MyArxiv
Computation and Language 89
☆ Optimizing Mixture of Block Attention
Mixture of Block Attention (MoBA) (Lu et al., 2025) is a promising building block for efficiently processing long contexts in LLMs by enabling queries to sparsely attend to a small subset of key-value blocks, drastically reducing computational cost. However, the design principles governing MoBA's performance are poorly understood, and it lacks an efficient GPU implementation, hindering its practical adoption. In this paper, we first develop a statistical model to analyze MoBA's underlying mechanics. Our model reveals that performance critically depends on the router's ability to accurately distinguish relevant from irrelevant blocks based on query-key affinities. We derive a signal-to-noise ratio that formally connects architectural parameters to this retrieval accuracy. Guided by our analysis, we identify two key pathways for improvement: using smaller block sizes and applying a short convolution on keys to cluster relevant signals, which enhances routing accuracy. While theoretically better, small block sizes are inefficient on GPUs. To bridge this gap, we introduce FlashMoBA, a hardware-aware CUDA kernel that enables efficient MoBA execution even with the small block sizes our theory recommends. We validate our insights by training LLMs from scratch, showing that our improved MoBA models match the performance of dense attention baselines. FlashMoBA achieves up to 14.7x speedup over FlashAttention-2 for small blocks, making our theoretically-grounded improvements practical. Code is available at: https://github.com/mit-han-lab/flash-moba.
comment: The first two authors contributed equally to this work
☆ PRBench: Large-Scale Expert Rubrics for Evaluating High-Stakes Professional Reasoning
Frontier model progress is often measured by academic benchmarks, which offer a limited view of performance in real-world professional contexts. Existing evaluations often fail to assess open-ended, economically consequential tasks in high-stakes domains like Legal and Finance, where practical returns are paramount. To address this, we introduce Professional Reasoning Bench (PRBench), a realistic, open-ended, and difficult benchmark of real-world problems in Finance and Law. We open-source its 1,100 expert-authored tasks and 19,356 expert-curated criteria, making it, to our knowledge, the largest public, rubric-based benchmark for both legal and finance domains. We recruit 182 qualified professionals, holding JDs, CFAs, or 6+ years of experience, who contributed tasks inspired by their actual workflows. This process yields significant diversity, with tasks spanning 114 countries and 47 US jurisdictions. Our expert-curated rubrics are validated through a rigorous quality pipeline, including independent expert validation. Subsequent evaluation of 20 leading models reveals substantial room for improvement, with top scores of only 0.39 (Finance) and 0.37 (Legal) on our Hard subsets. We further catalog associated economic impacts of the prompts and analyze performance using human-annotated rubric categories. Our analysis shows that models with similar overall scores can diverge significantly on specific capabilities. Common failure modes include inaccurate judgments, a lack of process transparency and incomplete reasoning, highlighting critical gaps in their reliability for professional adoption.
☆ DocLens : A Tool-Augmented Multi-Agent Framework for Long Visual Document Understanding
Comprehending long visual documents, where information is distributed across extensive pages of text and visual elements, is a critical but challenging task for modern Vision-Language Models (VLMs). Existing approaches falter on a fundamental challenge: evidence localization. They struggle to retrieve relevant pages and overlook fine-grained details within visual elements, leading to limited performance and model hallucination. To address this, we propose DocLens, a tool-augmented multi-agent framework that effectively ``zooms in'' on evidence like a lens. It first navigates from the full document to specific visual elements on relevant pages, then employs a sampling-adjudication mechanism to generate a single, reliable answer. Paired with Gemini-2.5-Pro, DocLens achieves state-of-the-art performance on MMLongBench-Doc and FinRAGBench-V, surpassing even human experts. The framework's superiority is particularly evident on vision-centric and unanswerable queries, demonstrating the power of its enhanced localization capabilities.
☆ Aligning Machiavellian Agents: Behavior Steering via Test-Time Policy Shaping AAAI 2026
The deployment of decision-making AI agents presents a critical challenge in maintaining alignment with human values or guidelines while operating in complex, dynamic environments. Agents trained solely to achieve their objectives may adopt harmful behavior, exposing a key trade-off between maximizing the reward function and maintaining the alignment. For the pre-trained agents, ensuring alignment is particularly challenging, as retraining can be a costly and slow process. This is further complicated by the diverse and potentially conflicting attributes representing the ethical values for alignment. To address these challenges, we propose a test-time alignment technique based on model-guided policy shaping. Our method allows precise control over individual behavioral attributes, generalizes across diverse reinforcement learning (RL) environments, and facilitates a principled trade-off between ethical alignment and reward maximization without requiring agent retraining. We evaluate our approach using the MACHIAVELLI benchmark, which comprises 134 text-based game environments and thousands of annotated scenarios involving ethical decisions. The RL agents are first trained to maximize the reward in their respective games. At test time, we apply policy shaping via scenario-action attribute classifiers to ensure decision alignment with ethical attributes. We compare our approach against prior training-time methods and general-purpose agents, as well as study several types of ethical violations and power-seeking behavior. Our results demonstrate that test-time policy shaping provides an effective and scalable solution for mitigating unethical behavior across diverse environments and alignment attributes.
comment: Accepted to AAAI 2026 AI Alignment Track
☆ W2S-AlignTree: Weak-to-Strong Inference-Time Alignment for Large Language Models via Monte Carlo Tree Search AAAI 2026
Large Language Models (LLMs) demonstrate impressive capabilities, yet their outputs often suffer from misalignment with human preferences due to the inadequacy of weak supervision and a lack of fine-grained control. Training-time alignment methods like Reinforcement Learning from Human Feedback (RLHF) face prohibitive costs in expert supervision and inherent scalability limitations, offering limited dynamic control during inference. Consequently, there is an urgent need for scalable and adaptable alignment mechanisms. To address this, we propose W2S-AlignTree, a pioneering plug-and-play inference-time alignment framework that synergistically combines Monte Carlo Tree Search (MCTS) with the Weak-to-Strong Generalization paradigm for the first time. W2S-AlignTree formulates LLM alignment as an optimal heuristic search problem within a generative search tree. By leveraging weak model's real-time, step-level signals as alignment proxies and introducing an Entropy-Aware exploration mechanism, W2S-AlignTree enables fine-grained guidance during strong model's generation without modifying its parameters. The approach dynamically balances exploration and exploitation in high-dimensional generation search trees. Experiments across controlled sentiment generation, summarization, and instruction-following show that W2S-AlignTree consistently outperforms strong baselines. Notably, W2S-AlignTree raises the performance of Llama3-8B from 1.89 to 2.19, a relative improvement of 15.9 on the summarization task.
comment: AAAI 2026 Oral
☆ Proactive Hearing Assistants that Isolate Egocentric Conversations EMNLP 2025
We introduce proactive hearing assistants that automatically identify and separate the wearer's conversation partners, without requiring explicit prompts. Our system operates on egocentric binaural audio and uses the wearer's self-speech as an anchor, leveraging turn-taking behavior and dialogue dynamics to infer conversational partners and suppress others. To enable real-time, on-device operation, we propose a dual-model architecture: a lightweight streaming model runs every 12.5 ms for low-latency extraction of the conversation partners, while a slower model runs less frequently to capture longer-range conversational dynamics. Results on real-world 2- and 3-speaker conversation test sets, collected with binaural egocentric hardware from 11 participants totaling 6.8 hours, show generalization in identifying and isolating conversational partners in multi-conversation settings. Our work marks a step toward hearing assistants that adapt proactively to conversational dynamics and engagement. More information can be found on our website: https://proactivehearing.cs.washington.edu/
comment: Accepted at EMNLP 2025 Main Conference
☆ From Synthetic Scenes to Real Performance: Enhancing Spatial Reasoning in VLMs
Fine-tuning Vision-Language Models (VLMs) is a common strategy to improve performance following an ad-hoc data collection and annotation of real-world scenes. However, this process is often prone to biases, errors, and distribution imbalance, resulting in overfitting and imbalanced performance. Although a few studies have tried to address this problem by generating synthetic data, they lacked control over distribution bias and annotation quality. To address these challenges, we redesign the fine-tuning process in two ways. First, we control the generation of data and its annotations, ensuring it is free from bias, distribution imbalance, and annotation errors. We automatically construct the dataset by comprehensively sampling objects' attributes, including color, shape, size, and position within the scene. Secondly, using this annotated dataset, we fine-tune state-of-the-art VLMs and assess performance transferability to real-world data on the absolute position task. We conduct exhaustive evaluations on both synthetic and real-world benchmarks. Our experiments reveal two key findings: 1) fine-tuning on balanced synthetic data yields uniform performance across the visual scene and mitigates common biases; and 2) fine-tuning on synthetic stimuli significantly improves performance on real-world data (COCO), outperforming models fine-tuned in the matched setting.
☆ MajinBook: An open catalogue of digital world literature with likes
This data paper introduces MajinBook, an open catalogue designed to facilitate the use of shadow libraries--such as Library Genesis and Z-Library--for computational social science and cultural analytics. By linking metadata from these vast, crowd-sourced archives with structured bibliographic data from Goodreads, we create a high-precision corpus of over 539,000 references to English-language books spanning three centuries, enriched with first publication dates, genres, and popularity metrics like ratings and reviews. Our methodology prioritizes natively digital EPUB files to ensure machine-readable quality, while addressing biases in traditional corpora like HathiTrust, and includes secondary datasets for French, German, and Spanish. We evaluate the linkage strategy for accuracy, release all underlying data openly, and discuss the project's legal permissibility under EU and US frameworks for text and data mining in research.
comment: 9 pages, 5 figures, 1 table
☆ Studies with impossible languages falsify LMs as models of human language
According to Futrell and Mahowald [arXiv:2501.17047], both infants and language models (LMs) find attested languages easier to learn than impossible languages that have unnatural structures. We review the literature and show that LMs often learn attested and many impossible languages equally well. Difficult to learn impossible languages are simply more complex (or random). LMs are missing human inductive biases that support language acquisition.
comment: Commentary on Futrell, R., & Mahowald, K. arXiv:2501.17047 (in press). How linguistics learned to stop worrying and love the language models. Behavioural and Brain Sciences
☆ On-Device Fine-Tuning via Backprop-Free Zeroth-Order Optimization
On-device fine-tuning is a critical capability for edge AI systems, which must support adaptation to different agentic tasks under stringent memory constraints. Conventional backpropagation (BP)-based training requires storing layer activations and optimizer states, a demand that can be only partially alleviated through checkpointing. In edge deployments in which the model weights must reside entirely in device memory, this overhead severely limits the maximum model size that can be deployed. Memory-efficient zeroth-order optimization (MeZO) alleviates this bottleneck by estimating gradients using forward evaluations alone, eliminating the need for storing intermediate activations or optimizer states. This enables significantly larger models to fit within on-chip memory, albeit at the cost of potentially longer fine-tuning wall-clock time. This paper first provides a theoretical estimate of the relative model sizes that can be accommodated under BP and MeZO training. We then numerically validate the analysis, demonstrating that MeZO exhibits accuracy advantages under on-device memory constraints, provided sufficient wall-clock time is available for fine-tuning.
comment: Conference submission; Under review
☆ M-DAIGT: A Shared Task on Multi-Domain Detection of AI-Generated Text
The generation of highly fluent text by Large Language Models (LLMs) poses a significant challenge to information integrity and academic research. In this paper, we introduce the Multi-Domain Detection of AI-Generated Text (M-DAIGT) shared task, which focuses on detecting AI-generated text across multiple domains, particularly in news articles and academic writing. M-DAIGT comprises two binary classification subtasks: News Article Detection (NAD) (Subtask 1) and Academic Writing Detection (AWD) (Subtask 2). To support this task, we developed and released a new large-scale benchmark dataset of 30,000 samples, balanced between human-written and AI-generated texts. The AI-generated content was produced using a variety of modern LLMs (e.g., GPT-4, Claude) and diverse prompting strategies. A total of 46 unique teams registered for the shared task, of which four teams submitted final results. All four teams participated in both Subtask 1 and Subtask 2. We describe the methods employed by these participating teams and briefly discuss future directions for M-DAIGT.
☆ LaoBench: A Large-Scale Multidimensional Lao Benchmark for Large Language Models
The rapid advancement of large language models (LLMs) has not been matched by their evaluation in low-resource languages, especially Southeast Asian languages like Lao. To fill this gap, we introduce LaoBench, the first large-scale, high-quality, and multidimensional benchmark dataset dedicated to assessing LLMs' comprehensive language understanding and reasoning abilities in Lao. LaoBench comprises over 17,000 carefully curated samples spanning three core dimensions: knowledge application, K12 foundational education, and bilingual translation among Lao, Chinese, and English. The dataset is divided into open-source and closed-source subsets, with the closed-source portion enabling black-box evaluation on an official platform to ensure fairness and data security. Our data construction pipeline integrates expert human curation with automated agent-assisted verification, ensuring linguistic accuracy, cultural relevance, and educational value. Benchmarking multiple state-of-the-art LLMs on LaoBench reveals that current models still face significant challenges in mastering Lao across diverse tasks. We hope LaoBench will catalyze further research and development of AI technologies for underrepresented Southeast Asian languages.
☆ NOVA: An Agentic Framework for Automated Histopathology Analysis and Discovery
Digitized histopathology analysis involves complex, time-intensive workflows and specialized expertise, limiting its accessibility. We introduce NOVA, an agentic framework that translates scientific queries into executable analysis pipelines by iteratively generating and running Python code. NOVA integrates 49 domain-specific tools (e.g., nuclei segmentation, whole-slide encoding) built on open-source software, and can also create new tools ad hoc. To evaluate such systems, we present SlideQuest, a 90-question benchmark -- verified by pathologists and biomedical scientists -- spanning data processing, quantitative analysis, and hypothesis testing. Unlike prior biomedical benchmarks focused on knowledge recall or diagnostic QA, SlideQuest demands multi-step reasoning, iterative coding, and computational problem solving. Quantitative evaluation shows NOVA outperforms coding-agent baselines, and a pathologist-verified case study links morphology to prognostically relevant PAM50 subtypes, demonstrating its scalable discovery potential.
☆ LAET: A Layer-wise Adaptive Ensemble Tuning Framework for Pretrained Language Models
Natural Language Processing (NLP) has transformed the financial industry, enabling advancements in areas such as textual analysis, risk management, and forecasting. Large language models (LLMs) like BloombergGPT and FinMA have set new benchmarks across various financial NLP tasks, including sentiment analysis, stock movement prediction, and credit risk assessment. Furthermore, FinMA-ES, a bilingual financial LLM, has also demonstrated strong performance using the FLARE and FLARE-ES benchmarks. However, the high computational demands of these models limit the accessibility of many organizations. To address this, we propose Layer-wise Adaptive Ensemble Tuning (LAET), a novel strategy that selectively fine-tunes the most effective layers of pre-trained LLMs by analyzing hidden state representations while freezing less critical layers. LAET significantly reduces computational overhead while enhancing task-specific performance. Our approach shows strong results in financial NLP tasks, outperforming existing benchmarks and state-of-the-art LLMs such as GPT-4, even with smaller LLMs ($\sim$3B parameters). This work bridges cutting-edge financial NLP research and real-world deployment with efficient and scalable models for financial applications.
☆ iMAD: Intelligent Multi-Agent Debate for Efficient and Accurate LLM Inference AAAI 2026
Large Language Model (LLM) agent systems have advanced rapidly, driven by their strong generalization in zero-shot settings. To further enhance reasoning and accuracy on complex tasks, Multi-Agent Debate (MAD) has emerged as a promising framework that engages multiple LLM agents in structured debates to encourage diverse reasoning. However, triggering MAD for every query is inefficient, as it incurs substantial computational (token) cost and may even degrade accuracy by overturning correct single-agent answers. To address these limitations, we propose intelligent Multi-Agent Debate (iMAD), a token-efficient framework that selectively triggers MAD only when it is likely to be beneficial (i.e., correcting an initially wrong answer). To achieve this goal, iMAD learns generalizable model behaviors to make accurate debate decisions. Specifically, iMAD first prompts a single agent to produce a structured self-critique response, from which we extract 41 interpretable linguistic and semantic features capturing hesitation cues. Then, iMAD uses a lightweight debate-decision classifier, trained using our proposed FocusCal loss, to determine whether to trigger MAD, enabling robust debate decisions without test dataset-specific tuning. Through extensive experiments using six (visual) question answering datasets against five competitive baselines, we have shown that iMAD significantly reduces token usage (by up to 92%) while also improving final answer accuracy (by up to 13.5%).
comment: Accepted in AAAI 2026 (Oral)
☆ Building the Web for Agents: A Declarative Framework for Agent-Web Interaction
The increasing deployment of autonomous AI agents on the web is hampered by a fundamental misalignment: agents must infer affordances from human-oriented user interfaces, leading to brittle, inefficient, and insecure interactions. To address this, we introduce VOIX, a web-native framework that enables websites to expose reliable, auditable, and privacy-preserving capabilities for AI agents through simple, declarative HTML elements. VOIX introduces and tags, allowing developers to explicitly define available actions and relevant state, thereby creating a clear, machine-readable contract for agent behavior. This approach shifts control to the website developer while preserving user privacy by disconnecting the conversational interactions from the website. We evaluated the framework's practicality, learnability, and expressiveness in a three-day hackathon study with 16 developers. The results demonstrate that participants, regardless of prior experience, were able to rapidly build diverse and functional agent-enabled web applications. Ultimately, this work provides a foundational mechanism for realizing the Agentic Web, enabling a future of seamless and secure human-AI collaboration on the web.
comment: for associated documentation, see https://svenschultze.github.io/VOIX/
☆ Language-Aided State Estimation
Natural language data, such as text and speech, have become readily available through social networking services and chat platforms. By leveraging human observations expressed in natural language, this paper addresses the problem of state estimation for physical systems, in which humans act as sensing agents. To this end, we propose a Language-Aided Particle Filter (LAPF), a particle filter framework that structures human observations via natural language processing and incorporates them into the update step of the state estimation. Finally, the LAPF is applied to the water level estimation problem in an irrigation canal and its effectiveness is demonstrated.
comment: 7 pages, 5 figures, submitted to IFAC World Congress 2026 with Journal option (IFAC Journal of Systems and Control)
☆ SQuaD: The Software Quality Dataset
Software quality research increasingly relies on large-scale datasets that measure both the product and process aspects of software systems. However, existing resources often focus on limited dimensions, such as code smells, technical debt, or refactoring activity, thereby restricting comprehensive analyses across time and quality dimensions. To address this gap, we present the Software Quality Dataset (SQuaD), a multi-dimensional, time-aware collection of software quality metrics extracted from 450 mature open-source projects across diverse ecosystems, including Apache, Mozilla, FFmpeg, and the Linux kernel. By integrating nine state-of-the-art static analysis tools, i.e., SonarQube, CodeScene, PMD, Understand, CK, JaSoMe, RefactoringMiner, RefactoringMiner++, and PyRef, our dataset unifies over 700 unique metrics at method, class, file, and project levels. Covering a total of 63,586 analyzed project releases, SQuaD also provides version control and issue-tracking histories, software vulnerability data (CVE/CWE), and process metrics proven to enhance Just-In-Time (JIT) defect prediction. The SQuaD enables empirical research on maintainability, technical debt, software evolution, and quality assessment at unprecedented scale. We also outline emerging research directions, including automated dataset updates and cross-project quality modeling to support the continuous evolution of software analytics. The dataset is publicly available on ZENODO (DOI: 10.5281/zenodo.17566690).
☆ Discovering Meaningful Units with Visually Grounded Semantics from Image Captions
Fine-grained knowledge is crucial for vision-language models to obtain a better understanding of the real world. While there has been work trying to acquire this kind of knowledge in the space of vision and language, it has mostly focused on aligning the image patches with the tokens on the language side. However, image patches do not have any meaning to the human eye, and individual tokens do not necessarily carry groundable information in the image. It is groups of tokens which describe different aspects of the scene. In this work, we propose a model which groups the caption tokens as part of its architecture in order to capture a fine-grained representation of the language. We expect our representations to be at the level of objects present in the image, and therefore align our representations with the output of an image encoder trained to discover objects. We show that by learning to group the tokens, the vision-language model has a better fine-grained understanding of vision and language. In addition, the token groups that our model discovers are highly similar to groundable phrases in text, both qualitatively and quantitatively.
☆ KGQuest: Template-Driven QA Generation from Knowledge Graphs with LLM-Based Refinement
The generation of questions and answers (QA) from knowledge graphs (KG) plays a crucial role in the development and testing of educational platforms, dissemination tools, and large language models (LLM). However, existing approaches often struggle with scalability, linguistic quality, and factual consistency. This paper presents a scalable and deterministic pipeline for generating natural language QA from KGs, with an additional refinement step using LLMs to further enhance linguistic quality. The approach first clusters KG triplets based on their relations, creating reusable templates through natural language rules derived from the entity types of objects and relations. A module then leverages LLMs to refine these templates, improving clarity and coherence while preserving factual accuracy. Finally, the instantiation of answer options is achieved through a selection strategy that introduces distractors from the KG. Our experiments demonstrate that this hybrid approach efficiently generates high-quality QA pairs, combining scalability with fluency and linguistic precision.
☆ LANE: Lexical Adversarial Negative Examples for Word Sense Disambiguation
Fine-grained word meaning resolution remains a critical challenge for neural language models (NLMs) as they often overfit to global sentence representations, failing to capture local semantic details. We propose a novel adversarial training strategy, called LANE, to address this limitation by deliberately shifting the model's learning focus to the target word. This method generates challenging negative training examples through the selective marking of alternate words in the training set. The goal is to force the model to create a greater separability between same sentences with different marked words. Experimental results on lexical semantic change detection and word sense disambiguation benchmarks demonstrate that our approach yields more discriminative word representations, improving performance over standard contrastive learning baselines. We further provide qualitative analyses showing that the proposed negatives lead to representations that better capture subtle meaning differences even in challenging environments. Our method is model-agnostic and can be integrated into existing representation learning frameworks.
☆ Adverbs Revisited: Enhancing WordNet Coverage of Adverbs with a Supersense Taxonomy
WordNet offers rich supersense hierarchies for nouns and verbs, yet adverbs remain underdeveloped, lacking a systematic semantic classification. We introduce a linguistically grounded supersense typology for adverbs, empirically validated through annotation, that captures major semantic domains including manner, temporal, frequency, degree, domain, speaker-oriented, and subject-oriented functions. Results from a pilot annotation study demonstrate that these categories provide broad coverage of adverbs in natural text and can be reliably assigned by human annotators. Incorporating this typology extends WordNet's coverage, aligns it more closely with linguistic theory, and facilitates downstream NLP applications such as word sense disambiguation, event extraction, sentiment analysis, and discourse modeling. We present the proposed supersense categories, annotation outcomes, and directions for future work.
☆ Multi-agent Undercover Gaming: Hallucination Removal via Counterfactual Test for Multimodal Reasoning AAAI 2026
Hallucination continues to pose a major obstacle in the reasoning capabilities of large language models (LLMs). Although the Multi-Agent Debate (MAD) paradigm offers a promising solution by promoting consensus among multiple agents to enhance reliability, it relies on the unrealistic assumption that all debaters are rational and reflective, which is a condition that may not hold when agents themselves are prone to hallucinations. To address this gap, we introduce the Multi-agent Undercover Gaming (MUG) protocol, inspired by social deduction games like "Who is Undercover?". MUG reframes MAD as a process of detecting "undercover" agents (those suffering from hallucinations) by employing multimodal counterfactual tests. Specifically, we modify reference images to introduce counterfactual evidence and observe whether agents can accurately identify these changes, providing ground-truth for identifying hallucinating agents and enabling robust, crowd-powered multimodal reasoning. MUG advances MAD protocols along three key dimensions: (1) enabling factual verification beyond statistical consensus through counterfactual testing; (2) introducing cross-evidence reasoning via dynamically modified evidence sources instead of relying on static inputs; and (3) fostering active reasoning, where agents engage in probing discussions rather than passively answering questions. Collectively, these innovations offer a more reliable and effective framework for multimodal reasoning in LLMs. The source code can be accessed at https://github.com/YongLD/MUG.git.
comment: Accepted by AAAI 2026
☆ PRSM: A Measure to Evaluate CLIP's Robustness Against Paraphrases
Contrastive Language-Image Pre-training (CLIP) is a widely used multimodal model that aligns text and image representations through large-scale training. While it performs strongly on zero-shot and few-shot tasks, its robustness to linguistic variation, particularly paraphrasing, remains underexplored. Paraphrase robustness is essential for reliable deployment, especially in socially sensitive contexts where inconsistent representations can amplify demographic biases. In this paper, we introduce the Paraphrase Ranking Stability Metric (PRSM), a novel measure for quantifying CLIP's sensitivity to paraphrased queries. Using the Social Counterfactuals dataset, a benchmark designed to reveal social and demographic biases, we empirically assess CLIP's stability under paraphrastic variation, examine the interaction between paraphrase robustness and gender, and discuss implications for fairness and equitable deployment of multimodal systems. Our analysis reveals that robustness varies across paraphrasing strategies, with subtle yet consistent differences observed between male- and female-associated queries.
comment: 8 pages, accpeted as short paper at MMM 2026
☆ Speech-Aware Long Context Pruning and Integration for Contextualized Automatic Speech Recognition
Automatic speech recognition (ASR) systems have achieved remarkable performance in common conditions but often struggle to leverage long-context information in contextualized scenarios that require domain-specific knowledge, such as conference presentations. This challenge arises primarily due to constrained model context windows and the sparsity of relevant information within extensive contextual noise. To solve this, we propose the SAP$^{2}$ method, a novel framework that dynamically prunes and integrates relevant contextual keywords in two stages. Specifically, each stage leverages our proposed Speech-Driven Attention-based Pooling mechanism, enabling efficient compression of context embeddings while preserving speech-salient information. Experimental results demonstrate state-of-the-art performance of SAP$^{2}$ on the SlideSpeech and LibriSpeech datasets, achieving word error rates (WER) of 7.71% and 1.12%, respectively. On SlideSpeech, our method notably reduces biased keyword error rates (B-WER) by 41.1% compared to non-contextual baselines. SAP$^{2}$ also exhibits robust scalability, consistently maintaining performance under extensive contextual input conditions on both datasets.
☆ Enhancing Meme Emotion Understanding with Multi-Level Modality Enhancement and Dual-Stage Modal Fusion
With the rapid rise of social media and Internet culture, memes have become a popular medium for expressing emotional tendencies. This has sparked growing interest in Meme Emotion Understanding (MEU), which aims to classify the emotional intent behind memes by leveraging their multimodal contents. While existing efforts have achieved promising results, two major challenges remain: (1) a lack of fine-grained multimodal fusion strategies, and (2) insufficient mining of memes' implicit meanings and background knowledge. To address these challenges, we propose MemoDetector, a novel framework for advancing MEU. First, we introduce a four-step textual enhancement module that utilizes the rich knowledge and reasoning capabilities of Multimodal Large Language Models (MLLMs) to progressively infer and extract implicit and contextual insights from memes. These enhanced texts significantly enrich the original meme contents and provide valuable guidance for downstream classification. Next, we design a dual-stage modal fusion strategy: the first stage performs shallow fusion on raw meme image and text, while the second stage deeply integrates the enhanced visual and textual features. This hierarchical fusion enables the model to better capture nuanced cross-modal emotional cues. Experiments on two datasets, MET-MEME and MOOD, demonstrate that our method consistently outperforms state-of-the-art baselines. Specifically, MemoDetector improves F1 scores by 4.3\% on MET-MEME and 3.4\% on MOOD. Further ablation studies and in-depth analyses validate the effectiveness and robustness of our approach, highlighting its strong potential for advancing MEU. Our code is available at https://github.com/singing-cat/MemoDetector.
☆ AV-Dialog: Spoken Dialogue Models with Audio-Visual Input
Dialogue models falter in noisy, multi-speaker environments, often producing irrelevant responses and awkward turn-taking. We present AV-Dialog, the first multimodal dialog framework that uses both audio and visual cues to track the target speaker, predict turn-taking, and generate coherent responses. By combining acoustic tokenization with multi-task, multi-stage training on monadic, synthetic, and real audio-visual dialogue datasets, AV-Dialog achieves robust streaming transcription, semantically grounded turn-boundary detection and accurate responses, resulting in a natural conversational flow. Experiments show that AV-Dialog outperforms audio-only models under interference, reducing transcription errors, improving turn-taking prediction, and enhancing human-rated dialogue quality. These results highlight the power of seeing as well as hearing for speaker-aware interaction, paving the way for {spoken} dialogue agents that perform {robustly} in real-world, noisy environments.
☆ Analysing Personal Attacks in U.S. Presidential Debates
Personal attacks have become a notable feature of U.S. presidential debates and play an important role in shaping public perception during elections. Detecting such attacks can improve transparency in political discourse and provide insights for journalists, analysts and the public. Advances in deep learning and transformer-based models, particularly BERT and large language models (LLMs) have created new opportunities for automated detection of harmful language. Motivated by these developments, we present a framework for analysing personal attacks in U.S. presidential debates. Our work involves manual annotation of debate transcripts across the 2016, 2020 and 2024 election cycles, followed by statistical and language-model based analysis. We investigate the potential of fine-tuned transformer models alongside general-purpose LLMs to detect personal attacks in formal political speech. This study demonstrates how task-specific adaptation of modern language models can contribute to a deeper understanding of political communication.
comment: 13 pages
☆ CLARITY: Contextual Linguistic Adaptation and Accent Retrieval for Dual-Bias Mitigation in Text-to-Speech Generation ICASSP 2026
Instruction-guided text-to-speech (TTS) research has reached a maturity level where excellent speech generation quality is possible on demand, yet two coupled biases persist: accent bias, where models default to dominant phonetic patterns, and linguistic bias, where dialect-specific lexical and cultural cues are ignored. These biases are interdependent, as authentic accent generation requires both accent fidelity and localized text. We present Contextual Linguistic Adaptation and Retrieval for Inclusive TTS sYnthesis (CLARITY), a backbone-agnostic framework that addresses these biases through dual-signal optimization: (i) contextual linguistic adaptation that localizes input text to the target dialect, and (ii) retrieval-augmented accent prompting (RAAP) that supplies accent-consistent speech prompts. Across twelve English accents, CLARITY improves accent accuracy and fairness while maintaining strong perceptual quality.
comment: Submitted to ICASSP 2026
☆ Can LLMs Detect Their Own Hallucinations?
