiple-Choice Questions Benchmarks with Knowledge Graph Guided Distractor Generation
Clinical tasks such as diagnosis and treatment require strong decision-making abilities, highlighting the importance of rigorous evaluation benchmarks to assess the reliability of large language models (LLMs). In this work, we introduce a knowledge-guided data augmentation framework that enhances the difficulty of clinical multiple-choice question (MCQ) datasets by generating distractors (i.e., incorrect choices that are similar to the correct one and may confuse existing LLMs). Using our KG-based pipeline, the generated choices are both clinically plausible and deliberately misleading. Our approach involves multi-step, semantically informed walks on a medical knowledge graph to identify distractor paths-associations that are medically relevant but factually incorrect-which then guide the LLM in crafting more deceptive distractors. We apply the designed knowledge graph guided distractor generation (KGGDG) pipline, to six widely used medical QA benchmarks and show that it consistently reduces the accuracy of state-of-the-art LLMs. These findings establish KGGDG as a powerful tool for enabling more robust and diagnostic evaluations of medical LLMs.
♻ ☆ Batch-Max: Higher LLM Throughput using Larger Batch Sizes and KV Cache Compression
Several works have developed eviction policies to remove key-value (KV) pairs from the KV cache for more efficient inference. The focus has been on compressing the KV cache after the input prompt has been processed for faster token generation. In settings with limited GPU memory, and when the input context is longer than the generation length, we show that by also compressing the KV cache during the input processing phase, larger batch sizes can be used resulting in significantly higher throughput while still maintaining the original model's accuracy.
♻ ☆ Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge
Agentic search such as Deep Research systems-where agents autonomously browse the web, synthesize information, and return comprehensive citation-backed answers-represents a major shift in how users interact with web-scale information. While promising greater efficiency and cognitive offloading, the growing complexity and open-endedness of agentic search have outpaced existing evaluation benchmarks and methodologies, which largely assume short search horizons and static answers. In this paper, we introduce Mind2Web 2, a benchmark of 130 realistic, high-quality, and long-horizon tasks that require real-time web browsing and extensive information synthesis, constructed with over 1000 hours of human labor. To address the challenge of evaluating time-varying and complex answers, we propose a novel Agent-as-a-Judge framework. Our method constructs task-specific judge agents based on a tree-structured rubric design to automatically assess both answer correctness and source attribution. We conduct a comprehensive evaluation of ten frontier agentic search systems and human performance, along with a detailed error analysis to draw insights for future development. The best-performing system, OpenAI Deep Research, can already achieve 50-70% of human performance while spending half the time, highlighting its great potential. Altogether, Mind2Web 2 provides a rigorous foundation for developing and benchmarking the next generation of agentic search systems.
comment: Project Homepage: https://osu-nlp-group.github.io/Mind2Web-2/
♻ ☆ On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability
We study language generation in the limit - introduced by Kleinberg and Mullainathan [KM24] - building on classical works of Gold [Gol67] and Angluin [Ang79]. [KM24]'s main result is an algorithm for generating from any countable language collection in the limit. While their algorithm eventually generates unseen strings from the target language $K$, it sacrifices coverage or breadth, i.e., its ability to generate a rich set of strings. Recent work introduces different notions of breadth and explores when generation with breadth is possible, leaving a full characterization of these notions open. Our first set of results settles this by characterizing generation for existing notions of breadth and their natural extensions. Interestingly, our lower bounds are very flexible and hold for many performance metrics beyond breadth - for instance, showing that, in general, it is impossible to train generators which achieve a higher perplexity or lower hallucination rate for $K$ compared to other languages. Next, we study language generation with breadth and stable generators - algorithms that eventually stop changing after seeing an arbitrary but finite number of strings - and prove unconditional lower bounds for such generators, strengthening the results of [KMV25] and demonstrating that generation with many existing notions of breadth becomes equally hard, when stability is required. This gives a separation for generation with approximate breadth, between stable and unstable generators, highlighting the rich interplay between breadth, stability, and consistency in language generation.
comment: v2 improves exposition and simplifies proofs
♻ ☆ Next-Token Prediction Task Assumes Optimal Data Ordering for LLM Training in Proof Generation
In the field of large language model (LLM)-based proof generation, despite extensive training on large datasets such as ArXiv, LLMs still exhibit only modest performance on proving tasks of moderate difficulty. We believe that this is partly due to the widespread presence of suboptimal ordering within the data for each proof used in training. For example, published proofs often follow a purely logical order, where each step logically proceeds from the previous steps based on the deductive rules. This order is designed to facilitate the verification of the proof's soundness, rather than to help people and models learn the discovery process of the proof. In proof generation, we argue that the optimal order for one training data sample occurs when the relevant intermediate supervision for a particular proof step in the proof is always positioned to the left of that proof step. We call such order the intuitively sequential order. We validate our claims using two tasks: intuitionistic propositional logic theorem-proving and digit multiplication. Our experiments verify the order effect and provide support for our explanations. We demonstrate that training is most effective when the proof is in the intuitively sequential order. Moreover, the order effect and the performance gap between models trained on different data orders can be substantial -- with an 11 percent improvement in proof success rate observed in the propositional logic theorem-proving task, between models trained on the optimal order compared to the worst order. Lastly, we define a common type of order issue in advanced math proofs and find that 17.3 percent of theorems with nontrivial proofs in the first two chapters of a widely used graduate-level mathematics textbook suffer from this issue. A detailed list of those proofs is provided in the appendix.
♻ ☆ Code2Logic: Game-Code-Driven Data Synthesis for Enhancing VLMs General Reasoning NeurIPS 2025
Visual-language Chain-of-Thought (CoT) data resources are relatively scarce compared to text-only counterparts, limiting the improvement of reasoning capabilities in Vision Language Models (VLMs). However, high-quality vision-language reasoning data is expensive and labor-intensive to annotate. To address this issue, we leverage a promising resource: game code, which naturally contains logical structures and state transition processes. Therefore, we propose Code2Logic, a novel game-code-driven approach for multimodal reasoning data synthesis. Our approach leverages Large Language Models (LLMs) to adapt game code, enabling automatic acquisition of reasoning processes and results through code execution. Using the Code2Logic approach, we developed the GameQA dataset to train and evaluate VLMs. GameQA is cost-effective and scalable, offers controllable difficulty gradation and is diverse with 30 games and 158 tasks. Surprisingly, despite training solely on game data, VLMs demonstrated out of domain generalization, specifically Qwen2.5-VL-7B improving performance by 2.33% across 7 diverse vision-language benchmarks. Our code, dataset and models are available at https://github.com/tongjingqi/Code2Logic.
comment: 63 pages, 23 figures, submitted to NeurIPS 2025
♻ ☆ Explainable Compliance Detection with Multi-Hop Natural Language Inference on Assurance Case Structure
Ensuring complex systems meet regulations typically requires checking the validity of assurance cases through a claim-argument-evidence framework. Some challenges in this process include the complicated nature of legal and technical texts, the need for model explanations, and limited access to assurance case data. We propose a compliance detection approach based on Natural Language Inference (NLI): EXplainable CompLiance detection with Argumentative Inference of Multi-hop reasoning (EXCLAIM). We formulate the claim-argument-evidence structure of an assurance case as a multi-hop inference for explainable and traceable compliance detection. We address the limited number of assurance cases by generating them using large language models (LLMs). We introduce metrics that measure the coverage and structural consistency. We demonstrate the effectiveness of the generated assurance case from GDPR requirements in a multi-hop inference task as a case study. Our results highlight the potential of NLI-based approaches in automating the regulatory compliance process.
♻ ☆ Direct Preference Optimization Using Sparse Feature-Level Constraints
The alignment of large language models (LLMs) with human preferences remains a key challenge. While post-training techniques like Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) have achieved notable success, they often introduce computational inefficiencies and training instability. In this paper, we propose Feature-level constrained Preference Optimization (FPO), a novel method designed to simplify the alignment process while ensuring stability. FPO leverages pre-trained Sparse Autoencoders (SAEs) and introduces feature-level constraints, allowing for efficient, sparsity-enforced alignment. Our approach enjoys efficiency by using sparse features activated in a well-trained sparse autoencoder and the quality of sequential KL divergence by using the feature-level offline reference. Experimental results on benchmark datasets demonstrate that FPO achieves a 5.08% absolute improvement in win rate with much lower computational cost compared to state-of-the-art baselines, making it a promising solution for efficient and controllable LLM alignments.
♻ ☆ Symbolic or Numerical? Understanding Physics Problem Solving in Reasoning LLMs
Navigating the complexities of physics reasoning has long been a difficult task for Large Language Models (LLMs), requiring a synthesis of profound conceptual understanding and adept problem-solving techniques. In this study, we investigate the application of advanced instruction-tuned reasoning models, such as Deepseek-R1, to address a diverse spectrum of physics problems curated from the challenging SciBench benchmark. Our comprehensive experimental evaluation reveals the remarkable capabilities of reasoning models. Not only do they achieve state-of-the-art accuracy in answering intricate physics questions, but they also generate distinctive reasoning patterns that emphasize on symbolic derivation. Furthermore, our findings indicate that even for these highly sophisticated reasoning models, the strategic incorporation of few-shot prompting can still yield measurable improvements in overall accuracy, highlighting the potential for continued performance gains.
♻ ☆ MedAide: Information Fusion and Anatomy of Medical Intents via LLM-based Agent Collaboration
In healthcare intelligence, the ability to fuse heterogeneous, multi-intent information from diverse clinical sources is fundamental to building reliable decision-making systems. Large Language Model (LLM)-driven information interaction systems currently showing potential promise in the healthcare domain. Nevertheless, they often suffer from information redundancy and coupling when dealing with complex medical intents, leading to severe hallucinations and performance bottlenecks. To this end, we propose MedAide, an LLM-based medical multi-agent collaboration framework designed to enable intent-aware information fusion and coordinated reasoning across specialized healthcare domains. Specifically, we introduce a regularization-guided module that combines syntactic constraints with retrieval augmented generation to decompose complex queries into structured representations, facilitating fine-grained clinical information fusion and intent resolution. Additionally, a dynamic intent prototype matching module is proposed to utilize dynamic prototype representation with a semantic similarity matching mechanism to achieve adaptive recognition and updating of the agent's intent in multi-round healthcare dialogues. Ultimately, we design a rotation agent collaboration mechanism that introduces dynamic role rotation and decision-level information fusion across specialized medical agents. Extensive experiments are conducted on four medical benchmarks with composite intents. Experimental results from automated metrics and expert doctor evaluations show that MedAide outperforms current LLMs and improves their medical proficiency and strategic reasoning.
comment: LLM-based Multi-Agent Collaboration for Medical Applications
♻ ☆ AI Flow: Perspectives, Scenarios, and Approaches
Pioneered by the foundational information theory by Claude Shannon and the visionary framework of machine intelligence by Alan Turing, the convergent evolution of information and communication technologies (IT/CT) has created an unbroken wave of connectivity and computation. This synergy has sparked a technological revolution, now reaching its peak with large artificial intelligence (AI) models that are reshaping industries and redefining human-machine collaboration. However, the realization of ubiquitous intelligence faces considerable challenges due to substantial resource consumption in large models and high communication bandwidth demands. To address these challenges, AI Flow has been introduced as a multidisciplinary framework that integrates cutting-edge IT and CT advancements, with a particular emphasis on the following three key points. First, device-edge-cloud framework serves as the foundation, which integrates end devices, edge servers, and cloud clusters to optimize scalability and efficiency for low-latency model inference. Second, we introduce the concept of familial models, which refers to a series of different-sized models with aligned hidden features, enabling effective collaboration and the flexibility to adapt to varying resource constraints and dynamic scenarios. Third, connectivity- and interaction-based intelligence emergence is a novel paradigm of AI Flow. By leveraging communication networks to enhance connectivity, the collaboration among AI models across heterogeneous nodes achieves emergent intelligence that surpasses the capability of any single model. The innovations of AI Flow provide enhanced intelligence, timely responsiveness, and ubiquitous accessibility to AI services, paving the way for the tighter fusion of AI techniques and communication systems.
comment: Authors are with Institute of Artificial Intelligence (TeleAI), China Telecom, China. Author names are listed alphabetically by surname. This work was conducted at TeleAI, facilitated by Dr. Jiawei Shao (e-mail: shaojw2@chinatelecom.cn) under the leadership of Prof. Xuelong Li. The corresponding author is Prof. Xuelong Li (e-mail: xuelong li@ieee.org), the CTO and Chief Scientist of China Telecom
♻ ☆ Traveling Across Languages: Benchmarking Cross-Lingual Consistency in Multimodal LLMs
The rapid evolution of multimodal large language models (MLLMs) has significantly enhanced their real-world applications. However, achieving consistent performance across languages, especially when integrating cultural knowledge, remains a significant challenge. To better assess this issue, we introduce two new benchmarks: KnowRecall and VisRecall, which evaluate cross-lingual consistency in MLLMs. KnowRecall is a visual question answering benchmark designed to measure factual knowledge consistency in 15 languages, focusing on cultural and historical questions about global landmarks. VisRecall assesses visual memory consistency by asking models to describe landmark appearances in 9 languages without access to images. Experimental results reveal that state-of-the-art MLLMs, including proprietary ones, still struggle to achieve cross-lingual consistency. This underscores the need for more robust approaches that produce truly multilingual and culturally aware models.
comment: https://github.com/nlp-waseda/traveling-across-languages
♻ ☆ Self-Guided Process Reward Optimization with Redefined Step-wise Advantage for Process Reinforcement Learning
Process Reinforcement Learning~(PRL) has demonstrated considerable potential in enhancing the reasoning capabilities of Large Language Models~(LLMs). However, introducing additional process reward models incurs substantial computational overhead, and there is no unified theoretical framework for process-level advantage estimation. To bridge this gap, we propose \textbf{S}elf-Guided \textbf{P}rocess \textbf{R}eward \textbf{O}ptimization~(\textbf{SPRO}), a novel framework that enables process-aware RL through two key innovations: (1) we first theoretically demonstrate that process rewards can be derived intrinsically from the policy model itself, and (2) we introduce well-defined cumulative process rewards and \textbf{M}asked \textbf{S}tep \textbf{A}dvantage (\textbf{MSA}), which facilitates rigorous step-wise action advantage estimation within shared-prompt sampling groups. Our experimental results demonstrate that SPRO outperforms vaniila GRPO with 3.4x higher training efficiency and a 17.5\% test accuracy improvement. Furthermore, SPRO maintains a stable and elevated policy entropy throughout training while reducing the average response length by approximately $1/3$, evidencing sufficient exploration and prevention of reward hacking. Notably, SPRO incurs no additional computational overhead compared to outcome-supervised RL methods such as GRPO, which benefit industrial implementation.
♻ ☆ Robustness of Misinformation Classification Systems to Adversarial Examples Through BeamAttack
We extend BeamAttack, an adversarial attack algorithm designed to evaluate the robustness of text classification systems through word-level modifications guided by beam search. Our extensions include support for word deletions and the option to skip substitutions, enabling the discovery of minimal modifications that alter model predictions. We also integrate LIME to better prioritize word replacements. Evaluated across multiple datasets and victim models (BiLSTM, BERT, and adversarially trained RoBERTa) within the BODEGA framework, our approach achieves over a 99\% attack success rate while preserving the semantic and lexical similarity of the original texts. Through both quantitative and qualitative analysis, we highlight BeamAttack's effectiveness and its limitations. Our implementation is available at https://github.com/LucK1Y/BeamAttack
comment: 12 pages main text, 27 pages total including references and appendices. 13 figures, 10 tables. Accepted for publication in the LNCS proceedings of CLEF 2025 (Best-of-Labs track)
♻ ☆ Task Prompt Vectors: Effective Initialization through Multi-Task Soft-Prompt Transfer
Prompt tuning is an efficient solution for training large language models (LLMs). However, current soft-prompt-based methods often sacrifice multi-task modularity, requiring the training process to be fully or partially repeated for each newly added task. While recent work on task vectors applied arithmetic operations on full model weights to achieve the desired multi-task performance, a similar approach for soft-prompts is still missing. To this end, we introduce Task Prompt Vectors, created by element-wise difference between weights of tuned soft-prompts and their random initialization. Experimental results on 12 NLU datasets show that task prompt vectors can be used in low-resource settings to effectively initialize prompt tuning on similar tasks. In addition, we show that task prompt vectors are independent of the random initialization of prompt tuning on 2 different language model architectures. This allows prompt arithmetics with the pre-trained vectors from different tasks. In this way, we provide a competitive alternative to state-of-the-art baselines by arithmetic addition of task prompt vectors from multiple tasks.
♻ ☆ Crafting Hanzi as Narrative Bridges: An AI Co-Creation Workshop for Elderly Migrants
This paper explores how older adults, particularly aging migrants in urban China, can engage AI-assisted co-creation to express personal narratives that are often fragmented, underrepresented, or difficult to verbalize. Through a pilot workshop combining oral storytelling and the symbolic reconstruction of Hanzi, participants shared memories of migration and recreated new character forms using Xiaozhuan glyphs, suggested by the Large Language Model (LLM), together with physical materials. Supported by human facilitation and a soft AI presence, participants transformed lived experience into visual and tactile expressions without requiring digital literacy. This approach offers new perspectives on human-AI collaboration and aging by repositioning AI not as a content producer but as a supportive mechanism, and by supporting narrative agency within sociotechnical systems.
comment: A version of this manuscript has been submitted to the [IASDR 2025 Conference](https://iasdr2025.org/) and is currently under review
♻ ☆ Delving into LLM-assisted writing in biomedical publications through excess vocabulary
Large language models (LLMs) like ChatGPT can generate and revise text with human-level performance. These models come with clear limitations: they can produce inaccurate information, reinforce existing biases, and be easily misused. Yet, many scientists use them for their scholarly writing. But how wide-spread is such LLM usage in the academic literature? To answer this question for the field of biomedical research, we present an unbiased, large-scale approach: we study vocabulary changes in over 15 million biomedical abstracts from 2010--2024 indexed by PubMed, and show how the appearance of LLMs led to an abrupt increase in the frequency of certain style words. This excess word analysis suggests that at least 13.5% of 2024 abstracts were processed with LLMs. This lower bound differed across disciplines, countries, and journals, reaching 40% for some subcorpora. We show that LLMs have had an unprecedented impact on scientific writing in biomedical research, surpassing the effect of major world events such as the Covid pandemic.
comment: v5: Reverting to v3
♻ ☆ AIn't Nothing But a Survey? Using Large Language Models for Coding German Open-Ended Survey Responses on Survey Motivation
The recent development and wider accessibility of LLMs have spurred discussions about how they can be used in survey research, including classifying open-ended survey responses. Due to their linguistic capacities, it is possible that LLMs are an efficient alternative to time-consuming manual coding and the pre-training of supervised machine learning models. As most existing research on this topic has focused on English-language responses relating to non-complex topics or on single LLMs, it is unclear whether its findings generalize and how the quality of these classifications compares to established methods. In this study, we investigate to what extent different LLMs can be used to code open-ended survey responses in other contexts, using German data on reasons for survey participation as an example. We compare several state-of-the-art LLMs and several prompting approaches, and evaluate the LLMs' performance by using human expert codings. Overall performance differs greatly between LLMs, and only a fine-tuned LLM achieves satisfactory levels of predictive performance. Performance differences between prompting approaches are conditional on the LLM used. Finally, LLMs' unequal classification performance across different categories of reasons for survey participation results in different categorical distributions when not using fine-tuning. We discuss the implications of these findings, both for methodological research on coding open-ended responses and for their substantive analysis, and for practitioners processing or substantively analyzing such data. Finally, we highlight the many trade-offs researchers need to consider when choosing automated methods for open-ended response classification in the age of LLMs. In doing so, our study contributes to the growing body of research about the conditions under which LLMs can be efficiently, accurately, and reliably leveraged in survey research.
comment: to appear in Survey Research Methods
♻ ☆ Improving the Robustness of Distantly-Supervised Named Entity Recognition via Uncertainty-Aware Teacher Learning and Student-Student Collaborative Learning ACL 2024
Distantly-Supervised Named Entity Recognition (DS-NER) is widely used in real-world scenarios. It can effectively alleviate the burden of annotation by matching entities in existing knowledge bases with snippets in the text but suffer from the label noise. Recent works attempt to adopt the teacher-student framework to gradually refine the training labels and improve the overall robustness. However, these teacher-student methods achieve limited performance because the poor calibration of the teacher network produces incorrectly pseudo-labeled samples, leading to error propagation. Therefore, we propose: (1) Uncertainty-Aware Teacher Learning that leverages the prediction uncertainty to reduce the number of incorrect pseudo labels in the self-training stage; (2) Student-Student Collaborative Learning that allows the transfer of reliable labels between two student networks instead of indiscriminately relying on all pseudo labels from its teacher, and further enables a full exploration of mislabeled samples rather than simply filtering unreliable pseudo-labeled samples. We evaluate our proposed method on five DS-NER datasets, demonstrating that our method is superior to the state-of-the-art DS-NER methods.
comment: ACL 2024 (Findings)
♻ ☆ Incorporating LLMs for Large-Scale Urban Complex Mobility Simulation
This study presents an innovative approach to urban mobility simulation by integrating a Large Language Model (LLM) with Agent-Based Modeling (ABM). Unlike traditional rule-based ABM, the proposed framework leverages LLM to enhance agent diversity and realism by generating synthetic population profiles, allocating routine and occasional locations, and simulating personalized routes. Using real-world data, the simulation models individual behaviors and large-scale mobility patterns in Taipei City. Key insights, such as route heat maps and mode-specific indicators, provide urban planners with actionable information for policy-making. Future work focuses on establishing robust validation frameworks to ensure accuracy and reliability in urban planning applications.
comment: 8 pages, 8 figures. This paper is reviewed and accepted by the CUPUM (Computational Urban Planning and Urban Management) Conference held by University College London (UCL) in 2025
♻ ☆ Decision-Oriented Text Evaluation
Natural language generation (NLG) is increasingly deployed in high-stakes domains, yet common intrinsic evaluation methods, such as n-gram overlap or sentence plausibility, weakly correlate with actual decision-making efficacy. We propose a decision-oriented framework for evaluating generated text by directly measuring its influence on human and large language model (LLM) decision outcomes. Using market digest texts--including objective morning summaries and subjective closing-bell analyses--as test cases, we assess decision quality based on the financial performance of trades executed by human investors and autonomous LLM agents informed exclusively by these texts. Our findings reveal that neither humans nor LLM agents consistently surpass random performance when relying solely on summaries. However, richer analytical commentaries enable collaborative human-LLM teams to outperform individual human or agent baselines significantly. Our approach underscores the importance of evaluating generated text by its ability to facilitate synergistic decision-making between humans and LLMs, highlighting critical limitations of traditional intrinsic metrics.
♻ ☆ Token Prepending: A Training-Free Approach for Eliciting Better Sentence Embeddings from LLMs ACL 2025
Extracting sentence embeddings from large language models (LLMs) is a promising direction, as LLMs have demonstrated stronger semantic understanding capabilities. Previous studies typically focus on prompt engineering to elicit sentence embeddings from LLMs by prompting the model to encode sentence information into the embedding of the last token. However, LLMs are mostly decoder-only models with causal attention and the earlier tokens in the sentence cannot attend to the latter tokens, resulting in biased encoding of sentence information and cascading effects on the final decoded token. To this end, we propose a novel Token Prepending (TP) technique that prepends each layer's decoded sentence embedding to the beginning of the sentence in the next layer's input, allowing earlier tokens to attend to the complete sentence information under the causal attention mechanism. The proposed TP technique is a plug-and-play and training-free technique, which means it can be seamlessly integrated with various prompt-based sentence embedding methods and autoregressive LLMs. Extensive experiments on various Semantic Textual Similarity (STS) tasks and downstream classification tasks demonstrate that our proposed TP technique can significantly improve the performance of existing prompt-based sentence embedding methods across different LLMs, while incurring negligible additional inference cost.
comment: Accept to ACL 2025 (Oral). Code are available on https://github.com/fuyuchenIfyw/token_prepending.git
♻ ☆ Layered Insights: Generalizable Analysis of Authorial Style by Leveraging All Transformer Layers
We propose a new approach for the authorship attribution task that leverages the various linguistic representations learned at different layers of pre-trained transformer-based models. We evaluate our approach on three datasets, comparing it to a state-of-the-art baseline in in-domain and out-of-domain scenarios. We found that utilizing various transformer layers improves the robustness of authorship attribution models when tested on out-of-domain data, resulting in new state-of-the-art results. Our analysis gives further insights into how our model's different layers get specialized in representing certain stylistic features that benefit the model when tested out of the domain.
♻ ☆ Skywork-Reward-V2: Scaling Preference Data Curation via Human-AI Synergy
Despite the critical role of reward models (RMs) in reinforcement learning from human feedback (RLHF), current state-of-the-art open RMs perform poorly on most existing evaluation benchmarks, failing to capture the spectrum of nuanced and sophisticated human preferences. Even approaches that incorporate advanced training techniques have not yielded meaningful performance improvements. We hypothesize that this brittleness stems primarily from limitations in preference datasets, which are often narrowly scoped, synthetically labeled, or lack rigorous quality control. To address these challenges, we present a large-scale preference dataset comprising 40 million preference pairs, named SynPref-40M. To enable data curation at scale, we design a human-AI synergistic two-stage pipeline that leverages the complementary strengths of human annotation quality and AI scalability. In this pipeline, humans provide verified annotations, while large language models perform automatic curation based on human guidance. Training on this preference mixture, we introduce Skywork-Reward-V2, a suite of eight reward models ranging from 0.6B to 8B parameters, trained on a carefully curated subset of 26 million preference pairs from SynPref-40M. We demonstrate that Skywork-Reward-V2 is versatile across a wide range of capabilities, including alignment with human preferences, objective correctness, safety, resistance to stylistic biases, and best-of-N scaling, achieving state-of-the-art performance across seven major reward model benchmarks. Ablation studies confirm that the effectiveness of our approach stems not only from data scale but also from high-quality curation. The Skywork-Reward-V2 series represents substantial progress in open reward models, highlighting the untapped potential of existing preference datasets and demonstrating how human-AI curation synergy can unlock significantly higher data quality.
♻ ☆ Aligning Frozen LLMs by Reinforcement Learning: An Iterative Reweight-then-Optimize Approach
Aligning large language models (LLMs) with human preferences usually requires fine-tuning methods such as RLHF and DPO. These methods directly optimize the model parameters, so they cannot be used in test-time to improve model performance, nor are they applicable when the model weights are not accessible. In contrast, test-time methods sidestep weight updates by leveraging reward functions to guide and improve output quality. However, they incur high inference costs, and their one-shot guidance is often based on imperfect reward or value functions, leading to suboptimal outputs. In this work, we present a method named Iterative Reweight-then-Optimize (IRO), a reinforcement learning (RL) framework that performs RL-style alignment of the (frozen) base model without touching its parameters. During training, each iteration (i) samples candidates from the base model, (ii) resamples using current value functions, and (iii) trains a new lightweight value function that guides the next decoding pass. At test time, the value functions are used to guide the base model generation via a search-based optimization process. Notably, users can apply IRO to align a model on their own dataset, similar to OpenAI's reinforcement fine-tuning (RFT), but without requiring access to the model weights.
♻ ☆ Fast-dLLM: Training-free Acceleration of Diffusion LLM by Enabling KV Cache and Parallel Decoding
Diffusion-based large language models (Diffusion LLMs) have shown promise for non-autoregressive text generation with parallel decoding capabilities. However, the practical inference speed of open-sourced Diffusion LLMs often lags behind autoregressive models due to the lack of Key-Value (KV) Cache and quality degradation when decoding multiple tokens simultaneously. To bridge this gap, we introduce a novel block-wise approximate KV Cache mechanism tailored for bidirectional diffusion models, enabling cache reuse with negligible performance drop. Additionally, we identify the root cause of generation quality degradation in parallel decoding as the disruption of token dependencies under the conditional independence assumption. To address this, we propose a confidence-aware parallel decoding strategy that selectively decodes tokens exceeding a confidence threshold, mitigating dependency violations and maintaining generation quality. Experimental results on LLaDA and Dream models across multiple LLM benchmarks demonstrate up to \textbf{27.6$\times$ throughput} improvement with minimal accuracy loss, closing the performance gap with autoregressive models and paving the way for practical deployment of Diffusion LLMs.
♻ ☆ Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient ACL2025
Recent Large-Language Models (LLMs) pruning methods typically operate at the post-training phase without the expensive weight finetuning, however, their pruning criteria often rely on heuristically hand-crafted metrics, potentially leading to suboptimal performance. We instead propose a novel optimization-based structural pruning that learns the pruning masks in a probabilistic space directly by optimizing the loss of the pruned model. To preserve efficiency, our method eliminates the back-propagation through the LLM per se during optimization, requiring only the forward pass of the LLM. We achieve this by learning an underlying Bernoulli distribution to sample binary pruning masks, where we decouple the Bernoulli parameters from LLM loss, facilitating efficient optimization via policy gradient estimator without back-propagation. Thus, our method can 1) support global and heterogeneous pruning (i.e., automatically determine different redundancy for different layers), and 2) optionally initialize with a metric-based method (for our Bernoulli distributions). Extensive experiments conducted on LLaMA, LLaMA-2, LLaMA-3, Vicuna, and Mistral models using the C4 and WikiText2 datasets demonstrate the promising performance of our method in efficiency and effectiveness. Code is available at https://github.com/ethanygao/backprop-free_LLM_pruning.
comment: ACL2025 Main Accepted
♻ ☆ REINFORCE++: An Efficient RLHF Algorithm with Robustness to Both Prompt and Reward Models
Large Language Models (LLMs) fine-tuned via Reinforcement Learning from Human Feedback (RLHF) and Reinforcement Learning with Verifiable Rewards (RLVR) significantly improve the alignment of human-AI values and further raise the upper bound of AI capabilities, particularly in reasoning-intensive, long-context Chain-of-Thought (long-CoT) tasks. However, existing RLHF (or RLVR) frameworks commonly face challenges such as inference bottlenecks and complexity barriers, restricting their accessibility for newcomers. To bridge this gap, we introduce \textbf{OpenRLHF}, a user-friendly, scalable, and easy-to-learn open-source RLHF framework built upon Ray, vLLM, DeepSpeed, and HuggingFace Transformers, featuring a simplified design, clear code structure, and comprehensive documentation to facilitate entry for researchers and practitioners. Experimental results show that OpenRLHF achieves superior training efficiency with speedups ranging from 1.22x to 1.68x across different model sizes compared to state-of-the-art frameworks, while requiring significantly fewer lines of code for implementation. OpenRLHF is publicly available at https://github.com/OpenRLHF/OpenRLHF, and has already been adopted by leading institutions to accelerate RLHF research and learning.
comment: fix typo
♻ ☆ Commander-GPT: Fully Unleashing the Sarcasm Detection Capability of Multi-Modal Large Language Models
Sarcasm detection, as a crucial research direction in the field of Natural Language Processing (NLP), has attracted widespread attention. Traditional sarcasm detection tasks have typically focused on single-modal approaches (e.g., text), but due to the implicit and subtle nature of sarcasm, such methods often fail to yield satisfactory results. In recent years, researchers have shifted the focus of sarcasm detection to multi-modal approaches. However, effectively leveraging multi-modal information to accurately identify sarcastic content remains a challenge that warrants further exploration. Leveraging the powerful integrated processing capabilities of Multi-Modal Large Language Models (MLLMs) for various information sources, we propose an innovative multi-modal Commander-GPT framework. Inspired by military strategy, we first decompose the sarcasm detection task into six distinct sub-tasks. A central commander (decision-maker) then assigns the best-suited large language model to address each specific sub-task. Ultimately, the detection results from each model are aggregated to identify sarcasm. We conducted extensive experiments on MMSD and MMSD 2.0, utilizing four multi-modal large language models and six prompting strategies. Our experiments demonstrate that our approach achieves state-of-the-art performance, with a 19.3% improvement in F1 score, without necessitating fine-tuning or ground-truth rationales.
comment: Our original goal was to use Commander-GPT: Dividing and Routing for Multimodal Sarcasm Detection (arXiv:2506.19420) to replace Commander-GPT: Fully Unleashing the Sarcasm Detection Capability of Multi-Modal Large Language Models (arXiv:2503.18681). Due to various reasons, both versions were released, so we would like to withdraw the latter
♻ ☆ Prompt-Guided Turn-Taking Prediction SIGDIAL 2025
Turn-taking prediction models are essential components in spoken dialogue systems and conversational robots. Recent approaches leverage transformer-based architectures to predict speech activity continuously and in real-time. In this study, we propose a novel model that enables turn-taking prediction to be dynamically controlled via textual prompts. This approach allows intuitive and explicit control through instructions such as "faster" or "calmer" adapting dynamically to conversational partners and contexts. The proposed model builds upon a transformer-based voice activity projection (VAP) model, incorporating textual prompt embeddings into both channel-wise transformers and a cross-channel transformer. We evaluated the feasibility of our approach using over 950 hours of human-human spoken dialogue data. Since textual prompt data for the proposed approach was not available in existing datasets, we utilized a large language model (LLM) to generate synthetic prompt sentences. Experimental results demonstrated that the proposed model improved prediction accuracy and effectively varied turn-taking timing behaviors according to the textual prompts.
comment: This paper has been accepted for presentation at SIGdial Meeting on Discourse and Dialogue 2025 (SIGDIAL 2025) and represents the author's version of the work
♻ ☆ Optimal strategies to perform multilingual analysis of social content for a novel dataset in the tourism domain
The rising influence of social media platforms in various domains, including tourism, has highlighted the growing need for efficient and automated Natural Language Processing (NLP) strategies to take advantage of this valuable resource. However, the transformation of multilingual, unstructured, and informal texts into structured knowledge still poses significant challenges, most notably the never-ending requirement for manually annotated data to train deep learning classifiers. In this work, we study different NLP techniques to establish the best ones to obtain competitive performances while keeping the need for training annotated data to a minimum. To do so, we built the first publicly available multilingual dataset (French, English, and Spanish) for the tourism domain, composed of tourism-related tweets. The dataset includes multilayered, manually revised annotations for Named Entity Recognition (NER) for Locations and Fine-grained Thematic Concepts Extraction mapped to the Thesaurus of Tourism and Leisure Activities of the World Tourism Organization, as well as for Sentiment Analysis at the tweet level. Extensive experimentation comparing various few-shot and fine-tuning techniques with modern language models demonstrate that modern few-shot techniques allow us to obtain competitive results for all three tasks with very little annotation data: 5 tweets per label (15 in total) for Sentiment Analysis, 30 tweets for Named Entity Recognition of Locations and 1K tweets annotated with fine-grained thematic concepts, a highly fine-grained sequence labeling task based on an inventory of 315 classes. We believe that our results, grounded in a novel dataset, pave the way for applying NLP to new domain-specific applications, reducing the need for manual annotations and circumventing the complexities of rule-based, ad-hoc solutions.
♻ ☆ Causal Representation Learning with Generative Artificial Intelligence: Application to Texts as Treatments
In this paper, we demonstrate how to enhance the validity of causal inference with unstructured high-dimensional treatments like texts, by leveraging the power of generative Artificial Intelligence (GenAI). Specifically, we propose to use a deep generative model such as large language models (LLMs) to efficiently generate treatments and use their internal representation for subsequent causal effect estimation. We show that the knowledge of this true internal representation helps disentangle the treatment features of interest, such as specific sentiments and certain topics, from other possibly unknown confounding features. Unlike existing methods, the proposed GenAI-Powered Inference (GPI) methodology eliminates the need to learn causal representation from the data, and hence produces more accurate and efficient estimates. We formally establish the conditions required for the nonparametric identification of the average treatment effect, propose an estimation strategy that avoids the violation of the overlap assumption, and derive the asymptotic properties of the proposed estimator through the application of double machine learning. Finally, using an instrumental variables approach, we extend the proposed methodology to the settings in which the treatment feature is based on human perception. The proposed GPI methodology is also applicable to text reuse where an LLM is used to regenerate existing texts. We conduct simulation and empirical studies, using the generated text data from an open-source LLM, Llama 3, to illustrate the advantages of our estimator over state-of-the-art causal representation learning algorithms.
♻ ☆ SMARTe: Slot-based Method for Accountable Relational Triple extraction
Relational Triple Extraction (RTE) is a fundamental task in Natural Language Processing (NLP). However, prior research has primarily focused on optimizing model performance, with limited efforts to understand the internal mechanisms driving these models. Many existing methods rely on complex preprocessing to induce specific interactions, often resulting in opaque systems that may not fully align with their theoretical foundations. To address these limitations, we propose SMARTe: a Slot-based Method for Accountable Relational Triple extraction. SMARTe introduces intrinsic interpretability through a slot attention mechanism and frames the task as a set prediction problem. Slot attention consolidates relevant information into distinct slots, ensuring all predictions can be explicitly traced to learned slot representations and the tokens contributing to each predicted relational triple. While emphasizing interpretability, SMARTe achieves performance comparable to state-of-the-art models. Evaluations on the NYT and WebNLG datasets demonstrate that adding interpretability does not compromise performance. Furthermore, we conducted qualitative assessments to showcase the explanations provided by SMARTe, using attention heatmaps that map to their respective tokens. We conclude with a discussion of our findings and propose directions for future research. Our code is available at https://github.com/Chen-XueWen/SMARTe.
♻ ☆ Circuit-tuning: A Mechanistic Approach for Identifying Parameter Redundancy and Fine-tuning Neural Networks
The study of mechanistic interpretability aims to reverse-engineer a model to explain its behaviors. While recent studies have focused on the static mechanism of a certain behavior, the learning dynamics inside a model remain to be explored. In this work, we develop an interpretable fine-tuning method for analyzing the mechanism behind learning. We first introduce the concept of node-level intrinsic dimensionality to describe the learning process of a model in a computational graph. Based on our theory, we propose circuit-tuning, a two-stage algorithm that iteratively builds the minimal subgraph for a specific task and updates the key parameters in a heuristic way. Experimental results confirm the existence of the intrinsic dimensionality at the node level and demonstrate the effectiveness of our method for transparent and interpretable fine-tuning. We visualize and analyze the circuits before, during, and after fine-tuning, providing new insights into the self-organization mechanism of a neural network in the learning process.
♻ ☆ Mixture of Reasonings: Teach Large Language Models to Reason with Adaptive Strategies
Large language models (LLMs) excel in complex tasks through advanced prompting techniques like Chain-of-Thought (CoT) and Tree-of-Thought (ToT), but their reliance on manually crafted, task-specific prompts limits adaptability and efficiency. We introduce Mixture of Reasoning (MoR), a training framework that embeds diverse reasoning strategies into LLMs for autonomous, task-adaptive reasoning without external prompt engineering. MoR has two phases: Thought Generation, creating reasoning chain templates with models like GPT-4o, and SFT Dataset Construction, pairing templates with benchmark datasets for supervised fine-tuning. Our experiments show that MoR significantly enhances performance, with MoR150 achieving 0.730 (2.2% improvement) using CoT prompting and 0.734 (13.5% improvement) compared to baselines. MoR eliminates the need for task-specific prompts, offering a generalizable solution for robust reasoning across diverse tasks.
Information Retrieval 7
☆ Decoupled Planning and Execution: A Hierarchical Reasoning Framework for Deep Search
Complex information needs in real-world search scenarios demand deep reasoning and knowledge synthesis across diverse sources, which traditional retrieval-augmented generation (RAG) pipelines struggle to address effectively. Current reasoning-based approaches suffer from a fundamental limitation: they use a single model to handle both high-level planning and detailed execution, leading to inefficient reasoning and limited scalability. In this paper, we introduce HiRA, a hierarchical framework that separates strategic planning from specialized execution. Our approach decomposes complex search tasks into focused subtasks, assigns each subtask to domain-specific agents equipped with external tools and reasoning capabilities, and coordinates the results through a structured integration mechanism. This separation prevents execution details from disrupting high-level reasoning while enabling the system to leverage specialized expertise for different types of information processing. Experiments on four complex, cross-modal deep search benchmarks demonstrate that HiRA significantly outperforms state-of-the-art RAG and agent-based systems. Our results show improvements in both answer quality and system efficiency, highlighting the effectiveness of decoupled planning and execution for multi-step information seeking tasks. Our code is available at https://github.com/ignorejjj/HiRA.
comment: 9 pages
☆ Calibrated Recommendations: Survey and Future Directions
The idea of calibrated recommendations is that the properties of the items that are suggested to users should match the distribution of their individual past preferences. Calibration techniques are therefore helpful to ensure that the recommendations provided to a user are not limited to a certain subset of the user's interests. Over the past few years, we have observed an increasing number of research works that use calibration for different purposes, including questions of diversity, biases, and fairness. In this work, we provide a survey on the recent developments in the area of calibrated recommendations. We both review existing technical approaches for calibration and provide an overview on empirical and analytical studies on the effectiveness of calibration for different use cases. Furthermore, we discuss limitations and common challenges when implementing calibration in practice.
☆ Resolving CAP Through Automata-Theoretic Economic Design: A Unified Mathematical Framework for Real-Time Partition-Tolerant Systems
The CAP theorem asserts a trilemma between consistency, availability, and partition tolerance. This paper introduces a rigorous automata-theoretic and economically grounded framework that reframes the CAP trade-off as a constraint optimization problem. We model distributed systems as partition-aware state machines and embed economic incentive layers to stabilize consensus behavior across adversarially partitioned networks. By incorporating game-theoretic mechanisms into the global transition semantics, we define provable bounds on convergence, liveness, and correctness. Our results demonstrate that availability and consistency can be simultaneously preserved within bounded epsilon margins, effectively extending the classical CAP limits through formal economic control.
comment: 51 pages 4 tables, includes formal proofs, automata construction, and case study on Bitcoin Script
☆ Content filtering methods for music recommendation: A review
Recommendation systems have become essential in modern music streaming platforms, shaping how users discover and engage with songs. One common approach in recommendation systems is collaborative filtering, which suggests content based on the preferences of users with similar listening patterns to the target user. However, this method is less effective on media where interactions are sparse. Music is one such medium, since the average user of a music streaming service will never listen to the vast majority of tracks. Due to this sparsity, there are several challenges that have to be addressed with other methods. This review examines the current state of research in addressing these challenges, with an emphasis on the role of content filtering in mitigating biases inherent in collaborative filtering approaches. We explore various methods of song classification for content filtering, including lyrical analysis using Large Language Models (LLMs) and audio signal processing techniques. Additionally, we discuss the potential conflicts between these different analysis methods and propose avenues for resolving such discrepancies.
comment: 13 pages and 9 figures
☆ Listwise Preference Alignment Optimization for Tail Item Recommendation
Preference alignment has achieved greater success on Large Language Models (LLMs) and drawn broad interest in recommendation research. Existing preference alignment methods for recommendation either require explicit reward modeling or only support pairwise preference comparison. The former directly increases substantial computational costs, while the latter hinders training efficiency on negative samples. Moreover, no existing effort has explored preference alignment solutions for tail-item recommendation. To bridge the above gaps, we propose LPO4Rec, which extends the Bradley-Terry model from pairwise comparison to listwise comparison, to improve the efficiency of model training. Specifically, we derive a closed form optimal policy to enable more efficient and effective training without explicit reward modeling. We also present an adaptive negative sampling and reweighting strategy to prioritize tail items during optimization and enhance performance in tail-item recommendations. Besides, we theoretically prove that optimizing the listwise preference optimization (LPO) loss is equivalent to maximizing the upper bound of the optimal reward. Our experiments on three public datasets show that our method outperforms 10 baselines by a large margin, achieving up to 50% performance improvement while reducing 17.9% GPU memory usage when compared with direct preference optimization (DPO) in tail-item recommendation. Our code is available at https://github.com/Yuhanleeee/LPO4Rec.
♻ ☆ From Web Search towards Agentic Deep Research: Incentivizing Search with Reasoning Agents
Information retrieval is a cornerstone of modern knowledge acquisition, enabling billions of queries each day across diverse domains. However, traditional keyword-based search engines are increasingly inadequate for handling complex, multi-step information needs. Our position is that Large Language Models (LLMs), endowed with reasoning and agentic capabilities, are ushering in a new paradigm termed Agentic Deep Research. These systems transcend conventional information search techniques by tightly integrating autonomous reasoning, iterative retrieval, and information synthesis into a dynamic feedback loop. We trace the evolution from static web search to interactive, agent-based systems that plan, explore, and learn. We also introduce a test-time scaling law to formalize the impact of computational depth on reasoning and search. Supported by benchmark results and the rise of open-source implementations, we demonstrate that Agentic Deep Research not only significantly outperforms existing approaches, but is also poised to become the dominant paradigm for future information seeking. All the related resources, including industry products, research papers, benchmark datasets, and open-source implementations, are collected for the community in https://github.com/DavidZWZ/Awesome-Deep-Research.
♻ ☆ Down with the Hierarchy: The 'H' in HNSW Stands for "Hubs"
Driven by recent breakthrough advances in neural representation learning, approximate near-neighbor (ANN) search over vector embeddings has emerged as a critical computational workload. With the introduction of the seminal Hierarchical Navigable Small World (HNSW) algorithm, graph-based indexes have established themselves as the overwhelmingly dominant paradigm for efficient and scalable ANN search. As the name suggests, HNSW searches a layered hierarchical graph to quickly identify neighborhoods of similar points to a given query vector. But is this hierarchy even necessary? A rigorous experimental analysis to answer this question would provide valuable insights into the nature of algorithm design for ANN search and motivate directions for future work in this increasingly crucial domain. We conduct an extensive benchmarking study covering more large-scale datasets than prior investigations of this question. We ultimately find that a flat navigable small world graph graph retains all of the benefits of HNSW on high-dimensional datasets, with latency and recall performance essentially \emph{identical} to the original algorithm but with less memory overhead. Furthermore, we go a step further and study \emph{why} the hierarchy of HNSW provides no benefit in high dimensions, hypothesizing that navigable small world graphs contain a well-connected, frequently traversed ``highway" of hub nodes that maintain the same purported function as the hierarchical layers. We present compelling empirical evidence that the \emph{Hub Highway Hypothesis} holds for real datasets and investigate the mechanisms by which the highway forms. The implications of this hypothesis may also provide future research directions in developing enhancements to graph-based ANN search.
comment: 17 pages
Machine Learning 150
☆ Point3R: Streaming 3D Reconstruction with Explicit Spatial Pointer Memory
Dense 3D scene reconstruction from an ordered sequence or unordered image collections is a critical step when bringing research in computer vision into practical scenarios. Following the paradigm introduced by DUSt3R, which unifies an image pair densely into a shared coordinate system, subsequent methods maintain an implicit memory to achieve dense 3D reconstruction from more images. However, such implicit memory is limited in capacity and may suffer from information loss of earlier frames. We propose Point3R, an online framework targeting dense streaming 3D reconstruction. To be specific, we maintain an explicit spatial pointer memory directly associated with the 3D structure of the current scene. Each pointer in this memory is assigned a specific 3D position and aggregates scene information nearby in the global coordinate system into a changing spatial feature. Information extracted from the latest frame interacts explicitly with this pointer memory, enabling dense integration of the current observation into the global coordinate system. We design a 3D hierarchical position embedding to promote this interaction and design a simple yet effective fusion mechanism to ensure that our pointer memory is uniform and efficient. Our method achieves competitive or state-of-the-art performance on various tasks with low training costs. Code is available at: https://github.com/YkiWu/Point3R.
comment: Code is available at: https://github.com/YkiWu/Point3R
☆ Answer Matching Outperforms Multiple Choice for Language Model Evaluation
Multiple choice benchmarks have long been the workhorse of language model evaluation because grading multiple choice is objective and easy to automate. However, we show multiple choice questions from popular benchmarks can often be answered without even seeing the question. These shortcuts arise from a fundamental limitation of discriminative evaluation not shared by evaluations of the model's free-form, generative answers. Until recently, there appeared to be no viable, scalable alternative to multiple choice--but, we show that this has changed. We consider generative evaluation via what we call answer matching: Give the candidate model the question without the options, have it generate a free-form response, then use a modern language model with the reference answer to determine if the response matches the reference. To compare the validity of different evaluation strategies, we annotate MMLU-Pro and GPQA-Diamond to obtain human grading data, and measure the agreement of each evaluation approach. We find answer matching using recent models--even small ones--achieves near-perfect agreement, in the range of inter-annotator agreement. In contrast, both multiple choice evaluation and using LLM-as-a-judge without reference answers aligns poorly with human grading. Improving evaluations via answer matching is not merely a conceptual concern: the rankings of several models change significantly when evaluating their free-form responses with answer matching. In light of these findings, we discuss how to move the evaluation ecosystem from multiple choice to answer matching.
comment: 34 pages, Code is available at https://github.com/nikhilchandak/answer-matching
☆ MOTIF: Modular Thinking via Reinforcement Fine-tuning in LLMs
Recent advancements in the reasoning capabilities of large language models (LLMs) show that employing group relative policy optimization (GRPO) algorithm for reinforcement learning (RL) training allows the models to use more thinking/reasoning tokens for generating better responses. However, LLMs can generate only a finite amount of tokens while maintaining attention to the previously generated tokens. This limit, also known as the context size of an LLM, is a bottleneck in LLM reasoning with arbitrarily large number of tokens. To think beyond the limit of context size, an LLM must employ a modular thinking strategy to reason over multiple rounds. In this work, we propose $\textbf{MOTIF: Modular Thinking via Reinforcement Finetuning}$ -- an RL training method for generating thinking tokens in multiple rounds, effectively allowing the model to think with additional context size. We trained the open-source model Qwen2.5-3B-Instruct on GSM8K dataset via parameter efficient fine-tuning and tested its accuracy on MATH500 and AIME2024 benchmarks. Our experiments show 3.8\% and 3.3\% improvements over vanilla GRPO based training in the respective benchmarks. Furthermore, this improvement was achieved with only 15\% of samples, thus demonstrating sample efficiency of MOTIF. Our code and models are available at https://github.com/purbeshmitra/MOTIF and https://huggingface.co/purbeshmitra/MOTIF, respectively.
LLM Hypnosis: Exploiting User Feedback for Unauthorized Knowledge Injection to All Users
We describe a vulnerability in language models (LMs) trained with user feedback, whereby a single user can persistently alter LM knowledge and behavior given only the ability to provide prompts and upvote / downvote feedback on LM outputs. To implement the attack, the attacker prompts the LM to stochastically output either a "poisoned" or benign response, then upvotes the poisoned response or downvotes the benign one. When feedback signals are used in a subsequent preference tuning behavior, LMs exhibit increased probability of producing poisoned responses even in contexts without malicious prompts. We show that this attack can be used to (1) insert factual knowledge the model did not previously possess, (2) modify code generation patterns in ways that introduce exploitable security flaws, and (3) inject fake financial news. Our finding both identifies a new qualitative feature of language model preference tuning (showing that it even highly restricted forms of preference data can be used to exert fine-grained control over behavior), and a new attack mechanism for LMs trained with user feedback (extending work on pretraining-time data poisoning and deployment-time prompt injection).
☆ MvHo-IB: Multi-View Higher-Order Information Bottleneck for Brain Disorder Diagnosis MICCAI-25
Recent evidence suggests that modeling higher-order interactions (HOIs) in functional magnetic resonance imaging (fMRI) data can enhance the diagnostic accuracy of machine learning systems. However, effectively extracting and utilizing HOIs remains a significant challenge. In this work, we propose MvHo-IB, a novel multi-view learning framework that integrates both pairwise interactions and HOIs for diagnostic decision-making, while automatically compressing task-irrelevant redundant information. MvHo-IB introduces several key innovations: (1) a principled method that combines O-information from information theory with a matrix-based Renyi alpha-order entropy estimator to quantify and extract HOIs, (2) a purpose-built Brain3DCNN encoder to effectively utilize these interactions, and (3) a new multi-view learning information bottleneck objective to enhance representation learning. Experiments on three benchmark fMRI datasets demonstrate that MvHo-IB achieves state-of-the-art performance, significantly outperforming previous methods, including recent hypergraph-based techniques. The implementation of MvHo-IB is available at https://github.com/zky04/MvHo-IB.
comment: Accepted by MICCAI-25, code is available at \url{https://github.com/zky04/MvHo-IB}
LLM-Driven Treatment Effect Estimation Under Inference Time Text Confounding
Estimating treatment effects is crucial for personalized decision-making in medicine, but this task faces unique challenges in clinical practice. At training time, models for estimating treatment effects are typically trained on well-structured medical datasets that contain detailed patient information. However, at inference time, predictions are often made using textual descriptions (e.g., descriptions with self-reported symptoms), which are incomplete representations of the original patient information. In this work, we make three contributions. (1) We show that the discrepancy between the data available during training time and inference time can lead to biased estimates of treatment effects. We formalize this issue as an inference time text confounding problem, where confounders are fully observed during training time but only partially available through text at inference time. (2) To address this problem, we propose a novel framework for estimating treatment effects that explicitly accounts for inference time text confounding. Our framework leverages large language models together with a custom doubly robust learner to mitigate biases caused by the inference time text confounding. (3) Through a series of experiments, we demonstrate the effectiveness of our framework in real-world applications.
☆ StepHint: Multi-level Stepwise Hints Enhance Reinforcement Learning to Reason
Reinforcement learning with verifiable rewards (RLVR) is a promising approach for improving the complex reasoning abilities of large language models (LLMs). However, current RLVR methods face two significant challenges: the near-miss reward problem, where a small mistake can invalidate an otherwise correct reasoning process, greatly hindering training efficiency; and exploration stagnation, where models tend to focus on solutions within their ``comfort zone,'' lacking the motivation to explore potentially more effective alternatives. To address these challenges, we propose StepHint, a novel RLVR algorithm that utilizes multi-level stepwise hints to help models explore the solution space more effectively. StepHint generates valid reasoning chains from stronger models and partitions these chains into reasoning steps using our proposed adaptive partitioning method. The initial few steps are used as hints, and simultaneously, multiple-level hints (each comprising a different number of steps) are provided to the model. This approach directs the model's exploration toward a promising solution subspace while preserving its flexibility for independent exploration. By providing hints, StepHint mitigates the near-miss reward problem, thereby improving training efficiency. Additionally, the external reasoning pathways help the model develop better reasoning abilities, enabling it to move beyond its ``comfort zone'' and mitigate exploration stagnation. StepHint outperforms competitive RLVR enhancement methods across six mathematical benchmarks, while also demonstrating superior generalization and excelling over baselines on out-of-domain benchmarks.
☆ ExPO: Unlocking Hard Reasoning with Self-Explanation-Guided Reinforcement Learning
Recent advances in large language models have been driven by reinforcement learning (RL)-style post-training, which improves reasoning by optimizing model outputs based on reward or preference signals. GRPO-style approaches implement this by using self-generated samples labeled by an outcome-based verifier. However, these methods depend heavily on the model's initial ability to produce positive samples. They primarily refine what the model already knows (distribution sharpening) rather than enabling the model to solve problems where it initially fails. This limitation is especially problematic in early-stage RL training and on challenging reasoning tasks, where positive samples are unlikely to be generated. To unlock reasoning ability in such settings, the model must explore new reasoning trajectories beyond its current output distribution. Such exploration requires access to sufficiently good positive samples to guide the learning. While expert demonstrations seem like a natural solution, we find that they are often ineffective in RL post-training. Instead, we identify two key properties of effective positive samples: they should (1) be likely under the current policy, and (2) increase the model's likelihood of predicting the correct answer. Based on these insights, we propose $\textbf{Self-Explanation Policy Optimization (ExPO)}$-a simple and modular framework that generates such samples by conditioning on the ground-truth answer. ExPO enables efficient exploration and guides the model to produce reasoning trajectories more aligned with its policy than expert-written CoTs, while ensuring higher quality than its own (incorrect) samples. Experiments show that ExPO improves both learning efficiency and final performance on reasoning benchmarks, surpassing expert-demonstration-based methods in challenging settings such as MATH level-5, where the model initially struggles the most.
☆ DNN-Based Precoding in RIS-Aided mmWave MIMO Systems With Practical Phase Shift
In this paper, the precoding design is investigated for maximizing the throughput of millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems with obstructed direct communication paths. In particular, a reconfigurable intelligent surface (RIS) is employed to enhance MIMO transmissions, considering mmWave characteristics related to line-of-sight (LoS) and multipath effects. The traditional exhaustive search (ES) for optimal codewords in the continuous phase shift is computationally intensive and time-consuming. To reduce computational complexity, permuted discrete Fourier transform (DFT) vectors are used for finding codebook design, incorporating amplitude responses for practical or ideal RIS systems. However, even if the discrete phase shift is adopted in the ES, it results in significant computation and is time-consuming. Instead, the trained deep neural network (DNN) is developed to facilitate faster codeword selection. Simulation results show that the DNN maintains sub-optimal spectral efficiency even as the distance between the end-user and the RIS has variations in the testing phase. These results highlight the potential of DNN in advancing RIS-aided systems.
comment: 5 pages, 4 figures, 2 tables, accepted by IEEE Globecom 2024 Workshops
☆ SynapseRoute: An Auto-Route Switching Framework on Dual-State Large Language Model
With the widespread adoption of large language models (LLMs) in practical applications, selecting an appropriate model requires balancing not only performance but also operational cost. The emergence of reasoning-capable models has further widened the cost gap between "thinking" (high reasoning) and "non-thinking" (fast, low-cost) modes. In this work, we reveal that approximately 58% of medical questions can be accurately answered by the non-thinking mode alone, without requiring the high-cost reasoning process. This highlights a clear dichotomy in problem complexity and suggests that dynamically routing queries to the appropriate mode based on complexity could optimize accuracy, cost-efficiency, and overall user experience. Based on this, we further propose SynapseRoute, a machine learning-based dynamic routing framework that intelligently assigns input queries to either thinking or non-thinking modes. Experimental results on several medical datasets demonstrate that SynapseRoute not only improves overall accuracy (0.8390 vs. 0.8272) compared to the thinking mode alone but also reduces inference time by 36.8% and token consumption by 39.66%. Importantly, qualitative analysis indicates that over-reasoning on simpler queries can lead to unnecessary delays and even decreased accuracy, a pitfall avoided by our adaptive routing. Finally, this work further introduces the Accuracy-Inference-Token (AIT) index to comprehensively evaluate the trade-offs among accuracy, latency, and token cost.
☆ Measurement as Bricolage: Examining How Data Scientists Construct Target Variables for Predictive Modeling Tasks
Data scientists often formulate predictive modeling tasks involving fuzzy, hard-to-define concepts, such as the "authenticity" of student writing or the "healthcare need" of a patient. Yet the process by which data scientists translate fuzzy concepts into a concrete, proxy target variable remains poorly understood. We interview fifteen data scientists in education (N=8) and healthcare (N=7) to understand how they construct target variables for predictive modeling tasks. Our findings suggest that data scientists construct target variables through a bricolage process, involving iterative negotiation between high-level measurement objectives and low-level practical constraints. Data scientists attempt to satisfy five major criteria for a target variable through bricolage: validity, simplicity, predictability, portability, and resource requirements. To achieve this, data scientists adaptively use problem (re)formulation strategies, such as swapping out one candidate target variable for another when the first fails to meet certain criteria (e.g., predictability), or composing multiple outcomes into a single target variable to capture a more holistic set of modeling objectives. Based on our findings, we present opportunities for future HCI, CSCW, and ML research to better support the art and science of target variable construction.
☆ Replicable Distribution Testing
We initiate a systematic investigation of distribution testing in the framework of algorithmic replicability. Specifically, given independent samples from a collection of probability distributions, the goal is to characterize the sample complexity of replicably testing natural properties of the underlying distributions. On the algorithmic front, we develop new replicable algorithms for testing closeness and independence of discrete distributions. On the lower bound front, we develop a new methodology for proving sample complexity lower bounds for replicable testing that may be of broader interest. As an application of our technique, we establish near-optimal sample complexity lower bounds for replicable uniformity testing -- answering an open question from prior work -- and closeness testing.
comment: 39 pages
☆ In-Training Multicalibrated Survival Analysis for Healthcare via Constrained Optimization
Survival analysis is an important problem in healthcare because it models the relationship between an individual's covariates and the onset time of an event of interest (e.g., death). It is important for survival models to be well-calibrated (i.e., for their predicted probabilities to be close to ground-truth probabilities) because badly calibrated systems can result in erroneous clinical decisions. Existing survival models are typically calibrated at the population level only, and thus run the risk of being poorly calibrated for one or more minority subpopulations. We propose a model called GRADUATE that achieves multicalibration by ensuring that all subpopulations are well-calibrated too. GRADUATE frames multicalibration as a constrained optimization problem, and optimizes both calibration and discrimination in-training to achieve a good balance between them. We mathematically prove that the optimization method used yields a solution that is both near-optimal and feasible with high probability. Empirical comparisons against state-of-the-art baselines on real-world clinical datasets demonstrate GRADUATE's efficacy. In a detailed analysis, we elucidate the shortcomings of the baselines vis-a-vis GRADUATE's strengths.
☆ Learning to Coordinate Bidders in Non-Truthful Auctions
In non-truthful auctions such as first-price and all-pay auctions, the independent strategic behaviors of bidders, with the corresponding equilibrium notion -- Bayes Nash equilibria -- are notoriously difficult to characterize and can cause undesirable outcomes. An alternative approach to designing better auction systems is to coordinate the bidders: let a mediator make incentive-compatible recommendations of correlated bidding strategies to the bidders, namely, implementing a Bayes correlated equilibrium (BCE). The implementation of BCE, however, requires knowledge of the distribution of bidders' private valuations, which is often unavailable. We initiate the study of the sample complexity of learning Bayes correlated equilibria in non-truthful auctions. We prove that the BCEs in a large class of non-truthful auctions, including first-price and all-pay auctions, can be learned with a polynomial number $\tilde O(\frac{n}{\varepsilon^2})$ of samples from the bidders' value distributions. Our technique is a reduction to the problem of estimating bidders' expected utility from samples, combined with an analysis of the pseudo-dimension of the class of all monotone bidding strategies of bidders.
☆ Self-Steering Deep Non-Linear Spatially Selective Filters for Efficient Extraction of Moving Speakers under Weak Guidance SP
Recent works on deep non-linear spatially selective filters demonstrate exceptional enhancement performance with computationally lightweight architectures for stationary speakers of known directions. However, to maintain this performance in dynamic scenarios, resource-intensive data-driven tracking algorithms become necessary to provide precise spatial guidance conditioned on the initial direction of a target speaker. As this additional computational overhead hinders application in resource-constrained scenarios such as real-time speech enhancement, we present a novel strategy utilizing a low-complexity tracking algorithm in the form of a particle filter instead. Assuming a causal, sequential processing style, we introduce temporal feedback to leverage the enhanced speech signal of the spatially selective filter to compensate for the limited modeling capabilities of the particle filter. Evaluation on a synthetic dataset illustrates how the autoregressive interplay between both algorithms drastically improves tracking accuracy and leads to strong enhancement performance. A listening test with real-world recordings complements these findings by indicating a clear trend towards our proposed self-steering pipeline as preferred choice over comparable methods.
comment: Accepted at IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA) 2025
☆ Understanding and Improving Length Generalization in Recurrent Models
Recently, recurrent models such as state space models and linear attention have become popular due to their linear complexity in the sequence length. Thanks to their recurrent nature, in principle they can process arbitrarily long sequences, but their performance sometimes drops considerably beyond their training context lengths-i.e. they fail to length generalize. In this work, we provide comprehensive empirical and theoretical analysis to support the unexplored states hypothesis, which posits that models fail to length generalize when during training they are only exposed to a limited subset of the distribution of all attainable states (i.e. states that would be attained if the recurrence was applied to long sequences). Furthermore, we investigate simple training interventions that aim to increase the coverage of the states that the model is trained on, e.g. by initializing the state with Gaussian noise or with the final state of a different input sequence. With only 500 post-training steps ($\sim 0.1\%$ of the pre-training budget), these interventions enable length generalization for sequences that are orders of magnitude longer than the training context (e.g. $2k\longrightarrow 128k$) and show improved performance in long context tasks, thus presenting a simple and efficient way to enable robust length generalization in general recurrent models.
☆ Self-Correction Bench: Revealing and Addressing the Self-Correction Blind Spot in LLMs
Although large language models (LLMs) have become transformative, they still make mistakes and can explore unproductive reasoning paths. Self-correction is an important capability for a trustworthy LLM, particularly an autoregressive LLM. While LLMs can identify error in user input, they exhibit a systematic 'Self-Correction Blind Spot' - failing to correct identical error in their own outputs. To systematically study this phenomenon, we introduce Self-Correction Bench, a systematic framework to measure this phenomenon through controlled error injection at three complexity levels. Testing 14 models, we find an average 64.5% blind spot rate. We find multiple evidences that this limitation relates to training data composition: human training demonstrations predominantly show error-free responses rather than error-correction sequences, unlike RL-trained models that learn error correction through outcome feedback. Remarkably, simply appending "Wait" reduces blind spots by 89.3%, suggesting that the capability exists but requires activation. Our work highlights a critical limitation in current LLMs and offers potential avenues for improving their reliability and trustworthiness.
comment: 31 pages, 18 figures
☆ KERAP: A Knowledge-Enhanced Reasoning Approach for Accurate Zero-shot Diagnosis Prediction Using Multi-agent LLMs
Medical diagnosis prediction plays a critical role in disease detection and personalized healthcare. While machine learning (ML) models have been widely adopted for this task, their reliance on supervised training limits their ability to generalize to unseen cases, particularly given the high cost of acquiring large, labeled datasets. Large language models (LLMs) have shown promise in leveraging language abilities and biomedical knowledge for diagnosis prediction. However, they often suffer from hallucinations, lack structured medical reasoning, and produce useless outputs. To address these challenges, we propose KERAP, a knowledge graph (KG)-enhanced reasoning approach that improves LLM-based diagnosis prediction through a multi-agent architecture. Our framework consists of a linkage agent for attribute mapping, a retrieval agent for structured knowledge extraction, and a prediction agent that iteratively refines diagnosis predictions. Experimental results demonstrate that KERAP enhances diagnostic reliability efficiently, offering a scalable and interpretable solution for zero-shot medical diagnosis prediction.
☆ Grounding Intelligence in Movement
Recent advances in machine learning have dramatically improved our ability to model language, vision, and other high-dimensional data, yet they continue to struggle with one of the most fundamental aspects of biological systems: movement. Across neuroscience, medicine, robotics, and ethology, movement is essential for interpreting behavior, predicting intent, and enabling interaction. Despite its core significance in our intelligence, movement is often treated as an afterthought rather than as a rich and structured modality in its own right. This reflects a deeper fragmentation in how movement data is collected and modeled, often constrained by task-specific goals and domain-specific assumptions. But movement is not domain-bound. It reflects shared physical constraints, conserved morphological structures, and purposeful dynamics that cut across species and settings. We argue that movement should be treated as a primary modeling target for AI. It is inherently structured and grounded in embodiment and physics. This structure, often allowing for compact, lower-dimensional representations (e.g., pose), makes it more interpretable and computationally tractable to model than raw, high-dimensional sensory inputs. Developing models that can learn from and generalize across diverse movement data will not only advance core capabilities in generative modeling and control, but also create a shared foundation for understanding behavior across biological and artificial systems. Movement is not just an outcome, it is a window into how intelligent systems engage with the world.
comment: 9 pages, 2 figures
☆ Contextual Online Pricing with (Biased) Offline Data
We study contextual online pricing with biased offline data. For the scalar price elasticity case, we identify the instance-dependent quantity $\delta^2$ that measures how far the offline data lies from the (unknown) online optimum. We show that the time length $T$, bias bound $V$, size $N$ and dispersion $\lambda_{\min}(\hat{\Sigma})$ of the offline data, and $\delta^2$ jointly determine the statistical complexity. An Optimism-in-the-Face-of-Uncertainty (OFU) policy achieves a minimax-optimal, instance-dependent regret bound $\tilde{\mathcal{O}}\big(d\sqrt{T} \wedge (V^2T + \frac{dT}{\lambda_{\min}(\hat{\Sigma}) + (N \wedge T) \delta^2})\big)$. For general price elasticity, we establish a worst-case, minimax-optimal rate $\tilde{\mathcal{O}}\big(d\sqrt{T} \wedge (V^2T + \frac{dT }{\lambda_{\min}(\hat{\Sigma})})\big)$ and provide a generalized OFU algorithm that attains it. When the bias bound $V$ is unknown, we design a robust variant that always guarantees sub-linear regret and strictly improves on purely online methods whenever the exact bias is small. These results deliver the first tight regret guarantees for contextual pricing in the presence of biased offline data. Our techniques also transfer verbatim to stochastic linear bandits with biased offline data, yielding analogous bounds.
comment: 47 pages, 4 figures
☆ Fast and Simplex: 2-Simplicial Attention in Triton
Recent work has shown that training loss scales as a power law with both model size and the number of tokens, and that achieving compute-optimal models requires scaling model size and token count together. However, these scaling laws assume an infinite supply of data and apply primarily in compute-bound settings. As modern large language models increasingly rely on massive internet-scale datasets, the assumption that they are compute-bound is becoming less valid. This shift highlights the need for architectures that prioritize token efficiency. In this work, we investigate the use of the 2-simplicial Transformer, an architecture that generalizes standard dot-product attention to trilinear functions through an efficient Triton kernel implementation. We demonstrate that the 2-simplicial Transformer achieves better token efficiency than standard Transformers: for a fixed token budget, similarly sized models outperform their dot-product counterparts on tasks involving mathematics, coding, reasoning, and logic. We quantify these gains by demonstrating that $2$-simplicial attention changes the exponent in the scaling laws for knowledge and reasoning tasks compared to dot product attention.
comment: 10 pages, with appendix 25 pages
☆ Linear Attention with Global Context: A Multipole Attention Mechanism for Vision and Physics ICCV 2025
Transformers have become the de facto standard for a wide range of tasks, from image classification to physics simulations. Despite their impressive performance, the quadratic complexity of standard Transformers in both memory and time with respect to the input length makes them impractical for processing high-resolution inputs. Therefore, several variants have been proposed, the most successful relying on patchification, downsampling, or coarsening techniques, often at the cost of losing the finest-scale details. In this work, we take a different approach. Inspired by state-of-the-art techniques in $n$-body numerical simulations, we cast attention as an interaction problem between grid points. We introduce the Multipole Attention Neural Operator (MANO), which computes attention in a distance-based multiscale fashion. MANO maintains, in each attention head, a global receptive field and achieves linear time and memory complexity with respect to the number of grid points. Empirical results on image classification and Darcy flows demonstrate that MANO rivals state-of-the-art models such as ViT and Swin Transformer, while reducing runtime and peak memory usage by orders of magnitude. We open source our code for reproducibility at https://github.com/AlexColagrande/MANO.
comment: Accepted at ECLR Workshop at ICCV 2025
☆ Early Signs of Steganographic Capabilities in Frontier LLMs
Monitoring Large Language Model (LLM) outputs is crucial for mitigating risks from misuse and misalignment. However, LLMs could evade monitoring through steganography: Encoding hidden information within seemingly benign generations. In this paper, we evaluate the steganography capabilities in frontier LLMs to better understand the risk they pose. We focus on two types of steganography: passing encoded messages and performing encoded reasoning. We find that current models are unable to encode short messages in their outputs without a monitor noticing under standard affordances. They can succeed, however, if given additional affordances such as using an unmonitored scratchpad and coordinating on what encoding scheme to use. We additionally find early signs that models can perform basic encoded reasoning in a simple state-tracking problem. This includes some ability to reason with their own and pre-defined schemes, including encoding schemes such as Hexadecimal. Despite this, they can rarely hide reasoning subtly within a cover task to fool a monitor. Overall, our results indicate that current LLMs exhibit nascent steganographic capabilities. While these capabilities are likely insufficient to bypass well-designed monitors at present, this could change in the future.
☆ Classification by Separating Hypersurfaces: An Entropic Approach
We consider the following classification problem: Given a population of individuals characterized by a set of attributes represented as a vector in ${\mathbb R}^N$, the goal is to find a hyperplane in ${\mathbb R}^N$ that separates two sets of points corresponding to two distinct classes. This problem, with a history dating back to the perceptron model, remains central to machine learning. In this paper we propose a novel approach by searching for a vector of parameters in a bounded $N$-dimensional hypercube centered at the origin and a positive vector in ${\mathbb R}^M$, obtained through the minimization of an entropy-based function defined over the space of unknown variables. The method extends to polynomial surfaces, allowing the separation of data points by more complex decision boundaries. This provides a robust alternative to traditional linear or quadratic optimization techniques, such as support vector machines and gradient descent. Numerical experiments demonstrate the efficiency and versatility of the method in handling diverse classification tasks, including linear and non-linear separability.
comment: 15 pages, 10 tables, 4 figures
☆ Bourbaki: Self-Generated and Goal-Conditioned MDPs for Theorem Proving
Reasoning remains a challenging task for large language models (LLMs), especially within the logically constrained environment of automated theorem proving (ATP), due to sparse rewards and the vast scale of proofs. These challenges are amplified in benchmarks like PutnamBench, which contains university-level problems requiring complex, multi-step reasoning. To address this, we introduce self-generated goal-conditioned MDPs (sG-MDPs), a new framework in which agents generate and pursue their subgoals based on the evolving proof state. Given this more structured generation of goals, the resulting problem becomes more amenable to search. We then apply Monte Carlo Tree Search (MCTS)-like algorithms to solve the sG-MDP, instantiating our approach in Bourbaki (7B), a modular system that can ensemble multiple 7B LLMs for subgoal generation and tactic synthesis. On PutnamBench, Bourbaki (7B) solves 26 problems, achieving new state-of-the-art results with models at this scale.
☆ Hierarchical Multi-Label Contrastive Learning for Protein-Protein Interaction Prediction Across Organisms
Recent advances in AI for science have highlighted the power of contrastive learning in bridging heterogeneous biological data modalities. Building on this paradigm, we propose HIPPO (HIerarchical Protein-Protein interaction prediction across Organisms), a hierarchical contrastive framework for protein-protein interaction(PPI) prediction, where protein sequences and their hierarchical attributes are aligned through multi-tiered biological representation matching. The proposed approach incorporates hierarchical contrastive loss functions that emulate the structured relationship among functional classes of proteins. The framework adaptively incorporates domain and family knowledge through a data-driven penalty mechanism, enforcing consistency between the learned embedding space and the intrinsic hierarchy of protein functions. Experiments on benchmark datasets demonstrate that HIPPO achieves state-of-the-art performance, outperforming existing methods and showing robustness in low-data regimes. Notably, the model demonstrates strong zero-shot transferability to other species without retraining, enabling reliable PPI prediction and functional inference even in less characterized or rare organisms where experimental data are limited. Further analysis reveals that hierarchical feature fusion is critical for capturing conserved interaction determinants, such as binding motifs and functional annotations. This work advances cross-species PPI prediction and provides a unified framework for interaction prediction in scenarios with sparse or imbalanced multi-species data.
☆ A Comprehensive Machine Learning Framework for Micromobility Demand Prediction
Dockless e-scooters, a key micromobility service, have emerged as eco-friendly and flexible urban transport alternatives. These services improve first and last-mile connectivity, reduce congestion and emissions, and complement public transport for short-distance travel. However, effective management of these services depends on accurate demand prediction, which is crucial for optimal fleet distribution and infrastructure planning. While previous studies have focused on analyzing spatial or temporal factors in isolation, this study introduces a framework that integrates spatial, temporal, and network dependencies for improved micromobility demand forecasting. This integration enhances accuracy while providing deeper insights into urban micromobility usage patterns. Our framework improves demand prediction accuracy by 27 to 49% over baseline models, demonstrating its effectiveness in capturing micromobility demand patterns. These findings support data-driven micromobility management, enabling optimized fleet distribution, cost reduction, and sustainable urban planning.
☆ A Forget-and-Grow Strategy for Deep Reinforcement Learning Scaling in Continuous Control
Deep reinforcement learning for continuous control has recently achieved impressive progress. However, existing methods often suffer from primacy bias, a tendency to overfit early experiences stored in the replay buffer, which limits an RL agent's sample efficiency and generalizability. In contrast, humans are less susceptible to such bias, partly due to infantile amnesia, where the formation of new neurons disrupts early memory traces, leading to the forgetting of initial experiences. Inspired by this dual processes of forgetting and growing in neuroscience, in this paper, we propose Forget and Grow (FoG), a new deep RL algorithm with two mechanisms introduced. First, Experience Replay Decay (ER Decay) "forgetting early experience", which balances memory by gradually reducing the influence of early experiences. Second, Network Expansion, "growing neural capacity", which enhances agents' capability to exploit the patterns of existing data by dynamically adding new parameters during training. Empirical results on four major continuous control benchmarks with more than 40 tasks demonstrate the superior performance of FoG against SoTA existing deep RL algorithms, including BRO, SimBa, and TD-MPC2.
☆ Fluid Democracy in Federated Data Aggregation ICML 2025
Federated learning (FL) mechanisms typically require each client to transfer their weights to a central server, irrespective of how useful they are. In order to avoid wasteful data transfer costs from clients to the central server, we propose the use of consensus based protocols to identify a subset of clients with most useful model weights at each data transfer step. First, we explore the application of existing fluid democracy protocols to FL from a performance standpoint, comparing them with traditional one-person-one-vote (also known as 1p1v or FedAvg). We propose a new fluid democracy protocol named viscous-retained democracy that always does better than 1p1v under the same assumptions as existing fluid democracy protocols while also not allowing for influence accumulation. Secondly, we identify weaknesses of fluid democracy protocols from an adversarial lens in terms of their dependence on topology and/ or number of adversaries required to negatively impact the global model weights. To this effect, we propose an algorithm (FedVRD) that dynamically limits the effect of adversaries while minimizing cost by leveraging the delegation topology.
comment: ICML 2025 Workshop on Collaborative and Federated Agentic Workflows
☆ Multi-Agent Reinforcement Learning for Dynamic Pricing in Supply Chains: Benchmarking Strategic Agent Behaviours under Realistically Simulated Market Conditions
This study investigates how Multi-Agent Reinforcement Learning (MARL) can improve dynamic pricing strategies in supply chains, particularly in contexts where traditional ERP systems rely on static, rule-based approaches that overlook strategic interactions among market actors. While recent research has applied reinforcement learning to pricing, most implementations remain single-agent and fail to model the interdependent nature of real-world supply chains. This study addresses that gap by evaluating the performance of three MARL algorithms: MADDPG, MADQN, and QMIX against static rule-based baselines, within a simulated environment informed by real e-commerce transaction data and a LightGBM demand prediction model. Results show that rule-based agents achieve near-perfect fairness (Jain's Index: 0.9896) and the highest price stability (volatility: 0.024), but they fully lack competitive dynamics. Among MARL agents, MADQN exhibits the most aggressive pricing behaviour, with the highest volatility and the lowest fairness (0.5844). MADDPG provides a more balanced approach, supporting market competition (share volatility: 9.5 pp) while maintaining relatively high fairness (0.8819) and stable pricing. These findings suggest that MARL introduces emergent strategic behaviour not captured by static pricing rules and may inform future developments in dynamic pricing.
☆ RLHGNN: Reinforcement Learning-driven Heterogeneous Graph Neural Network for Next Activity Prediction in Business Processes
Next activity prediction represents a fundamental challenge for optimizing business processes in service-oriented architectures such as microservices environments, distributed enterprise systems, and cloud-native platforms, which enables proactive resource allocation and dynamic service composition. Despite the prevalence of sequence-based methods, these approaches fail to capture non-sequential relationships that arise from parallel executions and conditional dependencies. Even though graph-based approaches address structural preservation, they suffer from homogeneous representations and static structures that apply uniform modeling strategies regardless of individual process complexity characteristics. To address these limitations, we introduce RLHGNN, a novel framework that transforms event logs into heterogeneous process graphs with three distinct edge types grounded in established process mining theory. Our approach creates four flexible graph structures by selectively combining these edges to accommodate different process complexities, and employs reinforcement learning formulated as a Markov Decision Process to automatically determine the optimal graph structure for each specific process instance. RLHGNN then applies heterogeneous graph convolution with relation-specific aggregation strategies to effectively predict the next activity. This adaptive methodology enables precise modeling of both sequential and non-sequential relationships in service interactions. Comprehensive evaluation on six real-world datasets demonstrates that RLHGNN consistently outperforms state-of-the-art approaches. Furthermore, it maintains an inference latency of approximately 1 ms per prediction, representing a highly practical solution suitable for real-time business process monitoring applications. The source code is available at https://github.com/Joker3993/RLHGNN.
comment: 15 pages, 7 figures. Business process prediction using reinforcement learning and heterogeneous graph neural networks
☆ Learning few-step posterior samplers by unfolding and distillation of diffusion models
Diffusion models (DMs) have emerged as powerful image priors in Bayesian computational imaging. Two primary strategies have been proposed for leveraging DMs in this context: Plug-and-Play methods, which are zero-shot and highly flexible but rely on approximations; and specialized conditional DMs, which achieve higher accuracy and faster inference for specific tasks through supervised training. In this work, we introduce a novel framework that integrates deep unfolding and model distillation to transform a DM image prior into a few-step conditional model for posterior sampling. A central innovation of our approach is the unfolding of a Markov chain Monte Carlo (MCMC) algorithm - specifically, the recently proposed LATINO Langevin sampler (Spagnoletti et al., 2025) - representing the first known instance of deep unfolding applied to a Monte Carlo sampling scheme. We demonstrate our proposed unfolded and distilled samplers through extensive experiments and comparisons with the state of the art, where they achieve excellent accuracy and computational efficiency, while retaining the flexibility to adapt to variations in the forward model at inference time.
comment: 28 pages, 16 figures, 10 tables
Detection of Disengagement from Voluntary Quizzes: An Explainable Machine Learning Approach in Higher Distance Education
Students disengaging from their tasks can have serious long-term consequences, including academic drop-out. This is particularly relevant for students in distance education. One way to measure the level of disengagement in distance education is to observe participation in non-mandatory exercises in different online courses. In this paper, we detect student disengagement in the non-mandatory quizzes of 42 courses in four semesters from a distance-based university. We carefully identified the most informative student log data that could be extracted and processed from Moodle. Then, eight machine learning algorithms were trained and compared to obtain the highest possible prediction accuracy. Using the SHAP method, we developed an explainable machine learning framework that allows practitioners to better understand the decisions of the trained algorithm. The experimental results show a balanced accuracy of 91\%, where about 85\% of disengaged students were correctly detected. On top of the highly predictive performance and explainable framework, we provide a discussion on how to design a timely intervention to minimise disengagement from voluntary tasks in online learning.
☆ Embedding-Based Federated Data Sharing via Differentially Private Conditional VAEs MICCAI 2025
Deep Learning (DL) has revolutionized medical imaging, yet its adoption is constrained by data scarcity and privacy regulations, limiting access to diverse datasets. Federated Learning (FL) enables decentralized training but suffers from high communication costs and is often restricted to a single downstream task, reducing flexibility. We propose a data-sharing method via Differentially Private (DP) generative models. By adopting foundation models, we extract compact, informative embeddings, reducing redundancy and lowering computational overhead. Clients collaboratively train a Differentially Private Conditional Variational Autoencoder (DP-CVAE) to model a global, privacy-aware data distribution, supporting diverse downstream tasks. Our approach, validated across multiple feature extractors, enhances privacy, scalability, and efficiency, outperforming traditional FL classifiers while ensuring differential privacy. Additionally, DP-CVAE produces higher-fidelity embeddings than DP-CGAN while requiring $5{\times}$ fewer parameters.
comment: Accepted to MICCAI 2025
☆ Guided Generation for Developable Antibodies ICML 2025
Therapeutic antibodies require not only high-affinity target engagement, but also favorable manufacturability, stability, and safety profiles for clinical effectiveness. These properties are collectively called `developability'. To enable a computational framework for optimizing antibody sequences for favorable developability, we introduce a guided discrete diffusion model trained on natural paired heavy- and light-chain sequences from the Observed Antibody Space (OAS) and quantitative developability measurements for 246 clinical-stage antibodies. To steer generation toward biophysically viable candidates, we integrate a Soft Value-based Decoding in Diffusion (SVDD) Module that biases sampling without compromising naturalness. In unconstrained sampling, our model reproduces global features of both the natural repertoire and approved therapeutics, and under SVDD guidance we achieve significant enrichment in predicted developability scores over unguided baselines. When combined with high-throughput developability assays, this framework enables an iterative, ML-driven pipeline for designing antibodies that satisfy binding and biophysical criteria in tandem.
comment: Published in ICML 2025 GenBio Workshop
☆ OmniDraft: A Cross-vocabulary, Online Adaptive Drafter for On-device Speculative Decoding
Speculative decoding generally dictates having a small, efficient draft model that is either pretrained or distilled offline to a particular target model series, for instance, Llama or Qwen models. However, within online deployment settings, there are two major challenges: 1) usage of a target model that is incompatible with the draft model; 2) expectation of latency improvements over usage and time. In this work, we propose OmniDraft, a unified framework that enables a single draft model to operate with any target model and adapt dynamically to user data. We introduce an online n-gram cache with hybrid distillation fine-tuning to address the cross-vocabulary mismatch across draft and target models; and further improve decoding speed by leveraging adaptive drafting techniques. OmniDraft is particularly suitable for on-device LLM applications where model cost, efficiency and user customization are the major points of contention. This further highlights the need to tackle the above challenges and motivates the \textit{``one drafter for all''} paradigm. We showcase the proficiency of the OmniDraft framework by performing online learning on math reasoning, coding and text generation tasks. Notably, OmniDraft enables a single Llama-68M model to pair with various target models including Vicuna-7B, Qwen2-7B and Llama3-8B models for speculative decoding; and additionally provides up to 1.5-2x speedup.
☆ Fair Deepfake Detectors Can Generalize
Deepfake detection models face two critical challenges: generalization to unseen manipulations and demographic fairness among population groups. However, existing approaches often demonstrate that these two objectives are inherently conflicting, revealing a trade-off between them. In this paper, we, for the first time, uncover and formally define a causal relationship between fairness and generalization. Building on the back-door adjustment, we show that controlling for confounders (data distribution and model capacity) enables improved generalization via fairness interventions. Motivated by this insight, we propose Demographic Attribute-insensitive Intervention Detection (DAID), a plug-and-play framework composed of: i) Demographic-aware data rebalancing, which employs inverse-propensity weighting and subgroup-wise feature normalization to neutralize distributional biases; and ii) Demographic-agnostic feature aggregation, which uses a novel alignment loss to suppress sensitive-attribute signals. Across three cross-domain benchmarks, DAID consistently achieves superior performance in both fairness and generalization compared to several state-of-the-art detectors, validating both its theoretical foundation and practical effectiveness.
comment: 14 pages, version 1
☆ On Efficient Bayesian Exploration in Model-Based Reinforcement Learning
In this work, we address the challenge of data-efficient exploration in reinforcement learning by examining existing principled, information-theoretic approaches to intrinsic motivation. Specifically, we focus on a class of exploration bonuses that targets epistemic uncertainty rather than the aleatoric noise inherent in the environment. We prove that these bonuses naturally signal epistemic information gains and converge to zero once the agent becomes sufficiently certain about the environment's dynamics and rewards, thereby aligning exploration with genuine knowledge gaps. Our analysis provides formal guarantees for IG-based approaches, which previously lacked theoretical grounding. To enable practical use, we also discuss tractable approximations via sparse variational Gaussian Processes, Deep Kernels and Deep Ensemble models. We then outline a general framework - Predictive Trajectory Sampling with Bayesian Exploration (PTS-BE) - which integrates model-based planning with information-theoretic bonuses to achieve sample-efficient deep exploration. We empirically demonstrate that PTS-BE substantially outperforms other baselines across a variety of environments characterized by sparse rewards and/or purely exploratory tasks.
☆ High-Order Deep Meta-Learning with Category-Theoretic Interpretation
We introduce a new hierarchical deep learning framework for recursive higher-order meta-learning that enables neural networks (NNs) to construct, solve, and generalise across hierarchies of tasks. Central to this approach is a generative mechanism that creates \emph{virtual tasks} -- synthetic problem instances designed to enable the meta-learner to learn \emph{soft constraints} and unknown generalisable rules across related tasks. Crucially, this enables the framework to generate its own informative, task-grounded datasets thereby freeing machine learning (ML) training from the limitations of relying entirely on human-generated data. By actively exploring the virtual point landscape and seeking out tasks lower-level learners find difficult, the meta-learner iteratively refines constraint regions. This enhances inductive biases, regularises the adaptation process, and produces novel, unanticipated tasks and constraints required for generalisation. Each meta-level of the hierarchy corresponds to a progressively abstracted generalisation of problems solved at lower levels, enabling a structured and interpretable learning progression. By interpreting meta-learners as category-theoretic \emph{functors} that generate and condition a hierarchy of subordinate learners, we establish a compositional structure that supports abstraction and knowledge transfer across progressively generalised tasks. The category-theoretic perspective unifies existing meta-learning models and reveals how learning processes can be transformed and compared through functorial relationships, while offering practical design principles for structuring meta-learning. We speculate this architecture may underpin the next generation of NNs capable of autonomously generating novel, instructive tasks and their solutions, thereby advancing ML towards general artificial intelligence.
☆ Medical Data Pecking: A Context-Aware Approach for Automated Quality Evaluation of Structured Medical Data
Background: The use of Electronic Health Records (EHRs) for epidemiological studies and artificial intelligence (AI) training is increasing rapidly. The reliability of the results depends on the accuracy and completeness of EHR data. However, EHR data often contain significant quality issues, including misrepresentations of subpopulations, biases, and systematic errors, as they are primarily collected for clinical and billing purposes. Existing quality assessment methods remain insufficient, lacking systematic procedures to assess data fitness for research. Methods: We present the Medical Data Pecking approach, which adapts unit testing and coverage concepts from software engineering to identify data quality concerns. We demonstrate our approach using the Medical Data Pecking Tool (MDPT), which consists of two main components: (1) an automated test generator that uses large language models and grounding techniques to create a test suite from data and study descriptions, and (2) a data testing framework that executes these tests, reporting potential errors and coverage. Results: We evaluated MDPT on three datasets: All of Us (AoU), MIMIC-III, and SyntheticMass, generating 55-73 tests per cohort across four conditions. These tests correctly identified 20-43 non-aligned or non-conforming data issues. We present a detailed analysis of the LLM-generated test suites in terms of reference grounding and value accuracy. Conclusion: Our approach incorporates external medical knowledge to enable context-sensitive data quality testing as part of the data analysis workflow to improve the validity of its outcomes. Our approach tackles these challenges from a quality assurance perspective, laying the foundation for further development such as additional data modalities and improved grounding methods.
comment: 18 pages, 4 figures (+ appendix)
☆ A Matrix Variational Auto-Encoder for Variant Effect Prediction in Pharmacogenes
Variant effect predictors (VEPs) aim to assess the functional impact of protein variants, traditionally relying on multiple sequence alignments (MSAs). This approach assumes that naturally occurring variants are fit, an assumption challenged by pharmacogenomics, where some pharmacogenes experience low evolutionary pressure. Deep mutational scanning (DMS) datasets provide an alternative by offering quantitative fitness scores for variants. In this work, we propose a transformer-based matrix variational auto-encoder (matVAE) with a structured prior and evaluate its performance on 33 DMS datasets corresponding to 26 drug target and ADME proteins from the ProteinGym benchmark. Our model trained on MSAs (matVAE-MSA) outperforms the state-of-the-art DeepSequence model in zero-shot prediction on DMS datasets, despite using an order of magnitude fewer parameters and requiring less computation at inference time. We also compare matVAE-MSA to matENC-DMS, a model of similar capacity trained on DMS data, and find that the latter performs better on supervised prediction tasks. Additionally, incorporating AlphaFold-generated structures into our transformer model further improves performance, achieving results comparable to DeepSequence trained on MSAs and finetuned on DMS. These findings highlight the potential of DMS datasets to replace MSAs without significant loss in predictive performance, motivating further development of DMS datasets and exploration of their relationships to enhance variant effect prediction.
comment: 12+8 pages
☆ L-VAE: Variational Auto-Encoder with Learnable Beta for Disentangled Representation
In this paper, we propose a novel model called Learnable VAE (L-VAE), which learns a disentangled representation together with the hyperparameters of the cost function. L-VAE can be considered as an extension of \b{eta}-VAE, wherein the hyperparameter, \b{eta}, is empirically adjusted. L-VAE mitigates the limitations of \b{eta}-VAE by learning the relative weights of the terms in the loss function to control the dynamic trade-off between disentanglement and reconstruction losses. In the proposed model, the weight of the loss terms and the parameters of the model architecture are learned concurrently. An additional regularization term is added to the loss function to prevent bias towards either reconstruction or disentanglement losses. Experimental analyses show that the proposed L-VAE finds an effective balance between reconstruction fidelity and disentangling the latent dimensions. Comparisons of the proposed L-VAE against \b{eta}-VAE, VAE, ControlVAE, DynamicVAE, and {\sigma}-VAE on datasets, such as dSprites, MPI3D-complex, Falcor3D, and Isaac3D reveals that L-VAE consistently provides the best or the second best performances measured by a set of disentanglement metrics. Moreover, qualitative experiments on CelebA dataset, confirm the success of the L-VAE model for disentangling the facial attributes.
comment: The paper is under revision at Machine Vision and Applications
☆ Lost in Latent Space: An Empirical Study of Latent Diffusion Models for Physics Emulation
The steep computational cost of diffusion models at inference hinders their use as fast physics emulators. In the context of image and video generation, this computational drawback has been addressed by generating in the latent space of an autoencoder instead of the pixel space. In this work, we investigate whether a similar strategy can be effectively applied to the emulation of dynamical systems and at what cost. We find that the accuracy of latent-space emulation is surprisingly robust to a wide range of compression rates (up to 1000x). We also show that diffusion-based emulators are consistently more accurate than non-generative counterparts and compensate for uncertainty in their predictions with greater diversity. Finally, we cover practical design choices, spanning from architectures to optimizers, that we found critical to train latent-space emulators.
☆ Alleviating Attack Data Scarcity: SCANIA's Experience Towards Enhancing In-Vehicle Cyber Security Measures
The digital evolution of connected vehicles and the subsequent security risks emphasize the critical need for implementing in-vehicle cyber security measures such as intrusion detection and response systems. The continuous advancement of attack scenarios further highlights the need for adaptive detection mechanisms that can detect evolving, unknown, and complex threats. The effective use of ML-driven techniques can help address this challenge. However, constraints on implementing diverse attack scenarios on test vehicles due to safety, cost, and ethical considerations result in a scarcity of data representing attack scenarios. This limitation necessitates alternative efficient and effective methods for generating high-quality attack-representing data. This paper presents a context-aware attack data generator that generates attack inputs and corresponding in-vehicle network log, i.e., controller area network (CAN) log, representing various types of attack including denial of service (DoS), fuzzy, spoofing, suspension, and replay attacks. It utilizes parameterized attack models augmented with CAN message decoding and attack intensity adjustments to configure the attack scenarios with high similarity to real-world scenarios and promote variability. We evaluate the practicality of the generated attack-representing data within an intrusion detection system (IDS) case study, in which we develop and perform an empirical evaluation of two deep neural network IDS models using the generated data. In addition to the efficiency and scalability of the approach, the performance results of IDS models, high detection and classification capabilities, validate the consistency and effectiveness of the generated data as well. In this experience study, we also elaborate on the aspects influencing the fidelity of the data to real-world scenarios and provide insights into its application.
☆ De-AntiFake: Rethinking the Protective Perturbations Against Voice Cloning Attacks ICML 2025
The rapid advancement of speech generation models has heightened privacy and security concerns related to voice cloning (VC). Recent studies have investigated disrupting unauthorized voice cloning by introducing adversarial perturbations. However, determined attackers can mitigate these protective perturbations and successfully execute VC. In this study, we conduct the first systematic evaluation of these protective perturbations against VC under realistic threat models that include perturbation purification. Our findings reveal that while existing purification methods can neutralize a considerable portion of the protective perturbations, they still lead to distortions in the feature space of VC models, which degrades the performance of VC. From this perspective, we propose a novel two-stage purification method: (1) Purify the perturbed speech; (2) Refine it using phoneme guidance to align it with the clean speech distribution. Experimental results demonstrate that our method outperforms state-of-the-art purification methods in disrupting VC defenses. Our study reveals the limitations of adversarial perturbation-based VC defenses and underscores the urgent need for more robust solutions to mitigate the security and privacy risks posed by VC. The code and audio samples are available at https://de-antifake.github.io.
comment: Accepted by ICML 2025
☆ Padé Approximant Neural Networks for Enhanced Electric Motor Fault Diagnosis Using Vibration and Acoustic Data
Purpose: The primary aim of this study is to enhance fault diagnosis in induction machines by leveraging the Pad\'e Approximant Neuron (PAON) model. While accelerometers and microphones are standard in motor condition monitoring, deep learning models with nonlinear neuron architectures offer promising improvements in diagnostic performance. This research addresses the question: Can Pad\'e Approximant Neural Networks (Pad\'eNets) outperform conventional Convolutional Neural Networks (CNNs) and Self-Organized Operational Neural Networks (Self-ONNs) in diagnosing electrical and mechanical faults using vibration and acoustic data? Methods: We evaluate and compare the diagnostic capabilities of three deep learning architectures: one-dimensional CNNs, Self-ONNs, and Pad\'eNets. These models are tested on the University of Ottawa's publicly available constant-speed induction motor datasets, which include both vibration and acoustic sensor data. The Pad\'eNet model is designed to introduce enhanced nonlinearity and is compatible with unbounded activation functions such as Leaky ReLU. Results and Conclusion: Pad\'eNets consistently outperformed the baseline models, achieving diagnostic accuracies of 99.96%, 98.26%, 97.61%, and 98.33% for accelerometers 1, 2, 3, and the acoustic sensor, respectively. The enhanced nonlinearity of Pad\'eNets, together with their compatibility with unbounded activation functions, significantly improves fault diagnosis performance in induction motor condition monitoring.
comment: Submitted to the Journal of Vibration Engineering & Technologies
☆ Revisiting Active Learning under (Human) Label Variation
Access to high-quality labeled data remains a limiting factor in applied supervised learning. While label variation (LV), i.e., differing labels for the same instance, is common, especially in natural language processing, annotation frameworks often still rest on the assumption of a single ground truth. This overlooks human label variation (HLV), the occurrence of plausible differences in annotations, as an informative signal. Similarly, active learning (AL), a popular approach to optimizing the use of limited annotation budgets in training ML models, often relies on at least one of several simplifying assumptions, which rarely hold in practice when acknowledging HLV. In this paper, we examine foundational assumptions about truth and label nature, highlighting the need to decompose observed LV into signal (e.g., HLV) and noise (e.g., annotation error). We survey how the AL and (H)LV communities have addressed -- or neglected -- these distinctions and propose a conceptual framework for incorporating HLV throughout the AL loop, including instance selection, annotator choice, and label representation. We further discuss the integration of large language models (LLM) as annotators. Our work aims to lay a conceptual foundation for HLV-aware active learning, better reflecting the complexities of real-world annotation.
☆ Scalable Interconnect Learning in Boolean Networks
Learned Differentiable Boolean Logic Networks (DBNs) already deliver efficient inference on resource-constrained hardware. We extend them with a trainable, differentiable interconnect whose parameter count remains constant as input width grows, allowing DBNs to scale to far wider layers than earlier learnable-interconnect designs while preserving their advantageous accuracy. To further reduce model size, we propose two complementary pruning stages: an SAT-based logic equivalence pass that removes redundant gates without affecting performance, and a similarity-based, data-driven pass that outperforms a magnitude-style greedy baseline and offers a superior compression-accuracy trade-off.
comment: 12 pages, 8 Figures
Transformers Don't Need LayerNorm at Inference Time: Scaling LayerNorm Removal to GPT-2 XL and the Implications for Mechanistic Interpretability
Layer-wise normalization (LN) is an essential component of virtually all transformer-based large language models. While its effects on training stability are well documented, its role at inference time is poorly understood. Additionally, LN layers hinder mechanistic interpretability by introducing additional nonlinearities and increasing the interconnectedness of individual model components. Here, we show that all LN layers can be removed from every GPT-2 model with only a small increase in validation loss (e.g. +0.03 cross-entropy loss for GPT-2 XL). Thus, LN cannot play a substantial role in language modeling. We find that the amount of fine-tuning data needed for LN removal grows sublinearly with model parameters, suggesting scaling to larger models is feasible. We release a suite of LN-free GPT-2 models on Hugging Face. Furthermore, we test interpretability techniques on LN-free models. Direct logit attribution now gives the exact direct effect of individual components, while the accuracy of attribution patching does not significantly improve. We also confirm that GPT-2's "confidence neurons" are inactive in the LN-free models. Our work clarifies the role of LN layers in language modeling, showing that GPT-2-class models can function without LN layers. We hope that our LN-free analogs of the GPT-2 family of models will enable more precise interpretability research and improve our understanding of language models.
☆ AI Research Agents for Machine Learning: Search, Exploration, and Generalization in MLE-bench
AI research agents are demonstrating great potential to accelerate scientific progress by automating the design, implementation, and training of machine learning models. We focus on methods for improving agents' performance on MLE-bench, a challenging benchmark where agents compete in Kaggle competitions to solve real-world machine learning problems. We formalize AI research agents as search policies that navigate a space of candidate solutions, iteratively modifying them using operators. By designing and systematically varying different operator sets and search policies (Greedy, MCTS, Evolutionary), we show that their interplay is critical for achieving high performance. Our best pairing of search strategy and operator set achieves a state-of-the-art result on MLE-bench lite, increasing the success rate of achieving a Kaggle medal from 39.6% to 47.7%. Our investigation underscores the importance of jointly considering the search strategy, operator design, and evaluation methodology in advancing automated machine learning.
comment: Code: https://github.com/facebookresearch/aira-dojo
☆ Position: A Theory of Deep Learning Must Include Compositional Sparsity
Overparametrized Deep Neural Networks (DNNs) have demonstrated remarkable success in a wide variety of domains too high-dimensional for classical shallow networks subject to the curse of dimensionality. However, open questions about fundamental principles, that govern the learning dynamics of DNNs, remain. In this position paper we argue that it is the ability of DNNs to exploit the compositionally sparse structure of the target function driving their success. As such, DNNs can leverage the property that most practically relevant functions can be composed from a small set of constituent functions, each of which relies only on a low-dimensional subset of all inputs. We show that this property is shared by all efficiently Turing-computable functions and is therefore highly likely present in all current learning problems. While some promising theoretical insights on questions concerned with approximation and generalization exist in the setting of compositionally sparse functions, several important questions on the learnability and optimization of DNNs remain. Completing the picture of the role of compositional sparsity in deep learning is essential to a comprehensive theory of artificial, and even general, intelligence.
☆ RetrySQL: text-to-SQL training with retry data for self-correcting query generation
The text-to-SQL task is an active challenge in Natural Language Processing. Many existing solutions focus on using black-box language models extended with specialized components within customized end-to-end text-to-SQL pipelines. While these solutions use both closed-source proprietary language models and coding-oriented open-source models, there is a lack of research regarding SQL-specific generative models. At the same time, recent advancements in self-correcting generation strategies show promise for improving the capabilities of existing architectures. The application of these concepts to the text-to-SQL task remains unexplored. In this paper, we introduce RetrySQL, a new approach to training text-to-SQL generation models. We prepare reasoning steps for reference SQL queries and then corrupt them to create retry data that contains both incorrect and corrected steps, divided with a special token. We continuously pre-train an open-source coding model with this data and demonstrate that retry steps yield an improvement of up to 4 percentage points in both overall and challenging execution accuracy metrics, compared to pre-training without retry data. Additionally, we confirm that supervised fine-tuning with LoRA is ineffective for learning from retry data and that full-parameter pre-training is a necessary requirement for that task. We showcase that the self-correcting behavior is learned by the model and the increase in downstream accuracy metrics is a result of this additional skill. Finally, we incorporate RetrySQL-trained models into the full text-to-SQL pipeline and showcase that they are competitive in terms of execution accuracy with proprietary models that contain orders of magnitude more parameters. RetrySQL demonstrates that self-correction can be learned in the text-to-SQL task and provides a novel way of improving generation accuracy for SQL-oriented language models.
☆ TFOC-Net: A Short-time Fourier Transform-based Deep Learning Approach for Enhancing Cross-Subject Motor Imagery Classification
Cross-subject motor imagery (CS-MI) classification in brain-computer interfaces (BCIs) is a challenging task due to the significant variability in Electroencephalography (EEG) patterns across different individuals. This variability often results in lower classification accuracy compared to subject-specific models, presenting a major barrier to developing calibration-free BCIs suitable for real-world applications. In this paper, we introduce a novel approach that significantly enhances cross-subject MI classification performance through optimized preprocessing and deep learning techniques. Our approach involves direct classification of Short-Time Fourier Transform (STFT)-transformed EEG data, optimized STFT parameters, and a balanced batching strategy during training of a Convolutional Neural Network (CNN). This approach is uniquely validated across four different datasets, including three widely-used benchmark datasets leading to substantial improvements in cross-subject classification, achieving 67.60% on the BCI Competition IV Dataset 1 (IV-1), 65.96% on Dataset 2A (IV-2A), and 80.22% on Dataset 2B (IV-2B), outperforming state-of-the-art techniques. Additionally, we systematically investigate the classification performance using MI windows ranging from the full 4-second window to 1-second windows. These results establish a new benchmark for generalizable, calibration-free MI classification in addition to contributing a robust open-access dataset to advance research in this domain.
☆ IndianBailJudgments-1200: A Multi-Attribute Dataset for Legal NLP on Indian Bail Orders
Legal NLP remains underdeveloped in regions like India due to the scarcity of structured datasets. We introduce IndianBailJudgments-1200, a new benchmark dataset comprising 1200 Indian court judgments on bail decisions, annotated across 20+ attributes including bail outcome, IPC sections, crime type, and legal reasoning. Annotations were generated using a prompt-engineered GPT-4o pipeline and verified for consistency. This resource supports a wide range of legal NLP tasks such as outcome prediction, summarization, and fairness analysis, and is the first publicly available dataset focused specifically on Indian bail jurisprudence.
comment: 9 pages, 9 figures, 2 tables. Dataset available at Hugging Face and GitHub. Submitted to arXiv for open access
☆ Continual Gradient Low-Rank Projection Fine-Tuning for LLMs ACL 2025
Continual fine-tuning of Large Language Models (LLMs) is hampered by the trade-off between efficiency and expressiveness. Low-Rank Adaptation (LoRA) offers efficiency but constrains the model's ability to learn new tasks and transfer knowledge due to its low-rank nature and reliance on explicit parameter constraints. We propose GORP (Gradient LOw Rank Projection) for Continual Learning, a novel training strategy that overcomes these limitations by synergistically combining full and low-rank parameters and jointly updating within a unified low-rank gradient subspace. GORP expands the optimization space while preserving efficiency and mitigating catastrophic forgetting. Extensive experiments on continual learning benchmarks demonstrate GORP's superior performance compared to existing state-of-the-art approaches. Code is available at https://github.com/Wcxwcxw/GORP.
comment: 15 pages, 6 figures, accepted by ACL 2025 main
☆ Online Conformal Prediction with Efficiency Guarantees
We study the problem of conformal prediction in a novel online framework that directly optimizes efficiency. In our problem, we are given a target miscoverage rate $\alpha > 0$, and a time horizon $T$. On each day $t \le T$ an algorithm must output an interval $I_t \subseteq [0, 1]$, then a point $y_t \in [0, 1]$ is revealed. The goal of the algorithm is to achieve coverage, that is, $y_t \in I_t$ on (close to) a $(1 - \alpha)$-fraction of days, while maintaining efficiency, that is, minimizing the average volume (length) of the intervals played. This problem is an online analogue to the problem of constructing efficient confidence intervals. We study this problem over arbitrary and exchangeable (random order) input sequences. For exchangeable sequences, we show that it is possible to construct intervals that achieve coverage $(1 - \alpha) - o(1)$, while having length upper bounded by the best fixed interval that achieves coverage in hindsight. For arbitrary sequences however, we show that any algorithm that achieves a $\mu$-approximation in average length compared to the best fixed interval achieving coverage in hindsight, must make a multiplicative factor more mistakes than $\alpha T$, where the multiplicative factor depends on $\mu$ and the aspect ratio of the problem. Our main algorithmic result is a matching algorithm that can recover all Pareto-optimal settings of $\mu$ and number of mistakes. Furthermore, our algorithm is deterministic and therefore robust to an adaptive adversary. This gap between the exchangeable and arbitrary settings is in contrast to the classical online learning problem. In fact, we show that no single algorithm can simultaneously be Pareto-optimal for arbitrary sequences and optimal for exchangeable sequences. On the algorithmic side, we give an algorithm that achieves the near-optimal tradeoff between the two cases.
☆ MC-INR: Efficient Encoding of Multivariate Scientific Simulation Data using Meta-Learning and Clustered Implicit Neural Representations
Implicit Neural Representations (INRs) are widely used to encode data as continuous functions, enabling the visualization of large-scale multivariate scientific simulation data with reduced memory usage. However, existing INR-based methods face three main limitations: (1) inflexible representation of complex structures, (2) primarily focusing on single-variable data, and (3) dependence on structured grids. Thus, their performance degrades when applied to complex real-world datasets. To address these limitations, we propose a novel neural network-based framework, MC-INR, which handles multivariate data on unstructured grids. It combines meta-learning and clustering to enable flexible encoding of complex structures. To further improve performance, we introduce a residual-based dynamic re-clustering mechanism that adaptively partitions clusters based on local error. We also propose a branched layer to leverage multivariate data through independent branches simultaneously. Experimental results demonstrate that MC-INR outperforms existing methods on scientific data encoding tasks.
comment: 5 pages
☆ Variational Kolmogorov-Arnold Network IJCNN'25
Kolmogorov Arnold Networks (KANs) are an emerging architecture for building machine learning models. KANs are based on the theoretical foundation of the Kolmogorov-Arnold Theorem and its expansions, which provide an exact representation of a multi-variate continuous bounded function as the composition of a limited number of univariate continuous functions. While such theoretical results are powerful, their use as a representation learning alternative to a multi-layer perceptron (MLP) hinges on the ad-hoc choice of the number of bases modeling each of the univariate functions. In this work, we show how to address this problem by adaptively learning a potentially infinite number of bases for each univariate function during training. We therefore model the problem as a variational inference optimization problem. Our proposal, called InfinityKAN, which uses backpropagation, extends the potential applicability of KANs by treating an important hyperparameter as part of the learning process.
comment: A preliminary (short paper) version presented at ComBayNS Workshop at IJCNN'25
☆ Red grape detection with accelerated artificial neural networks in the FPGA's programmable logic
Robots usually slow down for canning to detect objects while moving. Additionally, the robot's camera is configured with a low framerate to track the velocity of the detection algorithms. This would be constrained while executing tasks and exploring, making robots increase the task execution time. AMD has developed the Vitis-AI framework to deploy detection algorithms into FPGAs. However, this tool does not fully use the FPGAs' PL. In this work, we use the FINN architecture to deploy three ANNs, MobileNet v1 with 4-bit quantisation, CNV with 2-bit quantisation, and CNV with 1-bit quantisation (BNN), inside an FPGA's PL. The models were trained on the RG2C dataset. This is a self-acquired dataset released in open access. MobileNet v1 performed better, reaching a success rate of 98 % and an inference speed of 6611 FPS. In this work, we proved that we can use FPGAs to speed up ANNs and make them suitable for attention mechanisms.
comment: Submitted to ROBOT'2025
☆ Determination Of Structural Cracks Using Deep Learning Frameworks
Structural crack detection is a critical task for public safety as it helps in preventing potential structural failures that could endanger lives. Manual detection by inexperienced personnel can be slow, inconsistent, and prone to human error, which may compromise the reliability of assessments. The current study addresses these challenges by introducing a novel deep-learning architecture designed to enhance the accuracy and efficiency of structural crack detection. In this research, various configurations of residual U-Net models were utilized. These models, due to their robustness in capturing fine details, were further integrated into an ensemble with a meta-model comprising convolutional blocks. This unique combination aimed to boost prediction efficiency beyond what individual models could achieve. The ensemble's performance was evaluated against well-established architectures such as SegNet and the traditional U-Net. Results demonstrated that the residual U-Net models outperformed their predecessors, particularly with low-resolution imagery, and the ensemble model exceeded the performance of individual models, proving it as the most effective. The assessment was based on the Intersection over Union (IoU) metric and DICE coefficient. The ensemble model achieved the highest scores, signifying superior accuracy. This advancement suggests way for more reliable automated systems in structural defects monitoring tasks.
comment: This is the accepted version of the paper presented in IEEE CONIT 2025 held on 20th June 2025. This is not the camera-ready version. There are 6 pages in this paper and it contains 7 figures and 1 table
☆ S2FGL: Spatial Spectral Federated Graph Learning
Federated Graph Learning (FGL) combines the privacy-preserving capabilities of federated learning (FL) with the strong graph modeling capability of Graph Neural Networks (GNNs). Current research addresses subgraph-FL only from the structural perspective, neglecting the propagation of graph signals on spatial and spectral domains of the structure. From a spatial perspective, subgraph-FL introduces edge disconnections between clients, leading to disruptions in label signals and a degradation in the class knowledge of the global GNN. From a spectral perspective, spectral heterogeneity causes inconsistencies in signal frequencies across subgraphs, which makes local GNNs overfit the local signal propagation schemes. As a result, spectral client drifts occur, undermining global generalizability. To tackle the challenges, we propose a global knowledge repository to mitigate label signal disruption and a frequency alignment to address spectral client drifts. The combination of spatial and spectral strategies forms our framework S2FGL. Extensive experiments on multiple datasets demonstrate the superiority of S2FGL. The code is available at https://github.com/Wonder7racer/S2FGL.git.
☆ Benchmarking Akan ASR Models Across Domain-Specific Datasets: A Comparative Evaluation of Performance, Scalability, and Adaptability
Most existing automatic speech recognition (ASR) research evaluate models using in-domain datasets. However, they seldom evaluate how they generalize across diverse speech contexts. This study addresses this gap by benchmarking seven Akan ASR models built on transformer architectures, such as Whisper and Wav2Vec2, using four Akan speech corpora to determine their performance. These datasets encompass various domains, including culturally relevant image descriptions, informal conversations, biblical scripture readings, and spontaneous financial dialogues. A comparison of the word error rate and character error rate highlighted domain dependency, with models performing optimally only within their training domains while showing marked accuracy degradation in mismatched scenarios. This study also identified distinct error behaviors between the Whisper and Wav2Vec2 architectures. Whereas fine-tuned Whisper Akan models led to more fluent but potentially misleading transcription errors, Wav2Vec2 produced more obvious yet less interpretable outputs when encountering unfamiliar inputs. This trade-off between readability and transparency in ASR errors should be considered when selecting architectures for low-resource language (LRL) applications. These findings highlight the need for targeted domain adaptation techniques, adaptive routing strategies, and multilingual training frameworks for Akan and other LRLs.
comment: This version has been reviewed and accepted for presentation at the Future Technologies Conference (FTC) 2025, to be held on 6 & 7 November 2025 in Munich, Germany. 17 pages, 4 figures, 1 table
☆ Improving Consistency in Vehicle Trajectory Prediction Through Preference Optimization SC 2025
Trajectory prediction is an essential step in the pipeline of an autonomous vehicle. Inaccurate or inconsistent predictions regarding the movement of agents in its surroundings lead to poorly planned maneuvers and potentially dangerous situations for the end-user. Current state-of-the-art deep-learning-based trajectory prediction models can achieve excellent accuracy on public datasets. However, when used in more complex, interactive scenarios, they often fail to capture important interdependencies between agents, leading to inconsistent predictions among agents in the traffic scene. Inspired by the efficacy of incorporating human preference into large language models, this work fine-tunes trajectory prediction models in multi-agent settings using preference optimization. By taking as input automatically calculated preference rankings among predicted futures in the fine-tuning process, our experiments--using state-of-the-art models on three separate datasets--show that we are able to significantly improve scene consistency while minimally sacrificing trajectory prediction accuracy and without adding any excess computational requirements at inference time.
comment: Accepted for publication at ITSC 2025
☆ Wildlife Target Re-Identification Using Self-supervised Learning in Non-Urban Settings
Wildlife re-identification aims to match individuals of the same species across different observations. Current state-of-the-art (SOTA) models rely on class labels to train supervised models for individual classification. This dependence on annotated data has driven the curation of numerous large-scale wildlife datasets. This study investigates self-supervised learning Self-Supervised Learning (SSL) for wildlife re-identification. We automatically extract two distinct views of an individual using temporal image pairs from camera trap data without supervision. The image pairs train a self-supervised model from a potentially endless stream of video data. We evaluate the learnt representations against supervised features on open-world scenarios and transfer learning in various wildlife downstream tasks. The analysis of the experimental results shows that self-supervised models are more robust even with limited data. Moreover, self-supervised features outperform supervision across all downstream tasks. The code is available here https://github.com/pxpana/SSLWildlife.
comment: Accepted for publication in IEEE Xplore and ISIF FUSION 2025 proceedings:
☆ TABNet: A Triplet Augmentation Self-Recovery Framework with Boundary-Aware Pseudo-Labels for Medical Image Segmentation
Background and objective: Medical image segmentation is a core task in various clinical applications. However, acquiring large-scale, fully annotated medical image datasets is both time-consuming and costly. Scribble annotations, as a form of sparse labeling, provide an efficient and cost-effective alternative for medical image segmentation. However, the sparsity of scribble annotations limits the feature learning of the target region and lacks sufficient boundary supervision, which poses significant challenges for training segmentation networks. Methods: We propose TAB Net, a novel weakly-supervised medical image segmentation framework, consisting of two key components: the triplet augmentation self-recovery (TAS) module and the boundary-aware pseudo-label supervision (BAP) module. The TAS module enhances feature learning through three complementary augmentation strategies: intensity transformation improves the model's sensitivity to texture and contrast variations, cutout forces the network to capture local anatomical structures by masking key regions, and jigsaw augmentation strengthens the modeling of global anatomical layout by disrupting spatial continuity. By guiding the network to recover complete masks from diverse augmented inputs, TAS promotes a deeper semantic understanding of medical images under sparse supervision. The BAP module enhances pseudo-supervision accuracy and boundary modeling by fusing dual-branch predictions into a loss-weighted pseudo-label and introducing a boundary-aware loss for fine-grained contour refinement. Results: Experimental evaluations on two public datasets, ACDC and MSCMR seg, demonstrate that TAB Net significantly outperforms state-of-the-art methods for scribble-based weakly supervised segmentation. Moreover, it achieves performance comparable to that of fully supervised methods.
☆ Posterior Transition Modeling for Unsupervised Diffusion-Based Speech Enhancement
We explore unsupervised speech enhancement using diffusion models as expressive generative priors for clean speech. Existing approaches guide the reverse diffusion process using noisy speech through an approximate, noise-perturbed likelihood score, combined with the unconditional score via a trade-off hyperparameter. In this work, we propose two alternative algorithms that directly model the conditional reverse transition distribution of diffusion states. The first method integrates the diffusion prior with the observation model in a principled way, removing the need for hyperparameter tuning. The second defines a diffusion process over the noisy speech itself, yielding a fully tractable and exact likelihood score. Experiments on the WSJ0-QUT and VoiceBank-DEMAND datasets demonstrate improved enhancement metrics and greater robustness to domain shifts compared to both supervised and unsupervised baselines.
☆ Sparse Gaussian Processes: Structured Approximations and Power-EP Revisited
Inducing-point-based sparse variational Gaussian processes have become the standard workhorse for scaling up GP models. Recent advances show that these methods can be improved by introducing a diagonal scaling matrix to the conditional posterior density given the inducing points. This paper first considers an extension that employs a block-diagonal structure for the scaling matrix, provably tightening the variational lower bound. We then revisit the unifying framework of sparse GPs based on Power Expectation Propagation (PEP) and show that it can leverage and benefit from the new structured approximate posteriors. Through extensive regression experiments, we show that the proposed block-diagonal approximation consistently performs similarly to or better than existing diagonal approximations while maintaining comparable computational costs. Furthermore, the new PEP framework with structured posteriors provides competitive performance across various power hyperparameter settings, offering practitioners flexible alternatives to standard variational approaches.
☆ Deep Reinforcement Learning-Based DRAM Equalizer Parameter Optimization Using Latent Representations
Equalizer parameter optimization for signal integrity in high-speed Dynamic Random Access Memory systems is crucial but often computationally demanding or model-reliant. This paper introduces a data-driven framework employing learned latent signal representations for efficient signal integrity evaluation, coupled with a model-free Advantage Actor-Critic reinforcement learning agent for parameter optimization. The latent representation captures vital signal integrity features, offering a fast alternative to direct eye diagram analysis during optimization, while the reinforcement learning agent derives optimal equalizer settings without explicit system models. Applied to industry-standard Dynamic Random Access Memory waveforms, the method achieved significant eye-opening window area improvements: 42.7\% for cascaded Continuous-Time Linear Equalizer and Decision Feedback Equalizer structures, and 36.8\% for Decision Feedback Equalizer-only configurations. These results demonstrate superior performance, computational efficiency, and robust generalization across diverse Dynamic Random Access Memory units compared to existing techniques. Core contributions include an efficient latent signal integrity metric for optimization, a robust model-free reinforcement learning strategy, and validated superior performance for complex equalizer architectures.
☆ Offline Reinforcement Learning with Penalized Action Noise Injection
Offline reinforcement learning (RL) optimizes a policy using only a fixed dataset, making it a practical approach in scenarios where interaction with the environment is costly. Due to this limitation, generalization ability is key to improving the performance of offline RL algorithms, as demonstrated by recent successes of offline RL with diffusion models. However, it remains questionable whether such diffusion models are necessary for highly performing offline RL algorithms, given their significant computational requirements during inference. In this paper, we propose Penalized Action Noise Injection (PANI), a method that simply enhances offline learning by utilizing noise-injected actions to cover the entire action space, while penalizing according to the amount of noise injected. This approach is inspired by how diffusion models have worked in offline RL algorithms. We provide a theoretical foundation for this method, showing that offline RL algorithms with such noise-injected actions solve a modified Markov Decision Process (MDP), which we call the noisy action MDP. PANI is compatible with a wide range of existing off-policy and offline RL algorithms, and despite its simplicity, it demonstrates significant performance improvements across various benchmarks.
☆ DeltaSHAP: Explaining Prediction Evolutions in Online Patient Monitoring with Shapley Values ICML 2025
This study proposes DeltaSHAP, a novel explainable artificial intelligence (XAI) algorithm specifically designed for online patient monitoring systems. In clinical environments, discovering the causes driving patient risk evolution is critical for timely intervention, yet existing XAI methods fail to address the unique requirements of clinical time series explanation tasks. To this end, DeltaSHAP addresses three key clinical needs: explaining the changes in the consecutive predictions rather than isolated prediction scores, providing both magnitude and direction of feature attributions, and delivering these insights in real time. By adapting Shapley values to temporal settings, our approach accurately captures feature coalition effects. It further attributes prediction changes using only the actually observed feature combinations, making it efficient and practical for time-sensitive clinical applications. We also introduce new evaluation metrics to evaluate the faithfulness of the attributions for online time series, and demonstrate through experiments on online patient monitoring tasks that DeltaSHAP outperforms state-of-the-art XAI methods in both explanation quality as 62% and computational efficiency as 33% time reduction on the MIMIC-III decompensation benchmark. We release our code at https://github.com/AITRICS/DeltaSHAP.
comment: Accepted to ICML 2025 Workshop on Actionable Interpretability. Code is available at https://github.com/AITRICS/DeltaSHAP
☆ Path Planning using a One-shot-sampling Skeleton Map
Path planning algorithms aim to compute a collision-free path, and many works focus on finding the optimal distance path. However, for some applications, a more suitable approach is to balance response time, safety of the paths, and path length. In this context, a skeleton map is a useful tool in graph-based schemes, as it provides an intrinsic representation of free configuration space. However, skeletonization algorithms are very resource-intensive, being primarily oriented towards image processing tasks. We propose an efficient path-planning methodology that finds safe paths within an acceptable processing time. This methodology leverages a Deep Denoising Auto-Encoder (DDAE) based on U-Net architecture to compute a skeletonized version of the navigation map, which we refer to as SkelUnet. The SkelUnet network facilitates exploration of the entire workspace through one-shot sampling (OSS), as opposed to the iterative process used by exact algorithms or the probabilistic sampling process. SkelUnet is trained and tested on a dataset consisting of 12,500 bi-dimensional dungeon maps. The motion planning methodology is evaluated in a simulation environment for an Unmanned Aerial Vehicle (UAV) using 250 previously unseen maps, and assessed with various navigation metrics to quantify the navigability of the computed paths. The results demonstrate that using SkelUnet to construct a roadmap offers significant advantages, such as connecting all regions of free workspace, providing safer paths, and reducing processing times. These characteristics make this method particularly suitable for mobile service robots in structured environments.
Transformer-based EEG Decoding: A Survey
Electroencephalography (EEG) is one of the most common signals used to capture the electrical activity of the brain, and the decoding of EEG, to acquire the user intents, has been at the forefront of brain-computer/machine interfaces (BCIs/BMIs) research. Compared to traditional EEG analysis methods with machine learning, the advent of deep learning approaches have gradually revolutionized the field by providing an end-to-end long-cascaded architecture, which can learn more discriminative features automatically. Among these, Transformer is renowned for its strong handling capability of sequential data by the attention mechanism, and the application of Transformers in various EEG processing tasks is increasingly prevalent. This article delves into a relevant survey, summarizing the latest application of Transformer models in EEG decoding since it appeared. The evolution of the model architecture is followed to sort and organize the related advances, in which we first elucidate the fundamentals of the Transformer that benefits EEG decoding and its direct application. Then, the common hybrid architectures by integrating basic Transformer with other deep learning techniques (convolutional/recurrent/graph/spiking neural netwo-rks, generative adversarial networks, diffusion models, etc.) is overviewed in detail. The research advances of applying the modified intrinsic structures of customized Transformer have also been introduced. Finally, the current challenges and future development prospects in this rapidly evolving field are discussed. This paper aims to help readers gain a clear understanding of the current state of Transformer applications in EEG decoding and to provide valuable insights for future research endeavors.
comment: Submitted to IEEE Journals
☆ Improving Constrained Generation in Language Models via Self-Distilled Twisted Sequential Monte Carlo
Recent work has framed constrained text generation with autoregressive language models as a probabilistic inference problem. Among these, Zhao et al. (2024) introduced a promising approach based on twisted Sequential Monte Carlo, which incorporates learned twist functions and twist-induced proposals to guide the generation process. However, in constrained generation settings where the target distribution concentrates on outputs that are unlikely under the base model, learning becomes challenging due to sparse and uninformative reward signals. We show that iteratively refining the base model through self-distillation alleviates this issue by making the model progressively more aligned with the target, leading to substantial gains in generation quality.
☆ Holistic Continual Learning under Concept Drift with Adaptive Memory Realignment
Traditional continual learning methods prioritize knowledge retention and focus primarily on mitigating catastrophic forgetting, implicitly assuming that the data distribution of previously learned tasks remains static. This overlooks the dynamic nature of real-world data streams, where concept drift permanently alters previously seen data and demands both stability and rapid adaptation. We introduce a holistic framework for continual learning under concept drift that simulates realistic scenarios by evolving task distributions. As a baseline, we consider Full Relearning (FR), in which the model is retrained from scratch on newly labeled samples from the drifted distribution. While effective, this approach incurs substantial annotation and computational overhead. To address these limitations, we propose Adaptive Memory Realignment (AMR), a lightweight alternative that equips rehearsal-based learners with a drift-aware adaptation mechanism. AMR selectively removes outdated samples of drifted classes from the replay buffer and repopulates it with a small number of up-to-date instances, effectively realigning memory with the new distribution. This targeted resampling matches the performance of FR while reducing the need for labeled data and computation by orders of magnitude. To enable reproducible evaluation, we introduce four concept-drift variants of standard vision benchmarks: Fashion-MNIST-CD, CIFAR10-CD, CIFAR100-CD, and Tiny-ImageNet-CD, where previously seen classes reappear with shifted representations. Comprehensive experiments on these datasets using several rehearsal-based baselines show that AMR consistently counters concept drift, maintaining high accuracy with minimal overhead. These results position AMR as a scalable solution that reconciles stability and plasticity in non-stationary continual learning environments.
☆ DoMIX: An Efficient Framework for Exploiting Domain Knowledge in Fine-Tuning ACL 2025
Domain-Adaptive Pre-training (DAP) has recently gained attention for its effectiveness in fine-tuning pre-trained models. Building on this, continual DAP has been explored to develop pre-trained models capable of incrementally incorporating different domain datasets. However, existing continual DAP methods face several limitations: (1) high computational cost and GPU memory usage during training; (2) sensitivity to incremental data order; and (3) providing a single, generalized model for all end tasks, which contradicts the essence of DAP. In this paper, we propose DoMIX, a novel approach that addresses these challenges by leveraging LoRA modules, a representative parameter-efficient fine-tuning (PEFT) method. Our approach enables efficient and parallel domain-adaptive pre-training that is robust to domain order and effectively utilizes accumulated knowledge to provide tailored pre-trained models for specific tasks. We also demonstrate that our method can be extended beyond the DAP setting to standard LLM fine-tuning scenarios. Code is available at https://github.com/dohoonkim-ai/DoMIX.
comment: 22 pages, 5 figures, ACL 2025 Main
☆ Knowledge Graph-Based Explainable and Generalized Zero-Shot Semantic Communications
Data-driven semantic communication is based on superficial statistical patterns, thereby lacking interpretability and generalization, especially for applications with the presence of unseen data. To address these challenges, we propose a novel knowledge graph-enhanced zero-shot semantic communication (KGZS-SC) network. Guided by the structured semantic information from a knowledge graph-based semantic knowledge base (KG-SKB), our scheme provides generalized semantic representations and enables reasoning for unseen cases. Specifically, the KG-SKB aligns the semantic features in a shared category semantics embedding space and enhances the generalization ability of the transmitter through aligned semantic features, thus reducing communication overhead by selectively transmitting compact visual semantics. At the receiver, zero-shot learning (ZSL) is leveraged to enable direct classification for unseen cases without the demand for retraining or additional computational overhead, thereby enhancing the adaptability and efficiency of the classification process in dynamic or resource-constrained environments. The simulation results conducted on the APY datasets show that the proposed KGZS-SC network exhibits robust generalization and significantly outperforms existing SC frameworks in classifying unseen categories across a range of SNR levels.
☆ Prompt Disentanglement via Language Guidance and Representation Alignment for Domain Generalization
Domain Generalization (DG) seeks to develop a versatile model capable of performing effectively on unseen target domains. Notably, recent advances in pre-trained Visual Foundation Models (VFMs), such as CLIP, have demonstrated considerable potential in enhancing the generalization capabilities of deep learning models. Despite the increasing attention toward VFM-based domain prompt tuning within DG, the effective design of prompts capable of disentangling invariant features across diverse domains remains a critical challenge. In this paper, we propose addressing this challenge by leveraging the controllable and flexible language prompt of the VFM. Noting that the text modality of VFMs is naturally easier to disentangle, we introduce a novel framework for text feature-guided visual prompt tuning. This framework first automatically disentangles the text prompt using a large language model (LLM) and then learns domain-invariant visual representation guided by the disentangled text feature. However, relying solely on language to guide visual feature disentanglement has limitations, as visual features can sometimes be too complex or nuanced to be fully captured by descriptive text. To address this, we introduce Worst Explicit Representation Alignment (WERA), which extends text-guided visual prompts by incorporating an additional set of abstract prompts. These prompts enhance source domain diversity through stylized image augmentations, while alignment constraints ensure that visual representations remain consistent across both the original and augmented distributions. Experiments conducted on major DG datasets, including PACS, VLCS, OfficeHome, DomainNet, and TerraInc, demonstrate that our proposed method outperforms state-of-the-art DG methods.
☆ Content filtering methods for music recommendation: A review
Recommendation systems have become essential in modern music streaming platforms, shaping how users discover and engage with songs. One common approach in recommendation systems is collaborative filtering, which suggests content based on the preferences of users with similar listening patterns to the target user. However, this method is less effective on media where interactions are sparse. Music is one such medium, since the average user of a music streaming service will never listen to the vast majority of tracks. Due to this sparsity, there are several challenges that have to be addressed with other methods. This review examines the current state of research in addressing these challenges, with an emphasis on the role of content filtering in mitigating biases inherent in collaborative filtering approaches. We explore various methods of song classification for content filtering, including lyrical analysis using Large Language Models (LLMs) and audio signal processing techniques. Additionally, we discuss the potential conflicts between these different analysis methods and propose avenues for resolving such discrepancies.
comment: 13 pages and 9 figures
♻ ☆ Urban Region Pre-training and Prompting: A Graph-based Approach KDD 2025
Urban region representation is crucial for various urban downstream tasks. However, despite the proliferation of methods and their success, acquiring general urban region knowledge and adapting to different tasks remains challenging. Existing work pays limited attention to the fine-grained functional layout semantics in urban regions, limiting their ability to capture transferable knowledge across regions. Further, inadequate handling of the unique features and relationships required for different downstream tasks may also hinder effective task adaptation. In this paper, we propose a $\textbf{G}$raph-based $\textbf{U}$rban $\textbf{R}$egion $\textbf{P}$re-training and $\textbf{P}$rompting framework ($\textbf{GURPP}$) for region representation learning. Specifically, we first construct an urban region graph and develop a subgraph-centric urban region pre-training model to capture the heterogeneous and transferable patterns of entity interactions. This model pre-trains knowledge-rich region embeddings using contrastive learning and multi-view learning methods. To further refine these representations, we design two graph-based prompting methods: a manually-defined prompt to incorporate explicit task knowledge and a task-learnable prompt to discover hidden knowledge, which enhances the adaptability of these embeddings to different tasks. Extensive experiments on various urban region prediction tasks and different cities demonstrate the superior performance of our framework.
comment: Accepted at KDD 2025
♻ ☆ Evaluating Frontier Models for Stealth and Situational Awareness
Recent work has demonstrated the plausibility of frontier AI models scheming -- knowingly and covertly pursuing an objective misaligned with its developer's intentions. Such behavior could be very hard to detect, and if present in future advanced systems, could pose severe loss of control risk. It is therefore important for AI developers to rule out harm from scheming prior to model deployment. In this paper, we present a suite of scheming reasoning evaluations measuring two types of reasoning capabilities that we believe are prerequisites for successful scheming: First, we propose five evaluations of ability to reason about and circumvent oversight (stealth). Second, we present eleven evaluations for measuring a model's ability to instrumentally reason about itself, its environment and its deployment (situational awareness). We demonstrate how these evaluations can be used as part of a scheming inability safety case: a model that does not succeed on these evaluations is almost certainly incapable of causing severe harm via scheming in real deployment. We run our evaluations on current frontier models and find that none of them show concerning levels of either situational awareness or stealth.