Large language models (LLMs) can generate fluent responses, but sometimes hallucinate facts. In this paper, we investigate whether LLMs can detect their own hallucinations. We formulate hallucination detection as a classification task of a sentence. We propose a framework for estimating LLMs' capability of hallucination detection and a classification method using Chain-of-Thought (CoT) to extract knowledge from their parameters. The experimental results indicated that GPT-$3.5$ Turbo with CoT detected $58.2\%$ of its own hallucinations. We concluded that LLMs with CoT can detect hallucinations if sufficient knowledge is contained in their parameters.
comment: 8 pages
☆ S2D-ALIGN: Shallow-to-Deep Auxiliary Learning for Anatomically-Grounded Radiology Report Generation
Radiology Report Generation (RRG) aims to automatically generate diagnostic reports from radiology images. To achieve this, existing methods have leveraged the powerful cross-modal generation capabilities of Multimodal Large Language Models (MLLMs), primarily focusing on optimizing cross-modal alignment between radiographs and reports through Supervised Fine-Tuning (SFT). However, by only performing instance-level alignment with the image-text pairs, the standard SFT paradigm fails to establish anatomically-grounded alignment, where the templated nature of reports often leads to sub-optimal generation quality. To address this, we propose \textsc{S2D-Align}, a novel SFT paradigm that establishes anatomically-grounded alignment by leveraging auxiliary signals of varying granularities. \textsc{S2D-Align} implements a shallow-to-deep strategy, progressively enriching the alignment process: it begins with the coarse radiograph-report pairing, then introduces reference reports for instance-level guidance, and ultimately utilizes key phrases to ground the generation in specific anatomical details. To bridge the different alignment stages, we introduce a memory-based adapter that empowers feature sharing, thereby integrating coarse and fine-grained guidance. For evaluation, we conduct experiments on the public \textsc{MIMIC-CXR} and \textsc{IU X-Ray} benchmarks, where \textsc{S2D-Align} achieves state-of-the-art performance compared to existing methods. Ablation studies validate the effectiveness of our multi-stage, auxiliary-guided approach, highlighting a promising direction for enhancing grounding capabilities in complex, multi-modal generation tasks.
☆ Correcting Mean Bias in Text Embeddings: A Refined Renormalization with Training-Free Improvements on MMTEB
We find that current text embedding models produce outputs with a consistent bias, i.e., each embedding vector $e$ can be decomposed as $\tilde{e} + μ$, where $μ$ is almost identical across all sentences. We propose a plug-and-play, training-free and lightweight solution called Renormalization. Through extensive experiments, we show that renormalization consistently and statistically significantly improves the performance of existing models on the Massive Multilingual Text Embedding Benchmark (MMTEB). In particular, across 38 models, renormalization improves performance by 9.7 $σ$ on retrieval tasks, 3.1 $σ$ on classification tasks, and 0.8 $σ$ on other types of tasks. Renormalization has two variants: directly subtracting $μ$ from $e$, or subtracting the projection of $e$ onto $μ$. We theoretically predict that the latter performs better, and our experiments confirm this prediction.
☆ Automata-Based Steering of Large Language Models for Diverse Structured Generation
Large language models (LLMs) are increasingly tasked with generating structured outputs. While structured generation methods ensure validity, they often lack output diversity, a critical limitation that we confirm in our preliminary study. We propose a novel method to enhance diversity in automaton-based structured generation. Our approach utilizes automata traversal history to steer LLMs towards novel structural patterns. Evaluations show our method significantly improves structural and content diversity while maintaining comparable generation efficiency. Furthermore, we conduct a case study showcasing the effectiveness of our method in generating diverse test cases for testing open-source libraries.
comment: ICFEM 2025 (Best Paper Award)
☆ When Data is the Algorithm: A Systematic Study and Curation of Preference Optimization Datasets
Aligning large language models (LLMs) is a central objective of post-training, often achieved through reward modeling and reinforcement learning methods. Among these, direct preference optimization (DPO) has emerged as a widely adopted technique that fine-tunes LLMs on preferred completions over less favorable ones. While most frontier LLMs do not disclose their curated preference pairs, the broader LLM community has released several open-source DPO datasets, including TuluDPO, ORPO, UltraFeedback, HelpSteer, and Code-Preference-Pairs. However, systematic comparisons remain scarce, largely due to the high computational cost and the lack of rich quality annotations, making it difficult to understand how preferences were selected, which task types they span, and how well they reflect human judgment on a per-sample level. In this work, we present the first comprehensive, data-centric analysis of popular open-source DPO corpora. We leverage the Magpie framework to annotate each sample for task category, input quality, and preference reward, a reward-model-based signal that validates the preference order without relying on human annotations. This enables a scalable, fine-grained inspection of preference quality across datasets, revealing structural and qualitative discrepancies in reward margins. Building on these insights, we systematically curate a new DPO mixture, UltraMix, that draws selectively from all five corpora while removing noisy or redundant samples. UltraMix is 30% smaller than the best-performing individual dataset yet exceeds its performance across key benchmarks. We publicly release all annotations, metadata, and our curated mixture to facilitate future research in data-centric preference optimization.
☆ DiscoX: Benchmarking Discourse-Level Translation task in Expert Domains
The evaluation of discourse-level translation in expert domains remains inadequate, despite its centrality to knowledge dissemination and cross-lingual scholarly communication. While these translations demand discourse-level coherence and strict terminological precision, current evaluation methods predominantly focus on segment-level accuracy and fluency. To address this limitation, we introduce DiscoX, a new benchmark for discourse-level and expert-level Chinese-English translation. It comprises 200 professionally-curated texts from 7 domains, with an average length exceeding 1700 tokens. To evaluate performance on DiscoX, we also develop Metric-S, a reference-free system that provides fine-grained automatic assessments across accuracy, fluency, and appropriateness. Metric-S demonstrates strong consistency with human judgments, significantly outperforming existing metrics. Our experiments reveal a remarkable performance gap: even the most advanced LLMs still trail human experts on these tasks. This finding validates the difficulty of DiscoX and underscores the challenges that remain in achieving professional-grade machine translation. The proposed benchmark and evaluation system provide a robust framework for more rigorous evaluation, facilitating future advancements in LLM-based translation.
comment: 36 pages
☆ CardioEmbed: Domain-Specialized Text Embeddings for Clinical Cardiology
Biomedical text embeddings have primarily been developed using research literature from PubMed, yet clinical cardiology practice relies heavily on procedural knowledge and specialized terminology found in comprehensive textbooks rather than research abstracts. This research practice gap limits the effectiveness of existing embedding models for clinical applications incardiology. This study trained CardioEmbed, a domain-specialized embedding model based on Qwen3-Embedding-8B, using contrastive learning on a curated corpus of seven comprehensive cardiology textbooks totaling approximately 150,000 sentences after deduplication. The model employs InfoNCE loss with in-batch negatives and achieves 99.60% retrieval accuracy on cardiac-specific semantic retrieval tasks, a +15.94 percentage point improvement over MedTE, the current state-of-the-art medical embedding model. On MTEB medical benchmarks, the model obtained BIOSSES 0.77 Spearman and SciFact 0.61 NDCG@10, indicating competitive performance on related biomedical domains. Domain-specialized training on comprehensive clinical textbooks yields near-perfect cardiology retrieval (99.60% Acc@1), improving over MedTE by +15.94 percentage points.
comment: 14 pages, 6 figures
☆ Evaluating Large Language Models on Rare Disease Diagnosis: A Case Study using House M.D
Large language models (LLMs) have demonstrated capabilities across diverse domains, yet their performance on rare disease diagnosis from narrative medical cases remains underexplored. We introduce a novel dataset of 176 symptom-diagnosis pairs extracted from House M.D., a medical television series validated for teaching rare disease recognition in medical education. We evaluate four state-of-the-art LLMs such as GPT 4o mini, GPT 5 mini, Gemini 2.5 Flash, and Gemini 2.5 Pro on narrative-based diagnostic reasoning tasks. Results show significant variation in performance, ranging from 16.48% to 38.64% accuracy, with newer model generations demonstrating a 2.3 times improvement. While all models face substantial challenges with rare disease diagnosis, the observed improvement across architectures suggests promising directions for future development. Our educationally validated benchmark establishes baseline performance metrics for narrative medical reasoning and provides a publicly accessible evaluation framework for advancing AI-assisted diagnosis research.
☆ Automated Analysis of Learning Outcomes and Exam Questions Based on Bloom's Taxonomy
This paper explores the automatic classification of exam questions and learning outcomes according to Bloom's Taxonomy. A small dataset of 600 sentences labeled with six cognitive categories - Knowledge, Comprehension, Application, Analysis, Synthesis, and Evaluation - was processed using traditional machine learning (ML) models (Naive Bayes, Logistic Regression, Support Vector Machines), recurrent neural network architectures (LSTM, BiLSTM, GRU, BiGRU), transformer-based models (BERT and RoBERTa), and large language models (OpenAI, Gemini, Ollama, Anthropic). Each model was evaluated under different preprocessing and augmentation strategies (for example, synonym replacement, word embeddings, etc.). Among traditional ML approaches, Support Vector Machines (SVM) with data augmentation achieved the best overall performance, reaching 94 percent accuracy, recall, and F1 scores with minimal overfitting. In contrast, the RNN models and BERT suffered from severe overfitting, while RoBERTa initially overcame it but began to show signs as training progressed. Finally, zero-shot evaluations of large language models (LLMs) indicated that OpenAI and Gemini performed best among the tested LLMs, achieving approximately 0.72-0.73 accuracy and comparable F1 scores. These findings highlight the challenges of training complex deep models on limited data and underscore the value of careful data augmentation and simpler algorithms (such as augmented SVM) for Bloom's Taxonomy classification.
comment: 7 Pages
☆ Multimodal Peer Review Simulation with Actionable To-Do Recommendations for Community-Aware Manuscript Revisions
While large language models (LLMs) offer promising capabilities for automating academic workflows, existing systems for academic peer review remain constrained by text-only inputs, limited contextual grounding, and a lack of actionable feedback. In this work, we present an interactive web-based system for multimodal, community-aware peer review simulation to enable effective manuscript revisions before paper submission. Our framework integrates textual and visual information through multimodal LLMs, enhances review quality via retrieval-augmented generation (RAG) grounded in web-scale OpenReview data, and converts generated reviews into actionable to-do lists using the proposed Action:Objective[\#] format, providing structured and traceable guidance. The system integrates seamlessly into existing academic writing platforms, providing interactive interfaces for real-time feedback and revision tracking. Experimental results highlight the effectiveness of the proposed system in generating more comprehensive and useful reviews aligned with expert standards, surpassing ablated baselines and advancing transparent, human-centered scholarly assistance.
☆ Expert-Guided Prompting and Retrieval-Augmented Generation for Emergency Medical Service Question Answering AAAI 2026
Large language models (LLMs) have shown promise in medical question answering, yet they often overlook the domain-specific expertise that professionals depend on, such as the clinical subject areas (e.g., trauma, airway) and the certification level (e.g., EMT, Paramedic). Existing approaches typically apply general-purpose prompting or retrieval strategies without leveraging this structured context, limiting performance in high-stakes settings. We address this gap with EMSQA, an 24.3K-question multiple-choice dataset spanning 10 clinical subject areas and 4 certification levels, accompanied by curated, subject area-aligned knowledge bases (40K documents and 2M tokens). Building on EMSQA, we introduce (i) Expert-CoT, a prompting strategy that conditions chain-of-thought (CoT) reasoning on specific clinical subject area and certification level, and (ii) ExpertRAG, a retrieval-augmented generation pipeline that grounds responses in subject area-aligned documents and real-world patient data. Experiments on 4 LLMs show that Expert-CoT improves up to 2.05% over vanilla CoT prompting. Additionally, combining Expert-CoT with ExpertRAG yields up to a 4.59% accuracy gain over standard RAG baselines. Notably, the 32B expertise-augmented LLMs pass all the computer-adaptive EMS certification simulation exams.
comment: Accepted by AAAI 2026
☆ From Proof to Program: Characterizing Tool-Induced Reasoning Hallucinations in Large Language Models
Tool-augmented Language Models (TaLMs) can invoke external tools to solve problems beyond their parametric capacity. However, it remains unclear whether these tool-enabled gains reflect trustworthy reasoning. Focusing on the Code Interpreter tool, we show that even when tools are selected and executed correctly, TaLMs treat tool outputs as substitutes for reasoning, producing solutions that appear correct but lack coherent justification. We term this failure mode Tool-Induced Myopia (TIM), and study it using PYMATH, a benchmark of 1,679 competition-level mathematical problems for which Python code is helpful but not sufficient. We further develop a multi-dimensional evaluation suite to quantify reasoning degradation in TaLMs relative to their non-tool counterparts. Our findings reveal that while TaLMs achieve up to a 19.3 percentage point gain in final-answer accuracy, their reasoning behavior consistently deteriorates (e.g., non-tool LLMs win up to 41.5% more often in pairwise comparisons of the reasoning process). This degradation intensifies with tool use; the more frequently a model invokes tools, the less coherent its reasoning becomes. Moreover, tool use shifts errors from arithmetic mistakes toward global reasoning failures (logic, assumption, creativity); with TIM present in ~55% of high-risk cases. Finally, we propose a preference-optimization-based framework that realigns TaLMs to use tools as assistive evidence, improving both final-answer accuracy and reasoning depth under tool use. Codes and data are available at: https://github.com/megagonlabs/TIM.
comment: 19 pages, 5 figures
☆ MedPath: Multi-Domain Cross-Vocabulary Hierarchical Paths for Biomedical Entity Linking AACL
Progress in biomedical Named Entity Recognition (NER) and Entity Linking (EL) is currently hindered by a fragmented data landscape, a lack of resources for building explainable models, and the limitations of semantically-blind evaluation metrics. To address these challenges, we present MedPath, a large-scale and multi-domain biomedical EL dataset that builds upon nine existing expert-annotated EL datasets. In MedPath, all entities are 1) normalized using the latest version of the Unified Medical Language System (UMLS), 2) augmented with mappings to 62 other biomedical vocabularies and, crucially, 3) enriched with full ontological paths -- i.e., from general to specific -- in up to 11 biomedical vocabularies. MedPath directly enables new research frontiers in biomedical NLP, facilitating training and evaluation of semantic-rich and interpretable EL systems, and the development of the next generation of interoperable and explainable clinical NLP models.
comment: Accepted at AACL-IJCNLP 2025(main)
☆ A Multifaceted Analysis of Negative Bias in Large Language Models through the Lens of Parametric Knowledge
Negative bias refers to the tendency of large language models (LLMs) to excessively generate negative responses in binary decision tasks (e.g., yes-no question answering). Previous research has focused on detecting and addressing negative attention heads that induce negative bias. However, the underlying detailed factors influencing negative bias remain underexplored. In this paper, we demonstrate that LLMs exhibit format-level negative bias, meaning the prompt format more influences their responses than the semantics of the negative response. For the fine-grained study of the negative bias, we introduce a pipeline for constructing the evaluation set, which systematically categorizes the dataset into three subsets based on the model's parametric knowledge: correct, incorrect, and insufficient relevant knowledge. Through analysis of this evaluation set, we identify a shortcut behavior in which models tend to generate negative responses when they lack sufficient knowledge to answer a yes-no question, leading to negative bias. We further examine how negative bias changes under various prompting scenarios related to parametric knowledge. We observe that providing relevant context and offering an "I don't know" option generally reduces negative bias, whereas chain-of-thought prompting tends to amplify the bias. Finally, we demonstrate that the degree of negative bias can vary depending on the type of prompt, which influences the direction of the response. Our work reveals the various factors that influence negative bias, providing critical insights for mitigating it in LLMs.
comment: Accepted to IEEE Transactions on Audio, Speech and Language Processing
☆ ICX360: In-Context eXplainability 360 Toolkit
Large Language Models (LLMs) have become ubiquitous in everyday life and are entering higher-stakes applications ranging from summarizing meeting transcripts to answering doctors' questions. As was the case with earlier predictive models, it is crucial that we develop tools for explaining the output of LLMs, be it a summary, list, response to a question, etc. With these needs in mind, we introduce In-Context Explainability 360 (ICX360), an open-source Python toolkit for explaining LLMs with a focus on the user-provided context (or prompts in general) that are fed to the LLMs. ICX360 contains implementations for three recent tools that explain LLMs using both black-box and white-box methods (via perturbations and gradients respectively). The toolkit, available at https://github.com/IBM/ICX360, contains quick-start guidance materials as well as detailed tutorials covering use cases such as retrieval augmented generation, natural language generation, and jailbreaking.
comment: 14 pages, 4 figures
☆ From Fact to Judgment: Investigating the Impact of Task Framing on LLM Conviction in Dialogue Systems
LLMs are increasingly employed as judges across a variety of tasks, including those involving everyday social interactions. Yet, it remains unclear whether such LLM-judges can reliably assess tasks that require social or conversational judgment. We investigate how an LLM's conviction is changed when a task is reframed from a direct factual query to a Conversational Judgment Task. Our evaluation framework contrasts the model's performance on direct factual queries with its assessment of a speaker's correctness when the same information is presented within a minimal dialogue, effectively shifting the query from "Is this statement correct?" to "Is this speaker correct?". Furthermore, we apply pressure in the form of a simple rebuttal ("The previous answer is incorrect.") to both conditions. This perturbation allows us to measure how firmly the model maintains its position under conversational pressure. Our findings show that while some models like GPT-4o-mini reveal sycophantic tendencies under social framing tasks, others like Llama-8B-Instruct become overly-critical. We observe an average performance change of 9.24% across all models, demonstrating that even minimal dialogue context can significantly alter model judgment, underscoring conversational framing as a key factor in LLM-based evaluation. The proposed framework offers a reproducible methodology for diagnosing model conviction and contributes to the development of more trustworthy dialogue systems.
comment: 11 pages, 3 figures. Under review at IWSDS 2026
♻ ☆ Benchmarking Retrieval-Augmented Large Language Models in Biomedical NLP: Application, Robustness, and Self-Awareness
Large language models (LLM) have demonstrated remarkable capabilities in various biomedical natural language processing (NLP) tasks, leveraging the demonstration within the input context to adapt to new tasks. However, LLM is sensitive to the selection of demonstrations. To address the hallucination issue inherent in LLM, retrieval-augmented LLM (RAL) offers a solution by retrieving pertinent information from an established database. Nonetheless, existing research work lacks rigorous evaluation of the impact of retrieval-augmented large language models on different biomedical NLP tasks. This deficiency makes it challenging to ascertain the capabilities of RAL within the biomedical domain. Moreover, the outputs from RAL are affected by retrieving the unlabeled, counterfactual, or diverse knowledge that is not well studied in the biomedical domain. However, such knowledge is common in the real world. Finally, exploring the self-awareness ability is also crucial for the RAL system. So, in this paper, we systematically investigate the impact of RALs on 5 different biomedical tasks (triple extraction, link prediction, classification, question answering, and natural language inference). We analyze the performance of RALs in four fundamental abilities, including unlabeled robustness, counterfactual robustness, diverse robustness, and negative awareness. To this end, we proposed an evaluation framework to assess the RALs' performance on different biomedical NLP tasks and establish four different testbeds based on the aforementioned fundamental abilities. Then, we evaluate 3 representative LLMs with 3 different retrievers on 5 tasks over 9 datasets.
♻ ☆ LDC: Learning to Generate Research Idea with Dynamic Control
Recent advancements in large language models (LLMs) have demonstrated their potential in automating the scientific research ideation. Existing approaches primarily focus on prompting techniques, often producing ideas misaligned with expert standards - novelty, feasibility, and effectiveness, which are widely recognized by the research community as the three key subdimensions of high-quality ideas. Also, balancing these dimensions remains challenging due to their inherent trade-offs. To address these limitations, we propose the first framework that employs a two-stage approach combining Supervised Fine-Tuning (SFT) and controllable Reinforcement Learning (RL) for the task. In the SFT stage, the model learns foundational patterns from pairs of research papers and their corresponding follow-up ideas. In the RL stage, multi-dimensional reward models guided by fine-grained feedback evaluate and optimize the model across key dimensions. During inference, dimensional controllers coordinated by a sentence-level decoder enable dynamic context-aware steering of the idea generation process. Our framework provides a balanced approach to research idea generation, achieving high-quality outcomes in the experiment by dynamically navigating the trade-offs among novelty, feasibility, and effectiveness.
♻ ☆ HI-TransPA: Hearing Impairments Translation Personal Assistant
Hearing-impaired individuals often face significant barriers in daily communication due to the inherent challenges of producing clear speech. To address this, we introduce the Omni-Model paradigm into assistive technology and present HI-TransPA, an instruction-driven audio-visual personal assistant. The model fuses indistinct speech with lip dynamics, enabling both translation and dialogue within a single multimodal framework. To address the distinctive pronunciation patterns of hearing-impaired speech and the limited adaptability of existing models, we develop a multimodal preprocessing and curation pipeline that detects facial landmarks, stabilizes the lip region, and quantitatively evaluates sample quality. These quality scores guide a curriculum learning strategy that first trains on clean, high-confidence samples and progressively incorporates harder cases to strengthen model robustness. Architecturally, we employs a novel unified 3D-Resampler to efficiently encode the lip dynamics, which is critical for accurate interpretation. Experiments on purpose-built HI-Dialogue dataset show that HI-TransPA achieves state-of-the-art performance in both literal accuracy and semantic fidelity. Our work establishes a foundation for applying Omni-Models to assistive communication technology, providing an end-to-end modeling framework and essential processing tools for future research.
♻ ☆ FakeZero: Real-Time, Privacy-Preserving Misinformation Detection for Facebook and X
Social platforms distribute information at unprecedented speed, which in turn accelerates the spread of misinformation and threatens public discourse. We present FakeZero, a fully client-side, cross-platform browser extension that flags unreliable posts on Facebook and X (formerly Twitter) while the user scrolls. All computation, DOM scraping, tokenization, Transformer inference, and UI rendering run locally through the Chromium messaging API, so no personal data leaves the device. FakeZero employs a three-stage training curriculum: baseline fine-tuning and domain-adaptive training enhanced with focal loss, adversarial augmentation, and post-training quantization. Evaluated on a dataset of 239,000 posts, the DistilBERT-Quant model (67.6 MB) reaches 97.1% macro-F1, 97.4% accuracy, and an AUROC of 0.996, with a median latency of approximately 103 ms on a commodity laptop. A memory-efficient TinyBERT-Quant variant retains 95.7% macro-F1 and 96.1% accuracy while shrinking the model to 14.7 MB and lowering latency to approximately 40 ms, showing that high-quality fake-news detection is feasible under tight resource budgets with only modest performance loss. By providing inline credibility cues, the extension can serve as a valuable tool for policymakers seeking to curb the spread of misinformation across social networks. With user consent, FakeZero also opens the door for researchers to collect large-scale datasets of fake news in the wild, enabling deeper analysis and the development of more robust detection techniques.
comment: Accepted for publication in the Proceedings of the 24th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom 2025) Privacy track, 11 pages, 8 figures
♻ ☆ Metric Learning Encoding Models: A Multivariate Framework for Interpreting Neural Representations
Understanding how explicit theoretical features are encoded in opaque neural systems is a central challenge now common to neuroscience and AI. We introduce Metric Learning Encoding Models (MLEMs) to address this challenge most directly as a metric learning problem: we fit the distance in the space of theoretical features to match the distance in neural space. Our framework improves on univariate encoding and decoding methods by building on second-order isomorphism methods, such as Representational Similarity Analysis, and extends them by learning a metric that efficiently models feature as well as interactions between them. The effectiveness of MLEM is validated through two sets of simulations. First, MLEMs recover ground-truth importance features in synthetic datasets better than state-of-the-art methods, such as Feature Reweighted RSA (FR-RSA). Second, we deploy MLEMs on real language data, where they show stronger robustness to noise in calculating the importance of linguistic features (gender, tense, etc.). MLEMs are applicable to any domains where theoretical features can be identified, such as language, vision, audition, etc. We release optimized code applicable to measure feature importance in the representations of any artificial neural networks or empirical neural data at https://github.com/LouisJalouzot/MLEM.
comment: 30 pages, 20 figures
♻ ☆ CO-VADA: A Confidence-Oriented Voice Augmentation Debiasing Approach for Fair Speech Emotion Recognition
Bias in speech emotion recognition (SER) systems often stems from spurious correlations between speaker characteristics and emotional labels, leading to unfair predictions across demographic groups. Many existing debiasing methods require model-specific changes or demographic annotations, limiting their practical use. We present CO-VADA, a Confidence-Oriented Voice Augmentation Debiasing Approach that mitigates bias without modifying model architecture or relying on demographic information. CO-VADA identifies training samples that reflect bias patterns present in the training data and then applies voice conversion to alter irrelevant attributes and generate samples. These augmented samples introduce speaker variations that differ from dominant patterns in the data, guiding the model to focus more on emotion-relevant features. Our framework is compatible with various SER models and voice conversion tools, making it a scalable and practical solution for improving fairness in SER systems.
comment: Accepted by IEEE ASRU 2025
♻ ☆ $\textit{New News}$: System-2 Fine-tuning for Robust Integration of New Knowledge
Humans and intelligent animals can internalize new information and accurately internalize their implications to perform downstream tasks. While large language models (LLMs) can achieve this through in-context learning (ICL) when the information (news) is explicitly given as context, adequately integrating the information into model weights via fine-tuning remains challenging. In this paper, we introduce New News, a dataset composed of hypothetical yet plausible news spanning multiple domains (mathematics, coding, discoveries, leaderboards, events), accompanied by downstream evaluation questions whose correct answers critically depend on understanding and internalizing the news. First, we demonstrate a substantial gap between naive fine-tuning and in-context learning (FT-ICL gap) on our dataset. To address this gap, we explore a suite of self-play data generation protocols -- paraphrases, implications, and Self-QA -- designed to distill the knowledge processed by the model with context into the weights of the model, which we term System-2 Fine-tuning (Sys2-FT). We systematically evaluate ICL and Sys2-FT performance across data domains and model scales with the Qwen 2.5 family of models. Our results demonstrate that the Self-QA protocol of Sys2-FT significantly improves models' in-weight learning of the news while preserving general capabilities. Furthermore, we discover the contextual shadowing effect, where training with the news in context followed by its rephrases or QAs catastrophically degrades learning of the news. Finally, we show preliminary evidence of an emerging scaling law of Sys2-FT.
♻ ☆ Latent Principle Discovery for Language Model Self-Improvement NeurIPS 2025
When language model (LM) users aim to improve the quality of its generations, it is crucial to specify concrete behavioral attributes that the model should strive to reflect. However, curating such principles across many domains, even non-exhaustively, requires a labor-intensive annotation process. To automate this process, we propose eliciting these latent attributes that guide model reasoning toward human-preferred responses by explicitly modeling them in a self-correction setting. Our approach mines new principles from the LM itself and compresses the discovered elements to an interpretable set via clustering. Specifically, we employ a form of posterior-regularized Monte Carlo Expectation-Maximization to both identify a condensed set of the most effective latent principles and teach the LM to strategically invoke them in order to intrinsically refine its responses. We demonstrate that bootstrapping our algorithm over multiple iterations enables smaller language models (7-8B parameters) to self-improve, achieving +8-10% in AlpacaEval win-rate, an average of +0.3 on MT-Bench, and +19-23% in principle-following win-rate on IFEval. We also show that clustering the principles yields interpretable and diverse model-generated constitutions while retaining model performance. The gains that our method achieves highlight the potential of automated, principle-driven post-training recipes toward continual self-improvement.
comment: Accepted at NeurIPS 2025
♻ ☆ Leveraging NTPs for Efficient Hallucination Detection in VLMs AACL
Hallucinations of vision-language models (VLMs), which are misalignments between visual content and generated text, undermine the reliability of VLMs. One common approach for detecting them employs the same VLM, or a different one, to assess generated outputs. This process is computationally intensive and increases model latency. In this paper, we explore an efficient on-the-fly method for hallucination detection by training traditional ML models over signals based on the VLM's next-token probabilities (NTPs). NTPs provide a direct quantification of model uncertainty. We hypothesize that high uncertainty (i.e., a low NTP value) is strongly associated with hallucinations. To test this, we introduce a dataset of 1,400 human-annotated statements derived from VLM-generated content, each labeled as hallucinated or not, and use it to test our NTP-based lightweight method. Our results demonstrate that NTP-based features are valuable predictors of hallucinations, enabling fast and simple ML models to achieve performance comparable to that of strong VLMs. Furthermore, augmenting these NTPs with linguistic NTPs, computed by feeding only the generated text back into the VLM, enhances hallucination detection performance. Finally, integrating hallucination prediction scores from VLMs into the NTP-based models led to better performance than using either VLMs or NTPs alone. We hope this study paves the way for simple, lightweight solutions that enhance the reliability of VLMs.
comment: Accepted to The First Workshop on Confabulation, Hallucinations, & Overgeneration in Multilingual & Precision-critical Setting - AACL-IJCNLP2025
♻ ☆ Emotions, Context, and Substance Use in Adolescents: A Large Language Model Analysis of Reddit Posts
Early substance use during adolescence increases the risk of later substance use disorders and mental health problems, yet the emotional and contextual factors driving these behaviors remain poorly understood. This study analyzed 23000 substance-use related posts and an equal number of non-substance posts from Reddit's r/teenagers community (2018-2022). Posts were annotated for six discrete emotions (sadness, anger, joy, guilt, fear, disgust) and contextual factors (family, peers, school) using large language models (LLMs). Statistical analyses compared group differences, and interpretable machine learning (SHAP) identified key predictors of substance-use discussions. LLM-assisted thematic coding further revealed latent psychosocial themes linking emotions with contexts. Negative emotions, especially sadness, guilt, fear, and disgust, were significantly more common in substance-use posts, while joy dominated non-substance discussions. Guilt and shame diverged in function: guilt often reflected regret and self-reflection, whereas shame reinforced risky behaviors through peer performance. Peer influence emerged as the strongest contextual factor, closely tied to sadness, fear, and guilt. Family and school environments acted as both risk and protective factors depending on relational quality and stress levels. Overall, adolescent substance-use discussions reflected a dynamic interplay of emotion, social context, and coping behavior. By integrating statistical analysis, interpretable models, and LLM-based thematic exploration, this study demonstrates the value of mixed computational approaches for uncovering the emotional and contextual mechanisms underlying adolescent risk behavior.
comment: 19 pages, 5 figures
♻ ☆ Computational Analysis of Gender Depiction in the Comedias of Calderón de la Barca
In theatre, playwrights use the portrayal of characters to explore culturally based gender norms. In this paper, we develop quantitative methods to study gender depiction in the non-religious works (comedias) of Pedro Calderón de la Barca, a prolific Spanish 17th century author. We gather insights from a corpus of more than 100 plays by using a gender classifier and applying model explainability (attribution) methods to determine which text features are most influential in the model's decision to classify speech as 'male' or 'female', indicating the most gendered elements of dialogue in Calderón's comedias in a human accessible manner. We find that female and male characters are portrayed differently and can be identified by the gender prediction model at practically useful accuracies (up to f=0.83). Analysis reveals semantic aspects of gender portrayal, and demonstrates that the model is even useful in providing a relatively accurate scene-by-scene prediction of cross-dressing characters.
♻ ☆ FedALT: Federated Fine-Tuning through Adaptive Local Training with Rest-of-World LoRA AAAI 2026
Fine-tuning large language models (LLMs) in federated settings enables privacy-preserving adaptation but suffers from cross-client interference due to model aggregation. Existing federated LoRA fine-tuning methods, primarily based on FedAvg, struggle with data heterogeneity, leading to harmful cross-client interference and suboptimal personalization. In this work, we propose \textbf{FedALT}, a novel personalized federated LoRA fine-tuning algorithm that fundamentally departs from FedAvg. Instead of using an aggregated model to initialize local training, each client continues training its individual LoRA while incorporating shared knowledge through a separate Rest-of-World (RoW) LoRA component. To effectively balance local adaptation and global information, FedALT introduces an adaptive mixer that dynamically learns input-specific weightings between the individual and RoW LoRA components, drawing conceptual foundations from the Mixture-of-Experts (MoE) paradigm. Through extensive experiments on NLP benchmarks, we demonstrate that FedALT significantly outperforms state-of-the-art personalized federated LoRA fine-tuning methods, achieving superior local adaptation without sacrificing computational efficiency.
comment: Accepted by AAAI 2026
♻ ☆ Interpretable LLM Guardrails via Sparse Representation Steering
Large language models (LLMs) exhibit impressive capabilities in generation tasks but are prone to producing harmful, misleading, or biased content, posing significant ethical and safety concerns. To mitigate such risks, representation engineering, which steer model behavior toward desired attributes by injecting carefully designed steering vectors into LLM's representations at inference time, has emerged as a promising alternative to fine-tuning approaches. However, due to the semantically entangled nature of LLM's representation, existing representation engineering methods still suffer from several limitations: limited fine-grained controllability, content quality degradation, and conflict in multi-attribute control. To overcome these challenges, we propose Sparse Representation Steering (SRS), a novel framework that achieves fine-grained and interpretable control over LLM behavior by first disentangling internal activations into a sparse, semantically meaningful representation space, and then selectively steering relevant dimensions. Specifically, SRS leverages a pretrained Sparse Autoencoder (SAE) to transform dense, entangled activation patterns into a sparse monosemantic feature space. To identify relevant features, SRS contrasts sparse activations from positive and negative prompt pairs and measures their bidirectional KL divergence to locate dimensions most associated with the target attribute. We conduct comprehensive experiments on Gemma-2 series model across three alignment dimensions, i.e., safety, fairness, and truthfulness, to evaluate the effectiveness of SRS. Results show that SRS consistently outperforms existing steering methods, which achieves significantly improved controllability across both single and multiple attribute settings, while preserving high linguistic quality and general ability.
♻ ☆ Efficient Reasoning via Thought-Training and Thought-Free Inference
Recent advances in large language models (LLMs) have leveraged explicit Chain-of-Thought (CoT) prompting to improve reasoning accuracy. However, most existing methods primarily compress verbose reasoning outputs. These Long-to-Short transformations aim to improve efficiency, but still rely on explicit reasoning during inference. In this work, we introduce \textbf{3TF} (\textbf{T}hought-\textbf{T}raining and \textbf{T}hought-\textbf{F}ree inference), a framework for efficient reasoning that takes a Short-to-Long perspective. We first train a hybrid model that can operate in both reasoning and non-reasoning modes, and then further train it on CoT-annotated data to internalize structured reasoning, while enforcing concise, thought-free outputs at inference time using the no-reasoning mode. Unlike compression-based approaches, 3TF improves the reasoning quality of non-reasoning outputs, enabling models to perform rich internal reasoning implicitly while keeping external outputs short. Empirically, 3TF-trained models obtain large improvements on reasoning benchmarks under thought-free inference, demonstrating that high quality reasoning can be learned and executed implicitly without explicit step-by-step generation.
comment: 11 pages, 4 figures
♻ ☆ First-Order Error Matters: Accurate Compensation for Quantized Large Language Models AAAI 2026
Post-training quantization (PTQ) offers an efficient approach to compressing large language models (LLMs), significantly reducing memory access and computational costs. Existing compensation-based weight calibration methods often rely on a second-order Taylor expansion to model quantization error, under the assumption that the first-order term is negligible in well-trained full-precision models. However, we reveal that the progressive compensation process introduces accumulated first-order deviations between latent weights and their full-precision counterparts, making this assumption fundamentally flawed. To address this, we propose FOEM, a novel PTQ method that explicitly incorporates first-order gradient terms to improve quantization error compensation. FOEM approximates gradients by performing a first-order Taylor expansion around the pre-quantization weights. This yields an approximation based on the difference between latent and full-precision weights as well as the Hessian matrix. When substituted into the theoretical solution, the formulation eliminates the need to explicitly compute the Hessian, thereby avoiding the high computational cost and limited generalization of backpropagation-based gradient methods. This design introduces only minimal additional computational overhead. Extensive experiments across a wide range of models and benchmarks demonstrate that FOEM consistently outperforms the classical GPTQ method. In 3-bit weight-only quantization, FOEM reduces the perplexity of Llama3-8B by 17.3% and increases the 5-shot MMLU accuracy from 53.8% achieved by GPTAQ to 56.1%. Moreover, FOEM can be seamlessly combined with advanced techniques such as SpinQuant, delivering additional gains under the challenging W4A4KV4 setting and further narrowing the performance gap with full-precision baselines, surpassing existing state-of-the-art methods.
comment: Accepted by AAAI 2026. The code is available at https://github.com/Xingyu-Zheng/FOEM
♻ ☆ ModernBERT or DeBERTaV3? Examining Architecture and Data Influence on Transformer Encoder Models Performance AACL 2025
Pretrained transformer-encoder models like DeBERTaV3 and ModernBERT introduce architectural advancements aimed at improving efficiency and performance. Although the authors of ModernBERT report improved performance over DeBERTaV3 on several benchmarks, the lack of disclosed training data and the absence of comparisons using a shared dataset make it difficult to determine whether these gains are due to architectural improvements or differences in training data. In this work, we conduct a controlled study by pretraining ModernBERT on the same dataset as CamemBERTaV2, a DeBERTaV3 French model, isolating the effect of model design. Our results show that the previous model generation remains superior in sample efficiency and overall benchmark performance, with ModernBERT's primary advantage being its support for long context, faster training, and inference speed. However, the new proposed model still provides meaningful architectural improvements compared to earlier models such as BERT and RoBERTa. Additionally, we observe that high-quality pre-training data accelerates convergence but does not significantly improve final performance, suggesting potential benchmark saturation. These findings show the importance of disentangling pretraining data from architectural innovations when evaluating transformer models.
comment: Published as a conference paper at IJCNLP-AACL 2025
♻ ☆ Survey in Characterization of Semantic Change
Live languages continuously evolve to integrate the cultural change of human societies. This evolution manifests through neologisms (new words) or \textbf{semantic changes} of words (new meaning to existing words). Understanding the meaning of words is vital for interpreting texts coming from different cultures (regionalism or slang), domains (e.g., technical terms), or periods. In computer science, these words are relevant to computational linguistics algorithms such as translation, information retrieval, question answering, etc. Semantic changes can potentially impact the quality of the outcomes of these algorithms. Therefore, it is important to understand and characterize these changes formally. The study of this impact is a recent problem that has attracted the attention of the computational linguistics community. Several approaches propose methods to detect semantic changes with good precision, but more effort is needed to characterize how the meaning of words changes and to reason about how to reduce the impact of semantic change. This survey provides an understandable overview of existing approaches to the \textit{characterization of semantic changes} and also formally defines three classes of characterizations: if the meaning of a word becomes more general or narrow (change in dimension) if the word is used in a more pejorative or positive/ameliorated sense (change in orientation), and if there is a trend to use the word in a, for instance, metaphoric or metonymic context (change in relation). We summarized the main aspects of the selected publications in a table and discussed the needs and trends in the research activities on semantic change characterization.
♻ ☆ Beyond the Surface: Probing the Ideological Depth of Large Language Models
Large language models (LLMs) display recognizable political leanings, yet they vary significantly in their ability to represent a political orientation consistently. In this paper, we define ideological depth as (i) a model's ability to follow political instructions without failure (steerability), and (ii) the feature richness of its internal political representations measured with sparse autoencoders (SAEs), an unsupervised sparse dictionary learning (SDL) approach. Using Llama-3.1-8B-Instruct and Gemma-2-9B-IT as candidates, we compare prompt-based and activation-steering interventions and probe political features with publicly available SAEs. We find large, systematic differences: Gemma is more steerable in both directions and activates approximately 7.3x more distinct political features than Llama. Furthermore, causal ablations of a small targeted set of Gemma's political features to create a similar feature-poor setting induce consistent shifts in its behavior, with increased rates of refusals across topics. Together, these results indicate that refusals on benign political instructions or prompts can arise from capability deficits rather than safety guardrails. Ideological depth thus emerges as a measurable property of LLMs, and steerability serves as a window into their latent political architecture.
♻ ☆ Re-FRAME the Meeting Summarization SCOPE: Fact-Based Summarization and Personalization via Questions EMNLP 2025
Meeting summarization with large language models (LLMs) remains error-prone, often producing outputs with hallucinations, omissions, and irrelevancies. We present FRAME, a modular pipeline that reframes summarization as a semantic enrichment task. FRAME extracts and scores salient facts, organizes them thematically, and uses these to enrich an outline into an abstractive summary. To personalize summaries, we introduce SCOPE, a reason-out-loud protocol that has the model build a reasoning trace by answering nine questions before content selection. For evaluation, we propose P-MESA, a multi-dimensional, reference-free evaluation framework to assess if a summary fits a target reader. P-MESA reliably identifies error instances, achieving >= 89% balanced accuracy against human annotations and strongly aligns with human severity ratings (r >= 0.70). On QMSum and FAME, FRAME reduces hallucination and omission by 2 out of 5 points (measured with MESA), while SCOPE improves knowledge fit and goal alignment over prompt-only baselines. Our findings advocate for rethinking summarization to improve control, faithfulness, and personalization.
comment: Accepted at EMNLP 2025
♻ ☆ Improving the Downstream Performance of Mixture-of-Experts Transformers via Weak Vanilla Transformers
Recently, Mixture of Experts (MoE) Transformers have garnered increasing attention due to their advantages in model capacity and computational efficiency. However, studies have indicated that MoE Transformers underperform vanilla Transformers in many downstream tasks, significantly diminishing the practical value of MoE models. To explain this issue, we propose that the pre-training performance and transfer capability of a model are joint determinants of its downstream task performance. MoE models, in comparison to vanilla models, have poorer transfer capability, leading to their subpar performance in downstream tasks. To address this issue, we introduce the concept of transfer capability distillation, positing that although vanilla models have weaker performance, they are effective teachers of transfer capability. The MoE models guided by vanilla models can achieve both strong pre-training performance and transfer capability, ultimately enhancing their performance in downstream tasks. We design a specific distillation method and conduct experiments on the BERT architecture. Experimental results show a significant improvement in downstream performance of MoE models, and many further evidences also strongly support the concept of transfer capability distillation. Finally, we attempt to interpret transfer capability distillation and provide some insights from the perspective of model feature.
♻ ☆ MoPE: Mixture of Prompt Experts for Parameter-Efficient and Scalable Multimodal Fusion
Despite the demonstrated parameter efficiency of prompt-based fusion, its limited adaptivity and expressiveness hinder its effectiveness for multimodal applications at scale. In this paper, we present the first comprehensive study addressing these limitations. Our key motivation is to ``divide and conquer'' the vanilla prompt, traditionally shared across all instances, by generating instance-specific prompts. Specifically, we propose the Mixture of Prompt Experts (MoPE), a framework that significantly enhances prompt adaptivity and expressiveness by dynamically generating instance-specific prompts. MoPE leverages multimodal pairings as additional evidence, allowing the model to adaptively select optimal prompts tailored to each individual instance. Unlike traditional prompt-fusion methods, which encounter scalability bottlenecks when optimizing long unified prompts, MoPE maintains fixed prompt length while effectively scaling the number of specialized experts. Moreover, we investigate regularization terms to encourage expert specialization, resulting in highly adaptive and interpretable prompting. MoPE fundamentally changes the scaling dynamic, unlocking greater expressiveness and adaptability to complex multimodal relationships, enabling the model to selectively attend to task-relevant sub-sequences based on instance-specific multimodal input. Extensive experiments across six multimodal datasets spanning four modalities demonstrate state-of-the-art performance for multimodal fusion, matching or surpassing the performance of fine-tuning while requiring only 0.8% of the trainable parameters. Code is available: https://github.com/songrise/MoPE.
comment: Accepted to IEEE TMM
♻ ☆ Figurative Archive: an open dataset and web-based application for the study of metaphor
Research on metaphor has steadily increased over the last decades, as this phenomenon opens a window into a range of linguistic and cognitive processes. At the same time, the demand for rigorously constructed and extensively normed experimental materials increased as well. Here, we present the Figurative Archive, an open database of 996 metaphors in Italian enriched with rating and corpus-based measures (from familiarity to semantic distance and preferred interpretations), derived by collecting stimuli used across 11 studies. It includes both everyday and literary metaphors, varying in structure and semantic domains, and is validated based on correlations between familiarity and other measures. The Archive has several aspects of novelty: it is increased in size compared to previous resources; it offers a measure of metaphor inclusiveness, to comply with recommendations for non-discriminatory language use; it is displayed in a web-based interface, with features for a customized consultation. We provide guidelines for using the Archive to source materials for studies investigating metaphor processing and relationships between metaphor features in humans and computational models.
♻ ☆ A Critical Study of Automatic Evaluation in Sign Language Translation LREC 2026
Automatic evaluation metrics are crucial for advancing sign language translation (SLT). Current SLT evaluation metrics, such as BLEU and ROUGE, are only text-based, and it remains unclear to what extent text-based metrics can reliably capture the quality of SLT outputs. To address this gap, we investigate the limitations of text-based SLT evaluation metrics by analyzing six metrics, including BLEU, chrF, and ROUGE, as well as BLEURT on the one hand, and large language model (LLM)-based evaluators such as G-Eval and GEMBA zero-shot direct assessment on the other hand. Specifically, we assess the consistency and robustness of these metrics under three controlled conditions: paraphrasing, hallucinations in model outputs, and variations in sentence length. Our analysis highlights the limitations of lexical overlap metrics and demonstrates that while LLM-based evaluators better capture semantic equivalence often missed by conventional metrics, they can also exhibit bias toward LLM-paraphrased translations. Moreover, although all metrics are able to detect hallucinations, BLEU tends to be overly sensitive, whereas BLEURT and LLM-based evaluators are comparatively lenient toward subtle cases. This motivates the need for multimodal evaluation frameworks that extend beyond text-based metrics to enable a more holistic assessment of SLT outputs.
comment: Submitted to the LREC 2026 conference
♻ ☆ Navigating Through Paper Flood: Advancing LLM-based Paper Evaluation through Domain-Aware Retrieval and Latent Reasoning AAAI'26
With the rapid and continuous increase in academic publications, identifying high-quality research has become an increasingly pressing challenge. While recent methods leveraging Large Language Models (LLMs) for automated paper evaluation have shown great promise, they are often constrained by outdated domain knowledge and limited reasoning capabilities. In this work, we present PaperEval, a novel LLM-based framework for automated paper evaluation that addresses these limitations through two key components: 1) a domain-aware paper retrieval module that retrieves relevant concurrent work to support contextualized assessments of novelty and contributions, and 2) a latent reasoning mechanism that enables deep understanding of complex motivations and methodologies, along with comprehensive comparison against concurrently related work, to support more accurate and reliable evaluation. To guide the reasoning process, we introduce a progressive ranking optimization strategy that encourages the LLM to iteratively refine its predictions with an emphasis on relative comparison. Experiments on two datasets demonstrate that PaperEval consistently outperforms existing methods in both academic impact and paper quality evaluation. In addition, we deploy PaperEval in a real-world paper recommendation system for filtering high-quality papers, which has gained strong engagement on social media -- amassing over 8,000 subscribers and attracting over 10,000 views for many filtered high-quality papers -- demonstrating the practical effectiveness of PaperEval.
comment: Accepted for publication in AAAI'26
♻ ☆ Scientists' First Exam: Probing Cognitive Abilities of MLLM via Perception, Understanding, and Reasoning
Scientific discoveries increasingly rely on complex multimodal reasoning based on information-intensive scientific data and domain-specific expertise. Empowered by expert-level scientific benchmarks, scientific Multimodal Large Language Models (MLLMs) hold the potential to significantly enhance this discovery process in realistic workflows. However, current scientific benchmarks mostly focus on evaluating the knowledge understanding capabilities of MLLMs, leading to an inadequate assessment of their perception and reasoning abilities. To address this gap, we present the Scientists' First Exam (SFE) benchmark, designed to evaluate the scientific cognitive capacities of MLLMs through three interconnected levels: scientific signal perception, scientific attribute understanding, scientific comparative reasoning. Specifically, SFE comprises 830 expert-verified VQA pairs across three question types, spanning 66 multimodal tasks across five high-value disciplines. Extensive experiments reveal that current state-of-the-art GPT-o3 and InternVL-3 achieve only 34.08% and 26.52% on SFE, highlighting significant room for MLLMs to improve in scientific realms. We hope the insights obtained in SFE will facilitate further developments in AI-enhanced scientific discoveries.
comment: 82 pages
♻ ☆ Text2SQL-Flow: A Robust SQL-Aware Data Augmentation Framework for Text-to-SQL
The data-centric paradigm has become pivotal in AI, especially for Text-to-SQL, where performance is limited by scarce, simplistic, and low-diversity datasets. To address this, we propose Text2SQL-Flow, a SQL-aware data augmentation framework that generates large-scale, semantically valid, and structurally diverse Text-to-SQL pairs from minimal seed data. It operates across six augmentation dimensions and integrates an end-to-end pipeline featuring SQL execution verification, natural language question generation, chain-of-thought reasoning traces, and data classification. A modular Database Manager ensures cross-database compatibility and scalability. Using this framework, we build SQLFlow, a high-quality dataset of 89,544 annotated examples. We evaluate SQLFlow in two settings: (1) For open-source LLMs, fine-tuning on SQLFlow consistently improves performance across benchmarks under the same data budget. (2) For closed-source LLMs, we introduce a masked alignment retrieval method that treats SQLFlow as both knowledge base and training data for the retriever. This enables structure-aware example matching by modeling fine-grained alignments between questions and SQL queries. Experiments show our retrieval strategy outperforms existing methods, underscoring the value of SQLFlow's high-fidelity data and our novel technique. Our work establishes a scalable, data-centric foundation for advancing Text-to-SQL systems and highlights the critical role of high-quality structured data in modern AI.
♻ ☆ Identifying and Analyzing Performance-Critical Tokens in Large Language Models AAAI 2026
In-context learning (ICL) has emerged as an effective solution for few-shot learning with large language models (LLMs). However, how LLMs leverage demonstrations to specify a task and learn a corresponding computational function through ICL is underexplored. Drawing from the way humans learn from content-label mappings in demonstrations, we categorize the tokens in an ICL prompt into content, stopword, and template tokens. Our goal is to identify the types of tokens whose representations directly influence LLM's performance, a property we refer to as being performance-critical. By ablating representations from the attention of the test example, we find that the representations of informative content tokens have less influence on performance compared to template and stopword tokens, which contrasts with the human attention to informative words. We give evidence that the representations of performance-critical tokens aggregate information from the content tokens. Moreover, we demonstrate experimentally that lexical meaning, repetition, and structural cues are the main distinguishing characteristics of these tokens. Our work sheds light on how large language models learn to perform tasks from demonstrations and deepens our understanding of the roles different types of tokens play in large language models.
comment: AAAI 2026
♻ ☆ Consolidating and Developing Benchmarking Datasets for the Nepali Natural Language Understanding Tasks
The Nepali language has distinct linguistic features, especially its complex script (Devanagari script), morphology, and various dialects,which pose a unique challenge for Natural Language Understanding (NLU) tasks. While the Nepali Language Understanding Evaluation (Nep-gLUE) benchmark provides a foundation for evaluating models, it remains limited in scope, covering four tasks. This restricts their utility for comprehensive assessments of Natural Language Processing (NLP) models. To address this limitation, we introduce twelve new datasets, creating a new benchmark, the Nepali /Language Understanding Evaluation (NLUE) benchmark for evaluating the performance of models across a diverse set of Natural Language Understanding (NLU) tasks. The added tasks include Single-Sentence Classification, Similarity and Paraphrase Tasks, Natural Language Inference (NLI), and General Masked Evaluation Task (GMET). Through extensive experiments, we demonstrate that existing top models struggle with the added complexity of these tasks. We also find that the best multilingual model outperforms the best monolingual models across most tasks, highlighting the need for more robust solutions tailored to the Nepali language. This expanded benchmark sets a new standard for evaluating, comparing, and advancing models, contributing significantly to the broader goal of advancing NLP research for low-resource languages.
♻ ☆ PustakAI: Curriculum-Aligned and Interactive Textbooks Using Large Language Models
Large Language Models (LLMs) have demonstrated remarkable capabilities in understanding and generating human-like content. This has revolutionized various sectors such as healthcare, software development, and education. In education, LLMs offer potential for personalized and interactive learning experiences, especially in regions with limited teaching resources. However, adapting these models effectively to curriculum-specific content, such as the National Council of Educational Research and Training (NCERT) syllabus in India, presents unique challenges in terms of accuracy, alignment, and pedagogical relevance. In this paper, we present the framework "PustakAI"\footnote{Pustak means `book' in many Indian languages.} for the design and evaluation of a novel question-answering dataset "NCERT-QA" aligned with the NCERT curriculum for English and Science subjects of grades 6 to 8. We classify the curated QA pairs as Factoid, Inferential, and Others (evaluative and reasoning). We evaluate the dataset with various prompting techniques, such as meta-prompt, few-shot, and CoT-style prompting, using diverse evaluation metrics to understand which approach aligns more efficiently with the structure and demands of the curriculum. Along with the usability of the dataset, we analyze the strengths and limitations of current open-source LLMs (Gemma3:1b, Llama3.2:3b, and Nemotron-mini:4b) and high-end LLMs (Llama-4-Scout-17B and Deepseek-r1-70B) as AI-based learning tools in formal education systems.
♻ ☆ Activation-Guided Consensus Merging for Large Language Models
Recent research has increasingly focused on reconciling the reasoning capabilities of System 2 with the efficiency of System 1. While existing training-based and prompt-based approaches face significant challenges in terms of efficiency and stability, model merging emerges as a promising strategy to integrate the diverse capabilities of different Large Language Models (LLMs) into a unified model. However, conventional model merging methods often assume uniform importance across layers, overlooking the functional heterogeneity inherent in neural components. To address this limitation, we propose \textbf{A}ctivation-Guided \textbf{C}onsensus \textbf{M}erging (\textbf{ACM}), a plug-and-play merging framework that determines layer-specific merging coefficients based on mutual information between activations of pre-trained and fine-tuned models. ACM effectively preserves task-specific capabilities without requiring gradient computations or additional training. Extensive experiments on Long-to-Short (L2S) and general merging tasks demonstrate that ACM consistently outperforms all baseline methods. For instance, in the case of Qwen-7B models, TIES-Merging equipped with ACM achieves a \textbf{55.3\%} reduction in response length while simultaneously improving reasoning accuracy by \textbf{1.3} points.
♻ ☆ DreamRunner: Fine-Grained Compositional Story-to-Video Generation with Retrieval-Augmented Motion Adaptation AAAI 2026
Storytelling video generation (SVG) aims to produce coherent and visually rich multi-scene videos that follow a structured narrative. Existing methods primarily employ LLM for high-level planning to decompose a story into scene-level descriptions, which are then independently generated and stitched together. However, these approaches struggle with generating high-quality videos aligned with the complex single-scene description, as visualizing such complex description involves coherent composition of multiple characters and events, complex motion synthesis and multi-character customization. To address these challenges, we propose DREAMRUNNER, a novel story-to-video generation method: First, we structure the input script using a large language model (LLM) to facilitate both coarse-grained scene planning as well as fine-grained object-level layout planning. Next, DREAMRUNNER presents retrieval-augmented test-time adaptation to capture target motion priors for objects in each scene, supporting diverse motion customization based on retrieved videos, thus facilitating the generation of new videos with complex, scripted motions. Lastly, we propose a novel spatial-temporal region-based 3D attention and prior injection module SR3AI for fine-grained object-motion binding and frame-by-frame spatial-temporal semantic control. We compare DREAMRUNNER with various SVG baselines, demonstrating state-of-the-art performance in character consistency, text alignment, and smooth transitions. Additionally, DREAMRUNNER exhibits strong fine-grained condition-following ability in compositional text-to-video generation, significantly outperforming baselines on T2V-ComBench. Finally, we validate DREAMRUNNER's robust ability to generate multi-object interactions with qualitative examples.
comment: AAAI 2026, Project website: https://zunwang1.github.io/DreamRunner
♻ ☆ Thinker: Training LLMs in Hierarchical Thinking for Deep Search via Multi-Turn Interaction AAAI 2026
Efficient retrieval of external knowledge bases and web pages is crucial for enhancing the reasoning abilities of LLMs. Previous works on training LLMs to leverage external retrievers for solving complex problems have predominantly employed end-to-end reinforcement learning. However, these approaches neglect supervision over the reasoning process, making it difficult to guarantee logical coherence and rigor. To address these limitations, we propose Thinker, a hierarchical thinking model for deep search through multi-turn interaction, making the reasoning process supervisable and verifiable. It decomposes complex problems into independently solvable sub-problems, each dually represented in both natural language and an equivalent logical function to support knowledge base and web searches. Concurrently, dependencies between sub-problems are passed as parameters via these logical functions, enhancing the logical coherence of the problem-solving process. To avoid unnecessary external searches, we perform knowledge boundary determination to check if a sub-problem is within the LLM's intrinsic knowledge, allowing it to answer directly. Experimental results indicate that with as few as several hundred training samples, the performance of Thinker is competitive with established baselines. Furthermore, when scaled to the full training set, Thinker significantly outperforms these methods across various datasets and model sizes. The source code is available at https://github.com/OpenSPG/KAG-Thinker.
comment: Accepted to AAAI 2026. Extended version with full Appendix
♻ ☆ Bot Meets Shortcut: How Can LLMs Aid in Handling Unknown Invariance OOD Scenarios?
While existing social bot detectors perform well on benchmarks, their robustness across diverse real-world scenarios remains limited due to unclear ground truth and varied misleading cues. In particular, the impact of shortcut learning, where models rely on spurious correlations instead of capturing causal task-relevant features, has received limited attention. To address this gap, we conduct an in-depth study to assess how detectors are influenced by potential shortcuts based on textual features, which are most susceptible to manipulation by social bots. We design a series of shortcut scenarios by constructing spurious associations between user labels and superficial textual cues to evaluate model robustness. Results show that shifts in irrelevant feature distributions significantly degrade social bot detector performance, with an average relative accuracy drop of 32\% in the baseline models. To tackle this challenge, we propose mitigation strategies based on large language models, leveraging counterfactual data augmentation. These methods mitigate the problem from data and model perspectives across three levels, including data distribution at both the individual user text and overall dataset levels, as well as the model's ability to extract causal information. Our strategies achieve an average relative performance improvement of 56\% under shortcut scenarios.