♻ ☆ From Web Search towards Agentic Deep Research: Incentivizing Search with Reasoning Agents
Information retrieval is a cornerstone of modern knowledge acquisition, enabling billions of queries each day across diverse domains. However, traditional keyword-based search engines are increasingly inadequate for handling complex, multi-step information needs. Our position is that Large Language Models (LLMs), endowed with reasoning and agentic capabilities, are ushering in a new paradigm termed Agentic Deep Research. These systems transcend conventional information search techniques by tightly integrating autonomous reasoning, iterative retrieval, and information synthesis into a dynamic feedback loop. We trace the evolution from static web search to interactive, agent-based systems that plan, explore, and learn. We also introduce a test-time scaling law to formalize the impact of computational depth on reasoning and search. Supported by benchmark results and the rise of open-source implementations, we demonstrate that Agentic Deep Research not only significantly outperforms existing approaches, but is also poised to become the dominant paradigm for future information seeking. All the related resources, including industry products, research papers, benchmark datasets, and open-source implementations, are collected for the community in https://github.com/DavidZWZ/Awesome-Deep-Research.
♻ ☆ Membership Inference Attacks as Privacy Tools: Reliability, Disparity and Ensemble CCS 2025
Membership inference attacks (MIAs) pose a significant threat to the privacy of machine learning models and are widely used as tools for privacy assessment, auditing, and machine unlearning. While prior MIA research has primarily focused on performance metrics such as AUC, accuracy, and TPR@low FPR - either by developing new methods to enhance these metrics or using them to evaluate privacy solutions - we found that it overlooks the disparities among different attacks. These disparities, both between distinct attack methods and between multiple instantiations of the same method, have crucial implications for the reliability and completeness of MIAs as privacy evaluation tools. In this paper, we systematically investigate these disparities through a novel framework based on coverage and stability analysis. Extensive experiments reveal significant disparities in MIAs, their potential causes, and their broader implications for privacy evaluation. To address these challenges, we propose an ensemble framework with three distinct strategies to harness the strengths of state-of-the-art MIAs while accounting for their disparities. This framework not only enables the construction of more powerful attacks but also provides a more robust and comprehensive methodology for privacy evaluation.
comment: 22 pages, To appear at ACM CCS 2025
♻ ☆ Transferrable Surrogates in Expressive Neural Architecture Search Spaces
Neural architecture search (NAS) faces a challenge in balancing the exploration of expressive, broad search spaces that enable architectural innovation with the need for efficient evaluation of architectures to effectively search such spaces. We investigate surrogate model training for improving search in highly expressive NAS search spaces based on context-free grammars. We show that i) surrogate models trained either using zero-cost-proxy metrics and neural graph features (GRAF) or by fine-tuning an off-the-shelf LM have high predictive power for the performance of architectures both within and across datasets, ii) these surrogates can be used to filter out bad architectures when searching on novel datasets, thereby significantly speeding up search and achieving better final performances, and iii) the surrogates can be further used directly as the search objective for huge speed-ups.
comment: Accepted at AutoML 25, Project page at: https://shiwenqin.github.io/TransferrableSurrogate/
♻ ☆ GPAS: Accelerating Convergence of LLM Pretraining via Gradient-Preserving Activation Scaling
Modern Large Language Models, such as the LLaMA, Qwen and DeepSeek series, predominantly adopt the Pre-LayerNorm (Pre-LN) Transformer architecture. While being stable during pretraining and scalable to large model sizes, Pre-LN suffers from an exponential growth in activation variance across layers, causing the shortcut to dominate over sub-layer outputs in the residual connection and limiting the learning capacity of deeper layers. To mitigate this issue, we propose Gradient-Preserving Activation Scaling (GPAS), a simple technique that can be used in combination with existing approaches. GPAS works by scaling down the intermediate activations while keeping their gradients unchanged. This leaves information in the activations intact, and avoids the gradient vanishing problem associated with gradient downscaling. Extensive experiments across various model sizes from 71M to 1B show that GPAS achieves consistent performance gains. Beyond enhancing Pre-LN Transformers, GPAS also shows promise in improving alternative architectures such as Sandwich-LN and DeepNorm, demonstrating its versatility and potential for improving training dynamics in a wide range of settings. Our code is available at https://github.com/dandingsky/GPAS.
♻ ☆ LLM-Powered Prediction of Hyperglycemia and Discovery of Behavioral Treatment Pathways from Wearables and Diet
Postprandial hyperglycemia, marked by the blood glucose level exceeding the normal range after consuming a meal, is a critical indicator of progression toward type 2 diabetes in people with prediabetes and in healthy individuals. A key metric for understanding blood glucose dynamics after eating is the postprandial area under the curve (AUC). Predicting postprandial AUC in advance based on a person's lifestyle factors, such as diet and physical activity level, and explaining the factors that affect postprandial blood glucose could allow an individual to adjust their lifestyle accordingly to maintain normal glucose levels. In this study, we developed an explainable machine learning solution, GlucoLens, that takes sensor-driven inputs and uses advanced data processing, large language models, and trainable machine learning models to predict postprandial AUC and hyperglycemia from diet, physical activity, and recent glucose patterns. We used data obtained from wearables in a five-week clinical trial of 10 adults who worked full-time to develop and evaluate the proposed computational model that integrates wearable sensing, multimodal data, and machine learning. Our machine learning model takes multimodal data from wearable activity and glucose monitoring sensors, along with food and work logs, and provides an interpretable prediction of the postprandial glucose pattern. Our GlucoLens system achieves a normalized root mean squared error (NRMSE) of 0.123 in its best configuration. On average, the proposed technology provides a 16% better performance level compared to the comparison models. Additionally, our technique predicts hyperglycemia with an accuracy of 73.3% and an F1 score of 0.716 and recommends different treatment options to help avoid hyperglycemia through diverse counterfactual explanations. Code available: https://github.com/ab9mamun/GlucoLens.
comment: 16 pages, 10 figures
♻ ☆ Avoiding Catastrophe in Online Learning by Asking for Help ICML 2025
Most learning algorithms with formal regret guarantees assume that all mistakes are recoverable and essentially rely on trying all possible behaviors. This approach is problematic when some mistakes are "catastrophic", i.e., irreparable. We propose an online learning problem where the goal is to minimize the chance of catastrophe. Specifically, we assume that the payoff in each round represents the chance of avoiding catastrophe in that round and try to maximize the product of payoffs (the overall chance of avoiding catastrophe) while allowing a limited number of queries to a mentor. We also assume that the agent can transfer knowledge between similar inputs. We first show that in general, any algorithm either queries the mentor at a linear rate or is nearly guaranteed to cause catastrophe. However, in settings where the mentor policy class is learnable in the standard online model, we provide an algorithm whose regret and rate of querying the mentor both approach 0 as the time horizon grows. Although our focus is the product of payoffs, we provide matching bounds for the typical additive regret. Conceptually, if a policy class is learnable in the absence of catastrophic risk, it is learnable in the presence of catastrophic risk if the agent can ask for help.
comment: Accepted to ICML 2025
♻ ☆ MaizeField3D: A Curated 3D Point Cloud and Procedural Model Dataset of Field-Grown Maize from a Diversity Panel
The development of artificial intelligence (AI) and machine learning (ML) based tools for 3D phenotyping, especially for maize, has been limited due to the lack of large and diverse 3D datasets. 2D image datasets fail to capture essential structural details such as leaf architecture, plant volume, and spatial arrangements that 3D data provide. To address this limitation, we present MaizeField3D (https://baskargroup.github.io/MaizeField3D/), a curated dataset of 3D point clouds of field-grown maize plants from a diverse genetic panel, designed to be AI-ready for advancing agricultural research. Our dataset includes 1,045 high-quality point clouds of field-grown maize collected using a terrestrial laser scanner (TLS). Point clouds of 520 plants from this dataset were segmented and annotated using a graph-based segmentation method to isolate individual leaves and stalks, ensuring consistent labeling across all samples. This labeled data was then used for fitting procedural models that provide a structured parametric representation of the maize plants. The leaves of the maize plants in the procedural models are represented using Non-Uniform Rational B-Spline (NURBS) surfaces that were generated using a two-step optimization process combining gradient-free and gradient-based methods. We conducted rigorous manual quality control on all datasets, correcting errors in segmentation, ensuring accurate leaf ordering, and validating metadata annotations. The dataset also includes metadata detailing plant morphology and quality, alongside multi-resolution subsampled point cloud data (100k, 50k, 10k points), which can be readily used for different downstream computational tasks. MaizeField3D will serve as a comprehensive foundational dataset for AI-driven phenotyping, plant structural analysis, and 3D applications in agricultural research.
comment: Elvis Kimara and Mozhgan Hadadi contributed equally to this work
♻ ☆ Quantifying the Cross-sectoral Intersecting Discrepancies within Multiple Groups Using Latent Class Analysis Towards Fairness
The growing interest in fair AI development is evident. The ''Leave No One Behind'' initiative urges us to address multiple and intersecting forms of inequality in accessing services, resources, and opportunities, emphasising the significance of fairness in AI. This is particularly relevant as an increasing number of AI tools are applied to decision-making processes, such as resource allocation and service scheme development, across various sectors such as health, energy, and housing. Therefore, exploring joint inequalities in these sectors is significant and valuable for thoroughly understanding overall inequality and unfairness. This research introduces an innovative approach to quantify cross-sectoral intersecting discrepancies among user-defined groups using latent class analysis. These discrepancies can be used to approximate inequality and provide valuable insights to fairness issues. We validate our approach using both proprietary and public datasets, including both EVENS and Census 2021 (England & Wales) datasets, to examine cross-sectoral intersecting discrepancies among different ethnic groups. We also verify the reliability of the quantified discrepancy by conducting a correlation analysis with a government public metric. Our findings reveal significant discrepancies both among minority ethnic groups and between minority ethnic groups and non-minority ethnic groups, emphasising the need for targeted interventions in policy-making processes. Furthermore, we demonstrate how the proposed approach can provide valuable insights into ensuring fairness in machine learning systems.
♻ ☆ Towards a Novel Measure of User Trust in XAI Systems
The increasing reliance on Deep Learning models, combined with their inherent lack of transparency, has spurred the development of a novel field of study known as eXplainable AI (XAI) methods. These methods seek to enhance the trust of end-users in automated systems by providing insights into the rationale behind their decisions. This paper presents a novel trust measure in XAI systems, allowing their refinement. Our proposed metric combines both performance metrics and trust indicators from an objective perspective. To validate this novel methodology, we conducted three case studies showing an improvement respect the state-of-the-art, with an increased sensitiviy to different scenarios.
♻ ☆ On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability
We study language generation in the limit - introduced by Kleinberg and Mullainathan [KM24] - building on classical works of Gold [Gol67] and Angluin [Ang79]. [KM24]'s main result is an algorithm for generating from any countable language collection in the limit. While their algorithm eventually generates unseen strings from the target language $K$, it sacrifices coverage or breadth, i.e., its ability to generate a rich set of strings. Recent work introduces different notions of breadth and explores when generation with breadth is possible, leaving a full characterization of these notions open. Our first set of results settles this by characterizing generation for existing notions of breadth and their natural extensions. Interestingly, our lower bounds are very flexible and hold for many performance metrics beyond breadth - for instance, showing that, in general, it is impossible to train generators which achieve a higher perplexity or lower hallucination rate for $K$ compared to other languages. Next, we study language generation with breadth and stable generators - algorithms that eventually stop changing after seeing an arbitrary but finite number of strings - and prove unconditional lower bounds for such generators, strengthening the results of [KMV25] and demonstrating that generation with many existing notions of breadth becomes equally hard, when stability is required. This gives a separation for generation with approximate breadth, between stable and unstable generators, highlighting the rich interplay between breadth, stability, and consistency in language generation.
comment: v2 improves exposition and simplifies proofs
♻ ☆ Gradient-Based Model Fingerprinting for LLM Similarity Detection and Family Classification
As Large Language Models (LLMs) become integral software components in modern applications, unauthorized model derivations through fine-tuning, merging, and redistribution have emerged as critical software engineering challenges. Unlike traditional software where clone detection and license compliance are well-established, the LLM ecosystem lacks effective mechanisms to detect model lineage and enforce licensing agreements. This gap is particularly problematic when open-source model creators, such as Meta's LLaMA, require derivative works to maintain naming conventions for attribution, yet no technical means exist to verify compliance. To fill this gap, treating LLMs as software artifacts requiring provenance tracking, we present TensorGuard, a gradient-based fingerprinting framework for LLM similarity detection and family classification. Our approach extracts model-intrinsic behavioral signatures by analyzing gradient responses to random input perturbations across tensor layers, operating independently of training data, watermarks, or specific model formats. TensorGuard supports the widely-adopted safetensors format and constructs high-dimensional fingerprints through statistical analysis of gradient features. These fingerprints enable two complementary capabilities: direct pairwise similarity assessment between arbitrary models through distance computation, and systematic family classification of unknown models via the K-Means clustering algorithm with domain-informed centroid initialization using known base models. Experimental evaluation on 58 models comprising 8 base models and 50 derivatives across five model families (Llama, Qwen, Gemma, Phi, Mistral) demonstrates 94% classification accuracy under our centroid-initialized K-Means clustering.
♻ ☆ HAPI: A Model for Learning Robot Facial Expressions from Human Preferences IROS
Automatic robotic facial expression generation is crucial for human-robot interaction, as handcrafted methods based on fixed joint configurations often yield rigid and unnatural behaviors. Although recent automated techniques reduce the need for manual tuning, they tend to fall short by not adequately bridging the gap between human preferences and model predictions-resulting in a deficiency of nuanced and realistic expressions due to limited degrees of freedom and insufficient perceptual integration. In this work, we propose a novel learning-to-rank framework that leverages human feedback to address this discrepancy and enhanced the expressiveness of robotic faces. Specifically, we conduct pairwise comparison annotations to collect human preference data and develop the Human Affective Pairwise Impressions (HAPI) model, a Siamese RankNet-based approach that refines expression evaluation. Results obtained via Bayesian Optimization and online expression survey on a 35-DOF android platform demonstrate that our approach produces significantly more realistic and socially resonant expressions of Anger, Happiness, and Surprise than those generated by baseline and expert-designed methods. This confirms that our framework effectively bridges the gap between human preferences and model predictions while robustly aligning robotic expression generation with human affective responses.
comment: Accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ Learning Traffic Anomalies from Generative Models on Real-Time Observations
Accurate detection of traffic anomalies is crucial for effective urban traffic management and congestion mitigation. We use the Spatiotemporal Generative Adversarial Network (STGAN) framework combining Graph Neural Networks and Long Short-Term Memory networks to capture complex spatial and temporal dependencies in traffic data. We apply STGAN to real-time, minute-by-minute observations from 42 traffic cameras across Gothenburg, Sweden, collected over several months in 2020. The images are processed to compute a flow metric representing vehicle density, which serves as input for the model. Training is conducted on data from April to November 2020, and validation is performed on a separate dataset from November 14 to 23, 2020. Our results demonstrate that the model effectively detects traffic anomalies with high precision and low false positive rates. The detected anomalies include camera signal interruptions, visual artifacts, and extreme weather conditions affecting traffic flow.
♻ ☆ Interpreting Graph Inference with Skyline Explanations
Inference queries have been routinely issued to graph machine learning models such as graph neural networks (GNNs) for various network analytical tasks. Nevertheless, GNNs outputs are often hard to interpret comprehensively. Existing methods typically compromise to individual pre-defined explainability measures (such as fidelity), which often leads to biased, ``one-sided'' interpretations. This paper introduces skyline explanation, a new paradigm that interprets GNN output by simultaneously optimizing multiple explainability measures of users' interests. (1) We propose skyline explanations as a Pareto set of explanatory subgraphs that dominate others over multiple explanatory measures. We formulate skyline explanation as a multi-criteria optimization problem, and establish its hardness results. (2) We design efficient algorithms with an onion-peeling approach, which strategically prioritizes nodes and removes unpromising edges to incrementally assemble skyline explanations. (3) We also develop an algorithm to diversify the skyline explanations to enrich the comprehensive interpretation. (4) We introduce efficient parallel algorithms with load-balancing strategies to scale skyline explanation for large-scale GNN-based inference. Using real-world and synthetic graphs, we experimentally verify our algorithms' effectiveness and scalability.
♻ ☆ Orientation-Aware Sparse Tensor PCA for Efficient Unsupervised Feature Selection
Recently, introducing Tensor Decomposition (TD) techniques into unsupervised feature selection (UFS) has been an emerging research topic. A tensor structure is beneficial for mining the relations between different modes and helps relieve the computation burden. However, while existing methods exploit TD to preserve the data tensor structure, they do not consider the influence of data orientation and thus have difficulty in handling orientation-specific data such as time series. To solve the above problem, we utilize the orientation-dependent tensor-tensor product from Tensor Singular Value Decomposition based on *M-product (T-SVDM) and extend the one-dimensional Sparse Principal Component Analysis (SPCA) to a tensor form. The proposed sparse tensor PCA model can constrain sparsity at the specified mode and yield sparse tensor principal components, enhancing flexibility and accuracy in learning feature relations. To ensure fast convergence and a flexible description of feature correlation, we develop a convex version specially designed for general UFS tasks and propose an efficient slice-by-slice algorithm that performs dual optimization in the transform domain. Experimental results on real-world datasets demonstrate the effectiveness and remarkable computational efficiency of the proposed method for tensor data of diverse structures over the state-of-the-art. When transform axes align with feature distribution patterns, our method is promising for various applications. The codes related to our proposed methods and the experiments are available at https://github.com/zjj20212035/STPCA.git.
♻ ☆ Down with the Hierarchy: The 'H' in HNSW Stands for "Hubs"
Driven by recent breakthrough advances in neural representation learning, approximate near-neighbor (ANN) search over vector embeddings has emerged as a critical computational workload. With the introduction of the seminal Hierarchical Navigable Small World (HNSW) algorithm, graph-based indexes have established themselves as the overwhelmingly dominant paradigm for efficient and scalable ANN search. As the name suggests, HNSW searches a layered hierarchical graph to quickly identify neighborhoods of similar points to a given query vector. But is this hierarchy even necessary? A rigorous experimental analysis to answer this question would provide valuable insights into the nature of algorithm design for ANN search and motivate directions for future work in this increasingly crucial domain. We conduct an extensive benchmarking study covering more large-scale datasets than prior investigations of this question. We ultimately find that a flat navigable small world graph graph retains all of the benefits of HNSW on high-dimensional datasets, with latency and recall performance essentially \emph{identical} to the original algorithm but with less memory overhead. Furthermore, we go a step further and study \emph{why} the hierarchy of HNSW provides no benefit in high dimensions, hypothesizing that navigable small world graphs contain a well-connected, frequently traversed ``highway" of hub nodes that maintain the same purported function as the hierarchical layers. We present compelling empirical evidence that the \emph{Hub Highway Hypothesis} holds for real datasets and investigate the mechanisms by which the highway forms. The implications of this hypothesis may also provide future research directions in developing enhancements to graph-based ANN search.
comment: 17 pages
♻ ☆ StructTransform: A Scalable Attack Surface for Safety-Aligned Large Language Models
In this work, we present a series of structure transformation attacks on LLM alignment, where we encode natural language intent using diverse syntax spaces, ranging from simple structure formats and basic query languages (e.g., SQL) to new novel spaces and syntaxes created entirely by LLMs. Our extensive evaluation shows that our simplest attacks can achieve close to a 90% success rate, even on strict LLMs (such as Claude 3.5 Sonnet) using SOTA alignment mechanisms. We improve the attack performance further by using an adaptive scheme that combines structure transformations along with existing content transformations, resulting in over 96% ASR with 0% refusals. To generalize our attacks, we explore numerous structure formats, including syntaxes purely generated by LLMs. Our results indicate that such novel syntaxes are easy to generate and result in a high ASR, suggesting that defending against our attacks is not a straightforward process. Finally, we develop a benchmark and evaluate existing safety-alignment defenses against it, showing that most of them fail with 100% ASR. Our results show that existing safety alignment mostly relies on token-level patterns without recognizing harmful concepts, highlighting and motivating the need for serious research efforts in this direction. As a case study, we demonstrate how attackers can use our attack to easily generate a sample malware and a corpus of fraudulent SMS messages, which perform well in bypassing detection.
♻ ☆ SURE-VQA: Systematic Understanding of Robustness Evaluation in Medical VQA Tasks
Vision-Language Models (VLMs) have great potential in medical tasks, like Visual Question Answering (VQA), where they could act as interactive assistants for both patients and clinicians. Yet their robustness to distribution shifts on unseen data remains a key concern for safe deployment. Evaluating such robustness requires a controlled experimental setup that allows for systematic insights into the model's behavior. However, we demonstrate that current setups fail to offer sufficiently thorough evaluations. To address this gap, we introduce a novel framework, called SURE-VQA, centered around three key requirements to overcome current pitfalls and systematically analyze VLM robustness: 1) Since robustness on synthetic shifts does not necessarily translate to real-world shifts, it should be measured on real-world shifts that are inherent to the VQA data; 2) Traditional token-matching metrics often fail to capture underlying semantics, necessitating the use of large language models (LLMs) for more accurate semantic evaluation; 3) Model performance often lacks interpretability due to missing sanity baselines, thus meaningful baselines should be reported that allow assessing the multimodal impact on the VLM. To demonstrate the relevance of this framework, we conduct a study on the robustness of various Fine-Tuning (FT) methods across three medical datasets with four types of distribution shifts. Our study highlights key insights into robustness: 1) No FT method consistently outperforms others in robustness, and 2) robustness trends are more stable across FT methods than across distribution shifts. Additionally, we find that simple sanity baselines that do not use the image data can perform surprisingly well and confirm LoRA as the best-performing FT method on in-distribution data. Code is provided at https://github.com/IML-DKFZ/sure-vqa.
comment: TMLR 07/2025
♻ ☆ SoccerDiffusion: Toward Learning End-to-End Humanoid Robot Soccer from Gameplay Recordings
This paper introduces SoccerDiffusion, a transformer-based diffusion model designed to learn end-to-end control policies for humanoid robot soccer directly from real-world gameplay recordings. Using data collected from RoboCup competitions, the model predicts joint command trajectories from multi-modal sensor inputs, including vision, proprioception, and game state. We employ a distillation technique to enable real-time inference on embedded platforms that reduces the multi-step diffusion process to a single step. Our results demonstrate the model's ability to replicate complex motion behaviors such as walking, kicking, and fall recovery both in simulation and on physical robots. Although high-level tactical behavior remains limited, this work provides a robust foundation for subsequent reinforcement learning or preference optimization methods. We release the dataset, pretrained models, and code under: https://bit-bots.github.io/SoccerDiffusion
♻ ☆ Towards an Explainable Comparison and Alignment of Feature Embeddings
While several feature embedding models have been developed in the literature, comparisons of these embeddings have largely focused on their numerical performance in classification-related downstream applications. However, an interpretable comparison of different embeddings requires identifying and analyzing mismatches between sample groups clustered within the embedding spaces. In this work, we propose the \emph{Spectral Pairwise Embedding Comparison (SPEC)} framework to compare embeddings and identify their differences in clustering a reference dataset. Our approach examines the kernel matrices derived from two embeddings and leverages the eigendecomposition of the difference kernel matrix to detect sample clusters that are captured differently by the two embeddings. We present a scalable implementation of this kernel-based approach, with computational complexity that grows linearly with the sample size. Furthermore, we introduce an optimization problem using this framework to align two embeddings, ensuring that clusters identified in one embedding are also captured in the other model. We provide numerical results demonstrating the SPEC's application to compare and align embeddings on large-scale datasets such as ImageNet and MS-COCO. The project page is available at https://mjalali.github.io/SPEC/.
♻ ☆ Fading memory and the convolution theorem
Several topological and analytical notions of continuity and fading memory for causal and time-invariant filters are introduced, and the relations between them are analyzed. A significant generalization of the convolution theorem that establishes the equivalence between the fading memory property and the availability of convolution representations of linear filters is proved. This result extends a previous similar characterization to a complete array of weighted norms in the definition of the fading memory property. Additionally, the main theorem shows that the availability of convolution representations can be characterized, at least when the codomain is finite-dimensional, not only by the fading memory property but also by the reunion of two purely topological notions that are called minimal continuity and minimal fading memory property. Finally, when the input space and the codomain of a linear functional are Hilbert spaces, it is shown that minimal continuity and the minimal fading memory property guarantee the existence of interesting embeddings of the associated reproducing kernel Hilbert spaces.
♻ ☆ Adaptive Probabilistic ODE Solvers Without Adaptive Memory Requirements
Despite substantial progress in recent years, probabilistic solvers with adaptive step sizes can still not solve memory-demanding differential equations -- unless we care only about a single point in time (which is far too restrictive; we want the whole time series). Counterintuitively, the culprit is the adaptivity itself: Its unpredictable memory demands easily exceed our machine's capabilities, making our simulations fail unexpectedly and without warning. Still, dropping adaptivity would abandon years of progress, which can't be the answer. In this work, we solve this conundrum. We develop an adaptive probabilistic solver with fixed memory demands building on recent developments in robust state estimation. Switching to our method (i) eliminates memory issues for long time series, (ii) accelerates simulations by orders of magnitude through unlocking just-in-time compilation, and (iii) makes adaptive probabilistic solvers compatible with scientific computing in JAX.
♻ ☆ Flow Matching on Lie Groups
Flow Matching (FM) is a recent generative modelling technique: we aim to learn how to sample from distribution $\mathfrak{X}_1$ by flowing samples from some distribution $\mathfrak{X}_0$ that is easy to sample from. The key trick is that this flow field can be trained while conditioning on the end point in $\mathfrak{X}_1$: given an end point, simply move along a straight line segment to the end point (Lipman et al. 2022). However, straight line segments are only well-defined on Euclidean space. Consequently, Chen and Lipman (2023) generalised the method to FM on Riemannian manifolds, replacing line segments with geodesics or their spectral approximations. We take an alternative point of view: we generalise to FM on Lie groups by instead substituting exponential curves for line segments. This leads to a simple, intrinsic, and fast implementation for many matrix Lie groups, since the required Lie group operations (products, inverses, exponentials, logarithms) are simply given by the corresponding matrix operations. FM on Lie groups could then be used for generative modelling with data consisting of sets of features (in $\mathbb{R}^n$) and poses (in some Lie group), e.g. the latent codes of Equivariant Neural Fields (Wessels et al. 2025).
comment: Accepted in the 7th International Conference on Geometric Science of Information
♻ ☆ Interleaved Gibbs Diffusion: Generating Discrete-Continuous Data with Implicit Constraints
We introduce Interleaved Gibbs Diffusion (IGD), a novel generative modeling framework for discrete-continuous data, focusing on problems with important, implicit and unspecified constraints in the data. Most prior works on discrete and discrete-continuous diffusion assume a factorized denoising distribution, which can hinder the modeling of strong dependencies between random variables in such problems. We empirically demonstrate a significant improvement in 3-SAT performance out of the box by switching to a Gibbs-sampling style discrete diffusion model which does not assume factorizability. Motivated by this, we introduce IGD which generalizes discrete time Gibbs sampling type Markov chain for the case of discrete-continuous generation. IGD allows for seamless integration between discrete and continuous denoisers while theoretically guaranteeing exact reversal of a suitable forward process. Further, it provides flexibility in the choice of denoisers, allows conditional generation via state-space doubling and inference time refinement. Empirical evaluations on three challenging generation tasks - molecule structures, layouts and tabular data - demonstrate state-of-the-art performance. Notably, IGD achieves state-of-the-art results without relying on domain-specific inductive biases like equivariant diffusion or auxiliary losses. We explore a wide range of modeling, and interleaving strategies along with hyperparameters in each of these problems.
♻ ☆ Offline Reinforcement Learning for Learning to Dispatch for Job Shop Scheduling
The Job Shop Scheduling Problem (JSSP) is a complex combinatorial optimization problem. While online Reinforcement Learning (RL) has shown promise by quickly finding acceptable solutions for JSSP, it faces key limitations: it requires extensive training interactions from scratch leading to sample inefficiency, cannot leverage existing high-quality solutions from traditional methods like Constraint Programming (CP), and require simulated environments to train in, which are impracticable to build for complex scheduling environments. We introduce Offline Learned Dispatching (Offline-LD), an offline reinforcement learning approach for JSSP, which addresses these limitations by learning from historical scheduling data. Our approach is motivated by scenarios where historical scheduling data and expert solutions are available or scenarios where online training of RL approaches with simulated environments is impracticable. Offline-LD introduces maskable variants of two Q-learning methods, namely, Maskable Quantile Regression DQN (mQRDQN) and discrete maskable Soft Actor-Critic (d-mSAC), that are able to learn from historical data, through Conservative Q-Learning (CQL). Moreover, we present a novel entropy bonus modification for d-mSAC, for maskable action spaces. Moreover, we introduce a novel reward normalization method for JSSP in an offline RL setting. Our experiments demonstrate that Offline-LD outperforms online RL on both generated and benchmark instances when trained on only 100 solutions generated by CP. Notably, introducing noise to the expert dataset yields comparable or superior results to using the expert dataset, with the same amount of instances, a promising finding for real-world applications, where data is inherently noisy and imperfect.
comment: Accepted in Machine Learning
♻ ☆ Higher-Order Singular-Value Derivatives of Rectangular Real Matrices
We present a theoretical framework for deriving the general $n$-th order Fr\'echet derivatives of singular values in real rectangular matrices, by leveraging reduced resolvent operators from Kato's analytic perturbation theory for self-adjoint operators. Deriving closed-form expressions for higher-order derivatives of singular values is notoriously challenging through standard matrix-analysis techniques. To overcome this, we treat a real rectangular matrix as a compact operator on a finite-dimensional Hilbert space, and embed the rectangular matrix into a block self-adjoint operator so that non-symmetric perturbations are captured. Applying Kato's asymptotic eigenvalue expansion to this construction, we obtain a general, closed-form expression for the infinitesimal $n$-th order spectral variations. Specializing to $n=2$ and deploying on a Kronecker-product representation with matrix convention yield the Hessian of a singular value, not found in literature. By bridging abstract operator-theoretic perturbation theory with matrices, our framework equips researchers with a practical toolkit for higher-order spectral sensitivity studies in random matrix applications (e.g., adversarial perturbation in deep learning).
comment: Adding authors; change title; change template
♻ ☆ Assessing Quantum Advantage for Gaussian Process Regression
Gaussian Process Regression is a well-known machine learning technique for which several quantum algorithms have been proposed. We show here that in a wide range of scenarios these algorithms show no exponential speedup. We achieve this by rigorously proving that the condition number of a kernel matrix scales at least linearly with the matrix size under general assumptions on the data and kernel. We additionally prove that the sparsity and Frobenius norm of a kernel matrix scale linearly under similar assumptions. The implications for the quantum algorithms runtime are independent of the complexity of loading classical data on a quantum computer and also apply to dequantised algorithms. We supplement our theoretical analysis with numerical verification for popular kernels in machine learning.
comment: 18 pages, 2 figures. Version 2 contains updated figures and a slightly revised discussion for additional clarity
♻ ☆ Ordinality in Discrete-level Question Difficulty Estimation: Introducing Balanced DRPS and OrderedLogitNN
Recent years have seen growing interest in Question Difficulty Estimation (QDE) using natural language processing techniques. Question difficulty is often represented using discrete levels, framing the task as ordinal regression due to the inherent ordering from easiest to hardest. However, the literature has neglected the ordinal nature of the task, relying on classification or discretized regression models, with specialized ordinal regression methods remaining unexplored. Furthermore, evaluation metrics are tightly coupled to the modeling paradigm, hindering cross-study comparability. While some metrics fail to account for the ordinal structure of difficulty levels, none adequately address class imbalance, resulting in biased performance assessments. This study addresses these limitations by benchmarking three types of model outputs -- discretized regression, classification, and ordinal regression -- using the balanced Discrete Ranked Probability Score (DRPS), a novel metric that jointly captures ordinality and class imbalance. In addition to using popular ordinal regression methods, we propose OrderedLogitNN, extending the ordered logit model from econometrics to neural networks. We fine-tune BERT on the RACE++ and ARC datasets and find that OrderedLogitNN performs considerably better on complex tasks. The balanced DRPS offers a robust and fair evaluation metric for discrete-level QDE, providing a principled foundation for future research.
comment: Published in the EvalLAC'25 workshop at AIED 2025
♻ ☆ A Square Peg in a Square Hole: Meta-Expert for Long-Tailed Semi-Supervised Learning ICML 2025
This paper studies the long-tailed semi-supervised learning (LTSSL) with distribution mismatch, where the class distribution of the labeled training data follows a long-tailed distribution and mismatches with that of the unlabeled training data. Most existing methods introduce auxiliary classifiers (experts) to model various unlabeled data distributions and produce pseudo-labels, but the expertises of various experts are not fully utilized. We observe that different experts are good at predicting different intervals of samples, e.g., long-tailed expert is skilled in samples located in the head interval and uniform expert excels in samples located in the medium interval. Therefore, we propose a dynamic expert assignment module that can estimate the class membership (i.e., head, medium, or tail class) of samples, and dynamically assigns suitable expert to each sample based on the estimated membership to produce high-quality pseudo-label in the training phase and produce prediction in the testing phase. We also theoretically reveal that integrating different experts' strengths will lead to a smaller generalization error bound. Moreover, we find that the deeper features are more biased toward the head class but with more discriminative ability, while the shallower features are less biased but also with less discriminative ability. We, therefore, propose a multi-depth feature fusion module to utilize different depth features to mitigate the model bias. Our method demonstrates its effectiveness through comprehensive experiments on the CIFAR-10-LT, STL-10-LT, and SVHN-LT datasets across various settings. The code is available at https://github.com/yaxinhou/Meta-Expert.
comment: The paper is accepted by ICML 2025
♻ ☆ Deep learning four decades of human migration
We present a novel and detailed dataset on origin-destination annual migration flows and stocks between 230 countries and regions, spanning the period from 1990 to the present. Our flow estimates are further disaggregated by country of birth, providing a comprehensive picture of migration over the last 35 years. The estimates are obtained by training a deep recurrent neural network to learn flow patterns from 18 covariates for all countries, including geographic, economic, cultural, societal, and political information. The recurrent architecture of the neural network means that the entire past can influence current migration patterns, allowing us to learn long-range temporal correlations. By training an ensemble of neural networks and additionally pushing uncertainty on the covariates through the trained network, we obtain confidence bounds for all our estimates, allowing researchers to pinpoint the geographic regions most in need of additional data collection. We validate our approach on various test sets of unseen data, demonstrating that it significantly outperforms traditional methods estimating five-year flows while delivering a significant increase in temporal resolution. The model is fully open source: all training data, neural network weights, and training code are made public alongside the migration estimates, providing a valuable resource for future studies of human migration.
♻ ☆ Self-Supervised Frameworks for Speaker Verification via Bootstrapped Positive Sampling
Recent developments in Self-Supervised Learning (SSL) have demonstrated significant potential for Speaker Verification (SV), but closing the performance gap with supervised systems remains an ongoing challenge. SSL frameworks rely on anchor-positive pairs, constructed from segments of the same audio utterance. Hence, positives have channel characteristics similar to those of their corresponding anchors, even with extensive data-augmentation. Therefore, this positive sampling strategy is a fundamental limitation as it encodes too much information regarding the recording source in the learned representations. This article introduces Self-Supervised Positive Sampling (SSPS), a bootstrapped technique for sampling appropriate and diverse positives in SSL frameworks for SV. SSPS samples positives close to their anchor in the representation space, assuming that these pseudo-positives belong to the same speaker identity but correspond to different recording conditions. This method consistently demonstrates improvements in SV performance on VoxCeleb benchmarks when applied to major SSL frameworks, including SimCLR, SwAV, VICReg, and DINO. Using SSPS, SimCLR and DINO achieve 2.57% and 2.53% EER on VoxCeleb1-O, respectively. SimCLR yields a 58% relative reduction in EER, getting comparable performance to DINO with a simpler training framework. Furthermore, SSPS lowers intra-class variance and reduces channel information in speaker representations while exhibiting greater robustness without data-augmentation.
comment: accepted for publication in IEEE TASLP
♻ ☆ Reconsidering the energy efficiency of spiking neural networks
Spiking Neural Networks (SNNs) promise higher energy efficiency over conventional Quantized Artificial Neural Networks (QNNs) due to their event-driven, spike-based computation. However, prevailing energy evaluations often oversimplify, focusing on computational aspects while neglecting critical overheads like comprehensive data movement and memory access. Such simplifications can lead to misleading conclusions regarding the true energy benefits of SNNs. This paper presents a rigorous re-evaluation. We establish a fair baseline by mapping rate-encoded SNNs with $T$ timesteps to functionally equivalent QNNs with $\lceil \log_2(T+1) \rceil$ bits. This ensures both models have comparable representational capacities, as well has similar hardware requirement, enabling meaningful energy comparisons. We introduce a detailed analytical energy model encompassing core computation and data movement (sparse and dense activations, weights). Using this model, we systematically explore a wide parameter space, including intrinsic network characteristics ($T$, spike rate $s_r$, QNN sparsity $\gamma$, model size $N$, weight bit-level) and hardware characteristics (memory system and network-on-chip). Our analysis identifies specific operational regimes where SNNs genuinely offer superior energy efficiency. For example, under typical neuromorphic hardware conditions, SNNs with moderate time windows ($T \in [5,10]$) require an average spike rate ($s_r$) below 6.4% to outperform equivalent QNNs. These insights guide the design of genuinely energy-efficient neural network solutions.
♻ ☆ Traveling Across Languages: Benchmarking Cross-Lingual Consistency in Multimodal LLMs
The rapid evolution of multimodal large language models (MLLMs) has significantly enhanced their real-world applications. However, achieving consistent performance across languages, especially when integrating cultural knowledge, remains a significant challenge. To better assess this issue, we introduce two new benchmarks: KnowRecall and VisRecall, which evaluate cross-lingual consistency in MLLMs. KnowRecall is a visual question answering benchmark designed to measure factual knowledge consistency in 15 languages, focusing on cultural and historical questions about global landmarks. VisRecall assesses visual memory consistency by asking models to describe landmark appearances in 9 languages without access to images. Experimental results reveal that state-of-the-art MLLMs, including proprietary ones, still struggle to achieve cross-lingual consistency. This underscores the need for more robust approaches that produce truly multilingual and culturally aware models.
comment: https://github.com/nlp-waseda/traveling-across-languages
♻ ☆ Self-Guided Process Reward Optimization with Redefined Step-wise Advantage for Process Reinforcement Learning
Process Reinforcement Learning~(PRL) has demonstrated considerable potential in enhancing the reasoning capabilities of Large Language Models~(LLMs). However, introducing additional process reward models incurs substantial computational overhead, and there is no unified theoretical framework for process-level advantage estimation. To bridge this gap, we propose \textbf{S}elf-Guided \textbf{P}rocess \textbf{R}eward \textbf{O}ptimization~(\textbf{SPRO}), a novel framework that enables process-aware RL through two key innovations: (1) we first theoretically demonstrate that process rewards can be derived intrinsically from the policy model itself, and (2) we introduce well-defined cumulative process rewards and \textbf{M}asked \textbf{S}tep \textbf{A}dvantage (\textbf{MSA}), which facilitates rigorous step-wise action advantage estimation within shared-prompt sampling groups. Our experimental results demonstrate that SPRO outperforms vaniila GRPO with 3.4x higher training efficiency and a 17.5\% test accuracy improvement. Furthermore, SPRO maintains a stable and elevated policy entropy throughout training while reducing the average response length by approximately $1/3$, evidencing sufficient exploration and prevention of reward hacking. Notably, SPRO incurs no additional computational overhead compared to outcome-supervised RL methods such as GRPO, which benefit industrial implementation.
♻ ☆ The Choice of Normalization Influences Shrinkage in Regularized Regression
Regularized models are often sensitive to the scales of the features in the data and it has therefore become standard practice to normalize (center and scale) the features before fitting the model. But there are many different ways to normalize the features and the choice may have dramatic effects on the resulting model. In spite of this, there has so far been no research on this topic. In this paper, we begin to bridge this knowledge gap by studying normalization in the context of lasso, ridge, and elastic net regression. We focus on binary features and show that their class balances (proportions of ones) directly influences the regression coefficients and that this effect depends on the combination of normalization and regularization methods used. We demonstrate that this effect can be mitigated by scaling binary features with their variance in the case of the lasso and standard deviation in the case of ridge regression, but that this comes at the cost of increased variance of the coefficient estimates. For the elastic net, we show that scaling the penalty weights, rather than the features, can achieve the same effect. Finally, we also tackle mixes of binary and normal features as well as interactions and provide some initial results on how to normalize features in these cases.
comment: 39 pages, 18 figures
♻ ☆ Reliability-Adjusted Prioritized Experience Replay
Experience replay enables data-efficient learning from past experiences in online reinforcement learning agents. Traditionally, experiences were sampled uniformly from a replay buffer, regardless of differences in experience-specific learning potential. In an effort to sample more efficiently, researchers introduced Prioritized Experience Replay (PER). In this paper, we propose an extension to PER by introducing a novel measure of temporal difference error reliability. We theoretically show that the resulting transition selection algorithm, Reliability-adjusted Prioritized Experience Replay (ReaPER), enables more efficient learning than PER. We further present empirical results showing that ReaPER outperforms PER across various environment types, including the Atari-10 benchmark.
♻ ☆ Deep Transfer Learning for Kidney Cancer Diagnosis
Incurable diseases continue to pose major challenges to global healthcare systems, with their prevalence shaped by lifestyle, economic, social, and genetic factors. Among these, kidney disease remains a critical global health issue, requiring ongoing research to improve early diagnosis and treatment. In recent years, deep learning (DL) has shown promise in medical imaging and diagnostics, driving significant progress in automatic kidney cancer (KC) detection. However, the success of DL models depends heavily on the availability of high-quality, domain-specific datasets, which are often limited and expensive to acquire. Moreover, DL models demand substantial computational power and storage, restricting their real-world clinical use. To overcome these barriers, transfer learning (TL) has emerged as an effective approach, enabling the reuse of pre-trained models from related domains to enhance KC diagnosis. This paper presents a comprehensive survey of DL-based TL frameworks for KC detection, systematically reviewing key methodologies, their advantages, and limitations, and analyzing their practical performance. It further discusses challenges in applying TL to medical imaging and highlights emerging trends that could influence future research. This review demonstrates the transformative role of TL in precision medicine, particularly oncology, by improving diagnostic accuracy, lowering computational demands, and supporting the integration of AI-powered tools in healthcare. The insights provided offer valuable guidance for researchers and practitioners, paving the way for future advances in KC diagnostics and personalized treatment strategies.
♻ ☆ Learning Massive-scale Partial Correlation Networks in Clinical Multi-omics Studies with HP-ACCORD
Graphical model estimation from multi-omics data requires a balance between statistical estimation performance and computational scalability. We introduce a novel pseudolikelihood-based graphical model framework that reparameterizes the target precision matrix while preserving the sparsity pattern and estimates it by minimizing an $\ell_1$-penalized empirical risk based on a new loss function. The proposed estimator maintains estimation and selection consistency in various metrics under high-dimensional assumptions. The associated optimization problem allows for a provably fast computation algorithm using a novel operator-splitting approach and communication-avoiding distributed matrix multiplication. A high-performance computing implementation of our framework was tested using simulated data with up to one million variables, demonstrating complex dependency structures similar to those found in biological networks. Leveraging this scalability, we estimated a partial correlation network from a dual-omic liver cancer data set. The co-expression network estimated from the ultrahigh-dimensional data demonstrated superior specificity in prioritizing key transcription factors and co-activators by excluding the impact of epigenetic regulation, thereby highlighting the value of computational scalability in multi-omic data analysis.
comment: 25 pages, 6 figures, preprint
♻ ☆ Quantum-enhanced causal discovery for a small number of samples
The discovery of causal relations from observed data has attracted significant interest from disciplines such as economics, social sciences, and biology. In practical applications, considerable knowledge of the underlying systems is often unavailable, and real data are usually associated with nonlinear causal structures, which makes the direct use of most conventional causality analysis methods difficult. This study proposes a novel quantum Peter-Clark (qPC) algorithm for causal discovery that does not require any assumptions about the underlying model structures. Based on conditional independence tests in a class of reproducing kernel Hilbert spaces characterized by quantum circuits, the proposed algorithm can explore causal relations from the observed data drawn from arbitrary distributions. We conducted systematic experiments on fundamental graphs of causal structures, demonstrating that the qPC algorithm exhibits better performance, particularly with smaller sample sizes compared to its classical counterpart. Furthermore, we proposed a novel optimization approach based on Kernel Target Alignment (KTA) for determining hyperparameters of quantum kernels. This method effectively reduced the risk of false positives in causal discovery, enabling more reliable inference. Our theoretical and experimental results demonstrate that the quantum algorithm can empower classical algorithms for accurate inference in causal discovery, supporting them in regimes where classical algorithms typically fail. In addition, the effectiveness of this method was validated using the datasets on Boston housing prices, heart disease, and biological signaling systems as real-world applications. These findings highlight the potential of quantum-based causal discovery methods in addressing practical challenges, particularly in small-sample scenarios, where traditional approaches have shown significant limitations.
comment: 20 pages, 10 figures
♻ ☆ Universal Collection of Euclidean Invariants between Pairs of Position-Orientations
Euclidean E(3) equivariant neural networks that employ scalar fields on position-orientation space M(3) have been effectively applied to tasks such as predicting molecular dynamics and properties. To perform equivariant convolutional-like operations in these architectures one needs Euclidean invariant kernels on M(3) x M(3). In practice, a handcrafted collection of invariants is selected, and this collection is then fed into multilayer perceptrons to parametrize the kernels. We rigorously describe an optimal collection of 4 smooth scalar invariants on the whole of M(3) x M(3). With optimal we mean that the collection is independent and universal, meaning that all invariants are pertinent, and any invariant kernel is a function of them. We evaluate two collections of invariants, one universal and one not, using the PONITA neural network architecture. Our experiments show that using a collection of invariants that is universal positively impacts the accuracy of PONITA significantly.
♻ ☆ Roto-Translation Invariant Metrics on Position-Orientation Space
Riemannian metrics on the position-orientation space M(3) that are roto-translation group SE(3) invariant play a key role in image analysis tasks like enhancement, denoising, and segmentation. These metrics enable roto-translation equivariant algorithms, with the associated Riemannian distance often used in implementation. However, computing the Riemannian distance is costly, which makes it unsuitable in situations where constant recomputation is needed. We propose the mav (minimal angular velocity) distance, defined as the Riemannian length of a geometrically meaningful curve, as a practical alternative. We see an application of the mav distance in geometric deep learning. Namely, neural networks architectures such as PONITA, relies on geometric invariants to create their roto-translation equivariant model. The mav distance offers a trainable invariant, with the parameters that determine the Riemannian metric acting as learnable weights. In this paper we: 1) classify and parametrize all SE(3) invariant metrics on M(3), 2) describes how to efficiently calculate the mav distance, and 3) investigate if including the mav distance within PONITA can positively impact its accuracy in predicting molecular properties.
♻ ☆ A Deep Learning Powered Numerical Relativity Surrogate for Binary Black Hole Waveforms
Gravitational-wave approximants are essential for gravitational-wave astronomy, allowing the coverage binary black hole parameter space for inference or match filtering without costly numerical relativity (NR) simulations, but generally trading some accuracy for computational efficiency. To reduce this trade-off, NR surrogate models can be constructed using interpolation within NR waveform space. We present a 2-stage training approach for neural network-based NR surrogate models. Initially trained on approximant-generated waveforms and then fine-tuned with NR data, these dual-stage artificial neural surrogate (\texttt{DANSur}) models offer rapid and competitively accurate waveform generation, generating millions in under 20ms on a GPU while keeping mean mismatches with NR around $10^{-4}$. Implemented in the \textsc{bilby} framework, we show they can be used for parameter estimation tasks.
♻ ☆ Unsupervised Cognition
Unsupervised learning methods have a soft inspiration in cognition models. To this day, the most successful unsupervised learning methods revolve around clustering samples in a mathematical space. In this paper we propose a primitive-based, unsupervised learning approach for decision-making inspired by a novel cognition framework. This representation-centric approach models the input space constructively as a distributed hierarchical structure in an input-agnostic way. We compared our approach with both current state-of-the-art unsupervised learning classification, with current state-of-the-art small and incomplete datasets classification, and with current state-of-the-art cancer type classification. We show how our proposal outperforms previous state-of-the-art. We also evaluate some cognition-like properties of our proposal where it not only outperforms the compared algorithms (even supervised learning ones), but it also shows a different, more cognition-like, behaviour.
♻ ☆ Anatomical Foundation Models for Brain MRIs
Deep Learning (DL) in neuroimaging has become increasingly relevant for detecting neurological conditions and neurodegenerative disorders. One of the most predominant biomarkers in neuroimaging is represented by brain age, which has been shown to be a good indicator for different conditions, such as Alzheimer's Disease. Using brain age for weakly supervised pre-training of DL models in transfer learning settings has also recently shown promising results, especially when dealing with data scarcity of different conditions. On the other hand, anatomical information of brain MRIs (e.g. cortical thickness) can provide important information for learning good representations that can be transferred to many downstream tasks. In this work, we propose AnatCL, an anatomical foundation model for brain MRIs that i.) leverages anatomical information in a weakly contrastive learning approach, and ii.) achieves state-of-the-art performances across many different downstream tasks. To validate our approach we consider 12 different downstream tasks for the diagnosis of different conditions such as Alzheimer's Disease, autism spectrum disorder, and schizophrenia. Furthermore, we also target the prediction of 10 different clinical assessment scores using structural MRI data. Our findings show that incorporating anatomical information during pre-training leads to more robust and generalizable representations. Pre-trained models can be found at: https://github.com/EIDOSLAB/AnatCL.
comment: Updated version; added ablation study
♻ ☆ The Artificial Scientist -- in-transit Machine Learning of Plasma Simulations
Increasing HPC cluster sizes and large-scale simulations that produce petabytes of data per run, create massive IO and storage challenges for analysis. Deep learning-based techniques, in particular, make use of these amounts of domain data to extract patterns that help build scientific understanding. Here, we demonstrate a streaming workflow in which simulation data is streamed directly to a machine-learning (ML) framework, circumventing the file system bottleneck. Data is transformed in transit, asynchronously to the simulation and the training of the model. With the presented workflow, data operations can be performed in common and easy-to-use programming languages, freeing the application user from adapting the application output routines. As a proof-of-concept we consider a GPU accelerated particle-in-cell (PIConGPU) simulation of the Kelvin- Helmholtz instability (KHI). We employ experience replay to avoid catastrophic forgetting in learning from this non-steady process in a continual manner. We detail challenges addressed while porting and scaling to Frontier exascale system.
comment: 12 pages, 9 figures, in 2025 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Milan, Italy, 2025
♻ ☆ Is Complex Query Answering Really Complex? ICML 2025
Complex query answering (CQA) on knowledge graphs (KGs) is gaining momentum as a challenging reasoning task. In this paper, we show that the current benchmarks for CQA might not be as complex as we think, as the way they are built distorts our perception of progress in this field. For example, we find that in these benchmarks, most queries (up to 98% for some query types) can be reduced to simpler problems, e.g., link prediction, where only one link needs to be predicted. The performance of state-of-the-art CQA models decreases significantly when such models are evaluated on queries that cannot be reduced to easier types. Thus, we propose a set of more challenging benchmarks composed of queries that require models to reason over multiple hops and better reflect the construction of real-world KGs. In a systematic empirical investigation, the new benchmarks show that current methods leave much to be desired from current CQA methods.
comment: ICML 2025
♻ ☆ ForceGrip: Reference-Free Curriculum Learning for Realistic Grip Force Control in VR Hand Manipulation SIGGRAPH
Realistic Hand manipulation is a key component of immersive virtual reality (VR), yet existing methods often rely on kinematic approach or motion-capture datasets that omit crucial physical attributes such as contact forces and finger torques. Consequently, these approaches prioritize tight, one-size-fits-all grips rather than reflecting users' intended force levels. We present ForceGrip, a deep learning agent that synthesizes realistic hand manipulation motions, faithfully reflecting the user's grip force intention. Instead of mimicking predefined motion datasets, ForceGrip uses generated training scenarios-randomizing object shapes, wrist movements, and trigger input flows-to challenge the agent with a broad spectrum of physical interactions. To effectively learn from these complex tasks, we employ a three-phase curriculum learning framework comprising Finger Positioning, Intention Adaptation, and Dynamic Stabilization. This progressive strategy ensures stable hand-object contact, adaptive force control based on user inputs, and robust handling under dynamic conditions. Additionally, a proximity reward function enhances natural finger motions and accelerates training convergence. Quantitative and qualitative evaluations reveal ForceGrip's superior force controllability and plausibility compared to state-of-the-art methods. Demo videos are available as supplementary material and the code is provided at https://han-dongheun.github.io/ForceGrip.
comment: 11 pages, 11 figures. Accepted to SIGGRAPH Conference Papers '25. Project page: https://han-dongheun.github.io/ForceGrip
♻ ☆ EquiTabPFN: A Target-Permutation Equivariant Prior Fitted Networks
Recent foundational models for tabular data, such as TabPFN, excel at adapting to new tasks via in-context learning, but remain constrained to a fixed, pre-defined number of target dimensions-often necessitating costly ensembling strategies. We trace this constraint to a deeper architectural shortcoming: these models lack target equivariance, so that permuting target dimension orderings alters their predictions. This deficiency gives rise to an irreducible "equivariance gap", an error term that introduces instability in predictions. We eliminate this gap by designing a fully target-equivariant architecture-ensuring permutation invariance via equivariant encoders, decoders, and a bi-attention mechanism. Empirical evaluation on standard classification benchmarks shows that, on datasets with more classes than those seen during pre-training, our model matches or surpasses existing methods while incurring lower computational overhead.
♻ ☆ Significativity Indices for Agreement Values
Agreement measures, such as Cohen's kappa or intraclass correlation, gauge the matching between two or more classifiers. They are used in a wide range of contexts from medicine, where they evaluate the effectiveness of medical treatments and clinical trials, to artificial intelligence, where they can quantify the approximation due to the reduction of a classifier. The consistency of different classifiers to a golden standard can be compared simply by using the order induced by their agreement measure with respect to the golden standard itself. Nevertheless, labelling an approach as good or bad exclusively by using the value of an agreement measure requires a scale or a significativity index. Some quality scales have been proposed in the literature for Cohen's kappa, but they are mainly na\"ive, and their boundaries are arbitrary. This work proposes a general approach to evaluate the significativity of any agreement value between two classifiers and introduces two significativity indices: one dealing with finite data sets, the other one handling classification probability distributions. Moreover, this manuscript addresses the computational challenges of evaluating such indices and proposes some efficient algorithms for their evaluation.
comment: 27 pages, 6 figures
♻ ☆ Attention-based clustering
Transformers have emerged as a powerful neural network architecture capable of tackling a wide range of learning tasks. In this work, we provide a theoretical analysis of their ability to automatically extract structure from data in an unsupervised setting. In particular, we demonstrate their suitability for clustering when the input data is generated from a Gaussian mixture model. To this end, we study a simplified two-head attention layer and define a population risk whose minimization with unlabeled data drives the head parameters to align with the true mixture centroids. This phenomenon highlights the ability of attention-based layers to capture underlying distributional structure. We further examine an attention layer with key, query, and value matrices fixed to the identity, and show that, even without any trainable parameters, it can perform in-context quantization, revealing the surprising capacity of transformer-based methods to adapt dynamically to input-specific distributions.
♻ ☆ XGeM: A Multi-Prompt Foundation Model for Multimodal Medical Data Generation
The adoption of Artificial Intelligence in medical imaging holds great promise, yet it remains hindered by challenges such as data scarcity, privacy concerns, and the need for robust multimodal integration. While recent advances in generative modeling have enabled high-quality synthetic data generation, existing approaches are often limited to unimodal, unidirectional synthesis and therefore lack the ability to jointly synthesize multiple modalities while preserving clinical consistency. To address this challenge, we introduce XGeM, a 6.77-billion-parameter multimodal generative model designed to support flexible, any-to-any synthesis between medical data modalities. XGeM constructs a shared latent space via contrastive learning and introduces a novel Multi-Prompt Training strategy, enabling conditioning on arbitrary subsets of input modalities. This design allows the model to adapt to heterogeneous clinical inputs and generate multiple outputs jointly, preserving both semantic and structural coherence. We extensively validate XGeM: first we benchmark it against five competitors on the MIMIC-CXR dataset, a state-of-the-art dataset for multi-view Chest X-ray and radiological report generation. Secondly, we perform a Visual Turing Test with expert radiologists to assess the realism and clinical relevance of the generated data, ensuring alignment with real-world scenarios. Finally, we show how XGeM can support key medical data challenges such as anonymization, class imbalance, and data scarcity, underscoring its utility as a foundation model for medical data synthesis. Project page is at https://cosbidev.github.io/XGeM/.
♻ ☆ MInCo: Mitigating Information Conflicts in Distracted Visual Model-based Reinforcement Learning
Existing visual model-based reinforcement learning (MBRL) algorithms with observation reconstruction often suffer from information conflicts, making it difficult to learn compact representations and hence result in less robust policies, especially in the presence of task-irrelevant visual distractions. In this paper, we first reveal that the information conflicts in current visual MBRL algorithms stem from visual representation learning and latent dynamics modeling with an information-theoretic perspective. Based on this finding, we present a new algorithm to resolve information conflicts for visual MBRL, named MInCo, which mitigates information conflicts by leveraging negative-free contrastive learning, aiding in learning invariant representation and robust policies despite noisy observations. To prevent the dominance of visual representation learning, we introduce time-varying reweighting to bias the learning towards dynamics modeling as training proceeds. We evaluate our method on several robotic control tasks with dynamic background distractions. Our experiments demonstrate that MInCo learns invariant representations against background noise and consistently outperforms current state-of-the-art visual MBRL methods. Code is available at https://github.com/ShiguangSun/minco.
♻ ☆ Gateformer: Advancing Multivariate Time Series Forecasting through Temporal and Variate-Wise Attention with Gated Representations ICML
There has been a recent surge of interest in time series modeling using the Transformer architecture. However, forecasting multivariate time series with Transformer presents a unique challenge as it requires modeling both temporal (cross-time) and variate (cross-variate) dependencies. While Transformer-based models have gained popularity for their flexibility in capturing both sequential and cross-variate relationships, it is unclear how to best integrate these two sources of information in the context of the Transformer architecture while optimizing for both performance and efficiency. We re-purpose the Transformer architecture to effectively model both cross-time and cross-variate dependencies. Our approach begins by embedding each variate independently into a variate-wise representation that captures its cross-time dynamics, and then models cross-variate dependencies through attention mechanisms on these learned embeddings. Gating operations in both cross-time and cross-variate modeling phases regulate information flow, allowing the model to focus on the most relevant features for accurate predictions. Our method achieves state-of-the-art performance across 13 real-world datasets and can be seamlessly integrated into other Transformer-based and LLM-based forecasters, delivering performance improvements up to 20.7\% over original models. Code is available at this repository: https://github.com/nyuolab/Gateformer.
comment: Accepted at ICML Workshop on Foundation Models for Structured Data
♻ ☆ Good Representation, Better Explanation: Role of Convolutional Neural Networks in Transformer-Based Remote Sensing Image Captioning
Remote Sensing Image Captioning (RSIC) is the process of generating meaningful descriptions from remote sensing images. Recently, it has gained significant attention, with encoder-decoder models serving as the backbone for generating meaningful captions. The encoder extracts essential visual features from the input image, transforming them into a compact representation, while the decoder utilizes this representation to generate coherent textual descriptions. Recently, transformer-based models have gained significant popularity due to their ability to capture long-range dependencies and contextual information. The decoder has been well explored for text generation, whereas the encoder remains relatively unexplored. However, optimizing the encoder is crucial as it directly influences the richness of extracted features, which in turn affects the quality of generated captions. To address this gap, we systematically evaluate twelve different convolutional neural network (CNN) architectures within a transformer-based encoder framework to assess their effectiveness in RSIC. The evaluation consists of two stages: first, a numerical analysis categorizes CNNs into different clusters, based on their performance. The best performing CNNs are then subjected to human evaluation from a human-centric perspective by a human annotator. Additionally, we analyze the impact of different search strategies, namely greedy search and beam search, to ensure the best caption. The results highlight the critical role of encoder selection in improving captioning performance, demonstrating that specific CNN architectures significantly enhance the quality of generated descriptions for remote sensing images. By providing a detailed comparison of multiple encoders, this study offers valuable insights to guide advances in transformer-based image captioning models.
♻ ☆ Exploring the Integration of Large Language Models in Industrial Test Maintenance Processes
Much of the cost and effort required during the software testing process is invested in performing test maintenance - the addition, removal, or modification of test cases to keep the test suite in sync with the system-under-test or to otherwise improve its quality. Tool support could reduce the cost - and improve the quality - of test maintenance by automating aspects of the process or by providing guidance and support to developers. In this study, we explore the capabilities and applications of large language models (LLMs) - complex machine learning models adapted to textual analysis - to support test maintenance. We conducted a case study at Ericsson AB where we explore the triggers that indicate the need for test maintenance, the actions that LLMs can take, and the considerations that must be made when deploying LLMs in an industrial setting. We also propose and demonstrate a multi-agent architecture that can predict which tests require maintenance following a change to the source code. Collectively, these contributions advance our theoretical and practical understanding of how LLMs can be deployed to benefit industrial test maintenance processes.
comment: Under submission to Journal of Systems and Software
♻ ☆ Text-Aware Image Restoration with Diffusion Models
Image restoration aims to recover degraded images. However, existing diffusion-based restoration methods, despite great success in natural image restoration, often struggle to faithfully reconstruct textual regions in degraded images. Those methods frequently generate plausible but incorrect text-like patterns, a phenomenon we refer to as text-image hallucination. In this paper, we introduce Text-Aware Image Restoration (TAIR), a novel restoration task that requires the simultaneous recovery of visual contents and textual fidelity. To tackle this task, we present SA-Text, a large-scale benchmark of 100K high-quality scene images densely annotated with diverse and complex text instances. Furthermore, we propose a multi-task diffusion framework, called TeReDiff, that integrates internal features from diffusion models into a text-spotting module, enabling both components to benefit from joint training. This allows for the extraction of rich text representations, which are utilized as prompts in subsequent denoising steps. Extensive experiments demonstrate that our approach consistently outperforms state-of-the-art restoration methods, achieving significant gains in text recognition accuracy. See our project page: https://cvlab-kaist.github.io/TAIR/
comment: Project page: https://cvlab-kaist.github.io/TAIR/
♻ ☆ Privacy-Preserving Operating Room Workflow Analysis using Digital Twins
The operating room (OR) is a complex environment where optimizing workflows is critical to reduce costs and improve patient outcomes. While computer vision approaches for automatic recognition of perioperative events can identify bottlenecks for OR optimization, privacy concerns limit the use of OR videos for automated event detection. We propose a two-stage pipeline for privacy-preserving OR video analysis and event detection. First, we leverage vision foundation models for depth estimation and semantic segmentation to generate de-identified Digital Twins (DT) of the OR from conventional RGB videos. Second, we employ the SafeOR model, a fused two-stream approach that processes segmentation masks and depth maps for OR event detection. Evaluation on an internal dataset of 38 simulated surgical trials with five event classes shows that our DT-based approach achieves performance on par with -- and sometimes better than -- raw RGB video-based models for OR event detection. Digital Twins enable privacy-preserving OR workflow analysis, facilitating the sharing of de-identified data across institutions and potentially enhancing model generalizability by mitigating domain-specific appearance differences.
♻ ☆ UniNet: A Unified Multi-granular Traffic Modeling Framework for Network Security
As modern networks grow increasingly complex--driven by diverse devices, encrypted protocols, and evolving threats--network traffic analysis has become critically important. Existing machine learning models often rely only on a single representation of packets or flows, limiting their ability to capture the contextual relationships essential for robust analysis. Furthermore, task-specific architectures for supervised, semi-supervised, and unsupervised learning lead to inefficiencies in adapting to varying data formats and security tasks. To address these gaps, we propose UniNet, a unified framework that introduces a novel multi-granular traffic representation (T-Matrix), integrating session, flow, and packet-level features to provide comprehensive contextual information. Combined with T-Attent, a lightweight attention-based model, UniNet efficiently learns latent embeddings for diverse security tasks. Extensive evaluations across four key network security and privacy problems--anomaly detection, attack classification, IoT device identification, and encrypted website fingerprinting--demonstrate UniNet's significant performance gain over state-of-the-art methods, achieving higher accuracy, lower false positive rates, and improved scalability. By addressing the limitations of single-level models and unifying traffic analysis paradigms, UniNet sets a new benchmark for modern network security.
comment: 16 pages,6 figures, 12 tables; accepted for publication in IEEE Transactions on Cognitive Communications and Networking, 2025
♻ ☆ Skywork-Reward-V2: Scaling Preference Data Curation via Human-AI Synergy
Despite the critical role of reward models (RMs) in reinforcement learning from human feedback (RLHF), current state-of-the-art open RMs perform poorly on most existing evaluation benchmarks, failing to capture the spectrum of nuanced and sophisticated human preferences. Even approaches that incorporate advanced training techniques have not yielded meaningful performance improvements. We hypothesize that this brittleness stems primarily from limitations in preference datasets, which are often narrowly scoped, synthetically labeled, or lack rigorous quality control. To address these challenges, we present a large-scale preference dataset comprising 40 million preference pairs, named SynPref-40M. To enable data curation at scale, we design a human-AI synergistic two-stage pipeline that leverages the complementary strengths of human annotation quality and AI scalability. In this pipeline, humans provide verified annotations, while large language models perform automatic curation based on human guidance. Training on this preference mixture, we introduce Skywork-Reward-V2, a suite of eight reward models ranging from 0.6B to 8B parameters, trained on a carefully curated subset of 26 million preference pairs from SynPref-40M. We demonstrate that Skywork-Reward-V2 is versatile across a wide range of capabilities, including alignment with human preferences, objective correctness, safety, resistance to stylistic biases, and best-of-N scaling, achieving state-of-the-art performance across seven major reward model benchmarks. Ablation studies confirm that the effectiveness of our approach stems not only from data scale but also from high-quality curation. The Skywork-Reward-V2 series represents substantial progress in open reward models, highlighting the untapped potential of existing preference datasets and demonstrating how human-AI curation synergy can unlock significantly higher data quality.
♻ ☆ SecAlign: Defending Against Prompt Injection with Preference Optimization CCS 2025
Large language models (LLMs) are becoming increasingly prevalent in modern software systems, interfacing between the user and the Internet to assist with tasks that require advanced language understanding. To accomplish these tasks, the LLM often uses external data sources such as user documents, web retrieval, results from API calls, etc. This opens up new avenues for attackers to manipulate the LLM via prompt injection. Adversarial prompts can be injected into external data sources to override the system's intended instruction and instead execute a malicious instruction. To mitigate this vulnerability, we propose a new defense called SecAlign based on the technique of preference optimization. Our defense first constructs a preference dataset with prompt-injected inputs, secure outputs (ones that respond to the legitimate instruction), and insecure outputs (ones that respond to the injection). We then perform preference optimization on this dataset to teach the LLM to prefer the secure output over the insecure one. This provides the first known method that reduces the success rates of various prompt injections to <10%, even against attacks much more sophisticated than ones seen during training. This indicates our defense generalizes well against unknown and yet-to-come attacks. Also, SecAlign models are still practical with similar utility to the one before defensive training in our evaluations. Our code is at https://github.com/facebookresearch/SecAlign
comment: ACM CCS 2025. Key words: prompt injection defense, LLM security, LLM-integrated applications
♻ ☆ High-Performance Reinforcement Learning on Spot: Optimizing Simulation Parameters with Distributional Measures
This work presents an overview of the technical details behind a high performance reinforcement learning policy deployment with the Spot RL Researcher Development Kit for low level motor access on Boston Dynamics Spot. This represents the first public demonstration of an end to end end reinforcement learning policy deployed on Spot hardware with training code publicly available through Nvidia IsaacLab and deployment code available through Boston Dynamics. We utilize Wasserstein Distance and Maximum Mean Discrepancy to quantify the distributional dissimilarity of data collected on hardware and in simulation to measure our sim2real gap. We use these measures as a scoring function for the Covariance Matrix Adaptation Evolution Strategy to optimize simulated parameters that are unknown or difficult to measure from Spot. Our procedure for modeling and training produces high quality reinforcement learning policies capable of multiple gaits, including a flight phase. We deploy policies capable of over 5.2ms locomotion, more than triple Spots default controller maximum speed, robustness to slippery surfaces, disturbance rejection, and overall agility previously unseen on Spot. We detail our method and release our code to support future work on Spot with the low level API.