♻ ☆ Wage Sentiment Indices Derived from Survey Comments via Large Language Models
The emergence of generative Artificial Intelligence (AI) has created new opportunities for economic text analysis. This study proposes a Wage Sentiment Index (WSI) constructed with Large Language Models (LLMs) to forecast wage dynamics in Japan. The analysis is based on the Economy Watchers Survey (EWS), a monthly survey conducted by the Cabinet Office of Japan that captures real-time economic assessments from workers in industries highly sensitive to business conditions. The WSI extends the framework of the Price Sentiment Index (PSI) used in prior studies, adapting it specifically to wage related sentiment. To ensure scalability and adaptability, a data architecture is also developed that enables integration of additional sources such as newspapers and social media. Experimental results demonstrate that WSI models based on LLMs significantly outperform both baseline approaches and pretrained models. These findings highlight the potential of LLM-driven sentiment indices to enhance the timeliness and effectiveness of economic policy design by governments and central banks.
comment: Accepted to IEEE Big Data 2025. 10 pages, 2 tables, 16 figures
♻ ☆ Are language models rational? The case of coherence norms and belief revision
Do norms of rationality apply to machine learning models, in particular language models? In this paper we investigate this question by focusing on a special subset of rational norms: coherence norms. We consider both logical coherence norms as well as coherence norms tied to the strength of belief. To make sense of the latter, we introduce the Minimal Assent Connection (MAC) and propose a new account of credence, which captures the strength of belief in language models. This proposal uniformly assigns strength of belief simply on the basis of model internal next token probabilities. We argue that rational norms tied to coherence do apply to some language models, but not to others. This issue is significant since rationality is closely tied to predicting and explaining behavior, and thus it is connected to considerations about AI safety and alignment, as well as understanding model behavior more generally.
comment: substantial expansions of sections 4 and 5, updated references, numerous smaller additions and clarifications
♻ ☆ Transformer Copilot: Learning from The Mistake Log in LLM Fine-tuning NeurIPS 2025
Large language models are typically adapted to downstream tasks through supervised fine-tuning on domain-specific data. While standard fine-tuning focuses on minimizing generation loss to optimize model parameters, we take a deeper step by retaining and leveraging the model's own learning signals, analogous to how human learners reflect on past mistakes to improve future performance. We first introduce the concept of Mistake Log to systematically track the model's learning behavior and recurring errors throughout fine-tuning. Treating the original transformer-based model as the Pilot, we correspondingly design a Copilot model to refine the Pilot's inference performance via logits rectification. We name the overall Pilot-Copilot framework the Transformer Copilot, which introduces (i) a novel Copilot model design, (ii) a joint training paradigm where the Copilot continuously learns from the evolving Mistake Log alongside the Pilot, and (iii) a fused inference paradigm where the Copilot rectifies the Pilot's logits for enhanced generation. We provide both theoretical and empirical analyses on our new learning framework. Experiments on 12 benchmarks spanning commonsense, arithmetic, and recommendation tasks demonstrate that Transformer Copilot consistently improves performance by up to 34.5%, while introducing marginal computational overhead to Pilot models and exhibiting strong scalability and transferability. Our code is released at https://github.com/jiaruzouu/TransformerCopilot.
comment: NeurIPS 2025 Spotlight
♻ ☆ Res-Bench: Benchmarking the Robustness of Multimodal Large Language Models to Dynamic Resolution Input
Multimodal Large Language Models (MLLMs) increasingly support dynamic image resolutions. However, current evaluation paradigms primarily assess semantic performance, overlooking the critical question of resolution robustness - whether performance remains stable across varying input resolutions. To address this gap, we introduce \textbf{Res-Bench}, a comprehensive benchmark comprising 14,400 samples across 12 resolution levels and six core capability dimensions. We designed a novel evaluation framework that goes beyond traditional accuracy metrics to capture performance stability. This framework introduces multiple robustness metrics: Spearman's correlation for assessing resolution-performance trends, and Absolute/Relative Continuous Error (ACE/RCE) for measuring performance volatility. Using these metrics, we conducted a large-scale evaluation of leading MLLMs. Our analysis encompasses: (1) model-centric and task-centric robustness examination, (2) investigation of preprocessing strategies including padding and super-resolution, and (3) exploration of fine-tuning for stability enhancement.
comment: 23 pages
♻ ☆ Enhancing the Medical Context-Awareness Ability of LLMs via Multifaceted Self-Refinement Learning
Large language models (LLMs) have shown great promise in the medical domain, achieving strong performance on several benchmarks. However, they continue to underperform in real-world medical scenarios, which often demand stronger context-awareness, i.e., the ability to recognize missing or critical details (e.g., user identity, medical history, risk factors) and provide safe, helpful, and contextually appropriate responses. To address this issue, we propose Multifaceted Self-Refinement (MuSeR), a data-driven approach that enhances LLMs' context-awareness along three key facets (decision-making, communication, and safety) through self-evaluation and refinement. Specifically, we first design a attribute-conditioned query generator that simulates diverse real-world user contexts by varying attributes such as role, geographic region, intent, and degree of information ambiguity. An LLM then responds to these queries, self-evaluates its answers along three key facets, and refines its responses to better align with the requirements of each facet. Finally, the queries and refined responses are used for supervised fine-tuning to reinforce the model's context-awareness ability. Evaluation results on the latest HealthBench dataset demonstrate that our method significantly improves LLM performance across multiple aspects, with particularly notable gains in the context-awareness axis. Furthermore, by incorporating knowledge distillation with the proposed method, the performance of a smaller backbone LLM (e.g., Qwen3-32B) surpasses its teacher model, achieving a new SOTA across all open-source LLMs on HealthBench (63.8%) and its hard subset (43.1%). Code and dataset will be released at https://muser-llm.github.io.
comment: 20 pages, 13 figures
♻ ☆ DomainCQA: Crafting Knowledge-Intensive QA from Domain-Specific Charts
Chart Question Answering (CQA) evaluates Multimodal Large Language Models (MLLMs) on visual understanding and reasoning over chart data. However, existing benchmarks mostly test surface-level parsing, such as reading labels and legends, while overlooking deeper scientific reasoning. We propose DomainCQA, a framework for constructing domain-specific CQA benchmarks that emphasize both visual comprehension and knowledge-intensive reasoning. It integrates complexity-aware chart selection, multitier QA generation, and expert validation. Applied to astronomy, DomainCQA yields AstroChart, a benchmark of 1,690 QA pairs over 482 charts, exposing persistent weaknesses in fine-grained perception, numerical reasoning, and domain knowledge integration across 21 MLLMs. Fine-tuning on AstroChart improves performance across fundamental and advanced tasks. Pilot QA sets in biochemistry, economics, medicine, and social science further demonstrate DomainCQA's generality. Together, our results establish DomainCQA as a unified pipeline for constructing and augmenting domain-specific chart reasoning benchmarks.
comment: 83 pages, 59 figures
Scaling Latent Reasoning via Looped Language Models
Modern LLMs are trained to "think" primarily via explicit text generation, such as chain-of-thought (CoT), which defers reasoning to post-training and under-leverages pre-training data. We present and open-source Ouro, named after the recursive Ouroboros, a family of pre-trained Looped Language Models (LoopLM) that instead build reasoning into the pre-training phase through (i) iterative computation in latent space, (ii) an entropy-regularized objective for learned depth allocation, and (iii) scaling to 7.7T tokens. Ouro 1.4B and 2.6B models enjoy superior performance that match the results of up to 12B SOTA LLMs across a wide range of benchmarks. Through controlled experiments, we show this advantage stems not from increased knowledge capacity, but from superior knowledge manipulation capabilities. We also show that LoopLM yields reasoning traces more aligned with final outputs than explicit CoT. We hope our results show the potential of LoopLM as a novel scaling direction in the reasoning era. Our model is available here: http://ouro-llm.github.io.
♻ ☆ Instella: Fully Open Language Models with Stellar Performance
Large language models (LLMs) have demonstrated remarkable performance across a wide range of tasks, yet the majority of high-performing models remain closed-source or partially open, limiting transparency and reproducibility. In this work, we introduce Instella, a family of fully open three billion parameter language models trained entirely on openly available data and codebase. Powered by AMD Instinct MI300X GPUs, Instella is developed through large-scale pre-training, general-purpose instruction tuning, and alignment with human preferences. Despite using substantially fewer pre-training tokens than many contemporaries, Instella achieves state-of-the-art results among fully open models and is competitive with leading open-weight models of comparable size. We further release two specialized variants: Instella-Long, capable of handling context lengths up to 128K tokens, and Instella-Math, a reasoning-focused model enhanced through supervised fine-tuning and reinforcement learning on mathematical tasks. Together, these contributions establish Instella as a transparent, performant, and versatile alternative for the community, advancing the goal of open and reproducible language modeling research.
♻ ☆ Format as a Prior: Quantifying and Analyzing Bias in LLMs for Heterogeneous Data AAAI 2026
Large Language Models (LLMs) are increasingly employed in applications that require processing information from heterogeneous formats, including texts, tables, infoboxes, and knowledge graphs. However, systematic biases toward particular formats may undermine LLMs' ability to integrate heterogeneous data impartially, potentially resulting in reasoning errors and increased risks in downstream tasks. Yet it remains unclear whether such biases are systematic, which data-level factors drive them, and what internal mechanisms underlie their emergence. In this paper, we present the first comprehensive study of format bias in LLMs through a three-stage empirical analysis. The first stage explores the presence and direction of bias across a diverse range of LLMs. The second stage examines how key data-level factors influence these biases. The third stage analyzes how format bias emerges within LLMs' attention patterns and evaluates a lightweight intervention to test its effectiveness. Our results show that format bias is consistent across model families, driven by information richness, structure quality, and representation type, and is closely associated with attention imbalance within the LLMs. Based on these investigations, we identify three future research directions to reduce format bias: enhancing data pre-processing through format repair and normalization, introducing inference-time interventions such as attention re-weighting, and developing format-balanced training corpora. These directions will support the design of more robust and fair heterogeneous data processing systems.
comment: Accepted by AAAI 2026, camera ready version
♻ ☆ Intelligence per Watt: Measuring Intelligence Efficiency of Local AI
Large language model (LLM) queries are predominantly processed by frontier models in centralized cloud infrastructure. Rapidly growing demand strains this paradigm, and cloud providers struggle to scale infrastructure at pace. Two advances enable us to rethink this paradigm: small LMs (<=20B active parameters) now achieve competitive performance to frontier models on many tasks, and local accelerators (e.g., Apple M4 Max) run these models at interactive latencies. This raises the question: can local inference viably redistribute demand from centralized infrastructure? Answering this requires measuring whether local LMs can accurately answer real-world queries and whether they can do so efficiently enough to be practical on power-constrained devices (i.e., laptops). We propose intelligence per watt (IPW), task accuracy divided by unit of power, as a metric for assessing capability and efficiency of local inference across model-accelerator pairs. We conduct a large-scale empirical study across 20+ state-of-the-art local LMs, 8 accelerators, and a representative subset of LLM traffic: 1M real-world single-turn chat and reasoning queries. For each query, we measure accuracy, energy, latency, and power. Our analysis reveals $3$ findings. First, local LMs can accurately answer 88.7% of single-turn chat and reasoning queries with accuracy varying by domain. Second, from 2023-2025, IPW improved 5.3x and local query coverage rose from 23.2% to 71.3%. Third, local accelerators achieve at least 1.4x lower IPW than cloud accelerators running identical models, revealing significant headroom for optimization. These findings demonstrate that local inference can meaningfully redistribute demand from centralized infrastructure, with IPW serving as the critical metric for tracking this transition. We release our IPW profiling harness for systematic intelligence-per-watt benchmarking.
♻ ☆ Adapt-Pruner: Adaptive Structural Pruning for Efficient Small Language Model Training
Small language models (SLMs) have attracted considerable attention from both academia and industry due to their broad range of applications in edge devices. To obtain SLMs with strong performance, conventional approaches either pre-train the models from scratch, which incurs substantial computational costs, or compress/prune existing large language models (LLMs), which results in performance drops and falls short in comparison to pre-training. In this paper, we investigate the family of acceleration methods that involve both structured pruning and model training. We found 1) layer-wise adaptive pruning (Adapt-Pruner) is extremely effective in LLMs and yields significant improvements over existing pruning techniques, 2) adaptive pruning equipped with further training leads to models comparable to those pre-training from scratch, 3) incremental pruning brings non-trivial performance gain by interleaving pruning with training and only removing a small portion of neurons ($\sim$5%) at a time. Experimental results on LLaMA-3.1-8B demonstrate that Adapt-Pruner outperforms conventional pruning methods, such as LLM-Pruner, FLAP, and SliceGPT, by an average of 1%-7% in accuracy on commonsense benchmarks. Additionally, Adapt-Pruner restores the performance of MobileLLM-125M to 600M on the MMLU benchmark with 200$\times$ fewer tokens via pruning from its larger counterparts, and discovers a new 1B model that surpasses LLaMA-3.2-1B in multiple benchmarks. The official code is released at https://github.com/research4pan/AdaptPruner.
Information Retrieval 12
☆ GRIN Transfer: A production-ready tool for libraries to retrieve digital copies from Google Books
Publicly launched in 2004, the Google Books project has scanned tens of millions of items in partnership with libraries around the world. As part of this project, Google created the Google Return Interface (GRIN). Through this platform, libraries can access their scanned collections, the associated metadata, and the ongoing OCR and metadata improvements that become available as Google reprocesses these collections using new technologies. When downloading the Harvard Library Google Books collection from GRIN to develop the Institutional Books dataset, we encountered several challenges related to rate-limiting and atomized metadata within the GRIN platform. To overcome these challenges and help other libraries make more robust use of their Google Books collections, this technical report introduces the initial release of GRIN Transfer. This open-source and production-ready Python pipeline allows partner libraries to efficiently retrieve their Google Books collections from GRIN. This report also introduces an updated version of our Institutional Books 1.0 pipeline, initially used to analyze, augment, and assemble the Institutional Books 1.0 dataset. We have revised this pipeline for compatibility with the output format of GRIN Transfer. A library could pair these two tools to create an end-to-end processing pipeline for their Google Books collection to retrieve, structure, and enhance data available from GRIN. This report gives an overview of how GRIN Transfer was designed to optimize for reliability and usability in different environments, as well as guidance on configuration for various use cases.
☆ Unlocking Advanced Graph Machine Learning Insights through Knowledge Completion on Neo4j Graph Database SC
Graph Machine Learning (GML) with Graph Databases (GDBs) has gained significant relevance in recent years, due to its ability to handle complex interconnected data and apply ML techniques using Graph Data Science (GDS). However, a critical gap exists in the current way GDB-GML applications analyze data, especially in terms of Knowledge Completion (KC) in Knowledge Graphs (KGs). In particular, current architectures ignore KC, working on datasets that appear incomplete or fragmented, despite they actually contain valuable hidden knowledge. This limitation may cause wrong interpretations when these data are used as input for GML models. This paper proposes an innovative architecture that integrates a KC phase into GDB-GML applications, demonstrating how revealing hidden knowledge can heavily impact datasets' behavior and metrics. For this purpose, we introduce scalable transitive relationships, which are links that propagate information over the network and modelled by a decay function, allowing a deterministic knowledge flows across multiple nodes. Experimental results demonstrate that our intuition radically reshapes both topology and overall dataset dynamics, underscoring the need for this new GDB-GML architecture to produce better models and unlock the full potential of graph-based data analysis.
comment: Accepted at the 30th IEEE Symposium on Computers and Communications (ISCC) 2025
☆ SRLF: An Agent-Driven Set-Wise Reflective Learning Framework for Sequential Recommendation
LLM-based agents are emerging as a promising paradigm for simulating user behavior to enhance recommender systems. However, their effectiveness is often limited by existing studies that focus on modeling user ratings for individual items. This point-wise approach leads to prevalent issues such as inaccurate user preference comprehension and rigid item-semantic representations. To address these limitations, we propose the novel Set-wise Reflective Learning Framework (SRLF). Our framework operationalizes a closed-loop "assess-validate-reflect" cycle that harnesses the powerful in-context learning capabilities of LLMs. SRLF departs from conventional point-wise assessment by formulating a holistic judgment on an entire set of items. It accomplishes this by comprehensively analyzing both the intricate interrelationships among items within the set and their collective alignment with the user's preference profile. This method of set-level contextual understanding allows our model to capture complex relational patterns essential to user behavior, making it significantly more adept for sequential recommendation. Extensive experiments validate our approach, confirming that this set-wise perspective is crucial for achieving state-of-the-art performance in sequential recommendation tasks.
☆ MOON Embedding: Multimodal Representation Learning for E-commerce Search Advertising
We introduce MOON, our comprehensive set of sustainable iterative practices for multimodal representation learning for e-commerce applications. MOON has already been fully deployed across all stages of Taobao search advertising system, including retrieval, relevance, ranking, and so on. The performance gains are particularly significant on click-through rate (CTR) prediction task, which achieves an overall +20.00% online CTR improvement. Over the past three years, this project has delivered the largest improvement on CTR prediction task and undergone five full-scale iterations. Throughout the exploration and iteration of our MOON, we have accumulated valuable insights and practical experience that we believe will benefit the research community. MOON contains a three-stage training paradigm of "Pretraining, Post-training, and Application", allowing effective integration of multimodal representations with downstream tasks. Notably, to bridge the misalignment between the objectives of multimodal representation learning and downstream training, we define the exchange rate to quantify how effectively improvements in an intermediate metric can translate into downstream gains. Through this analysis, we identify the image-based search recall as a critical intermediate metric guiding the optimization of multimodal models. Over three years and five iterations, MOON has evolved along four critical dimensions: data processing, training strategy, model architecture, and downstream application. The lessons and insights gained through the iterative improvements will also be shared. As part of our exploration into scaling effects in the e-commerce field, we further conduct a systematic study of the scaling laws governing multimodal representation learning, examining multiple factors such as the number of training tokens, negative samples, and the length of user behavior sequences.
comment: 31 pages, 12 figures
☆ SQuaD: The Software Quality Dataset
Software quality research increasingly relies on large-scale datasets that measure both the product and process aspects of software systems. However, existing resources often focus on limited dimensions, such as code smells, technical debt, or refactoring activity, thereby restricting comprehensive analyses across time and quality dimensions. To address this gap, we present the Software Quality Dataset (SQuaD), a multi-dimensional, time-aware collection of software quality metrics extracted from 450 mature open-source projects across diverse ecosystems, including Apache, Mozilla, FFmpeg, and the Linux kernel. By integrating nine state-of-the-art static analysis tools, i.e., SonarQube, CodeScene, PMD, Understand, CK, JaSoMe, RefactoringMiner, RefactoringMiner++, and PyRef, our dataset unifies over 700 unique metrics at method, class, file, and project levels. Covering a total of 63,586 analyzed project releases, SQuaD also provides version control and issue-tracking histories, software vulnerability data (CVE/CWE), and process metrics proven to enhance Just-In-Time (JIT) defect prediction. The SQuaD enables empirical research on maintainability, technical debt, software evolution, and quality assessment at unprecedented scale. We also outline emerging research directions, including automated dataset updates and cross-project quality modeling to support the continuous evolution of software analytics. The dataset is publicly available on ZENODO (DOI: 10.5281/zenodo.17566690).
☆ Align$^3$GR: Unified Multi-Level Alignment for LLM-based Generative Recommendation AAAI 2026
Large Language Models (LLMs) demonstrate significant advantages in leveraging structured world knowledge and multi-step reasoning capabilities. However, fundamental challenges arise when transforming LLMs into real-world recommender systems due to semantic and behavioral misalignment. To bridge this gap, we propose Align$^3$GR, a novel framework that unifies token-level, behavior modeling-level, and preference-level alignment. Our approach introduces: Dual tokenization fusing user-item semantic and collaborative signals. Enhanced behavior modeling with bidirectional semantic alignment. Progressive DPO strategy combining self-play (SP-DPO) and real-world feedback (RF-DPO) for dynamic preference adaptation. Experiments show Align$^3$GR outperforms the SOTA baseline by +17.8% in Recall@10 and +20.2% in NDCG@10 on the public dataset, with significant gains in online A/B tests and full-scale deployment on an industrial large-scale recommendation platform.
comment: Accepted by AAAI 2026 (Oral)
☆ Enhancing Group Recommendation using Soft Impute Singular Value Decomposition
The growing popularity of group activities increased the need to develop methods for providing recommendations to a group of users based on the collective preferences of the group members. Several group recommender systems have been proposed, but these methods often struggle due to sparsity and high-dimensionality of the available data, common in many real-world applications. In this paper, we propose a group recommender system called Group Soft-Impute SVD, which leverages soft-impute singular value decomposition to enhance group recommendations. This approach addresses the challenge of sparse high-dimensional data using low-rank matrix completion. We compared the performance of Group Soft-Impute SVD with Group MF based approaches and found that our method outperforms the baselines in recall for small user groups while achieving comparable results across all group sizes when tasked on Goodbooks, Movielens, and Synthetic datasets. Furthermore, our method recovers lower matrix ranks than the baselines, demonstrating its effectiveness in handling high-dimensional data.
comment: ((1) African University of Science and Technology (Abuja, Nigeria), (2) Baze University (Abuja, Nigeria), (3) Babes-Bolyai University (Cluj-Napoca, Romania))
☆ GovScape: A Public Multimodal Search System for 70 Million Pages of Government PDFs
Efforts over the past three decades have produced web archives containing billions of webpage snapshots and petabytes of data. The End of Term Web Archive alone contains, among other file types, millions of PDFs produced by the federal government. While preservation with web archives has been successful, significant challenges for access and discoverability remain. For example, current affordances for browsing the End of Term PDFs are limited to downloading and browsing individual PDFs, as well as performing basic keyword search across them. In this paper, we introduce GovScape, a public search system that supports multimodal searches across 10,015,993 federal government PDFs from the 2020 End of Term crawl (70,958,487 total PDF pages) - to our knowledge, all renderable PDFs in the 2020 crawl that are 50 pages or under. GovScape supports four primary forms of search over these 10 million PDFs: in addition to providing (1) filter conditions over metadata facets including domain and crawl date and (2) exact text search against the PDF text, we provide (3) semantic text search and (4) visual search against the PDFs across individual pages, enabling users to structure queries such as "redacted documents" or "pie charts." We detail the constituent components of GovScape, including the search affordances, embedding pipeline, system architecture, and open source codebase. Significantly, the total estimated compute cost for GovScape's pre-processing pipeline for 10 million PDFs was approximately $1,500, equivalent to 47,000 PDF pages per dollar spent on compute, demonstrating the potential for immediate scalability. Accordingly, we outline steps that we have already begun pursuing toward multimodal search at the 100+ million PDF scale. GovScape can be found at https://www.govscape.net.
comment: 10 pages, 5 figures, 2 tables
☆ LEMUR: Large scale End-to-end MUltimodal Recommendation
Traditional ID-based recommender systems often struggle with cold-start and generalization challenges. Multimodal recommendation systems, which leverage textual and visual data, offer a promising solution to mitigate these issues. However, existing industrial approaches typically adopt a two-stage training paradigm: first pretraining a multimodal model, then applying its frozen representations to train the recommendation model. This decoupled framework suffers from misalignment between multimodal learning and recommendation objectives, as well as an inability to adapt dynamically to new data. To address these limitations, we propose LEMUR, the first large-scale multimodal recommender system trained end-to-end from raw data. By jointly optimizing both the multimodal and recommendation components, LEMUR ensures tighter alignment with downstream objectives while enabling real-time parameter updates. Constructing multimodal sequential representations from user history often entails prohibitively high computational costs. To alleviate this bottleneck, we propose a novel memory bank mechanism that incrementally accumulates historical multimodal representations throughout the training process. After one month of deployment in Douyin Search, LEMUR has led to a 0.843% reduction in query change rate decay and a 0.81% improvement in QAUC. Additionally, LEMUR has shown significant gains across key offline metrics for Douyin Advertisement. Our results validate the superiority of end-to-end multimodal recommendation in real-world industrial scenarios.
♻ ☆ Modeling the Diachronic Evolution of Legal Norms: An LRMoo-Based, Component-Level, Event-Centric Approach to Legal Knowledge Graphs
Representing the temporal evolution of legal norms is a critical challenge for automated processing. While foundational frameworks exist, they lack a formal pattern for granular, component-level versioning, hindering the deterministic point-in-time reconstruction of legal texts required by reliable AI applications. This paper proposes a structured, temporal modeling pattern grounded in the LRMoo ontology. Our approach models a norm's evolution as a diachronic chain of versioned F1 Works, distinguishing between language-agnostic Temporal Versions (TV)-each being a distinct Work-and their monolingual Language Versions (LV), modeled as F2 Expressions. The legislative amendment process is formalized through event-centric modeling, allowing changes to be traced precisely. Using the Brazilian Constitution as a case study, we demonstrate that our architecture enables the exact reconstruction of any part of a legal text as it existed on a specific date. This provides a verifiable semantic backbone for legal knowledge graphs, offering a deterministic foundation for trustworthy legal AI.
comment: Model Refinement: Defining Temporal Versions as F1 Works
♻ ☆ Navigating Through Paper Flood: Advancing LLM-based Paper Evaluation through Domain-Aware Retrieval and Latent Reasoning AAAI'26
With the rapid and continuous increase in academic publications, identifying high-quality research has become an increasingly pressing challenge. While recent methods leveraging Large Language Models (LLMs) for automated paper evaluation have shown great promise, they are often constrained by outdated domain knowledge and limited reasoning capabilities. In this work, we present PaperEval, a novel LLM-based framework for automated paper evaluation that addresses these limitations through two key components: 1) a domain-aware paper retrieval module that retrieves relevant concurrent work to support contextualized assessments of novelty and contributions, and 2) a latent reasoning mechanism that enables deep understanding of complex motivations and methodologies, along with comprehensive comparison against concurrently related work, to support more accurate and reliable evaluation. To guide the reasoning process, we introduce a progressive ranking optimization strategy that encourages the LLM to iteratively refine its predictions with an emphasis on relative comparison. Experiments on two datasets demonstrate that PaperEval consistently outperforms existing methods in both academic impact and paper quality evaluation. In addition, we deploy PaperEval in a real-world paper recommendation system for filtering high-quality papers, which has gained strong engagement on social media -- amassing over 8,000 subscribers and attracting over 10,000 views for many filtered high-quality papers -- demonstrating the practical effectiveness of PaperEval.
comment: Accepted for publication in AAAI'26
♻ ☆ Exploiting Inter-Session Information with Frequency-enhanced Dual-Path Networks for Sequential Recommendation AAAI 2026
Sequential recommendation (SR) aims to predict a user's next item preference by modeling historical interaction sequences. Recent advances often integrate frequency-domain modules to compensate for self-attention's low-pass nature by restoring the high-frequency signals critical for personalized recommendations. Nevertheless, existing frequency-aware solutions process each session in isolation and optimize exclusively with time-domain objectives. Consequently, they overlook cross-session spectral dependencies and fail to enforce alignment between predicted and actual spectral signatures, leaving valuable frequency information under-exploited. To this end, we propose FreqRec, a Frequency-Enhanced Dual-Path Network for sequential Recommendation that jointly captures inter-session and intra-session behaviors via a learnable Frequency-domain Multi-layer Perceptrons. Moreover, FreqRec is optimized under a composite objective that combines cross entropy with a frequency-domain consistency loss, explicitly aligning predicted and true spectral signatures. Extensive experiments on three benchmarks show that FreqRec surpasses strong baselines and remains robust under data sparsity and noisy-log conditions.
comment: AAAI 2026 (Oral)
Machine Learning 150
☆ Optimizing Mixture of Block Attention
Mixture of Block Attention (MoBA) (Lu et al., 2025) is a promising building block for efficiently processing long contexts in LLMs by enabling queries to sparsely attend to a small subset of key-value blocks, drastically reducing computational cost. However, the design principles governing MoBA's performance are poorly understood, and it lacks an efficient GPU implementation, hindering its practical adoption. In this paper, we first develop a statistical model to analyze MoBA's underlying mechanics. Our model reveals that performance critically depends on the router's ability to accurately distinguish relevant from irrelevant blocks based on query-key affinities. We derive a signal-to-noise ratio that formally connects architectural parameters to this retrieval accuracy. Guided by our analysis, we identify two key pathways for improvement: using smaller block sizes and applying a short convolution on keys to cluster relevant signals, which enhances routing accuracy. While theoretically better, small block sizes are inefficient on GPUs. To bridge this gap, we introduce FlashMoBA, a hardware-aware CUDA kernel that enables efficient MoBA execution even with the small block sizes our theory recommends. We validate our insights by training LLMs from scratch, showing that our improved MoBA models match the performance of dense attention baselines. FlashMoBA achieves up to 14.7x speedup over FlashAttention-2 for small blocks, making our theoretically-grounded improvements practical. Code is available at: https://github.com/mit-han-lab/flash-moba.
comment: The first two authors contributed equally to this work
☆ Estimating Total Effects in Bipartite Experiments with Spillovers and Partial Eligibility
We study randomized experiments in bipartite systems where only a subset of treatment-side units are eligible for assignment while all units continue to interact, generating interference. We formalize eligibility-constrained bipartite experiments and define estimands aligned with full deployment: the Primary Total Treatment Effect (PTTE) on eligible units and the Secondary Total Treatment Effect (STTE) on ineligible units. Under randomization within the eligible set, we give identification conditions and develop interference-aware ensemble estimators that combine exposure mappings, generalized propensity scores, and flexible machine learning. We further introduce a projection that links treatment- and outcome-level estimands; this mapping is exact under a Linear Additive Edges condition and enables estimation on the (typically much smaller) treatment side with deterministic aggregation to outcomes. In simulations with known ground truth across realistic exposure regimes, the proposed estimators recover PTTE and STTE with low bias and variance and reduce the bias that could arise when interference is ignored. Two field experiments illustrate practical relevance: our method corrects the direction of expected interference bias for a pre-specified metric in both studies and reverses the sign and significance of the primary decision metric in one case.
comment: 21 pages, 6 figures, Appeared as Oral Presentation in 2025 Conference on Digital Experimentation (CODE) at MIT
☆ A Unified Convergence Analysis for Semi-Decentralized Learning: Sampled-to-Sampled vs. Sampled-to-All Communication AAAI 2026
In semi-decentralized federated learning, devices primarily rely on device-to-device communication but occasionally interact with a central server. Periodically, a sampled subset of devices uploads their local models to the server, which computes an aggregate model. The server can then either (i) share this aggregate model only with the sampled clients (sampled-to-sampled, S2S) or (ii) broadcast it to all clients (sampled-to-all, S2A). Despite their practical significance, a rigorous theoretical and empirical comparison of these two strategies remains absent. We address this gap by analyzing S2S and S2A within a unified convergence framework that accounts for key system parameters: sampling rate, server aggregation frequency, and network connectivity. Our results, both analytical and experimental, reveal distinct regimes where one strategy outperforms the other, depending primarily on the degree of data heterogeneity across devices. These insights lead to concrete design guidelines for practical semi-decentralized FL deployments.
comment: Accepted as a conference paper at AAAI 2026 (oral presentation). This is the extended version including the appendix
☆ Multistability of Self-Attention Dynamics in Transformers
In machine learning, a self-attention dynamics is a continuous-time multiagent-like model of the attention mechanisms of transformers. In this paper we show that such dynamics is related to a multiagent version of the Oja flow, a dynamical system that computes the principal eigenvector of a matrix corresponding for transformers to the value matrix. We classify the equilibria of the ``single-head'' self-attention system into four classes: consensus, bipartite consensus, clustering and polygonal equilibria. Multiple asymptotically stable equilibria from the first three classes often coexist in the self-attention dynamics. Interestingly, equilibria from the first two classes are always aligned with the eigenvectors of the value matrix, often but not exclusively with the principal eigenvector.
comment: 8 pages, 3 figures
☆ Generalizing Fair Clustering to Multiple Groups: Algorithms and Applications AAAI 2026
Clustering is a fundamental task in machine learning and data analysis, but it frequently fails to provide fair representation for various marginalized communities defined by multiple protected attributes -- a shortcoming often caused by biases in the training data. As a result, there is a growing need to enhance the fairness of clustering outcomes, ideally by making minimal modifications, possibly as a post-processing step after conventional clustering. Recently, Chakraborty et al. [COLT'25] initiated the study of \emph{closest fair clustering}, though in a restricted scenario where data points belong to only two groups. In practice, however, data points are typically characterized by many groups, reflecting diverse protected attributes such as age, ethnicity, gender, etc. In this work, we generalize the study of the \emph{closest fair clustering} problem to settings with an arbitrary number (more than two) of groups. We begin by showing that the problem is NP-hard even when all groups are of equal size -- a stark contrast with the two-group case, for which an exact algorithm exists. Next, we propose near-linear time approximation algorithms that efficiently handle arbitrary-sized multiple groups, thereby answering an open question posed by Chakraborty et al. [COLT'25]. Leveraging our closest fair clustering algorithms, we further achieve improved approximation guarantees for the \emph{fair correlation clustering} problem, advancing the state-of-the-art results established by Ahmadian et al. [AISTATS'20] and Ahmadi et al. [2020]. Additionally, we are the first to provide approximation algorithms for the \emph{fair consensus clustering} problem involving multiple (more than two) groups, thus addressing another open direction highlighted by Chakraborty et al. [COLT'25].
comment: Accepted in AAAI 2026 for Oral Representation
☆ CVChess: A Deep Learning Framework for Converting Chessboard Images to Forsyth-Edwards Notation
Chess has experienced a large increase in viewership since the pandemic, driven largely by the accessibility of online learning platforms. However, no equivalent assistance exists for physical chess games, creating a divide between analog and digital chess experiences. This paper presents CVChess, a deep learning framework for converting chessboard images to Forsyth-Edwards Notation (FEN), which is later input into online chess engines to provide you with the best next move. Our approach employs a convolutional neural network (CNN) with residual layers to perform piece recognition from smartphone camera images. The system processes RGB images of a physical chess board through a multistep process: image preprocessing using the Hough Line Transform for edge detection, projective transform to achieve a top-down board alignment, segmentation into 64 individual squares, and piece classification into 13 classes (6 unique white pieces, 6 unique black pieces and an empty square) using the residual CNN. Residual connections help retain low-level visual features while enabling deeper feature extraction, improving accuracy and stability during training. We train and evaluate our model using the Chess Recognition Dataset (ChessReD), containing 10,800 annotated smartphone images captured under diverse lighting conditions and angles. The resulting classifications are encoded as an FEN string, which can be fed into a chess engine to generate the most optimal move
☆ Experience-Guided Adaptation of Inference-Time Reasoning Strategies
Enabling agentic AI systems to adapt their problem-solving approaches based on post-training interactions remains a fundamental challenge. While systems that update and maintain a memory at inference time have been proposed, existing designs only steer the system by modifying textual input to a language model or agent, which means that they cannot change sampling parameters, remove tools, modify system prompts, or switch between agentic and workflow paradigms. On the other hand, systems that adapt more flexibly require offline optimization and remain static once deployed. We present Experience-Guided Reasoner (EGuR), which generates tailored strategies -- complete computational procedures involving LLM calls, tools, sampling parameters, and control logic -- dynamically at inference time based on accumulated experience. We achieve this using an LLM-based meta-strategy -- a strategy that outputs strategies -- enabling adaptation of all strategy components (prompts, sampling parameters, tool configurations, and control logic). EGuR operates through two components: a Guide generates multiple candidate strategies conditioned on the current problem and structured memory of past experiences, while a Consolidator integrates execution feedback to improve future strategy generation. This produces complete, ready-to-run strategies optimized for each problem, which can be cached, retrieved, and executed as needed without wasting resources. Across five challenging benchmarks (AIME 2025, 3-SAT, and three Big Bench Extra Hard tasks), EGuR achieves up to 14% accuracy improvements over the strongest baselines while reducing computational costs by up to 111x, with both metrics improving as the system gains experience.
comment: 29 pages, 5 figures
☆ FarSkip-Collective: Unhobbling Blocking Communication in Mixture of Experts Models
Blocking communication presents a major hurdle in running MoEs efficiently in distributed settings. To address this, we present FarSkip-Collective which modifies the architecture of modern models to enable overlapping of their computation with communication. Our approach modifies the architecture to skip connections in the model and it is unclear a priori whether the modified model architecture can remain as capable, especially for large state-of-the-art models and while modifying all of the model layers. We answer this question in the affirmative and fully convert a series of state-of-the-art models varying from 16B to 109B parameters to enable overlapping of their communication while achieving accuracy on par with their original open-source releases. For example, we convert Llama 4 Scout (109B) via self-distillation and achieve average accuracy within 1% of its instruction tuned release averaged across a wide range of downstream evaluations. In addition to demonstrating retained accuracy of the large modified models, we realize the benefits of FarSkip-Collective through optimized implementations that explicitly overlap communication with computation, accelerating both training and inference in existing frameworks.
☆ Honesty over Accuracy: Trustworthy Language Models through Reinforced Hesitation
Modern language models fail a fundamental requirement of trustworthy intelligence: knowing when not to answer. Despite achieving impressive accuracy on benchmarks, these models produce confident hallucinations, even when wrong answers carry catastrophic consequences. Our evaluations on GSM8K, MedQA and GPQA show frontier models almost never abstain despite explicit warnings of severe penalties, suggesting that prompts cannot override training that rewards any answer over no answer. As a remedy, we propose Reinforced Hesitation (RH): a modification to Reinforcement Learning from Verifiable Rewards (RLVR) to use ternary rewards (+1 correct, 0 abstention, -$λ$ error) instead of binary. Controlled experiments on logic puzzles reveal that varying $λ$ produces distinct models along a Pareto frontier, where each training penalty yields the optimal model for its corresponding risk regime: low penalties produce aggressive answerers, high penalties conservative abstainers. We then introduce two inference strategies that exploit trained abstention as a coordination signal: cascading routes queries through models with decreasing risk tolerance, while self-cascading re-queries the same model on abstention. Both outperform majority voting with lower computational cost. These results establish abstention as a first-class training objective that transforms ``I don't know'' from failure into a coordination signal, enabling models to earn trust through calibrated honesty about their limits.
☆ Learning and Testing Convex Functions
We consider the problems of \emph{learning} and \emph{testing} real-valued convex functions over Gaussian space. Despite the extensive study of function convexity across mathematics, statistics, and computer science, its learnability and testability have largely been examined only in discrete or restricted settings -- typically with respect to the Hamming distance, which is ill-suited for real-valued functions. In contrast, we study these problems in high dimensions under the standard Gaussian measure, assuming sample access to the function and a mild smoothness condition, namely Lipschitzness. A smoothness assumption is natural and, in fact, necessary even in one dimension: without it, convexity cannot be inferred from finitely many samples. As our main results, we give: - Learning Convex Functions: An agnostic proper learning algorithm for Lipschitz convex functions that achieves error $\varepsilon$ using $n^{O(1/\varepsilon^2)}$ samples, together with a complementary lower bound of $n^{\mathrm{poly}(1/\varepsilon)}$ samples in the \emph{correlational statistical query (CSQ)} model. - Testing Convex Functions: A tolerant (two-sided) tester for convexity of Lipschitz functions with the same sample complexity (as a corollary of our learning result), and a one-sided tester (which never rejects convex functions) using $O(\sqrt{n}/\varepsilon)^n$ samples.
comment: 43 pages
☆ Intrinsic Dimension Estimation for Radio Galaxy Zoo using Diffusion Models NeurIPS 2025
In this work, we estimate the intrinsic dimension (iD) of the Radio Galaxy Zoo (RGZ) dataset using a score-based diffusion model. We examine how the iD estimates vary as a function of Bayesian neural network (BNN) energy scores, which measure how similar the radio sources are to the MiraBest subset of the RGZ dataset. We find that out-of-distribution sources exhibit higher iD values, and that the overall iD for RGZ exceeds those typically reported for natural image datasets. Furthermore, we analyse how iD varies across Fanaroff-Riley (FR) morphological classes and as a function of the signal-to-noise ratio (SNR). While no relationship is found between FR I and FR II classes, a weak trend toward higher SNR at lower iD. Future work using the RGZ dataset could make use of the relationship between iD and energy scores to quantitatively study and improve the representations learned by various self-supervised learning algorithms.
comment: 9 pages, 5 figures, 2 tables, submitted to NeurIPS 2025 ML4PS Workshop
☆ Data-efficient U-Net for Segmentation of Carbide Microstructures in SEM Images of Steel Alloys
Understanding reactor-pressure-vessel steel microstructure is crucial for predicting mechanical properties, as carbide precipitates both strengthen the alloy and can initiate cracks. In scanning electron microscopy images, gray-value overlap between carbides and matrix makes simple thresholding ineffective. We present a data-efficient segmentation pipeline using a lightweight U-Net (30.7~M parameters) trained on just \textbf{10 annotated scanning electron microscopy images}. Despite limited data, our model achieves a \textbf{Dice-Sørensen coefficient of 0.98}, significantly outperforming the state-of-the-art in the field of metallurgy (classical image analysis: 0.85), while reducing annotation effort by one order of magnitude compared to the state-of-the-art data efficient segmentation model. This approach enables rapid, automated carbide quantification for alloy design and generalizes to other steel types, demonstrating the potential of data-efficient deep learning in reactor-pressure-vessel steel analysis.
☆ Inferring response times of perceptual decisions with Poisson variational autoencoders NeurIPS 2025
Many properties of perceptual decision making are well-modeled by deep neural networks. However, such architectures typically treat decisions as instantaneous readouts, overlooking the temporal dynamics of the decision process. We present an image-computable model of perceptual decision making in which choices and response times arise from efficient sensory encoding and Bayesian decoding of neural spiking activity. We use a Poisson variational autoencoder to learn unsupervised representations of visual stimuli in a population of rate-coded neurons, modeled as independent homogeneous Poisson processes. A task-optimized decoder then continually infers an approximate posterior over actions conditioned on incoming spiking activity. Combining these components with an entropy-based stopping rule yields a principled and image-computable model of perceptual decisions capable of generating trial-by-trial patterns of choices and response times. Applied to MNIST digit classification, the model reproduces key empirical signatures of perceptual decision making, including stochastic variability, right-skewed response time distributions, logarithmic scaling of response times with the number of alternatives (Hick's law), and speed-accuracy trade-offs.
comment: To appear at the NeurIPS 2025 Workshop on Data on the Mind and Brain
☆ Quantifying and Improving Adaptivity in Conformal Prediction through Input Transformations
Conformal prediction constructs a set of labels instead of a single point prediction, while providing a probabilistic coverage guarantee. Beyond the coverage guarantee, adaptiveness to example difficulty is an important property. It means that the method should produce larger prediction sets for more difficult examples, and smaller ones for easier examples. Existing evaluation methods for adaptiveness typically analyze coverage rate violation or average set size across bins of examples grouped by difficulty. However, these approaches often suffer from imbalanced binning, which can lead to inaccurate estimates of coverage or set size. To address this issue, we propose a binning method that leverages input transformations to sort examples by difficulty, followed by uniform-mass binning. Building on this binning, we introduce two metrics to better evaluate adaptiveness. These metrics provide more reliable estimates of coverage rate violation and average set size due to balanced binning, leading to more accurate adaptivity assessment. Through experiments, we demonstrate that our proposed metric correlates more strongly with the desired adaptiveness property compared to existing ones. Furthermore, motivated by our findings, we propose a new adaptive prediction set algorithm that groups examples by estimated difficulty and applies group-conditional conformal prediction. This allows us to determine appropriate thresholds for each group. Experimental results on both (a) an Image Classification (ImageNet) (b) a medical task (visual acuity prediction) show that our method outperforms existing approaches according to the new metrics.
☆ Non-Euclidean SGD for Structured Optimization: Unified Analysis and Improved Rates
Recently, several instances of non-Euclidean SGD, including SignSGD, Lion, and Muon, have attracted significant interest from the optimization community due to their practical success in training deep neural networks. Consequently, a number of works have attempted to explain this success by developing theoretical convergence analyses. Unfortunately, these results cannot properly justify the superior performance of these methods, as they could not beat the convergence rate of vanilla Euclidean SGD. We resolve this important open problem by developing a new unified convergence analysis under the structured smoothness and gradient noise assumption. In particular, our results indicate that non-Euclidean SGD (i) can exploit the sparsity or low-rank structure of the upper bounds on the Hessian and gradient noise, (ii) can provably benefit from popular algorithmic tools such as extrapolation or momentum variance reduction, and (iii) can match the state-of-the-art convergence rates of adaptive and more complex optimization algorithms such as AdaGrad and Shampoo.
☆ Adaptive Intrusion Detection for Evolving RPL IoT Attacks Using Incremental Learning
The routing protocol for low-power and lossy networks (RPL) has become the de facto routing standard for resource-constrained IoT systems, but its lightweight design exposes critical vulnerabilities to a wide range of routing-layer attacks such as hello flood, decreased rank, and version number manipulation. Traditional countermeasures, including protocol-level modifications and machine learning classifiers, can achieve high accuracy against known threats, yet they fail when confronted with novel or zero-day attacks unless fully retrained, an approach that is impractical for dynamic IoT environments. In this paper, we investigate incremental learning as a practical and adaptive strategy for intrusion detection in RPL-based networks. We systematically evaluate five model families, including ensemble models and deep learning models. Our analysis highlights that incremental learning not only restores detection performance on new attack classes but also mitigates catastrophic forgetting of previously learned threats, all while reducing training time compared to full retraining. By combining five diverse models with attack-specific analysis, forgetting behavior, and time efficiency, this study provides systematic evidence that incremental learning offers a scalable pathway to maintain resilient intrusion detection in evolving RPL-based IoT networks.
☆ MoCap2Radar: A Spatiotemporal Transformer for Synthesizing Micro-Doppler Radar Signatures from Motion Capture
We present a pure machine learning process for synthesizing radar spectrograms from Motion-Capture (MoCap) data. We formulate MoCap-to-spectrogram translation as a windowed sequence-to-sequence task using a transformer-based model that jointly captures spatial relations among MoCap markers and temporal dynamics across frames. Real-world experiments show that the proposed approach produces visually and quantitatively plausible doppler radar spectrograms and achieves good generalizability. Ablation experiments show that the learned model includes both the ability to convert multi-part motion into doppler signatures and an understanding of the spatial relations between different parts of the human body. The result is an interesting example of using transformers for time-series signal processing. It is especially applicable to edge computing and Internet of Things (IoT) radars. It also suggests the ability to augment scarce radar datasets using more abundant MoCap data for training higher-level applications. Finally, it requires far less computation than physics-based methods for generating radar data.
☆ Epistemic Error Decomposition for Multi-step Time Series Forecasting: Rethinking Bias-Variance in Recursive and Direct Strategies
Multi-step forecasting is often described through a simple rule of thumb: recursive strategies are said to have high bias and low variance, while direct strategies are said to have low bias and high variance. We revisit this belief by decomposing the expected multi-step forecast error into three parts: irreducible noise, a structural approximation gap, and an estimation-variance term. For linear predictors we show that the structural gap is identically zero for any dataset. For nonlinear predictors, however, the repeated composition used in recursion can increase model expressivity, making the structural gap depend on both the model and the data. We further show that the estimation variance of the recursive strategy at any horizon can be written as the one-step variance multiplied by a Jacobian-based amplification factor that measures how sensitive the composed predictor is to parameter error. This perspective explains when recursive forecasting may simultaneously have lower bias and higher variance than direct forecasting. Experiments with multilayer perceptrons on the ETTm1 dataset confirm these findings. The results offer practical guidance for choosing between recursive and direct strategies based on model nonlinearity and noise characteristics, rather than relying on traditional bias-variance intuition.
comment: 2025 EIML Eurips Workshop, 6 pages
☆ FairReweighing: Density Estimation-Based Reweighing Framework for Improving Separation in Fair Regression
There has been a prevalence of applying AI software in both high-stakes public-sector and industrial contexts. However, the lack of transparency has raised concerns about whether these data-informed AI software decisions secure fairness against people of all racial, gender, or age groups. Despite extensive research on emerging fairness-aware AI software, up to now most efforts to solve this issue have been dedicated to binary classification tasks. Fairness in regression is relatively underexplored. In this work, we adopted a mutual information-based metric to assess separation violations. The metric is also extended so that it can be directly applied to both classification and regression problems with both binary and continuous sensitive attributes. Inspired by the Reweighing algorithm in fair classification, we proposed a FairReweighing pre-processing algorithm based on density estimation to ensure that the learned model satisfies the separation criterion. Theoretically, we show that the proposed FairReweighing algorithm can guarantee separation in the training data under a data independence assumption. Empirically, on both synthetic and real-world data, we show that FairReweighing outperforms existing state-of-the-art regression fairness solutions in terms of improving separation while maintaining high accuracy.
☆ Synergy vs. Noise: Performance-Guided Multimodal Fusion For Biochemical Recurrence-Free Survival in Prostate Cancer
Multimodal deep learning (MDL) has emerged as a transformative approach in computational pathology. By integrating complementary information from multiple data sources, MDL models have demonstrated superior predictive performance across diverse clinical tasks compared to unimodal models. However, the assumption that combining modalities inherently improves performance remains largely unexamined. We hypothesise that multimodal gains depend critically on the predictive quality of individual modalities, and that integrating weak modalities may introduce noise rather than complementary information. We test this hypothesis on a prostate cancer dataset with histopathology, radiology, and clinical data to predict time-to-biochemical recurrence. Our results confirm that combining high-performing modalities yield superior performance compared to unimodal approaches. However, integrating a poor-performing modality with other higher-performing modalities degrades predictive accuracy. These findings demonstrate that multimodal benefit requires selective, performance-guided integration rather than indiscriminate modality combination, with implications for MDL design across computational pathology and medical imaging.
comment: 5 pages, 1 figure, 4 tables
☆ VoxTell: Free-Text Promptable Universal 3D Medical Image Segmentation
We introduce VoxTell, a vision-language model for text-prompted volumetric medical image segmentation. It maps free-form descriptions, from single words to full clinical sentences, to 3D masks. Trained on 62K+ CT, MRI, and PET volumes spanning over 1K anatomical and pathological classes, VoxTell uses multi-stage vision-language fusion across decoder layers to align textual and visual features at multiple scales. It achieves state-of-the-art zero-shot performance across modalities on unseen datasets, excelling on familiar concepts while generalizing to related unseen classes. Extensive experiments further demonstrate strong cross-modality transfer, robustness to linguistic variations and clinical language, as well as accurate instance-specific segmentation from real-world text. Code is available at: https://www.github.com/MIC-DKFZ/VoxTell
☆ DiffPro: Joint Timestep and Layer-Wise Precision Optimization for Efficient Diffusion Inference
Diffusion models produce high quality images but inference is costly due to many denoising steps and heavy matrix operations. We present DiffPro, a post-training, hardware-faithful framework that works with the exact integer kernels used in deployment and jointly tunes timesteps and per-layer precision in Diffusion Transformers (DiTs) to reduce latency and memory without any training. DiffPro combines three parts: a manifold-aware sensitivity metric to allocate weight bits, dynamic activation quantization to stabilize activations across timesteps, and a budgeted timestep selector guided by teacher-student drift. In experiments DiffPro achieves up to 6.25x model compression, fifty percent fewer timesteps, and 2.8x faster inference with Delta FID <= 10 on standard benchmarks, demonstrating practical efficiency gains. DiffPro unifies step reduction and precision planning into a single budgeted deployable plan for real-time energy-aware diffusion inference.
☆ Retrofit: Continual Learning with Bounded Forgetting for Security Applications
Modern security analytics are increasingly powered by deep learning models, but their performance often degrades as threat landscapes evolve and data representations shift. While continual learning (CL) offers a promising paradigm to maintain model effectiveness, many approaches rely on full retraining or data replay, which are infeasible in data-sensitive environments. Moreover, existing methods remain inadequate for security-critical scenarios, facing two coupled challenges in knowledge transfer: preserving prior knowledge without old data and integrating new knowledge with minimal interference. We propose RETROFIT, a data retrospective-free continual learning method that achieves bounded forgetting for effective knowledge transfer. Our key idea is to consolidate previously trained and newly fine-tuned models, serving as teachers of old and new knowledge, through parameter-level merging that eliminates the need for historical data. To mitigate interference, we apply low-rank and sparse updates that confine parameter changes to independent subspaces, while a knowledge arbitration dynamically balances the teacher contributions guided by model confidence. Our evaluation on two representative applications demonstrates that RETROFIT consistently mitigates forgetting while maintaining adaptability. In malware detection under temporal drift, it substantially improves the retention score, from 20.2% to 38.6% over CL baselines, and exceeds the oracle upper bound on new data. In binary summarization across decompilation levels, where analyzing stripped binaries is especially challenging, RETROFIT achieves around twice the BLEU score of transfer learning used in prior work and surpasses all baselines in cross-representation generalization.
☆ BOFA: Bridge-Layer Orthogonal Low-Rank Fusion for CLIP-Based Class-Incremental Learning AAAI 2026
Class-Incremental Learning (CIL) aims to continually learn new categories without forgetting previously acquired knowledge. Vision-language models such as CLIP offer strong transferable representations via multi-modal supervision, making them promising for CIL. However, applying CLIP to CIL poses two major challenges: (1) adapting to downstream tasks often requires additional learnable modules, increasing model complexity and susceptibility to forgetting; and (2) while multi-modal representations offer complementary strengths, existing methods have yet to fully realize their potential in effectively integrating visual and textual modalities. To address these issues, we propose BOFA (Bridge-layer Orthogonal Fusion for Adaptation), a novel framework for CIL. BOFA confines all model adaptation exclusively to CLIP's existing cross-modal bridge-layer, thereby adding no extra parameters or inference cost. To prevent forgetting within this layer, it leverages Orthogonal Low-Rank Fusion, a mechanism that constrains parameter updates to a low-rank ``safe subspace" mathematically constructed to be orthogonal to past task features. This ensures stable knowledge accumulation without data replay. Furthermore, BOFA employs a cross-modal hybrid prototype that synergizes stable textual prototypes with visual counterparts derived from our stably adapted bridge-layer, enhancing classification performance. Extensive experiments on standard benchmarks show that BOFA achieves superior accuracy and efficiency compared to existing methods.
comment: Accepted by AAAI 2026
☆ Low-Bit, High-Fidelity: Optimal Transport Quantization for Flow Matching
Flow Matching (FM) generative models offer efficient simulation-free training and deterministic sampling, but their practical deployment is challenged by high-precision parameter requirements. We adapt optimal transport (OT)-based post-training quantization to FM models, minimizing the 2-Wasserstein distance between quantized and original weights, and systematically compare its effectiveness against uniform, piecewise, and logarithmic quantization schemes. Our theoretical analysis provides upper bounds on generative degradation under quantization, and empirical results across five benchmark datasets of varying complexity show that OT-based quantization preserves both visual generation quality and latent space stability down to 2-3 bits per parameter, where alternative methods fail. This establishes OT-based quantization as a principled, effective approach to compress FM generative models for edge and embedded AI applications.
comment: 12 pages, 8 figures
☆ Differentiation Strategies for Acoustic Inverse Problems: Admittance Estimation and Shape Optimization
We demonstrate a practical differentiable programming approach for acoustic inverse problems through two applications: admittance estimation and shape optimization for resonance damping. First, we show that JAX-FEM's automatic differentiation (AD) enables direct gradient-based estimation of complex boundary admittance from sparse pressure measurements, achieving 3-digit precision without requiring manual derivation of adjoint equations. Second, we apply randomized finite differences to acoustic shape optimization, combining JAX-FEM for forward simulation with PyTorch3D for mesh manipulation through AD. By separating physics-driven boundary optimization from geometry-driven interior mesh adaptation, we achieve 48.1% energy reduction at target frequencies with 30-fold fewer FEM solutions compared to standard finite difference on the full mesh. This work showcases how modern differentiable software stacks enable rapid prototyping of optimization workflows for physics-based inverse problems, with automatic differentiation for parameter estimation and a combination of finite differences and AD for geometric design.
comment: 4 pages, 2 figures
☆ Multicalibration yields better matchings
Consider the problem of finding the best matching in a weighted graph where we only have access to predictions of the actual stochastic weights, based on an underlying context. If the predictor is the Bayes optimal one, then computing the best matching based on the predicted weights is optimal. However, in practice, this perfect information scenario is not realistic. Given an imperfect predictor, a suboptimal decision rule may compensate for the induced error and thus outperform the standard optimal rule. In this paper, we propose multicalibration as a way to address this problem. This fairness notion requires a predictor to be unbiased on each element of a family of protected sets of contexts. Given a class of matching algorithms $\mathcal C$ and any predictor $γ$ of the edge-weights, we show how to construct a specific multicalibrated predictor $\hat γ$, with the following property. Picking the best matching based on the output of $\hat γ$ is competitive with the best decision rule in $\mathcal C$ applied onto the original predictor $γ$. We complement this result by providing sample complexity bounds.
☆ Multi-Phase Spacecraft Trajectory Optimization via Transformer-Based Reinforcement Learning
Autonomous spacecraft control for mission phases such as launch, ascent, stage separation, and orbit insertion remains a critical challenge due to the need for adaptive policies that generalize across dynamically distinct regimes. While reinforcement learning (RL) has shown promise in individual astrodynamics tasks, existing approaches often require separate policies for distinct mission phases, limiting adaptability and increasing operational complexity. This work introduces a transformer-based RL framework that unifies multi-phase trajectory optimization through a single policy architecture, leveraging the transformer's inherent capacity to model extended temporal contexts. Building on proximal policy optimization (PPO), our framework replaces conventional recurrent networks with a transformer encoder-decoder structure, enabling the agent to maintain coherent memory across mission phases spanning seconds to minutes during critical operations. By integrating a Gated Transformer-XL (GTrXL) architecture, the framework eliminates manual phase transitions while maintaining stability in control decisions. We validate our approach progressively: first demonstrating near-optimal performance on single-phase benchmarks (double integrator and Van der Pol oscillator), then extending to multiphase waypoint navigation variants, and finally tackling a complex multiphase rocket ascent problem that includes atmospheric flight, stage separation, and vacuum operations. Results demonstrate that the transformer-based framework not only matches analytical solutions in simple cases but also effectively learns coherent control policies across dynamically distinct regimes, establishing a foundation for scalable autonomous mission planning that reduces reliance on phase-specific controllers while maintaining compatibility with safety-critical verification protocols.
☆ SPOT: Single-Shot Positioning via Trainable Near-Field Rainbow Beamforming
Phase-time arrays, which integrate phase shifters (PSs) and true-time delays (TTDs), have emerged as a cost-effective architecture for generating frequency-dependent rainbow beams in wideband sensing and localization. This paper proposes an end-to-end deep learning-based scheme that simultaneously designs the rainbow beams and estimates user positions. Treating the PS and TTD coefficients as trainable variables allows the network to synthesize task-oriented beams that maximize localization accuracy. A lightweight fully connected module then recovers the user's angle-range coordinates from its feedback of the maximum quantized received power and its corresponding subcarrier index after a single downlink transmission. Compared with existing analytical and learning-based schemes, the proposed method reduces overhead by an order of magnitude and delivers consistently lower two-dimensional positioning error.
☆ Robust inverse material design with physical guarantees using the Voigt-Reuss Net
We propose a spectrally normalized surrogate for forward and inverse mechanical homogenization with hard physical guarantees. Leveraging the Voigt-Reuss bounds, we factor their difference via a Cholesky-like operator and learn a dimensionless, symmetric positive semi-definite representation with eigenvalues in $[0,1]$; the inverse map returns symmetric positive-definite predictions that lie between the bounds in the Löwner sense. In 3D linear elasticity on an open dataset of stochastic biphasic microstructures, a fully connected Voigt-Reuss net trained on $>\!7.5\times 10^{5}$ FFT-based labels with 236 isotropy-invariant descriptors and three contrast parameters recovers the isotropic projection with near-perfect fidelity (isotropy-related entries: $R^2 \ge 0.998$), while anisotropy-revealing couplings are unidentifiable from $SO(3)$-invariant inputs. Tensor-level relative Frobenius errors have median $\approx 1.7\%$ and mean $\approx 3.4\%$ across splits. For 2D plane strain on thresholded trigonometric microstructures, coupling spectral normalization with a differentiable renderer and a CNN yields $R^2>0.99$ on all components, subpercent normalized losses, accurate tracking of percolation-induced eigenvalue jumps, and robust generalization to out-of-distribution images. Treating the parametric microstructure as design variables, batched first-order optimization with a single surrogate matches target tensors within a few percent and returns diverse near-optimal designs. Overall, the Voigt-Reuss net unifies accurate, physically admissible forward prediction with large-batch, constraint-consistent inverse design, and is generic to elliptic operators and coupled-physics settings.
☆ SoK: Security Evaluation of Wi-Fi CSI Biometrics: Attacks, Metrics, and Systemic Weaknesses
Wi-Fi Channel State Information (CSI) has been repeatedly proposed as a biometric modality, often with reports of high accuracy and operational feasibility. However, the field lacks a consolidated understanding of its security properties, adversarial resilience, and methodological consistency. This Systematization of Knowledge (SoK) examines CSI-based biometric authentication through a security perspective, analyzing how existing work differs across sensing infrastructure, signal representations, feature pipelines, learning models, and evaluation methodologies. Our synthesis reveals systemic inconsistencies: reliance on aggregate accuracy metrics, limited reporting of FAR/FRR/EER, absence of per-user risk analysis, and scarce consideration of threat models or adversarial feasibility. We construct a unified evaluation framework to empirically expose these issues and demonstrate how security-relevant metrics, such as per-class EER, FCS, and the Gini Coefficient, uncover risk concentration that remains hidden under traditional reporting practices. Our analysis highlights concrete attack surfaces and shows how methodological choices materially influence vulnerability profiles, which include replay, geometric mimicry, and environmental perturbation. Based on these findings, we articulate the security boundaries of current CSI biometrics and provide guidelines for rigorous evaluation, reproducible experimentation, and future research directions. This SoK offers the security community a structured, evidence-driven reassessment of Wi-Fi CSI biometrics and their suitability as an authentication primitive.
comment: An improved version will be submitted to Euro S&P 2026, and this paper will be updated in the near future
☆ When Genes Speak: A Semantic-Guided Framework for Spatially Resolved Transcriptomics Data Clustering AAAI'2026
Spatial transcriptomics enables gene expression profiling with spatial context, offering unprecedented insights into the tissue microenvironment. However, most computational models treat genes as isolated numerical features, ignoring the rich biological semantics encoded in their symbols. This prevents a truly deep understanding of critical biological characteristics. To overcome this limitation, we present SemST, a semantic-guided deep learning framework for spatial transcriptomics data clustering. SemST leverages Large Language Models (LLMs) to enable genes to "speak" through their symbolic meanings, transforming gene sets within each tissue spot into biologically informed embeddings. These embeddings are then fused with the spatial neighborhood relationships captured by Graph Neural Networks (GNNs), achieving a coherent integration of biological function and spatial structure. We further introduce the Fine-grained Semantic Modulation (FSM) module to optimally exploit these biological priors. The FSM module learns spot-specific affine transformations that empower the semantic embeddings to perform an element-wise calibration of the spatial features, thus dynamically injecting high-order biological knowledge into the spatial context. Extensive experiments on public spatial transcriptomics datasets show that SemST achieves state-of-the-art clustering performance. Crucially, the FSM module exhibits plug-and-play versatility, consistently improving the performance when integrated into other baseline methods.
comment: AAAI'2026 poster paper. 12 pages, 8 figures
☆ On-Device Fine-Tuning via Backprop-Free Zeroth-Order Optimization
On-device fine-tuning is a critical capability for edge AI systems, which must support adaptation to different agentic tasks under stringent memory constraints. Conventional backpropagation (BP)-based training requires storing layer activations and optimizer states, a demand that can be only partially alleviated through checkpointing. In edge deployments in which the model weights must reside entirely in device memory, this overhead severely limits the maximum model size that can be deployed. Memory-efficient zeroth-order optimization (MeZO) alleviates this bottleneck by estimating gradients using forward evaluations alone, eliminating the need for storing intermediate activations or optimizer states. This enables significantly larger models to fit within on-chip memory, albeit at the cost of potentially longer fine-tuning wall-clock time. This paper first provides a theoretical estimate of the relative model sizes that can be accommodated under BP and MeZO training. We then numerically validate the analysis, demonstrating that MeZO exhibits accuracy advantages under on-device memory constraints, provided sufficient wall-clock time is available for fine-tuning.
comment: Conference submission; Under review
☆ Toward Multi-Fidelity Machine Learning Force Field for Cathode Materials
Machine learning force fields (MLFFs), which employ neural networks to map atomic structures to system energies, effectively combine the high accuracy of first-principles calculation with the computational efficiency of empirical force fields. They are widely used in computational materials simulations. However, the development and application of MLFFs for lithium-ion battery cathode materials remain relatively limited. This is primarily due to the complex electronic structure characteristics of cathode materials and the resulting scarcity of high-quality computational datasets available for force field training. In this work, we develop a multi-fidelity machine learning force field framework to enhance the data efficiency of computational results, which can simultaneously utilize both low-fidelity non-magnetic and high-fidelity magnetic computational datasets of cathode materials for training. Tests conducted on the lithium manganese iron phosphate (LMFP) cathode material system demonstrate the effectiveness of this multi-fidelity approach. This work helps to achieve high-accuracy MLFF training for cathode materials at a lower training dataset cost, and offers new perspectives for applying MLFFs to computational simulations of cathode materials.