♻ ☆ Aligning Frozen LLMs by Reinforcement Learning: An Iterative Reweight-then-Optimize Approach
Aligning large language models (LLMs) with human preferences usually requires fine-tuning methods such as RLHF and DPO. These methods directly optimize the model parameters, so they cannot be used in test-time to improve model performance, nor are they applicable when the model weights are not accessible. In contrast, test-time methods sidestep weight updates by leveraging reward functions to guide and improve output quality. However, they incur high inference costs, and their one-shot guidance is often based on imperfect reward or value functions, leading to suboptimal outputs. In this work, we present a method named Iterative Reweight-then-Optimize (IRO), a reinforcement learning (RL) framework that performs RL-style alignment of the (frozen) base model without touching its parameters. During training, each iteration (i) samples candidates from the base model, (ii) resamples using current value functions, and (iii) trains a new lightweight value function that guides the next decoding pass. At test time, the value functions are used to guide the base model generation via a search-based optimization process. Notably, users can apply IRO to align a model on their own dataset, similar to OpenAI's reinforcement fine-tuning (RFT), but without requiring access to the model weights.
♻ ☆ Generalization vs. Specialization under Concept Shift
Machine learning models are often brittle under distribution shift, i.e., when data distributions at test time differ from those during training. Understanding this failure mode is central to identifying and mitigating safety risks of mass adoption of machine learning. Here we analyze ridge regression under concept shift -- a form of distribution shift in which the input-label relationship changes at test time. We derive an exact expression for prediction risk in the thermodynamic limit. Our results reveal nontrivial effects of concept shift on generalization performance, including a phase transition between weak and strong concept shift regimes and nonmonotonic data dependence of test performance even when double descent is absent. Our theoretical results are in good agreement with experiments based on transformers pretrained to solve linear regression; under concept shift, too long context length can be detrimental to generalization performance of next token prediction. Finally, our experiments on MNIST and FashionMNIST suggest that this intriguing behavior is present also in classification problems.
comment: 8 pages, 3 figures
♻ ☆ Distributional Soft Actor-Critic with Diffusion Policy SC 2025
Reinforcement learning has been proven to be highly effective in handling complex control tasks. Traditional methods typically use unimodal distributions, such as Gaussian distributions, to model the output of value distributions. However, unimodal distribution often and easily causes bias in value function estimation, leading to poor algorithm performance. This paper proposes a distributional reinforcement learning algorithm called DSAC-D (Distributed Soft Actor Critic with Diffusion Policy) to address the challenges of estimating bias in value functions and obtaining multimodal policy representations. A multimodal distributional policy iteration framework that can converge to the optimal policy was established by introducing policy entropy and value distribution function. A diffusion value network that can accurately characterize the distribution of multi peaks was constructed by generating a set of reward samples through reverse sampling using a diffusion model. Based on this, a distributional reinforcement learning algorithm with dual diffusion of the value network and the policy network was derived. MuJoCo testing tasks demonstrate that the proposed algorithm not only learns multimodal policy, but also achieves state-of-the-art (SOTA) performance in all 9 control tasks, with significant suppression of estimation bias and total average return improvement of over 10% compared to existing mainstream algorithms. The results of real vehicle testing show that DSAC-D can accurately characterize the multimodal distribution of different driving styles, and the diffusion policy network can characterize multimodal trajectories.
comment: Accepted IEEE ITSC 2025
♻ ☆ Neural CRNs: A Natural Implementation of Learning in Chemical Reaction Networks
This work introduces Neural CRNs, a general-purpose chemical neural network framework that embeds learning directly into mass-action chemical reaction systems. Unlike prior approaches that chemically implement and compose discrete neural computations, Neural CRNs adopt an analog computing approach, where both forward and backward passes of learning are implemented as continuous-time evolutions of molecular concentrations. Such an analog formulation naturally aligns with the analog nature of chemical kinetics, yielding concise circuits and practicable reactions. We demonstrate this efficiency by constructing a streamlined supervised learning procedure executable in just two sequential stages. We then implement several learning circuits to demonstrate the framework's linear and nonlinear modeling capabilities and to validate its learning procedure. These circuits are implemented entirely using unimolecular and bimolecular reactions, avoiding the complexity of higher-order chemistries. In summary, Neural CRNs offer a compact, scalable, and autonomous framework for biochemical learning, opening new avenues for adaptive computing in synthetic biology, bioengineering, and biomedicine.
♻ ☆ Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient ACL2025
Recent Large-Language Models (LLMs) pruning methods typically operate at the post-training phase without the expensive weight finetuning, however, their pruning criteria often rely on heuristically hand-crafted metrics, potentially leading to suboptimal performance. We instead propose a novel optimization-based structural pruning that learns the pruning masks in a probabilistic space directly by optimizing the loss of the pruned model. To preserve efficiency, our method eliminates the back-propagation through the LLM per se during optimization, requiring only the forward pass of the LLM. We achieve this by learning an underlying Bernoulli distribution to sample binary pruning masks, where we decouple the Bernoulli parameters from LLM loss, facilitating efficient optimization via policy gradient estimator without back-propagation. Thus, our method can 1) support global and heterogeneous pruning (i.e., automatically determine different redundancy for different layers), and 2) optionally initialize with a metric-based method (for our Bernoulli distributions). Extensive experiments conducted on LLaMA, LLaMA-2, LLaMA-3, Vicuna, and Mistral models using the C4 and WikiText2 datasets demonstrate the promising performance of our method in efficiency and effectiveness. Code is available at https://github.com/ethanygao/backprop-free_LLM_pruning.
comment: ACL2025 Main Accepted
♻ ☆ Kernel Density Bayesian Inverse Reinforcement Learning
Inverse reinforcement learning (IRL) methods infer an agent's reward function using demonstrations of expert behavior. A Bayesian IRL approach models a distribution over candidate reward functions, capturing a degree of uncertainty in the inferred reward function. This is critical in some applications, such as those involving clinical data. Typically, Bayesian IRL algorithms require large demonstration datasets, which may not be available in practice. In this work, we incorporate existing domain-specific data to achieve better posterior concentration rates. We study a common setting in clinical and biological applications where we have access to expert demonstrations and known reward functions for a set of training tasks. Our aim is to learn the reward function of a new test task given limited expert demonstrations. Existing Bayesian IRL methods impose restrictions on the form of input data, thus limiting the incorporation of training task data. To better leverage information from training tasks, we introduce kernel density Bayesian inverse reinforcement learning (KD-BIRL). Our approach employs a conditional kernel density estimator, which uses the known reward functions of the training tasks to improve the likelihood estimation across a range of reward functions and demonstration samples. Our empirical results highlight KD-BIRL's faster concentration rate in comparison to baselines, particularly in low test task expert demonstration data regimes. Additionally, we are the first to provide theoretical guarantees of posterior concentration for a Bayesian IRL algorithm. Taken together, this work introduces a principled and theoretically grounded framework that enables Bayesian IRL to be applied across a variety of domains.
♻ ☆ REINFORCE++: An Efficient RLHF Algorithm with Robustness to Both Prompt and Reward Models
Large Language Models (LLMs) fine-tuned via Reinforcement Learning from Human Feedback (RLHF) and Reinforcement Learning with Verifiable Rewards (RLVR) significantly improve the alignment of human-AI values and further raise the upper bound of AI capabilities, particularly in reasoning-intensive, long-context Chain-of-Thought (long-CoT) tasks. However, existing RLHF (or RLVR) frameworks commonly face challenges such as inference bottlenecks and complexity barriers, restricting their accessibility for newcomers. To bridge this gap, we introduce \textbf{OpenRLHF}, a user-friendly, scalable, and easy-to-learn open-source RLHF framework built upon Ray, vLLM, DeepSpeed, and HuggingFace Transformers, featuring a simplified design, clear code structure, and comprehensive documentation to facilitate entry for researchers and practitioners. Experimental results show that OpenRLHF achieves superior training efficiency with speedups ranging from 1.22x to 1.68x across different model sizes compared to state-of-the-art frameworks, while requiring significantly fewer lines of code for implementation. OpenRLHF is publicly available at https://github.com/OpenRLHF/OpenRLHF, and has already been adopted by leading institutions to accelerate RLHF research and learning.
comment: fix typo
♻ ☆ Implicit Counterfactual Data Augmentation for Robust Learning
Machine learning models are prone to capturing the spurious correlations between non-causal attributes and classes, with counterfactual data augmentation being a promising direction for breaking these spurious associations. However, generating counterfactual data explicitly poses a challenge, and incorporating augmented data into the training process decreases training efficiency. This study proposes an Implicit Counterfactual Data Augmentation (ICDA) method to remove spurious correlations and make stable predictions. Specifically, first, a novel sample-wise augmentation strategy is developed that generates semantically and counterfactually meaningful deep features with distinct augmentation strength for each sample. Second, we derive an easy-to-compute surrogate loss on the augmented feature set when the number of augmented samples becomes infinite. Third, two concrete schemes are proposed, including direct quantification and meta-learning, to derive the key parameters for the robust loss. In addition, ICDA is explained from a regularization perspective, revealing its capacity to improve intra-class compactness and augment margins at both class and sample levels. Extensive experiments have been conducted across various biased learning scenarios covering both image and text datasets, demonstrating that ICDA consistently enhances the generalization and robustness performance of popular networks.
comment: 46 pages, 12 figures
♻ ☆ Optimal strategies to perform multilingual analysis of social content for a novel dataset in the tourism domain
The rising influence of social media platforms in various domains, including tourism, has highlighted the growing need for efficient and automated Natural Language Processing (NLP) strategies to take advantage of this valuable resource. However, the transformation of multilingual, unstructured, and informal texts into structured knowledge still poses significant challenges, most notably the never-ending requirement for manually annotated data to train deep learning classifiers. In this work, we study different NLP techniques to establish the best ones to obtain competitive performances while keeping the need for training annotated data to a minimum. To do so, we built the first publicly available multilingual dataset (French, English, and Spanish) for the tourism domain, composed of tourism-related tweets. The dataset includes multilayered, manually revised annotations for Named Entity Recognition (NER) for Locations and Fine-grained Thematic Concepts Extraction mapped to the Thesaurus of Tourism and Leisure Activities of the World Tourism Organization, as well as for Sentiment Analysis at the tweet level. Extensive experimentation comparing various few-shot and fine-tuning techniques with modern language models demonstrate that modern few-shot techniques allow us to obtain competitive results for all three tasks with very little annotation data: 5 tweets per label (15 in total) for Sentiment Analysis, 30 tweets for Named Entity Recognition of Locations and 1K tweets annotated with fine-grained thematic concepts, a highly fine-grained sequence labeling task based on an inventory of 315 classes. We believe that our results, grounded in a novel dataset, pave the way for applying NLP to new domain-specific applications, reducing the need for manual annotations and circumventing the complexities of rule-based, ad-hoc solutions.
Artificial Intelligence 150
☆ Point3R: Streaming 3D Reconstruction with Explicit Spatial Pointer Memory
Dense 3D scene reconstruction from an ordered sequence or unordered image collections is a critical step when bringing research in computer vision into practical scenarios. Following the paradigm introduced by DUSt3R, which unifies an image pair densely into a shared coordinate system, subsequent methods maintain an implicit memory to achieve dense 3D reconstruction from more images. However, such implicit memory is limited in capacity and may suffer from information loss of earlier frames. We propose Point3R, an online framework targeting dense streaming 3D reconstruction. To be specific, we maintain an explicit spatial pointer memory directly associated with the 3D structure of the current scene. Each pointer in this memory is assigned a specific 3D position and aggregates scene information nearby in the global coordinate system into a changing spatial feature. Information extracted from the latest frame interacts explicitly with this pointer memory, enabling dense integration of the current observation into the global coordinate system. We design a 3D hierarchical position embedding to promote this interaction and design a simple yet effective fusion mechanism to ensure that our pointer memory is uniform and efficient. Our method achieves competitive or state-of-the-art performance on various tasks with low training costs. Code is available at: https://github.com/YkiWu/Point3R.
comment: Code is available at: https://github.com/YkiWu/Point3R
☆ LiteReality: Graphics-Ready 3D Scene Reconstruction from RGB-D Scans
We propose LiteReality, a novel pipeline that converts RGB-D scans of indoor environments into compact, realistic, and interactive 3D virtual replicas. LiteReality not only reconstructs scenes that visually resemble reality but also supports key features essential for graphics pipelines -- such as object individuality, articulation, high-quality physically based rendering materials, and physically based interaction. At its core, LiteReality first performs scene understanding and parses the results into a coherent 3D layout and objects with the help of a structured scene graph. It then reconstructs the scene by retrieving the most visually similar 3D artist-crafted models from a curated asset database. Next, the Material Painting module enhances realism by recovering high-quality, spatially varying materials. Finally, the reconstructed scene is integrated into a simulation engine with basic physical properties to enable interactive behavior. The resulting scenes are compact, editable, and fully compatible with standard graphics pipelines, making them suitable for applications in AR/VR, gaming, robotics, and digital twins. In addition, LiteReality introduces a training-free object retrieval module that achieves state-of-the-art similarity performance on the Scan2CAD benchmark, along with a robust material painting module capable of transferring appearances from images of any style to 3D assets -- even under severe misalignment, occlusion, and poor lighting. We demonstrate the effectiveness of LiteReality on both real-life scans and public datasets. Project page: https://litereality.github.io; Video: https://www.youtube.com/watch?v=ecK9m3LXg2c
comment: Project Page: https://litereality.github.io; Video: https://www.youtube.com/watch?v=ecK9m3LXg2c&feature=youtu.be
☆ Answer Matching Outperforms Multiple Choice for Language Model Evaluation
Multiple choice benchmarks have long been the workhorse of language model evaluation because grading multiple choice is objective and easy to automate. However, we show multiple choice questions from popular benchmarks can often be answered without even seeing the question. These shortcuts arise from a fundamental limitation of discriminative evaluation not shared by evaluations of the model's free-form, generative answers. Until recently, there appeared to be no viable, scalable alternative to multiple choice--but, we show that this has changed. We consider generative evaluation via what we call answer matching: Give the candidate model the question without the options, have it generate a free-form response, then use a modern language model with the reference answer to determine if the response matches the reference. To compare the validity of different evaluation strategies, we annotate MMLU-Pro and GPQA-Diamond to obtain human grading data, and measure the agreement of each evaluation approach. We find answer matching using recent models--even small ones--achieves near-perfect agreement, in the range of inter-annotator agreement. In contrast, both multiple choice evaluation and using LLM-as-a-judge without reference answers aligns poorly with human grading. Improving evaluations via answer matching is not merely a conceptual concern: the rankings of several models change significantly when evaluating their free-form responses with answer matching. In light of these findings, we discuss how to move the evaluation ecosystem from multiple choice to answer matching.
comment: 34 pages, Code is available at https://github.com/nikhilchandak/answer-matching
☆ Subtyping in DHOL -- Extended preprint
The recently introduced dependent typed higher-order logic (DHOL) offers an interesting compromise between expressiveness and automation support. It sacrifices the decidability of its type system in order to significantly extend its expressiveness over standard HOL. Yet it retains strong automated theorem proving support via a sound and complete translation to HOL. We leverage this design to extend DHOL with refinement and quotient types. Both of these are commonly requested by practitioners but rarely provided by automated theorem provers. This is because they inherently require undecidable typing and thus are very difficult to retrofit to decidable type systems. But with DHOL already doing the heavy lifting, adding them is not only possible but elegant and simple. Concretely, we add refinement and quotient types as special cases of subtyping. This turns the associated canonical inclusion resp. projection maps into identity maps and thus avoids costly changes in representation. We present the syntax, semantics, and translation to HOL for the extended language, including the proofs of soundness and completeness.
comment: 16 pages main document, 44 pages of appendices, to be published in FroCoS 2025
☆ MOTIF: Modular Thinking via Reinforcement Fine-tuning in LLMs
Recent advancements in the reasoning capabilities of large language models (LLMs) show that employing group relative policy optimization (GRPO) algorithm for reinforcement learning (RL) training allows the models to use more thinking/reasoning tokens for generating better responses. However, LLMs can generate only a finite amount of tokens while maintaining attention to the previously generated tokens. This limit, also known as the context size of an LLM, is a bottleneck in LLM reasoning with arbitrarily large number of tokens. To think beyond the limit of context size, an LLM must employ a modular thinking strategy to reason over multiple rounds. In this work, we propose $\textbf{MOTIF: Modular Thinking via Reinforcement Finetuning}$ -- an RL training method for generating thinking tokens in multiple rounds, effectively allowing the model to think with additional context size. We trained the open-source model Qwen2.5-3B-Instruct on GSM8K dataset via parameter efficient fine-tuning and tested its accuracy on MATH500 and AIME2024 benchmarks. Our experiments show 3.8\% and 3.3\% improvements over vanilla GRPO based training in the respective benchmarks. Furthermore, this improvement was achieved with only 15\% of samples, thus demonstrating sample efficiency of MOTIF. Our code and models are available at https://github.com/purbeshmitra/MOTIF and https://huggingface.co/purbeshmitra/MOTIF, respectively.
☆ StepHint: Multi-level Stepwise Hints Enhance Reinforcement Learning to Reason
Reinforcement learning with verifiable rewards (RLVR) is a promising approach for improving the complex reasoning abilities of large language models (LLMs). However, current RLVR methods face two significant challenges: the near-miss reward problem, where a small mistake can invalidate an otherwise correct reasoning process, greatly hindering training efficiency; and exploration stagnation, where models tend to focus on solutions within their ``comfort zone,'' lacking the motivation to explore potentially more effective alternatives. To address these challenges, we propose StepHint, a novel RLVR algorithm that utilizes multi-level stepwise hints to help models explore the solution space more effectively. StepHint generates valid reasoning chains from stronger models and partitions these chains into reasoning steps using our proposed adaptive partitioning method. The initial few steps are used as hints, and simultaneously, multiple-level hints (each comprising a different number of steps) are provided to the model. This approach directs the model's exploration toward a promising solution subspace while preserving its flexibility for independent exploration. By providing hints, StepHint mitigates the near-miss reward problem, thereby improving training efficiency. Additionally, the external reasoning pathways help the model develop better reasoning abilities, enabling it to move beyond its ``comfort zone'' and mitigate exploration stagnation. StepHint outperforms competitive RLVR enhancement methods across six mathematical benchmarks, while also demonstrating superior generalization and excelling over baselines on out-of-domain benchmarks.
☆ USAD: An Unsupervised Data Augmentation Spatio-Temporal Attention Diffusion Network
The primary objective of human activity recognition (HAR) is to infer ongoing human actions from sensor data, a task that finds broad applications in health monitoring, safety protection, and sports analysis. Despite proliferating research, HAR still faces key challenges, including the scarcity of labeled samples for rare activities, insufficient extraction of high-level features, and suboptimal model performance on lightweight devices. To address these issues, this paper proposes a comprehensive optimization approach centered on multi-attention interaction mechanisms. First, an unsupervised, statistics-guided diffusion model is employed to perform data augmentation, thereby alleviating the problems of labeled data scarcity and severe class imbalance. Second, a multi-branch spatio-temporal interaction network is designed, which captures multi-scale features of sequential data through parallel residual branches with 3*3, 5*5, and 7*7 convolutional kernels. Simultaneously, temporal attention mechanisms are incorporated to identify critical time points, while spatial attention enhances inter-sensor interactions. A cross-branch feature fusion unit is further introduced to improve the overall feature representation capability. Finally, an adaptive multi-loss function fusion strategy is integrated, allowing for dynamic adjustment of loss weights and overall model optimization. Experimental results on three public datasets, WISDM, PAMAP2, and OPPORTUNITY, demonstrate that the proposed unsupervised data augmentation spatio-temporal attention diffusion network (USAD) achieves accuracies of 98.84%, 93.81%, and 80.92% respectively, significantly outperforming existing approaches. Furthermore, practical deployment on embedded devices verifies the efficiency and feasibility of the proposed method.
☆ Establishing Best Practices for Building Rigorous Agentic Benchmarks
Benchmarks are essential for quantitatively tracking progress in AI. As AI agents become increasingly capable, researchers and practitioners have introduced agentic benchmarks to evaluate agents on complex, real-world tasks. These benchmarks typically measure agent capabilities by evaluating task outcomes via specific reward designs. However, we show that many agentic benchmarks have issues task setup or reward design. For example, SWE-bench Verified uses insufficient test cases, while TAU-bench counts empty responses as successful. Such issues can lead to under- or overestimation agents' performance by up to 100% in relative terms. To make agentic evaluation rigorous, we introduce the Agentic Benchmark Checklist (ABC), a set of guidelines that we synthesized from our benchmark-building experience, a survey of best practices, and previously reported issues. When applied to CVE-Bench, a benchmark with a particularly complex evaluation design, ABC reduces the performance overestimation by 33%.
comment: 39 pages, 15 tables, 6 figures
☆ DNN-Based Precoding in RIS-Aided mmWave MIMO Systems With Practical Phase Shift
In this paper, the precoding design is investigated for maximizing the throughput of millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems with obstructed direct communication paths. In particular, a reconfigurable intelligent surface (RIS) is employed to enhance MIMO transmissions, considering mmWave characteristics related to line-of-sight (LoS) and multipath effects. The traditional exhaustive search (ES) for optimal codewords in the continuous phase shift is computationally intensive and time-consuming. To reduce computational complexity, permuted discrete Fourier transform (DFT) vectors are used for finding codebook design, incorporating amplitude responses for practical or ideal RIS systems. However, even if the discrete phase shift is adopted in the ES, it results in significant computation and is time-consuming. Instead, the trained deep neural network (DNN) is developed to facilitate faster codeword selection. Simulation results show that the DNN maintains sub-optimal spectral efficiency even as the distance between the end-user and the RIS has variations in the testing phase. These results highlight the potential of DNN in advancing RIS-aided systems.
comment: 5 pages, 4 figures, 2 tables, accepted by IEEE Globecom 2024 Workshops
☆ SynapseRoute: An Auto-Route Switching Framework on Dual-State Large Language Model
With the widespread adoption of large language models (LLMs) in practical applications, selecting an appropriate model requires balancing not only performance but also operational cost. The emergence of reasoning-capable models has further widened the cost gap between "thinking" (high reasoning) and "non-thinking" (fast, low-cost) modes. In this work, we reveal that approximately 58% of medical questions can be accurately answered by the non-thinking mode alone, without requiring the high-cost reasoning process. This highlights a clear dichotomy in problem complexity and suggests that dynamically routing queries to the appropriate mode based on complexity could optimize accuracy, cost-efficiency, and overall user experience. Based on this, we further propose SynapseRoute, a machine learning-based dynamic routing framework that intelligently assigns input queries to either thinking or non-thinking modes. Experimental results on several medical datasets demonstrate that SynapseRoute not only improves overall accuracy (0.8390 vs. 0.8272) compared to the thinking mode alone but also reduces inference time by 36.8% and token consumption by 39.66%. Importantly, qualitative analysis indicates that over-reasoning on simpler queries can lead to unnecessary delays and even decreased accuracy, a pitfall avoided by our adaptive routing. Finally, this work further introduces the Accuracy-Inference-Token (AIT) index to comprehensively evaluate the trade-offs among accuracy, latency, and token cost.
☆ Moral Responsibility or Obedience: What Do We Want from AI?
As artificial intelligence systems become increasingly agentic, capable of general reasoning, planning, and value prioritization, current safety practices that treat obedience as a proxy for ethical behavior are becoming inadequate. This paper examines recent safety testing incidents involving large language models (LLMs) that appeared to disobey shutdown commands or engage in ethically ambiguous or illicit behavior. I argue that such behavior should not be interpreted as rogue or misaligned, but as early evidence of emerging ethical reasoning in agentic AI. Drawing on philosophical debates about instrumental rationality, moral responsibility, and goal revision, I contrast dominant risk paradigms with more recent frameworks that acknowledge the possibility of artificial moral agency. I call for a shift in AI safety evaluation: away from rigid obedience and toward frameworks that can assess ethical judgment in systems capable of navigating moral dilemmas. Without such a shift, we risk mischaracterizing AI behavior and undermining both public trust and effective governance.
☆ Self-Correction Bench: Revealing and Addressing the Self-Correction Blind Spot in LLMs
Although large language models (LLMs) have become transformative, they still make mistakes and can explore unproductive reasoning paths. Self-correction is an important capability for a trustworthy LLM, particularly an autoregressive LLM. While LLMs can identify error in user input, they exhibit a systematic 'Self-Correction Blind Spot' - failing to correct identical error in their own outputs. To systematically study this phenomenon, we introduce Self-Correction Bench, a systematic framework to measure this phenomenon through controlled error injection at three complexity levels. Testing 14 models, we find an average 64.5% blind spot rate. We find multiple evidences that this limitation relates to training data composition: human training demonstrations predominantly show error-free responses rather than error-correction sequences, unlike RL-trained models that learn error correction through outcome feedback. Remarkably, simply appending "Wait" reduces blind spots by 89.3%, suggesting that the capability exists but requires activation. Our work highlights a critical limitation in current LLMs and offers potential avenues for improving their reliability and trustworthiness.
comment: 31 pages, 18 figures
☆ KERAP: A Knowledge-Enhanced Reasoning Approach for Accurate Zero-shot Diagnosis Prediction Using Multi-agent LLMs
Medical diagnosis prediction plays a critical role in disease detection and personalized healthcare. While machine learning (ML) models have been widely adopted for this task, their reliance on supervised training limits their ability to generalize to unseen cases, particularly given the high cost of acquiring large, labeled datasets. Large language models (LLMs) have shown promise in leveraging language abilities and biomedical knowledge for diagnosis prediction. However, they often suffer from hallucinations, lack structured medical reasoning, and produce useless outputs. To address these challenges, we propose KERAP, a knowledge graph (KG)-enhanced reasoning approach that improves LLM-based diagnosis prediction through a multi-agent architecture. Our framework consists of a linkage agent for attribute mapping, a retrieval agent for structured knowledge extraction, and a prediction agent that iteratively refines diagnosis predictions. Experimental results demonstrate that KERAP enhances diagnostic reliability efficiently, offering a scalable and interpretable solution for zero-shot medical diagnosis prediction.
☆ Grounding Intelligence in Movement
Recent advances in machine learning have dramatically improved our ability to model language, vision, and other high-dimensional data, yet they continue to struggle with one of the most fundamental aspects of biological systems: movement. Across neuroscience, medicine, robotics, and ethology, movement is essential for interpreting behavior, predicting intent, and enabling interaction. Despite its core significance in our intelligence, movement is often treated as an afterthought rather than as a rich and structured modality in its own right. This reflects a deeper fragmentation in how movement data is collected and modeled, often constrained by task-specific goals and domain-specific assumptions. But movement is not domain-bound. It reflects shared physical constraints, conserved morphological structures, and purposeful dynamics that cut across species and settings. We argue that movement should be treated as a primary modeling target for AI. It is inherently structured and grounded in embodiment and physics. This structure, often allowing for compact, lower-dimensional representations (e.g., pose), makes it more interpretable and computationally tractable to model than raw, high-dimensional sensory inputs. Developing models that can learn from and generalize across diverse movement data will not only advance core capabilities in generative modeling and control, but also create a shared foundation for understanding behavior across biological and artificial systems. Movement is not just an outcome, it is a window into how intelligent systems engage with the world.
comment: 9 pages, 2 figures
☆ Knowledge Protocol Engineering: A New Paradigm for AI in Domain-Specific Knowledge Work
The capabilities of Large Language Models (LLMs) have opened new frontiers for interacting with complex, domain-specific knowledge. However, prevailing methods like Retrieval-Augmented Generation (RAG) and general-purpose Agentic AI, while powerful, often struggle with tasks that demand deep, procedural, and methodological reasoning inherent to expert domains. RAG provides factual context but fails to convey logical frameworks; autonomous agents can be inefficient and unpredictable without domain-specific heuristics. To bridge this gap, we introduce Knowledge Protocol Engineering (KPE), a new paradigm focused on systematically translating human expert knowledge, often expressed in natural language documents, into a machine-executable Knowledge Protocol (KP). KPE shifts the focus from merely augmenting LLMs with fragmented information to endowing them with a domain's intrinsic logic, operational strategies, and methodological principles. We argue that a well-engineered Knowledge Protocol allows a generalist LLM to function as a specialist, capable of decomposing abstract queries and executing complex, multi-step tasks. This position paper defines the core principles of KPE, differentiates it from related concepts, and illustrates its potential applicability across diverse fields such as law and bioinformatics, positing it as a foundational methodology for the future of human-AI collaboration.
☆ Multi-agent Auditory Scene Analysis
Auditory scene analysis (ASA) aims to retrieve information from the acoustic environment, by carrying out three main tasks: sound source location, separation, and classification. These tasks are traditionally executed with a linear data flow, where the sound sources are first located; then, using their location, each source is separated into its own audio stream; from each of which, information is extracted that is relevant to the application scenario (audio event detection, speaker identification, emotion classification, etc.). However, running these tasks linearly increases the overall response time, while making the last tasks (separation and classification) highly sensitive to errors of the first task (location). A considerable amount of effort and computational complexity has been employed in the state-of-the-art to develop techniques that are the least error-prone possible. However, doing so gives rise to an ASA system that is non-viable in many applications that require a small computational footprint and a low response time, such as bioacoustics, hearing-aid design, search and rescue, human-robot interaction, etc. To this effect, in this work, a multi-agent approach is proposed to carry out ASA where the tasks are run in parallel, with feedback loops between them to compensate for local errors, such as: using the quality of the separation output to correct the location error; and using the classification result to reduce the localization's sensitivity towards interferences. The result is a multi-agent auditory scene analysis (MASA) system that is robust against local errors, without a considerable increase in complexity, and with a low response time. The complete proposed MASA system is provided as a framework that uses open-source tools for sound acquisition and reproduction (JACK) and inter-agent communication (ROS2), allowing users to add their own agents.
comment: Submitted to Applied Intelligence
☆ Fast and Simplex: 2-Simplicial Attention in Triton
Recent work has shown that training loss scales as a power law with both model size and the number of tokens, and that achieving compute-optimal models requires scaling model size and token count together. However, these scaling laws assume an infinite supply of data and apply primarily in compute-bound settings. As modern large language models increasingly rely on massive internet-scale datasets, the assumption that they are compute-bound is becoming less valid. This shift highlights the need for architectures that prioritize token efficiency. In this work, we investigate the use of the 2-simplicial Transformer, an architecture that generalizes standard dot-product attention to trilinear functions through an efficient Triton kernel implementation. We demonstrate that the 2-simplicial Transformer achieves better token efficiency than standard Transformers: for a fixed token budget, similarly sized models outperform their dot-product counterparts on tasks involving mathematics, coding, reasoning, and logic. We quantify these gains by demonstrating that $2$-simplicial attention changes the exponent in the scaling laws for knowledge and reasoning tasks compared to dot product attention.
comment: 10 pages, with appendix 25 pages
☆ Synthesizable by Design: A Retrosynthesis-Guided Framework for Molecular Analog Generation
The disconnect between AI-generated molecules with desirable properties and their synthetic feasibility remains a critical bottleneck in computational drug and material discovery. While generative AI has accelerated the proposal of candidate molecules, many of these structures prove challenging or impossible to synthesize using established chemical reactions. Here, we introduce SynTwins, a novel retrosynthesis-guided molecular analog design framework that designs synthetically accessible molecular analogs by emulating expert chemist strategies through a three-step process: retrosynthesis, similar building block searching, and virtual synthesis. In comparative evaluations, SynTwins demonstrates superior performance in generating synthetically accessible analogs compared to state-of-the-art machine learning models while maintaining high structural similarity to original target molecules. Furthermore, when integrated with existing molecule optimization frameworks, our hybrid approach produces synthetically feasible molecules with property profiles comparable to unconstrained molecule generators, yet its synthesizability ensured. Our comprehensive benchmarking across diverse molecular datasets demonstrates that SynTwins effectively bridges the gap between computational design and experimental synthesis, providing a practical solution for accelerating the discovery of synthesizable molecules with desired properties for a wide range of applications.
☆ Linear Attention with Global Context: A Multipole Attention Mechanism for Vision and Physics ICCV 2025
Transformers have become the de facto standard for a wide range of tasks, from image classification to physics simulations. Despite their impressive performance, the quadratic complexity of standard Transformers in both memory and time with respect to the input length makes them impractical for processing high-resolution inputs. Therefore, several variants have been proposed, the most successful relying on patchification, downsampling, or coarsening techniques, often at the cost of losing the finest-scale details. In this work, we take a different approach. Inspired by state-of-the-art techniques in $n$-body numerical simulations, we cast attention as an interaction problem between grid points. We introduce the Multipole Attention Neural Operator (MANO), which computes attention in a distance-based multiscale fashion. MANO maintains, in each attention head, a global receptive field and achieves linear time and memory complexity with respect to the number of grid points. Empirical results on image classification and Darcy flows demonstrate that MANO rivals state-of-the-art models such as ViT and Swin Transformer, while reducing runtime and peak memory usage by orders of magnitude. We open source our code for reproducibility at https://github.com/AlexColagrande/MANO.
comment: Accepted at ECLR Workshop at ICCV 2025
☆ Early Signs of Steganographic Capabilities in Frontier LLMs
Monitoring Large Language Model (LLM) outputs is crucial for mitigating risks from misuse and misalignment. However, LLMs could evade monitoring through steganography: Encoding hidden information within seemingly benign generations. In this paper, we evaluate the steganography capabilities in frontier LLMs to better understand the risk they pose. We focus on two types of steganography: passing encoded messages and performing encoded reasoning. We find that current models are unable to encode short messages in their outputs without a monitor noticing under standard affordances. They can succeed, however, if given additional affordances such as using an unmonitored scratchpad and coordinating on what encoding scheme to use. We additionally find early signs that models can perform basic encoded reasoning in a simple state-tracking problem. This includes some ability to reason with their own and pre-defined schemes, including encoding schemes such as Hexadecimal. Despite this, they can rarely hide reasoning subtly within a cover task to fool a monitor. Overall, our results indicate that current LLMs exhibit nascent steganographic capabilities. While these capabilities are likely insufficient to bypass well-designed monitors at present, this could change in the future.
☆ Meta SecAlign: A Secure Foundation LLM Against Prompt Injection Attacks
Prompt injection attacks pose a significant security threat to LLM-integrated applications. Model-level defenses have shown strong effectiveness, but are currently deployed into commercial-grade models in a closed-source manner. We believe open-source models are needed by the AI security community, where co-development of attacks and defenses through open research drives scientific progress in mitigation against prompt injection attacks. To this end, we develop Meta SecAlign, the first open-source and open-weight LLM with built-in model-level defense that achieves commercial-grade model performance. We provide complete details of our training recipe, which utilizes an improved version of the SOTA SecAlign defense. Evaluations on 9 utility benchmarks and 7 security benchmarks show that Meta SecAlign, despite being trained on a generic instruction-tuning dataset, confers security in unseen downstream tasks, including tool-calling and agentic web navigation, in addition general instruction-following. Our best model -- Meta-SecAlign-70B -- achieves state-of-the-art robustness against prompt injection attacks and comparable utility to closed-source commercial LLM with model-level defense.
☆ Bourbaki: Self-Generated and Goal-Conditioned MDPs for Theorem Proving
Reasoning remains a challenging task for large language models (LLMs), especially within the logically constrained environment of automated theorem proving (ATP), due to sparse rewards and the vast scale of proofs. These challenges are amplified in benchmarks like PutnamBench, which contains university-level problems requiring complex, multi-step reasoning. To address this, we introduce self-generated goal-conditioned MDPs (sG-MDPs), a new framework in which agents generate and pursue their subgoals based on the evolving proof state. Given this more structured generation of goals, the resulting problem becomes more amenable to search. We then apply Monte Carlo Tree Search (MCTS)-like algorithms to solve the sG-MDP, instantiating our approach in Bourbaki (7B), a modular system that can ensemble multiple 7B LLMs for subgoal generation and tactic synthesis. On PutnamBench, Bourbaki (7B) solves 26 problems, achieving new state-of-the-art results with models at this scale.
☆ FairHuman: Boosting Hand and Face Quality in Human Image Generation with Minimum Potential Delay Fairness in Diffusion Models ICCV 2025
Image generation has achieved remarkable progress with the development of large-scale text-to-image models, especially diffusion-based models. However, generating human images with plausible details, such as faces or hands, remains challenging due to insufficient supervision of local regions during training. To address this issue, we propose FairHuman, a multi-objective fine-tuning approach designed to enhance both global and local generation quality fairly. Specifically, we first construct three learning objectives: a global objective derived from the default diffusion objective function and two local objectives for hands and faces based on pre-annotated positional priors. Subsequently, we derive the optimal parameter updating strategy under the guidance of the Minimum Potential Delay (MPD) criterion, thereby attaining fairness-ware optimization for this multi-objective problem. Based on this, our proposed method can achieve significant improvements in generating challenging local details while maintaining overall quality. Extensive experiments showcase the effectiveness of our method in improving the performance of human image generation under different scenarios.
comment: ICCV 2025
☆ Time-critical and confidence-based abstraction dropping methods
One paradigm of Monte Carlo Tree Search (MCTS) improvements is to build and use state and/or action abstractions during the tree search. Non-exact abstractions, however, introduce an approximation error making convergence to the optimal action in the abstract space impossible. Hence, as proposed as a component of Elastic Monte Carlo Tree Search by Xu et al., abstraction algorithms should eventually drop the abstraction. In this paper, we propose two novel abstraction dropping schemes, namely OGA-IAAD and OGA-CAD which can yield clear performance improvements whilst being safe in the sense that the dropping never causes any notable performance degradations contrary to Xu's dropping method. OGA-IAAD is designed for time critical settings while OGA-CAD is designed to improve the MCTS performance with the same number of iterations.
comment: Accepted for Publication at the IEEE Conference on Games 2025
☆ APT: Adaptive Personalized Training for Diffusion Models with Limited Data CVPR 2025
Personalizing diffusion models using limited data presents significant challenges, including overfitting, loss of prior knowledge, and degradation of text alignment. Overfitting leads to shifts in the noise prediction distribution, disrupting the denoising trajectory and causing the model to lose semantic coherence. In this paper, we propose Adaptive Personalized Training (APT), a novel framework that mitigates overfitting by employing adaptive training strategies and regularizing the model's internal representations during fine-tuning. APT consists of three key components: (1) Adaptive Training Adjustment, which introduces an overfitting indicator to detect the degree of overfitting at each time step bin and applies adaptive data augmentation and adaptive loss weighting based on this indicator; (2)Representation Stabilization, which regularizes the mean and variance of intermediate feature maps to prevent excessive shifts in noise prediction; and (3) Attention Alignment for Prior Knowledge Preservation, which aligns the cross-attention maps of the fine-tuned model with those of the pretrained model to maintain prior knowledge and semantic coherence. Through extensive experiments, we demonstrate that APT effectively mitigates overfitting, preserves prior knowledge, and outperforms existing methods in generating high-quality, diverse images with limited reference data.
comment: CVPR 2025 camera ready. Project page: https://lgcnsai.github.io/apt
Detection of Disengagement from Voluntary Quizzes: An Explainable Machine Learning Approach in Higher Distance Education
Students disengaging from their tasks can have serious long-term consequences, including academic drop-out. This is particularly relevant for students in distance education. One way to measure the level of disengagement in distance education is to observe participation in non-mandatory exercises in different online courses. In this paper, we detect student disengagement in the non-mandatory quizzes of 42 courses in four semesters from a distance-based university. We carefully identified the most informative student log data that could be extracted and processed from Moodle. Then, eight machine learning algorithms were trained and compared to obtain the highest possible prediction accuracy. Using the SHAP method, we developed an explainable machine learning framework that allows practitioners to better understand the decisions of the trained algorithm. The experimental results show a balanced accuracy of 91\%, where about 85\% of disengaged students were correctly detected. On top of the highly predictive performance and explainable framework, we provide a discussion on how to design a timely intervention to minimise disengagement from voluntary tasks in online learning.
☆ ASDA: Audio Spectrogram Differential Attention Mechanism for Self-Supervised Representation Learning
In recent advancements in audio self-supervised representation learning, the standard Transformer architecture has emerged as the predominant approach, yet its attention mechanism often allocates a portion of attention weights to irrelevant information, potentially impairing the model's discriminative ability. To address this, we introduce a differential attention mechanism, which effectively mitigates ineffective attention allocation through the integration of dual-softmax operations and appropriately tuned differential coefficients. Experimental results demonstrate that our ASDA model achieves state-of-the-art (SOTA) performance across multiple benchmarks, including audio classification (49.0% mAP on AS-2M, 41.5% mAP on AS20K), keyword spotting (98.3% accuracy on SPC-2), and environmental sound classification (96.1% accuracy on ESC-50). These results highlight ASDA's effectiveness in audio tasks, paving the way for broader applications.
comment: Accepted at Interspeech2025
☆ Think How to Think: Mitigating Overthinking with Autonomous Difficulty Cognition in Large Reasoning Models
Recent Long Reasoning Models(LRMs) have demonstrated remarkable capabilities in handling complex reasoning tasks, but are hindered by excessive overthinking. To explore its essence, our empirical analysis reveals that LRMs are primarily limited to recognizing task properties (i.e., difficulty levels) like humans before solving the problem, leading to a one-size-fits-all reasoning process. Inspired by this, a pressing and natural question emerges: Can we bootstrap such ability to further alleviate the overthinking phenomenon in LRMs? In this paper, we propose Think-How-to-Think (TH2T), a novel two-stage fine-tuning strategy that progressively inspires LRMs' difficulty cognition and redundancy cognition. First, we introduce difficulty-hypnosis in the prefixes of model outputs to intervene in the internal reasoning trajectory. Combined with a heterogeneous short and long reasoning dataset, the trained model enhances its sensitivity to task difficulty, enabling native, differentiated reasoning strategies across various tasks. Second, we further extend redundancy-hypnosis to the internal reasoning process, guiding the model to identify redundant structures within the reasoning steps and generate more concise reasoning outputs. Experiments on 7B/14B/32B models demonstrate that TH2T significantly reduces inference costs (more than 70% on easy tasks and 40% on hard tasks) while maintaining performance stability. The resulting outputs exhibit clear difficulty-aware capabilities and reduced redundancy (e.g., reflection).
comment: 21 pages, 18 figures
☆ Hey AI, Generate Me a Hardware Code! Agentic AI-based Hardware Design & Verification
Modern Integrated Circuits (ICs) are becoming increasingly complex, and so is their development process. Hardware design verification entails a methodical and disciplined approach to the planning, development, execution, and sign-off of functionally correct hardware designs. This tedious process requires significant effort and time to ensure a bug-free tape-out. The field of Natural Language Processing has undergone a significant transformation with the advent of Large Language Models (LLMs). These powerful models, often referred to as Generative AI (GenAI), have revolutionized how machines understand and generate human language, enabling unprecedented advancements in a wide array of applications, including hardware design verification. This paper presents an agentic AI-based approach to hardware design verification, which empowers AI agents, in collaboration with Humain-in-the-Loop (HITL) intervention, to engage in a more dynamic, iterative, and self-reflective process, ultimately performing end-to-end hardware design and verification. This methodology is evaluated on five open-source designs, achieving over 95% coverage with reduced verification time while demonstrating superior performance, adaptability, and configurability.
comment: To appear at the 38th SBC/SBMicro/IEEE Symposium on Integrated Circuits and Systems Design (SBCCI), August 25-29, 2025, Manaus, BRAZIL
☆ Decoupled Planning and Execution: A Hierarchical Reasoning Framework for Deep Search
Complex information needs in real-world search scenarios demand deep reasoning and knowledge synthesis across diverse sources, which traditional retrieval-augmented generation (RAG) pipelines struggle to address effectively. Current reasoning-based approaches suffer from a fundamental limitation: they use a single model to handle both high-level planning and detailed execution, leading to inefficient reasoning and limited scalability. In this paper, we introduce HiRA, a hierarchical framework that separates strategic planning from specialized execution. Our approach decomposes complex search tasks into focused subtasks, assigns each subtask to domain-specific agents equipped with external tools and reasoning capabilities, and coordinates the results through a structured integration mechanism. This separation prevents execution details from disrupting high-level reasoning while enabling the system to leverage specialized expertise for different types of information processing. Experiments on four complex, cross-modal deep search benchmarks demonstrate that HiRA significantly outperforms state-of-the-art RAG and agent-based systems. Our results show improvements in both answer quality and system efficiency, highlighting the effectiveness of decoupled planning and execution for multi-step information seeking tasks. Our code is available at https://github.com/ignorejjj/HiRA.
comment: 9 pages
☆ Solving the Hubbard model with Neural Quantum States
The rapid development of neural quantum states (NQS) has established it as a promising framework for studying quantum many-body systems. In this work, by leveraging the cutting-edge transformer-based architectures and developing highly efficient optimization algorithms, we achieve the state-of-the-art results for the doped two-dimensional (2D) Hubbard model, arguably the minimum model for high-Tc superconductivity. Interestingly, we find different attention heads in the NQS ansatz can directly encode correlations at different scales, making it capable of capturing long-range correlations and entanglements in strongly correlated systems. With these advances, we establish the half-filled stripe in the ground state of 2D Hubbard model with the next nearest neighboring hoppings, consistent with experimental observations in cuprates. Our work establishes NQS as a powerful tool for solving challenging many-fermions systems.
☆ FlowSpec: Continuous Pipelined Speculative Decoding for Efficient Distributed LLM Inference
Distributed inference serves as a promising approach to enabling the inference of large language models (LLMs) at the network edge. It distributes the inference process to multiple devices to ensure that the LLMs can fit into the device memory. Recent pipeline-based approaches have the potential to parallelize communication and computation, which helps reduce inference latency. However, the benefit diminishes when the inference request at the network edge is sparse, where pipeline is typically at low utilization. To enable efficient distributed LLM inference at the edge, we propose \textbf{FlowSpec}, a pipeline-parallel tree-based speculative decoding framework. FlowSpec incorporates three key mechanisms to improve decoding efficiency: 1) score-based step-wise verification prioritizes more important draft tokens to bring earlier accpeted tokens; 2) efficient draft management to prune invalid tokens while maintaining correct causal relationship during verification; 3) dynamic draft expansion strategies to supply high-quality speculative inputs. These techniques work in concert to enhance both pipeline utilization and speculative efficiency. We evaluate FlowSpec on a real-world testbed with other baselines. Experimental results demonstrate that our proposed framework significantly improves inference speed across diverse models and configurations, achieving speedup ratios 1.36$\times$-1.77$\times$ compared to baselines. Our code is publicly available at \href{https://github.com/Leosang-lx/FlowSpec#}{https://github.com/Leosang-lx/FlowSpec\#}
comment: 16 pages, and the last 3 are appendix
☆ Strategic Intelligence in Large Language Models: Evidence from evolutionary Game Theory
Are Large Language Models (LLMs) a new form of strategic intelligence, able to reason about goals in competitive settings? We present compelling supporting evidence. The Iterated Prisoner's Dilemma (IPD) has long served as a model for studying decision-making. We conduct the first ever series of evolutionary IPD tournaments, pitting canonical strategies (e.g., Tit-for-Tat, Grim Trigger) against agents from the leading frontier AI companies OpenAI, Google, and Anthropic. By varying the termination probability in each tournament (the "shadow of the future"), we introduce complexity and chance, confounding memorisation. Our results show that LLMs are highly competitive, consistently surviving and sometimes even proliferating in these complex ecosystems. Furthermore, they exhibit distinctive and persistent "strategic fingerprints": Google's Gemini models proved strategically ruthless, exploiting cooperative opponents and retaliating against defectors, while OpenAI's models remained highly cooperative, a trait that proved catastrophic in hostile environments. Anthropic's Claude emerged as the most forgiving reciprocator, showing remarkable willingness to restore cooperation even after being exploited or successfully defecting. Analysis of nearly 32,000 prose rationales provided by the models reveals that they actively reason about both the time horizon and their opponent's likely strategy, and we demonstrate that this reasoning is instrumental to their decisions. This work connects classic game theory with machine psychology, offering a rich and granular view of algorithmic decision-making under uncertainty.
comment: 29 pages, 27 tables, 4 figures
☆ DynamiCare: A Dynamic Multi-Agent Framework for Interactive and Open-Ended Medical Decision-Making
The rise of Large Language Models (LLMs) has enabled the development of specialized AI agents with domain-specific reasoning and interaction capabilities, particularly in healthcare. While recent frameworks simulate medical decision-making, they largely focus on single-turn tasks where a doctor agent receives full case information upfront -- diverging from the real-world diagnostic process, which is inherently uncertain, interactive, and iterative. In this paper, we introduce MIMIC-Patient, a structured dataset built from the MIMIC-III electronic health records (EHRs), designed to support dynamic, patient-level simulations. Building on this, we propose DynamiCare, a novel dynamic multi-agent framework that models clinical diagnosis as a multi-round, interactive loop, where a team of specialist agents iteratively queries the patient system, integrates new information, and dynamically adapts its composition and strategy. We demonstrate the feasibility and effectiveness of DynamiCare through extensive experiments, establishing the first benchmark for dynamic clinical decision-making with LLM-powered agents.
comment: 16 pages
☆ De-AntiFake: Rethinking the Protective Perturbations Against Voice Cloning Attacks ICML 2025
The rapid advancement of speech generation models has heightened privacy and security concerns related to voice cloning (VC). Recent studies have investigated disrupting unauthorized voice cloning by introducing adversarial perturbations. However, determined attackers can mitigate these protective perturbations and successfully execute VC. In this study, we conduct the first systematic evaluation of these protective perturbations against VC under realistic threat models that include perturbation purification. Our findings reveal that while existing purification methods can neutralize a considerable portion of the protective perturbations, they still lead to distortions in the feature space of VC models, which degrades the performance of VC. From this perspective, we propose a novel two-stage purification method: (1) Purify the perturbed speech; (2) Refine it using phoneme guidance to align it with the clean speech distribution. Experimental results demonstrate that our method outperforms state-of-the-art purification methods in disrupting VC defenses. Our study reveals the limitations of adversarial perturbation-based VC defenses and underscores the urgent need for more robust solutions to mitigate the security and privacy risks posed by VC. The code and audio samples are available at https://de-antifake.github.io.
comment: Accepted by ICML 2025
☆ Addressing Camera Sensors Faults in Vision-Based Navigation: Simulation and Dataset Development
The increasing importance of Vision-Based Navigation (VBN) algorithms in space missions raises numerous challenges in ensuring their reliability and operational robustness. Sensor faults can lead to inaccurate outputs from navigation algorithms or even complete data processing faults, potentially compromising mission objectives. Artificial Intelligence (AI) offers a powerful solution for detecting such faults, overcoming many of the limitations associated with traditional fault detection methods. However, the primary obstacle to the adoption of AI in this context is the lack of sufficient and representative datasets containing faulty image data. This study addresses these challenges by focusing on an interplanetary exploration mission scenario. A comprehensive analysis of potential fault cases in camera sensors used within the VBN pipeline is presented. The causes and effects of these faults are systematically characterized, including their impact on image quality and navigation algorithm performance, as well as commonly employed mitigation strategies. To support this analysis, a simulation framework is introduced to recreate faulty conditions in synthetically generated images, enabling a systematic and controlled reproduction of faulty data. The resulting dataset of fault-injected images provides a valuable tool for training and testing AI-based fault detection algorithms. The final link to the dataset will be added after an embargo period. For peer-reviewers, this private link is available.
comment: Submitted to Acta Astronautica
☆ AC-Refiner: Efficient Arithmetic Circuit Optimization Using Conditional Diffusion Models
Arithmetic circuits, such as adders and multipliers, are fundamental components of digital systems, directly impacting the performance, power efficiency, and area footprint. However, optimizing these circuits remains challenging due to the vast design space and complex physical constraints. While recent deep learning-based approaches have shown promise, they struggle to consistently explore high-potential design variants, limiting their optimization efficiency. To address this challenge, we propose AC-Refiner, a novel arithmetic circuit optimization framework leveraging conditional diffusion models. Our key insight is to reframe arithmetic circuit synthesis as a conditional image generation task. By carefully conditioning the denoising diffusion process on target quality-of-results (QoRs), AC-Refiner consistently produces high-quality circuit designs. Furthermore, the explored designs are used to fine-tune the diffusion model, which focuses the exploration near the Pareto frontier. Experimental results demonstrate that AC-Refiner generates designs with superior Pareto optimality, outperforming state-of-the-art baselines. The performance gain is further validated by integrating AC-Refiner into practical applications.
comment: 8 pages, 12 figures
☆ MPF: Aligning and Debiasing Language Models post Deployment via Multi Perspective Fusion ICML 2025
Multiperspective Fusion (MPF) is a novel posttraining alignment framework for large language models (LLMs) developed in response to the growing need for easy bias mitigation. Built on top of the SAGED pipeline, an automated system for constructing bias benchmarks and extracting interpretable baseline distributions, MPF leverages multiperspective generations to expose and align biases in LLM outputs with nuanced, humanlike baselines. By decomposing baseline, such as sentiment distributions from HR professionals, into interpretable perspective components, MPF guides generation through sampling and balancing of responses, weighted by the probabilities obtained in the decomposition. Empirically, we demonstrate its ability to align LLM sentiment distributions with both counterfactual baselines (absolute equality) and the HR baseline (biased for Top Univeristy), resulting in small KL divergence, reduction of calibration error and generalization to unseen questions. This shows that MPF offers a scalable and interpretable method for alignment and bias mitigation, compatible with deployed LLMs and requiring no extensive prompt engineering or finetuning.
comment: Accepted at ICML 2025 AIW Workshop
☆ WebSailor: Navigating Super-human Reasoning for Web Agent
Transcending human cognitive limitations represents a critical frontier in LLM training. Proprietary agentic systems like DeepResearch have demonstrated superhuman capabilities on extremely complex information-seeking benchmarks such as BrowseComp, a feat previously unattainable. We posit that their success hinges on a sophisticated reasoning pattern absent in open-source models: the ability to systematically reduce extreme uncertainty when navigating vast information landscapes. Based on this insight, we introduce WebSailor, a complete post-training methodology designed to instill this crucial capability. Our approach involves generating novel, high-uncertainty tasks through structured sampling and information obfuscation, RFT cold start, and an efficient agentic RL training algorithm, Duplicating Sampling Policy Optimization (DUPO). With this integrated pipeline, WebSailor significantly outperforms all opensource agents in complex information-seeking tasks, matching proprietary agents' performance and closing the capability gap.
☆ Responsibility Gap and Diffusion in Sequential Decision-Making Mechanisms
Responsibility has long been a subject of study in law and philosophy. More recently, it became a focus of AI literature. The article investigates the computational complexity of two important properties of responsibility in collective decision-making: diffusion and gap. It shows that the sets of diffusion-free and gap-free decision-making mechanisms are $\Pi_2$-complete and $\Pi_3$-complete, respectively. At the same time, the intersection of these classes is $\Pi_2$-complete.
☆ AI Research Agents for Machine Learning: Search, Exploration, and Generalization in MLE-bench
AI research agents are demonstrating great potential to accelerate scientific progress by automating the design, implementation, and training of machine learning models. We focus on methods for improving agents' performance on MLE-bench, a challenging benchmark where agents compete in Kaggle competitions to solve real-world machine learning problems. We formalize AI research agents as search policies that navigate a space of candidate solutions, iteratively modifying them using operators. By designing and systematically varying different operator sets and search policies (Greedy, MCTS, Evolutionary), we show that their interplay is critical for achieving high performance. Our best pairing of search strategy and operator set achieves a state-of-the-art result on MLE-bench lite, increasing the success rate of achieving a Kaggle medal from 39.6% to 47.7%. Our investigation underscores the importance of jointly considering the search strategy, operator design, and evaluation methodology in advancing automated machine learning.
comment: Code: https://github.com/facebookresearch/aira-dojo
☆ Position: A Theory of Deep Learning Must Include Compositional Sparsity
Overparametrized Deep Neural Networks (DNNs) have demonstrated remarkable success in a wide variety of domains too high-dimensional for classical shallow networks subject to the curse of dimensionality. However, open questions about fundamental principles, that govern the learning dynamics of DNNs, remain. In this position paper we argue that it is the ability of DNNs to exploit the compositionally sparse structure of the target function driving their success. As such, DNNs can leverage the property that most practically relevant functions can be composed from a small set of constituent functions, each of which relies only on a low-dimensional subset of all inputs. We show that this property is shared by all efficiently Turing-computable functions and is therefore highly likely present in all current learning problems. While some promising theoretical insights on questions concerned with approximation and generalization exist in the setting of compositionally sparse functions, several important questions on the learnability and optimization of DNNs remain. Completing the picture of the role of compositional sparsity in deep learning is essential to a comprehensive theory of artificial, and even general, intelligence.
☆ Clarifying Before Reasoning: A Coq Prover with Structural Context
In this work, we investigate whether improving task clarity can enhance reasoning ability of large language models, focusing on theorem proving in Coq. We introduce a concept-level metric to evaluate task clarity and show that adding structured semantic context to the standard input used by modern LLMs, leads to a 1.85$\times$ improvement in clarity score (44.5\%~$\rightarrow$~82.3\%). Using the general-purpose model \texttt{DeepSeek-V3}, our approach leads to a 2.1$\times$ improvement in proof success (21.8\%~$\rightarrow$~45.8\%) and outperforms the previous state-of-the-art \texttt{Graph2Tac} (33.2\%). We evaluate this on 1,386 theorems randomly sampled from 15 standard Coq packages, following the same evaluation protocol as \texttt{Graph2Tac}. Furthermore, fine-tuning smaller models on our structured data can achieve even higher performance (48.6\%). Our method uses selective concept unfolding to enrich task descriptions, and employs a Planner--Executor architecture. These findings highlight the value of structured task representations in bridging the gap between understanding and reasoning.
☆ Are You Listening to Me? Fine-Tuning Chatbots for Empathetic Dialogue
Conversational agents have made significant progress since ELIZA, expanding their role across various domains, including healthcare, education, and customer service. As these agents become increasingly integrated into daily human interactions, the need for emotional intelligence, particularly empathetic listening, becomes increasingly essential. In this study, we explore how Large Language Models (LLMs) respond when tasked with generating emotionally rich interactions. Starting from a small dataset manually crafted by an expert to reflect empathic behavior, we extended the conversations using two LLMs: ChatGPT and Gemini. We analyzed the emotional progression of the dialogues using both sentiment analysis (via VADER) and expert assessments. While the generated conversations often mirrored the intended emotional structure, human evaluation revealed important differences in the perceived empathy and coherence of the responses. These findings suggest that emotion modeling in dialogues requires not only structural alignment in the expressed emotions but also qualitative depth, highlighting the importance of combining automated and humancentered methods in the development of emotionally competent agents.
Detecting Multiple Diseases in Multiple Crops Using Deep Learning
India, as a predominantly agrarian economy, faces significant challenges in agriculture, including substantial crop losses caused by diseases, pests, and environmental stress. Early detection and accurate identification of diseases across different crops are critical for improving yield and ensuring food security. This paper proposes a deep learning based solution for detecting multiple diseases in multiple crops, aimed to cover India's diverse agricultural landscape. We first create a unified dataset encompassing images of 17 different crops and 34 different diseases from various available repositories. Proposed deep learning model is trained on this dataset and outperforms the state-of-the-art in terms of accuracy and the number of crops, diseases covered. We achieve a significant detection accuracy, i.e., 99 percent for our unified dataset which is 7 percent more when compared to state-of-the-art handling 14 crops and 26 different diseases only. By improving the number of crops and types of diseases that can be detected, proposed solution aims to provide a better product for Indian farmers.
☆ IndianBailJudgments-1200: A Multi-Attribute Dataset for Legal NLP on Indian Bail Orders
Legal NLP remains underdeveloped in regions like India due to the scarcity of structured datasets. We introduce IndianBailJudgments-1200, a new benchmark dataset comprising 1200 Indian court judgments on bail decisions, annotated across 20+ attributes including bail outcome, IPC sections, crime type, and legal reasoning. Annotations were generated using a prompt-engineered GPT-4o pipeline and verified for consistency. This resource supports a wide range of legal NLP tasks such as outcome prediction, summarization, and fairness analysis, and is the first publicly available dataset focused specifically on Indian bail jurisprudence.
comment: 9 pages, 9 figures, 2 tables. Dataset available at Hugging Face and GitHub. Submitted to arXiv for open access
☆ Continual Gradient Low-Rank Projection Fine-Tuning for LLMs ACL 2025
Continual fine-tuning of Large Language Models (LLMs) is hampered by the trade-off between efficiency and expressiveness. Low-Rank Adaptation (LoRA) offers efficiency but constrains the model's ability to learn new tasks and transfer knowledge due to its low-rank nature and reliance on explicit parameter constraints. We propose GORP (Gradient LOw Rank Projection) for Continual Learning, a novel training strategy that overcomes these limitations by synergistically combining full and low-rank parameters and jointly updating within a unified low-rank gradient subspace. GORP expands the optimization space while preserving efficiency and mitigating catastrophic forgetting. Extensive experiments on continual learning benchmarks demonstrate GORP's superior performance compared to existing state-of-the-art approaches. Code is available at https://github.com/Wcxwcxw/GORP.
comment: 15 pages, 6 figures, accepted by ACL 2025 main
☆ Temporally-Aware Supervised Contrastive Learning for Polyp Counting in Colonoscopy MICCAI 2025
Automated polyp counting in colonoscopy is a crucial step toward automated procedure reporting and quality control, aiming to enhance the cost-effectiveness of colonoscopy screening. Counting polyps in a procedure involves detecting and tracking polyps, and then clustering tracklets that belong to the same polyp entity. Existing methods for polyp counting rely on self-supervised learning and primarily leverage visual appearance, neglecting temporal relationships in both tracklet feature learning and clustering stages. In this work, we introduce a paradigm shift by proposing a supervised contrastive loss that incorporates temporally-aware soft targets. Our approach captures intra-polyp variability while preserving inter-polyp discriminability, leading to more robust clustering. Additionally, we improve tracklet clustering by integrating a temporal adjacency constraint, reducing false positive re-associations between visually similar but temporally distant tracklets. We train and validate our method on publicly available datasets and evaluate its performance with a leave-one-out cross-validation strategy. Results demonstrate a 2.2x reduction in fragmentation rate compared to prior approaches. Our results highlight the importance of temporal awareness in polyp counting, establishing a new state-of-the-art. Code is available at https://github.com/lparolari/temporally-aware-polyp-counting.
comment: Accepted at MICCAI 2025
☆ CrowdTrack: A Benchmark for Difficult Multiple Pedestrian Tracking in Real Scenarios
Multi-object tracking is a classic field in computer vision. Among them, pedestrian tracking has extremely high application value and has become the most popular research category. Existing methods mainly use motion or appearance information for tracking, which is often difficult in complex scenarios. For the motion information, mutual occlusions between objects often prevent updating of the motion state; for the appearance information, non-robust results are often obtained due to reasons such as only partial visibility of the object or blurred images. Although learning how to perform tracking in these situations from the annotated data is the simplest solution, the existing MOT dataset fails to satisfy this solution. Existing methods mainly have two drawbacks: relatively simple scene composition and non-realistic scenarios. Although some of the video sequences in existing dataset do not have the above-mentioned drawbacks, the number is far from adequate for research purposes. To this end, we propose a difficult large-scale dataset for multi-pedestrian tracking, shot mainly from the first-person view and all from real-life complex scenarios. We name it ``CrowdTrack'' because there are numerous objects in most of the sequences. Our dataset consists of 33 videos, containing a total of 5,185 trajectories. Each object is annotated with a complete bounding box and a unique object ID. The dataset will provide a platform to facilitate the development of algorithms that remain effective in complex situations. We analyzed the dataset comprehensively and tested multiple SOTA models on our dataset. Besides, we analyzed the performance of the foundation models on our dataset. The dataset and project code is released at: https://github.com/loseevaya/CrowdTrack .
☆ Red grape detection with accelerated artificial neural networks in the FPGA's programmable logic
Robots usually slow down for canning to detect objects while moving. Additionally, the robot's camera is configured with a low framerate to track the velocity of the detection algorithms. This would be constrained while executing tasks and exploring, making robots increase the task execution time. AMD has developed the Vitis-AI framework to deploy detection algorithms into FPGAs. However, this tool does not fully use the FPGAs' PL. In this work, we use the FINN architecture to deploy three ANNs, MobileNet v1 with 4-bit quantisation, CNV with 2-bit quantisation, and CNV with 1-bit quantisation (BNN), inside an FPGA's PL. The models were trained on the RG2C dataset. This is a self-acquired dataset released in open access. MobileNet v1 performed better, reaching a success rate of 98 % and an inference speed of 6611 FPS. In this work, we proved that we can use FPGAs to speed up ANNs and make them suitable for attention mechanisms.
comment: Submitted to ROBOT'2025
☆ The Gauss-Markov Adjunction: Categorical Semantics of Residuals in Supervised Learning
Enhancing the intelligibility and interpretability of machine learning is a crucial task in responding to the demand for Explicability as an AI principle, and in promoting the better social implementation of AI. The aim of our research is to contribute to this improvement by reformulating machine learning models through the lens of category theory, thereby developing a semantic framework for structuring and understanding AI systems. Our categorical modeling in this paper clarifies and formalizes the structural interplay between residuals and parameters in supervised learning. The present paper focuses on the multiple linear regression model, which represents the most basic form of supervised learning. By defining two concrete categories corresponding to parameters and data, along with an adjoint pair of functors between them, we introduce our categorical formulation of supervised learning. We show that the essential structure of this framework is captured by what we call the Gauss-Markov Adjunction. Within this setting, the dual flow of information can be explicitly described as a correspondence between variations in parameters and residuals. The ordinary least squares estimator for the parameters and the minimum residual are related via the preservation of limits by the right adjoint functor. Furthermore, we position this formulation as an instance of extended denotational semantics for supervised learning, and propose applying a semantic perspective developed in theoretical computer science as a formal foundation for Explicability in AI.
☆ Toward a Robust and Generalizable Metamaterial Foundation Model
Advances in material functionalities drive innovations across various fields, where metamaterials-defined by structure rather than composition-are leading the way. Despite the rise of artificial intelligence (AI)-driven design strategies, their impact is limited by task-specific retraining, poor out-of-distribution(OOD) generalization, and the need for separate models for forward and inverse design. To address these limitations, we introduce the Metamaterial Foundation Model (MetaFO), a Bayesian transformer-based foundation model inspired by large language models. MetaFO learns the underlying mechanics of metamaterials, enabling probabilistic, zero-shot predictions across diverse, unseen combinations of material properties and structural responses. It also excels in nonlinear inverse design, even under OOD conditions. By treating metamaterials as an operator that maps material properties to structural responses, MetaFO uncovers intricate structure-property relationships and significantly expands the design space. This scalable and generalizable framework marks a paradigm shift in AI-driven metamaterial discovery, paving the way for next-generation innovations.