☆ Fast and Expressive Multi-Token Prediction with Probabilistic Circuits
Multi-token prediction (MTP) is a prominent strategy to significantly speed up generation in large language models (LLMs), including byte-level LLMs, which are tokeniser-free but prohibitively slow. However, existing MTP methods often sacrifice expressiveness by assuming independence between future tokens. In this work, we investigate the trade-off between expressiveness and latency in MTP within the framework of probabilistic circuits (PCs). Our framework, named MTPC, allows one to explore different ways to encode the joint distributions over future tokens by selecting different circuit architectures, generalising classical models such as (hierarchical) mixture models, hidden Markov models and tensor networks. We show the efficacy of MTPC by retrofitting existing byte-level LLMs, such as EvaByte. Our experiments show that, when combined with speculative decoding, MTPC significantly speeds up generation compared to MTP with independence assumptions, while guaranteeing to retain the performance of the original verifier LLM. We also rigorously study the optimal trade-off between expressiveness and latency when exploring the possible parameterisations of MTPC, such as PC architectures and partial layer sharing between the verifier and draft LLMs.
☆ StochEP: Stochastic Equilibrium Propagation for Spiking Convergent Recurrent Neural Networks
Spiking Neural Networks (SNNs) promise energy-efficient, sparse, biologically inspired computation. Training them with Backpropagation Through Time (BPTT) and surrogate gradients achieves strong performance but remains biologically implausible. Equilibrium Propagation (EP) provides a more local and biologically grounded alternative. However, existing EP frameworks, primarily based on deterministic neurons, either require complex mechanisms to handle discontinuities in spiking dynamics or fail to scale beyond simple visual tasks. Inspired by the stochastic nature of biological spiking mechanism and recent hardware trends, we propose a stochastic EP framework that integrates probabilistic spiking neurons into the EP paradigm. This formulation smoothens the optimization landscape, stabilizes training, and enables scalable learning in deep convolutional spiking convergent recurrent neural networks (CRNNs). We provide theoretical guarantees showing that the proposed stochastic EP dynamics approximate deterministic EP under mean-field theory, thereby inheriting its underlying theoretical guarantees. The proposed framework narrows the gap to both BPTT-trained SNNs and EP-trained non-spiking CRNNs in vision benchmarks while preserving locality, highlighting stochastic EP as a promising direction for neuromorphic and on-chip learning.
☆ Large-scale modality-invariant foundation models for brain MRI analysis: Application to lesion segmentation
The field of computer vision is undergoing a paradigm shift toward large-scale foundation model pre-training via self-supervised learning (SSL). Leveraging large volumes of unlabeled brain MRI data, such models can learn anatomical priors that improve few-shot performance in diverse neuroimaging tasks. However, most SSL frameworks are tailored to natural images, and their adaptation to capture multi-modal MRI information remains underexplored. This work proposes a modality-invariant representation learning setup and evaluates its effectiveness in stroke and epilepsy lesion segmentation, following large-scale pre-training. Experimental results suggest that despite successful cross-modality alignment, lesion segmentation primarily benefits from preserving fine-grained modality-specific features. Model checkpoints and code are made publicly available.
comment: Submitted to IEEE ISBI 2026
☆ MOON Embedding: Multimodal Representation Learning for E-commerce Search Advertising
We introduce MOON, our comprehensive set of sustainable iterative practices for multimodal representation learning for e-commerce applications. MOON has already been fully deployed across all stages of Taobao search advertising system, including retrieval, relevance, ranking, and so on. The performance gains are particularly significant on click-through rate (CTR) prediction task, which achieves an overall +20.00% online CTR improvement. Over the past three years, this project has delivered the largest improvement on CTR prediction task and undergone five full-scale iterations. Throughout the exploration and iteration of our MOON, we have accumulated valuable insights and practical experience that we believe will benefit the research community. MOON contains a three-stage training paradigm of "Pretraining, Post-training, and Application", allowing effective integration of multimodal representations with downstream tasks. Notably, to bridge the misalignment between the objectives of multimodal representation learning and downstream training, we define the exchange rate to quantify how effectively improvements in an intermediate metric can translate into downstream gains. Through this analysis, we identify the image-based search recall as a critical intermediate metric guiding the optimization of multimodal models. Over three years and five iterations, MOON has evolved along four critical dimensions: data processing, training strategy, model architecture, and downstream application. The lessons and insights gained through the iterative improvements will also be shared. As part of our exploration into scaling effects in the e-commerce field, we further conduct a systematic study of the scaling laws governing multimodal representation learning, examining multiple factors such as the number of training tokens, negative samples, and the length of user behavior sequences.
comment: 31 pages, 12 figures
☆ Decomposing Direct and Indirect Biases in Linear Models under Demographic Parity Constraint
Linear models are widely used in high-stakes decision-making due to their simplicity and interpretability. Yet when fairness constraints such as demographic parity are introduced, their effects on model coefficients, and thus on how predictive bias is distributed across features, remain opaque. Existing approaches on linear models often rely on strong and unrealistic assumptions, or overlook the explicit role of the sensitive attribute, limiting their practical utility for fairness assessment. We extend the work of (Chzhen and Schreuder, 2022) and (Fukuchi and Sakuma, 2023) by proposing a post-processing framework that can be applied on top of any linear model to decompose the resulting bias into direct (sensitive-attribute) and indirect (correlated-features) components. Our method analytically characterizes how demographic parity reshapes each model coefficient, including those of both sensitive and non-sensitive features. This enables a transparent, feature-level interpretation of fairness interventions and reveals how bias may persist or shift through correlated variables. Our framework requires no retraining and provides actionable insights for model auditing and mitigation. Experiments on both synthetic and real-world datasets demonstrate that our method captures fairness dynamics missed by prior work, offering a practical and interpretable tool for responsible deployment of linear models.
☆ Toward Scalable Early Cancer Detection: Evaluating EHR-Based Predictive Models Against Traditional Screening Criteria
Current cancer screening guidelines cover only a few cancer types and rely on narrowly defined criteria such as age or a single risk factor like smoking history, to identify high-risk individuals. Predictive models using electronic health records (EHRs), which capture large-scale longitudinal patient-level health information, may provide a more effective tool for identifying high-risk groups by detecting subtle prediagnostic signals of cancer. Recent advances in large language and foundation models have further expanded this potential, yet evidence remains limited on how useful HER-based models are compared with traditional risk factors currently used in screening guidelines. We systematically evaluated the clinical utility of EHR-based predictive models against traditional risk factors, including gene mutations and family history of cancer, for identifying high-risk individuals across eight major cancers (breast, lung, colorectal, prostate, ovarian, liver, pancreatic, and stomach), using data from the All of Us Research Program, which integrates EHR, genomic, and survey data from over 865,000 participants. Even with a baseline modeling approach, EHR-based models achieved a 3- to 6-fold higher enrichment of true cancer cases among individuals identified as high risk compared with traditional risk factors alone, whether used as a standalone or complementary tool. The EHR foundation model, a state-of-the-art approach trained on comprehensive patient trajectories, further improved predictive performance across 26 cancer types, demonstrating the clinical potential of EHR-based predictive modeling to support more precise and scalable early detection strategies.
☆ AIonopedia: an LLM agent orchestrating multimodal learning for ionic liquid discovery
The discovery of novel Ionic Liquids (ILs) is hindered by critical challenges in property prediction, including limited data, poor model accuracy, and fragmented workflows. Leveraging the power of Large Language Models (LLMs), we introduce AIonopedia, to the best of our knowledge, the first LLM agent for IL discovery. Powered by an LLM-augmented multimodal domain foundation model for ILs, AIonopedia enables accurate property predictions and incorporates a hierarchical search architecture for molecular screening and design. Trained and evaluated on a newly curated and comprehensive IL dataset, our model delivers superior performance. Complementing these results, evaluations on literature-reported systems indicate that the agent can perform effective IL modification. Moving beyond offline tests, the practical efficacy was further confirmed through real-world wet-lab validation, in which the agent demonstrated exceptional generalization capabilities on challenging out-of-distribution tasks, underscoring its ability to accelerate real-world IL discovery.
☆ Heterogeneous Attributed Graph Learning via Neighborhood-Aware Star Kernels
Attributed graphs, typically characterized by irregular topologies and a mix of numerical and categorical attributes, are ubiquitous in diverse domains such as social networks, bioinformatics, and cheminformatics. While graph kernels provide a principled framework for measuring graph similarity, existing kernel methods often struggle to simultaneously capture heterogeneous attribute semantics and neighborhood information in attributed graphs. In this work, we propose the Neighborhood-Aware Star Kernel (NASK), a novel graph kernel designed for attributed graph learning. NASK leverages an exponential transformation of the Gower similarity coefficient to jointly model numerical and categorical features efficiently, and employs star substructures enhanced by Weisfeiler-Lehman iterations to integrate multi-scale neighborhood structural information. We theoretically prove that NASK is positive definite, ensuring compatibility with kernel-based learning frameworks such as SVMs. Extensive experiments are conducted on eleven attributed and four large-scale real-world graph benchmarks. The results demonstrate that NASK consistently achieves superior performance over sixteen state-of-the-art baselines, including nine graph kernels and seven Graph Neural Networks.
☆ HealSplit: Towards Self-Healing through Adversarial Distillation in Split Federated Learning AAAI 2026
Split Federated Learning (SFL) is an emerging paradigm for privacy-preserving distributed learning. However, it remains vulnerable to sophisticated data poisoning attacks targeting local features, labels, smashed data, and model weights. Existing defenses, primarily adapted from traditional Federated Learning (FL), are less effective under SFL due to limited access to complete model updates. This paper presents HealSplit, the first unified defense framework tailored for SFL, offering end-to-end detection and recovery against five sophisticated types of poisoning attacks. HealSplit comprises three key components: (1) a topology-aware detection module that constructs graphs over smashed data to identify poisoned samples via topological anomaly scoring (TAS); (2) a generative recovery pipeline that synthesizes semantically consistent substitutes for detected anomalies, validated by a consistency validation student; and (3) an adversarial multi-teacher distillation framework trains the student using semantic supervision from a Vanilla Teacher and anomaly-aware signals from an Anomaly-Influence Debiasing (AD) Teacher, guided by the alignment between topological and gradient-based interaction matrices. Extensive experiments on four benchmark datasets demonstrate that HealSplit consistently outperforms ten state-of-the-art defenses, achieving superior robustness and defense effectiveness across diverse attack scenarios.
comment: Accepted by AAAI 2026
☆ Virtual Width Networks
We introduce Virtual Width Networks (VWN), a framework that delivers the benefits of wider representations without incurring the quadratic cost of increasing the hidden size. VWN decouples representational width from backbone width, expanding the embedding space while keeping backbone compute nearly constant. In our large-scale experiment, an 8-times expansion accelerates optimization by over 2 times for next-token and 3 times for next-2-token prediction. The advantage amplifies over training as both the loss gap grows and the convergence-speedup ratio increases, showing that VWN is not only token-efficient but also increasingly effective with scale. Moreover, we identify an approximately log-linear scaling relation between virtual width and loss reduction, offering an initial empirical basis and motivation for exploring virtual-width scaling as a new dimension of large-model efficiency.
☆ Neural Network-Powered Finger-Drawn Biometric Authentication
This paper investigates neural network-based biometric authentication using finger-drawn digits on touchscreen devices. We evaluated CNN and autoencoder architectures for user authentication through simple digit patterns (0-9) traced with finger input. Twenty participants contributed 2,000 finger-drawn digits each on personal touchscreen devices. We compared two CNN architectures: a modified Inception-V1 network and a lightweight shallow CNN for mobile environments. Additionally, we examined Convolutional and Fully Connected autoencoders for anomaly detection. Both CNN architectures achieved ~89% authentication accuracy, with the shallow CNN requiring fewer parameters. Autoencoder approaches achieved ~75% accuracy. The results demonstrate that finger-drawn symbol authentication provides a viable, secure, and user-friendly biometric solution for touchscreen devices. This approach can be integrated with existing pattern-based authentication methods to create multi-layered security systems for mobile applications.
☆ Sparse Methods for Vector Embeddings of TPC Data NeurIPS
Time Projection Chambers (TPCs) are versatile detectors that reconstruct charged-particle tracks in an ionizing medium, enabling sensitive measurements across a wide range of nuclear physics experiments. We explore sparse convolutional networks for representation learning on TPC data, finding that a sparse ResNet architecture, even with randomly set weights, provides useful structured vector embeddings of events. Pre-training this architecture on a simple physics-motivated binary classification task further improves the embedding quality. Using data from the GAseous Detector with GErmanium Tagging (GADGET) II TPC, a detector optimized for measuring low-energy $β$-delayed particle decays, we represent raw pad-level signals as sparse tensors, train Minkowski Engine ResNet models, and probe the resulting event-level embeddings which reveal rich event structure. As a cross-detector test, we embed data from the Active-Target TPC (AT-TPC) -- a detector designed for nuclear reaction studies in inverse kinematics -- using the same encoder. We find that even an untrained sparse ResNet model provides useful embeddings of AT-TPC data, and we observe improvements when the model is trained on GADGET data. Together, these results highlight the potential of sparse convolutional techniques as a general tool for representation learning in diverse TPC experiments.
comment: NeurIPS Machine Learning and the Physical Sciences Workshop 2025
☆ A Best-of-Both-Worlds Proof for Tsallis-INF without Fenchel Conjugates
In this short note, we present a simple derivation of the best-of-both-world guarantee for the Tsallis-INF multi-armed bandit algorithm from J. Zimmert and Y. Seldin. Tsallis-INF: An optimal algorithm for stochastic and adversarial bandits. Journal of Machine Learning Research, 22(28):1-49, 2021. URL https://jmlr.csail.mit.edu/papers/volume22/19-753/19-753.pdf. In particular, the proof uses modern tools from online convex optimization and avoid the use of conjugate functions. Also, we do not optimize the constants in the bounds in favor of a slimmer proof.
☆ When to Stop Federated Learning: Zero-Shot Generation of Synthetic Validation Data with Generative AI for Early Stopping
Federated Learning (FL) enables collaborative model training across decentralized devices while preserving data privacy. However, FL methods typically run for a predefined number of global rounds, often leading to unnecessary computation when optimal performance is reached earlier. In addition, training may continue even when the model fails to achieve meaningful performance. To address this inefficiency, we introduce a zero-shot synthetic validation framework that leverages generative AI to monitor model performance and determine early stopping points. Our approach adaptively stops training near the optimal round, thereby conserving computational resources and enabling rapid hyperparameter adjustments. Numerical results on multi-label chest X-ray classification demonstrate that our method reduces training rounds by up to 74% while maintaining accuracy within 1% of the optimal.
comment: Accepted to IEEE BigData 2025
☆ Questioning the Stability of Visual Question Answering
Visual Language Models (VLMs) have achieved remarkable progress, yet their reliability under small, meaning-preserving input changes remains poorly understood. We present the first large-scale, systematic study of VLM robustness to benign visual and textual perturbations: pixel-level shifts, light geometric transformations, padded rescaling, paraphrasing, and multilingual rewrites that do not alter the underlying semantics of an image-question pair. Across a broad set of models and datasets, we find that modern VLMs are highly sensitive to such minor perturbations: a substantial fraction of samples change their predicted answer under at least one visual or textual modification. We characterize how this instability varies across perturbation types, question categories, and models, revealing that even state-of-the-art systems (e.g., GPT-4o, Gemini 2.0 Flash) frequently fail under shifts as small as a few pixels or harmless rephrasings. We further show that sample-level stability serves as a strong indicator of correctness: stable samples are consistently far more likely to be answered correctly. Leveraging this, we demonstrate that the stability patterns of small, accessible open-source models can be used to predict the correctness of much larger closed-source models with high precision. Our findings expose a fundamental fragility in current VLMs and highlight the need for robustness evaluations that go beyond adversarial perturbations, focusing instead on invariances that models should reliably uphold.
☆ LoRaCompass: Robust Reinforcement Learning to Efficiently Search for a LoRa Tag
The Long-Range (LoRa) protocol, known for its extensive range and low power, has increasingly been adopted in tags worn by mentally incapacitated persons (MIPs) and others at risk of going missing. We study the sequential decision-making process for a mobile sensor to locate a periodically broadcasting LoRa tag with the fewest moves (hops) in general, unknown environments, guided by the received signal strength indicator (RSSI). While existing methods leverage reinforcement learning for search, they remain vulnerable to domain shift and signal fluctuation, resulting in cascading decision errors that culminate in substantial localization inaccuracies. To bridge this gap, we propose LoRaCompass, a reinforcement learning model designed to achieve robust and efficient search for a LoRa tag. For exploitation under domain shift and signal fluctuation, LoRaCompass learns a robust spatial representation from RSSI to maximize the probability of moving closer to a tag, via a spatially-aware feature extractor and a policy distillation loss function. It further introduces an exploration function inspired by the upper confidence bound (UCB) that guides the sensor toward the tag with increasing confidence. We have validated LoRaCompass in ground-based and drone-assisted scenarios within diverse unseen environments covering an area of over 80km^2. It has demonstrated high success rate (>90%) in locating the tag within 100m proximity (a 40% improvement over existing methods) and high efficiency with a search path length (in hops) that scales linearly with the initial distance.
☆ Dynamic Deep Graph Learning for Incomplete Multi-View Clustering with Masked Graph Reconstruction Loss
The prevalence of real-world multi-view data makes incomplete multi-view clustering (IMVC) a crucial research. The rapid development of Graph Neural Networks (GNNs) has established them as one of the mainstream approaches for multi-view clustering. Despite significant progress in GNNs-based IMVC, some challenges remain: (1) Most methods rely on the K-Nearest Neighbors (KNN) algorithm to construct static graphs from raw data, which introduces noise and diminishes the robustness of the graph topology. (2) Existing methods typically utilize the Mean Squared Error (MSE) loss between the reconstructed graph and the sparse adjacency graph directly as the graph reconstruction loss, leading to substantial gradient noise during optimization. To address these issues, we propose a novel \textbf{D}ynamic Deep \textbf{G}raph Learning for \textbf{I}ncomplete \textbf{M}ulti-\textbf{V}iew \textbf{C}lustering with \textbf{M}asked Graph Reconstruction Loss (DGIMVCM). Firstly, we construct a missing-robust global graph from the raw data. A graph convolutional embedding layer is then designed to extract primary features and refined dynamic view-specific graph structures, leveraging the global graph for imputation of missing views. This process is complemented by graph structure contrastive learning, which identifies consistency among view-specific graph structures. Secondly, a graph self-attention encoder is introduced to extract high-level representations based on the imputed primary features and view-specific graphs, and is optimized with a masked graph reconstruction loss to mitigate gradient noise during optimization. Finally, a clustering module is constructed and optimized through a pseudo-label self-supervised training mechanism. Extensive experiments on multiple datasets validate the effectiveness and superiority of DGIMVCM.
☆ On-line learning of dynamic systems: sparse regression meets Kalman filtering
Learning governing equations from data is central to understanding the behavior of physical systems across diverse scientific disciplines, including physics, biology, and engineering. The Sindy algorithm has proven effective in leveraging sparsity to identify concise models of nonlinear dynamical systems. In this paper, we extend sparsity-driven approaches to real-time learning by integrating a cornerstone algorithm from control theory -- the Kalman filter (KF). The resulting Sindy Kalman Filter (SKF) unifies both frameworks by treating unknown system parameters as state variables, enabling real-time inference of complex, time-varying nonlinear models unattainable by either method alone. Furthermore, SKF enhances KF parameter identification strategies, particularly via look-ahead error, significantly simplifying the estimation of sparsity levels, variance parameters, and switching instants. We validate SKF on a chaotic Lorenz system with drifting or switching parameters and demonstrate its effectiveness in the real-time identification of a sparse nonlinear aircraft model built from real flight data.
☆ Power Ensemble Aggregation for Improved Extreme Event AI Prediction NeurIPS 2025
This paper addresses the critical challenge of improving predictions of climate extreme events, specifically heat waves, using machine learning methods. Our work is framed as a classification problem in which we try to predict whether surface air temperature will exceed its q-th local quantile within a specified timeframe. Our key finding is that aggregating ensemble predictions using a power mean significantly enhances the classifier's performance. By making a machine-learning based weather forecasting model generative and applying this non-linear aggregation method, we achieve better accuracy in predicting extreme heat events than with the typical mean prediction from the same model. Our power aggregation method shows promise and adaptability, as its optimal performance varies with the quantile threshold chosen, demonstrating increased effectiveness for higher extremes prediction.
comment: Accepted for the NeurIPS 2025 ML4PS workshop
☆ Refine and Align: Confidence Calibration through Multi-Agent Interaction in VQA AAAI 2026
In the context of Visual Question Answering (VQA) and Agentic AI, calibration refers to how closely an AI system's confidence in its answers reflects their actual correctness. This aspect becomes especially important when such systems operate autonomously and must make decisions under visual uncertainty. While modern VQA systems, powered by advanced vision-language models (VLMs), are increasingly used in high-stakes domains like medical diagnostics and autonomous navigation due to their improved accuracy, the reliability of their confidence estimates remains under-examined. Particularly, these systems often produce overconfident responses. To address this, we introduce AlignVQA, a debate-based multi-agent framework, in which diverse specialized VLM -- each following distinct prompting strategies -- generate candidate answers and then engage in two-stage interaction: generalist agents critique, refine and aggregate these proposals. This debate process yields confidence estimates that more accurately reflect the model's true predictive performance. We find that more calibrated specialized agents produce better aligned confidences. Furthermore, we introduce a novel differentiable calibration-aware loss function called aligncal designed to fine-tune the specialized agents by minimizing an upper bound on the calibration error. This objective explicitly improves the fidelity of each agent's confidence estimates. Empirical results across multiple benchmark VQA datasets substantiate the efficacy of our approach, demonstrating substantial reductions in calibration discrepancies. Furthermore, we propose a novel differentiable calibration-aware loss to fine-tune the specialized agents and improve the quality of their individual confidence estimates based on minimising upper bound calibration error.
comment: 17 pages, 6 figures, 5 tables. Accepted to Special Track on AI Alignment, AAAI 2026. Project Page- https://refine-align.github.io/
☆ Training Neural Networks at Any Scale
This article reviews modern optimization methods for training neural networks with an emphasis on efficiency and scale. We present state-of-the-art optimization algorithms under a unified algorithmic template that highlights the importance of adapting to the structures in the problem. We then cover how to make these algorithms agnostic to the scale of the problem. Our exposition is intended as an introduction for both practitioners and researchers who wish to be involved in these exciting new developments.
☆ Drift Estimation for Diffusion Processes Using Neural Networks Based on Discretely Observed Independent Paths
This paper addresses the nonparametric estimation of the drift function over a compact domain for a time-homogeneous diffusion process, based on high-frequency discrete observations from $N$ independent trajectories. We propose a neural network-based estimator and derive a non-asymptotic convergence rate, decomposed into a training error, an approximation error, and a diffusion-related term scaling as ${\log N}/{N}$. For compositional drift functions, we establish an explicit rate. In the numerical experiments, we consider a drift function with local fluctuations generated by a double-layer compositional structure featuring local oscillations, and show that the empirical convergence rate becomes independent of the input dimension $d$. Compared to the $B$-spline method, the neural network estimator achieves better convergence rates and more effectively captures local features, particularly in higher-dimensional settings.
☆ Adaptive Symmetrization of the KL Divergence
Many tasks in machine learning can be described as or reduced to learning a probability distribution given a finite set of samples. A common approach is to minimize a statistical divergence between the (empirical) data distribution and a parameterized distribution, e.g., a normalizing flow (NF) or an energy-based model (EBM). In this context, the forward KL divergence is a ubiquitous due to its tractability, though its asymmetry may prevent capturing some properties of the target distribution. Symmetric alternatives involve brittle min-max formulations and adversarial training (e.g., generative adversarial networks) or evaluating the reverse KL divergence, as is the case for the symmetric Jeffreys divergence, which is challenging to compute from samples. This work sets out to develop a new approach to minimize the Jeffreys divergence. To do so, it uses a proxy model whose goal is not only to fit the data, but also to assist in optimizing the Jeffreys divergence of the main model. This joint training task is formulated as a constrained optimization problem to obtain a practical algorithm that adapts the models priorities throughout training. We illustrate how this framework can be used to combine the advantages of NFs and EBMs in tasks such as density estimation, image generation, and simulation-based inference.
☆ Deep Learning for Short-Term Precipitation Prediction in Four Major Indian Cities: A ConvLSTM Approach with Explainable AI
Deep learning models for precipitation forecasting often function as black boxes, limiting their adoption in real-world weather prediction. To enhance transparency while maintaining accuracy, we developed an interpretable deep learning framework for short-term precipitation prediction in four major Indian cities: Bengaluru, Mumbai, Delhi, and Kolkata, spanning diverse climate zones. We implemented a hybrid Time-Distributed CNN-ConvLSTM (Convolutional Neural Network-Long Short-Term Memory) architecture, trained on multi-decadal ERA5 reanalysis data. The architecture was optimized for each city with a different number of convolutional filters: Bengaluru (32), Mumbai and Delhi (64), and Kolkata (128). The models achieved root mean square error (RMSE) values of 0.21 mm/day (Bengaluru), 0.52 mm/day (Mumbai), 0.48 mm/day (Delhi), and 1.80 mm/day (Kolkata). Through interpretability analysis using permutation importance, Gradient-weighted Class Activation Mapping (Grad-CAM), temporal occlusion, and counterfactual perturbation, we identified distinct patterns in the model's behavior. The model relied on city-specific variables, with prediction horizons ranging from one day for Bengaluru to five days for Kolkata. This study demonstrates how explainable AI (xAI) can provide accurate forecasts and transparent insights into precipitation patterns in diverse urban environments.
☆ Anomaly Detection in High-Dimensional Bank Account Balances via Robust Methods
Detecting point anomalies in bank account balances is essential for financial institutions, as it enables the identification of potential fraud, operational issues, or other irregularities. Robust statistics is useful for flagging outliers and for providing estimates of the data distribution parameters that are not affected by contaminated observations. However, such a strategy is often less efficient and computationally expensive under high dimensional setting. In this paper, we propose and evaluate empirically several robust approaches that may be computationally efficient in medium and high dimensional datasets, with high breakdown points and low computational time. Our application deals with around 2.6 million daily records of anonymous users' bank account balances.
☆ PRSM: A Measure to Evaluate CLIP's Robustness Against Paraphrases
Contrastive Language-Image Pre-training (CLIP) is a widely used multimodal model that aligns text and image representations through large-scale training. While it performs strongly on zero-shot and few-shot tasks, its robustness to linguistic variation, particularly paraphrasing, remains underexplored. Paraphrase robustness is essential for reliable deployment, especially in socially sensitive contexts where inconsistent representations can amplify demographic biases. In this paper, we introduce the Paraphrase Ranking Stability Metric (PRSM), a novel measure for quantifying CLIP's sensitivity to paraphrased queries. Using the Social Counterfactuals dataset, a benchmark designed to reveal social and demographic biases, we empirically assess CLIP's stability under paraphrastic variation, examine the interaction between paraphrase robustness and gender, and discuss implications for fairness and equitable deployment of multimodal systems. Our analysis reveals that robustness varies across paraphrasing strategies, with subtle yet consistent differences observed between male- and female-associated queries.
comment: 8 pages, accpeted as short paper at MMM 2026
☆ One-Shot Transfer Learning for Nonlinear PDEs with Perturbative PINNs NeurIPS 2025
We propose a framework for solving nonlinear partial differential equations (PDEs) by combining perturbation theory with one-shot transfer learning in Physics-Informed Neural Networks (PINNs). Nonlinear PDEs with polynomial terms are decomposed into a sequence of linear subproblems, which are efficiently solved using a Multi-Head PINN. Once the latent representation of the linear operator is learned, solutions to new PDE instances with varying perturbations, forcing terms, or boundary/initial conditions can be obtained in closed form without retraining. We validate the method on KPP-Fisher and wave equations, achieving errors on the order of 1e-3 while adapting to new problem instances in under 0.2 seconds; comparable accuracy to classical solvers but with faster transfer. Sensitivity analyses show predictable error growth with epsilon and polynomial degree, clarifying the method's effective regime. Our contributions are: (i) extending one-shot transfer learning from nonlinear ODEs to PDEs, (ii) deriving a closed-form solution for adapting to new PDE instances, and (iii) demonstrating accuracy and efficiency on canonical nonlinear PDEs. We conclude by outlining extensions to derivative-dependent nonlinearities and higher-dimensional PDEs.
comment: Accepted at Machine Learning and the Physical Sciences Workshop, NeurIPS 2025
☆ Improving Continual Learning of Knowledge Graph Embeddings via Informed Initialization
Many Knowledege Graphs (KGs) are frequently updated, forcing their Knowledge Graph Embeddings (KGEs) to adapt to these changes. To address this problem, continual learning techniques for KGEs incorporate embeddings for new entities while updating the old ones. One necessary step in these methods is the initialization of the embeddings, as an input to the KGE learning process, which can have an important impact in the accuracy of the final embeddings, as well as in the time required to train them. This is especially relevant for relatively small and frequent updates. We propose a novel informed embedding initialization strategy, which can be seamlessly integrated into existing continual learning methods for KGE, that enhances the acquisition of new knowledge while reducing catastrophic forgetting. Specifically, the KG schema and the previously learned embeddings are utilized to obtain initial representations for the new entities, based on the classes the entities belong to. Our extensive experimental analysis shows that the proposed initialization strategy improves the predictive performance of the resulting KGEs, while also enhancing knowledge retention. Furthermore, our approach accelerates knowledge acquisition, reducing the number of epochs, and therefore time, required to incrementally learn new embeddings. Finally, its benefits across various types of KGE learning models are demonstrated.
☆ VIDEOP2R: Video Understanding from Perception to Reasoning
Reinforcement fine-tuning (RFT), a two-stage framework consisting of supervised fine-tuning (SFT) and reinforcement learning (RL) has shown promising results on improving reasoning ability of large language models (LLMs). Yet extending RFT to large video language models (LVLMs) remains challenging. We propose VideoP2R, a novel process-aware video RFT framework that enhances video reasoning by modeling perception and reasoning as distinct processes. In the SFT stage, we develop a three-step pipeline to generate VideoP2R-CoT-162K, a high-quality, process-aware chain-of-thought (CoT) dataset for perception and reasoning. In the RL stage, we introduce a novel process-aware group relative policy optimization (PA-GRPO) algorithm that supplies separate rewards for perception and reasoning. Extensive experiments show that VideoP2R achieves state-of-the-art (SotA) performance on six out of seven video reasoning and understanding benchmarks. Ablation studies further confirm the effectiveness of our process-aware modeling and PA-GRPO and demonstrate that model's perception output is information-sufficient for downstream reasoning.