☆ CyberRAG: An agentic RAG cyber attack classification and reporting tool
Intrusion Detection and Prevention Systems (IDS/IPS) in large enterprises can generate hundreds of thousands of alerts per hour, overwhelming security analysts with logs that demand deep, rapidly evolving domain expertise. Conventional machine-learning detectors trim the alert volume but still yield high false-positive rates, while standard single-pass Retrieval-Augmented Generation (RAG) pipelines often retrieve irrelevant context and fail to justify their predictions. To overcome these shortcomings, we present CyberRAG, a modular, agent-based RAG framework that delivers real-time classification, explanation, and structured reporting for cyber-attacks. A central LLM agent orchestrates (i) a pool of fine-tuned specialized classifiers, each tailored to a distinct attack family; (ii) tool adapters for enrichment and alerting; and (iii) an iterative retrieval-and-reason loop that continuously queries a domain-specific knowledge base until the evidence is both relevant and self-consistent. Unlike traditional RAG systems, CyberRAG embraces an agentic design that enables dynamic control flow and adaptive reasoning. This agent-centric architecture refines its threat labels and natural-language justifications autonomously, reducing false positives and enhancing interpretability. The framework is fully extensible: new attack types can be supported by simply adding a classifier without retraining the core agent. CyberRAG has been evaluated achieving over 94% accuracy per class and pushing final classification accuracy to 94.92% through semantic orchestration. Generated explanations score up to 0.94 in BERTScore and 4.9/5 in GPT-4-based expert evaluation. These results show that agentic, specialist-oriented RAG can pair high detection accuracy with trustworthy, SOC-ready prose, offering a practical and scalable path toward semi-autonomous cyber-defence workflows.
☆ S2FGL: Spatial Spectral Federated Graph Learning
Federated Graph Learning (FGL) combines the privacy-preserving capabilities of federated learning (FL) with the strong graph modeling capability of Graph Neural Networks (GNNs). Current research addresses subgraph-FL only from the structural perspective, neglecting the propagation of graph signals on spatial and spectral domains of the structure. From a spatial perspective, subgraph-FL introduces edge disconnections between clients, leading to disruptions in label signals and a degradation in the class knowledge of the global GNN. From a spectral perspective, spectral heterogeneity causes inconsistencies in signal frequencies across subgraphs, which makes local GNNs overfit the local signal propagation schemes. As a result, spectral client drifts occur, undermining global generalizability. To tackle the challenges, we propose a global knowledge repository to mitigate label signal disruption and a frequency alignment to address spectral client drifts. The combination of spatial and spectral strategies forms our framework S2FGL. Extensive experiments on multiple datasets demonstrate the superiority of S2FGL. The code is available at https://github.com/Wonder7racer/S2FGL.git.
☆ Wildlife Target Re-Identification Using Self-supervised Learning in Non-Urban Settings
Wildlife re-identification aims to match individuals of the same species across different observations. Current state-of-the-art (SOTA) models rely on class labels to train supervised models for individual classification. This dependence on annotated data has driven the curation of numerous large-scale wildlife datasets. This study investigates self-supervised learning Self-Supervised Learning (SSL) for wildlife re-identification. We automatically extract two distinct views of an individual using temporal image pairs from camera trap data without supervision. The image pairs train a self-supervised model from a potentially endless stream of video data. We evaluate the learnt representations against supervised features on open-world scenarios and transfer learning in various wildlife downstream tasks. The analysis of the experimental results shows that self-supervised models are more robust even with limited data. Moreover, self-supervised features outperform supervision across all downstream tasks. The code is available here https://github.com/pxpana/SSLWildlife.
comment: Accepted for publication in IEEE Xplore and ISIF FUSION 2025 proceedings:
☆ Beyond Spatial Frequency: Pixel-wise Temporal Frequency-based Deepfake Video Detection
We introduce a deepfake video detection approach that exploits pixel-wise temporal inconsistencies, which traditional spatial frequency-based detectors often overlook. Traditional detectors represent temporal information merely by stacking spatial frequency spectra across frames, resulting in the failure to detect temporal artifacts in the pixel plane. Our approach performs a 1D Fourier transform on the time axis for each pixel, extracting features highly sensitive to temporal inconsistencies, especially in areas prone to unnatural movements. To precisely locate regions containing the temporal artifacts, we introduce an attention proposal module trained in an end-to-end manner. Additionally, our joint transformer module effectively integrates pixel-wise temporal frequency features with spatio-temporal context features, expanding the range of detectable forgery artifacts. Our framework represents a significant advancement in deepfake video detection, providing robust performance across diverse and challenging detection scenarios.
comment: accepted by iccv 2025. code is will be available at https://github.com/rama0126/PwTF-DVD
☆ Evaluating Language Models For Threat Detection in IoT Security Logs
Log analysis is a relevant research field in cybersecurity as they can provide a source of information for the detection of threats to networks and systems. This paper presents a pipeline to use fine-tuned Large Language Models (LLMs) for anomaly detection and mitigation recommendation using IoT security logs. Utilizing classical machine learning classifiers as a baseline, three open-source LLMs are compared for binary and multiclass anomaly detection, with three strategies: zero-shot, few-shot prompting and fine-tuning using an IoT dataset. LLMs give better results on multi-class attack classification than the corresponding baseline models. By mapping detected threats to MITRE CAPEC, defining a set of IoT-specific mitigation actions, and fine-tuning the models with those actions, the models are able to provide a combined detection and recommendation guidance.
☆ An AI-native experimental laboratory for autonomous biomolecular engineering
Autonomous scientific research, capable of independently conducting complex experiments and serving non-specialists, represents a long-held aspiration. Achieving it requires a fundamental paradigm shift driven by artificial intelligence (AI). While autonomous experimental systems are emerging, they remain confined to areas featuring singular objectives and well-defined, simple experimental workflows, such as chemical synthesis and catalysis. We present an AI-native autonomous laboratory, targeting highly complex scientific experiments for applications like autonomous biomolecular engineering. This system autonomously manages instrumentation, formulates experiment-specific procedures and optimization heuristics, and concurrently serves multiple user requests. Founded on a co-design philosophy of models, experiments, and instruments, the platform supports the co-evolution of AI models and the automation system. This establishes an end-to-end, multi-user autonomous laboratory that handles complex, multi-objective experiments across diverse instrumentation. Our autonomous laboratory supports fundamental nucleic acid functions-including synthesis, transcription, amplification, and sequencing. It also enables applications in fields such as disease diagnostics, drug development, and information storage. Without human intervention, it autonomously optimizes experimental performance to match state-of-the-art results achieved by human scientists. In multi-user scenarios, the platform significantly improves instrument utilization and experimental efficiency. This platform paves the way for advanced biomaterials research to overcome dependencies on experts and resource barriers, establishing a blueprint for science-as-a-service at scale.
☆ VeFIA: An Efficient Inference Auditing Framework for Vertical Federated Collaborative Software
Vertical Federated Learning (VFL) is a distributed AI software deployment mechanism for cross-silo collaboration without accessing participants' data. However, existing VFL work lacks a mechanism to audit the execution correctness of the inference software of the data party. To address this problem, we design a Vertical Federated Inference Auditing (VeFIA) framework. VeFIA helps the task party to audit whether the data party's inference software is executed as expected during large-scale inference without leaking the data privacy of the data party or introducing additional latency to the inference system. The core of VeFIA is that the task party can use the inference results from a framework with Trusted Execution Environments (TEE) and the coordinator to validate the correctness of the data party's computation results. VeFIA guarantees that, as long as the abnormal inference exceeds 5.4%, the task party can detect execution anomalies in the inference software with a probability of 99.99%, without incurring any additional online inference latency. VeFIA's random sampling validation achieves 100% positive predictive value, negative predictive value, and true positive rate in detecting abnormal inference. To the best of our knowledge, this is the first paper to discuss the correctness of inference software execution in VFL.
☆ Holistic Tokenizer for Autoregressive Image Generation
The vanilla autoregressive image generation model generates visual tokens in a step-by-step fashion, which limits the ability to capture holistic relationships among token sequences. Moreover, most visual tokenizers map local image patches into latent tokens, leading to limited global information. To address this, we introduce \textit{Hita}, a novel image tokenizer for autoregressive (AR) image generation. It introduces a holistic-to-local tokenization scheme with learnable holistic queries and local patch tokens. Besides, Hita incorporates two key strategies for improved alignment with the AR generation process: 1) it arranges a sequential structure with holistic tokens at the beginning followed by patch-level tokens while using causal attention to maintain awareness of previous tokens; and 2) before feeding the de-quantized tokens into the decoder, Hita adopts a lightweight fusion module to control information flow to prioritize holistic tokens. Extensive experiments show that Hita accelerates the training speed of AR generators and outperforms those trained with vanilla tokenizers, achieving \textbf{2.59 FID} and \textbf{281.9 IS} on the ImageNet benchmark. A detailed analysis of the holistic representation highlights its ability to capture global image properties such as textures, materials, and shapes. Additionally, Hita also demonstrates effectiveness in zero-shot style transfer and image in-painting. The code is available at \href{https://github.com/CVMI-Lab/Hita}{https://github.com/CVMI-Lab/Hita}
comment: 17 pages, 10 figures
☆ Offline Reinforcement Learning with Penalized Action Noise Injection
Offline reinforcement learning (RL) optimizes a policy using only a fixed dataset, making it a practical approach in scenarios where interaction with the environment is costly. Due to this limitation, generalization ability is key to improving the performance of offline RL algorithms, as demonstrated by recent successes of offline RL with diffusion models. However, it remains questionable whether such diffusion models are necessary for highly performing offline RL algorithms, given their significant computational requirements during inference. In this paper, we propose Penalized Action Noise Injection (PANI), a method that simply enhances offline learning by utilizing noise-injected actions to cover the entire action space, while penalizing according to the amount of noise injected. This approach is inspired by how diffusion models have worked in offline RL algorithms. We provide a theoretical foundation for this method, showing that offline RL algorithms with such noise-injected actions solve a modified Markov Decision Process (MDP), which we call the noisy action MDP. PANI is compatible with a wide range of existing off-policy and offline RL algorithms, and despite its simplicity, it demonstrates significant performance improvements across various benchmarks.
☆ OMS: On-the-fly, Multi-Objective, Self-Reflective Ad Keyword Generation via LLM Agent
Keyword decision in Sponsored Search Advertising is critical to the success of ad campaigns. While LLM-based methods offer automated keyword generation, they face three major limitations: reliance on large-scale query-keyword pair data, lack of online multi-objective performance monitoring and optimization, and weak quality control in keyword selection. These issues hinder the agentic use of LLMs in fully automating keyword decisions by monitoring and reasoning over key performance indicators such as impressions, clicks, conversions, and CTA effectiveness. To overcome these challenges, we propose OMS, a keyword generation framework that is On-the-fly (requires no training data, monitors online performance, and adapts accordingly), Multi-objective (employs agentic reasoning to optimize keywords based on multiple performance metrics), and Self-reflective (agentically evaluates keyword quality). Experiments on benchmarks and real-world ad campaigns show that OMS outperforms existing methods; ablation and human evaluations confirm the effectiveness of each component and the quality of generated keywords.
☆ Two-Steps Neural Networks for an Automated Cerebrovascular Landmark Detection
Intracranial aneurysms (ICA) commonly occur in specific segments of the Circle of Willis (CoW), primarily, onto thirteen major arterial bifurcations. An accurate detection of these critical landmarks is necessary for a prompt and efficient diagnosis. We introduce a fully automated landmark detection approach for CoW bifurcations using a two-step neural networks process. Initially, an object detection network identifies regions of interest (ROIs) proximal to the landmark locations. Subsequently, a modified U-Net with deep supervision is exploited to accurately locate the bifurcations. This two-step method reduces various problems, such as the missed detections caused by two landmarks being close to each other and having similar visual characteristics, especially when processing the complete MRA Time-of-Flight (TOF). Additionally, it accounts for the anatomical variability of the CoW, which affects the number of detectable landmarks per scan. We assessed the effectiveness of our approach using two cerebral MRA datasets: our In-House dataset which had varying numbers of landmarks, and a public dataset with standardized landmark configuration. Our experimental results demonstrate that our method achieves the highest level of performance on a bifurcation detection task.
☆ HelixDesign-Antibody: A Scalable Production-Grade Platform for Antibody Design Built on HelixFold3
Antibody engineering is essential for developing therapeutics and advancing biomedical research. Traditional discovery methods often rely on time-consuming and resource-intensive experimental screening. To enhance and streamline this process, we introduce a production-grade, high-throughput platform built on HelixFold3, HelixDesign-Antibody, which utilizes the high-accuracy structure prediction model, HelixFold3. The platform facilitates the large-scale generation of antibody candidate sequences and evaluates their interaction with antigens. Integrated high-performance computing (HPC) support enables high-throughput screening, addressing challenges such as fragmented toolchains and high computational demands. Validation on multiple antigens showcases the platform's ability to generate diverse and high-quality antibodies, confirming a scaling law where exploring larger sequence spaces increases the likelihood of identifying optimal binders. This platform provides a seamless, accessible solution for large-scale antibody design and is available via the antibody design page of PaddleHelix platform.
☆ DeltaSHAP: Explaining Prediction Evolutions in Online Patient Monitoring with Shapley Values ICML 2025
This study proposes DeltaSHAP, a novel explainable artificial intelligence (XAI) algorithm specifically designed for online patient monitoring systems. In clinical environments, discovering the causes driving patient risk evolution is critical for timely intervention, yet existing XAI methods fail to address the unique requirements of clinical time series explanation tasks. To this end, DeltaSHAP addresses three key clinical needs: explaining the changes in the consecutive predictions rather than isolated prediction scores, providing both magnitude and direction of feature attributions, and delivering these insights in real time. By adapting Shapley values to temporal settings, our approach accurately captures feature coalition effects. It further attributes prediction changes using only the actually observed feature combinations, making it efficient and practical for time-sensitive clinical applications. We also introduce new evaluation metrics to evaluate the faithfulness of the attributions for online time series, and demonstrate through experiments on online patient monitoring tasks that DeltaSHAP outperforms state-of-the-art XAI methods in both explanation quality as 62% and computational efficiency as 33% time reduction on the MIMIC-III decompensation benchmark. We release our code at https://github.com/AITRICS/DeltaSHAP.
comment: Accepted to ICML 2025 Workshop on Actionable Interpretability. Code is available at https://github.com/AITRICS/DeltaSHAP
☆ ClustOpt: A Clustering-based Approach for Representing and Visualizing the Search Dynamics of Numerical Metaheuristic Optimization Algorithms
Understanding the behavior of numerical metaheuristic optimization algorithms is critical for advancing their development and application. Traditional visualization techniques, such as convergence plots, trajectory mapping, and fitness landscape analysis, often fall short in illustrating the structural dynamics of the search process, especially in high-dimensional or complex solution spaces. To address this, we propose a novel representation and visualization methodology that clusters solution candidates explored by the algorithm and tracks the evolution of cluster memberships across iterations, offering a dynamic and interpretable view of the search process. Additionally, we introduce two metrics - algorithm stability and algorithm similarity- to quantify the consistency of search trajectories across runs of an individual algorithm and the similarity between different algorithms, respectively. We apply this methodology to a set of ten numerical metaheuristic algorithms, revealing insights into their stability and comparative behaviors, thereby providing a deeper understanding of their search dynamics.
☆ Tracing the Interactions of Modular CMA-ES Configurations Across Problem Landscapes
This paper leverages the recently introduced concept of algorithm footprints to investigate the interplay between algorithm configurations and problem characteristics. Performance footprints are calculated for six modular variants of the CMA-ES algorithm (modCMA), evaluated on 24 benchmark problems from the BBOB suite, across two-dimensional settings: 5-dimensional and 30-dimensional. These footprints provide insights into why different configurations of the same algorithm exhibit varying performance and identify the problem features influencing these outcomes. Our analysis uncovers shared behavioral patterns across configurations due to common interactions with problem properties, as well as distinct behaviors on the same problem driven by differing problem features. The results demonstrate the effectiveness of algorithm footprints in enhancing interpretability and guiding configuration choices.
☆ Neural Network-based Study for Rice Leaf Disease Recognition and Classification: A Comparative Analysis Between Feature-based Model and Direct Imaging Model
Rice leaf diseases significantly reduce productivity and cause economic losses, highlighting the need for early detection to enable effective management and improve yields. This study proposes Artificial Neural Network (ANN)-based image-processing techniques for timely classification and recognition of rice diseases. Despite the prevailing approach of directly inputting images of rice leaves into ANNs, there is a noticeable absence of thorough comparative analysis between the Feature Analysis Detection Model (FADM) and Direct Image-Centric Detection Model (DICDM), specifically when it comes to evaluating the effectiveness of Feature Extraction Algorithms (FEAs). Hence, this research presents initial experiments on the Feature Analysis Detection Model, utilizing various image Feature Extraction Algorithms, Dimensionality Reduction Algorithms (DRAs), Feature Selection Algorithms (FSAs), and Extreme Learning Machine (ELM). The experiments are carried out on datasets encompassing bacterial leaf blight, brown spot, leaf blast, leaf scald, Sheath blight rot, and healthy leaf, utilizing 10-fold Cross-Validation method. A Direct Image-Centric Detection Model is established without the utilization of any FEA, and the evaluation of classification performance relies on different metrics. Ultimately, an exhaustive contrast is performed between the achievements of the Feature Analysis Detection Model and Direct Image-Centric Detection Model in classifying rice leaf diseases. The results reveal that the highest performance is attained using the Feature Analysis Detection Model. The adoption of the proposed Feature Analysis Detection Model for detecting rice leaf diseases holds excellent potential for improving crop health, minimizing yield losses, and enhancing overall productivity and sustainability of rice farming.
☆ Iterated belief revision: from postulates to abilities
The belief revision field is opulent in new proposals and indigent in analyses of existing approaches. Much work hinge on postulates, employed as syntactic characterizations: some revision mechanism is equivalent to some properties. Postulates constraint specific revision instances: certain revisions update certain beliefs in a certain way. As an example, if the revision is consistent with the current beliefs, it is incorporated with no other change. A postulate like this tells what revisions must do and neglect what they can do. Can they reach a certain state of beliefs? Can they reach all possible states of beliefs? Can they reach all possible states of beliefs from no previous belief? Can they reach a dogmatic state of beliefs, where everything not believed is impossible? Can they make two conditions equally believed? An application where every possible state of beliefs is sensible requires each state of beliefs to be reachable. An application where conditions may be equally believed requires such a belief state to be reachable. An application where beliefs may become dogmatic requires a way to make them dogmatic. Such doxastic states need to be reached in a way or another. Not in specific way, as dictated by a typical belief revision postulate. This is an ability, not a constraint: the ability of being plastic, equating, dogmatic. Amnesic, correcting, believer, damascan, learnable are other abilities. Each revision mechanism owns some of these abilities and lacks the others: lexicographic, natural, restrained, very radical, full meet, radical, severe, moderate severe, deep severe, plain severe and deep severe revisions, each of these revisions is proved to possess certain abilities.
☆ MAGIC: Mask-Guided Diffusion Inpainting with Multi-Level Perturbations and Context-Aware Alignment for Few-Shot Anomaly Generation
Few-shot anomaly generation is emerging as a practical solution for augmenting the scarce anomaly data in industrial quality control settings. An ideal generator would meet three demands at once, namely (i) keep the normal background intact, (ii) inpaint anomalous regions to tightly overlap with the corresponding anomaly masks, and (iii) generate anomalous regions in a semantically valid location, while still producing realistic, diverse appearances from only a handful of real examples. Existing diffusion-based methods usually satisfy at most two of these requirements: global anomaly generators corrupt the background, whereas mask-guided ones often falter when the mask is imprecise or misplaced. We propose MAGIC--Mask-guided inpainting with multi-level perturbations and Context-aware alignment--to resolve all three issues. At its core, MAGIC fine-tunes a Stable Diffusion inpainting backbone that preserves normal regions and ensures strict adherence of the synthesized anomaly to the supplied mask, directly addressing background corruption and misalignment. To offset the diversity loss that fine-tuning can cause, MAGIC adds two complementary perturbation strategies: (i) Gaussian prompt-level perturbation applied during fine-tuning and inference that broadens the global appearance of anomalies while avoiding low-fidelity textual appearances, and (ii) mask-guided spatial noise injection that enriches local texture variations. Additionally, the context-aware mask alignment module forms semantic correspondences and relocates masks so that every anomaly remains plausibly contained within the host object, eliminating out-of-boundary artifacts. Under a consistent identical evaluation protocol on the MVTec-AD dataset, MAGIC outperforms previous state-of-the-arts in downstream anomaly tasks.
comment: 10 pages, 6 figures
☆ Holistic Continual Learning under Concept Drift with Adaptive Memory Realignment
Traditional continual learning methods prioritize knowledge retention and focus primarily on mitigating catastrophic forgetting, implicitly assuming that the data distribution of previously learned tasks remains static. This overlooks the dynamic nature of real-world data streams, where concept drift permanently alters previously seen data and demands both stability and rapid adaptation. We introduce a holistic framework for continual learning under concept drift that simulates realistic scenarios by evolving task distributions. As a baseline, we consider Full Relearning (FR), in which the model is retrained from scratch on newly labeled samples from the drifted distribution. While effective, this approach incurs substantial annotation and computational overhead. To address these limitations, we propose Adaptive Memory Realignment (AMR), a lightweight alternative that equips rehearsal-based learners with a drift-aware adaptation mechanism. AMR selectively removes outdated samples of drifted classes from the replay buffer and repopulates it with a small number of up-to-date instances, effectively realigning memory with the new distribution. This targeted resampling matches the performance of FR while reducing the need for labeled data and computation by orders of magnitude. To enable reproducible evaluation, we introduce four concept-drift variants of standard vision benchmarks: Fashion-MNIST-CD, CIFAR10-CD, CIFAR100-CD, and Tiny-ImageNet-CD, where previously seen classes reappear with shifted representations. Comprehensive experiments on these datasets using several rehearsal-based baselines show that AMR consistently counters concept drift, maintaining high accuracy with minimal overhead. These results position AMR as a scalable solution that reconciles stability and plasticity in non-stationary continual learning environments.
☆ Synthetic Heuristic Evaluation: A Comparison between AI- and Human-Powered Usability Evaluation
Usability evaluation is crucial in human-centered design but can be costly, requiring expert time and user compensation. In this work, we developed a method for synthetic heuristic evaluation using multimodal LLMs' ability to analyze images and provide design feedback. Comparing our synthetic evaluations to those by experienced UX practitioners across two apps, we found our evaluation identified 73% and 77% of usability issues, which exceeded the performance of 5 experienced human evaluators (57% and 63%). Compared to human evaluators, the synthetic evaluation's performance maintained consistent performance across tasks and excelled in detecting layout issues, highlighting potential attentional and perceptual strengths of synthetic evaluation. However, synthetic evaluation struggled with recognizing some UI components and design conventions, as well as identifying across screen violations. Additionally, testing synthetic evaluations over time and accounts revealed stable performance. Overall, our work highlights the performance differences between human and LLM-driven evaluations, informing the design of synthetic heuristic evaluations.
☆ DoMIX: An Efficient Framework for Exploiting Domain Knowledge in Fine-Tuning ACL 2025
Domain-Adaptive Pre-training (DAP) has recently gained attention for its effectiveness in fine-tuning pre-trained models. Building on this, continual DAP has been explored to develop pre-trained models capable of incrementally incorporating different domain datasets. However, existing continual DAP methods face several limitations: (1) high computational cost and GPU memory usage during training; (2) sensitivity to incremental data order; and (3) providing a single, generalized model for all end tasks, which contradicts the essence of DAP. In this paper, we propose DoMIX, a novel approach that addresses these challenges by leveraging LoRA modules, a representative parameter-efficient fine-tuning (PEFT) method. Our approach enables efficient and parallel domain-adaptive pre-training that is robust to domain order and effectively utilizes accumulated knowledge to provide tailored pre-trained models for specific tasks. We also demonstrate that our method can be extended beyond the DAP setting to standard LLM fine-tuning scenarios. Code is available at https://github.com/dohoonkim-ai/DoMIX.
comment: 22 pages, 5 figures, ACL 2025 Main
☆ Knowledge Graph-Based Explainable and Generalized Zero-Shot Semantic Communications
Data-driven semantic communication is based on superficial statistical patterns, thereby lacking interpretability and generalization, especially for applications with the presence of unseen data. To address these challenges, we propose a novel knowledge graph-enhanced zero-shot semantic communication (KGZS-SC) network. Guided by the structured semantic information from a knowledge graph-based semantic knowledge base (KG-SKB), our scheme provides generalized semantic representations and enables reasoning for unseen cases. Specifically, the KG-SKB aligns the semantic features in a shared category semantics embedding space and enhances the generalization ability of the transmitter through aligned semantic features, thus reducing communication overhead by selectively transmitting compact visual semantics. At the receiver, zero-shot learning (ZSL) is leveraged to enable direct classification for unseen cases without the demand for retraining or additional computational overhead, thereby enhancing the adaptability and efficiency of the classification process in dynamic or resource-constrained environments. The simulation results conducted on the APY datasets show that the proposed KGZS-SC network exhibits robust generalization and significantly outperforms existing SC frameworks in classifying unseen categories across a range of SNR levels.
☆ Content filtering methods for music recommendation: A review
Recommendation systems have become essential in modern music streaming platforms, shaping how users discover and engage with songs. One common approach in recommendation systems is collaborative filtering, which suggests content based on the preferences of users with similar listening patterns to the target user. However, this method is less effective on media where interactions are sparse. Music is one such medium, since the average user of a music streaming service will never listen to the vast majority of tracks. Due to this sparsity, there are several challenges that have to be addressed with other methods. This review examines the current state of research in addressing these challenges, with an emphasis on the role of content filtering in mitigating biases inherent in collaborative filtering approaches. We explore various methods of song classification for content filtering, including lyrical analysis using Large Language Models (LLMs) and audio signal processing techniques. Additionally, we discuss the potential conflicts between these different analysis methods and propose avenues for resolving such discrepancies.
comment: 13 pages and 9 figures
☆ Spotlighting Partially Visible Cinematic Language for Video-to-Audio Generation via Self-distillation IJCAI 2025
Video-to-Audio (V2A) Generation achieves significant progress and plays a crucial role in film and video post-production. However, current methods overlook the cinematic language, a critical component of artistic expression in filmmaking. As a result, their performance deteriorates in scenarios where Foley targets are only partially visible. To address this challenge, we propose a simple self-distillation approach to extend V2A models to cinematic language scenarios. By simulating the cinematic language variations, the student model learns to align the video features of training pairs with the same audio-visual correspondences, enabling it to effectively capture the associations between sounds and partial visual information. Our method not only achieves impressive improvements under partial visibility across all evaluation metrics, but also enhances performance on the large-scale V2A dataset, VGGSound.
comment: Accepted by IJCAI 2025
☆ Multi-Label Classification Framework for Hurricane Damage Assessment SC
Hurricanes cause widespread destruction, resulting in diverse damage types and severities that require timely and accurate assessment for effective disaster response. While traditional single-label classification methods fall short of capturing the complexity of post-hurricane damage, this study introduces a novel multi-label classification framework for assessing damage using aerial imagery. The proposed approach integrates a feature extraction module based on ResNet and a class-specific attention mechanism to identify multiple damage types within a single image. Using the Rescuenet dataset from Hurricane Michael, the proposed method achieves a mean average precision of 90.23%, outperforming existing baseline methods. This framework enhances post-hurricane damage assessment, enabling more targeted and efficient disaster response and contributing to future strategies for disaster mitigation and resilience. This paper has been accepted at the ASCE International Conference on Computing in Civil Engineering (i3CE 2025), and the camera-ready version will appear in the official conference proceedings.
comment: 9 pages, 3 figures. Accepted at the ASCE International Conference on Computing in Civil Engineering (i3CE 2025)
☆ MemAgent: Reshaping Long-Context LLM with Multi-Conv RL-based Memory Agent
Despite improvements by length extrapolation, efficient attention and memory modules, handling infinitely long documents with linear complexity without performance degradation during extrapolation remains the ultimate challenge in long-text processing. We directly optimize for long-text tasks in an end-to-end fashion and introduce a novel agent workflow, MemAgent, which reads text in segments and updates the memory using an overwrite strategy. We extend the DAPO algorithm to facilitate training via independent-context multi-conversation generation. MemAgent has demonstrated superb long-context capabilities, being able to extrapolate from an 8K context trained on 32K text to a 3.5M QA task with performance loss < 5% and achieves 95%+ in 512K RULER test.
comment: Project Page: https://memagent-sialab.github.io/
☆ Scaling LLM Planning: NL2FLOW for Parametric Problem Generation and Rigorous Evaluation
Progress in enhancing large language model (LLM) planning and reasoning capabilities is significantly hampered by the bottleneck of scalable, reliable data generation and evaluation. To overcome this, I introduce NL2FLOW, a fully automated system for parametrically generating planning problems - expressed in natural language, a structured intermediate representation, and formal PDDL - and rigorously evaluating the quality of generated plans. I demonstrate NL2FLOW's capabilities by generating a dataset of 2296 problems in the automated workflow generation domain and evaluating multiple open-sourced, instruct-tuned LLMs. My results reveal that the highest performing models achieved 86% success in generating valid plans and 69% in generating optimal plans, specifically for problems with feasible solutions. Regression analysis shows that the influence of problem characteristics on plan generation is contingent on both model and prompt design. Notably, I observed that the highest success rate for translating natural language into a JSON representation of a plan was lower than the highest rate of generating a valid plan directly. This suggests that unnecessarily decomposing the reasoning task - introducing intermediate translation steps - may actually degrade performance, implying a benefit to models capable of reasoning directly from natural language to action. As I scale LLM reasoning to increasingly complex problems, the bottlenecks and sources of error within these systems will inevitably shift. Therefore, a dynamic understanding of these limitations - and the tools to systematically reveal them - will be crucial for unlocking the full potential of LLMs as intelligent problem solvers.
comment: 20 pages, 7 figures
☆ SurgVisAgent: Multimodal Agentic Model for Versatile Surgical Visual Enhancement
Precise surgical interventions are vital to patient safety, and advanced enhancement algorithms have been developed to assist surgeons in decision-making. Despite significant progress, these algorithms are typically designed for single tasks in specific scenarios, limiting their effectiveness in complex real-world situations. To address this limitation, we propose SurgVisAgent, an end-to-end intelligent surgical vision agent built on multimodal large language models (MLLMs). SurgVisAgent dynamically identifies distortion categories and severity levels in endoscopic images, enabling it to perform a variety of enhancement tasks such as low-light enhancement, overexposure correction, motion blur elimination, and smoke removal. Specifically, to achieve superior surgical scenario understanding, we design a prior model that provides domain-specific knowledge. Additionally, through in-context few-shot learning and chain-of-thought (CoT) reasoning, SurgVisAgent delivers customized image enhancements tailored to a wide range of distortion types and severity levels, thereby addressing the diverse requirements of surgeons. Furthermore, we construct a comprehensive benchmark simulating real-world surgical distortions, on which extensive experiments demonstrate that SurgVisAgent surpasses traditional single-task models, highlighting its potential as a unified solution for surgical assistance.
☆ Order Acquisition Under Competitive Pressure: A Rapidly Adaptive Reinforcement Learning Approach for Ride-Hailing Subsidy Strategies
The proliferation of ride-hailing aggregator platforms presents significant growth opportunities for ride-service providers by increasing order volume and gross merchandise value (GMV). On most ride-hailing aggregator platforms, service providers that offer lower fares are ranked higher in listings and, consequently, are more likely to be selected by passengers. This competitive ranking mechanism creates a strong incentive for service providers to adopt coupon strategies that lower prices to secure a greater number of orders, as order volume directly influences their long-term viability and sustainability. Thus, designing an effective coupon strategy that can dynamically adapt to market fluctuations while optimizing order acquisition under budget constraints is a critical research challenge. However, existing studies in this area remain scarce. To bridge this gap, we propose FCA-RL, a novel reinforcement learning-based subsidy strategy framework designed to rapidly adapt to competitors' pricing adjustments. Our approach integrates two key techniques: Fast Competition Adaptation (FCA), which enables swift responses to dynamic price changes, and Reinforced Lagrangian Adjustment (RLA), which ensures adherence to budget constraints while optimizing coupon decisions on new price landscape. Furthermore, we introduce RideGym, the first dedicated simulation environment tailored for ride-hailing aggregators, facilitating comprehensive evaluation and benchmarking of different pricing strategies without compromising real-world operational efficiency. Experimental results demonstrate that our proposed method consistently outperforms baseline approaches across diverse market conditions, highlighting its effectiveness in subsidy optimization for ride-hailing service providers.
☆ Understanding Trade offs When Conditioning Synthetic Data
Learning robust object detectors from only a handful of images is a critical challenge in industrial vision systems, where collecting high quality training data can take months. Synthetic data has emerged as a key solution for data efficient visual inspection and pick and place robotics. Current pipelines rely on 3D engines such as Blender or Unreal, which offer fine control but still require weeks to render a small dataset, and the resulting images often suffer from a large gap between simulation and reality. Diffusion models promise a step change because they can generate high quality images in minutes, yet precise control, especially in low data regimes, remains difficult. Although many adapters now extend diffusion beyond plain text prompts, the effect of different conditioning schemes on synthetic data quality is poorly understood. We study eighty diverse visual concepts drawn from four standard object detection benchmarks and compare two conditioning strategies: prompt based and layout based. When the set of conditioning cues is narrow, prompt conditioning yields higher quality synthetic data; as diversity grows, layout conditioning becomes superior. When layout cues match the full training distribution, synthetic data raises mean average precision by an average of thirty four percent and by as much as one hundred seventy seven percent compared with using real data alone.
☆ Dilution, Diffusion and Symbiosis in Spatial Prisoner's Dilemma with Reinforcement Learning
Recent studies in the spatial prisoner's dilemma games with reinforcement learning have shown that static agents can learn to cooperate through a diverse sort of mechanisms, including noise injection, different types of learning algorithms and neighbours' payoff knowledge.In this work, using an independent multi-agent Q-learning algorithm, we study the effects of dilution and mobility in the spatial version of the prisoner's dilemma. Within this setting, different possible actions for the algorithm are defined, connecting with previous results on the classical, non-reinforcement learning spatial prisoner's dilemma, showcasing the versatility of the algorithm in modeling different game-theoretical scenarios and the benchmarking potential of this approach.As a result, a range of effects is observed, including evidence that games with fixed update rules can be qualitatively equivalent to those with learned ones, as well as the emergence of a symbiotic mutualistic effect between populations that forms when multiple actions are defined.
♻ ☆ Urban Region Pre-training and Prompting: A Graph-based Approach KDD 2025
Urban region representation is crucial for various urban downstream tasks. However, despite the proliferation of methods and their success, acquiring general urban region knowledge and adapting to different tasks remains challenging. Existing work pays limited attention to the fine-grained functional layout semantics in urban regions, limiting their ability to capture transferable knowledge across regions. Further, inadequate handling of the unique features and relationships required for different downstream tasks may also hinder effective task adaptation. In this paper, we propose a $\textbf{G}$raph-based $\textbf{U}$rban $\textbf{R}$egion $\textbf{P}$re-training and $\textbf{P}$rompting framework ($\textbf{GURPP}$) for region representation learning. Specifically, we first construct an urban region graph and develop a subgraph-centric urban region pre-training model to capture the heterogeneous and transferable patterns of entity interactions. This model pre-trains knowledge-rich region embeddings using contrastive learning and multi-view learning methods. To further refine these representations, we design two graph-based prompting methods: a manually-defined prompt to incorporate explicit task knowledge and a task-learnable prompt to discover hidden knowledge, which enhances the adaptability of these embeddings to different tasks. Extensive experiments on various urban region prediction tasks and different cities demonstrate the superior performance of our framework.
comment: Accepted at KDD 2025
♻ ☆ Transferrable Surrogates in Expressive Neural Architecture Search Spaces
Neural architecture search (NAS) faces a challenge in balancing the exploration of expressive, broad search spaces that enable architectural innovation with the need for efficient evaluation of architectures to effectively search such spaces. We investigate surrogate model training for improving search in highly expressive NAS search spaces based on context-free grammars. We show that i) surrogate models trained either using zero-cost-proxy metrics and neural graph features (GRAF) or by fine-tuning an off-the-shelf LM have high predictive power for the performance of architectures both within and across datasets, ii) these surrogates can be used to filter out bad architectures when searching on novel datasets, thereby significantly speeding up search and achieving better final performances, and iii) the surrogates can be further used directly as the search objective for huge speed-ups.
comment: Accepted at AutoML 25, Project page at: https://shiwenqin.github.io/TransferrableSurrogate/
♻ ☆ PAD: Phase-Amplitude Decoupling Fusion for Multi-Modal Land Cover Classification
The fusion of Synthetic Aperture Radar (SAR) and RGB imagery for land cover classification remains challenging due to modality heterogeneity and underutilized spectral complementarity. Existing methods often fail to decouple shared structural features from modality-complementary radiometric attributes, causing feature conflicts and information loss. To address this, we propose Phase-Amplitude Decoupling (PAD), a frequency-aware framework that separates phase (modality-shared) and amplitude (modality-complementary) components in the Fourier domain, thus reinforcing shared structures while preserving complementary characteristics to improve fusion quality. Unlike prior approaches that overlook the distinct physical properties encoded in frequency spectra, PAD is the first to introduce explicit amplitude-phase decoupling for multi-modal fusion. Specifically, PAD comprises two key components: 1) Phase Spectrum Correction (PSC), which aligns cross-modal phase features via convolution-guided scaling to enhance geometric consistency; and 2) Amplitude Spectrum Fusion (ASF), which dynamically integrates high-frequency and low-frequency patterns using frequency-adaptive multilayer perceptrons, leveraging SAR's morphological sensitivity and RGB's spectral richness. Extensive experiments on WHU-OPT-SAR and DDHR-SK datasets demonstrate state-of-the-art performance. Our work establishes a new paradigm for physics-aware multi-modal fusion in remote sensing. The code will be available at https://github.com/RanFeng2/PAD.
comment: 13 pages, 8 figures
♻ ☆ CMD-HAR: Cross-Modal Disentanglement for Wearable Human Activity Recognition
Human Activity Recognition (HAR) is a fundamental technology for numerous human - centered intelligent applications. Although deep learning methods have been utilized to accelerate feature extraction, issues such as multimodal data mixing, activity heterogeneity, and complex model deployment remain largely unresolved. The aim of this paper is to address issues such as multimodal data mixing, activity heterogeneity, and complex model deployment in sensor-based human activity recognition. We propose a spatiotemporal attention modal decomposition alignment fusion strategy to tackle the problem of the mixed distribution of sensor data. Key discriminative features of activities are captured through cross-modal spatio-temporal disentangled representation, and gradient modulation is combined to alleviate data heterogeneity. In addition, a wearable deployment simulation system is constructed. We conducted experiments on a large number of public datasets, demonstrating the effectiveness of the model.
♻ ☆ LLM-Powered Prediction of Hyperglycemia and Discovery of Behavioral Treatment Pathways from Wearables and Diet
Postprandial hyperglycemia, marked by the blood glucose level exceeding the normal range after consuming a meal, is a critical indicator of progression toward type 2 diabetes in people with prediabetes and in healthy individuals. A key metric for understanding blood glucose dynamics after eating is the postprandial area under the curve (AUC). Predicting postprandial AUC in advance based on a person's lifestyle factors, such as diet and physical activity level, and explaining the factors that affect postprandial blood glucose could allow an individual to adjust their lifestyle accordingly to maintain normal glucose levels. In this study, we developed an explainable machine learning solution, GlucoLens, that takes sensor-driven inputs and uses advanced data processing, large language models, and trainable machine learning models to predict postprandial AUC and hyperglycemia from diet, physical activity, and recent glucose patterns. We used data obtained from wearables in a five-week clinical trial of 10 adults who worked full-time to develop and evaluate the proposed computational model that integrates wearable sensing, multimodal data, and machine learning. Our machine learning model takes multimodal data from wearable activity and glucose monitoring sensors, along with food and work logs, and provides an interpretable prediction of the postprandial glucose pattern. Our GlucoLens system achieves a normalized root mean squared error (NRMSE) of 0.123 in its best configuration. On average, the proposed technology provides a 16% better performance level compared to the comparison models. Additionally, our technique predicts hyperglycemia with an accuracy of 73.3% and an F1 score of 0.716 and recommends different treatment options to help avoid hyperglycemia through diverse counterfactual explanations. Code available: https://github.com/ab9mamun/GlucoLens.
comment: 16 pages, 10 figures
♻ ☆ Avoiding Catastrophe in Online Learning by Asking for Help ICML 2025
Most learning algorithms with formal regret guarantees assume that all mistakes are recoverable and essentially rely on trying all possible behaviors. This approach is problematic when some mistakes are "catastrophic", i.e., irreparable. We propose an online learning problem where the goal is to minimize the chance of catastrophe. Specifically, we assume that the payoff in each round represents the chance of avoiding catastrophe in that round and try to maximize the product of payoffs (the overall chance of avoiding catastrophe) while allowing a limited number of queries to a mentor. We also assume that the agent can transfer knowledge between similar inputs. We first show that in general, any algorithm either queries the mentor at a linear rate or is nearly guaranteed to cause catastrophe. However, in settings where the mentor policy class is learnable in the standard online model, we provide an algorithm whose regret and rate of querying the mentor both approach 0 as the time horizon grows. Although our focus is the product of payoffs, we provide matching bounds for the typical additive regret. Conceptually, if a policy class is learnable in the absence of catastrophic risk, it is learnable in the presence of catastrophic risk if the agent can ask for help.
comment: Accepted to ICML 2025
♻ ☆ MaizeField3D: A Curated 3D Point Cloud and Procedural Model Dataset of Field-Grown Maize from a Diversity Panel
The development of artificial intelligence (AI) and machine learning (ML) based tools for 3D phenotyping, especially for maize, has been limited due to the lack of large and diverse 3D datasets. 2D image datasets fail to capture essential structural details such as leaf architecture, plant volume, and spatial arrangements that 3D data provide. To address this limitation, we present MaizeField3D (https://baskargroup.github.io/MaizeField3D/), a curated dataset of 3D point clouds of field-grown maize plants from a diverse genetic panel, designed to be AI-ready for advancing agricultural research. Our dataset includes 1,045 high-quality point clouds of field-grown maize collected using a terrestrial laser scanner (TLS). Point clouds of 520 plants from this dataset were segmented and annotated using a graph-based segmentation method to isolate individual leaves and stalks, ensuring consistent labeling across all samples. This labeled data was then used for fitting procedural models that provide a structured parametric representation of the maize plants. The leaves of the maize plants in the procedural models are represented using Non-Uniform Rational B-Spline (NURBS) surfaces that were generated using a two-step optimization process combining gradient-free and gradient-based methods. We conducted rigorous manual quality control on all datasets, correcting errors in segmentation, ensuring accurate leaf ordering, and validating metadata annotations. The dataset also includes metadata detailing plant morphology and quality, alongside multi-resolution subsampled point cloud data (100k, 50k, 10k points), which can be readily used for different downstream computational tasks. MaizeField3D will serve as a comprehensive foundational dataset for AI-driven phenotyping, plant structural analysis, and 3D applications in agricultural research.
comment: Elvis Kimara and Mozhgan Hadadi contributed equally to this work
♻ ☆ Quantifying the Cross-sectoral Intersecting Discrepancies within Multiple Groups Using Latent Class Analysis Towards Fairness
The growing interest in fair AI development is evident. The ''Leave No One Behind'' initiative urges us to address multiple and intersecting forms of inequality in accessing services, resources, and opportunities, emphasising the significance of fairness in AI. This is particularly relevant as an increasing number of AI tools are applied to decision-making processes, such as resource allocation and service scheme development, across various sectors such as health, energy, and housing. Therefore, exploring joint inequalities in these sectors is significant and valuable for thoroughly understanding overall inequality and unfairness. This research introduces an innovative approach to quantify cross-sectoral intersecting discrepancies among user-defined groups using latent class analysis. These discrepancies can be used to approximate inequality and provide valuable insights to fairness issues. We validate our approach using both proprietary and public datasets, including both EVENS and Census 2021 (England & Wales) datasets, to examine cross-sectoral intersecting discrepancies among different ethnic groups. We also verify the reliability of the quantified discrepancy by conducting a correlation analysis with a government public metric. Our findings reveal significant discrepancies both among minority ethnic groups and between minority ethnic groups and non-minority ethnic groups, emphasising the need for targeted interventions in policy-making processes. Furthermore, we demonstrate how the proposed approach can provide valuable insights into ensuring fairness in machine learning systems.
♻ ☆ Towards a Novel Measure of User Trust in XAI Systems
The increasing reliance on Deep Learning models, combined with their inherent lack of transparency, has spurred the development of a novel field of study known as eXplainable AI (XAI) methods. These methods seek to enhance the trust of end-users in automated systems by providing insights into the rationale behind their decisions. This paper presents a novel trust measure in XAI systems, allowing their refinement. Our proposed metric combines both performance metrics and trust indicators from an objective perspective. To validate this novel methodology, we conducted three case studies showing an improvement respect the state-of-the-art, with an increased sensitiviy to different scenarios.
♻ ☆ MAPS: Advancing Multi-Modal Reasoning in Expert-Level Physical Science
Pre-trained on extensive text and image corpora, current Multi-Modal Large Language Models (MLLM) have shown strong capabilities in general visual reasoning tasks. However, their performance is still lacking in physical domains that require understanding diagrams with complex physical structures and quantitative analysis based on multi-modal information. To address this, we develop a new framework, named Multi-Modal Scientific Reasoning with Physics Perception and Simulation (MAPS) based on an MLLM. MAPS decomposes expert-level multi-modal reasoning task into physical diagram understanding via a Physical Perception Model (PPM) and reasoning with physical knowledge via a simulator. The PPM module is obtained by fine-tuning a visual language model using carefully designed synthetic data with paired physical diagrams and corresponding simulation language descriptions. At the inference stage, MAPS integrates the simulation language description of the input diagram provided by PPM and results obtained through a Chain-of-Simulation process with MLLM to derive the underlying rationale and the final answer. Validated using our collected college-level circuit analysis problems, MAPS significantly improves reasoning accuracy of MLLM and outperforms all existing models. The results confirm MAPS offers a promising direction for enhancing multi-modal scientific reasoning ability of MLLMs. We will release our code, model and dataset used for our experiments upon publishing of this paper.
♻ ☆ Enabling Population-Level Parallelism in Tree-Based Genetic Programming for Comprehensive GPU Acceleration
Tree-based Genetic Programming (TGP) is a widely used evolutionary algorithm for tasks such as symbolic regression, classification, and robotic control. Due to the intensive computational demands of running TGP, GPU acceleration is crucial for achieving scalable performance. However, efficient GPU-based execution of TGP still remains challenging, primarily due to three core issues: (1) the structural heterogeneity of program individuals, (2) the complexity of integrating multiple levels of parallelism, and (3) the incompatibility between high-performance CUDA execution and flexible Python-based environments. To address these issues, we propose EvoGP, a high-performance framework tailored for comprehensive GPU acceleration of TGP via population-level parallel execution. First, EvoGP introduces a tensorized representation that encodes variable-sized trees into fixed-shape, memory-aligned arrays, enabling uniform memory access and parallel computation across diverse individuals. Second, EvoGP adopts an adaptive parallelism strategy that dynamically combines intra- and inter-individual parallelism based on dataset size, ensuring high GPU utilization across a broad spectrum of tasks. Third, EvoGP embeds custom CUDA kernels into the PyTorch runtime, achieving seamless integration with Python-based environments such as Gym, MuJoCo, Brax, and Genesis. Comprehensive experiments show that EvoGP achieves up to 140x speedup over state-of-the-art GPU-based TGP implementations, while maintaining competitive accuracy and significantly improving scalability under large population sizes. EvoGP is open source and accessible at: https://github.com/EMI-Group/evogp.
♻ ☆ Mind2Web 2: Evaluating Agentic Search with Agent-as-a-Judge
Agentic search such as Deep Research systems-where agents autonomously browse the web, synthesize information, and return comprehensive citation-backed answers-represents a major shift in how users interact with web-scale information. While promising greater efficiency and cognitive offloading, the growing complexity and open-endedness of agentic search have outpaced existing evaluation benchmarks and methodologies, which largely assume short search horizons and static answers. In this paper, we introduce Mind2Web 2, a benchmark of 130 realistic, high-quality, and long-horizon tasks that require real-time web browsing and extensive information synthesis, constructed with over 1000 hours of human labor. To address the challenge of evaluating time-varying and complex answers, we propose a novel Agent-as-a-Judge framework. Our method constructs task-specific judge agents based on a tree-structured rubric design to automatically assess both answer correctness and source attribution. We conduct a comprehensive evaluation of ten frontier agentic search systems and human performance, along with a detailed error analysis to draw insights for future development. The best-performing system, OpenAI Deep Research, can already achieve 50-70% of human performance while spending half the time, highlighting its great potential. Altogether, Mind2Web 2 provides a rigorous foundation for developing and benchmarking the next generation of agentic search systems.
comment: Project Homepage: https://osu-nlp-group.github.io/Mind2Web-2/
♻ ☆ On Characterizations for Language Generation: Interplay of Hallucinations, Breadth, and Stability
We study language generation in the limit - introduced by Kleinberg and Mullainathan [KM24] - building on classical works of Gold [Gol67] and Angluin [Ang79]. [KM24]'s main result is an algorithm for generating from any countable language collection in the limit. While their algorithm eventually generates unseen strings from the target language $K$, it sacrifices coverage or breadth, i.e., its ability to generate a rich set of strings. Recent work introduces different notions of breadth and explores when generation with breadth is possible, leaving a full characterization of these notions open. Our first set of results settles this by characterizing generation for existing notions of breadth and their natural extensions. Interestingly, our lower bounds are very flexible and hold for many performance metrics beyond breadth - for instance, showing that, in general, it is impossible to train generators which achieve a higher perplexity or lower hallucination rate for $K$ compared to other languages. Next, we study language generation with breadth and stable generators - algorithms that eventually stop changing after seeing an arbitrary but finite number of strings - and prove unconditional lower bounds for such generators, strengthening the results of [KMV25] and demonstrating that generation with many existing notions of breadth becomes equally hard, when stability is required. This gives a separation for generation with approximate breadth, between stable and unstable generators, highlighting the rich interplay between breadth, stability, and consistency in language generation.
comment: v2 improves exposition and simplifies proofs
♻ ☆ Gradient-Based Model Fingerprinting for LLM Similarity Detection and Family Classification
As Large Language Models (LLMs) become integral software components in modern applications, unauthorized model derivations through fine-tuning, merging, and redistribution have emerged as critical software engineering challenges. Unlike traditional software where clone detection and license compliance are well-established, the LLM ecosystem lacks effective mechanisms to detect model lineage and enforce licensing agreements. This gap is particularly problematic when open-source model creators, such as Meta's LLaMA, require derivative works to maintain naming conventions for attribution, yet no technical means exist to verify compliance. To fill this gap, treating LLMs as software artifacts requiring provenance tracking, we present TensorGuard, a gradient-based fingerprinting framework for LLM similarity detection and family classification. Our approach extracts model-intrinsic behavioral signatures by analyzing gradient responses to random input perturbations across tensor layers, operating independently of training data, watermarks, or specific model formats. TensorGuard supports the widely-adopted safetensors format and constructs high-dimensional fingerprints through statistical analysis of gradient features. These fingerprints enable two complementary capabilities: direct pairwise similarity assessment between arbitrary models through distance computation, and systematic family classification of unknown models via the K-Means clustering algorithm with domain-informed centroid initialization using known base models. Experimental evaluation on 58 models comprising 8 base models and 50 derivatives across five model families (Llama, Qwen, Gemma, Phi, Mistral) demonstrates 94% classification accuracy under our centroid-initialized K-Means clustering.
♻ ☆ AC-DiT: Adaptive Coordination Diffusion Transformer for Mobile Manipulation
Recently, mobile manipulation has attracted increasing attention for enabling language-conditioned robotic control in household tasks. However, existing methods still face challenges in coordinating mobile base and manipulator, primarily due to two limitations. On the one hand, they fail to explicitly model the influence of the mobile base on manipulator control, which easily leads to error accumulation under high degrees of freedom. On the other hand, they treat the entire mobile manipulation process with the same visual observation modality (e.g., either all 2D or all 3D), overlooking the distinct multimodal perception requirements at different stages during mobile manipulation. To address this, we propose the Adaptive Coordination Diffusion Transformer (AC-DiT), which enhances mobile base and manipulator coordination for end-to-end mobile manipulation. First, since the motion of the mobile base directly influences the manipulator's actions, we introduce a mobility-to-body conditioning mechanism that guides the model to first extract base motion representations, which are then used as context prior for predicting whole-body actions. This enables whole-body control that accounts for the potential impact of the mobile base's motion. Second, to meet the perception requirements at different stages of mobile manipulation, we design a perception-aware multimodal conditioning strategy that dynamically adjusts the fusion weights between various 2D visual images and 3D point clouds, yielding visual features tailored to the current perceptual needs. This allows the model to, for example, adaptively rely more on 2D inputs when semantic information is crucial for action prediction, while placing greater emphasis on 3D geometric information when precise spatial understanding is required. We validate AC-DiT through extensive experiments on both simulated and real-world mobile manipulation tasks.
comment: Project website: https://ac-dit.github.io/
♻ ☆ Next-Token Prediction Task Assumes Optimal Data Ordering for LLM Training in Proof Generation
In the field of large language model (LLM)-based proof generation, despite extensive training on large datasets such as ArXiv, LLMs still exhibit only modest performance on proving tasks of moderate difficulty. We believe that this is partly due to the widespread presence of suboptimal ordering within the data for each proof used in training. For example, published proofs often follow a purely logical order, where each step logically proceeds from the previous steps based on the deductive rules. This order is designed to facilitate the verification of the proof's soundness, rather than to help people and models learn the discovery process of the proof. In proof generation, we argue that the optimal order for one training data sample occurs when the relevant intermediate supervision for a particular proof step in the proof is always positioned to the left of that proof step. We call such order the intuitively sequential order. We validate our claims using two tasks: intuitionistic propositional logic theorem-proving and digit multiplication. Our experiments verify the order effect and provide support for our explanations. We demonstrate that training is most effective when the proof is in the intuitively sequential order. Moreover, the order effect and the performance gap between models trained on different data orders can be substantial -- with an 11 percent improvement in proof success rate observed in the propositional logic theorem-proving task, between models trained on the optimal order compared to the worst order. Lastly, we define a common type of order issue in advanced math proofs and find that 17.3 percent of theorems with nontrivial proofs in the first two chapters of a widely used graduate-level mathematics textbook suffer from this issue. A detailed list of those proofs is provided in the appendix.
♻ ☆ HAPI: A Model for Learning Robot Facial Expressions from Human Preferences IROS
Automatic robotic facial expression generation is crucial for human-robot interaction, as handcrafted methods based on fixed joint configurations often yield rigid and unnatural behaviors. Although recent automated techniques reduce the need for manual tuning, they tend to fall short by not adequately bridging the gap between human preferences and model predictions-resulting in a deficiency of nuanced and realistic expressions due to limited degrees of freedom and insufficient perceptual integration. In this work, we propose a novel learning-to-rank framework that leverages human feedback to address this discrepancy and enhanced the expressiveness of robotic faces. Specifically, we conduct pairwise comparison annotations to collect human preference data and develop the Human Affective Pairwise Impressions (HAPI) model, a Siamese RankNet-based approach that refines expression evaluation. Results obtained via Bayesian Optimization and online expression survey on a 35-DOF android platform demonstrate that our approach produces significantly more realistic and socially resonant expressions of Anger, Happiness, and Surprise than those generated by baseline and expert-designed methods. This confirms that our framework effectively bridges the gap between human preferences and model predictions while robustly aligning robotic expression generation with human affective responses.
comment: Accepted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ Learning Traffic Anomalies from Generative Models on Real-Time Observations
Accurate detection of traffic anomalies is crucial for effective urban traffic management and congestion mitigation. We use the Spatiotemporal Generative Adversarial Network (STGAN) framework combining Graph Neural Networks and Long Short-Term Memory networks to capture complex spatial and temporal dependencies in traffic data. We apply STGAN to real-time, minute-by-minute observations from 42 traffic cameras across Gothenburg, Sweden, collected over several months in 2020. The images are processed to compute a flow metric representing vehicle density, which serves as input for the model. Training is conducted on data from April to November 2020, and validation is performed on a separate dataset from November 14 to 23, 2020. Our results demonstrate that the model effectively detects traffic anomalies with high precision and low false positive rates. The detected anomalies include camera signal interruptions, visual artifacts, and extreme weather conditions affecting traffic flow.
♻ ☆ Empowering Intelligent Low-altitude Economy with Large AI Model Deployment
Low-altitude economy (LAE) represents an emerging economic paradigm that redefines commercial and social aerial activities. Large artificial intelligence models (LAIMs) offer transformative potential to further enhance the intelligence of LAE services. However, deploying LAIMs in LAE poses several challenges, including the significant gap between their computational/storage demands and the limited onboard resources of LAE entities, the mismatch between lab-trained LAIMs and dynamic physical environments, and the inefficiencies of traditional decoupled designs for sensing, communication, and computation. To address these issues, we first propose a hierarchical system architecture tailored for LAIM deployment and present representative LAE application scenarios. Next, we explore key enabling techniques that facilitate the mutual co-evolution of LAIMs and low-altitude systems, and introduce a task-oriented execution pipeline for scalable and adaptive service delivery. Then, the proposed framework is validated through real-world case studies. Finally, we outline open challenges to inspire future research.
♻ ☆ Direct Preference Optimization Using Sparse Feature-Level Constraints
The alignment of large language models (LLMs) with human preferences remains a key challenge. While post-training techniques like Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) have achieved notable success, they often introduce computational inefficiencies and training instability. In this paper, we propose Feature-level constrained Preference Optimization (FPO), a novel method designed to simplify the alignment process while ensuring stability. FPO leverages pre-trained Sparse Autoencoders (SAEs) and introduces feature-level constraints, allowing for efficient, sparsity-enforced alignment. Our approach enjoys efficiency by using sparse features activated in a well-trained sparse autoencoder and the quality of sequential KL divergence by using the feature-level offline reference. Experimental results on benchmark datasets demonstrate that FPO achieves a 5.08% absolute improvement in win rate with much lower computational cost compared to state-of-the-art baselines, making it a promising solution for efficient and controllable LLM alignments.
♻ ☆ A framework for Conditional Reasoning in Answer Set Programming
In this paper we introduce a Conditional Answer Set Programming framework (Conditional ASP) for the definition of conditional extensions of Answer Set Programming (ASP). The approach builds on a conditional logic with typicality, and on the combination of a conditional knowledge base with an ASP program, and allows for conditional reasoning over the answer sets of the program. The formalism relies on a multi-preferential semantics (and on the KLM preferential semantics, as a special case) to provide an interpretation of conditionals.
comment: 23 pages; version v1 has been accepted for publication as a Technical Communication at ICLP 2025
♻ ☆ SoccerDiffusion: Toward Learning End-to-End Humanoid Robot Soccer from Gameplay Recordings
This paper introduces SoccerDiffusion, a transformer-based diffusion model designed to learn end-to-end control policies for humanoid robot soccer directly from real-world gameplay recordings. Using data collected from RoboCup competitions, the model predicts joint command trajectories from multi-modal sensor inputs, including vision, proprioception, and game state. We employ a distillation technique to enable real-time inference on embedded platforms that reduces the multi-step diffusion process to a single step. Our results demonstrate the model's ability to replicate complex motion behaviors such as walking, kicking, and fall recovery both in simulation and on physical robots. Although high-level tactical behavior remains limited, this work provides a robust foundation for subsequent reinforcement learning or preference optimization methods. We release the dataset, pretrained models, and code under: https://bit-bots.github.io/SoccerDiffusion
♻ ☆ Towards an Explainable Comparison and Alignment of Feature Embeddings
While several feature embedding models have been developed in the literature, comparisons of these embeddings have largely focused on their numerical performance in classification-related downstream applications. However, an interpretable comparison of different embeddings requires identifying and analyzing mismatches between sample groups clustered within the embedding spaces. In this work, we propose the \emph{Spectral Pairwise Embedding Comparison (SPEC)} framework to compare embeddings and identify their differences in clustering a reference dataset. Our approach examines the kernel matrices derived from two embeddings and leverages the eigendecomposition of the difference kernel matrix to detect sample clusters that are captured differently by the two embeddings. We present a scalable implementation of this kernel-based approach, with computational complexity that grows linearly with the sample size. Furthermore, we introduce an optimization problem using this framework to align two embeddings, ensuring that clusters identified in one embedding are also captured in the other model. We provide numerical results demonstrating the SPEC's application to compare and align embeddings on large-scale datasets such as ImageNet and MS-COCO. The project page is available at https://mjalali.github.io/SPEC/.
♻ ☆ Understanding-informed Bias Mitigation for Fair CMR Segmentation
Artificial intelligence (AI) is increasingly being used for medical imaging tasks. However, there can be biases in AI models, particularly when they are trained using imbalanced training datasets. One such example has been the strong ethnicity bias effect in cardiac magnetic resonance (CMR) image segmentation models. Although this phenomenon has been reported in a number of publications, little is known about the effectiveness of bias mitigation algorithms in this domain. We aim to investigate the impact of common bias mitigation methods to address bias between Black and White subjects in AI-based CMR segmentation models. Specifically, we use oversampling, importance reweighing and Group DRO as well as combinations of these techniques to mitigate the ethnicity bias. Second, motivated by recent findings on the root causes of AI-based CMR segmentation bias, we evaluate the same methods using models trained and evaluated on cropped CMR images. We find that bias can be mitigated using oversampling, significantly improving performance for the underrepresented Black subjects whilst not significantly reducing the majority White subjects' performance. Using cropped images increases performance for both ethnicities and reduces the bias, whilst adding oversampling as a bias mitigation technique with cropped images reduces the bias further. When testing the models on an external clinical validation set, we find high segmentation performance and no statistically significant bias.
♻ ☆ AI Flow: Perspectives, Scenarios, and Approaches
Pioneered by the foundational information theory by Claude Shannon and the visionary framework of machine intelligence by Alan Turing, the convergent evolution of information and communication technologies (IT/CT) has created an unbroken wave of connectivity and computation. This synergy has sparked a technological revolution, now reaching its peak with large artificial intelligence (AI) models that are reshaping industries and redefining human-machine collaboration. However, the realization of ubiquitous intelligence faces considerable challenges due to substantial resource consumption in large models and high communication bandwidth demands. To address these challenges, AI Flow has been introduced as a multidisciplinary framework that integrates cutting-edge IT and CT advancements, with a particular emphasis on the following three key points. First, device-edge-cloud framework serves as the foundation, which integrates end devices, edge servers, and cloud clusters to optimize scalability and efficiency for low-latency model inference. Second, we introduce the concept of familial models, which refers to a series of different-sized models with aligned hidden features, enabling effective collaboration and the flexibility to adapt to varying resource constraints and dynamic scenarios. Third, connectivity- and interaction-based intelligence emergence is a novel paradigm of AI Flow. By leveraging communication networks to enhance connectivity, the collaboration among AI models across heterogeneous nodes achieves emergent intelligence that surpasses the capability of any single model. The innovations of AI Flow provide enhanced intelligence, timely responsiveness, and ubiquitous accessibility to AI services, paving the way for the tighter fusion of AI techniques and communication systems.
comment: Authors are with Institute of Artificial Intelligence (TeleAI), China Telecom, China. Author names are listed alphabetically by surname. This work was conducted at TeleAI, facilitated by Dr. Jiawei Shao (e-mail: shaojw2@chinatelecom.cn) under the leadership of Prof. Xuelong Li. The corresponding author is Prof. Xuelong Li (e-mail: xuelong li@ieee.org), the CTO and Chief Scientist of China Telecom
♻ ☆ Interleaved Gibbs Diffusion: Generating Discrete-Continuous Data with Implicit Constraints
We introduce Interleaved Gibbs Diffusion (IGD), a novel generative modeling framework for discrete-continuous data, focusing on problems with important, implicit and unspecified constraints in the data. Most prior works on discrete and discrete-continuous diffusion assume a factorized denoising distribution, which can hinder the modeling of strong dependencies between random variables in such problems. We empirically demonstrate a significant improvement in 3-SAT performance out of the box by switching to a Gibbs-sampling style discrete diffusion model which does not assume factorizability. Motivated by this, we introduce IGD which generalizes discrete time Gibbs sampling type Markov chain for the case of discrete-continuous generation. IGD allows for seamless integration between discrete and continuous denoisers while theoretically guaranteeing exact reversal of a suitable forward process. Further, it provides flexibility in the choice of denoisers, allows conditional generation via state-space doubling and inference time refinement. Empirical evaluations on three challenging generation tasks - molecule structures, layouts and tabular data - demonstrate state-of-the-art performance. Notably, IGD achieves state-of-the-art results without relying on domain-specific inductive biases like equivariant diffusion or auxiliary losses. We explore a wide range of modeling, and interleaving strategies along with hyperparameters in each of these problems.
♻ ☆ Aerial Vision-and-Language Navigation via Semantic-Topo-Metric Representation Guided LLM Reasoning
Aerial Vision-and-Language Navigation (VLN) is a novel task enabling Unmanned Aerial Vehicles (UAVs) to navigate in outdoor environments through natural language instructions and visual cues. It remains challenging due to the complex spatial relationships in outdoor aerial scenes. In this paper, we propose an end-to-end zero-shot framework for aerial VLN tasks, where the large language model (LLM) is introduced as our agent for action prediction. Specifically, we develop a novel Semantic-Topo-Metric Representation (STMR) to enhance the spatial reasoning ability of LLMs. This is achieved by extracting and projecting instruction-related semantic masks of landmarks into a top-down map that contains the location information of surrounding landmarks. Further, this map is transformed into a matrix representation with distance metrics as the text prompt to the LLM, for action prediction according to the instruction. Experiments conducted in real and simulation environments have successfully proved the effectiveness and robustness of our method, achieving 15.9% and 12.5% improvements (absolute) in Oracle Success Rate (OSR) on AerialVLN-S dataset.
♻ ☆ Embodied AI Agents: Modeling the World
This paper describes our research on AI agents embodied in visual, virtual or physical forms, enabling them to interact with both users and their environments. These agents, which include virtual avatars, wearable devices, and robots, are designed to perceive, learn and act within their surroundings, which makes them more similar to how humans learn and interact with the environments as compared to disembodied agents. We propose that the development of world models is central to reasoning and planning of embodied AI agents, allowing these agents to understand and predict their environment, to understand user intentions and social contexts, thereby enhancing their ability to perform complex tasks autonomously. World modeling encompasses the integration of multimodal perception, planning through reasoning for action and control, and memory to create a comprehensive understanding of the physical world. Beyond the physical world, we also propose to learn the mental world model of users to enable better human-agent collaboration.
♻ ☆ Offline Reinforcement Learning for Learning to Dispatch for Job Shop Scheduling
The Job Shop Scheduling Problem (JSSP) is a complex combinatorial optimization problem. While online Reinforcement Learning (RL) has shown promise by quickly finding acceptable solutions for JSSP, it faces key limitations: it requires extensive training interactions from scratch leading to sample inefficiency, cannot leverage existing high-quality solutions from traditional methods like Constraint Programming (CP), and require simulated environments to train in, which are impracticable to build for complex scheduling environments. We introduce Offline Learned Dispatching (Offline-LD), an offline reinforcement learning approach for JSSP, which addresses these limitations by learning from historical scheduling data. Our approach is motivated by scenarios where historical scheduling data and expert solutions are available or scenarios where online training of RL approaches with simulated environments is impracticable. Offline-LD introduces maskable variants of two Q-learning methods, namely, Maskable Quantile Regression DQN (mQRDQN) and discrete maskable Soft Actor-Critic (d-mSAC), that are able to learn from historical data, through Conservative Q-Learning (CQL). Moreover, we present a novel entropy bonus modification for d-mSAC, for maskable action spaces. Moreover, we introduce a novel reward normalization method for JSSP in an offline RL setting. Our experiments demonstrate that Offline-LD outperforms online RL on both generated and benchmark instances when trained on only 100 solutions generated by CP. Notably, introducing noise to the expert dataset yields comparable or superior results to using the expert dataset, with the same amount of instances, a promising finding for real-world applications, where data is inherently noisy and imperfect.
comment: Accepted in Machine Learning
♻ ☆ Reconsidering the energy efficiency of spiking neural networks
Spiking Neural Networks (SNNs) promise higher energy efficiency over conventional Quantized Artificial Neural Networks (QNNs) due to their event-driven, spike-based computation. However, prevailing energy evaluations often oversimplify, focusing on computational aspects while neglecting critical overheads like comprehensive data movement and memory access. Such simplifications can lead to misleading conclusions regarding the true energy benefits of SNNs. This paper presents a rigorous re-evaluation. We establish a fair baseline by mapping rate-encoded SNNs with $T$ timesteps to functionally equivalent QNNs with $\lceil \log_2(T+1) \rceil$ bits. This ensures both models have comparable representational capacities, as well has similar hardware requirement, enabling meaningful energy comparisons. We introduce a detailed analytical energy model encompassing core computation and data movement (sparse and dense activations, weights). Using this model, we systematically explore a wide parameter space, including intrinsic network characteristics ($T$, spike rate $s_r$, QNN sparsity $\gamma$, model size $N$, weight bit-level) and hardware characteristics (memory system and network-on-chip). Our analysis identifies specific operational regimes where SNNs genuinely offer superior energy efficiency. For example, under typical neuromorphic hardware conditions, SNNs with moderate time windows ($T \in [5,10]$) require an average spike rate ($s_r$) below 6.4% to outperform equivalent QNNs. These insights guide the design of genuinely energy-efficient neural network solutions.
♻ ☆ Traveling Across Languages: Benchmarking Cross-Lingual Consistency in Multimodal LLMs
The rapid evolution of multimodal large language models (MLLMs) has significantly enhanced their real-world applications. However, achieving consistent performance across languages, especially when integrating cultural knowledge, remains a significant challenge. To better assess this issue, we introduce two new benchmarks: KnowRecall and VisRecall, which evaluate cross-lingual consistency in MLLMs. KnowRecall is a visual question answering benchmark designed to measure factual knowledge consistency in 15 languages, focusing on cultural and historical questions about global landmarks. VisRecall assesses visual memory consistency by asking models to describe landmark appearances in 9 languages without access to images. Experimental results reveal that state-of-the-art MLLMs, including proprietary ones, still struggle to achieve cross-lingual consistency. This underscores the need for more robust approaches that produce truly multilingual and culturally aware models.
comment: https://github.com/nlp-waseda/traveling-across-languages
♻ ☆ From Sentences to Sequences: Rethinking Languages in Biological System
The paradigm of large language models in natural language processing (NLP) has also shown promise in modeling biological languages, including proteins, RNA, and DNA. Both the auto-regressive generation paradigm and evaluation metrics have been transferred from NLP to biological sequence modeling. However, the intrinsic structural correlations in natural and biological languages differ fundamentally. Therefore, we revisit the notion of language in biological systems to better understand how NLP successes can be effectively translated to biological domains. By treating the 3D structure of biomolecules as the semantic content of a sentence and accounting for the strong correlations between residues or bases, we highlight the importance of structural evaluation and demonstrate the applicability of the auto-regressive paradigm in biological language modeling. Code can be found at \href{https://github.com/zjuKeLiu/RiFold}{github.com/zjuKeLiu/RiFold}
♻ ☆ Self-Guided Process Reward Optimization with Redefined Step-wise Advantage for Process Reinforcement Learning
Process Reinforcement Learning~(PRL) has demonstrated considerable potential in enhancing the reasoning capabilities of Large Language Models~(LLMs). However, introducing additional process reward models incurs substantial computational overhead, and there is no unified theoretical framework for process-level advantage estimation. To bridge this gap, we propose \textbf{S}elf-Guided \textbf{P}rocess \textbf{R}eward \textbf{O}ptimization~(\textbf{SPRO}), a novel framework that enables process-aware RL through two key innovations: (1) we first theoretically demonstrate that process rewards can be derived intrinsically from the policy model itself, and (2) we introduce well-defined cumulative process rewards and \textbf{M}asked \textbf{S}tep \textbf{A}dvantage (\textbf{MSA}), which facilitates rigorous step-wise action advantage estimation within shared-prompt sampling groups. Our experimental results demonstrate that SPRO outperforms vaniila GRPO with 3.4x higher training efficiency and a 17.5\% test accuracy improvement. Furthermore, SPRO maintains a stable and elevated policy entropy throughout training while reducing the average response length by approximately $1/3$, evidencing sufficient exploration and prevention of reward hacking. Notably, SPRO incurs no additional computational overhead compared to outcome-supervised RL methods such as GRPO, which benefit industrial implementation.
♻ ☆ Agentic AI Process Observability: Discovering Behavioral Variability
AI agents that leverage Large Language Models (LLMs) are increasingly becoming core building blocks of modern software systems. A wide range of frameworks is now available to support the specification of such applications. These frameworks enable the definition of agent setups using natural language prompting, which specifies the roles, goals, and tools assigned to the various agents involved. Within such setups, agent behavior is non-deterministic for any given input, highlighting the critical need for robust debugging and observability tools. In this work, we explore the use of process and causal discovery applied to agent execution trajectories as a means of enhancing developer observability. This approach aids in monitoring and understanding the emergent variability in agent behavior. Additionally, we complement this with LLM-based static analysis techniques to distinguish between intended and unintended behavioral variability. We argue that such instrumentation is essential for giving developers greater control over evolving specifications and for identifying aspects of functionality that may require more precise and explicit definitions.
comment: 12 pages, 7 figures
♻ ☆ Quantum-enhanced causal discovery for a small number of samples
The discovery of causal relations from observed data has attracted significant interest from disciplines such as economics, social sciences, and biology. In practical applications, considerable knowledge of the underlying systems is often unavailable, and real data are usually associated with nonlinear causal structures, which makes the direct use of most conventional causality analysis methods difficult. This study proposes a novel quantum Peter-Clark (qPC) algorithm for causal discovery that does not require any assumptions about the underlying model structures. Based on conditional independence tests in a class of reproducing kernel Hilbert spaces characterized by quantum circuits, the proposed algorithm can explore causal relations from the observed data drawn from arbitrary distributions. We conducted systematic experiments on fundamental graphs of causal structures, demonstrating that the qPC algorithm exhibits better performance, particularly with smaller sample sizes compared to its classical counterpart. Furthermore, we proposed a novel optimization approach based on Kernel Target Alignment (KTA) for determining hyperparameters of quantum kernels. This method effectively reduced the risk of false positives in causal discovery, enabling more reliable inference. Our theoretical and experimental results demonstrate that the quantum algorithm can empower classical algorithms for accurate inference in causal discovery, supporting them in regimes where classical algorithms typically fail. In addition, the effectiveness of this method was validated using the datasets on Boston housing prices, heart disease, and biological signaling systems as real-world applications. These findings highlight the potential of quantum-based causal discovery methods in addressing practical challenges, particularly in small-sample scenarios, where traditional approaches have shown significant limitations.
comment: 20 pages, 10 figures
♻ ☆ Unsupervised Cognition
Unsupervised learning methods have a soft inspiration in cognition models. To this day, the most successful unsupervised learning methods revolve around clustering samples in a mathematical space. In this paper we propose a primitive-based, unsupervised learning approach for decision-making inspired by a novel cognition framework. This representation-centric approach models the input space constructively as a distributed hierarchical structure in an input-agnostic way. We compared our approach with both current state-of-the-art unsupervised learning classification, with current state-of-the-art small and incomplete datasets classification, and with current state-of-the-art cancer type classification. We show how our proposal outperforms previous state-of-the-art. We also evaluate some cognition-like properties of our proposal where it not only outperforms the compared algorithms (even supervised learning ones), but it also shows a different, more cognition-like, behaviour.
♻ ☆ Anatomical Foundation Models for Brain MRIs
Deep Learning (DL) in neuroimaging has become increasingly relevant for detecting neurological conditions and neurodegenerative disorders. One of the most predominant biomarkers in neuroimaging is represented by brain age, which has been shown to be a good indicator for different conditions, such as Alzheimer's Disease. Using brain age for weakly supervised pre-training of DL models in transfer learning settings has also recently shown promising results, especially when dealing with data scarcity of different conditions. On the other hand, anatomical information of brain MRIs (e.g. cortical thickness) can provide important information for learning good representations that can be transferred to many downstream tasks. In this work, we propose AnatCL, an anatomical foundation model for brain MRIs that i.) leverages anatomical information in a weakly contrastive learning approach, and ii.) achieves state-of-the-art performances across many different downstream tasks. To validate our approach we consider 12 different downstream tasks for the diagnosis of different conditions such as Alzheimer's Disease, autism spectrum disorder, and schizophrenia. Furthermore, we also target the prediction of 10 different clinical assessment scores using structural MRI data. Our findings show that incorporating anatomical information during pre-training leads to more robust and generalizable representations. Pre-trained models can be found at: https://github.com/EIDOSLAB/AnatCL.
comment: Updated version; added ablation study
♻ ☆ Crafting Hanzi as Narrative Bridges: An AI Co-Creation Workshop for Elderly Migrants
This paper explores how older adults, particularly aging migrants in urban China, can engage AI-assisted co-creation to express personal narratives that are often fragmented, underrepresented, or difficult to verbalize. Through a pilot workshop combining oral storytelling and the symbolic reconstruction of Hanzi, participants shared memories of migration and recreated new character forms using Xiaozhuan glyphs, suggested by the Large Language Model (LLM), together with physical materials. Supported by human facilitation and a soft AI presence, participants transformed lived experience into visual and tactile expressions without requiring digital literacy. This approach offers new perspectives on human-AI collaboration and aging by repositioning AI not as a content producer but as a supportive mechanism, and by supporting narrative agency within sociotechnical systems.
comment: A version of this manuscript has been submitted to the [IASDR 2025 Conference](https://iasdr2025.org/) and is currently under review
♻ ☆ Sequence-aware Pre-training for Echocardiography Probe Movement Guidance
Echocardiography is an essential medical technique for diagnosing cardiovascular diseases, but its high operational complexity has led to a shortage of trained professionals. To address this issue, we introduce a novel probe movement guidance algorithm that has the potential to be applied in guiding robotic systems or novices with probe pose adjustment for high-quality standard plane image acquisition.Cardiac ultrasound faces two major challenges: (1) the inherently complex structure of the heart, and (2) significant individual variations. Previous works have only learned the population-averaged structure of the heart rather than personalized cardiac structures, leading to a performance bottleneck. Clinically, we observe that sonographers dynamically adjust their interpretation of a patient's cardiac anatomy based on prior scanning sequences, consequently refining their scanning strategies. Inspired by this, we propose a novel sequence-aware self-supervised pre-training method. Specifically, our approach learns personalized three-dimensional cardiac structural features by predicting the masked-out image features and probe movement actions in a scanning sequence. We hypothesize that if the model can predict the missing content it has acquired a good understanding of personalized cardiac structure. Extensive experiments on a large-scale expert scanning dataset with 1.31 million samples demonstrate that our proposed sequence-aware paradigm can effectively reduce probe guidance errors compared to other advanced baseline methods. Our code will be released after acceptance.
comment: Tech Report
♻ ☆ Is Complex Query Answering Really Complex? ICML 2025
Complex query answering (CQA) on knowledge graphs (KGs) is gaining momentum as a challenging reasoning task. In this paper, we show that the current benchmarks for CQA might not be as complex as we think, as the way they are built distorts our perception of progress in this field. For example, we find that in these benchmarks, most queries (up to 98% for some query types) can be reduced to simpler problems, e.g., link prediction, where only one link needs to be predicted. The performance of state-of-the-art CQA models decreases significantly when such models are evaluated on queries that cannot be reduced to easier types. Thus, we propose a set of more challenging benchmarks composed of queries that require models to reason over multiple hops and better reflect the construction of real-world KGs. In a systematic empirical investigation, the new benchmarks show that current methods leave much to be desired from current CQA methods.
comment: ICML 2025
♻ ☆ Delving into LLM-assisted writing in biomedical publications through excess vocabulary
Large language models (LLMs) like ChatGPT can generate and revise text with human-level performance. These models come with clear limitations: they can produce inaccurate information, reinforce existing biases, and be easily misused. Yet, many scientists use them for their scholarly writing. But how wide-spread is such LLM usage in the academic literature? To answer this question for the field of biomedical research, we present an unbiased, large-scale approach: we study vocabulary changes in over 15 million biomedical abstracts from 2010--2024 indexed by PubMed, and show how the appearance of LLMs led to an abrupt increase in the frequency of certain style words. This excess word analysis suggests that at least 13.5% of 2024 abstracts were processed with LLMs. This lower bound differed across disciplines, countries, and journals, reaching 40% for some subcorpora. We show that LLMs have had an unprecedented impact on scientific writing in biomedical research, surpassing the effect of major world events such as the Covid pandemic.
comment: v5: Reverting to v3
♻ ☆ EquiTabPFN: A Target-Permutation Equivariant Prior Fitted Networks
Recent foundational models for tabular data, such as TabPFN, excel at adapting to new tasks via in-context learning, but remain constrained to a fixed, pre-defined number of target dimensions-often necessitating costly ensembling strategies. We trace this constraint to a deeper architectural shortcoming: these models lack target equivariance, so that permuting target dimension orderings alters their predictions. This deficiency gives rise to an irreducible "equivariance gap", an error term that introduces instability in predictions. We eliminate this gap by designing a fully target-equivariant architecture-ensuring permutation invariance via equivariant encoders, decoders, and a bi-attention mechanism. Empirical evaluation on standard classification benchmarks shows that, on datasets with more classes than those seen during pre-training, our model matches or surpasses existing methods while incurring lower computational overhead.
♻ ☆ Significativity Indices for Agreement Values
Agreement measures, such as Cohen's kappa or intraclass correlation, gauge the matching between two or more classifiers. They are used in a wide range of contexts from medicine, where they evaluate the effectiveness of medical treatments and clinical trials, to artificial intelligence, where they can quantify the approximation due to the reduction of a classifier. The consistency of different classifiers to a golden standard can be compared simply by using the order induced by their agreement measure with respect to the golden standard itself. Nevertheless, labelling an approach as good or bad exclusively by using the value of an agreement measure requires a scale or a significativity index. Some quality scales have been proposed in the literature for Cohen's kappa, but they are mainly na\"ive, and their boundaries are arbitrary. This work proposes a general approach to evaluate the significativity of any agreement value between two classifiers and introduces two significativity indices: one dealing with finite data sets, the other one handling classification probability distributions. Moreover, this manuscript addresses the computational challenges of evaluating such indices and proposes some efficient algorithms for their evaluation.
comment: 27 pages, 6 figures
♻ ☆ AIn't Nothing But a Survey? Using Large Language Models for Coding German Open-Ended Survey Responses on Survey Motivation
The recent development and wider accessibility of LLMs have spurred discussions about how they can be used in survey research, including classifying open-ended survey responses. Due to their linguistic capacities, it is possible that LLMs are an efficient alternative to time-consuming manual coding and the pre-training of supervised machine learning models. As most existing research on this topic has focused on English-language responses relating to non-complex topics or on single LLMs, it is unclear whether its findings generalize and how the quality of these classifications compares to established methods. In this study, we investigate to what extent different LLMs can be used to code open-ended survey responses in other contexts, using German data on reasons for survey participation as an example. We compare several state-of-the-art LLMs and several prompting approaches, and evaluate the LLMs' performance by using human expert codings. Overall performance differs greatly between LLMs, and only a fine-tuned LLM achieves satisfactory levels of predictive performance. Performance differences between prompting approaches are conditional on the LLM used. Finally, LLMs' unequal classification performance across different categories of reasons for survey participation results in different categorical distributions when not using fine-tuning. We discuss the implications of these findings, both for methodological research on coding open-ended responses and for their substantive analysis, and for practitioners processing or substantively analyzing such data. Finally, we highlight the many trade-offs researchers need to consider when choosing automated methods for open-ended response classification in the age of LLMs. In doing so, our study contributes to the growing body of research about the conditions under which LLMs can be efficiently, accurately, and reliably leveraged in survey research.
comment: to appear in Survey Research Methods
♻ ☆ XGeM: A Multi-Prompt Foundation Model for Multimodal Medical Data Generation
The adoption of Artificial Intelligence in medical imaging holds great promise, yet it remains hindered by challenges such as data scarcity, privacy concerns, and the need for robust multimodal integration. While recent advances in generative modeling have enabled high-quality synthetic data generation, existing approaches are often limited to unimodal, unidirectional synthesis and therefore lack the ability to jointly synthesize multiple modalities while preserving clinical consistency. To address this challenge, we introduce XGeM, a 6.77-billion-parameter multimodal generative model designed to support flexible, any-to-any synthesis between medical data modalities. XGeM constructs a shared latent space via contrastive learning and introduces a novel Multi-Prompt Training strategy, enabling conditioning on arbitrary subsets of input modalities. This design allows the model to adapt to heterogeneous clinical inputs and generate multiple outputs jointly, preserving both semantic and structural coherence. We extensively validate XGeM: first we benchmark it against five competitors on the MIMIC-CXR dataset, a state-of-the-art dataset for multi-view Chest X-ray and radiological report generation. Secondly, we perform a Visual Turing Test with expert radiologists to assess the realism and clinical relevance of the generated data, ensuring alignment with real-world scenarios. Finally, we show how XGeM can support key medical data challenges such as anonymization, class imbalance, and data scarcity, underscoring its utility as a foundation model for medical data synthesis. Project page is at https://cosbidev.github.io/XGeM/.
♻ ☆ MTCNet: Motion and Topology Consistency Guided Learning for Mitral Valve Segmentationin 4D Ultrasound MICCAI 2025
Mitral regurgitation is one of the most prevalent cardiac disorders. Four-dimensional (4D) ultrasound has emerged as the primary imaging modality for assessing dynamic valvular morphology. However, 4D mitral valve (MV) analysis remains challenging due to limited phase annotations, severe motion artifacts, and poor imaging quality. Yet, the absence of inter-phase dependency in existing methods hinders 4D MV analysis. To bridge this gap, we propose a Motion-Topology guided consistency network (MTCNet) for accurate 4D MV ultrasound segmentation in semi-supervised learning (SSL). MTCNet requires only sparse end-diastolic and end-systolic annotations. First, we design a cross-phase motion-guided consistency learning strategy, utilizing a bi-directional attention memory bank to propagate spatio-temporal features. This enables MTCNet to achieve excellent performance both per- and inter-phase. Second, we devise a novel topology-guided correlation regularization that explores physical prior knowledge to maintain anatomically plausible. Therefore, MTCNet can effectively leverage structural correspondence between labeled and unlabeled phases. Extensive evaluations on the first largest 4D MV dataset, with 1408 phases from 160 patients, show that MTCNet performs superior cross-phase consistency compared to other advanced methods (Dice: 87.30%, HD: 1.75mm). Both the code and the dataset are available at https://github.com/crs524/MTCNet.
comment: Accepted by MICCAI 2025
♻ ☆ Illuminant and light direction estimation using Wasserstein distance method
Illumination estimation remains a pivotal challenge in image processing, particularly for robotics, where robust environmental perception is essential under varying lighting conditions. Traditional approaches, such as RGB histograms and GIST descriptors, often fail in complex scenarios due to their sensitivity to illumination changes. This study introduces a novel method utilizing the Wasserstein distance, rooted in optimal transport theory, to estimate illuminant and light direction in images. Experiments on diverse images indoor scenes, black-and-white photographs, and night images demonstrate the method's efficacy in detecting dominant light sources and estimating their directions, outperforming traditional statistical methods in complex lighting environments. The approach shows promise for applications in light source localization, image quality assessment, and object detection enhancement. Future research may explore adaptive thresholding and integrate gradient analysis to enhance accuracy, offering a scalable solution for real-world illumination challenges in robotics and beyond.
♻ ☆ Exploring the Integration of Large Language Models in Industrial Test Maintenance Processes
Much of the cost and effort required during the software testing process is invested in performing test maintenance - the addition, removal, or modification of test cases to keep the test suite in sync with the system-under-test or to otherwise improve its quality. Tool support could reduce the cost - and improve the quality - of test maintenance by automating aspects of the process or by providing guidance and support to developers. In this study, we explore the capabilities and applications of large language models (LLMs) - complex machine learning models adapted to textual analysis - to support test maintenance. We conducted a case study at Ericsson AB where we explore the triggers that indicate the need for test maintenance, the actions that LLMs can take, and the considerations that must be made when deploying LLMs in an industrial setting. We also propose and demonstrate a multi-agent architecture that can predict which tests require maintenance following a change to the source code. Collectively, these contributions advance our theoretical and practical understanding of how LLMs can be deployed to benefit industrial test maintenance processes.
comment: Under submission to Journal of Systems and Software
♻ ☆ Improving the Robustness of Distantly-Supervised Named Entity Recognition via Uncertainty-Aware Teacher Learning and Student-Student Collaborative Learning ACL 2024
Distantly-Supervised Named Entity Recognition (DS-NER) is widely used in real-world scenarios. It can effectively alleviate the burden of annotation by matching entities in existing knowledge bases with snippets in the text but suffer from the label noise. Recent works attempt to adopt the teacher-student framework to gradually refine the training labels and improve the overall robustness. However, these teacher-student methods achieve limited performance because the poor calibration of the teacher network produces incorrectly pseudo-labeled samples, leading to error propagation. Therefore, we propose: (1) Uncertainty-Aware Teacher Learning that leverages the prediction uncertainty to reduce the number of incorrect pseudo labels in the self-training stage; (2) Student-Student Collaborative Learning that allows the transfer of reliable labels between two student networks instead of indiscriminately relying on all pseudo labels from its teacher, and further enables a full exploration of mislabeled samples rather than simply filtering unreliable pseudo-labeled samples. We evaluate our proposed method on five DS-NER datasets, demonstrating that our method is superior to the state-of-the-art DS-NER methods.
comment: ACL 2024 (Findings)
♻ ☆ Text-Aware Image Restoration with Diffusion Models
Image restoration aims to recover degraded images. However, existing diffusion-based restoration methods, despite great success in natural image restoration, often struggle to faithfully reconstruct textual regions in degraded images. Those methods frequently generate plausible but incorrect text-like patterns, a phenomenon we refer to as text-image hallucination. In this paper, we introduce Text-Aware Image Restoration (TAIR), a novel restoration task that requires the simultaneous recovery of visual contents and textual fidelity. To tackle this task, we present SA-Text, a large-scale benchmark of 100K high-quality scene images densely annotated with diverse and complex text instances. Furthermore, we propose a multi-task diffusion framework, called TeReDiff, that integrates internal features from diffusion models into a text-spotting module, enabling both components to benefit from joint training. This allows for the extraction of rich text representations, which are utilized as prompts in subsequent denoising steps. Extensive experiments demonstrate that our approach consistently outperforms state-of-the-art restoration methods, achieving significant gains in text recognition accuracy. See our project page: https://cvlab-kaist.github.io/TAIR/
comment: Project page: https://cvlab-kaist.github.io/TAIR/
♻ ☆ Incorporating LLMs for Large-Scale Urban Complex Mobility Simulation
This study presents an innovative approach to urban mobility simulation by integrating a Large Language Model (LLM) with Agent-Based Modeling (ABM). Unlike traditional rule-based ABM, the proposed framework leverages LLM to enhance agent diversity and realism by generating synthetic population profiles, allocating routine and occasional locations, and simulating personalized routes. Using real-world data, the simulation models individual behaviors and large-scale mobility patterns in Taipei City. Key insights, such as route heat maps and mode-specific indicators, provide urban planners with actionable information for policy-making. Future work focuses on establishing robust validation frameworks to ensure accuracy and reliability in urban planning applications.
comment: 8 pages, 8 figures. This paper is reviewed and accepted by the CUPUM (Computational Urban Planning and Urban Management) Conference held by University College London (UCL) in 2025
♻ ☆ Token Prepending: A Training-Free Approach for Eliciting Better Sentence Embeddings from LLMs ACL 2025
Extracting sentence embeddings from large language models (LLMs) is a promising direction, as LLMs have demonstrated stronger semantic understanding capabilities. Previous studies typically focus on prompt engineering to elicit sentence embeddings from LLMs by prompting the model to encode sentence information into the embedding of the last token. However, LLMs are mostly decoder-only models with causal attention and the earlier tokens in the sentence cannot attend to the latter tokens, resulting in biased encoding of sentence information and cascading effects on the final decoded token. To this end, we propose a novel Token Prepending (TP) technique that prepends each layer's decoded sentence embedding to the beginning of the sentence in the next layer's input, allowing earlier tokens to attend to the complete sentence information under the causal attention mechanism. The proposed TP technique is a plug-and-play and training-free technique, which means it can be seamlessly integrated with various prompt-based sentence embedding methods and autoregressive LLMs. Extensive experiments on various Semantic Textual Similarity (STS) tasks and downstream classification tasks demonstrate that our proposed TP technique can significantly improve the performance of existing prompt-based sentence embedding methods across different LLMs, while incurring negligible additional inference cost.
comment: Accept to ACL 2025 (Oral). Code are available on https://github.com/fuyuchenIfyw/token_prepending.git
♻ ☆ Privacy-Preserving Operating Room Workflow Analysis using Digital Twins
The operating room (OR) is a complex environment where optimizing workflows is critical to reduce costs and improve patient outcomes. While computer vision approaches for automatic recognition of perioperative events can identify bottlenecks for OR optimization, privacy concerns limit the use of OR videos for automated event detection. We propose a two-stage pipeline for privacy-preserving OR video analysis and event detection. First, we leverage vision foundation models for depth estimation and semantic segmentation to generate de-identified Digital Twins (DT) of the OR from conventional RGB videos. Second, we employ the SafeOR model, a fused two-stream approach that processes segmentation masks and depth maps for OR event detection. Evaluation on an internal dataset of 38 simulated surgical trials with five event classes shows that our DT-based approach achieves performance on par with -- and sometimes better than -- raw RGB video-based models for OR event detection. Digital Twins enable privacy-preserving OR workflow analysis, facilitating the sharing of de-identified data across institutions and potentially enhancing model generalizability by mitigating domain-specific appearance differences.
♻ ☆ Autoformalization in the Era of Large Language Models: A Survey
Autoformalization, the process of transforming informal mathematical propositions into verifiable formal representations, is a foundational task in automated theorem proving, offering a new perspective on the use of mathematics in both theoretical and applied domains. Driven by the rapid progress in artificial intelligence, particularly large language models (LLMs), this field has witnessed substantial growth, bringing both new opportunities and unique challenges. In this survey, we provide a comprehensive overview of recent advances in autoformalization from both mathematical and LLM-centric perspectives. We examine how autoformalization is applied across various mathematical domains and levels of difficulty, and analyze the end-to-end workflow from data preprocessing to model design and evaluation. We further explore the emerging role of autoformalization in enhancing the verifiability of LLM-generated outputs, highlighting its potential to improve both the trustworthiness and reasoning capabilities of LLMs. Finally, we summarize key open-source models and datasets supporting current research, and discuss open challenges and promising future directions for the field.
♻ ☆ Skywork-Reward-V2: Scaling Preference Data Curation via Human-AI Synergy
Despite the critical role of reward models (RMs) in reinforcement learning from human feedback (RLHF), current state-of-the-art open RMs perform poorly on most existing evaluation benchmarks, failing to capture the spectrum of nuanced and sophisticated human preferences. Even approaches that incorporate advanced training techniques have not yielded meaningful performance improvements. We hypothesize that this brittleness stems primarily from limitations in preference datasets, which are often narrowly scoped, synthetically labeled, or lack rigorous quality control. To address these challenges, we present a large-scale preference dataset comprising 40 million preference pairs, named SynPref-40M. To enable data curation at scale, we design a human-AI synergistic two-stage pipeline that leverages the complementary strengths of human annotation quality and AI scalability. In this pipeline, humans provide verified annotations, while large language models perform automatic curation based on human guidance. Training on this preference mixture, we introduce Skywork-Reward-V2, a suite of eight reward models ranging from 0.6B to 8B parameters, trained on a carefully curated subset of 26 million preference pairs from SynPref-40M. We demonstrate that Skywork-Reward-V2 is versatile across a wide range of capabilities, including alignment with human preferences, objective correctness, safety, resistance to stylistic biases, and best-of-N scaling, achieving state-of-the-art performance across seven major reward model benchmarks. Ablation studies confirm that the effectiveness of our approach stems not only from data scale but also from high-quality curation. The Skywork-Reward-V2 series represents substantial progress in open reward models, highlighting the untapped potential of existing preference datasets and demonstrating how human-AI curation synergy can unlock significantly higher data quality.
♻ ☆ Aligning Frozen LLMs by Reinforcement Learning: An Iterative Reweight-then-Optimize Approach
Aligning large language models (LLMs) with human preferences usually requires fine-tuning methods such as RLHF and DPO. These methods directly optimize the model parameters, so they cannot be used in test-time to improve model performance, nor are they applicable when the model weights are not accessible. In contrast, test-time methods sidestep weight updates by leveraging reward functions to guide and improve output quality. However, they incur high inference costs, and their one-shot guidance is often based on imperfect reward or value functions, leading to suboptimal outputs. In this work, we present a method named Iterative Reweight-then-Optimize (IRO), a reinforcement learning (RL) framework that performs RL-style alignment of the (frozen) base model without touching its parameters. During training, each iteration (i) samples candidates from the base model, (ii) resamples using current value functions, and (iii) trains a new lightweight value function that guides the next decoding pass. At test time, the value functions are used to guide the base model generation via a search-based optimization process. Notably, users can apply IRO to align a model on their own dataset, similar to OpenAI's reinforcement fine-tuning (RFT), but without requiring access to the model weights.
♻ ☆ Distributional Soft Actor-Critic with Diffusion Policy SC 2025
Reinforcement learning has been proven to be highly effective in handling complex control tasks. Traditional methods typically use unimodal distributions, such as Gaussian distributions, to model the output of value distributions. However, unimodal distribution often and easily causes bias in value function estimation, leading to poor algorithm performance. This paper proposes a distributional reinforcement learning algorithm called DSAC-D (Distributed Soft Actor Critic with Diffusion Policy) to address the challenges of estimating bias in value functions and obtaining multimodal policy representations. A multimodal distributional policy iteration framework that can converge to the optimal policy was established by introducing policy entropy and value distribution function. A diffusion value network that can accurately characterize the distribution of multi peaks was constructed by generating a set of reward samples through reverse sampling using a diffusion model. Based on this, a distributional reinforcement learning algorithm with dual diffusion of the value network and the policy network was derived. MuJoCo testing tasks demonstrate that the proposed algorithm not only learns multimodal policy, but also achieves state-of-the-art (SOTA) performance in all 9 control tasks, with significant suppression of estimation bias and total average return improvement of over 10% compared to existing mainstream algorithms. The results of real vehicle testing show that DSAC-D can accurately characterize the multimodal distribution of different driving styles, and the diffusion policy network can characterize multimodal trajectories.
comment: Accepted IEEE ITSC 2025
♻ ☆ Kernel Density Bayesian Inverse Reinforcement Learning
Inverse reinforcement learning (IRL) methods infer an agent's reward function using demonstrations of expert behavior. A Bayesian IRL approach models a distribution over candidate reward functions, capturing a degree of uncertainty in the inferred reward function. This is critical in some applications, such as those involving clinical data. Typically, Bayesian IRL algorithms require large demonstration datasets, which may not be available in practice. In this work, we incorporate existing domain-specific data to achieve better posterior concentration rates. We study a common setting in clinical and biological applications where we have access to expert demonstrations and known reward functions for a set of training tasks. Our aim is to learn the reward function of a new test task given limited expert demonstrations. Existing Bayesian IRL methods impose restrictions on the form of input data, thus limiting the incorporation of training task data. To better leverage information from training tasks, we introduce kernel density Bayesian inverse reinforcement learning (KD-BIRL). Our approach employs a conditional kernel density estimator, which uses the known reward functions of the training tasks to improve the likelihood estimation across a range of reward functions and demonstration samples. Our empirical results highlight KD-BIRL's faster concentration rate in comparison to baselines, particularly in low test task expert demonstration data regimes. Additionally, we are the first to provide theoretical guarantees of posterior concentration for a Bayesian IRL algorithm. Taken together, this work introduces a principled and theoretically grounded framework that enables Bayesian IRL to be applied across a variety of domains.
♻ ☆ Commander-GPT: Fully Unleashing the Sarcasm Detection Capability of Multi-Modal Large Language Models
Sarcasm detection, as a crucial research direction in the field of Natural Language Processing (NLP), has attracted widespread attention. Traditional sarcasm detection tasks have typically focused on single-modal approaches (e.g., text), but due to the implicit and subtle nature of sarcasm, such methods often fail to yield satisfactory results. In recent years, researchers have shifted the focus of sarcasm detection to multi-modal approaches. However, effectively leveraging multi-modal information to accurately identify sarcastic content remains a challenge that warrants further exploration. Leveraging the powerful integrated processing capabilities of Multi-Modal Large Language Models (MLLMs) for various information sources, we propose an innovative multi-modal Commander-GPT framework. Inspired by military strategy, we first decompose the sarcasm detection task into six distinct sub-tasks. A central commander (decision-maker) then assigns the best-suited large language model to address each specific sub-task. Ultimately, the detection results from each model are aggregated to identify sarcasm. We conducted extensive experiments on MMSD and MMSD 2.0, utilizing four multi-modal large language models and six prompting strategies. Our experiments demonstrate that our approach achieves state-of-the-art performance, with a 19.3% improvement in F1 score, without necessitating fine-tuning or ground-truth rationales.
comment: Our original goal was to use Commander-GPT: Dividing and Routing for Multimodal Sarcasm Detection (arXiv:2506.19420) to replace Commander-GPT: Fully Unleashing the Sarcasm Detection Capability of Multi-Modal Large Language Models (arXiv:2503.18681). Due to various reasons, both versions were released, so we would like to withdraw the latter
♻ ☆ Uncertainty-Guided Coarse-to-Fine Tumor Segmentation with Anatomy-Aware Post-Processing SC
Reliable tumor segmentation in thoracic computed tomography (CT) remains challenging due to boundary ambiguity, class imbalance, and anatomical variability. We propose an uncertainty-guided, coarse-to-fine segmentation framework that combines full-volume tumor localization with refined region-of-interest (ROI) segmentation, enhanced by anatomically aware post-processing. The first-stage model generates a coarse prediction, followed by anatomically informed filtering based on lung overlap, proximity to lung surfaces, and component size. The resulting ROIs are segmented by a second-stage model trained with uncertainty-aware loss functions to improve accuracy and boundary calibration in ambiguous regions. Experiments on private and public datasets demonstrate improvements in Dice and Hausdorff scores, with fewer false positives and enhanced spatial interpretability. These results highlight the value of combining uncertainty modeling and anatomical priors in cascaded segmentation pipelines for robust and clinically meaningful tumor delineation. On the Orlando dataset, our framework improved Swin UNETR Dice from 0.4690 to 0.6447. Reduction in spurious components was strongly correlated with segmentation gains, underscoring the value of anatomically informed post-processing.
comment: 6 pages, 2 figures, to appear in IEEE ADSCA 2025
♻ ☆ Benchmarking Generalizable Bimanual Manipulation: RoboTwin Dual-Arm Collaboration Challenge at CVPR 2025 MEIS Workshop
Embodied Artificial Intelligence (Embodied AI) is an emerging frontier in robotics, driven by the need for autonomous systems that can perceive, reason, and act in complex physical environments. While single-arm systems have shown strong task performance, collaborative dual-arm systems are essential for handling more intricate tasks involving rigid, deformable, and tactile-sensitive objects. To advance this goal, we launched the RoboTwin Dual-Arm Collaboration Challenge at the 2nd MEIS Workshop, CVPR 2025. Built on the RoboTwin Simulation platform (1.0 and 2.0) and the AgileX COBOT-Magic Robot platform, the competition consisted of three stages: Simulation Round 1, Simulation Round 2, and a final Real-World Round. Participants totally tackled 17 dual-arm manipulation tasks, covering rigid, deformable, and tactile-based scenarios. The challenge attracted 64 global teams and over 400 participants, producing top-performing solutions like SEM and AnchorDP3 and generating valuable insights into generalizable bimanual policy learning. This report outlines the competition setup, task design, evaluation methodology, key findings and future direction, aiming to support future research on robust and generalizable bimanual manipulation policies. The Challenge Webpage is available at https://robotwin-benchmark.github.io/cvpr-2025-challenge/.
comment: Challenge Webpage: https://robotwin-benchmark.github.io/cvpr-2025-challenge/
♻ ☆ Semantic Structure-Aware Generative Attacks for Enhanced Adversarial Transferability
Generative adversarial attacks train a perturbation generator on a white-box surrogate model and subsequently apply the crafted perturbations to unseen black-box victim models. In contrast to iterative attacks, these methods deliver superior inference-time efficiency, scalability, and transferability; however, up until now, existing studies have not fully exploited the representational capacity of generative models to preserve and harness semantic information. Specifically, the intermediate activations of the generator encode rich semantic features--object boundaries and coarse shapes--that remain under-exploited, thereby limiting the alignment of perturbations with object-salient regions which are critical for adversarial transferability. To remedy this, we introduce a semantic structure-aware attack framework based on the Mean Teacher, which serves as a temporally smoothed feature reference. With this smoothed reference, we further direct semantic consistency between the early-layer activations in the student and those of the semantically rich teacher by feature distillation. By anchoring perturbation synthesis to the semantically salient early intermediate blocks within the generator based on empirical findings, our method guides progressive adversarial perturbation on regions that substantially enhance adversarial transferability. We conduct extensive experiments over diverse models, domains and tasks to demonstrate consistent improvements relative to state-of-the-art generative attacks, comprehensively evaluated using conventional metrics and our newly proposed Accidental Correction Rate (ACR).
♻ ☆ Circuit-tuning: A Mechanistic Approach for Identifying Parameter Redundancy and Fine-tuning Neural Networks
The study of mechanistic interpretability aims to reverse-engineer a model to explain its behaviors. While recent studies have focused on the static mechanism of a certain behavior, the learning dynamics inside a model remain to be explored. In this work, we develop an interpretable fine-tuning method for analyzing the mechanism behind learning. We first introduce the concept of node-level intrinsic dimensionality to describe the learning process of a model in a computational graph. Based on our theory, we propose circuit-tuning, a two-stage algorithm that iteratively builds the minimal subgraph for a specific task and updates the key parameters in a heuristic way. Experimental results confirm the existence of the intrinsic dimensionality at the node level and demonstrate the effectiveness of our method for transparent and interpretable fine-tuning. We visualize and analyze the circuits before, during, and after fine-tuning, providing new insights into the self-organization mechanism of a neural network in the learning process.
♻ ☆ EigenLoRAx: Recycling Adapters to Find Principal Subspaces for Resource-Efficient Adaptation and Inference
The rapid growth of large models has raised concerns about their environmental impact and equity in accessibility due to significant computational costs. Low-Rank Adapters (LoRA) offer a lightweight solution for finetuning large models, resulting in an abundance of publicly available adapters tailored to diverse domains. We ask: Can these pretrained adapters be leveraged to further streamline adaptation to new tasks while addressing these challenges? We introduce EigenLoRAx, a parameter-efficient finetuning method that recycles existing adapters to create a principal subspace aligned with their shared domain knowledge which can be further augmented with orthogonal basis vectors in low-resource scenarios. This enables rapid adaptation to new tasks by learning only lightweight coefficients on the principal components of the subspace-eliminating the need to finetune entire adapters. EigenLoRAx requires significantly fewer parameters and memory, improving efficiency for both training and inference. Our method demonstrates strong performance across diverse domains and tasks, offering a scalable for edge-based applications, personalization, and equitable deployment of large models in resource-constrained environments.
♻ ☆ Mixture of Reasonings: Teach Large Language Models to Reason with Adaptive Strategies
Large language models (LLMs) excel in complex tasks through advanced prompting techniques like Chain-of-Thought (CoT) and Tree-of-Thought (ToT), but their reliance on manually crafted, task-specific prompts limits adaptability and efficiency. We introduce Mixture of Reasoning (MoR), a training framework that embeds diverse reasoning strategies into LLMs for autonomous, task-adaptive reasoning without external prompt engineering. MoR has two phases: Thought Generation, creating reasoning chain templates with models like GPT-4o, and SFT Dataset Construction, pairing templates with benchmark datasets for supervised fine-tuning. Our experiments show that MoR significantly enhances performance, with MoR150 achieving 0.730 (2.2% improvement) using CoT prompting and 0.734 (13.5% improvement) compared to baselines. MoR eliminates the need for task-specific prompts, offering a generalizable solution for robust reasoning across diverse tasks.
♻ ☆ Fast AI Model Splitting over Edge Networks
Split learning (SL) has emerged as a computationally efficient approach for artificial intelligence (AI) model training, which can alleviate device-side computational workloads. However, complex AI model architectures pose high computational complexity to obtain the optimal model splitting. In this paper, we represent an arbitrary AI model as a directed acyclic graph (DAG), and then reformulate the optimal model splitting problem as a minimum s-t cut search problem. To solve the problem, we propose a fast DAG-based model splitting algorithm, which restructures the DAG to enable the optimal model splitting identification via a maximum flow method. Theoretical analysis indicates that the proposed algorithm is optimal. Furthermore, considering AI models with block structures, we propose a block-wise model splitting algorithm to reduce computational complexity. The algorithm abstracts each block, i.e., a component consisting of multiple layers, into a single vertex, thereby obtaining the optimal model splitting via a simplified DAG. Extensive experimental results demonstrate that the proposed algorithms can determine the optimal model splitting within milliseconds, as well as reduce training delay by 24.62%-38.95% in dynamic edge networks as compared to the state-of-the-art benchmarks.
comment: 13 pages, 14 figures
♻ ☆ Horus: A Protocol for Trustless Delegation Under Uncertainty
Correctness is an emergent property of systems where exposing error is cheaper than committing it. In dynamic, low-trust environments, autonomous AI agents benefit from delegating work to sub-agents, yet correctness cannot be assured through upfront specification or centralized oversight. We propose a protocol that enforces correctness through collateralized claims in a recursive verification game. Tasks are published as intents, and solvers compete to fulfill them. Selected solvers carry out tasks under risk, with correctness checked post hoc by verifiers. Any challenger can challenge a result by staking against it to trigger the verification process. Incorrect agents are slashed and correct opposition is rewarded, with an escalation path that penalizes erroneous verifiers themselves. When incentives are aligned across solvers, challengers, and verifiers, falsification conditions make correctness the Nash equilibrium.
comment: 9 pages, 1 figure
Computation and Language 74
☆ ESTR-CoT: Towards Explainable and Accurate Event Stream based Scene Text Recognition with Chain-of-Thought Reasoning
Event stream based scene text recognition is a newly arising research topic in recent years which performs better than the widely used RGB cameras in extremely challenging scenarios, especially the low illumination, fast motion. Existing works either adopt end-to-end encoder-decoder framework or large language models for enhanced recognition, however, they are still limited by the challenges of insufficient interpretability and weak contextual logical reasoning. In this work, we propose a novel chain-of-thought reasoning based event stream scene text recognition framework, termed ESTR-CoT. Specifically, we first adopt the vision encoder EVA-CLIP (ViT-G/14) to transform the input event stream into tokens and utilize a Llama tokenizer to encode the given generation prompt. A Q-former is used to align the vision token to the pre-trained large language model Vicuna-7B and output both the answer and chain-of-thought (CoT) reasoning process simultaneously. Our framework can be optimized using supervised fine-tuning in an end-to-end manner. In addition, we also propose a large-scale CoT dataset to train our framework via a three stage processing (i.e., generation, polish, and expert verification). This dataset provides a solid data foundation for the development of subsequent reasoning-based large models. Extensive experiments on three event stream STR benchmark datasets (i.e., EventSTR, WordArt*, IC15*) fully validated the effectiveness and interpretability of our proposed framework. The source code and pre-trained models will be released on https://github.com/Event-AHU/ESTR-CoT.
comment: A Strong Baseline for Reasoning based Event Stream Scene Text Recognition
☆ Latent Chain-of-Thought? Decoding the Depth-Recurrent Transformer
Chain-of-thought (CoT) reasoning has enabled transformer-based language models to excel at complex mathematics and multi-step planning. However, in standard decoder-only architectures, these reasoning steps are externalized in natural language, improving interpretability at the cost of efficiency. To capture reasoning that is not easily represented in words, many works have explored recurrent architectures that aim to internalize reasoning in latent space, potentially supporting latent CoT. In this paper, we investigate whether such reasoning structures emerge in Huginn-3.5B, a depth-recurrent Transformer that reuses layers at inference time without increasing parameter count. We examine the model's internal behavior on arithmetic tasks using a suite of probing techniques including the Logit Lens and Coda Lens. Our findings reveal limited evidence of interpretable latent CoT by tracking rank trajectories of final and intermediate result tokens. Furthermore, we uncover significant probing inconsistencies across recurrent blocks, where the interpretability of hidden states depends heavily on both the layer index and the decoding method. Finally, we empirically show that increasing recurrence depth yields only marginal gains and falls well short of models that explicitly externalize reasoning steps. The code is available at https://github.com/wenquanlu/huginn-latent-cot.
☆ Analyzing and Improving Speaker Similarity Assessment for Speech Synthesis
Modeling voice identity is challenging due to its multifaceted nature. In generative speech systems, identity is often assessed using automatic speaker verification (ASV) embeddings, designed for discrimination rather than characterizing identity. This paper investigates which aspects of a voice are captured in such representations. We find that widely used ASV embeddings focus mainly on static features like timbre and pitch range, while neglecting dynamic elements such as rhythm. We also identify confounding factors that compromise speaker similarity measurements and suggest mitigation strategies. To address these gaps, we propose U3D, a metric that evaluates speakers' dynamic rhythm patterns. This work contributes to the ongoing challenge of assessing speaker identity consistency in the context of ever-better voice cloning systems. We publicly release our code.
comment: Accepted at SSW13 - Interspeech 2025 Speech Synthesis Workshop
☆ Reasoning or Not? A Comprehensive Evaluation of Reasoning LLMs for Dialogue Summarization
Dialogue summarization is a challenging task with significant practical value in customer service, meeting analysis, and conversational AI. Although large language models (LLMs) have achieved substantial progress in summarization tasks, the performance of step-by-step reasoning architectures-specifically Long Chain-of-Thought (CoT) implementations such as OpenAI-o1 and DeepSeek-R1-remains unexplored for dialogue scenarios requiring concurrent abstraction and conciseness. In this work, we present the first comprehensive and systematic evaluation of state-of-the-art reasoning LLMs and non-reasoning LLMs across three major paradigms-generic, role-oriented, and query-oriented dialogue summarization. Our study spans diverse languages, domains, and summary lengths, leveraging strong benchmarks (SAMSum, DialogSum, CSDS, and QMSum) and advanced evaluation protocols that include both LLM-based automatic metrics and human-inspired criteria. Contrary to trends in other reasoning-intensive tasks, our findings show that explicit stepwise reasoning does not consistently improve dialogue summarization quality. Instead, reasoning LLMs are often prone to verbosity, factual inconsistencies, and less concise summaries compared to their non-reasoning counterparts. Through scenario-specific analyses and detailed case studies, we further identify when and why explicit reasoning may fail to benefit-or even hinder-summarization in complex dialogue contexts. Our work provides new insights into the limitations of current reasoning LLMs and highlights the need for targeted modeling and evaluation strategies for real-world dialogue summarization.
☆ Dissecting the Impact of Mobile DVFS Governors on LLM Inference Performance and Energy Efficiency
Large Language Models (LLMs) are increasingly being integrated into various applications and services running on billions of mobile devices. However, deploying LLMs on resource-limited mobile devices faces a significant challenge due to their high demand for computation, memory, and ultimately energy. While current LLM frameworks for mobile use three power-hungry components-CPU, GPU, and Memory-even when running primarily-GPU LLM models, optimized DVFS governors for CPU, GPU, and memory featured in modern mobile devices operate independently and are oblivious of each other. Motivated by the above observation, in this work, we first measure the energy-efficiency of a SOTA LLM framework consisting of various LLM models on mobile phones which showed the triplet mobile governors result in up to 40.4% longer prefilling and decoding latency compared to optimal combinations of CPU, GPU, and memory frequencies with the same energy consumption for sampled prefill and decode lengths. Second, we conduct an in-depth measurement study to uncover how the intricate interplay (or lack of) among the mobile governors cause the above inefficiency in LLM inference. Finally, based on these insights, we design FUSE - a unified energy-aware governor for optimizing the energy efficiency of LLM inference on mobile devices. Our evaluation using a ShareGPT dataset shows FUSE reduces the time-to-first-token and time-per-output-token latencies by 7.0%-16.9% and 25.4%-36.8% on average with the same energy-per-token for various mobile LLM models.
comment: equal contribution between Zhang and Dash
☆ Energy-Based Transformers are Scalable Learners and Thinkers
Inference-time computation techniques, analogous to human System 2 Thinking, have recently become popular for improving model performances. However, most existing approaches suffer from several limitations: they are modality-specific (e.g., working only in text), problem-specific (e.g., verifiable domains like math and coding), or require additional supervision/training on top of unsupervised pretraining (e.g., verifiers or verifiable rewards). In this paper, we ask the question "Is it possible to generalize these System 2 Thinking approaches, and develop models that learn to think solely from unsupervised learning?" Interestingly, we find the answer is yes, by learning to explicitly verify the compatibility between inputs and candidate-predictions, and then re-framing prediction problems as optimization with respect to this verifier. Specifically, we train Energy-Based Transformers (EBTs) -- a new class of Energy-Based Models (EBMs) -- to assign an energy value to every input and candidate-prediction pair, enabling predictions through gradient descent-based energy minimization until convergence. Across both discrete (text) and continuous (visual) modalities, we find EBTs scale faster than the dominant Transformer++ approach during training, achieving an up to 35% higher scaling rate with respect to data, batch size, parameters, FLOPs, and depth. During inference, EBTs improve performance with System 2 Thinking by 29% more than the Transformer++ on language tasks, and EBTs outperform Diffusion Transformers on image denoising while using fewer forward passes. Further, we find that EBTs achieve better results than existing models on most downstream tasks given the same or worse pretraining performance, suggesting that EBTs generalize better than existing approaches. Consequently, EBTs are a promising new paradigm for scaling both the learning and thinking capabilities of models.
☆ McBE: A Multi-task Chinese Bias Evaluation Benchmark for Large Language Models
As large language models (LLMs) are increasingly applied to various NLP tasks, their inherent biases are gradually disclosed. Therefore, measuring biases in LLMs is crucial to mitigate its ethical risks. However, most existing bias evaluation datasets focus on English and North American culture, and their bias categories are not fully applicable to other cultures. The datasets grounded in the Chinese language and culture are scarce. More importantly, these datasets usually only support single evaluation tasks and cannot evaluate the bias from multiple aspects in LLMs. To address these issues, we present a Multi-task Chinese Bias Evaluation Benchmark (McBE) that includes 4,077 bias evaluation instances, covering 12 single bias categories, 82 subcategories and introducing 5 evaluation tasks, providing extensive category coverage, content diversity, and measuring comprehensiveness. Additionally, we evaluate several popular LLMs from different series and with parameter sizes. In general, all these LLMs demonstrated varying degrees of bias. We conduct an in-depth analysis of results, offering novel insights into bias in LLMs.
comment: 24 pages, 9 figures
☆ Evaluating the Promise and Pitfalls of LLMs in Hiring Decisions NeurIPS 2025
The use of large language models (LLMs) in hiring promises to streamline candidate screening, but it also raises serious concerns regarding accuracy and algorithmic bias where sufficient safeguards are not in place. In this work, we benchmark several state-of-the-art foundational LLMs - including models from OpenAI, Anthropic, Google, Meta, and Deepseek, and compare them with our proprietary domain-specific hiring model (Match Score) for job candidate matching. We evaluate each model's predictive accuracy (ROC AUC, Precision-Recall AUC, F1-score) and fairness (impact ratio of cut-off analysis across declared gender, race, and intersectional subgroups). Our experiments on a dataset of roughly 10,000 real-world recent candidate-job pairs show that Match Score outperforms the general-purpose LLMs on accuracy (ROC AUC 0.85 vs 0.77) and achieves significantly more equitable outcomes across demographic groups. Notably, Match Score attains a minimum race-wise impact ratio of 0.957 (near-parity), versus 0.809 or lower for the best LLMs, (0.906 vs 0.773 for the intersectionals, respectively). We discuss why pretraining biases may cause LLMs with insufficient safeguards to propagate societal biases in hiring scenarios, whereas a bespoke supervised model can more effectively mitigate these biases. Our findings highlight the importance of domain-specific modeling and bias auditing when deploying AI in high-stakes domains such as hiring, and caution against relying on off-the-shelf LLMs for such tasks without extensive fairness safeguards. Furthermore, we show with empirical evidence that there shouldn't be a dichotomy between choosing accuracy and fairness in hiring: a well-designed algorithm can achieve both accuracy in hiring and fairness in outcomes.
comment: 10 pages, 2 figures, 2 tables. Submitted to NeurIPS 2025
☆ Test-Time Scaling with Reflective Generative Model
We introduce our first reflective generative model MetaStone-S1, which obtains OpenAI o3's performance via the self-supervised process reward model (SPRM). Through sharing the backbone network and using task-specific heads for next token prediction and process scoring respectively, SPRM successfully integrates the policy model and process reward model(PRM) into a unified interface without extra process annotation, reducing over 99% PRM parameters for efficient reasoning. Equipped with SPRM, MetaStone-S1 is naturally suitable for test time scaling (TTS), and we provide three reasoning effort modes (low, medium, and high), based on the controllable thinking length. Moreover, we empirically establish a scaling law that reveals the relationship between total thinking computation and TTS performance. Experiments demonstrate that our MetaStone-S1 achieves comparable performance to OpenAI-o3-mini's series with only 32B parameter size. To support the research community, we have open-sourced MetaStone-S1 at https://github.com/MetaStone-AI/MetaStone-S1.
☆ The Thin Line Between Comprehension and Persuasion in LLMs
Large language models (LLMs) are excellent at maintaining high-level, convincing dialogues. They are being fast deployed as chatbots and evaluators in sensitive areas, such as peer review and mental health applications. This, along with the disparate accounts on their reasoning capabilities, calls for a closer examination of LLMs and their comprehension of dialogue. In this work we begin by evaluating LLMs' ability to maintain a debate--one of the purest yet most complex forms of human communication. Then we measure how this capability relates to their understanding of what is being talked about, namely, their comprehension of dialogical structures and the pragmatic context. We find that LLMs are capable of maintaining coherent, persuasive debates, often swaying the beliefs of participants and audiences alike. We also note that awareness or suspicion of AI involvement encourage people to be more critical of the arguments made. When polling LLMs on their comprehension of deeper structures of dialogue, however, they cannot demonstrate said understanding. Our findings tie the shortcomings of LLMs-as-evaluators to their (in)ability to understand the context. More broadly, for the field of argumentation theory we posit that, if an agent can convincingly maintain a dialogue, it is not necessary for it to know what it is talking about. Hence, the modelling of pragmatic context and coherence are secondary to effectiveness.
☆ Adaptability of ASR Models on Low-Resource Language: A Comparative Study of Whisper and Wav2Vec-BERT on Bangla
In recent years, neural models trained on large multilingual text and speech datasets have shown great potential for supporting low-resource languages. This study investigates the performances of two state-of-the-art Automatic Speech Recognition (ASR) models, OpenAI's Whisper (Small & Large-V2) and Facebook's Wav2Vec-BERT on Bangla, a low-resource language. We have conducted experiments using two publicly available datasets: Mozilla Common Voice-17 and OpenSLR to evaluate model performances. Through systematic fine-tuning and hyperparameter optimization, including learning rate, epochs, and model checkpoint selection, we have compared the models based on Word Error Rate (WER), Character Error Rate (CER), Training Time, and Computational Efficiency. The Wav2Vec-BERT model outperformed Whisper across all key evaluation metrics, demonstrated superior performance while requiring fewer computational resources, and offered valuable insights to develop robust speech recognition systems in low-resource linguistic settings.
☆ NaturalThoughts: Selecting and Distilling Reasoning Traces for General Reasoning Tasks
Recent work has shown that distilling reasoning traces from a larger teacher model via supervised finetuning outperforms reinforcement learning with the smaller student model alone (Guo et al. 2025). However, there has not been a systematic study of what kind of reasoning demonstrations from the teacher are most effective in improving the student model's reasoning capabilities. In this work we curate high-quality "NaturalThoughts" by selecting reasoning traces from a strong teacher model based on a large pool of questions from NaturalReasoning (Yuan et al. 2025). We first conduct a systematic analysis of factors that affect distilling reasoning capabilities, in terms of sample efficiency and scalability for general reasoning tasks. We observe that simply scaling up data size with random sampling is a strong baseline with steady performance gains. Further, we find that selecting difficult examples that require more diverse reasoning strategies is more sample-efficient to transfer the teacher model's reasoning skills. Evaluated on both Llama and Qwen models, training with NaturalThoughts outperforms existing reasoning datasets such as OpenThoughts, LIMO, etc. on general STEM reasoning benchmarks including GPQA-Diamond, MMLU-Pro and SuperGPQA.
☆ Gradient-Adaptive Policy Optimization: Towards Multi-Objective Alignment of Large Language Models ACL 2025
Reinforcement Learning from Human Feedback (RLHF) has emerged as a powerful technique for aligning large language models (LLMs) with human preferences. However, effectively aligning LLMs with diverse human preferences remains a significant challenge, particularly when they are conflict. To address this issue, we frame human value alignment as a multi-objective optimization problem, aiming to maximize a set of potentially conflicting objectives. We introduce Gradient-Adaptive Policy Optimization (GAPO), a novel fine-tuning paradigm that employs multiple-gradient descent to align LLMs with diverse preference distributions. GAPO adaptively rescales the gradients for each objective to determine an update direction that optimally balances the trade-offs between objectives. Additionally, we introduce P-GAPO, which incorporates user preferences across different objectives and achieves Pareto solutions that better align with the user's specific needs. Our theoretical analysis demonstrates that GAPO converges towards a Pareto optimal solution for multiple objectives. Empirical results on Mistral-7B show that GAPO outperforms current state-of-the-art methods, achieving superior performance in both helpfulness and harmlessness.
comment: 19 pages, 3 figures. Accepted by ACL 2025 (main)
☆ AI4Research: A Survey of Artificial Intelligence for Scientific Research
Recent advancements in artificial intelligence (AI), particularly in large language models (LLMs) such as OpenAI-o1 and DeepSeek-R1, have demonstrated remarkable capabilities in complex domains such as logical reasoning and experimental coding. Motivated by these advancements, numerous studies have explored the application of AI in the innovation process, particularly in the context of scientific research. These AI technologies primarily aim to develop systems that can autonomously conduct research processes across a wide range of scientific disciplines. Despite these significant strides, a comprehensive survey on AI for Research (AI4Research) remains absent, which hampers our understanding and impedes further development in this field. To address this gap, we present a comprehensive survey and offer a unified perspective on AI4Research. Specifically, the main contributions of our work are as follows: (1) Systematic taxonomy: We first introduce a systematic taxonomy to classify five mainstream tasks in AI4Research. (2) New frontiers: Then, we identify key research gaps and highlight promising future directions, focusing on the rigor and scalability of automated experiments, as well as the societal impact. (3) Abundant applications and resources: Finally, we compile a wealth of resources, including relevant multidisciplinary applications, data corpora, and tools. We hope our work will provide the research community with quick access to these resources and stimulate innovative breakthroughs in AI4Research.
comment: Preprint
☆ High-Layer Attention Pruning with Rescaling
Pruning is a highly effective approach for compressing large language models (LLMs), significantly reducing inference latency. However, conventional training-free structured pruning methods often employ a heuristic metric that indiscriminately removes some attention heads across all pruning layers, without considering their positions within the network architecture. In this work, we propose a novel pruning algorithm that strategically prunes attention heads in the model's higher layers. Since the removal of attention heads can alter the magnitude of token representations, we introduce an adaptive rescaling parameter that calibrates the representation scale post-pruning to counteract this effect. We conduct comprehensive experiments on a wide range of LLMs, including LLaMA3.1-8B, Mistral-7B-v0.3, Qwen2-7B, and Gemma2-9B. Our evaluation includes both generation and discriminative tasks across 27 datasets. The results consistently demonstrate that our method outperforms existing structured pruning methods. This improvement is particularly notable in generation tasks, where our approach significantly outperforms existing baselines.
☆ MiCoTA: Bridging the Learnability Gap with Intermediate CoT and Teacher Assistants
Large language models (LLMs) excel at reasoning tasks requiring long thought sequences for planning, reflection, and refinement. However, their substantial model size and high computational demands are impractical for widespread deployment. Yet, small language models (SLMs) often struggle to learn long-form CoT reasoning due to their limited capacity, a phenomenon we refer to as the "SLMs Learnability Gap". To address this, we introduce \textbf{Mi}d-\textbf{Co}T \textbf{T}eacher \textbf{A}ssistant Distillation (MiCoTAl), a framework for improving long CoT distillation for SLMs. MiCoTA employs intermediate-sized models as teacher assistants and utilizes intermediate-length CoT sequences to bridge both the capacity and reasoning length gaps. Our experiments on downstream tasks demonstrate that although SLMs distilled from large teachers can perform poorly, by applying MiCoTA, they achieve significant improvements in reasoning performance. Specifically, Qwen2.5-7B-Instruct and Qwen2.5-3B-Instruct achieve an improvement of 3.47 and 3.93 respectively on average score on AIME2024, AMC, Olympiad, MATH-500 and GSM8K benchmarks. To better understand the mechanism behind MiCoTA, we perform a quantitative experiment demonstrating that our method produces data more closely aligned with base SLM distributions. Our insights pave the way for future research into long-CoT data distillation for SLMs.
comment: Work in progress
☆ DIY-MKG: An LLM-Based Polyglot Language Learning System EMNLP 2025
Existing language learning tools, even those powered by Large Language Models (LLMs), often lack support for polyglot learners to build linguistic connections across vocabularies in multiple languages, provide limited customization for individual learning paces or needs, and suffer from detrimental cognitive offloading. To address these limitations, we design Do-It-Yourself Multilingual Knowledge Graph (DIY-MKG), an open-source system that supports polyglot language learning. DIY-MKG allows the user to build personalized vocabulary knowledge graphs, which are constructed by selective expansion with related words suggested by an LLM. The system further enhances learning through rich annotation capabilities and an adaptive review module that leverages LLMs for dynamic, personalized quiz generation. In addition, DIY-MKG allows users to flag incorrect quiz questions, simultaneously increasing user engagement and providing a feedback loop for prompt refinement. Our evaluation of LLM-based components in DIY-MKG shows that vocabulary expansion is reliable and fair across multiple languages, and that the generated quizzes are highly accurate, validating the robustness of DIY-MKG.
comment: Submitted to EMNLP 2025 System Demonstration
☆ Eka-Eval : A Comprehensive Evaluation Framework for Large Language Models in Indian Languages
The rapid advancement of Large Language Models (LLMs) has intensified the need for evaluation frameworks that go beyond English centric benchmarks and address the requirements of linguistically diverse regions such as India. We present EKA-EVAL, a unified and production-ready evaluation framework that integrates over 35 benchmarks, including 10 Indic-specific datasets, spanning categories like reasoning, mathematics, tool use, long-context understanding, and reading comprehension. Compared to existing Indian language evaluation tools, EKA-EVAL offers broader benchmark coverage, with built-in support for distributed inference, quantization, and multi-GPU usage. Our systematic comparison positions EKA-EVAL as the first end-to-end, extensible evaluation suite tailored for both global and Indic LLMs, significantly lowering the barrier to multilingual benchmarking. The framework is open-source and publicly available at https://github.com/lingo-iitgn/ eka-eval and a part of ongoing EKA initiative (https://eka.soket.ai), which aims to scale up to over 100 benchmarks and establish a robust, multilingual evaluation ecosystem for LLMs.
☆ Low-Perplexity LLM-Generated Sequences and Where To Find Them ACL 2025
As Large Language Models (LLMs) become increasingly widespread, understanding how specific training data shapes their outputs is crucial for transparency, accountability, privacy, and fairness. To explore how LLMs leverage and replicate their training data, we introduce a systematic approach centered on analyzing low-perplexity sequences - high-probability text spans generated by the model. Our pipeline reliably extracts such long sequences across diverse topics while avoiding degeneration, then traces them back to their sources in the training data. Surprisingly, we find that a substantial portion of these low-perplexity spans cannot be mapped to the corpus. For those that do match, we quantify the distribution of occurrences across source documents, highlighting the scope and nature of verbatim recall and paving a way toward better understanding of how LLMs training data impacts their behavior.
comment: Camera-ready version. Accepted to ACL 2025. 10 pages, 4 figures, 6 tables
☆ Evaluating Structured Output Robustness of Small Language Models for Open Attribute-Value Extraction from Clinical Notes ACL
We present a comparative analysis of the parseability of structured outputs generated by small language models for open attribute-value extraction from clinical notes. We evaluate three widely used serialization formats: JSON, YAML, and XML, and find that JSON consistently yields the highest parseability. Structural robustness improves with targeted prompting and larger models, but declines for longer documents and certain note types. Our error analysis identifies recurring format-specific failure patterns. These findings offer practical guidance for selecting serialization formats and designing prompts when deploying language models in privacy-sensitive clinical settings.
comment: To appear in the ACL Anthology
☆ LoRA Fine-Tuning Without GPUs: A CPU-Efficient Meta-Generation Framework for LLMs ICML 2025
Low-Rank Adapters (LoRAs) have transformed the fine-tuning of Large Language Models (LLMs) by enabling parameter-efficient updates. However, their widespread adoption remains limited by the reliance on GPU-based training. In this work, we propose a theoretically grounded approach to LoRA fine-tuning designed specifically for users with limited computational resources, particularly those restricted to standard laptop CPUs. Our method learns a meta-operator that maps any input dataset, represented as a probability distribution, to a set of LoRA weights by leveraging a large bank of pre-trained adapters for the Mistral-7B-Instruct-v0.2 model. Instead of performing new gradient-based updates, our pipeline constructs adapters via lightweight combinations of existing LoRAs directly on CPU. While the resulting adapters do not match the performance of GPU-trained counterparts, they consistently outperform the base Mistral model on downstream tasks, offering a practical and accessible alternative to traditional GPU-based fine-tuning.
comment: 5-page main paper (excluding references) + 11-page appendix, 3 tables, 1 figure. Accepted to ICML 2025 Workshop on Efficient Systems for Foundation Models
☆ The Anatomy of Evidence: An Investigation Into Explainable ICD Coding ACL 2025
Automatic medical coding has the potential to ease documentation and billing processes. For this task, transparency plays an important role for medical coders and regulatory bodies, which can be achieved using explainability methods. However, the evaluation of these approaches has been mostly limited to short text and binary settings due to a scarcity of annotated data. Recent efforts by Cheng et al. (2023) have introduced the MDACE dataset, which provides a valuable resource containing code evidence in clinical records. In this work, we conduct an in-depth analysis of the MDACE dataset and perform plausibility evaluation of current explainable medical coding systems from an applied perspective. With this, we contribute to a deeper understanding of automatic medical coding and evidence extraction. Our findings reveal that ground truth evidence aligns with code descriptions to a certain degree. An investigation into state-of-the-art approaches shows a high overlap with ground truth evidence. We propose match measures and highlight success and failure cases. Based on our findings, we provide recommendations for developing and evaluating explainable medical coding systems.
comment: Accepted to ACL 2025 Findings
☆ How Do Vision-Language Models Process Conflicting Information Across Modalities?