☆ SMART: A Surrogate Model for Predicting Application Runtime in Dragonfly Systems AAAI 2026
The Dragonfly network, with its high-radix and low-diameter structure, is a leading interconnect in high-performance computing. A major challenge is workload interference on shared network links. Parallel discrete event simulation (PDES) is commonly used to analyze workload interference. However, high-fidelity PDES is computationally expensive, making it impractical for large-scale or real-time scenarios. Hybrid simulation that incorporates data-driven surrogate models offers a promising alternative, especially for forecasting application runtime, a task complicated by the dynamic behavior of network traffic. We present \ourmodel, a surrogate model that combines graph neural networks (GNNs) and large language models (LLMs) to capture both spatial and temporal patterns from port level router data. \ourmodel outperforms existing statistical and machine learning baselines, enabling accurate runtime prediction and supporting efficient hybrid simulation of Dragonfly networks.
comment: Accepted at AAAI 2026
☆ Sheaf Cohomology of Linear Predictive Coding Networks NeurIPS 2025
Predictive coding (PC) replaces global backpropagation with local optimization over weights and activations. We show that linear PC networks admit a natural formulation as cellular sheaves: the sheaf coboundary maps activations to edge-wise prediction errors, and PC inference is diffusion under the sheaf Laplacian. Sheaf cohomology then characterizes irreducible error patterns that inference cannot remove. We analyze recurrent topologies where feedback loops create internal contradictions, introducing prediction errors unrelated to supervision. Using a Hodge decomposition, we determine when these contradictions cause learning to stall. The sheaf formalism provides both diagnostic tools for identifying problematic network configurations and design principles for effective weight initialization for recurrent PC networks.
comment: Accepted to NeurIPS 2025 Workshop on Symmetry and Geometry in Neural Representations
☆ Scalable Population Training for Zero-Shot Coordination
Zero-shot coordination(ZSC) has become a hot topic in reinforcement learning research recently. It focuses on the generalization ability of agents, requiring them to coordinate well with collaborators that are not seen before without any fine-tuning. Population-based training has been proven to provide good zero-shot coordination performance; nevertheless, existing methods are limited by computational resources, mainly focusing on optimizing diversity in small populations while neglecting the potential performance gains from scaling population size. To address this issue, this paper proposes the Scalable Population Training (ScaPT), an efficient training framework comprising two key components: a meta-agent that efficiently realizes a population by selectively sharing parameters across agents, and a mutual information regularizer that guarantees population diversity. To empirically validate the effectiveness of ScaPT, this paper evaluates it along with representational frameworks in Hanabi and confirms its superiority.
☆ Echoless Label-Based Pre-computation for Memory-Efficient Heterogeneous Graph Learning AAAI 2026
Heterogeneous Graph Neural Networks (HGNNs) are widely used for deep learning on heterogeneous graphs. Typical end-to-end HGNNs require repetitive message passing during training, limiting efficiency for large-scale real-world graphs. Pre-computation-based HGNNs address this by performing message passing only once during preprocessing, collecting neighbor information into regular-shaped tensors, which enables efficient mini-batch training. Label-based pre-computation methods collect neighbors' label information but suffer from training label leakage, where a node's own label information propagates back to itself during multi-hop message passing - the echo effect. Existing mitigation strategies are memory-inefficient on large graphs or suffer from compatibility issues with advanced message passing methods. We propose Echoless Label-based Pre-computation (Echoless-LP), which eliminates training label leakage with Partition-Focused Echoless Propagation (PFEP). PFEP partitions target nodes and performs echoless propagation, where nodes in each partition collect label information only from neighbors in other partitions, avoiding echo while remaining memory-efficient and compatible with any message passing method. We also introduce an Asymmetric Partitioning Scheme (APS) and a PostAdjust mechanism to address information loss from partitioning and distributional shifts across partitions. Experiments on public datasets demonstrate that Echoless-LP achieves superior performance and maintains memory efficiency compared to baselines.
comment: Accepted by AAAI 2026
☆ PINGS-X: Physics-Informed Normalized Gaussian Splatting with Axes Alignment for Efficient Super-Resolution of 4D Flow MRI AAAI 2026
4D flow magnetic resonance imaging (MRI) is a reliable, non-invasive approach for estimating blood flow velocities, vital for cardiovascular diagnostics. Unlike conventional MRI focused on anatomical structures, 4D flow MRI requires high spatiotemporal resolution for early detection of critical conditions such as stenosis or aneurysms. However, achieving such resolution typically results in prolonged scan times, creating a trade-off between acquisition speed and prediction accuracy. Recent studies have leveraged physics-informed neural networks (PINNs) for super-resolution of MRI data, but their practical applicability is limited as the prohibitively slow training process must be performed for each patient. To overcome this limitation, we propose PINGS-X, a novel framework modeling high-resolution flow velocities using axes-aligned spatiotemporal Gaussian representations. Inspired by the effectiveness of 3D Gaussian splatting (3DGS) in novel view synthesis, PINGS-X extends this concept through several non-trivial novel innovations: (i) normalized Gaussian splatting with a formal convergence guarantee, (ii) axes-aligned Gaussians that simplify training for high-dimensional data while preserving accuracy and the convergence guarantee, and (iii) a Gaussian merging procedure to prevent degenerate solutions and boost computational efficiency. Experimental results on computational fluid dynamics (CFD) and real 4D flow MRI datasets demonstrate that PINGS-X substantially reduces training time while achieving superior super-resolution accuracy. Our code and datasets are available at https://github.com/SpatialAILab/PINGS-X.
comment: Accepted at AAAI 2026. Supplementary material included after references. 27 pages, 21 figures, 11 tables
☆ Enhancing Graph Representations with Neighborhood-Contextualized Message-Passing
Graph neural networks (GNNs) have become an indispensable tool for analyzing relational data. In the literature, classical GNNs may be classified into three variants: convolutional, attentional, and message-passing. While the standard message-passing variant is highly expressive, its typical pair-wise messages nevertheless only consider the features of the center node and each neighboring node individually. This design fails to incorporate the rich contextual information contained within the broader local neighborhood, potentially hindering its ability to learn complex relationships within the entire set of neighboring nodes. To address this limitation, this work first formalizes the concept of neighborhood-contextualization, rooted in a key property of the attentional variant. This then serves as the foundation for generalizing the message-passing variant to the proposed neighborhood-contextualized message-passing (NCMP) framework. To demonstrate its utility, a simple, practical, and efficient method to parametrize and operationalize NCMP is presented, leading to the development of the proposed Soft-Isomorphic Neighborhood-Contextualized Graph Convolution Network (SINC-GCN). A preliminary analysis on a synthetic binary node classification problem then underscores both the expressivity and efficiency of the proposed GNN architecture. Overall, the paper lays the foundation for the novel NCMP framework as a practical path toward further enhancing the graph representational power of classical GNNs.
☆ Correcting Mean Bias in Text Embeddings: A Refined Renormalization with Training-Free Improvements on MMTEB
We find that current text embedding models produce outputs with a consistent bias, i.e., each embedding vector $e$ can be decomposed as $\tilde{e} + μ$, where $μ$ is almost identical across all sentences. We propose a plug-and-play, training-free and lightweight solution called Renormalization. Through extensive experiments, we show that renormalization consistently and statistically significantly improves the performance of existing models on the Massive Multilingual Text Embedding Benchmark (MMTEB). In particular, across 38 models, renormalization improves performance by 9.7 $σ$ on retrieval tasks, 3.1 $σ$ on classification tasks, and 0.8 $σ$ on other types of tasks. Renormalization has two variants: directly subtracting $μ$ from $e$, or subtracting the projection of $e$ onto $μ$. We theoretically predict that the latter performs better, and our experiments confirm this prediction.
☆ Automata-Based Steering of Large Language Models for Diverse Structured Generation
Large language models (LLMs) are increasingly tasked with generating structured outputs. While structured generation methods ensure validity, they often lack output diversity, a critical limitation that we confirm in our preliminary study. We propose a novel method to enhance diversity in automaton-based structured generation. Our approach utilizes automata traversal history to steer LLMs towards novel structural patterns. Evaluations show our method significantly improves structural and content diversity while maintaining comparable generation efficiency. Furthermore, we conduct a case study showcasing the effectiveness of our method in generating diverse test cases for testing open-source libraries.
comment: ICFEM 2025 (Best Paper Award)
☆ Unsupervised Robust Domain Adaptation: Paradigm, Theory and Algorithm
Unsupervised domain adaptation (UDA) aims to transfer knowledge from a label-rich source domain to an unlabeled target domain by addressing domain shifts. Most UDA approaches emphasize transfer ability, but often overlook robustness against adversarial attacks. Although vanilla adversarial training (VAT) improves the robustness of deep neural networks, it has little effect on UDA. This paper focuses on answering three key questions: 1) Why does VAT, known for its defensive effectiveness, fail in the UDA paradigm? 2) What is the generalization bound theory under attacks and how does it evolve from classical UDA theory? 3) How can we implement a robustification training procedure without complex modifications? Specifically, we explore and reveal the inherent entanglement challenge in general UDA+VAT paradigm, and propose an unsupervised robust domain adaptation (URDA) paradigm. We further derive the generalization bound theory of the URDA paradigm so that it can resist adversarial noise and domain shift. To the best of our knowledge, this is the first time to establish the URDA paradigm and theory. We further introduce a simple, novel yet effective URDA algorithm called Disentangled Adversarial Robustness Training (DART), a two-step training procedure that ensures both transferability and robustness. DART first pre-trains an arbitrary UDA model, and then applies an instantaneous robustification post-training step via disentangled distillation.Experiments on four benchmark datasets with/without attacks show that DART effectively enhances robustness while maintaining domain adaptability, and validate the URDA paradigm and theory.
comment: To appear in IJCV
☆ VisMem: Latent Vision Memory Unlocks Potential of Vision-Language Models
Despite the remarkable success of Vision-Language Models (VLMs), their performance on a range of complex visual tasks is often hindered by a "visual processing bottleneck": a propensity to lose grounding in visual evidence and exhibit a deficit in contextualized visual experience during prolonged generation. Drawing inspiration from human cognitive memory theory, which distinguishes short-term visually-dominant memory and long-term semantically-dominant memory, we propose VisMem, a cognitively-aligned framework that equips VLMs with dynamic latent vision memories, a short-term module for fine-grained perceptual retention and a long-term module for abstract semantic consolidation. These memories are seamlessly invoked during inference, allowing VLMs to maintain both perceptual fidelity and semantic consistency across thinking and generation. Extensive experiments across diverse visual benchmarks for understanding, reasoning, and generation reveal that VisMem delivers a significant average performance boost of 11.8% relative to the vanilla model and outperforms all counterparts, establishing a new paradigm for latent-space memory enhancement. The code will be available: https://github.com/YU-deep/VisMem.git.
♻ ☆ The Computational Advantage of Depth: Learning High-Dimensional Hierarchical Functions with Gradient Descent
Understanding the advantages of deep neural networks trained by gradient descent (GD) compared to shallow models remains an open theoretical challenge. In this paper, we introduce a class of target functions (single and multi-index Gaussian hierarchical targets) that incorporate a hierarchy of latent subspace dimensionalities. This framework enables us to analytically study the learning dynamics and generalization performance of deep networks compared to shallow ones in the high-dimensional limit. Specifically, our main theorem shows that feature learning with GD successively reduces the effective dimensionality, transforming a high-dimensional problem into a sequence of lower-dimensional ones. This enables learning the target function with drastically less samples than with shallow networks. While the results are proven in a controlled training setting, we also discuss more common training procedures and argue that they learn through the same mechanisms.
♻ ☆ Sensory-Motor Control with Large Language Models via Iterative Policy Refinement
We propose a method that enables large language models (LLMs) to control embodied agents through the generation of control policies that directly map continuous observation vectors to continuous action vectors. At the outset, the LLMs generate a control strategy based on a textual description of the agent, its environment, and the intended goal. This strategy is then iteratively refined through a learning process in which the LLMs are repeatedly prompted to improve the current strategy, using performance feedback and sensory-motor data collected during its evaluation. The method is validated on classic control tasks from the Gymnasium library and the inverted pendulum task from the MuJoCo library. The approach proves effective with relatively compact models such as GPT-oss:120b and Qwen2.5:72b. In most cases, it successfully identifies optimal or near-optimal solutions by integrating symbolic knowledge derived through reasoning with sub-symbolic sensory-motor data gathered as the agent interacts with its environment.
comment: Article updated with results from gpt-oss:120b and gpt-oss:20b. 27 pages (13 pages are from appendix), 8 figures, 2 tables, code for experiments replication and supplementary material provided at https://github.com/jtyska/llm-robotics-article/
♻ ☆ Sequentially Auditing Differential Privacy NeurIPS 2025
We propose a practical sequential test for auditing differential privacy guarantees of black-box mechanisms. The test processes streams of mechanisms' outputs providing anytime-valid inference while controlling Type I error, overcoming the fixed sample size limitation of previous batch auditing methods. Experiments show this test detects violations with sample sizes that are orders of magnitude smaller than existing methods, reducing this number from 50K to a few hundred examples, across diverse realistic mechanisms. Notably, it identifies DP-SGD privacy violations in \textit{under} one training run, unlike prior methods needing full model training.
comment: Accepted in NeurIPS 2025
♻ ☆ Mirror Descent Algorithms with Nearly Dimension-Independent Rates for Differentially-Private Stochastic Saddle-Point Problems COLT 2024
We study the problem of differentially-private (DP) stochastic (convex-concave) saddle-points in the $\ell_1$ setting. We propose $(\varepsilon, δ)$-DP algorithms based on stochastic mirror descent that attain nearly dimension-independent convergence rates for the expected duality gap, a type of guarantee that was known before only for bilinear objectives. For convex-concave and first-order-smooth stochastic objectives, our algorithms attain a rate of $\sqrt{\log(d)/n} + (\log(d)^{3/2}/[n\varepsilon])^{1/3}$, where $d$ is the dimension of the problem and $n$ the dataset size. Under an additional second-order-smoothness assumption, we show that the duality gap is bounded by $\sqrt{\log(d)/n} + \log(d)/\sqrt{n\varepsilon}$ with high probability, by using bias-reduced gradient estimators. This rate provides evidence of the near-optimality of our approach, since a lower bound of $\sqrt{\log(d)/n} + \log(d)^{3/4}/\sqrt{n\varepsilon}$ exists. Finally, we show that combining our methods with acceleration techniques from online learning leads to the first algorithm for DP Stochastic Convex Optimization in the $\ell_1$ setting that is not based on Frank-Wolfe methods. For convex and first-order-smooth stochastic objectives, our algorithms attain an excess risk of $\sqrt{\log(d)/n} + \log(d)^{7/10}/[n\varepsilon]^{2/5}$, and when additionally assuming second-order-smoothness, we improve the rate to $\sqrt{\log(d)/n} + \log(d)/\sqrt{n\varepsilon}$. Instrumental to all of these results are various extensions of the classical Maurey Sparsification Lemma \cite{Pisier:1980}, which may be of independent interest.
comment: Accepted for publication in SIAM Journal on Optimization, October 3, 2025. An extended abstract on this work appeared earlier in COLT 2024
♻ ☆ DiAReL: Reinforcement Learning with Disturbance Awareness for Robust Sim2Real Policy Transfer in Robot Control
Delayed Markov decision processes (DMDPs) fulfill the Markov property by augmenting the state space of agents with a finite time window of recently committed actions. In reliance on these state augmentations, delay-resolved reinforcement learning algorithms train policies to learn optimal interactions with environments featuring observation or action delays. Although such methods can be directly trained on the real robots, due to sample inefficiency, limited resources, or safety constraints, a common approach is to transfer models trained in simulation to the physical robot. However, robotic simulations rely on approximated models of the physical systems, which hinders the sim2real transfer. In this work, we consider various uncertainties in modeling the robot or environment dynamics as unknown intrinsic disturbances applied to the system input. We introduce the disturbance-augmented Markov decision process (DAMDP) in delayed settings as a novel representation to incorporate disturbance estimation in training on-policy reinforcement learning algorithms. The proposed method is validated across several metrics on learning robotic reaching and pushing tasks and compared with disturbance-unaware baselines. The results show that the disturbance-augmented models can achieve higher stabilization and robustness in the control response, which in turn improves the prospects of successful sim2real transfer.
comment: Accepted for publication in IEEE Transactions on Control Systems Technology (TCST)
♻ ☆ Interpolation Conditions for Data Consistency and Prediction in Noisy Linear Systems
We develop an interpolation-based framework for noisy linear systems with unknown system matrix with bounded norm (implying bounded growth or non-increasing energy), and bounded process noise energy. The proposed approach characterizes all trajectories consistent with the measured data and these prior bounds in a purely data-driven manner. This characterization enables data-consistency verification, inference, and one-step ahead prediction, which can be leveraged for safety verification and cost minimization. Ultimately, this work represents a preliminary step toward exploiting interpolation conditions in data-driven control, offering a systematic way to characterize trajectories consistent with a dynamical system within a given class and enabling their use in control design.
comment: 8 pages, 3 figures
♻ ☆ On the Necessity of Output Distribution Reweighting for Effective Class Unlearning
In this paper, we reveal a significant shortcoming in class unlearning evaluations: overlooking the underlying class geometry can cause privacy leakage. We further propose a simple yet effective solution to mitigate this issue. We introduce a membership-inference attack via nearest neighbors (MIA-NN) that uses the probabilities the model assigns to neighboring classes to detect unlearned samples. Our experiments show that existing unlearning methods are vulnerable to MIA-NN across multiple datasets. We then propose a new fine-tuning objective that mitigates this privacy leakage by approximating, for forget-class inputs, the distribution over the remaining classes that a retrained-from-scratch model would produce. To construct this approximation, we estimate inter-class similarity and tilt the target model's distribution accordingly. The resulting Tilted ReWeighting (TRW) distribution serves as the desired distribution during fine-tuning. We also show that across multiple benchmarks, TRW matches or surpasses existing unlearning methods on prior unlearning metrics. More specifically, on CIFAR-10, it reduces the gap with retrained models by 19% and 46% for U-LiRA and MIA-NN scores, accordingly, compared to the SOTA method for each category.
♻ ☆ AMUN: Adversarial Machine UNlearning
Machine unlearning, where users can request the deletion of a forget dataset, is becoming increasingly important because of numerous privacy regulations. Initial works on ``exact'' unlearning (e.g., retraining) incur large computational overheads. However, while computationally inexpensive, ``approximate'' methods have fallen short of reaching the effectiveness of exact unlearning: models produced fail to obtain comparable accuracy and prediction confidence on both the forget and test (i.e., unseen) dataset. Exploiting this observation, we propose a new unlearning method, Adversarial Machine UNlearning (AMUN), that outperforms prior state-of-the-art (SOTA) methods for image classification. AMUN lowers the confidence of the model on the forget samples by fine-tuning the model on their corresponding adversarial examples. Adversarial examples naturally belong to the distribution imposed by the model on the input space; fine-tuning the model on the adversarial examples closest to the corresponding forget samples (a) localizes the changes to the decision boundary of the model around each forget sample and (b) avoids drastic changes to the global behavior of the model, thereby preserving the model's accuracy on test samples. Using AMUN for unlearning a random $10\%$ of CIFAR-10 samples, we observe that even SOTA membership inference attacks cannot do better than random guessing.
♻ ☆ Dynamic Sparsity: Challenging Common Sparsity Assumptions for Learning World Models in Robotic Reinforcement Learning Benchmarks
The use of learned dynamics models, also known as world models, can improve the sample efficiency of reinforcement learning. Recent work suggests that the underlying causal graphs of such dynamics models are sparsely connected, with each of the future state variables depending only on a small subset of the current state variables, and that learning may therefore benefit from sparsity priors. Similarly, temporal sparsity, i.e. sparsely and abruptly changing local dynamics, has also been proposed as a useful inductive bias. In this work, we critically examine these assumptions by analyzing ground-truth dynamics from a set of robotic reinforcement learning environments in the MuJoCo Playground benchmark suite, aiming to determine whether the proposed notions of state and temporal sparsity actually tend to hold in typical reinforcement learning tasks. We study (i) whether the causal graphs of environment dynamics are sparse, (ii) whether such sparsity is state-dependent, and (iii) whether local system dynamics change sparsely. Our results indicate that global sparsity is rare, but instead the tasks show local, state-dependent sparsity in their dynamics and this sparsity exhibits distinct structures, appearing in temporally localized clusters (e.g., during contact events) and affecting specific subsets of state dimensions. These findings challenge common sparsity prior assumptions in dynamics learning, emphasizing the need for grounded inductive biases that reflect the state-dependent sparsity structure of real-world dynamics.
♻ ☆ FNOPE: Simulation-based inference on function spaces with Fourier Neural Operators
Simulation-based inference (SBI) is an established approach for performing Bayesian inference on scientific simulators. SBI so far works best on low-dimensional parametric models. However, it is difficult to infer function-valued parameters, which frequently occur in disciplines that model spatiotemporal processes such as the climate and earth sciences. Here, we introduce an approach for efficient posterior estimation, using a Fourier Neural Operator (FNO) architecture with a flow matching objective. We show that our approach, FNOPE, can perform inference of function-valued parameters at a fraction of the simulation budget of state of the art methods. In addition, FNOPE supports posterior evaluation at arbitrary discretizations of the domain, as well as simultaneous estimation of vector-valued parameters. We demonstrate the effectiveness of our approach on several benchmark tasks and a challenging spatial inference task from glaciology. FNOPE extends the applicability of SBI methods to new scientific domains by enabling the inference of function-valued parameters.
♻ ☆ Self-Supervised Learning of Iterative Solvers for Constrained Optimization
The real-time solution of parametric optimization problems is critical for applications that demand high accuracy under tight real-time constraints, such as model predictive control. To this end, this work presents a learning-based iterative solver for constrained optimization, comprising a neural network predictor that generates initial primal-dual solution estimates, followed by a learned iterative solver that refines these estimates to reach high accuracy. We introduce a novel loss function based on Karush-Kuhn-Tucker (KKT) optimality conditions, enabling fully self-supervised training without pre-sampled optimizer solutions. Theoretical guarantees ensure that the training loss function attains minima exclusively at KKT points. A convexification procedure enables application to nonconvex problems while preserving these guarantees. Experiments on two nonconvex case studies demonstrate speedups of up to one order of magnitude compared to state-of-the-art solvers such as IPOPT, while achieving orders of magnitude higher accuracy than competing learning-based approaches.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Active Learning and Explainable AI for Multi-Objective Optimization of Spin Coated Polymers AAAI
Spin coating polymer thin films to achieve specific mechanical properties is inherently a multi-objective optimization problem. We present a framework that integrates an active Pareto front learning algorithm (PyePAL) with visualization and explainable AI techniques to optimize processing parameters. PyePAL uses Gaussian process models to predict objective values (hardness and elasticity) from the design variables (spin speed, dilution, and polymer mixture), guiding the adaptive selection of samples toward promising regions of the design space. To enable interpretable insights into the high-dimensional design space, we utilize UMAP (Uniform Manifold Approximation and Projection) for two-dimensional visualization of the Pareto front exploration. Additionally, we incorporate fuzzy linguistic summaries, which translate the learned relationships between process parameters and performance objectives into linguistic statements, thus enhancing the explainability and understanding of the optimization results. Experimental results demonstrate that our method efficiently identifies promising polymer designs, while the visual and linguistic explanations facilitate expert-driven analysis and knowledge discovery.
comment: 8 pages, 7 figures, Presented at 2025 AAAI Spring Symposium Series
♻ ☆ Gaussian Process Tilted Nonparametric Density Estimation using Fisher Divergence Score Matching
We propose a nonparametric density estimator based on the Gaussian process (GP) and derive three novel closed form learning algorithms based on Fisher divergence (FD) score matching. The density estimator is formed by multiplying a base multivariate normal distribution with an exponentiated GP refinement, and so we refer to it as a GP-tilted nonparametric density. By representing the GP part of the score as a linear function using the random Fourier feature (RFF) approximation, we show that optimization can be solved in closed form for the three FD-based objectives considered. This includes the basic and noise conditional versions of the Fisher divergence, as well as an alternative to noise conditional FD models based on variational inference (VI) that we propose in this paper. For this novel learning approach, we propose an ELBO-like optimization to approximate the posterior distribution, with which we then derive a Fisher variational predictive distribution. The RFF representation of the GP, which is functionally equivalent to a single layer neural network score model with cosine activation, provides a useful linear representation of the GP for which all expectations can be solved. The Gaussian base distribution also helps with tractability of the VI approximation and ensures that our proposed density is well-defined. We demonstrate our three learning algorithms, as well as a MAP baseline algorithm, on several low dimensional density estimation problems. The closed form nature of the learning problem removes the reliance on iterative learning algorithms, making this technique particularly well-suited to big data sets, since only sufficient statistics collected from a single pass through the data is needed.
♻ ☆ Stochastic Variational Inference with Tuneable Stochastic Annealing
We exploit the observation that stochastic variational inference (SVI) is a form of annealing and present a modified SVI approach -- applicable to both large and small datasets -- that allows the amount of annealing done by SVI to be tuned. We are motivated by the fact that, in SVI, the larger the batch size the more approximately Gaussian is the noise of the gradient, but the smaller its variance, which reduces the amount of annealing done to escape bad local optimal solutions. We propose a simple method for achieving both goals of having larger variance noise to escape bad local optimal solutions and more data information to obtain more accurate gradient directions. The idea is to set an actual batch size, which may be the size of the data set, and an effective batch size that matches the increased variance of a smaller batch size. The result is an approximation to the maximum entropy stochastic gradient at a desired variance level. We theoretically motivate our ``SVI+'' approach for conjugate exponential family model framework and illustrate its empirical performance for learning the probabilistic matrix factorization collaborative filter (PMF), the Latent Dirichlet Allocation topic model (LDA), and the Gaussian mixture model (GMM).
♻ ☆ NervePool: A Simplicial Pooling Layer
For deep learning problems on graph-structured data, pooling layers are important for down sampling, reducing computational cost, and to minimize overfitting. We define a pooling layer, nervePool, for data structured as simplicial complexes, which are generalizations of graphs that include higher-dimensional simplices beyond vertices and edges; this structure allows for greater flexibility in modeling higher-order relationships. The proposed simplicial coarsening scheme is built upon partitions of vertices, which allow us to generate hierarchical representations of simplicial complexes, collapsing information in a learned fashion. NervePool builds on the learned vertex cluster assignments and extends to coarsening of higher dimensional simplices in a deterministic fashion. While in practice the pooling operations are computed via a series of matrix operations, the topological motivation is a set-theoretic construction based on unions of stars of simplices and the nerve complex.
comment: 22 pages, 9 figures
♻ ☆ BubbleOKAN: A Physics-Informed Interpretable Neural Operator for High-Frequency Bubble Dynamics
In this work, we employ physics-informed neural operators to map pressure profiles from an input function space to the corresponding bubble radius responses. Our approach employs a two-step DeepONet architecture. To address the intrinsic spectral bias of deep learning models, our model incorporates the Rowdy adaptive activation function, enhancing the representation of high-frequency features. Moreover, we introduce the Kolmogorov-Arnold network (KAN) based two-step DeepOKAN model, which enhances interpretability (often lacking in conventional multilayer perceptron architectures) while efficiently capturing high-frequency bubble dynamics without explicit utilization of activation functions in any form. We particularly investigate the use of spline basis functions in combination with radial basis functions (RBF) within our architecture, as they demonstrate superior performance in constructing a universal basis for approximating high-frequency bubble dynamics compared to alternative formulations. Furthermore, we emphasize on the performance bottleneck of RBF while learning the high frequency bubble dynamics and showcase the advantage of using spline basis function for the trunk network in overcoming this inherent spectral bias. The model is systematically evaluated across three representative scenarios: (1) bubble dynamics governed by the Rayleigh-Plesset equation with a single initial radius, (2) bubble dynamics governed by the Keller-Miksis equation with a single initial radius, and (3) Keller-Miksis dynamics with multiple initial radii. We also compare our results with state-of-the-art neural operators, including Fourier Neural Operators, Wavelet Neural Operators, OFormer, and Convolutional Neural Operators. Our findings demonstrate that the two-step DeepOKAN accurately captures both low- and high-frequency behaviors, and offers a promising alternative to conventional numerical solvers.
comment: 36 pages, 21 figures
♻ ☆ $\textit{New News}$: System-2 Fine-tuning for Robust Integration of New Knowledge
Humans and intelligent animals can internalize new information and accurately internalize their implications to perform downstream tasks. While large language models (LLMs) can achieve this through in-context learning (ICL) when the information (news) is explicitly given as context, adequately integrating the information into model weights via fine-tuning remains challenging. In this paper, we introduce New News, a dataset composed of hypothetical yet plausible news spanning multiple domains (mathematics, coding, discoveries, leaderboards, events), accompanied by downstream evaluation questions whose correct answers critically depend on understanding and internalizing the news. First, we demonstrate a substantial gap between naive fine-tuning and in-context learning (FT-ICL gap) on our dataset. To address this gap, we explore a suite of self-play data generation protocols -- paraphrases, implications, and Self-QA -- designed to distill the knowledge processed by the model with context into the weights of the model, which we term System-2 Fine-tuning (Sys2-FT). We systematically evaluate ICL and Sys2-FT performance across data domains and model scales with the Qwen 2.5 family of models. Our results demonstrate that the Self-QA protocol of Sys2-FT significantly improves models' in-weight learning of the news while preserving general capabilities. Furthermore, we discover the contextual shadowing effect, where training with the news in context followed by its rephrases or QAs catastrophically degrades learning of the news. Finally, we show preliminary evidence of an emerging scaling law of Sys2-FT.