AI models are increasingly required to be multimodal, integrating disparate input streams into a coherent state representation on which subsequent behaviors and actions can be based. This paper seeks to understand how such models behave when input streams present conflicting information. Focusing specifically on vision-language models, we provide inconsistent inputs (e.g., an image of a dog paired with the caption "A photo of a cat") and ask the model to report the information present in one of the specific modalities (e.g., "What does the caption say / What is in the image?"). We find that models often favor one modality over the other, e.g., reporting the image regardless of what the caption says, but that different models differ in which modality they favor. We find evidence that the behaviorally preferred modality is evident in the internal representational structure of the model, and that specific attention heads can restructure the representations to favor one modality over the other. Moreover, we find modality-agnostic "router heads" which appear to promote answers about the modality requested in the instruction, and which can be manipulated or transferred in order to improve performance across datasets and modalities. Together, the work provides essential steps towards identifying and controlling if and how models detect and resolve conflicting signals within complex multimodal environments.
comment: All code and resources are available at: https://github.com/ethahtz/vlm_conflicting_info_processing
☆ Probing Evaluation Awareness of Language Models ICML
Language models can distinguish between testing and deployment phases -- a capability known as evaluation awareness. This has significant safety and policy implications, potentially undermining the reliability of evaluations that are central to AI governance frameworks and voluntary industry commitments. In this paper, we study evaluation awareness in Llama-3.3-70B-Instruct. We show that linear probes can separate real-world evaluation and deployment prompts, suggesting that current models internally represent this distinction. We also find that current safety evaluations are correctly classified by the probes, suggesting that they already appear artificial or inauthentic to models. Our findings underscore the importance of ensuring trustworthy evaluations and understanding deceptive capabilities. More broadly, our work showcases how model internals may be leveraged to support blackbox methods in safety audits, especially for future models more competent at evaluation awareness and deception.
comment: Technical AI Governance Workshop, ICML (Poster)
☆ MuRating: A High Quality Data Selecting Approach to Multilingual Large Language Model Pretraining
Data quality is a critical driver of large language model performance, yet existing model-based selection methods focus almost exclusively on English. We introduce MuRating, a scalable framework that transfers high-quality English data-quality signals into a single rater for 17 target languages. MuRating aggregates multiple English "raters" via pairwise comparisons to learn unified document-quality scores,then projects these judgments through translation to train a multilingual evaluator on monolingual, cross-lingual, and parallel text pairs. Applied to web data, MuRating selects balanced subsets of English and multilingual content to pretrain a 1.2 B-parameter LLaMA model. Compared to strong baselines, including QuRater, AskLLM, DCLM and so on, our approach boosts average accuracy on both English benchmarks and multilingual evaluations, with especially large gains on knowledge-intensive tasks. We further analyze translation fidelity, selection biases, and underrepresentation of narrative material, outlining directions for future work.
☆ Data interference: emojis, homoglyphs, and issues of data fidelity in corpora and their results
Tokenisation - "the process of splitting text into atomic parts" (Brezina & Timperley, 2017: 1) - is a crucial step for corpus linguistics, as it provides the basis for any applicable quantitative method (e.g. collocations) while ensuring the reliability of qualitative approaches. This paper examines how discrepancies in tokenisation affect the representation of language data and the validity of analytical findings: investigating the challenges posed by emojis and homoglyphs, the study highlights the necessity of preprocessing these elements to maintain corpus fidelity to the source data. The research presents methods for ensuring that digital texts are accurately represented in corpora, thereby supporting reliable linguistic analysis and guaranteeing the repeatability of linguistic interpretations. The findings emphasise the necessity of a detailed understanding of both linguistic and technical aspects involved in digital textual data to enhance the accuracy of corpus analysis, and have significant implications for both quantitative and qualitative approaches in corpus-based research.
comment: Author submitted manuscript
☆ Tuning without Peeking: Provable Privacy and Generalization Bounds for LLM Post-Training
Gradient-based optimization is the workhorse of deep learning, offering efficient and scalable training via backpropagation. However, its reliance on large volumes of labeled data raises privacy and security concerns such as susceptibility to data poisoning attacks and the risk of overfitting. In contrast, black box optimization methods, which treat the model as an opaque function, relying solely on function evaluations to guide optimization, offer a promising alternative in scenarios where data access is restricted, adversarial risks are high, or overfitting is a concern. However, black box methods also pose significant challenges, including poor scalability to high-dimensional parameter spaces, as prevalent in large language models (LLMs), and high computational costs due to reliance on numerous model evaluations. This paper introduces BBoxER, an evolutionary black-box method for LLM post-training that induces an information bottleneck via implicit compression of the training data. Leveraging the tractability of information flow, we provide strong theoretical bounds on generalization, differential privacy, susceptibility to data poisoning attacks, and robustness to extraction attacks. BBoxER operates on top of pre-trained LLMs, offering a lightweight and modular enhancement suitable for deployment in restricted or privacy-sensitive environments, in addition to non-vacuous generalization guarantees. In experiments with LLMs, we demonstrate empirically that Retrofitting methods are able to learn, showing how a few iterations of BBoxER improve performance and generalize well on a benchmark of reasoning datasets. This positions BBoxER as an attractive add-on on top of gradient-based optimization.
☆ ECCV 2024 W-CODA: 1st Workshop on Multimodal Perception and Comprehension of Corner Cases in Autonomous Driving ECCV 2024
In this paper, we present details of the 1st W-CODA workshop, held in conjunction with the ECCV 2024. W-CODA aims to explore next-generation solutions for autonomous driving corner cases, empowered by state-of-the-art multimodal perception and comprehension techniques. 5 Speakers from both academia and industry are invited to share their latest progress and opinions. We collect research papers and hold a dual-track challenge, including both corner case scene understanding and generation. As the pioneering effort, we will continuously bridge the gap between frontier autonomous driving techniques and fully intelligent, reliable self-driving agents robust towards corner cases.
comment: ECCV 2024. Workshop page: https://coda-dataset.github.io/w-coda2024/
LLMs for Legal Subsumption in German Employment Contracts
Legal work, characterized by its text-heavy and resource-intensive nature, presents unique challenges and opportunities for NLP research. While data-driven approaches have advanced the field, their lack of interpretability and trustworthiness limits their applicability in dynamic legal environments. To address these issues, we collaborated with legal experts to extend an existing dataset and explored the use of Large Language Models (LLMs) and in-context learning to evaluate the legality of clauses in German employment contracts. Our work evaluates the ability of different LLMs to classify clauses as "valid," "unfair," or "void" under three legal context variants: no legal context, full-text sources of laws and court rulings, and distilled versions of these (referred to as examination guidelines). Results show that full-text sources moderately improve performance, while examination guidelines significantly enhance recall for void clauses and weighted F1-Score, reaching 80\%. Despite these advancements, LLMs' performance when using full-text sources remains substantially below that of human lawyers. We contribute an extended dataset, including examination guidelines, referenced legal sources, and corresponding annotations, alongside our code and all log files. Our findings highlight the potential of LLMs to assist lawyers in contract legality review while also underscoring the limitations of the methods presented.
comment: PrePrint - ICAIL25, Chicago
☆ Stereotype Detection as a Catalyst for Enhanced Bias Detection: A Multi-Task Learning Approach
Bias and stereotypes in language models can cause harm, especially in sensitive areas like content moderation and decision-making. This paper addresses bias and stereotype detection by exploring how jointly learning these tasks enhances model performance. We introduce StereoBias, a unique dataset labeled for bias and stereotype detection across five categories: religion, gender, socio-economic status, race, profession, and others, enabling a deeper study of their relationship. Our experiments compare encoder-only models and fine-tuned decoder-only models using QLoRA. While encoder-only models perform well, decoder-only models also show competitive results. Crucially, joint training on bias and stereotype detection significantly improves bias detection compared to training them separately. Additional experiments with sentiment analysis confirm that the improvements stem from the connection between bias and stereotypes, not multi-task learning alone. These findings highlight the value of leveraging stereotype information to build fairer and more effective AI systems.
☆ AdamMeme: Adaptively Probe the Reasoning Capacity of Multimodal Large Language Models on Harmfulness ACL 2025
The proliferation of multimodal memes in the social media era demands that multimodal Large Language Models (mLLMs) effectively understand meme harmfulness. Existing benchmarks for assessing mLLMs on harmful meme understanding rely on accuracy-based, model-agnostic evaluations using static datasets. These benchmarks are limited in their ability to provide up-to-date and thorough assessments, as online memes evolve dynamically. To address this, we propose AdamMeme, a flexible, agent-based evaluation framework that adaptively probes the reasoning capabilities of mLLMs in deciphering meme harmfulness. Through multi-agent collaboration, AdamMeme provides comprehensive evaluations by iteratively updating the meme data with challenging samples, thereby exposing specific limitations in how mLLMs interpret harmfulness. Extensive experiments show that our framework systematically reveals the varying performance of different target mLLMs, offering in-depth, fine-grained analyses of model-specific weaknesses. Our code is available at https://github.com/Lbotirx/AdamMeme.
comment: ACL 2025
☆ Blending Supervised and Reinforcement Fine-Tuning with Prefix Sampling
Existing post-training techniques for large language models are broadly categorized into Supervised Fine-Tuning (SFT) and Reinforcement Fine-Tuning (RFT). Each paradigm presents a distinct trade-off: SFT excels at mimicking demonstration data but can lead to problematic generalization as a form of behavior cloning. Conversely, RFT can significantly enhance a model's performance but is prone to learn unexpected behaviors, and its performance is highly sensitive to the initial policy. In this paper, we propose a unified view of these methods and introduce Prefix-RFT, a hybrid approach that synergizes learning from both demonstration and exploration. Using mathematical reasoning problems as a testbed, we empirically demonstrate that Prefix-RFT is both simple and effective. It not only surpasses the performance of standalone SFT and RFT but also outperforms parallel mixed-policy RFT methods. A key advantage is its seamless integration into existing open-source frameworks, requiring only minimal modifications to the standard RFT pipeline. Our analysis highlights the complementary nature of SFT and RFT, and validates that Prefix-RFT effectively harmonizes these two learning paradigms. Furthermore, ablation studies confirm the method's robustness to variations in the quality and quantity of demonstration data. We hope this work offers a new perspective on LLM post-training, suggesting that a unified paradigm that judiciously integrates demonstration and exploration could be a promising direction for future research.
comment: Work in progress
☆ Adapting Language Models to Indonesian Local Languages: An Empirical Study of Language Transferability on Zero-Shot Settings
In this paper, we investigate the transferability of pre-trained language models to low-resource Indonesian local languages through the task of sentiment analysis. We evaluate both zero-shot performance and adapter-based transfer on ten local languages using models of different types: a monolingual Indonesian BERT, multilingual models such as mBERT and XLM-R, and a modular adapter-based approach called MAD-X. To better understand model behavior, we group the target languages into three categories: seen (included during pre-training), partially seen (not included but linguistically related to seen languages), and unseen (absent and unrelated in pre-training data). Our results reveal clear performance disparities across these groups: multilingual models perform best on seen languages, moderately on partially seen ones, and poorly on unseen languages. We find that MAD-X significantly improves performance, especially for seen and partially seen languages, without requiring labeled data in the target language. Additionally, we conduct a further analysis on tokenization and show that while subword fragmentation and vocabulary overlap with Indonesian correlate weakly with prediction quality, they do not fully explain the observed performance. Instead, the most consistent predictor of transfer success is the model's prior exposure to the language, either directly or through a related language.
comment: AMLDS 2025
☆ Confidence and Stability of Global and Pairwise Scores in NLP Evaluation ACL
With the advent of highly capable instruction-tuned neural language models, benchmarking in natural language processing (NLP) is increasingly shifting towards pairwise comparison leaderboards, such as LMSYS Arena, from traditional global pointwise scores (e.g., GLUE, BIG-bench, SWE-bench). This paper empirically investigates the strengths and weaknesses of both global scores and pairwise comparisons to aid decision-making in selecting appropriate model evaluation strategies. Through computational experiments on synthetic and real-world datasets using standard global metrics and the popular Bradley-Terry model for pairwise comparisons, we found that while global scores provide more reliable overall rankings, they can underestimate strong models with rare, significant errors or low confidence. Conversely, pairwise comparisons are particularly effective for identifying strong contenders among models with lower global scores, especially where quality metrics are hard to define (e.g., text generation), though they require more comparisons to converge if ties are frequent. Our code and data are available at https://github.com/HSPyroblast/srw-ranking under a permissive license.
comment: 8 pages, accepted at ACL SRW 2025
☆ Chart Question Answering from Real-World Analytical Narratives ACL
We present a new dataset for chart question answering (CQA) constructed from visualization notebooks. The dataset features real-world, multi-view charts paired with natural language questions grounded in analytical narratives. Unlike prior benchmarks, our data reflects ecologically valid reasoning workflows. Benchmarking state-of-the-art multimodal large language models reveals a significant performance gap, with GPT-4.1 achieving an accuracy of 69.3%, underscoring the challenges posed by this more authentic CQA setting.
comment: This paper has been accepted to the ACL Student Research Workshop (SRW) 2025
☆ Data Agent: A Holistic Architecture for Orchestrating Data+AI Ecosystems
Traditional Data+AI systems utilize data-driven techniques to optimize performance, but they rely heavily on human experts to orchestrate system pipelines, enabling them to adapt to changes in data, queries, tasks, and environments. For instance, while there are numerous data science tools available, developing a pipeline planning system to coordinate these tools remains challenging. This difficulty arises because existing Data+AI systems have limited capabilities in semantic understanding, reasoning, and planning. Fortunately, we have witnessed the success of large language models (LLMs) in enhancing semantic understanding, reasoning, and planning abilities. It is crucial to incorporate LLM techniques to revolutionize data systems for orchestrating Data+AI applications effectively. To achieve this, we propose the concept of a 'Data Agent' - a comprehensive architecture designed to orchestrate Data+AI ecosystems, which focuses on tackling data-related tasks by integrating knowledge comprehension, reasoning, and planning capabilities. We delve into the challenges involved in designing data agents, such as understanding data/queries/environments/tools, orchestrating pipelines/workflows, optimizing and executing pipelines, and fostering pipeline self-reflection. Furthermore, we present examples of data agent systems, including a data science agent, data analytics agents (such as unstructured data analytics agent, semantic structured data analytics agent, data lake analytics agent, and multi-modal data analytics agent), and a database administrator (DBA) agent. We also outline several open challenges associated with designing data agent systems.
☆ T3DM: Test-Time Training-Guided Distribution Shift Modelling for Temporal Knowledge Graph Reasoning
Temporal Knowledge Graph (TKG) is an efficient method for describing the dynamic development of facts along a timeline. Most research on TKG reasoning (TKGR) focuses on modelling the repetition of global facts and designing patterns of local historical facts. However, they face two significant challenges: inadequate modeling of the event distribution shift between training and test samples, and reliance on random entity substitution for generating negative samples, which often results in low-quality sampling. To this end, we propose a novel distributional feature modeling approach for training TKGR models, Test-Time Training-guided Distribution shift Modelling (T3DM), to adjust the model based on distribution shift and ensure the global consistency of model reasoning. In addition, we design a negative-sampling strategy to generate higher-quality negative quadruples based on adversarial training. Extensive experiments show that T3DM provides better and more robust results than the state-of-the-art baselines in most cases.
☆ Emotionally Intelligent Task-oriented Dialogue Systems: Architecture, Representation, and Optimisation
Task-oriented dialogue (ToD) systems are designed to help users achieve specific goals through natural language interaction. While recent advances in large language models (LLMs) have significantly improved linguistic fluency and contextual understanding, building effective and emotionally intelligent ToD systems remains a complex challenge. Effective ToD systems must optimise for task success, emotional understanding and responsiveness, and precise information conveyance, all within inherently noisy and ambiguous conversational environments. In this work, we investigate architectural, representational, optimisational as well as emotional considerations of ToD systems. We set up systems covering these design considerations with a challenging evaluation environment composed of a natural-language user simulator coupled with an imperfect natural language understanding module. We propose \textbf{LUSTER}, an \textbf{L}LM-based \textbf{U}nified \textbf{S}ystem for \textbf{T}ask-oriented dialogue with \textbf{E}nd-to-end \textbf{R}einforcement learning with both short-term (user sentiment) and long-term (task success) rewards. Our findings demonstrate that combining LLM capability with structured reward modelling leads to more resilient and emotionally responsive ToD systems, offering a practical path forward for next-generation conversational agents.
comment: 19 pages, 6 figures
☆ Is External Information Useful for Stance Detection with LLMs? ACL
In the stance detection task, a text is classified as either favorable, opposing, or neutral towards a target. Prior work suggests that the use of external information, e.g., excerpts from Wikipedia, improves stance detection performance. However, whether or not such information can benefit large language models (LLMs) remains an unanswered question, despite their wide adoption in many reasoning tasks. In this study, we conduct a systematic evaluation on how Wikipedia and web search external information can affect stance detection across eight LLMs and in three datasets with 12 targets. Surprisingly, we find that such information degrades performance in most cases, with macro F1 scores dropping by up to 27.9\%. We explain this through experiments showing LLMs' tendency to align their predictions with the stance and sentiment of the provided information rather than the ground truth stance of the given text. We also find that performance degradation persists with chain-of-thought prompting, while fine-tuning mitigates but does not fully eliminate it. Our findings, in contrast to previous literature on BERT-based systems which suggests that external information enhances performance, highlight the risks of information biases in LLM-based stance classifiers. Code is available at https://github.com/ngqm/acl2025-stance-detection.
comment: ACL Findings 2025
☆ Efficient Out-of-Scope Detection in Dialogue Systems via Uncertainty-Driven LLM Routing
Out-of-scope (OOS) intent detection is a critical challenge in task-oriented dialogue systems (TODS), as it ensures robustness to unseen and ambiguous queries. In this work, we propose a novel but simple modular framework that combines uncertainty modeling with fine-tuned large language models (LLMs) for efficient and accurate OOS detection. The first step applies uncertainty estimation to the output of an in-scope intent detection classifier, which is currently deployed in a real-world TODS handling tens of thousands of user interactions daily. The second step then leverages an emerging LLM-based approach, where a fine-tuned LLM is triggered to make a final decision on instances with high uncertainty. Unlike prior approaches, our method effectively balances computational efficiency and performance, combining traditional approaches with LLMs and yielding state-of-the-art results on key OOS detection benchmarks, including real-world OOS data acquired from a deployed TODS.
☆ Following the Clues: Experiments on Person Re-ID using Cross-Modal Intelligence SC 2025
The collection and release of street-level recordings as Open Data play a vital role in advancing autonomous driving systems and AI research. However, these datasets pose significant privacy risks, particularly for pedestrians, due to the presence of Personally Identifiable Information (PII) that extends beyond biometric traits such as faces. In this paper, we present cRID, a novel cross-modal framework combining Large Vision-Language Models, Graph Attention Networks, and representation learning to detect textual describable clues of PII and enhance person re-identification (Re-ID). Our approach focuses on identifying and leveraging interpretable features, enabling the detection of semantically meaningful PII beyond low-level appearance cues. We conduct a systematic evaluation of PII presence in person image datasets. Our experiments show improved performance in practical cross-dataset Re-ID scenarios, notably from Market-1501 to CUHK03-np (detected), highlighting the framework's practical utility. Code is available at https://github.com/RAufschlaeger/cRID.
comment: accepted for publication at the 2025 IEEE 28th International Conference on Intelligent Transportation Systems (ITSC 2025), taking place during November 18-21, 2025 in Gold Coast, Australia
☆ Evaluating the Effectiveness of Direct Preference Optimization for Personalizing German Automatic Text Simplifications for Persons with Intellectual Disabilities
Automatic text simplification (ATS) aims to enhance language accessibility for various target groups, particularly persons with intellectual disabilities. Recent advancements in generative AI, especially large language models (LLMs), have substantially improved the quality of machine-generated text simplifications, thereby mitigating information barriers for the target group. However, existing LLM-based ATS systems do not incorporate preference feedback on text simplifications during training, resulting in a lack of personalization tailored to the specific needs of target group representatives. In this work, we extend the standard supervised fine-tuning (SFT) approach for adapting LLM-based ATS models by leveraging a computationally efficient LLM alignment technique -- direct preference optimization (DPO). Specifically, we post-train LLM-based ATS models using human feedback collected from persons with intellectual disabilities, reflecting their preferences on paired text simplifications generated by mainstream LLMs. Furthermore, we propose a pipeline for developing personalized LLM-based ATS systems, encompassing data collection, model selection, SFT and DPO post-training, and evaluation. Our findings underscore the necessity of active participation of target group persons in designing personalized AI accessibility solutions aligned with human expectations. This work represents a step towards personalizing inclusive AI systems at the target-group level, incorporating insights not only from text simplification experts but also from target group persons themselves.
☆ LogitSpec: Accelerating Retrieval-based Speculative Decoding via Next Next Token Speculation
Speculative decoding (SD), where a small draft model is employed to propose draft tokens in advance and then the target model validates them in parallel, has emerged as a promising technique for LLM inference acceleration. Many endeavors to improve SD are to eliminate the need for a draft model and generate draft tokens in a retrieval-based manner in order to further alleviate the drafting overhead and significantly reduce the difficulty in deployment and applications. However, retrieval-based SD relies on a matching paradigm to retrieval the most relevant reference as the draft tokens, where these methods often fail to find matched and accurate draft tokens. To address this challenge, we propose LogitSpec to effectively expand the retrieval range and find the most relevant reference as drafts. Our LogitSpec is motivated by the observation that the logit of the last token can not only predict the next token, but also speculate the next next token. Specifically, LogitSpec generates draft tokens in two steps: (1) utilizing the last logit to speculate the next next token; (2) retrieving relevant reference for both the next token and the next next token. LogitSpec is training-free and plug-and-play, which can be easily integrated into existing LLM inference frameworks. Extensive experiments on a wide range of text generation benchmarks demonstrate that LogitSpec can achieve up to 2.61 $\times$ speedup and 3.28 mean accepted tokens per decoding step. Our code is available at https://github.com/smart-lty/LogitSpec.
☆ Clinical NLP with Attention-Based Deep Learning for Multi-Disease Prediction
This paper addresses the challenges posed by the unstructured nature and high-dimensional semantic complexity of electronic health record texts. A deep learning method based on attention mechanisms is proposed to achieve unified modeling for information extraction and multi-label disease prediction. The study is conducted on the MIMIC-IV dataset. A Transformer-based architecture is used to perform representation learning over clinical text. Multi-layer self-attention mechanisms are employed to capture key medical entities and their contextual relationships. A Sigmoid-based multi-label classifier is then applied to predict multiple disease labels. The model incorporates a context-aware semantic alignment mechanism, enhancing its representational capacity in typical medical scenarios such as label co-occurrence and sparse information. To comprehensively evaluate model performance, a series of experiments were conducted, including baseline comparisons, hyperparameter sensitivity analysis, data perturbation studies, and noise injection tests. Results demonstrate that the proposed method consistently outperforms representative existing approaches across multiple performance metrics. The model maintains strong generalization under varying data scales, interference levels, and model depth configurations. The framework developed in this study offers an efficient algorithmic foundation for processing real-world clinical texts and presents practical significance for multi-label medical text modeling tasks.
☆ Pensieve Grader: An AI-Powered, Ready-to-Use Platform for Effortless Handwritten STEM Grading
Grading handwritten, open-ended responses remains a major bottleneck in large university STEM courses. We introduce Pensieve (https://www.pensieve.co), an AI-assisted grading platform that leverages large language models (LLMs) to transcribe and evaluate student work, providing instructors with rubric-aligned scores, transcriptions, and confidence ratings. Unlike prior tools that focus narrowly on specific tasks like transcription or rubric generation, Pensieve supports the entire grading pipeline-from scanned student submissions to final feedback-within a human-in-the-loop interface. Pensieve has been deployed in real-world courses at over 20 institutions and has graded more than 300,000 student responses. We present system details and empirical results across four core STEM disciplines: Computer Science, Mathematics, Physics, and Chemistry. Our findings show that Pensieve reduces grading time by an average of 65%, while maintaining a 95.4% agreement rate with instructor-assigned grades for high-confidence predictions.
comment: 7 pages, 5 figues, 1 table
♻ ☆ SHuBERT: Self-Supervised Sign Language Representation Learning via Multi-Stream Cluster Prediction ACL 2025
Sign language processing has traditionally relied on task-specific models, limiting the potential for transfer learning across tasks. Pre-training methods for sign language have typically focused on either supervised pre-training, which cannot take advantage of unlabeled data, or context-independent (frame or video segment) representations, which ignore the effects of relationships across time in sign language. We introduce SHuBERT (Sign Hidden-Unit BERT), a self-supervised contextual representation model learned from approximately 1,000 hours of American Sign Language video. SHuBERT adapts masked token prediction objectives to multi-stream visual sign language input, learning to predict multiple targets corresponding to clustered hand, face, and body pose streams. SHuBERT achieves state-of-the-art performance across multiple tasks including sign language translation, isolated sign language recognition, and fingerspelling detection.
comment: Fixed Figure 1. ACL 2025
♻ ☆ Beyond Scale: The Diversity Coefficient as a Data Quality Metric for Variability in Natural Language Data
Current trends in pre-training Large Language Models (LLMs) primarily focus on the scaling of model and dataset size. While the quality of pre-training data is considered an important factor for training powerful LLMs, it remains a nebulous concept that has not been rigorously characterized. To this end, we propose a formalization of one key aspect of data quality -- measuring the variability of natural language data -- specifically via a measure we call the diversity coefficient. Our empirical analysis shows that the proposed diversity coefficient aligns with the intuitive properties of diversity and variability, e.g., it increases as the number of latent concepts increases. Then, we measure the diversity coefficient of publicly available pre-training datasets and demonstrate that their formal diversity is high compared to theoretical lower and upper bounds. Finally, we conduct a comprehensive set of controlled interventional experiments with GPT-2 and LLaMAv2 that demonstrate the diversity coefficient of pre-training data characterizes useful aspects of downstream model evaluation performance -- totaling 44 models of various sizes (51M to 7B parameters). We conclude that our formal notion of diversity is an important aspect of data quality that captures variability and causally leads to improved evaluation performance.
♻ ☆ Rethinking LLM Training through Information Geometry and Quantum Metrics
Optimization in large language models (LLMs) unfolds over high-dimensional parameter spaces with non-Euclidean structure. Information geometry frames this landscape using the Fisher information metric, enabling more principled learning via natural gradient descent. Though often impractical, this geometric lens clarifies phenomena such as sharp minima, generalization, and observed scaling laws. We argue that curvature-aware approaches deepen our understanding of LLM training. Finally, we speculate on quantum analogies based on the Fubini-Study metric and Quantum Fisher Information, hinting at efficient optimization in quantum-enhanced systems.
comment: 9 pages, 1 figure(s)
♻ ☆ Quantifying the Importance of Data Alignment in Downstream Model Performance
Contrary to the conventional emphasis on dataset size, we explore the role of data alignment -- an often overlooked aspect of data quality -- in training capable Large Language Models (LLMs). To do so, we use the Task2Vec-based alignment coefficient, a quantitative measure of the similarity between two datasets, to quantify the impact of alignment between training data and evaluation data on downstream performance. In particular, we conduct controlled \textit{interventional} experiments for two settings: 1. the impact of increased alignment coefficients between various pre-training (pt) against evaluation datasets, and 2. the impact of increased alignment coefficients between domain specific fine-tuning (ft) against domain specific evaluation. The domain specific task we explore is Autoformalization -- the machine translation task between natural language and code for formal verification. In both settings, we find a strong, predictable negative correlation between the alignment coefficient of a model's training and evaluation data and the model's loss/perplexity on the respective downstream task. These findings suggest a re-evaluation of LLM training approaches, demonstrating the relevance of data alignment compared to data quantity, especially in specialized downstream tasks such as Autoformalization.
♻ ☆ De-mark: Watermark Removal in Large Language Models ICML 2025
Watermarking techniques offer a promising way to identify machine-generated content via embedding covert information into the contents generated from language models (LMs). However, the robustness of the watermarking schemes has not been well explored. In this paper, we present De-mark, an advanced framework designed to remove n-gram-based watermarks effectively. Our method utilizes a novel querying strategy, termed random selection probing, which aids in assessing the strength of the watermark and identifying the red-green list within the n-gram watermark. Experiments on popular LMs, such as Llama3 and ChatGPT, demonstrate the efficiency and effectiveness of De-mark in watermark removal and exploitation tasks.
comment: ICML 2025
♻ ☆ Sequential Diagnosis with Language Models
Artificial intelligence holds great promise for expanding access to expert medical knowledge and reasoning. However, most evaluations of language models rely on static vignettes and multiple-choice questions that fail to reflect the complexity and nuance of evidence-based medicine in real-world settings. In clinical practice, physicians iteratively formulate and revise diagnostic hypotheses, adapting each subsequent question and test to what they've just learned, and weigh the evolving evidence before committing to a final diagnosis. To emulate this iterative process, we introduce the Sequential Diagnosis Benchmark, which transforms 304 diagnostically challenging New England Journal of Medicine clinicopathological conference (NEJM-CPC) cases into stepwise diagnostic encounters. A physician or AI begins with a short case abstract and must iteratively request additional details from a gatekeeper model that reveals findings only when explicitly queried. Performance is assessed not just by diagnostic accuracy but also by the cost of physician visits and tests performed. We also present the MAI Diagnostic Orchestrator (MAI-DxO), a model-agnostic orchestrator that simulates a panel of physicians, proposes likely differential diagnoses and strategically selects high-value, cost-effective tests. When paired with OpenAI's o3 model, MAI-DxO achieves 80% diagnostic accuracy--four times higher than the 20% average of generalist physicians. MAI-DxO also reduces diagnostic costs by 20% compared to physicians, and 70% compared to off-the-shelf o3. When configured for maximum accuracy, MAI-DxO achieves 85.5% accuracy. These performance gains with MAI-DxO generalize across models from the OpenAI, Gemini, Claude, Grok, DeepSeek, and Llama families. We highlight how AI systems, when guided to think iteratively and act judiciously, can advance diagnostic precision and cost-effectiveness in clinical care.
comment: 23 pages, 10 figures
♻ ☆ Recursive Training Loops in LLMs: How training data properties modulate distribution shift in generated data?
Large language models (LLMs) are increasingly used in the creation of online content, creating feedback loops as subsequent generations of models will be trained on this synthetic data. Such loops were shown to lead to distribution shifts - models misrepresenting the true underlying distributions of human data (also called model collapse). However, how human data properties affect such shifts remains poorly understood. In this paper, we provide the first empirical examination of the effect of such properties on the outcome of recursive training. We first confirm that using different human datasets leads to distribution shifts of different magnitudes. Through exhaustive manipulation of dataset properties combined with regression analyses, we then identify a set of properties predicting distribution shift magnitudes. Lexical diversity is found to amplify these shifts, while semantic diversity and data quality mitigate them. Furthermore, we find that these influences are highly modular: data scrapped from a given internet domain has little influence on the content generated for another domain. Finally, experiments on political bias reveal that human data properties affect whether the initial bias will be amplified or reduced. Overall, our results portray a novel view, where different parts of internet may undergo different types of distribution shift.
♻ ☆ Towards Universal Semantics With Large Language Models
The Natural Semantic Metalanguage (NSM) is a linguistic theory based on a universal set of semantic primes: simple, primitive word-meanings that have been shown to exist in most, if not all, languages of the world. According to this framework, any word, regardless of complexity, can be paraphrased using these primes, revealing a clear and universally translatable meaning. These paraphrases, known as explications, can offer valuable applications for many natural language processing (NLP) tasks, but producing them has traditionally been a slow, manual process. In this work, we present the first study of using large language models (LLMs) to generate NSM explications. We introduce automatic evaluation methods, a tailored dataset for training and evaluation, and fine-tuned models for this task. Our 1B and 8B models outperform GPT-4o in producing accurate, cross-translatable explications, marking a significant step toward universal semantic representation with LLMs and opening up new possibilities for applications in semantic analysis, translation, and beyond.
♻ ☆ LinguaSynth: Heterogeneous Linguistic Signals for News Classification
Deep learning has significantly advanced NLP, but its reliance on large black-box models introduces critical interpretability and computational efficiency concerns. This paper proposes LinguaSynth, a novel text classification framework that strategically integrates five complementary linguistic feature types: lexical, syntactic, entity-level, word-level semantics, and document-level semantics within a transparent logistic regression model. Unlike transformer-based architectures, LinguaSynth maintains interpretability and computational efficiency, achieving an accuracy of 84.89 percent on the 20 Newsgroups dataset and surpassing a robust TF-IDF baseline by 3.32 percent. Through rigorous feature interaction analysis, we show that syntactic and entity-level signals provide essential disambiguation and effectively complement distributional semantics. LinguaSynth sets a new benchmark for interpretable, resource-efficient NLP models and challenges the prevailing assumption that deep neural networks are necessary for high-performing text classification.
♻ ☆ Guaranteed Generation from Large Language Models ICLR 2025
As large language models (LLMs) are increasingly used across various applications, there is a growing need to control text generation to satisfy specific constraints or requirements. This raises a crucial question: Is it possible to guarantee strict constraint satisfaction in generated outputs while preserving the distribution of the original model as much as possible? We first define the ideal distribution - the one closest to the original model, which also always satisfies the expressed constraint - as the ultimate goal of guaranteed generation. We then state a fundamental limitation, namely that it is impossible to reach that goal through autoregressive training alone. This motivates the necessity of combining training-time and inference-time methods to enforce such guarantees. Based on this insight, we propose GUARD, a simple yet effective approach that combines an autoregressive proposal distribution with rejection sampling. Through GUARD's theoretical properties, we show how controlling the KL divergence between a specific proposal and the target ideal distribution simultaneously optimizes inference speed and distributional closeness. To validate these theoretical concepts, we conduct extensive experiments on two text generation settings with hard-to-satisfy constraints: a lexical constraint scenario and a sentiment reversal scenario. These experiments show that GUARD achieves perfect constraint satisfaction while almost preserving the ideal distribution with highly improved inference efficiency. GUARD provides a principled approach to enforcing strict guarantees for LLMs without compromising their generative capabilities.
comment: ICLR 2025
♻ ☆ QAEncoder: Towards Aligned Representation Learning in Question Answering Systems ACL 2025
Modern QA systems entail retrieval-augmented generation (RAG) for accurate and trustworthy responses. However, the inherent gap between user queries and relevant documents hinders precise matching. We introduce QAEncoder, a training-free approach to bridge this gap. Specifically, QAEncoder estimates the expectation of potential queries in the embedding space as a robust surrogate for the document embedding, and attaches document fingerprints to effectively distinguish these embeddings. Extensive experiments across diverse datasets, languages, and embedding models confirmed QAEncoder's alignment capability, which offers a simple-yet-effective solution with zero additional index storage, retrieval latency, training costs, or catastrophic forgetting and hallucination issues. The repository is publicly available at https://github.com/IAAR-Shanghai/QAEncoder.
comment: ACL 2025 Oral
♻ ☆ Unified Triplet-Level Hallucination Evaluation for Large Vision-Language Models
Despite the outstanding performance in vision-language reasoning, Large Vision-Language Models (LVLMs) might generate hallucinated contents that do not exist in the given image. Most existing LVLM hallucination benchmarks are constrained to evaluate the object-related hallucinations. However, the potential hallucination on the relations between two objects, i.e., relation hallucination, still lacks investigation. To remedy that, we design a unified framework to measure the object and relation hallucination in LVLMs simultaneously. The core idea of our framework is to evaluate hallucinations via (object, relation, object) triplets extracted from LVLMs' responses, making it easily generalizable to different vision-language tasks. Based on our framework, we further introduce Tri-HE, a novel Triplet-level Hallucination Evaluation benchmark which can be used to study both object and relation hallucination at the same time. With comprehensive evaluations on Tri-HE, we observe that the relation hallucination issue is even more serious than object hallucination among existing LVLMs, highlighting a previously neglected problem towards reliable LVLMs. Moreover, based on our findings, we design a simple training-free approach that effectively mitigates hallucinations for LVLMs. Our dataset and code for the reproduction of our experiments are available publicly at https://github.com/wujunjie1998/Tri-HE.
comment: Accepted by TMLR 2025. Project Page: https://kaichen1998.github.io/projects/tri-he/
♻ ☆ On the Fundamental Impossibility of Hallucination Control in Large Language Models
We prove that perfect hallucination control in large language models is mathematically impossible. No LLM inference mechanism can simultaneously achieve truthful response generation, semantic information conservation, relevant knowledge revelation, and knowledge-constrained optimality. This impossibility is fundamental, arising from the mathematical structure of information aggregation itself rather than engineering limitations. The proof spans three mathematical frameworks: auction theory, proper scoring theory for probabilistic predictions, and log-sum-exp analysis for transformer architectures. In each setting, we demonstrate that information aggregation creates unavoidable violations of conservation principles. The Jensen gap in transformer probability aggregation provides a direct measure of this impossibility. These results reframe hallucination from an engineering bug to an inevitable mathematical feature of distributed intelligence. There are fundamental trade-offs between truthfulness, knowledge utilization, and response completeness, providing principled foundations for managing rather than eliminating hallucination. This work reveals deep connections between neural network inference, philosophy of knowledge and reasoning, and classical results in game theory and information theory, opening new research directions for developing beneficial AI systems within mathematical constraints.
comment: major review, transformer inference application, examples added, corrections
♻ ☆ Caution for the Environment: Multimodal Agents are Susceptible to Environmental Distractions ACL 2025
This paper investigates the faithfulness of multimodal large language model (MLLM) agents in a graphical user interface (GUI) environment, aiming to address the research question of whether multimodal GUI agents can be distracted by environmental context. A general scenario is proposed where both the user and the agent are benign, and the environment, while not malicious, contains unrelated content. A wide range of MLLMs are evaluated as GUI agents using a simulated dataset, following three working patterns with different levels of perception. Experimental results reveal that even the most powerful models, whether generalist agents or specialist GUI agents, are susceptible to distractions. While recent studies predominantly focus on the helpfulness of agents, our findings first indicate that these agents are prone to environmental distractions. Furthermore, we implement an adversarial environment injection and analyze the approach to improve faithfulness, calling for a collective focus on this important topic.
comment: ACL 2025
♻ ☆ Developing ChemDFM as a large language foundation model for chemistry
Artificial intelligence (AI) has played an increasingly important role in chemical research. However, most models currently used in chemistry are specialist models that require training and tuning for specific tasks. A more generic and efficient solution would be an AI model that could address many tasks and support free-form dialogue in the broad field of chemistry. In its utmost form, such a generalist AI chemist could be referred to as Chemical General Intelligence. Large language models (LLMs) have recently logged tremendous success in the general domain of natural language processing, showing emerging task generalization and free-form dialogue capabilities. However, domain knowledge of chemistry is largely missing when training general-domain LLMs. The lack of such knowledge greatly hinders the performance of generalist LLMs in the field of chemistry. To this end, we develop ChemDFM, a pioneering LLM for chemistry trained on 34B tokens from chemical literature and textbooks, and fine-tuned using 2.7M instructions. As a result, it can understand and reason with chemical knowledge in free-form dialogue. Quantitative evaluations show that ChemDFM significantly surpasses most representative open-source LLMs. It outperforms GPT-4 on a great portion of chemical tasks, despite the substantial size difference. We have open-sourced the inference codes, evaluation datasets, and model weights of ChemDFM on Huggingface (https://huggingface.co/OpenDFM/ChemDFM-v1.0-13B).
comment: 10 pages, 12 figures, 12 tables. Published on Cell Report Physical Science, DOI: https://doi.org/10.1016/j.xcrp.2025.102523
♻ ☆ Unifying Global and Near-Context Biasing in a Single Trie Pass
Despite the success of end-to-end automatic speech recognition (ASR) models, challenges persist in recognizing rare, out-of-vocabulary words - including named entities (NE) - and in adapting to new domains using only text data. This work presents a practical approach to address these challenges through an unexplored combination of an NE bias list and a word-level n-gram language model (LM). This solution balances simplicity and effectiveness, improving entities' recognition while maintaining or even enhancing overall ASR performance. We efficiently integrate this enriched biasing method into a transducer-based ASR system, enabling context adaptation with almost no computational overhead. We present our results on three datasets spanning four languages and compare them to state-of-the-art biasing strategies. We demonstrate that the proposed combination of keyword biasing and n-gram LM improves entity recognition by up to 32% relative and reduces overall WER by up to a 12% relative.
comment: Accepted to TSD2025
♻ ☆ BIS Reasoning 1.0: The First Large-Scale Japanese Benchmark for Belief-Inconsistent Syllogistic Reasoning
We present BIS Reasoning 1.0, the first large-scale Japanese dataset of syllogistic reasoning problems explicitly designed to evaluate belief-inconsistent reasoning in large language models (LLMs). Unlike prior datasets such as NeuBAROCO and JFLD, which focus on general or belief-aligned reasoning, BIS Reasoning 1.0 introduces logically valid yet belief-inconsistent syllogisms to uncover reasoning biases in LLMs trained on human-aligned corpora. We benchmark state-of-the-art models - including GPT models, Claude models, and leading Japanese LLMs - revealing significant variance in performance, with GPT-4o achieving 79.54% accuracy. Our analysis identifies critical weaknesses in current LLMs when handling logically valid but belief-conflicting inputs. These findings have important implications for deploying LLMs in high-stakes domains such as law, healthcare, and scientific literature, where truth must override intuitive belief to ensure integrity and safety.
comment: This version includes typo corrections, added logit lens analysis for open models, and an updated author list
♻ ☆ DICE-BENCH: Evaluating the Tool-Use Capabilities of Large Language Models in Multi-Round, Multi-Party Dialogues ACL 2025
Existing function-calling benchmarks focus on single-turn interactions. However, they overlook the complexity of real-world scenarios. To quantify how existing benchmarks address practical applications, we introduce DICE-SCORE, a metric that evaluates the dispersion of tool-related information such as function name and parameter values throughout the dialogue. Analyzing existing benchmarks through DICE-SCORE reveals notably low scores, highlighting the need for more realistic scenarios. To address this gap, we present DICE-BENCH, a framework that constructs practical function-calling datasets by synthesizing conversations through a tool graph that maintains dependencies across rounds and a multi-agent system with distinct personas to enhance dialogue naturalness. The final dataset comprises 1,607 high-DICE-SCORE instances. Our experiments on 19 LLMs with DICE-BENCH show that significant advances are still required before such models can be deployed effectively in real-world settings. Our code and data are all publicly available: https://snuhcc.github.io/DICE-Bench/.
comment: 9 pages, ACL 2025 Vienna
♻ ☆ VLM2-Bench: A Closer Look at How Well VLMs Implicitly Link Explicit Matching Visual Cues
Visually linking matching cues is a crucial ability in daily life, such as identifying the same person in multiple photos based on their cues, even without knowing who they are. Despite the extensive knowledge that vision-language models (VLMs) possess, it remains largely unexplored whether they are capable of performing this fundamental task. To address this, we introduce \textbf{VLM2-Bench}, a benchmark designed to assess whether VLMs can Visually Link Matching cues, with 9 subtasks and over 3,000 test cases. Comprehensive evaluation across twelve VLMs, along with further analysis of various language-side and vision-side prompting methods, leads to a total of eight key findings. We identify critical challenges in models' ability to link visual cues, highlighting a significant performance gap. Based on these insights, we advocate for (i) enhancing core visual capabilities to improve adaptability and reduce reliance on prior knowledge, (ii) establishing clearer principles for integrating language-based reasoning in vision-centric tasks to prevent unnecessary biases, and (iii) shifting vision-text training paradigms toward fostering models' ability to independently structure and infer relationships among visual cues.
comment: Project Page: https://vlm2-bench.github.io/ Camera Ready version
♻ ☆ Don't Say No: Jailbreaking LLM by Suppressing Refusal ACL 2025
Ensuring the safety alignment of Large Language Models (LLMs) is critical for generating responses consistent with human values. However, LLMs remain vulnerable to jailbreaking attacks, where carefully crafted prompts manipulate them into producing toxic content. One category of such attacks reformulates the task as an optimization problem, aiming to elicit affirmative responses from the LLM. However, these methods heavily rely on predefined objectionable behaviors, limiting their effectiveness and adaptability to diverse harmful queries. In this study, we first identify why the vanilla target loss is suboptimal and then propose enhancements to the loss objective. We introduce DSN (Don't Say No) attack, which combines a cosine decay schedule method with refusal suppression to achieve higher success rates. Extensive experiments demonstrate that DSN outperforms baseline attacks and achieves state-of-the-art attack success rates (ASR). DSN also shows strong universality and transferability to unseen datasets and black-box models.
comment: Accepted by ACL 2025 Findings
♻ ☆ Transferable Modeling Strategies for Low-Resource LLM Tasks: A Prompt and Alignment-Based Approach
This paper addresses the limited transfer and adaptation capabilities of large language models in low-resource language scenarios. It proposes a unified framework that combines a knowledge transfer module with parameter-efficient fine-tuning strategies. The method introduces knowledge alignment loss and soft prompt tuning to guide the model in effectively absorbing the structural features of target languages or tasks under minimal annotation. This enhances both generalization performance and training stability. The framework includes lightweight adaptation modules to reduce computational costs. During training, it integrates freezing strategies and prompt injection to preserve the model's original knowledge while enabling quick adaptation to new tasks. The study also conducts stability analysis experiments and synthetic pseudo-data transfer experiments to systematically evaluate the method's applicability and robustness across different low-resource tasks. Experimental results show that compared with existing multilingual pre-trained models and mainstream transfer methods, the proposed approach achieves higher performance and stability on cross-lingual tasks such as MLQA, XQuAD, and PAWS-X. It demonstrates particularly strong advantages under extremely data-scarce conditions. The proposed method offers strong generality and scalability. It enhances task-specific adaptability while preserving the general capabilities of large language models. This makes it well-suited for complex semantic modeling and multilingual processing tasks.
♻ ☆ Text to Band Gap: Pre-trained Language Models as Encoders for Semiconductor Band Gap Prediction
We investigate the use of transformer-based language models, RoBERTa, T5, and LLaMA, for predicting the band gaps of semiconductor materials directly from textual representations that encode key material features such as chemical composition, crystal system, space group, number of atoms per unit cell, valence electron count, and other relevant electronic and structural properties. Quantum chemistry simulations such as DFT provide accurate predictions but are computationally intensive, limiting their feasibility for large-scale materials screening. Shallow ML models offer faster alternatives but typically require extensive data preprocessing to convert non-numerical material features into structured numerical inputs, often at the cost of losing critical descriptive information. In contrast, our approach leverages pretrained language models to process textual data directly, eliminating the need for manual feature engineering. We construct material descriptions in two formats: structured strings that combine key features in a consistent template, and natural language narratives generated using the ChatGPT API. For each model, we append a custom regression head and perform task-specific finetuning on a curated dataset of inorganic compounds. Our results show that finetuned language models, particularly the decoder-only LLaMA-3 architecture, can outperform conventional approaches in prediction accuracy and flexibility, achieving an MAE of 0.25 eV and R2 of 0.89, compared to the best shallow ML baseline, which achieved an MAE of 0.32 eV and R2 of 0.84. Notably, LLaMA-3 achieves competitive accuracy with minimal finetuning, suggesting its architecture enables more transferable representations for scientific tasks. This work demonstrates the effectiveness of finetuned language models for scientific property prediction and provides a scalable, language-native framework for materials informatics.
♻ ☆ Delving into Multilingual Ethical Bias: The MSQAD with Statistical Hypothesis Tests for Large Language Models ACL 2025
Despite the recent strides in large language models, studies have underscored the existence of social biases within these systems. In this paper, we delve into the validation and comparison of the ethical biases of LLMs concerning globally discussed and potentially sensitive topics, hypothesizing that these biases may arise from language-specific distinctions. Introducing the Multilingual Sensitive Questions & Answers Dataset (MSQAD), we collected news articles from Human Rights Watch covering 17 topics, and generated socially sensitive questions along with corresponding responses in multiple languages. We scrutinized the biases of these responses across languages and topics, employing two statistical hypothesis tests. The results showed that the null hypotheses were rejected in most cases, indicating biases arising from cross-language differences. It demonstrates that ethical biases in responses are widespread across various languages, and notably, these biases were prevalent even among different LLMs. By making the proposed MSQAD openly available, we aim to facilitate future research endeavors focused on examining cross-language biases in LLMs and their variant models.
comment: ACL 2025 main conference
♻ ☆ Multi-interaction TTS toward professional recording reproduction
Voice directors often iteratively refine voice actors' performances by providing feedback to achieve the desired outcome. While this iterative feedback-based refinement process is important in actual recordings, it has been overlooked in text-to-speech synthesis (TTS). As a result, fine-grained style refinement after the initial synthesis is not possible, even though the synthesized speech often deviates from the user's intended style. To address this issue, we propose a TTS method with multi-step interaction that allows users to intuitively and rapidly refine synthesized speech. Our approach models the interaction between the TTS model and its user to emulate the relationship between voice actors and voice directors. Experiments show that the proposed model with its corresponding dataset enables iterative style refinements in accordance with users' directions, thus demonstrating its multi-interaction capability. Sample audios are available: https://ntt-hilab-gensp.github.io/ssw13multiinteractiontts/
comment: 7 pages,6 figures, Accepted to Speech Synthesis Workshop 2025 (SSW13)
♻ ☆ olmOCR: Unlocking Trillions of Tokens in PDFs with Vision Language Models
PDF documents have the potential to provide trillions of novel, high-quality tokens for training language models. However, these documents come in a diversity of types with differing formats and visual layouts that pose a challenge when attempting to extract and faithfully represent the underlying content for language model use. Traditional open source tools often produce lower quality extractions compared to vision language models (VLMs), but reliance on the best VLMs can be prohibitively costly (e.g., over 6,240 USD per million PDF pages for GPT-4o) or infeasible if the PDFs cannot be sent to proprietary APIs. We present olmOCR, an open-source toolkit for processing PDFs into clean, linearized plain text in natural reading order while preserving structured content like sections, tables, lists, equations, and more. Our toolkit runs a fine-tuned 7B vision language model (VLM) trained on olmOCR-mix-0225, a sample of 260,000 pages from over 100,000 crawled PDFs with diverse properties, including graphics, handwritten text and poor quality scans. olmOCR is optimized for large-scale batch processing, able to scale flexibly to different hardware setups and can convert a million PDF pages for only 176 USD. To aid comparison with existing systems, we also introduce olmOCR-Bench, a curated set of 1,400 PDFs capturing many content types that remain challenging even for the best tools and VLMs, including formulas, tables, tiny fonts, old scans, and more. We find olmOCR outperforms even top VLMs including GPT-4o, Gemini Flash 2 and Qwen-2.5-VL. We openly release all components of olmOCR: our fine-tuned VLM model, training code and data, an efficient inference pipeline that supports vLLM and SGLang backends, and benchmark olmOCR-Bench.
♻ ☆ Direct Quantized Training of Language Models with Stochastic Rounding
Although recent quantized Large Language Models (LLMs), such as BitNet, have paved the way for significant reduction in memory usage during deployment with binary or ternary weights, training these models still demands substantial memory footprints. This is partly because high-precision (i.e., unquantized) weights required for straight-through estimation must be maintained throughout the whole training process. To address this, we explore directly updating the quantized low-precision weights without relying on straight-through estimation during backpropagation, aiming to save memory usage during training. Specifically, we employ a stochastic rounding technique to minimize the information loss caused by the use of low-bit weights throughout training. Experimental results on our LLaMA-structured models of various sizes indicate that (1) training with only low-precision weights is feasible even when they are constrained to ternary values; (2) extending the bit width to 8 bits achieves performance on par with BitNet b1.58; (3) our models remain robust to precision scaling and memory reduction, showing minimal performance degradation when moving from FP32 to lower-memory environments (BF16/FP8); and (4) our models also support inference using ternary weights, showcasing their flexibility in deployment.
comment: work in progress, extended experiments to 1B size models
♻ ☆ MassTool: A Multi-Task Search-Based Tool Retrieval Framework for Large Language Models
Tool retrieval is a critical component in enabling large language models (LLMs) to interact effectively with external tools. It aims to precisely filter the massive tools into a small set of candidates for the downstream tool-augmented LLMs. However, most existing approaches primarily focus on optimizing tool representations, often neglecting the importance of precise query comprehension. To address this gap, we introduce MassTool, a multi-task search-based framework designed to enhance both query representation and tool retrieval accuracy. MassTool employs a two-tower architecture: a tool usage detection tower that predicts the need for function calls, and a tool retrieval tower that leverages a query-centric graph convolution network (QC-GCN) for effective query-tool matching. It also incorporates search-based user intent modeling (SUIM) to handle diverse and out-of-distribution queries, alongside an adaptive knowledge transfer (AdaKT) module for efficient multi-task learning. By jointly optimizing tool usage detection loss, list-wise retrieval loss, and contrastive regularization loss, MassTool establishes a robust dual-step sequential decision-making pipeline for precise query understanding. Extensive experiments demonstrate its effectiveness in improving retrieval accuracy. Our code is available at https://github.com/wxydada/MassTool.
♻ ☆ Pre-training Large Memory Language Models with Internal and External Knowledge
Neural language models are black-boxes -- both linguistic patterns and factual knowledge are distributed across billions of opaque parameters. This entangled encoding makes it difficult to reliably inspect, verify, or update specific facts. We propose a new class of language models, Large Memory Language Models (LMLM) with a pre-training recipe that stores factual knowledge in both internal weights and an external database. Our approach strategically masks externally retrieved factual values from the training loss, thereby teaching the model to perform targeted lookups rather than relying on memorization in model weights. Our experiments demonstrate that LMLMs achieve competitive performance compared to significantly larger, knowledge-dense LLMs on standard benchmarks, while offering the advantages of explicit, editable, and verifiable knowledge bases. This work represents a fundamental shift in how language models interact with and manage factual knowledge.
comment: Code, models, and data available at https://github.com/kilian-group/LMLM
♻ ☆ KatFishNet: Detecting LLM-Generated Korean Text through Linguistic Feature Analysis ACL 2025
The rapid advancement of large language models (LLMs) increases the difficulty of distinguishing between human-written and LLM-generated text. Detecting LLM-generated text is crucial for upholding academic integrity, preventing plagiarism, protecting copyrights, and ensuring ethical research practices. Most prior studies on detecting LLM-generated text focus primarily on English text. However, languages with distinct morphological and syntactic characteristics require specialized detection approaches. Their unique structures and usage patterns can hinder the direct application of methods primarily designed for English. Among such languages, we focus on Korean, which has relatively flexible spacing rules, a rich morphological system, and less frequent comma usage compared to English. We introduce KatFish, the first benchmark dataset for detecting LLM-generated Korean text. The dataset consists of text written by humans and generated by four LLMs across three genres. By examining spacing patterns, part-of-speech diversity, and comma usage, we illuminate the linguistic differences between human-written and LLM-generated Korean text. Building on these observations, we propose KatFishNet, a detection method specifically designed for the Korean language. KatFishNet achieves an average of 19.78% higher AUROC compared to the best-performing existing detection method. Our code and data are available at https://github.com/Shinwoo-Park/detecting_llm_generated_korean_text_through_linguistic_analysis.
comment: Accepted to ACL 2025 main conference
Information Retrieval 19
☆ When LLMs Disagree: Diagnosing Relevance Filtering Bias and Retrieval Divergence in SDG Search SIGIR 2025
Large language models (LLMs) are increasingly used to assign document relevance labels in information retrieval pipelines, especially in domains lacking human-labeled data. However, different models often disagree on borderline cases, raising concerns about how such disagreement affects downstream retrieval. This study examines labeling disagreement between two open-weight LLMs, LLaMA and Qwen, on a corpus of scholarly abstracts related to Sustainable Development Goals (SDGs) 1, 3, and 7. We isolate disagreement subsets and examine their lexical properties, rank-order behavior, and classification predictability. Our results show that model disagreement is systematic, not random: disagreement cases exhibit consistent lexical patterns, produce divergent top-ranked outputs under shared scoring functions, and are distinguishable with AUCs above 0.74 using simple classifiers. These findings suggest that LLM-based filtering introduces structured variability in document retrieval, even under controlled prompting and shared ranking logic. We propose using classification disagreement as an object of analysis in retrieval evaluation, particularly in policy-relevant or thematic search tasks.
comment: Presented at LLM4Eval Workshop, SIGIR 2025 Padova, Italy, July 17, 2025
☆ The Future is Agentic: Definitions, Perspectives, and Open Challenges of Multi-Agent Recommender Systems
Large language models (LLMs) are rapidly evolving from passive engines of text generation into agentic entities that can plan, remember, invoke external tools, and co-operate with one another. This perspective paper investigates how such LLM agents (and societies thereof) can transform the design space of recommender systems. We introduce a unified formalism that (i) models an individual agent as a tuple comprising its language core, tool set, and hierarchical memory, and (ii) captures a multi-agent recommender as a triple of agents, shared environment, and communication protocol. Within this framework, we present four end-to-end use cases-interactive party planning, synthetic user-simulation for offline evaluation, multi-modal furniture recommendation, and brand-aligned explanation generation-each illustrating a distinct capability unlocked by agentic orchestration. We then surface five cross-cutting challenge families: protocol complexity, scalability, hallucination and error propagation, emergent misalignment (including covert collusion), and brand compliance. For each, we formalize the problem, review nascent mitigation strategies, and outline open research questions. The result is both a blueprint and an agenda: a blueprint that shows how memory-augmented, tool-using LLM agents can be composed into robust recommendation pipelines, and an agenda inviting the RecSys community to develop benchmarks, theoretical guarantees, and governance tools that keep pace with this new degree of autonomy. By unifying agentic abstractions with recommender objectives, the paper lays the groundwork for the next generation of personalized, trustworthy, and context-rich recommendation services.
☆ Evaluating Structured Output Robustness of Small Language Models for Open Attribute-Value Extraction from Clinical Notes ACL
We present a comparative analysis of the parseability of structured outputs generated by small language models for open attribute-value extraction from clinical notes. We evaluate three widely used serialization formats: JSON, YAML, and XML, and find that JSON consistently yields the highest parseability. Structural robustness improves with targeted prompting and larger models, but declines for longer documents and certain note types. Our error analysis identifies recurring format-specific failure patterns. These findings offer practical guidance for selecting serialization formats and designing prompts when deploying language models in privacy-sensitive clinical settings.
comment: To appear in the ACL Anthology
☆ Agent Ideate: A Framework for Product Idea Generation from Patents Using Agentic AI IJCAI 2025
Patents contain rich technical knowledge that can inspire innovative product ideas, yet accessing and interpreting this information remains a challenge. This work explores the use of Large Language Models (LLMs) and autonomous agents to mine and generate product concepts from a given patent. In this work, we design Agent Ideate, a framework for automatically generating product-based business ideas from patents. We experimented with open-source LLMs and agent-based architectures across three domains: Computer Science, Natural Language Processing, and Material Chemistry. Evaluation results show that the agentic approach consistently outperformed standalone LLMs in terms of idea quality, relevance, and novelty. These findings suggest that combining LLMs with agentic workflows can significantly enhance the innovation pipeline by unlocking the untapped potential of business idea generation from patent data.
comment: AgentScen Workshop, IJCAI 2025
☆ Deep Recommender Models Inference: Automatic Asymmetric Data Flow Optimization
Deep Recommender Models (DLRMs) inference is a fundamental AI workload accounting for more than 79% of the total AI workload in Meta's data centers. DLRMs' performance bottleneck is found in the embedding layers, which perform many random memory accesses to retrieve small embedding vectors from tables of various sizes. We propose the design of tailored data flows to speedup embedding look-ups. Namely, we propose four strategies to look up an embedding table effectively on one core, and a framework to automatically map the tables asymmetrically to the multiple cores of a SoC. We assess the effectiveness of our method using the Huawei Ascend AI accelerators, comparing it with the default Ascend compiler, and we perform high-level comparisons with Nvidia A100. Results show a speed-up varying from 1.5x up to 6.5x for real workload distributions, and more than 20x for extremely unbalanced distributions. Furthermore, the method proves to be much more independent of the query distribution than the baseline.
comment: 5 pages, 4 figures, conference: IEEE ICCD24
☆ Confidence and Stability of Global and Pairwise Scores in NLP Evaluation ACL
With the advent of highly capable instruction-tuned neural language models, benchmarking in natural language processing (NLP) is increasingly shifting towards pairwise comparison leaderboards, such as LMSYS Arena, from traditional global pointwise scores (e.g., GLUE, BIG-bench, SWE-bench). This paper empirically investigates the strengths and weaknesses of both global scores and pairwise comparisons to aid decision-making in selecting appropriate model evaluation strategies. Through computational experiments on synthetic and real-world datasets using standard global metrics and the popular Bradley-Terry model for pairwise comparisons, we found that while global scores provide more reliable overall rankings, they can underestimate strong models with rare, significant errors or low confidence. Conversely, pairwise comparisons are particularly effective for identifying strong contenders among models with lower global scores, especially where quality metrics are hard to define (e.g., text generation), though they require more comparisons to converge if ties are frequent. Our code and data are available at https://github.com/HSPyroblast/srw-ranking under a permissive license.
comment: 8 pages, accepted at ACL SRW 2025
☆ Enhanced Influence-aware Group Recommendation for Online Media Propagation
Group recommendation over social media streams has attracted significant attention due to its wide applications in domains such as e-commerce, entertainment, and online news broadcasting. By leveraging social connections and group behaviours, group recommendation (GR) aims to provide more accurate and engaging content to a set of users rather than individuals. Recently, influence-aware GR has emerged as a promising direction, as it considers the impact of social influence on group decision-making. In earlier work, we proposed Influence-aware Group Recommendation (IGR) to solve this task. However, this task remains challenging due to three key factors: the large and ever-growing scale of social graphs, the inherently dynamic nature of influence propagation within user groups, and the high computational overhead of real-time group-item matching. To tackle these issues, we propose an Enhanced Influence-aware Group Recommendation (EIGR) framework. First, we introduce a Graph Extraction-based Sampling (GES) strategy to minimise redundancy across multiple temporal social graphs and effectively capture the evolving dynamics of both groups and items. Second, we design a novel DYnamic Independent Cascade (DYIC) model to predict how influence propagates over time across social items and user groups. Finally, we develop a two-level hash-based User Group Index (UG-Index) to efficiently organise user groups and enable real-time recommendation generation. Extensive experiments on real-world datasets demonstrate that our proposed framework, EIGR, consistently outperforms state-of-the-art baselines in both effectiveness and efficiency.
☆ ManifoldMind: Dynamic Hyperbolic Reasoning for Trustworthy Recommendations
We introduce ManifoldMind, a probabilistic geometric recommender system for exploratory reasoning over semantic hierarchies in hyperbolic space. Unlike prior methods with fixed curvature and rigid embeddings, ManifoldMind represents users, items, and tags as adaptive-curvature probabilistic spheres, enabling personalised uncertainty modeling and geometry-aware semantic exploration. A curvature-aware semantic kernel supports soft, multi-hop inference, allowing the model to explore diverse conceptual paths instead of overfitting to shallow or direct interactions. Experiments on four public benchmarks show superior NDCG, calibration, and diversity compared to strong baselines. ManifoldMind produces explicit reasoning traces, enabling transparent, trustworthy, and exploration-driven recommendations in sparse or abstract domains.
☆ DARTS: A Dual-View Attack Framework for Targeted Manipulation in Federated Sequential Recommendation
Federated recommendation (FedRec) preserves user privacy by enabling decentralized training of personalized models, but this architecture is inherently vulnerable to adversarial attacks. Significant research has been conducted on targeted attacks in FedRec systems, motivated by commercial and social influence considerations. However, much of this work has largely overlooked the differential robustness of recommendation models. Moreover, our empirical findings indicate that existing targeted attack methods achieve only limited effectiveness in Federated Sequential Recommendation(FSR) tasks. Driven by these observations, we focus on investigating targeted attacks in FSR and propose a novel dualview attack framework, named DV-FSR. This attack method uniquely combines a sampling-based explicit strategy with a contrastive learning-based implicit gradient strategy to orchestrate a coordinated attack. Additionally, we introduce a specific defense mechanism tailored for targeted attacks in FSR, aiming to evaluate the mitigation effects of the attack method we proposed. Extensive experiments validate the effectiveness of our proposed approach on representative sequential models. Our codes are publicly available.
comment: 10 pages. arXiv admin note: substantial text overlap with arXiv:2409.07500; text overlap with arXiv:2212.05399 by other authors
☆ Uncertainty-Aware Complex Scientific Table Data Extraction
Table structure recognition (TSR) and optical character recognition (OCR) play crucial roles in extracting structured data from tables in scientific documents. However, existing extraction frameworks built on top of TSR and OCR methods often fail to quantify the uncertainties of extracted results. To obtain highly accurate data for scientific domains, all extracted data must be manually verified, which can be time-consuming and labor-intensive. We propose a framework that performs uncertainty-aware data extraction for complex scientific tables, built on conformal prediction, a model-agnostic method for uncertainty quantification (UQ). We explored various uncertainty scoring methods to aggregate the uncertainties introduced by TSR and OCR. We rigorously evaluated the framework using a standard benchmark and an in-house dataset consisting of complex scientific tables in six scientific domains. The results demonstrate the effectiveness of using UQ for extraction error detection, and by manually verifying only 47\% of extraction results, the data quality can be improved by 30\%. Our work quantitatively demonstrates the role of UQ with the potential of improving the efficiency in the human-machine cooperation process to obtain scientifically usable data from complex tables in scientific documents. All code and data are available on GitHub at https://github.com/lamps-lab/TSR-OCR-UQ/tree/main.
☆ Frustratingly Simple Retrieval Improves Challenging, Reasoning-Intensive Benchmarks
Retrieval-augmented Generation (RAG) has primarily been studied in limited settings, such as factoid question answering; more challenging, reasoning-intensive benchmarks have seen limited success from minimal RAG. In this work, we challenge this prevailing view on established, reasoning-intensive benchmarks: MMLU, MMLU Pro, AGI Eval, GPQA, and MATH. We identify a key missing component in prior work: a usable, web-scale datastore aligned with the breadth of pretraining data. To this end, we introduce CompactDS: a diverse, high-quality, web-scale datastore that achieves high retrieval accuracy and subsecond latency on a single-node. The key insights are (1) most web content can be filtered out without sacrificing coverage, and a compact, high-quality subset is sufficient; and (2) combining in-memory approximate nearest neighbor (ANN) retrieval and on-disk exact search balances speed and recall. Using CompactDS, we show that a minimal RAG pipeline achieves consistent accuracy improvements across all benchmarks and model sizes (8B--70B), with relative gains of 10% on MMLU, 33% on MMLU Pro, 14% on GPQA, and 19% on MATH. No single data source suffices alone, highlighting the importance of diversity of sources (web crawls, curated math, academic papers, textbooks). Finally, we show that our carefully designed in-house datastore matches or outperforms web search engines such as Google Search, as well as recently proposed, complex agent-based RAG systems--all while maintaining simplicity, reproducibility, and self-containment. We release CompactDS and our retrieval pipeline, supporting future research exploring retrieval-based AI systems.
comment: 33 pages, 2 figures, 27 tables
☆ Far From Sight, Far From Mind: Inverse Distance Weighting for Graph Federated Recommendation
Graph federated recommendation systems offer a privacy-preserving alternative to traditional centralized recommendation architectures, which often raise concerns about data security. While federated learning enables personalized recommendations without exposing raw user data, existing aggregation methods overlook the unique properties of user embeddings in this setting. Indeed, traditional aggregation methods fail to account for their complexity and the critical role of user similarity in recommendation effectiveness. Moreover, evolving user interactions require adaptive aggregation while preserving the influence of high-relevance anchor users (the primary users before expansion in graph-based frameworks). To address these limitations, we introduce Dist-FedAvg, a novel distance-based aggregation method designed to enhance personalization and aggregation efficiency in graph federated learning. Our method assigns higher aggregation weights to users with similar embeddings, while ensuring that anchor users retain significant influence in local updates. Empirical evaluations on multiple datasets demonstrate that Dist-FedAvg consistently outperforms baseline aggregation techniques, improving recommendation accuracy while maintaining seamless integration into existing federated learning frameworks.
comment: 17 pages, 5 figures
♻ ☆ Interact2Vec -- An efficient neural network-based model for simultaneously learning users and items embeddings in recommender systems
Over the past decade, recommender systems have experienced a surge in popularity. Despite notable progress, they grapple with challenging issues, such as high data dimensionality and sparseness. Representing users and items as low-dimensional embeddings learned via neural networks has become a leading solution. However, while recent studies show promising results, many approaches rely on complex architectures or require content data, which may not always be available. This paper presents Interact2Vec, a novel neural network-based model that simultaneously learns distributed embeddings for users and items while demanding only implicit feedback. The model employs state-of-the-art strategies that natural language processing models commonly use to optimize the training phase and enhance the final embeddings. Two types of experiments were conducted regarding the extrinsic and intrinsic quality of the model. In the former, we benchmarked the recommendations generated by Interact2Vec's embeddings in a top-$N$ ranking problem, comparing them with six other recommender algorithms. The model achieved the second or third-best results in 30% of the datasets, being competitive with other recommenders, and has proven to be very efficient with an average training time reduction of 274% compared to other embedding-based models. Later, we analyzed the intrinsic quality of the embeddings through similarity tables. Our findings suggest that Interact2Vec can achieve promising results, especially on the extrinsic task, and is an excellent embedding-generator model for scenarios of scarce computing resources, enabling the learning of item and user embeddings simultaneously and efficiently.
comment: Published in Applied Soft Computing (ASOC), 49 pages, 14 figures
♻ ☆ Towards Efficient Educational Chatbots: Benchmarking RAG Frameworks
Large Language Models (LLMs) have proven immensely beneficial in education by capturing vast amounts of literature-based information, allowing them to generate context without relying on external sources. In this paper, we propose a generative AI-powered GATE question-answering framework (GATE stands for Graduate Aptitude Test in Engineering) that leverages LLMs to explain GATE solutions and support students in their exam preparation. We conducted extensive benchmarking to select the optimal embedding model and LLM, evaluating our framework based on criteria such as latency, faithfulness, and relevance, with additional validation through human evaluation. Our chatbot integrates state-of-the-art embedding models and LLMs to deliver accurate, context-aware responses. Through rigorous experimentation, we identified configurations that balance performance and computational efficiency, ensuring a reliable chatbot to serve students' needs. Additionally, we discuss the challenges faced in data processing and modeling and implemented solutions. Our work explores the application of Retrieval-Augmented Generation (RAG) for GATE Q/A explanation tasks, and our findings demonstrate significant improvements in retrieval accuracy and response quality. This research offers practical insights for developing effective AI-driven educational tools while highlighting areas for future enhancement in usability and scalability.
comment: One of the co-authors is having conflict in the submission to arXiv due to many edits (we have to make changes in evaluation strategies, i.e. section 5); in the paper there are still formatting issues
♻ ☆ Neural Prioritisation for Web Crawling ICTIR 2025
Given the vast scale of the Web, crawling prioritisation techniques based on link graph traversal, popularity, link analysis, and textual content are frequently applied to surface documents that are most likely to be valuable. While existing techniques are effective for keyword-based search, both retrieval methods and user search behaviours are shifting from keyword-based matching to natural language semantic matching. The remarkable success of applying semantic matching and quality signals during ranking leads us to hypothesize that crawling could be improved by prioritizing Web pages with high semantic quality. To investigate this, we propose a semantic quality-driven prioritisation technique to enhance the effectiveness of crawling and align the crawler behaviour with recent shift towards natural language search. We embed semantic understanding directly into the crawling process -- leveraging recent neural semantic quality estimators to prioritise the crawling frontier -- with the goal of surfacing content that is semantically rich and valuable for modern search needs. Our experiments on the English subset of ClueWeb22-B and the Researchy Questions query set show that, compared to existing crawling techniques, neural crawling policies significantly improve harvest rate, maxNDCG, and search effectiveness during the early stages of crawling. Meanwhile, crawlers based on our proposed neural policies maintain comparable search performance on keyword queries from the MS MARCO Web Search query set. While this work does not propose a definitive and complete solution, it presents a forward-looking perspective on Web crawling and opens the door to a new line of research on leveraging semantic analysis to effectively align crawlers with the ongoing shift toward natural language search.
comment: Published at ACM ICTIR 2025
♻ ☆ MassTool: A Multi-Task Search-Based Tool Retrieval Framework for Large Language Models
Tool retrieval is a critical component in enabling large language models (LLMs) to interact effectively with external tools. It aims to precisely filter the massive tools into a small set of candidates for the downstream tool-augmented LLMs. However, most existing approaches primarily focus on optimizing tool representations, often neglecting the importance of precise query comprehension. To address this gap, we introduce MassTool, a multi-task search-based framework designed to enhance both query representation and tool retrieval accuracy. MassTool employs a two-tower architecture: a tool usage detection tower that predicts the need for function calls, and a tool retrieval tower that leverages a query-centric graph convolution network (QC-GCN) for effective query-tool matching. It also incorporates search-based user intent modeling (SUIM) to handle diverse and out-of-distribution queries, alongside an adaptive knowledge transfer (AdaKT) module for efficient multi-task learning. By jointly optimizing tool usage detection loss, list-wise retrieval loss, and contrastive regularization loss, MassTool establishes a robust dual-step sequential decision-making pipeline for precise query understanding. Extensive experiments demonstrate its effectiveness in improving retrieval accuracy. Our code is available at https://github.com/wxydada/MassTool.
♻ ☆ Hierarchical Patch Compression for ColPali: Efficient Multi-Vector Document Retrieval with Dynamic Pruning and Quantization
Multi-vector document retrieval systems, such as ColPali, excel in fine-grained matching for complex queries but incur significant storage and computational costs due to their reliance on high-dimensional patch embeddings and late-interaction scoring. To address these challenges, we propose HPC-ColPali, a Hierarchical Patch Compression framework that enhances the efficiency of ColPali while preserving its retrieval accuracy. Our approach integrates three innovative techniques: (1) K-Means quantization, which compresses patch embeddings into 1-byte centroid indices, achieving up to 32$\times$ storage reduction; (2) attention-guided dynamic pruning, utilizing Vision-Language Model attention weights to retain only the top-$p\%$ most salient patches, reducing late-interaction computation by up to 60\% with less than 2\% nDCG@10 loss; and (3) optional binary encoding of centroid indices into $b$-bit strings ($b=\lceil\log_2 K\rceil$), enabling rapid Hamming distance-based similarity search for resource-constrained environments. Evaluated on the ViDoRe and SEC-Filings datasets, HPC-ColPali achieves 30--50\% lower query latency under HNSW indexing while maintaining high retrieval precision. When integrated into a Retrieval-Augmented Generation pipeline for legal summarization, it reduces hallucination rates by 30\% and halves end-to-end latency. These advancements establish HPC-ColPali as a scalable and efficient solution for multi-vector document retrieval across diverse applications. Code is available at https://github.com/DngBack/HPC-ColPali.
comment: 9 pages
♻ ☆ WebANNS: Fast and Efficient Approximate Nearest Neighbor Search in Web Browsers SIGIR 2025
Approximate nearest neighbor search (ANNS) has become vital to modern AI infrastructure, particularly in retrieval-augmented generation (RAG) applications. Numerous in-browser ANNS engines have emerged to seamlessly integrate with popular LLM-based web applications, while addressing privacy protection and challenges of heterogeneous device deployments. However, web browsers present unique challenges for ANNS, including computational limitations, external storage access issues, and memory utilization constraints, which state-of-the-art (SOTA) solutions fail to address comprehensively. We propose WebANNS, a novel ANNS engine specifically designed for web browsers. WebANNS leverages WebAssembly to overcome computational bottlenecks, designs a lazy loading strategy to optimize data retrieval from external storage, and applies a heuristic approach to reduce memory usage. Experiments show that WebANNS is fast and memory efficient, achieving up to $743.8\times$ improvement in 99th percentile query latency over the SOTA engine, while reducing memory usage by up to 39\%. Note that WebANNS decreases query time from 10 seconds to the 10-millisecond range in browsers, making in-browser ANNS practical with user-acceptable latency.
comment: SIGIR 2025
♻ ☆ Large Language Models, and LLM-Based Agents, Should Be Used to Enhance the Digital Public Sphere
This paper argues that large language model-based recommenders can displace today's attention-allocation machinery. LLM-based recommenders would ingest open-web content, infer a user's natural-language goals, and present information that matches their reflective preferences. Properly designed, they could deliver personalization without industrial-scale data hoarding, return control to individuals, optimize for genuine ends rather than click-through proxies, and support autonomous attention management. Synthesizing evidence of current systems' harms with recent work on LLM-driven pipelines, we identify four key research hurdles: generating candidates without centralized data, maintaining computational efficiency, modeling preferences robustly, and defending against prompt-injection. None looks prohibitive; surmounting them would steer the digital public sphere toward democratic, human-centered values.
Information Retrieval 21
☆ Towards a Signal Detection Based Measure for Assessing Information Quality of Explainable Recommender Systems
There is growing interest in explainable recommender systems that provide recommendations along with explanations for the reasoning behind them. When evaluating recommender systems, most studies focus on overall recommendation performance. Only a few assess the quality of the explanations. Explanation quality is often evaluated through user studies that subjectively gather users' opinions on representative explanatory factors that shape end-users' perspective towards the results, not about the explanation contents itself. We aim to fill this gap by developing an objective metric to evaluate Veracity: the information quality of explanations. Specifically, we decompose Veracity into two dimensions: Fidelity and Attunement. Fidelity refers to whether the explanation includes accurate information about the recommended item. Attunement evaluates whether the explanation reflects the target user's preferences. By applying signal detection theory, we first determine decision outcomes for each dimension and then combine them to calculate a sensitivity, which serves as the final Veracity value. To assess the effectiveness of the proposed metric, we set up four cases with varying levels of information quality to validate whether our metric can accurately capture differences in quality. The results provided meaningful insights into the effectiveness of our proposed metric.
comment: Accepted to IEEE CAI 2025
☆ Digital Collections Explorer: An Open-Source, Multimodal Viewer for Searching Digital Collections
We present Digital Collections Explorer, a web-based, open-source exploratory search platform that leverages CLIP (Contrastive Language-Image Pre-training) for enhanced visual discovery of digital collections. Our Digital Collections Explorer can be installed locally and configured to run on a visual collection of interest on disk in just a few steps. Building upon recent advances in multimodal search techniques, our interface enables natural language queries and reverse image searches over digital collections with visual features. This paper describes the system's architecture, implementation, and application to various cultural heritage collections, demonstrating its potential for democratizing access to digital archives, especially those with impoverished metadata. We present case studies with maps, photographs, and PDFs extracted from web archives in order to demonstrate the flexibility of the Digital Collections Explorer, as well as its ease of use. We demonstrate that the Digital Collections Explorer scales to hundreds of thousands of images on a MacBook Pro with an M4 chip. Lastly, we host a public demo of Digital Collections Explorer.
comment: 14 pages, 8 figures, 2 tables
☆ WebArXiv: Evaluating Multimodal Agents on Time-Invariant arXiv Tasks
Recent progress in large language models (LLMs) has enabled the development of autonomous web agents capable of navigating and interacting with real websites. However, evaluating such agents remains challenging due to the instability and inconsistency of existing benchmarks, which often rely on dynamic content or oversimplified simulations. In this work, we introduce WebArXiv, a static and time-invariant benchmark comprising 275 web-based tasks grounded in the arXiv platform. WebArXiv ensures reproducible and reliable evaluation by anchoring tasks in fixed web snapshots with deterministic ground truths and standardized action trajectories. Through behavioral analysis, we identify a common failure mode, Rigid History Reflection, where agents over-rely on fixed interaction histories. To address this, we propose a lightweight dynamic reflection mechanism that allows agents to selectively retrieve relevant past steps during decision-making. We evaluate ten state-of-the-art web agents on WebArXiv. Results demonstrate clear performance differences across agents and validate the effectiveness of our proposed reflection strategy.
comment: 10 pages, 9 figures, 4 tables
☆ EARN: Efficient Inference Acceleration for LLM-based Generative Recommendation by Register Tokens KDD 2025
Large Language Model-based generative recommendation (LLMRec) has achieved notable success, but it suffers from high inference latency due to massive computational overhead and memory pressure of KV Cache. Existing KV Cache reduction methods face critical limitations: cache compression offers marginal acceleration given recommendation tasks' short decoding steps, while prompt compression risks discarding vital interaction history. Through systematic analysis of attention patterns in LLMRec, we uncover two pivotal insights: 1) layer-wise attention sparsity inversion where early layers retain dense informative patterns while later layers exhibit high redundancy, and 2) dual attention sinks phenomenon where attention scores concentrate on both head and tail tokens of input sequences. Motivated by these insights, we propose EARN, an efficient inference framework that leverages the early layers to compress information into register tokens placed at the input sequence boundaries, then focuses solely on these tokens in the subsequent layers. Extensive experiments on three datasets, two LLMRec methods and two LLM architectures demonstrate EARN's superiority, achieving up to 3.79x speedup and 80.8% KV Cache reduction with better accuracy than the general finetuning approach. Our work bridges the efficiency-effectiveness gap in LLMRec, offering practical deployment advantages for industrial scenarios.
comment: Accepted by KDD 2025
☆ Why Multi-Interest Fairness Matters: Hypergraph Contrastive Multi-Interest Learning for Fair Conversational Recommender System
Unfairness is a well-known challenge in Recommender Systems (RSs), often resulting in biased outcomes that disadvantage users or items based on attributes such as gender, race, age, or popularity. Although some approaches have started to improve fairness recommendation in offline or static contexts, the issue of unfairness often exacerbates over time, leading to significant problems like the Matthew effect, filter bubbles, and echo chambers. To address these challenges, we proposed a novel framework, Hypergraph Contrastive Multi-Interest Learning for Fair Conversational Recommender System (HyFairCRS), aiming to promote multi-interest diversity fairness in dynamic and interactive Conversational Recommender Systems (CRSs). HyFairCRS first captures a wide range of user interests by establishing diverse hypergraphs through contrastive learning. These interests are then utilized in conversations to generate informative responses and ensure fair item predictions within the dynamic user-system feedback loop. Experiments on two CRS-based datasets show that HyFairCRS achieves a new state-of-the-art performance while effectively alleviating unfairness. Our code is available at https://github.com/zysensmile/HyFairCRS.
☆ Reliable Annotations with Less Effort: Evaluating LLM-Human Collaboration in Search Clarifications
Despite growing interest in using large language models (LLMs) to automate annotation, their effectiveness in complex, nuanced, and multi-dimensional labelling tasks remains relatively underexplored. This study focuses on annotation for the search clarification task, leveraging a high-quality, multi-dimensional dataset that includes five distinct fine-grained annotation subtasks. Although LLMs have shown impressive capabilities in general settings, our study reveals that even state-of-the-art models struggle to replicate human-level performance in subjective or fine-grained evaluation tasks. Through a systematic assessment, we demonstrate that LLM predictions are often inconsistent, poorly calibrated, and highly sensitive to prompt variations. To address these limitations, we propose a simple yet effective human-in-the-loop (HITL) workflow that uses confidence thresholds and inter-model disagreement to selectively involve human review. Our findings show that this lightweight intervention significantly improves annotation reliability while reducing human effort by up to 45%, offering a relatively scalable and cost-effective yet accurate path forward for deploying LLMs in real-world evaluation settings.
comment: 9 pages,5 figures
☆ Rethinking Group Recommender Systems in the Era of Generative AI: From One-Shot Recommendations to Agentic Group Decision Support
More than twenty-five years ago, first ideas were developed on how to design a system that can provide recommendations to groups of users instead of individual users. Since then, a rich variety of algorithmic proposals were published, e.g., on how to acquire individual preferences, how to aggregate them, and how to generate recommendations for groups of users. However, despite the rich literature on the topic, barely any examples of real-world group recommender systems can be found. This lets us question common assumptions in academic research, in particular regarding communication processes in a group and how recommendation-supported decisions are made. In this essay, we argue that these common assumptions and corresponding system designs often may not match the needs or expectations of users. We thus call for a reorientation in this research area, leveraging the capabilities of modern Generative AI assistants like ChatGPT. Specifically, as one promising future direction, we envision group recommender systems to be systems where human group members interact in a chat and an AI-based group recommendation agent assists the decision-making process in an agentic way. Ultimately, this shall lead to a more natural group decision-making environment and finally to wider adoption of group recommendation systems in practice.
comment: Submitted for publication
☆ Exploring Large Action Sets with Hyperspherical Embeddings using von Mises-Fisher Sampling ICML 2025
This paper introduces von Mises-Fisher exploration (vMF-exp), a scalable method for exploring large action sets in reinforcement learning problems where hyperspherical embedding vectors represent these actions. vMF-exp involves initially sampling a state embedding representation using a von Mises-Fisher distribution, then exploring this representation's nearest neighbors, which scales to virtually unlimited numbers of candidate actions. We show that, under theoretical assumptions, vMF-exp asymptotically maintains the same probability of exploring each action as Boltzmann Exploration (B-exp), a popular alternative that, nonetheless, suffers from scalability issues as it requires computing softmax values for each action. Consequently, vMF-exp serves as a scalable alternative to B-exp for exploring large action sets with hyperspherical embeddings. Experiments on simulated data, real-world public data, and the successful large-scale deployment of vMF-exp on the recommender system of a global music streaming service empirically validate the key properties of the proposed method.
comment: 42nd International Conference on Machine Learning (ICML 2025)
☆ On Mitigating Data Sparsity in Conversational Recommender Systems
Conversational recommender systems (CRSs) capture user preference through textual information in dialogues. However, they suffer from data sparsity on two fronts: the dialogue space is vast and linguistically diverse, while the item space exhibits long-tail and sparse distributions. Existing methods struggle with (1) generalizing to varied dialogue expressions due to underutilization of rich textual cues, and (2) learning informative item representations under severe sparsity. To address these problems, we propose a CRS model named DACRS. It consists of three modules, namely Dialogue Augmentation, Knowledge-Guided Entity Modeling, and Dialogue-Entity Matching. In the Dialogue Augmentation module, we apply a two-stage augmentation pipeline to augment the dialogue context to enrich the data and improve generalizability. In the Knowledge-Guided Entity Modeling, we propose a knowledge graph (KG) based entity substitution and an entity similarity constraint to enhance the expressiveness of entity embeddings. In the Dialogue-Entity Matching module, we fuse the dialogue embedding with the mentioned entity embeddings through a dialogue-guided attention aggregation to acquire user embeddings that contain both the explicit and implicit user preferences. Extensive experiments on two public datasets demonstrate the state-of-the-art performance of DACRS.
☆ Read the Docs Before Rewriting: Equip Rewriter with Domain Knowledge via Continual Pre-training
A Retrieval-Augmented Generation (RAG)-based question-answering (QA) system enhances a large language model's knowledge by retrieving relevant documents based on user queries. Discrepancies between user queries and document phrasings often necessitate query rewriting. However, in specialized domains, the rewriter model may struggle due to limited domain-specific knowledge. To resolve this, we propose the R\&R (Read the doc before Rewriting) rewriter, which involves continual pre-training on professional documents, akin to how students prepare for open-book exams by reviewing textbooks. Additionally, it can be combined with supervised fine-tuning for improved results. Experiments on multiple datasets demonstrate that R\&R excels in professional QA across multiple domains, effectively bridging the query-document gap, while maintaining good performance in general scenarios, thus advancing the application of RAG-based QA systems in specialized fields.
☆ Modeling Data Diversity for Joint Instance and Verbalizer Selection in Cold-Start Scenarios
Prompt-based methods leverage the knowledge of pre-trained language models (PLMs) trained with a masked language modeling (MLM) objective; however, these methods are sensitive to template, verbalizer, and few-shot instance selection, particularly in cold-start settings with no labeled data. Existing studies overlook the dependency between instances and verbalizers, where instance-label probabilities depend on verbalizer token proximity in the embedding space. To address this, we propose COLDSELECT, a joint verbalizer and instance selection approach that models data diversity. COLDSELECT maps PLM vocabulary and $h_{[MASK]}$ embeddings into a shared space, applying dimensionality reduction and clustering to ensure efficient and diverse selection. By optimizing for minimal uncertainty and maximal diversity, COLDSELECT captures data relationships effectively. Experiments on eight benchmarks demonstrate COLDSELECT's superiority in reducing uncertainty and enhancing generalization, outperforming baselines in verbalizer and few-shot instance selection for cold-start scenarios.
♻ ☆ A Unified Bayesian Perspective for Conventional and Robust Adaptive Filters
In this work, we present a new perspective on the origin and interpretation of adaptive filters. By applying Bayesian principles of recursive inference from the state-space model and using a series of simplifications regarding the structure of the solution, we can present, in a unified framework, derivations of many adaptive filters that depend on the probabilistic model of the measurement noise. In particular, under a Gaussian model, we obtain solutions well-known in the literature (such as LMS, NLMS, or Kalman filter), while using non-Gaussian noise, we derive new adaptive algorithms. Notably, under the assumption of Laplacian noise, we obtain a family of robust filters of which the sign-error algorithm is a well-known member, while other algorithms, derived effortlessly in the proposed framework, are entirely new. Numerical examples are shown to illustrate the properties and provide a better insight into the performance of the derived adaptive filters.
♻ ☆ What About Emotions? Guiding Fine-Grained Emotion Extraction from Mobile App Reviews
Opinion mining plays a vital role in analysing user feedback and extracting insights from textual data. While most research focuses on sentiment polarity (e.g., positive, negative, neutral), fine-grained emotion classification in app reviews remains underexplored. Fine-grained emotion classification is thus needed to better understand users' affective responses and support downstream tasks such as feature-emotion analysis, user-oriented release planning, and issue triaging. This paper addresses this gap by identifying and addressing the challenges and limitations in fine-grained emotion analysis in the context of app reviews. Our study adapts Plutchik's emotion taxonomy to app reviews by developing a structured annotation framework and dataset. Through an iterative human annotation process, we define clear annotation guidelines and document key challenges in emotion classification. Additionally, we evaluate the feasibility of automating emotion annotation using large language models, assessing their cost-effectiveness and agreement with human-labelled data. Our findings reveal that while large language models significantly reduce manual effort and maintain substantial agreement with human annotators, full automation remains challenging due to the complexity of emotional interpretation. This work contributes to opinion mining in requirements engineering by providing structured guidelines, an annotated dataset, and insights for developing automated pipelines to capture the complexity of emotions in app reviews.
comment: Accepted at the 33rd IEEE International Requirements Engineering 2025 conference
♻ ☆ OM4OV: Leveraging Ontology Matching for Ontology Versioning
Due to the dynamic nature of the Semantic Web, version control is necessary to capture time-varying information, particularly for widely used ontologies. Despite the long-standing recognition of ontology versioning (OV) as a crucial component for efficient ontology management, the growing size of ontologies and accumulating errors caused by manual labour overwhelm current OV approaches. In this paper, we propose a fresh approach to performing OV using existing ontology matching (OM) techniques and systems. We introduce a unified OM4OV pipeline. From an OM perspective, we reconstruct a new task formulation and measurements for OV tasks. Building upon the prior alignment(s) from OM, we propose a pipeline optimisation method called the cross-reference (CR) mechanism to enhance overall OV performance. We experimentally validate the OM4OV pipeline and the cross-reference mechanism in an OV testbed originating from the Ontology Alignment Evaluation Initiative (OAEI) datasets. We also discuss insights into OM used for OV tasks, where some apparent false mappings detected by OV systems are not actually untrue.
comment: 15 pages, 8 figures, 1 table
♻ ☆ Iterative Resolution of Prompt Ambiguities Using a Progressive Cutting-Search Approach
Generative AI systems have revolutionized human interaction by enabling natural language-based coding and problem solving. However, the inherent ambiguity of natural language often leads to imprecise instructions, forcing users to iteratively test, correct, and resubmit their prompts. We propose an iterative approach that systematically narrows down these ambiguities through a structured series of clarification questions and alternative solution proposals, illustrated with input/output examples as well. Once every uncertainty is resolved, a final, precise solution is generated. Evaluated on a diverse dataset spanning coding, data analysis, and creative writing, our method demonstrates superior accuracy, competitive resolution times, and higher user satisfaction compared to conventional one-shot solutions, which typically require multiple manual iterations to achieve a correct output.
♻ ☆ Rethinking Click Models in Light of Carousel Interfaces: Theory-Based Categorization and Design of Click Models ICTIR 2025
Click models are a well-established for modeling user interactions with web interfaces. Previous work has mainly focused on traditional single-list web search settings; this includes existing surveys that introduced categorizations based on the first generation of probabilistic graphical model (PGM) click models that have become standard. However, these categorizations have become outdated, as their conceptualizations are unable to meaningfully compare PGM with neural network (NN) click models nor generalize to newer interfaces, such as carousel interfaces. We argue that this outdated view fails to adequately explain the fundamentals of click model designs, thus hindering the development of novel click models. This work reconsiders what should be the fundamental concepts in click model design, grounding them - unlike previous approaches - in their mathematical properties. We propose three fundamental key-design choices that explain what statistical patterns a click model can capture, and thus indirectly, what user behaviors they can capture. Based on these choices, we create a novel click model taxonomy that allows a meaningful comparison of all existing click models; this is the first taxonomy of single-list, grid and carousel click models that includes PGMs and NNs. Finally, we show how our conceptualization provides a foundation for future click model design by an example derivation of a novel design for carousel interfaces.
comment: Accepted by ICTIR 2025
♻ ☆ An Automatic Graph Construction Framework based on Large Language Models for Recommendation KDD'25
Graph neural networks (GNNs) have emerged as state-of-the-art methods to learn from graph-structured data for recommendation. However, most existing GNN-based recommendation methods focus on the optimization of model structures and learning strategies based on pre-defined graphs, neglecting the importance of the graph construction stage. Earlier works for graph construction usually rely on speciffic rules or crowdsourcing, which are either too simplistic or too labor-intensive. Recent works start to utilize large language models (LLMs) to automate the graph construction, in view of their abundant open-world knowledge and remarkable reasoning capabilities. Nevertheless, they generally suffer from two limitations: (1) invisibility of global view (e.g., overlooking contextual information) and (2) construction inefficiency. To this end, we introduce AutoGraph, an automatic graph construction framework based on LLMs for recommendation. Specifically, we first use LLMs to infer the user preference and item knowledge, which is encoded as semantic vectors. Next, we employ vector quantization to extract the latent factors from the semantic vectors. The latent factors are then incorporated as extra nodes to link the user/item nodes, resulting in a graph with in-depth global-view semantics. We further design metapath-based message aggregation to effectively aggregate the semantic and collaborative information. The framework is model-agnostic and compatible with different backbone models. Extensive experiments on three real-world datasets demonstrate the efficacy and efffciency of AutoGraph compared to existing baseline methods. We have deployed AutoGraph in Huawei advertising platform, and gain a 2.69% improvement on RPM and a 7.31% improvement on eCPM in the online A/B test. Currently AutoGraph has been used as the main trafffc model, serving hundreds of millions of people.
comment: Accepted by KDD'25
♻ ☆ CARTS: Collaborative Agents for Recommendation Textual Summarization
Current recommendation systems often require some form of textual data summarization, such as generating concise and coherent titles for product carousels or other grouped item displays. While large language models have shown promise in NLP domains for textual summarization, these approaches do not directly apply to recommendation systems, where explanations must be highly relevant to the core features of item sets, adhere to strict word limit constraints. In this paper, we propose CARTS (Collaborative Agents for Recommendation Textual Summarization), a multi-agent LLM framework designed for structured summarization in recommendation systems. CARTS decomposes the task into three stages-Generation Augmented Generation (GAG), refinement circle, and arbitration, where successive agent roles are responsible for extracting salient item features, iteratively refining candidate titles based on relevance and length feedback, and selecting the final title through a collaborative arbitration process. Experiments on large-scale e-commerce data and live A/B testing show that CARTS significantly outperforms single-pass and chain-of-thought LLM baselines, delivering higher title relevance and improved user engagement metrics.
♻ ☆ Generative Representational Learning of Foundation Models for Recommendation
Developing a single foundation model with the capability to excel across diverse tasks has been a long-standing objective in the field of artificial intelligence. As the wave of general-purpose foundation models sweeps across various domains, their influence has significantly extended to the field of recommendation systems. While recent efforts have explored recommendation foundation models for various generative tasks, they often overlook crucial embedding tasks and struggle with the complexities of multi-task learning, including knowledge sharing & conflict resolution, and convergence speed inconsistencies. To address these limitations, we introduce RecFound, a generative representational learning framework for recommendation foundation models. We construct the first comprehensive dataset for recommendation foundation models covering both generative and embedding tasks across diverse scenarios. Based on this dataset, we propose a novel multi-task training scheme featuring a Task-wise Mixture of Low-rank Experts (TMoLE) to handle knowledge sharing & conflict, a Step-wise Convergence-oriented Sample Scheduler (S2Sched) to address inconsistent convergence, and a Model Merge module to balance the performance across tasks. Experiments demonstrate that RecFound achieves state-of-the-art performance across various recommendation tasks, outperforming existing baselines.
comment: Project page is available at https://junkfood436.github.io/RecFound/
♻ ☆ Towards Competitive Search Relevance For Inference-Free Learned Sparse Retrievers
Learned sparse retrieval, which can efficiently perform retrieval through mature inverted-index engines, has garnered growing attention in recent years. Particularly, the inference-free sparse retrievers are attractive as they eliminate online model inference in the retrieval phase thereby avoids huge computational cost, offering reasonable throughput and latency. However, even the state-of-the-art (SOTA) inference-free sparse models lag far behind in terms of search relevance when compared to both sparse and dense siamese models. Towards competitive search relevance for inference-free sparse retrievers, we argue that they deserve dedicated training methods other than using same ones with siamese encoders. In this paper, we propose two different approaches for performance improvement. First, we propose an IDF-aware penalty for the matching function that suppresses the contribution of low-IDF tokens and increases the model's focus on informative terms. Moreover, we propose a heterogeneous ensemble knowledge distillation framework that combines siamese dense and sparse retrievers to generate supervisory signals during the pre-training phase. The ensemble framework of dense and sparse retriever capitalizes on their strengths respectively, providing a strong upper bound for knowledge distillation. To concur the diverse feedback from heterogeneous supervisors, we normalize and then aggregate the outputs of the teacher models to eliminate score scale differences. On the BEIR benchmark, our model outperforms existing SOTA inference-free sparse model by \textbf{3.3 NDCG@10 score}. It exhibits search relevance comparable to siamese sparse retrievers and client-side latency only \textbf{1.1x that of BM25}.
♻ ☆ Enabling Collaborative Parametric Knowledge Calibration for Retrieval-Augmented Vision Question Answering
Knowledge-based Vision Question Answering (KB-VQA) systems address complex visual-grounded questions with knowledge retrieved from external knowledge bases. The tasks of knowledge retrieval and answer generation tasks both necessitate precise multimodal understanding of question context and external knowledge. However, existing methods treat these two stages as separate modules with limited interaction during training, which hinders bi-directional parametric knowledge sharing, ultimately leading to suboptimal performance. To fully exploit the cross-task synergy in KB-VQA, we propose a unified retrieval-augmented VQA framework with collaborative parametric knowledge calibration. The proposed framework can effectively adapt general multimodal pre-trained models for fine-grained, knowledge-intensive tasks while enabling the retriever and generator to collaboratively enhance and share their parametric knowledge during both training and inference. To enhance fine-grained understanding of questions and external documents, we also integrate late interaction mechanism into the proposed training framework. Additionally, we introduce a reflective-answering mechanism that allows the model to explicitly evaluate and refine its knowledge boundary. Our approach achieves competitive performance against state-of-the-art models, delivering a significant 4.7\% improvement in answering accuracy, and brings an average 7.5\% boost in base MLLMs' VQA performance.
comment: 10 pages, 5 figures, Under Review
Information Retrieval 18
☆ Embedding-based Retrieval in Multimodal Content Moderation SIGIR 2025
Video understanding plays a fundamental role for content moderation on short video platforms, enabling the detection of inappropriate content. While classification remains the dominant approach for content moderation, it often struggles in scenarios requiring rapid and cost-efficient responses, such as trend adaptation and urgent escalations. To address this issue, we introduce an Embedding-Based Retrieval (EBR) method designed to complement traditional classification approaches. We first leverage a Supervised Contrastive Learning (SCL) framework to train a suite of foundation embedding models, including both single-modal and multi-modal architectures. Our models demonstrate superior performance over established contrastive learning methods such as CLIP and MoCo. Building on these embedding models, we design and implement the embedding-based retrieval system that integrates embedding generation and video retrieval to enable efficient and effective trend handling. Comprehensive offline experiments on 25 diverse emerging trends show that EBR improves ROC-AUC from 0.85 to 0.99 and PR-AUC from 0.35 to 0.95. Further online experiments reveal that EBR increases action rates by 10.32% and reduces operational costs by over 80%, while also enhancing interpretability and flexibility compared to classification-based solutions.
comment: Camera ready for SIGIR 2025
☆ Emergent musical properties of a transformer under contrastive self-supervised learning
In music information retrieval (MIR), contrastive self-supervised learning for general-purpose representation models is effective for global tasks such as automatic tagging. However, for local tasks such as chord estimation, it is widely assumed that contrastively trained general-purpose self-supervised models are inadequate and that more sophisticated SSL is necessary; e.g., masked modeling. Our paper challenges this assumption by revealing the potential of contrastive SSL paired with a transformer in local MIR tasks. We consider a lightweight vision transformer with one-dimensional patches in the time--frequency domain (ViT-1D) and train it with simple contrastive SSL through normalized temperature-scaled cross-entropy loss (NT-Xent). Although NT-Xent operates only over the class token, we observe that, potentially thanks to weight sharing, informative musical properties emerge in ViT-1D's sequence tokens. On global tasks, the temporal average of class and sequence tokens offers a performance increase compared to the class token alone, showing useful properties in the sequence tokens. On local tasks, sequence tokens perform unexpectedly well, despite not being specifically trained for. Furthermore, high-level musical features such as onsets emerge from layer-wise attention maps and self-similarity matrices show different layers capture different musical dimensions. Our paper does not focus on improving performance but advances the musical interpretation of transformers and sheds light on some overlooked abilities of contrastive SSL paired with transformers for sequence modeling in MIR.
comment: Accepted at ISMIR 2025
☆ Towards the "Digital Me": A vision of authentic Conversational Agents powered by personal Human Digital Twins
Human Digital Twins (HDTs) have traditionally been conceptualized as data-driven models designed to support decision-making across various domains. However, recent advancements in conversational AI open new possibilities for HDTs to function as authentic, interactive digital counterparts of individuals. This paper introduces a novel HDT system architecture that integrates large language models with dynamically updated personal data, enabling it to mirror an individual's conversational style, memories, and behaviors. To achieve this, our approach implements context-aware memory retrieval, neural plasticity-inspired consolidation, and adaptive learning mechanisms, creating a more natural and evolving digital persona. The resulting system does not only replicate an individual's unique conversational style depending on who they are speaking with, but also enriches responses with dynamically captured personal experiences, opinions, and memories. While this marks a significant step toward developing authentic virtual counterparts, it also raises critical ethical concerns regarding privacy, accountability, and the long-term implications of persistent digital identities. This study contributes to the field of HDTs by describing our novel system architecture, demonstrating its capabilities, and discussing future directions and emerging challenges to ensure the responsible and ethical development of HDTs.
comment: 24 pages, 9 figures
☆ FAIR-MATCH: A Multi-Objective Framework for Bias Mitigation in Reciprocal Dating Recommendations
Online dating platforms have fundamentally transformed the formation of romantic relationships, with millions of users worldwide relying on algorithmic matching systems to find compatible partners. However, current recommendation systems in dating applications suffer from significant algorithmic deficiencies, including but not limited to popularity bias, filter bubble effects, and inadequate reciprocity modeling that limit effectiveness and introduce harmful biases. This research integrates foundational work with recent empirical findings to deliver a detailed analysis of dating app recommendation systems, highlighting key issues and suggesting research-backed solutions. Through analysis of reciprocal recommendation frameworks, fairness evaluation metrics, and industry implementations, we demonstrate that current systems achieve modest performance with collaborative filtering reaching 25.1\% while reciprocal methods achieve 28.7\%. Our proposed mathematical framework addresses these limitations through enhanced similarity measures, multi-objective optimization, and fairness-aware algorithms that maintain competitive accuracy while improving demographic representation to reduce algorithmic bias.
☆ Zero-Shot Contextual Embeddings via Offline Synthetic Corpus Generation
Context-aware embedding methods boost retrieval accuracy by conditioning on corpus statistics (e.g., term co-occurrence and topical patterns) extracted from neighboring documents. However, this context-aware approach requires access to the target corpus or requires domain-specific finetuning, posing practical barriers in privacy-sensitive or resource-constrained settings. We present ZEST, a zero-shot contextual adaptation framework that replaces real corpus access with a one-time offline synthesis of a compact proxy. Given only a handful exemplar documents representative of the general target domain, we use a multi-step hierarchical procedure to generate a synthetic context corpus of several hundred documents that aims to emulate key domain-specific distributions. At inference, the frozen context-aware encoder uses this proxy corpus -- without any finetuning or target corpus access -- to produce domain-adapted embeddings. Across the MTEB benchmark, ZEST's zero-shot synthetic context adaptation using only five example documents performs within 0.5% of models leveraging full target corpus access -- demonstrating remarkable efficacy without any retraining. ZEST thus provides a practical method for deploying high-performance, adaptable embeddings in constrained environments.
☆ Act-With-Think: Chunk Auto-Regressive Modeling for Generative Recommendation
Generative recommendation (GR) typically encodes behavioral or semantic aspects of item information into discrete tokens, leveraging the standard autoregressive (AR) generation paradigm to make predictions. However, existing methods tend to overlook their intrinsic relationship, that is, the semantic usually provides some reasonable explainability "$\textbf{why}$" for the behavior "$\textbf{what}$", which may constrain the full potential of GR. To this end, we present Chunk AutoRegressive Modeling (CAR), a new generation paradigm following the decision pattern that users usually think semantic aspects of items (e.g. brand) and then take actions on target items (e.g. purchase). Our CAR, for the $\textit{first time}$, incorporates semantics (SIDs) and behavior (UID) into a single autoregressive transformer from an ``act-with-think'' dual perspective via chunk-level autoregression. Specifically, CAR packs SIDs and UID into a conceptual chunk for item unified representation, allowing each decoding step to make a holistic prediction. Experiments show that our CAR significantly outperforms existing methods based on traditional AR, improving Recall@5 by 7.93% to 22.30%. Furthermore, we verify the scaling effect between model performance and SIDs bit number, demonstrating that CAR preliminary emulates a kind of slow-thinking style mechanism akin to the reasoning processes observed in large language models (LLMs).
comment: 9 pages, 2 figures
☆ Thought-Augmented Planning for LLM-Powered Interactive Recommender Agent
Interactive recommendation is a typical information-seeking task that allows users to interactively express their needs through natural language and obtain personalized recommendations. Large language model-powered (LLM-powered) agents have become a new paradigm in interactive recommendations, effectively capturing users' real-time needs and enhancing personalized experiences. However, due to limited planning and generalization capabilities, existing formulations of LLM-powered interactive recommender agents struggle to effectively address diverse and complex user intents, such as intuitive, unrefined, or occasionally ambiguous requests. To tackle this challenge, we propose a novel thought-augmented interactive recommender agent system (TAIRA) that addresses complex user intents through distilled thought patterns. Specifically, TAIRA is designed as an LLM-powered multi-agent system featuring a manager agent that orchestrates recommendation tasks by decomposing user needs and planning subtasks, with its planning capacity strengthened through Thought Pattern Distillation (TPD), a thought-augmentation method that extracts high-level thoughts from the agent's and human experts' experiences. Moreover, we designed a set of user simulation schemes to generate personalized queries of different difficulties and evaluate the recommendations based on specific datasets. Through comprehensive experiments conducted across multiple datasets, TAIRA exhibits significantly enhanced performance compared to existing methods. Notably, TAIRA shows a greater advantage on more challenging tasks while generalizing effectively on novel tasks, further validating its superiority in managing complex user intents within interactive recommendation systems. The code is publicly available at:https://github.com/Alcein/TAIRA.
☆ KiseKloset: Comprehensive System For Outfit Retrieval, Recommendation, And Try-On
The global fashion e-commerce industry has become integral to people's daily lives, leveraging technological advancements to offer personalized shopping experiences, primarily through recommendation systems that enhance customer engagement through personalized suggestions. To improve customers' experience in online shopping, we propose a novel comprehensive KiseKloset system for outfit retrieval, recommendation, and try-on. We explore two approaches for outfit retrieval: similar item retrieval and text feedback-guided item retrieval. Notably, we introduce a novel transformer architecture designed to recommend complementary items from diverse categories. Furthermore, we enhance the overall performance of the search pipeline by integrating approximate algorithms to optimize the search process. Additionally, addressing the crucial needs of online shoppers, we employ a lightweight yet efficient virtual try-on framework capable of real-time operation, memory efficiency, and maintaining realistic outputs compared to its predecessors. This virtual try-on module empowers users to visualize specific garments on themselves, enhancing the customers' experience and reducing costs associated with damaged items for retailers. We deployed our end-to-end system for online users to test and provide feedback, enabling us to measure their satisfaction levels. The results of our user study revealed that 84% of participants found our comprehensive system highly useful, significantly improving their online shopping experience.
☆ Optimizing Conversational Product Recommendation via Reinforcement Learning
We propose a reinforcement learning-based approach to optimize conversational strategies for product recommendation across diverse industries. As organizations increasingly adopt intelligent agents to support sales and service operations, the effectiveness of a conversation hinges not only on what is recommended but how and when recommendations are delivered. We explore a methodology where agentic systems learn optimal dialogue policies through feedback-driven reinforcement learning. By mining aggregate behavioral patterns and conversion outcomes, our approach enables agents to refine talk tracks that drive higher engagement and product uptake, while adhering to contextual and regulatory constraints. We outline the conceptual framework, highlight key innovations, and discuss the implications for scalable, personalized recommendation in enterprise environments.
♻ ☆ Knowing You Don't Know: Learning When to Continue Search in Multi-round RAG through Self-Practicing SIGIR 2025
Retrieval Augmented Generation (RAG) has shown strong capability in enhancing language models' knowledge and reducing AI generative hallucinations, driving its widespread use. However, complex tasks requiring multi-round retrieval remain challenging, and early attempts tend to be overly optimistic without a good sense of self-skepticism. Current multi-round RAG systems may continue searching even when enough information has already been retrieved, or they may provide incorrect answers without having sufficient information or knowledge. Existing solutions either require large amounts of expensive human-labeled process supervision data or lead to subpar performance. This paper aims to address these limitations by introducing a new framework, SIM-RAG, to explicitly enhance RAG systems' self-awareness and multi-round retrieval capabilities. To train SIM-RAG, we first let a RAG system self-practice multi-round retrieval, augmenting existing question-answer pairs with intermediate inner monologue reasoning steps to generate synthetic training data. For each pair, the system may explore multiple retrieval paths, which are labeled as successful if they reach the correct answer and unsuccessful otherwise. Using this data, we train a lightweight information sufficiency Critic. At inference time, the Critic evaluates whether the RAG system has retrieved sufficient information at each round, guiding retrieval decisions and improving system-level self-awareness through in-context reinforcement learning. Experiments across multiple prominent RAG benchmarks show that SIM-RAG is an effective multi-round RAG solution. Furthermore, this framework is system-efficient, adding a lightweight component to RAG without requiring modifications to existing LLMs or search engines, and data-efficient, eliminating the need for costly human-annotated mid-step retrieval process supervision data.
comment: Proceedings of the 48th International ACM SIGIR 2025
♻ ☆ Riddle Me This! Stealthy Membership Inference for Retrieval-Augmented Generation CCS 2025
Retrieval-Augmented Generation (RAG) enables Large Language Models (LLMs) to generate grounded responses by leveraging external knowledge databases without altering model parameters. Although the absence of weight tuning prevents leakage via model parameters, it introduces the risk of inference adversaries exploiting retrieved documents in the model's context. Existing methods for membership inference and data extraction often rely on jailbreaking or carefully crafted unnatural queries, which can be easily detected or thwarted with query rewriting techniques common in RAG systems. In this work, we present Interrogation Attack (IA), a membership inference technique targeting documents in the RAG datastore. By crafting natural-text queries that are answerable only with the target document's presence, our approach demonstrates successful inference with just 30 queries while remaining stealthy; straightforward detectors identify adversarial prompts from existing methods up to ~76x more frequently than those generated by our attack. We observe a 2x improvement in TPR@1%FPR over prior inference attacks across diverse RAG configurations, all while costing less than $0.02 per document inference.
comment: This is the full version (27 pages) of the paper 'Riddle Me This! Stealthy Membership Inference for Retrieval-Augmented Generation' published at CCS 2025
♻ ☆ Z-REx: Human-Interpretable GNN Explanations for Real Estate Recommendations KDD
Transparency and interpretability are crucial for enhancing customer confidence and user engagement, especially when dealing with black-box Machine Learning (ML)-based recommendation systems. Modern recommendation systems leverage Graph Neural Network (GNN) due to their ability to produce high-quality recommendations in terms of both relevance and diversity. Therefore, the explainability of GNN is especially important for Link Prediction (LP) tasks since recommending relevant items can be viewed as predicting links between users and items. GNN explainability has been a well-studied field, but existing methods primarily focus on node or graph-level tasks, leaving a gap in LP explanation techniques. This work introduces Z-REx, a GNN explanation framework designed explicitly for heterogeneous link prediction tasks. Z-REx utilizes structural and attribute perturbation to identify critical substructures and important features while reducing the search space by leveraging domain-specific knowledge. In our experimentation, we show the efficacy of Z-REx in generating contextually relevant and human-interpretable explanations for ZiGNN, a GNN-based recommendation engine, using a real-world real-estate dataset from Zillow Group, Inc. We compare against State-of-The-Art (SOTA) GNN explainers to show Z-REx outperforms them by 61% in the Fidelity metric by producing superior human-interpretable explanations.
comment: Accepted to be published in KDD Workshop in Machine Learning on Graphs in the Era of Generative Artificial Intelligence (MLoG-GenAI@KDD) 2025
♻ ☆ Dual-Perspective Disentangled Multi-Intent Alignment for Enhanced Collaborative Filtering
Disentangling user intents from implicit feedback has emerged as a promising strategy for enhancing both the accuracy and interpretability of recommendation systems. However, existing methods often model user and item intents independently and rely heavily on implicit structural signals, lacking explicit guidance to uncover the joint semantics that drive user-item interactions. To address these limitations, we propose DMICF, a dual-perspective collaborative filtering framework that unifies intent alignment, structural fusion, and discriminative training into a cohesive architecture. DMICF jointly encodes user-item graphs from both user and item views, leveraging cross-perspective structural signals to reinforce representation learning, especially under sparse or long-tail scenarios. A sub-intent alignment mechanism is introduced to uncover fine-grained semantic correspondences between users and items, enabling adaptive refinement of interaction representations. To enhance prediction quality, DMICF employs an intent-aware scoring module that aggregates compatibility signals across matched latent intents. Furthermore, a multi-negative softmax-based supervision strategy is incorporated to promote semantic disentanglement, encouraging alignment between relevant intents while suppressing spurious or entangled components. Extensive experiments confirm that DMICF consistently delivers robust performance across datasets with diverse interaction distributions. Qualitative analysis confirms that DMICF disentangles interaction intents and adaptively structures intent subspaces into semantically coherent clusters, enabling fine-grained personalization.
comment: 27 pages, 11 figures
♻ ☆ Refine-POI: Reinforcement Fine-Tuned Large Language Models for Next Point-of-Interest Recommendation
Large language models (LLMs) have been adopted for next point-of-interest (POI) recommendation tasks. Typical LLM-based recommenders fall into two categories: prompt-based and supervised fine-tuning (SFT)-based models. Prompt-based models generally offer greater output flexibility but deliver lower accuracy, whereas SFT-based models achieve higher performance yet face a fundamental mismatch: next POI recommendation data does not naturally suit supervised fine-tuning. In SFT, the model is trained to reproduce the exact ground truth, but each training example provides only a single target POI, so there is no ground truth for producing a top-k list. To address this, we propose Refine-POI, a reinforcement fine-tuning framework for next POI recommendation. We introduce recommendation-driven rewards that enable LLMs to learn to generate top-k recommendation lists using only one ground-truth POI per example. Experiments on real-world datasets demonstrate that Refine-POI achieves state-of-the-art top-k recommendation performance.
♻ ☆ ChemMiner: A Large Language Model Agent System for Chemical Literature Data Mining
The development of AI-assisted chemical synthesis tools requires comprehensive datasets covering diverse reaction types, yet current high-throughput experimental (HTE) approaches are expensive and limited in scope. Chemical literature represents a vast, underexplored data source containing thousands of reactions published annually. However, extracting reaction information from literature faces significant challenges including varied writing styles, complex coreference relationships, and multimodal information presentation. This paper proposes ChemMiner, a novel end-to-end framework leveraging multiple agents powered by large language models (LLMs) to extract high-fidelity chemical data from literature. ChemMiner incorporates three specialized agents: a text analysis agent for coreference mapping, a multimodal agent for non-textual information extraction, and a synthesis analysis agent for data generation. Furthermore, we developed a comprehensive benchmark with expert-annotated chemical literature to evaluate both extraction efficiency and precision. Experimental results demonstrate reaction identification rates comparable to human chemists while significantly reducing processing time, with high accuracy, recall, and F1 scores. Our open-sourced benchmark facilitates future research in chemical literature data mining.
♻ ☆ Reward Balancing Revisited: Enhancing Offline Reinforcement Learning for Recommender Systems
Offline reinforcement learning (RL) has emerged as a prevalent and effective methodology for real-world recommender systems, enabling learning policies from historical data and capturing user preferences. In offline RL, reward shaping encounters significant challenges, with past efforts to incorporate prior strategies for uncertainty to improve world models or penalize underexplored state-action pairs. Despite these efforts, a critical gap remains: the simultaneous balancing of intrinsic biases in world models and the diversity of policy recommendations. To address this limitation, we present an innovative offline RL framework termed Reallocated Reward for Recommender Systems (R3S). By integrating inherent model uncertainty to tackle the intrinsic fluctuations in reward predictions, we boost diversity for decision-making to align with a more interactive paradigm, incorporating extra penalizers with decay that deter actions leading to diminished state variety at both local and global scales. The experimental results demonstrate that R3S improves the accuracy of world models and efficiently harmonizes the heterogeneous preferences of the users.
comment: Accepted in Companion Proceedings of the ACM Web Conference 2025
♻ ☆ FlexRAG: A Flexible and Comprehensive Framework for Retrieval-Augmented Generation ACL 2025
Retrieval-Augmented Generation (RAG) plays a pivotal role in modern large language model applications, with numerous existing frameworks offering a wide range of functionalities to facilitate the development of RAG systems. However, we have identified several persistent challenges in these frameworks, including difficulties in algorithm reproduction and sharing, lack of new techniques, and high system overhead. To address these limitations, we introduce \textbf{FlexRAG}, an open-source framework specifically designed for research and prototyping. FlexRAG supports text-based, multimodal, and network-based RAG, providing comprehensive lifecycle support alongside efficient asynchronous processing and persistent caching capabilities. By offering a robust and flexible solution, FlexRAG enables researchers to rapidly develop, deploy, and share advanced RAG systems. Our toolkit and resources are available at \href{https://github.com/ictnlp/FlexRAG}{https://github.com/ictnlp/FlexRAG}.
comment: Accepted by ACL 2025 Demo
♻ ☆ Parenting: Optimizing Knowledge Selection of Retrieval-Augmented Language Models with Parameter Decoupling and Tailored Tuning ACL 2025
Retrieval-Augmented Generation (RAG) offers an effective solution to the issues faced by Large Language Models (LLMs) in hallucination generation and knowledge obsolescence by incorporating externally retrieved knowledge. However, existing methods lack effective control mechanisms for integrating internal and external knowledge. Inspired by human cognitive processes, we propose Parenting, a novel framework that decouples, identifies, and purposefully optimizes parameter subspaces related to adherence and robustness. Specifically, Parenting utilizes a key parameter mining method that combines forward and backward propagation signals to localize subspaces representing different capabilities. Then, Parenting employs a type-tailored tuning strategy, applying specific and appropriate optimizations to different subspaces, aiming to achieve a balanced enhancement of both adherence and robustness. Extensive experiments on various datasets and models validate the effectiveness and generalizability of our method.
comment: Accepted to ACL 2025 Main Conference
Information Retrieval 13
☆ NaviX: A Native Vector Index Design for Graph DBMSs With Robust Predicate-Agnostic Search Performance
There is an increasing demand for extending existing DBMSs with vector indices so that they become unified systems capable of supporting modern predictive applications, which require joint querying of vector embeddings together with the structured properties and connections of objects. We present NaviX, a native vector index for graph DBMSs (GDBMSs) that has two main design goals. First, we aim to implement a disk-based vector index that leverages the core storage and query-processing capabilities of the underlying GDBMS. To this end, NaviX is built on the Hierarchical Navigable Small-World (HNSW) graph, which itself is a graph-based structure. Second, we aim to support predicate-agnostic filtered vector search queries, in which the k nearest neighbors (kNNs) of a query vector vQ are searched only within an arbitrary subset S of vectors defined by an ad-hoc selection sub-query QS. We adopt a prefiltering approach that evaluates QS first and passes the full description of subset S to the kNN search operator. We study how to design a prefiltering search algorithm that remains robust under varying selectivities and under different correlations between subset S and query vector vQ. We propose an adaptive algorithm that uses the local selectivity of each vector in the HNSW graph to choose an appropriate heuristic at every iteration of the kNN search. Finally, We demonstrate NaviX's robustness and efficiency through extensive experiments against both existing prefiltering- and postfiltering-based baselines.
☆ Teaching a Language Model to Speak the Language of Tools
External tool integration through function-calling is essential for practical language model applications, yet most multilingual models lack reliable tool-use capabilities in non-English languages. Even state-of-the-art multilingual models struggle with determining when to use tools and generating the structured outputs required for function calls, often exhibiting language confusion when prompted in lower-resource languages. This work presents a methodology for adapting existing language models to enable robust tool use in any target language, using Bulgarian as a case study. The approach involves continued training of the BgGPT model series (2.6B, 9B, 27B parameters) on a novel bilingual dataset of 10,035 function-calling examples designed to support standardized protocols like MCP (Model Context Protocol). The research introduces TUCAN (Tool-Using Capable Assistant Navigator), which achieves up to 28.75% improvement in function-calling accuracy over base models while preserving core language understanding, as verified on established Bulgarian benchmarks. Beyond accuracy gains, TUCAN models demonstrate production-ready response formatting with clean, parsable function calls, contrasting with the verbose and inconsistent outputs of base models. The models, evaluation framework, and dataset are released to enable replication for other languages. This work demonstrates a practical approach for extending tool-augmented capabilities beyond English-centric systems.
☆ GaussMaster: An LLM-based Database Copilot System
In the financial industry, data is the lifeblood of operations, and DBAs shoulder significant responsibilities for SQL tuning, database deployment, diagnosis, and service repair. In recent years, both database vendors and customers have increasingly turned to autonomous database platforms in an effort to alleviate the heavy workload of DBAs. However, existing autonomous database platforms are limited in their capabilities, primarily addressing single-point issues such as NL2SQL, anomaly detection, and SQL tuning. Manual intervention remains a necessity for comprehensive database maintenance. GaussMaster aims to revolutionize this landscape by introducing an LLM-based database copilot system. This innovative solution is designed not only to assist developers in writing efficient SQL queries but also to provide comprehensive care for database services. When database instances exhibit abnormal behavior, GaussMaster is capable of orchestrating the entire maintenance process automatically. It achieves this by analyzing hundreds of metrics and logs, employing a Tree-of-thought approach to identify root causes, and invoking appropriate tools to resolve issues. We have successfully implemented GaussMaster in real-world scenarios, such as the banking industry, where it has achieved zero human intervention for over 34 database maintenance scenarios. In this paper, we present significant improvements in these tasks with code at https://gitcode.com/opengauss/openGauss-GaussMaster.
comment: We welcome contributions from the community. For reference, please see the code at: https://gitcode.com/opengauss/openGauss-GaussMaster
☆ Learning to Rank with Variable Result Presentation Lengths SIGIR 2025
Learning to Rank (LTR) methods generally assume that each document in a top-K ranking is presented in an equal format. However, previous work has shown that users' perceptions of relevance can be changed by varying presentations, i.e., allocating more vertical space to some documents to provide additional textual or image information. Furthermore, presentation length can also redirect attention, as users are more likely to notice longer presentations when scrolling through results. Deciding on the document presentation lengths in a fixed vertical space ranking is an important problem that has not been addressed by existing LTR methods. We address this gap by introducing the variable presentation length ranking task, where simultaneously the ordering of documents and their presentation length is decided. Despite being a generalization of standard ranking, we show that this setting brings significant new challenges: Firstly, the probability ranking principle no longer applies to this setting, and secondly, the problem cannot be divided into separate ordering and length selection tasks. We therefore propose VLPL - a new family of Plackett-Luce list-wise gradient estimation methods for the joint optimization of document ordering and lengths. Our semi-synthetic experiments show that VLPL can effectively balance the expected exposure and attractiveness of all documents, achieving the best performance across different ranking settings. Furthermore, we observe that even simple length-aware methods can achieve significant performance improvements over fixed-length models. Altogether, our theoretical and empirical results highlight the importance and difficulties of combining document presentation with LTR.
comment: SIGIR 2025
☆ Impact of Shallow vs. Deep Relevance Judgments on BERT-based Reranking Models ICTIR'25
This paper investigates the impact of shallow versus deep relevance judgments on the performance of BERT-based reranking models in neural Information Retrieval. Shallow-judged datasets, characterized by numerous queries each with few relevance judgments, and deep-judged datasets, involving fewer queries with extensive relevance judgments, are compared. The research assesses how these datasets affect the performance of BERT-based reranking models trained on them. The experiments are run on the MS MARCO and LongEval collections. Results indicate that shallow-judged datasets generally enhance generalization and effectiveness of reranking models due to a broader range of available contexts. The disadvantage of the deep-judged datasets might be mitigated by a larger number of negative training examples.
comment: Accepted at ICTIR'25
☆ Compositions of Variant Experts for Integrating Short-Term and Long-Term Preferences
In the online digital realm, recommendation systems are ubiquitous and play a crucial role in enhancing user experience. These systems leverage user preferences to provide personalized recommendations, thereby helping users navigate through the paradox of choice. This work focuses on personalized sequential recommendation, where the system considers not only a user's immediate, evolving session context, but also their cumulative historical behavior to provide highly relevant and timely recommendations. Through an empirical study conducted on diverse real-world datasets, we have observed and quantified the existence and impact of both short-term (immediate and transient) and long-term (enduring and stable) preferences on users' historical interactions. Building on these insights, we propose a framework that combines short- and long-term preferences to enhance recommendation performance, namely Compositions of Variant Experts (CoVE). This novel framework dynamically integrates short- and long-term preferences through the use of different specialized recommendation models (i.e., experts). Extensive experiments showcase the effectiveness of the proposed methods and ablation studies further investigate the impact of variant expert types.
☆ Multi-task Offline Reinforcement Learning for Online Advertising in Recommender Systems KDD 2025
Online advertising in recommendation platforms has gained significant attention, with a predominant focus on channel recommendation and budget allocation strategies. However, current offline reinforcement learning (RL) methods face substantial challenges when applied to sparse advertising scenarios, primarily due to severe overestimation, distributional shifts, and overlooking budget constraints. To address these issues, we propose MTORL, a novel multi-task offline RL model that targets two key objectives. First, we establish a Markov Decision Process (MDP) framework specific to the nuances of advertising. Then, we develop a causal state encoder to capture dynamic user interests and temporal dependencies, facilitating offline RL through conditional sequence modeling. Causal attention mechanisms are introduced to enhance user sequence representations by identifying correlations among causal states. We employ multi-task learning to decode actions and rewards, simultaneously addressing channel recommendation and budget allocation. Notably, our framework includes an automated system for integrating these tasks into online advertising. Extensive experiments on offline and online environments demonstrate MTORL's superiority over state-of-the-art methods.
comment: KDD 2025
☆ Enhancing Live Broadcast Engagement: A Multi-modal Approach to Short Video Recommendations Using MMGCN and User Preferences
The purpose of this paper is to explore a multi-modal approach to enhancing live broadcast engagement by developing a short video recommendation system that incorporates Multi-modal Graph Convolutional Networks (MMGCN) with user preferences. In order to provide personalized recommendations tailored to individual interests, the proposed system takes into account user interaction data, video content features, and contextual information. With the aid of a hybrid approach combining collaborative filtering and content-based filtering techniques, the system is able to capture nuanced relationships between users, video attributes, and engagement patterns. Three datasets are used to evaluate the effectiveness of the system: Kwai, TikTok, and MovieLens. Compared to baseline models, such as DeepFM, Wide & Deep, LightGBM, and XGBoost, the proposed MMGCN-based model shows superior performance. A notable feature of the proposed model is that it outperforms all baseline methods in capturing diverse user preferences and making accurate, personalized recommendations, resulting in a Kwai F1 score of 0.574, a Tiktok F1 score of 0.506, and a MovieLens F1 score of 0.197. We emphasize the importance of multi-modal integration and user-centric approaches in advancing recommender systems, emphasizing the role they play in enhancing content discovery and audience interaction on live broadcast platforms.
☆ Synergizing Implicit and Explicit User Interests: A Multi-Embedding Retrieval Framework at Pinterest KDD 2025
Industrial recommendation systems are typically composed of multiple stages, including retrieval, ranking, and blending. The retrieval stage plays a critical role in generating a high-recall set of candidate items that covers a wide range of diverse user interests. Effectively covering the diverse and long-tail user interests within this stage poses a significant challenge: traditional two-tower models struggle in this regard due to limited user-item feature interaction and often bias towards top use cases. To address these issues, we propose a novel multi-embedding retrieval framework designed to enhance user interest representation by generating multiple user embeddings conditioned on both implicit and explicit user interests. Implicit interests are captured from user history through a Differentiable Clustering Module (DCM), whereas explicit interests, such as topics that the user has followed, are modeled via Conditional Retrieval (CR). These methodologies represent a form of conditioned user representation learning that involves condition representation construction and associating the target item with the relevant conditions. Synergizing implicit and explicit user interests serves as a complementary approach to achieve more effective and comprehensive candidate retrieval as they benefit on different user segments and extract conditions from different but supplementary sources. Extensive experiments and A/B testing reveal significant improvements in user engagements and feed diversity metrics. Our proposed framework has been successfully deployed on Pinterest home feed.
comment: KDD 2025
♻ ☆ Emotional RAG LLMs: Reading Comprehension for the Open Internet
Queries to large language models (LLMs) can be divided into two parts: the instruction/question and the accompanying context. The context for retrieval-augmented generation (RAG) systems in most benchmarks comes from Wikipedia-like texts written in a neutral and factual tone. However, real-world RAG applications often retrieve internet-based text with diverse tones and linguistic styles, posing challenges for downstream tasks. This paper introduces (a) a dataset that transforms RAG-retrieved passages into emotionally inflected and sarcastic text, (b) an emotion translation model for adapting text to different tones, and (c) a prompt-based method to improve LLMs' pragmatic interpretation of retrieved text.
♻ ☆ Distillation and Refinement of Reasoning in Small Language Models for Document Re-ranking
We present a novel approach for training small language models for reasoning-intensive document ranking that combines knowledge distillation with reinforcement learning optimization. While existing methods often rely on expensive human annotations or large black-box language models, our methodology leverages web data and a teacher LLM to automatically generate high-quality training examples with relevance explanations. By framing document ranking as a reinforcement learning problem and incentivizing explicit reasoning capabilities, we train a compact 3B parameter language model that achieves state-of-the-art performance on the BRIGHT benchmark. Our model ranks third on the leaderboard while using substantially fewer parameters than other approaches, outperforming models that are over 20 times larger. Through extensive experiments, we demonstrate that generating explanations during inference, rather than directly predicting relevance scores, enables more effective reasoning with smaller language models. The self-supervised nature of our method offers a scalable and interpretable solution for modern information retrieval systems.
♻ ☆ Multi-Modal Recommendation Unlearning for Legal, Licensing, and Modality Constraints AAAI 2025
User data spread across multiple modalities has popularized multi-modal recommender systems (MMRS). They recommend diverse content such as products, social media posts, TikTok reels, etc., based on a user-item interaction graph. With rising data privacy demands, recent methods propose unlearning private user data from uni-modal recommender systems (RS). However, methods for unlearning item data related to outdated user preferences, revoked licenses, and legally requested removals are still largely unexplored. Previous RS unlearning methods are unsuitable for MMRS due to the incompatibility of their matrix-based representation with the multi-modal user-item interaction graph. Moreover, their data partitioning step degrades performance on each shard due to poor data heterogeneity and requires costly performance aggregation across shards. This paper introduces MMRecUn, the first approach known to us for unlearning in MMRS and unlearning item data. Given a trained RS model, MMRecUn employs a novel Reverse Bayesian Personalized Ranking (BPR) objective to enable the model to forget marked data. The reverse BPR attenuates the impact of user-item interactions within the forget set, while the forward BPR reinforces the significance of user-item interactions within the retain set. Our experiments demonstrate that MMRecUn outperforms baseline methods across various unlearning requests when evaluated on benchmark MMRS datasets. MMRecUn achieves recall performance improvements of up to 49.85% compared to baseline methods and is up to 1.3x faster than the Gold model, which is trained on retain set from scratch. MMRecUn offers significant advantages, including superiority in removing target interactions, preserving retained interactions, and zero overhead costs compared to previous methods. Code: https://github.com/MachineUnlearn/MMRecUN Extended version: arXiv:2405.15328
comment: Extended Version, Accepted at AAAI 2025. 17 pages, 4 figures and 9 tables
♻ ☆ The Next Phase of Scientific Fact-Checking: Advanced Evidence Retrieval from Complex Structured Academic Papers SIGIR
Scientific fact-checking aims to determine the veracity of scientific claims by retrieving and analysing evidence from research literature. The problem is inherently more complex than general fact-checking since it must accommodate the evolving nature of scientific knowledge, the structural complexity of academic literature and the challenges posed by long-form, multimodal scientific expression. However, existing approaches focus on simplified versions of the problem based on small-scale datasets consisting of abstracts rather than full papers, thereby avoiding the distinct challenges associated with processing complete documents. This paper examines the limitations of current scientific fact-checking systems and reveals the many potential features and resources that could be exploited to advance their performance. It identifies key research challenges within evidence retrieval, including (1) evidence-driven retrieval that addresses semantic limitations and topic imbalance (2) time-aware evidence retrieval with citation tracking to mitigate outdated information, (3) structured document parsing to leverage long-range context, (4) handling complex scientific expressions, including tables, figures, and domain-specific terminology and (5) assessing the credibility of scientific literature. Preliminary experiments were conducted to substantiate these challenges and identify potential solutions. This perspective paper aims to advance scientific fact-checking with a specialised IR system tailored for real-world applications.
comment: Accepted for ACM SIGIR Conference on Innovative Concepts and Theories in Information Retrieval (ICTIR'25)