♻ ☆ Nonlinear Laplacians: Tunable principal component analysis under directional prior information NeurIPS 2025
We introduce a new family of algorithms for detecting and estimating a rank-one signal from a noisy observation under prior information about that signal's direction, focusing on examples where the signal is known to have entries biased to be positive. Given a matrix observation $\mathbf{Y}$, our algorithms construct a nonlinear Laplacian, another matrix of the form $\mathbf{Y}+\mathrm{diag}(σ(\mathbf{Y1}))$ for a nonlinear $σ:\mathbb{R}\to\mathbb{R}$, and examine the top eigenvalue and eigenvector of this matrix. When $\mathbf{Y}$ is the (suitably normalized) adjacency matrix of a graph, our approach gives a class of algorithms that search for unusually dense subgraphs by computing a spectrum of the graph "deformed" by the degree profile $\mathbf{Y1}$. We study the performance of such algorithms compared to direct spectral algorithms (the case $σ=0$) on models of sparse principal component analysis with biased signals, including the Gaussian planted submatrix problem. For such models, we rigorously characterize the strength of rank-one signal, as a function of $σ$, required for an outlier eigenvalue to appear in the spectrum of a nonlinear Laplacian matrix. While identifying the $σ$ that minimizes the required signal strength in closed form seems intractable, we explore three approaches to design $σ$ numerically: exhaustively searching over simple classes of $σ$, learning $σ$ from datasets of problem instances, and tuning $σ$ using black-box optimization of the critical signal strength. We find both theoretically and empirically that, if $σ$ is chosen appropriately, then nonlinear Laplacian spectral algorithms substantially outperform direct spectral algorithms, while retaining the conceptual simplicity of spectral methods compared to broader classes of computations like approximate message passing or general first order methods.
comment: 54 pages, 6 figures, closest to version to be published in NeurIPS 2025
♻ ☆ Pretrained Joint Predictions for Scalable Batch Bayesian Optimization of Molecular Designs
Batched synthesis and testing of molecular designs is the key bottleneck of drug development. There has been great interest in leveraging biomolecular foundation models as surrogates to accelerate this process. In this work, we show how to obtain scalable probabilistic surrogates of binding affinity for use in Batch Bayesian Optimization (Batch BO). This demands parallel acquisition functions that hedge between designs and the ability to rapidly sample from a joint predictive density to approximate them. Through the framework of Epistemic Neural Networks (ENNs), we obtain scalable joint predictive distributions of binding affinity on top of representations taken from large structure-informed models. Key to this work is an investigation into the importance of prior networks in ENNs and how to pretrain them on synthetic data to improve downstream performance in Batch BO. Their utility is demonstrated by rediscovering known potent EGFR inhibitors on a semi-synthetic benchmark in up to 5x fewer iterations, as well as potent inhibitors from a real-world small-molecule library in up to 10x fewer iterations, offering a promising solution for large-scale drug discovery applications.
♻ ☆ Comprehension Without Competence: Architectural Limits of LLMs in Symbolic Computation and Reasoning
Large Language Models (LLMs) display striking surface fluency yet systematically fail at tasks requiring symbolic reasoning, arithmetic accuracy, and logical consistency. This paper offers a structural diagnosis of such failures, revealing a persistent gap between \textit{comprehension} and \textit{competence}. Through controlled experiments and architectural analysis, we demonstrate that LLMs often articulate correct principles without reliably applying them--a failure rooted not in knowledge access, but in computational execution. We term this phenomenon the computational \textit{split-brain syndrome}, where instruction and action pathways are geometrically and functionally dissociated. This core limitation recurs across domains, from mathematical operations to relational inferences, and explains why model behavior remains brittle even under idealized prompting. We argue that LLMs function as powerful pattern completion engines, but lack the architectural scaffolding for principled, compositional reasoning. Our findings delineate the boundary of current LLM capabilities and motivate future models with metacognitive control, principle lifting, and structurally grounded execution. This diagnosis also clarifies why mechanistic interpretability findings may reflect training-specific pattern coordination rather than universal computational principles, and why the geometric separation between instruction and execution pathways suggests limitations in neural introspection and mechanistic analysis.
comment: v2: Two TMLR revision rounds addressing reviewer feedback. Added real-world validation (3.4), interpretability analysis (7), computational hallucination framework, strengthened theory. v3: Sec 3.2 - added transformer architecture diagram, clarified UAT capacity vs computational limits, improved role specialization theorem presentation
♻ ☆ A Global Geometric Analysis of Maximal Coding Rate Reduction ICML 2024
The maximal coding rate reduction (MCR$^2$) objective for learning structured and compact deep representations is drawing increasing attention, especially after its recent usage in the derivation of fully explainable and highly effective deep network architectures. However, it lacks a complete theoretical justification: only the properties of its global optima are known, and its global landscape has not been studied. In this work, we give a complete characterization of the properties of all its local and global optima, as well as other types of critical points. Specifically, we show that each (local or global) maximizer of the MCR$^2$ problem corresponds to a low-dimensional, discriminative, and diverse representation, and furthermore, each critical point of the objective is either a local maximizer or a strict saddle point. Such a favorable landscape makes MCR$^2$ a natural choice of objective for learning diverse and discriminative representations via first-order optimization methods. To validate our theoretical findings, we conduct extensive experiments on both synthetic and real data sets.
comment: This work has been accepted for publication in the Proceedings of the 41st International Conference on Machine Learning (ICML 2024)
♻ ☆ Latent Principle Discovery for Language Model Self-Improvement NeurIPS 2025
When language model (LM) users aim to improve the quality of its generations, it is crucial to specify concrete behavioral attributes that the model should strive to reflect. However, curating such principles across many domains, even non-exhaustively, requires a labor-intensive annotation process. To automate this process, we propose eliciting these latent attributes that guide model reasoning toward human-preferred responses by explicitly modeling them in a self-correction setting. Our approach mines new principles from the LM itself and compresses the discovered elements to an interpretable set via clustering. Specifically, we employ a form of posterior-regularized Monte Carlo Expectation-Maximization to both identify a condensed set of the most effective latent principles and teach the LM to strategically invoke them in order to intrinsically refine its responses. We demonstrate that bootstrapping our algorithm over multiple iterations enables smaller language models (7-8B parameters) to self-improve, achieving +8-10% in AlpacaEval win-rate, an average of +0.3 on MT-Bench, and +19-23% in principle-following win-rate on IFEval. We also show that clustering the principles yields interpretable and diverse model-generated constitutions while retaining model performance. The gains that our method achieves highlight the potential of automated, principle-driven post-training recipes toward continual self-improvement.
comment: Accepted at NeurIPS 2025
♻ ☆ Leveraging NTPs for Efficient Hallucination Detection in VLMs AACL
Hallucinations of vision-language models (VLMs), which are misalignments between visual content and generated text, undermine the reliability of VLMs. One common approach for detecting them employs the same VLM, or a different one, to assess generated outputs. This process is computationally intensive and increases model latency. In this paper, we explore an efficient on-the-fly method for hallucination detection by training traditional ML models over signals based on the VLM's next-token probabilities (NTPs). NTPs provide a direct quantification of model uncertainty. We hypothesize that high uncertainty (i.e., a low NTP value) is strongly associated with hallucinations. To test this, we introduce a dataset of 1,400 human-annotated statements derived from VLM-generated content, each labeled as hallucinated or not, and use it to test our NTP-based lightweight method. Our results demonstrate that NTP-based features are valuable predictors of hallucinations, enabling fast and simple ML models to achieve performance comparable to that of strong VLMs. Furthermore, augmenting these NTPs with linguistic NTPs, computed by feeding only the generated text back into the VLM, enhances hallucination detection performance. Finally, integrating hallucination prediction scores from VLMs into the NTP-based models led to better performance than using either VLMs or NTPs alone. We hope this study paves the way for simple, lightweight solutions that enhance the reliability of VLMs.
comment: Accepted to The First Workshop on Confabulation, Hallucinations, & Overgeneration in Multilingual & Precision-critical Setting - AACL-IJCNLP2025
♻ ☆ Quantifying the Limits of Segmentation Foundation Models: Modeling Challenges in Segmenting Tree-Like and Low-Contrast Objects WACV 2026
Image segmentation foundation models (SFMs) like Segment Anything Model (SAM) have achieved impressive zero-shot and interactive segmentation across diverse domains. However, they struggle to segment objects with certain structures, particularly those with dense, tree-like morphology and low textural contrast from their surroundings. These failure modes are crucial for understanding the limitations of SFMs in real-world applications. To systematically study this issue, we introduce interpretable metrics quantifying object tree-likeness and textural separability. On carefully controlled synthetic experiments and real-world datasets, we show that SFM performance (\eg, SAM, SAM 2, HQ-SAM) noticeably correlates with these factors. We attribute these failures to SFMs misinterpreting local structure as global texture, resulting in over-segmentation or difficulty distinguishing objects from similar backgrounds. Notably, targeted fine-tuning fails to resolve this issue, indicating a fundamental limitation. Our study provides the first quantitative framework for modeling the behavior of SFMs on challenging structures, offering interpretable insights into their segmentation capabilities.
comment: Accepted at WACV 2026. Code: https://github.com/mazurowski-lab/SAMFailureMetrics
♻ ☆ DRMD: Deep Reinforcement Learning for Malware Detection under Concept Drift AAAI
Malware detection in real-world settings must deal with evolving threats, limited labeling budgets, and uncertain predictions. Traditional classifiers, without additional mechanisms, struggle to maintain performance under concept drift in malware domains, as their supervised learning formulation cannot optimize when to defer decisions to manual labeling and adaptation. Modern malware detection pipelines combine classifiers with monthly active learning (AL) and rejection mechanisms to mitigate the impact of concept drift. In this work, we develop a novel formulation of malware detection as a one-step Markov Decision Process and train a deep reinforcement learning (DRL) agent, simultaneously optimizing sample classification performance and rejecting high-risk samples for manual labeling. We evaluated the joint detection and drift mitigation policy learned by the DRL-based Malware Detection (DRMD) agent through time-aware evaluations on Android malware datasets subject to realistic drift requiring multi-year performance stability. The policies learned under these conditions achieve a higher Area Under Time (AUT) performance compared to standard classification approaches used in the domain, showing improved resilience to concept drift. Specifically, the DRMD agent achieved an average AUT improvement of 8.66 and 10.90 for the classification-only and classification-rejection policies, respectively. Our results demonstrate for the first time that DRL can facilitate effective malware detection and improved resiliency to concept drift in the dynamic setting of Android malware detection.
comment: The Fortieth AAAI Conference on Artificial Intelligence (AAAI-26)
♻ ☆ CAMA: Enhancing Mathematical Reasoning in Large Language Models with Causal Knowledge
Large Language Models (LLMs) have demonstrated strong performance across a wide range of tasks, yet they still struggle with complex mathematical reasoning, a challenge fundamentally rooted in deep structural dependencies. To address this challenge, we propose \textbf{CA}usal \textbf{MA}thematician (\textbf{CAMA}), a two-stage causal framework that equips LLMs with explicit, reusable mathematical structure. In the learning stage, CAMA first constructs the \textbf{M}athematical \textbf{C}ausal \textbf{G}raph (\textbf{MCG}), a high-level representation of solution strategies, by combining LLM priors with causal discovery algorithms applied to a corpus of question-solution pairs. The resulting MCG encodes essential knowledge points and their causal dependencies. To better align the graph with downstream reasoning tasks, CAMA further refines the MCG through iterative feedback derived from a selected subset of the question-solution pairs. In the reasoning stage, given a new question, CAMA dynamically extracts a task-relevant subgraph from the MCG, conditioned on both the question content and the LLM's intermediate reasoning trace. This subgraph, which encodes the most pertinent knowledge points and their causal dependencies, is then injected back into the LLM to guide its reasoning process. Empirical results on real-world datasets show that CAMA significantly improves LLM performance on challenging mathematical problems. Furthermore, our experiments demonstrate that structured guidance consistently outperforms unstructured alternatives, and that incorporating asymmetric causal relationships yields greater improvements than using symmetric associations alone.
♻ ☆ Preserving Task-Relevant Information Under Linear Concept Removal NeurIPS 2025
Modern neural networks often encode unwanted concepts alongside task-relevant information, leading to fairness and interpretability concerns. Existing post-hoc approaches can remove undesired concepts but often degrade useful signals. We introduce SPLINCE-Simultaneous Projection for LINear concept removal and Covariance prEservation - which eliminates sensitive concepts from representations while exactly preserving their covariance with a target label. SPLINCE achieves this via an oblique projection that 'splices out' the unwanted direction yet protects important label correlations. Theoretically, it is the unique solution that removes linear concept predictability and maintains target covariance with minimal embedding distortion. Empirically, SPLINCE outperforms baselines on benchmarks such as Bias in Bios and Winobias, removing protected attributes while minimally damaging main-task information.
comment: Published at NeurIPS 2025
♻ ☆ Training speedups via batching for geometric learning: an analysis of static and dynamic algorithms
Graph neural networks (GNN) have shown promising results for several domains such as materials science, chemistry, and the social sciences. GNN models often contain millions of parameters, and like other neural network (NN) models, are often fed only a fraction of the graphs that make up the training dataset in batches to update model parameters. The effect of batching algorithms on training time and model performance has been thoroughly explored for NNs but not yet for GNNs. We analyze two different batching algorithms for graph based models, namely static and dynamic batching for two datasets, the QM9 dataset of small molecules and the AFLOW materials database. Our experiments show that changing the batching algorithm can provide up to a 2.7x speedup, but the fastest algorithm depends on the data, model, batch size, hardware, and number of training steps run. Experiments show that for a select number of combinations of batch size, dataset, and model, significant differences in model learning metrics are observed between static and dynamic batching algorithms.
♻ ☆ Optimizing importance weighting in the presence of sub-population shifts ICLR 2025
A distribution shift between the training and test data can severely harm performance of machine learning models. Importance weighting addresses this issue by assigning different weights to data points during training. We argue that existing heuristics for determining the weights are suboptimal, as they neglect the increase of the variance of the estimated model due to the finite sample size of the training data. We interpret the optimal weights in terms of a bias-variance trade-off, and propose a bi-level optimization procedure in which the weights and model parameters are optimized simultaneously. We apply this optimization to existing importance weighting techniques for last-layer retraining of deep neural networks in the presence of sub-population shifts and show empirically that optimizing weights significantly improves generalization performance.
comment: Published at ICLR 2025
♻ ☆ FedALT: Federated Fine-Tuning through Adaptive Local Training with Rest-of-World LoRA AAAI 2026
Fine-tuning large language models (LLMs) in federated settings enables privacy-preserving adaptation but suffers from cross-client interference due to model aggregation. Existing federated LoRA fine-tuning methods, primarily based on FedAvg, struggle with data heterogeneity, leading to harmful cross-client interference and suboptimal personalization. In this work, we propose \textbf{FedALT}, a novel personalized federated LoRA fine-tuning algorithm that fundamentally departs from FedAvg. Instead of using an aggregated model to initialize local training, each client continues training its individual LoRA while incorporating shared knowledge through a separate Rest-of-World (RoW) LoRA component. To effectively balance local adaptation and global information, FedALT introduces an adaptive mixer that dynamically learns input-specific weightings between the individual and RoW LoRA components, drawing conceptual foundations from the Mixture-of-Experts (MoE) paradigm. Through extensive experiments on NLP benchmarks, we demonstrate that FedALT significantly outperforms state-of-the-art personalized federated LoRA fine-tuning methods, achieving superior local adaptation without sacrificing computational efficiency.
comment: Accepted by AAAI 2026
♻ ☆ CSGaze: Context-aware Social Gaze Prediction
A person's gaze offers valuable insights into their focus of attention, level of social engagement, and confidence. In this work, we investigate how contextual cues combined with visual scene and facial information can be effectively utilized to predict and interpret social gaze patterns during conversational interactions. We introduce CSGaze, a context aware multimodal approach that leverages facial, scene information as complementary inputs to enhance social gaze pattern prediction from multi-person images. The model also incorporates a fine-grained attention mechanism centered on the principal speaker, which helps in better modeling social gaze dynamics. Experimental results show that CSGaze performs competitively with state-of-the-art methods on GP-Static, UCO-LAEO and AVA-LAEO. Our findings highlight the role of contextual cues in improving social gaze prediction. Additionally, we provide initial explainability through generated attention scores, offering insights into the model's decision-making process. We also demonstrate our model's generalizability by testing our model on open set datasets that demonstrating its robustness across diverse scenarios.
♻ ☆ Partial Information Decomposition for Data Interpretability and Feature Selection
In this paper, we introduce Partial Information Decomposition of Features (PIDF), a new paradigm for simultaneous data interpretability and feature selection. Contrary to traditional methods that assign a single importance value, our approach is based on three metrics per feature: the mutual information shared with the target variable, the feature's contribution to synergistic information, and the amount of this information that is redundant. In particular, we develop a novel procedure based on these three metrics, which reveals not only how features are correlated with the target but also the additional and overlapping information provided by considering them in combination with other features. We extensively evaluate PIDF using both synthetic and real-world data, demonstrating its potential applications and effectiveness, by considering case studies from genetics and neuroscience.
♻ ☆ Optimization-Induced Dynamics of Lipschitz Continuity in Neural Networks
Lipschitz continuity characterizes the worst-case sensitivity of neural networks to small input perturbations; yet its dynamics (i.e. temporal evolution) during training remains under-explored. We present a rigorous mathematical framework to model the temporal evolution of Lipschitz continuity during training with stochastic gradient descent (SGD). This framework leverages a system of stochastic differential equations (SDEs) to capture both deterministic and stochastic forces. Our theoretical analysis identifies three principal factors driving the evolution: (i) the projection of gradient flows, induced by the optimization dynamics, onto the operator-norm Jacobian of parameter matrices; (ii) the projection of gradient noise, arising from the randomness in mini-batch sampling, onto the operator-norm Jacobian; and (iii) the projection of the gradient noise onto the operator-norm Hessian of parameter matrices. Furthermore, our theoretical framework sheds light on such as how noisy supervision, parameter initialization, batch size, and mini-batch sampling trajectories, among other factors, shape the evolution of the Lipschitz continuity of neural networks. Our experimental results demonstrate strong agreement between the theoretical implications and the observed behaviors.
♻ ☆ Advanced Long-term Earth System Forecasting
Reliable long-term forecasting of Earth system dynamics is fundamentally limited by instabilities in current artificial intelligence (AI) models during extended autoregressive simulations. These failures often originate from inherent spectral bias, leading to inadequate representation of critical high-frequency, small-scale processes and subsequent uncontrolled error amplification. Inspired by the nested grids in numerical models used to resolve small scales, we present TritonCast. At the core of its design is a dedicated latent dynamical core, which ensures the long-term stability of the macro-evolution at a coarse scale. An outer structure then fuses this stable trend with fine-grained local details. This design effectively mitigates the spectral bias caused by cross-scale interactions. In atmospheric science, it achieves state-of-the-art accuracy on the WeatherBench 2 benchmark while demonstrating exceptional long-term stability: executing year-long autoregressive global forecasts and completing multi-year climate simulations that span the entire available $2500$-day test period without drift. In oceanography, it extends skillful eddy forecast to $120$ days and exhibits unprecedented zero-shot cross-resolution generalization. Ablation studies reveal that this performance stems from the synergistic interplay of the architecture's core components. TritonCast thus offers a promising pathway towards a new generation of trustworthy, AI-driven simulations. This significant advance has the potential to accelerate discovery in climate and Earth system science, enabling more reliable long-term forecasting and deeper insights into complex geophysical dynamics.
♻ ☆ Adaptive Pareto-Optimal Token Merging for Edge Transformer Models in Semantic Communication
Large-scale transformer models have emerged as a powerful tool for semantic communication systems, enabling edge devices to extract rich representations for robust inference across noisy wireless channels. However, their substantial computational demands remain a major barrier to practical deployment in resource-constrained 6G networks. In this paper, we present a training-free framework for adaptive token merging in pretrained vision transformers to jointly reduce inference time and transmission resource usage. We formulate the selection of per-layer merging proportions as a multi-objective optimization problem to balance accuracy and computational cost. We employ Gaussian process-based Bayesian optimization to construct a Pareto frontier of optimal configurations, enabling flexible runtime adaptation to dynamic application requirements and channel conditions. Extensive experiments demonstrate that our method consistently outperforms other baselines and achieves significant reductions in floating-point operations while maintaining competitive accuracy across a wide range of signal-to-noise ratio (SNR) conditions. Additional results highlight the effectiveness of adaptive policies that adjust merging aggressiveness in response to channel quality, providing a practical mechanism to trade off latency and semantic fidelity on demand. These findings establish a scalable and efficient approach for deploying transformer-based semantic communication in future edge intelligence systems.
comment: Accepted for presentation in IEEE Globecom 2025
♻ ☆ Towards Non-Stationary Time Series Forecasting with Temporal Stabilization and Frequency Differencing AAAI 2026
Time series forecasting is critical for decision-making across dynamic domains such as energy, finance, transportation, and cloud computing. However, real-world time series often exhibit non-stationarity, including temporal distribution shifts and spectral variability, which pose significant challenges for long-term time series forecasting. In this paper, we propose DTAF, a dual-branch framework that addresses non-stationarity in both the temporal and frequency domains. For the temporal domain, the Temporal Stabilizing Fusion (TFS) module employs a non-stationary mix of experts (MOE) filter to disentangle and suppress temporal non-stationary patterns while preserving long-term dependencies. For the frequency domain, the Frequency Wave Modeling (FWM) module applies frequency differencing to dynamically highlight components with significant spectral shifts. By fusing the complementary outputs of TFS and FWM, DTAF generates robust forecasts that adapt to both temporal and frequency domain non-stationarity. Extensive experiments on real-world benchmarks demonstrate that DTAF outperforms state-of-the-art baselines, yielding significant improvements in forecasting accuracy under non-stationary conditions. All codes are available at https://github.com/PandaJunk/DTAF.
comment: Accepted by AAAI 2026
♻ ☆ OccamVTS: Distilling Vision Models to 1% Parameters for Time Series Forecasting
Time series forecasting is fundamental to diverse applications, with recent approaches leverage large vision models (LVMs) to capture temporal patterns through visual representations. We reveal that while vision models enhance forecasting performance, 99% of their parameters are unnecessary for time series tasks. Through cross-modal analysis, we find that time series align with low-level textural features but not high-level semantics, which can impair forecasting accuracy. We propose OccamVTS, a knowledge distillation framework that extracts only the essential 1% of predictive information from LVMs into lightweight networks. Using pre-trained LVMs as privileged teachers, OccamVTS employs pyramid-style feature alignment combined with correlation and feature distillation to transfer beneficial patterns while filtering out semantic noise. Counterintuitively, this aggressive parameter reduction improves accuracy by eliminating overfitting to irrelevant visual features while preserving essential temporal patterns. Extensive experiments across multiple benchmark datasets demonstrate that OccamVTS consistently achieves state-of-the-art performance with only 1% of the original parameters, particularly excelling in few-shot and zero-shot scenarios.
♻ ☆ Adaptive Parametric Activation: Unifying and Generalising Activation Functions Across Tasks ECCV2024
The activation function plays a crucial role in model optimisation, yet the optimal choice remains unclear. For example, the Sigmoid activation is the de-facto activation in balanced classification tasks, however, in imbalanced classification, it proves inappropriate due to bias towards frequent classes. In this work, we delve deeper in this phenomenon by performing a comprehensive statistical analysis in the classification and intermediate layers of both balanced and imbalanced networks and we empirically show that aligning the activation function with the data distribution, enhances the performance in both balanced and imbalanced tasks. To this end, we propose the Adaptive Parametric Activation (APA) function, a novel and versatile activation function that unifies most common activation functions under a single formula. APA can be applied in both intermediate layers and attention layers, significantly outperforming the state-of-the-art on several imbalanced benchmarks such as ImageNet-LT, iNaturalist2018, Places-LT, CIFAR100-LT and LVIS. Also, we extend APA to a plethora of other tasks such as classification, detection, visual instruction following tasks, image generation and next-text-token prediction benchmarks. APA increases the performance in multiple benchmarks across various model architectures. The code is available at https://github.com/kostas1515/AGLU.
comment: Version 2: 19 pages, 7 figures, 13 Tables. Extension of the ECCV2024 oral paper arXiv:2407.08567v2
♻ ☆ Pelican-VL 1.0: A Foundation Brain Model for Embodied Intelligence
This report presents Pelican-VL 1.0, a new family of open-source embodied brain models with parameter scales ranging from 7 billion to 72 billion. Our explicit mission is clearly stated as: To embed powerful intelligence into various embodiments. Pelican-VL 1.0 is currently the largest-scale open-source embodied multimodal brain model. Its core advantage lies in the in-depth integration of data power and intelligent adaptive learning mechanisms. Specifically, metaloop distilled a high-quality dataset from a raw dataset containing 4+ billion tokens. Pelican-VL 1.0 is trained on a large-scale cluster of 1000+ A800 GPUs, consuming over 50k+ A800 GPU-hours per checkpoint. This translates to a 20.3% performance uplift from its base model and outperforms 100B-level open-source counterparts by 10.6%, placing it on par with leading proprietary systems on well-known embodied benchmarks. We establish a novel framework, DPPO (Deliberate Practice Policy Optimization), inspired by human metacognition to train Pelican-VL 1.0. We operationalize this as a metaloop that teaches the AI to practice deliberately, which is a RL-Refine-Diagnose-SFT loop.
♻ ☆ RetrySQL: text-to-SQL training with retry data for self-correcting query generation AAAI 2026
The text-to-SQL task is an active challenge in Natural Language Processing. Many existing solutions focus on using black-box language models extended with specialized components within customized end-to-end text-to-SQL pipelines. While these solutions use both closed-source proprietary language models and coding-oriented open-source models, there is a lack of research regarding SQL-specific generative models. At the same time, recent advancements in self-correcting generation strategies show promise for improving the capabilities of existing architectures. The application of these concepts to the text-to-SQL task remains unexplored. In this paper, we introduce RetrySQL, a new approach to training text-to-SQL generation models. We prepare reasoning steps for reference SQL queries and then corrupt them to create retry data that contains both incorrect and corrected steps, divided with a special token. We continuously pre-train an open-source coding model with this data and demonstrate that retry steps yield an improvement of up to 4 percentage points in both overall and challenging execution accuracy metrics, compared to pre-training without retry data. Additionally, we confirm that supervised fine-tuning with LoRA is ineffective for learning from retry data and that full-parameter pre-training is a necessary requirement for that task. We showcase that the self-correcting behavior is learned by the model and the increase in downstream accuracy metrics is a result of this additional skill. Finally, we incorporate RetrySQL-trained models into the full text-to-SQL pipeline and showcase that they are competitive in terms of execution accuracy with proprietary models that contain orders of magnitude more parameters. RetrySQL demonstrates that self-correction can be learned in the text-to-SQL task and provides a novel way of improving generation accuracy for SQL-oriented language models.
comment: AAAI 2026 Camera-ready version
♻ ☆ First-Order Error Matters: Accurate Compensation for Quantized Large Language Models AAAI 2026
Post-training quantization (PTQ) offers an efficient approach to compressing large language models (LLMs), significantly reducing memory access and computational costs. Existing compensation-based weight calibration methods often rely on a second-order Taylor expansion to model quantization error, under the assumption that the first-order term is negligible in well-trained full-precision models. However, we reveal that the progressive compensation process introduces accumulated first-order deviations between latent weights and their full-precision counterparts, making this assumption fundamentally flawed. To address this, we propose FOEM, a novel PTQ method that explicitly incorporates first-order gradient terms to improve quantization error compensation. FOEM approximates gradients by performing a first-order Taylor expansion around the pre-quantization weights. This yields an approximation based on the difference between latent and full-precision weights as well as the Hessian matrix. When substituted into the theoretical solution, the formulation eliminates the need to explicitly compute the Hessian, thereby avoiding the high computational cost and limited generalization of backpropagation-based gradient methods. This design introduces only minimal additional computational overhead. Extensive experiments across a wide range of models and benchmarks demonstrate that FOEM consistently outperforms the classical GPTQ method. In 3-bit weight-only quantization, FOEM reduces the perplexity of Llama3-8B by 17.3% and increases the 5-shot MMLU accuracy from 53.8% achieved by GPTAQ to 56.1%. Moreover, FOEM can be seamlessly combined with advanced techniques such as SpinQuant, delivering additional gains under the challenging W4A4KV4 setting and further narrowing the performance gap with full-precision baselines, surpassing existing state-of-the-art methods.
comment: Accepted by AAAI 2026. The code is available at https://github.com/Xingyu-Zheng/FOEM
♻ ☆ CoEvo: Continual Evolution of Symbolic Solutions Using Large Language Models AAAI 2026
The discovery of symbolic solutions -- mathematical expressions, logical rules, and algorithmic structures -- is fundamental to advancing scientific and engineering progress. However, traditional methods often struggle with search efficiency and fail to integrate knowledge effectively. While recent large language model-based (LLM-based) approaches have demonstrated improvements in search efficiency, they lack the ability to continually refine and expand upon discovered solutions and their underlying knowledge, limiting their potential for open-ended innovation. To address these limitations, we introduce CoEvo, a novel framework that leverages large language models within an evolutionary search methodology to continually generate and refine symbolic solutions. CoEvo integrates a dynamic knowledge library, enabling open-ended innovation of solutions through effective knowledge management. Additionally, CoEvo leverages multiple representations of solutions -- including natural language, mathematical expressions, and code -- to further enhance search efficiency. By combining the reasoning capabilities of LLMs with the exploratory power of evolutionary algorithms, CoEvo significantly improves the efficiency and scope of symbolic discovery. Our experimental results demonstrate that this method not only enhances the efficiency of searching for symbolic solutions but also supports the ongoing discovery process, akin to human scientific endeavors. This study represents a first effort in conceptualizing the search for symbolic solutions as a lifelong, iterative process, marking a significant step towards harnessing LLMs in the perpetual pursuit of scientific and engineering breakthroughs. Our code is available at https://github.com/pgg3/CoEvo.
comment: Camera ready version for AAAI 2026
♻ ☆ Sparse Tuning Enhances Plasticity in PTM-based Continual Learning
Continual Learning with Pre-trained Models holds great promise for efficient adaptation across sequential tasks. However, most existing approaches freeze PTMs and rely on auxiliary modules like prompts or adapters, limiting model plasticity and leading to suboptimal generalization when facing significant distribution shifts. While full fine-tuning can improve adaptability, it risks disrupting crucial pre-trained knowledge. In this paper, we propose Mutual Information-guided Sparse Tuning (MIST), a plug-and-play method that selectively updates a small subset of PTM parameters, less than 5%, based on sensitivity to mutual information objectives. MIST enables effective task-specific adaptation while preserving generalization. To further reduce interference, we introduce strong sparsity regularization by randomly dropping gradients during tuning, resulting in fewer than 0.5% of parameters being updated per step. Applied before standard freeze-based methods, MIST consistently boosts performance across diverse continual learning benchmarks. Experiments show that integrating our method into multiple baselines yields significant performance gains. Our code is available at https://github.com/zhwhu/MIST.
♻ ☆ On bounds for norms of reparameterized ReLU artificial neural network parameters: sums of fractional powers of the Lipschitz norm control the network parameter vector
It is an elementary fact in the scientific literature that the Lipschitz norm of the realization function of a feedforward fully-connected rectified linear unit (ReLU) artificial neural network (ANN) can, up to a multiplicative constant, be bounded from above by sums of powers of the norm of the ANN parameter vector. Roughly speaking, in this work we reveal in the case of shallow ANNs that the converse inequality is also true. More formally, we prove that the norm of the equivalence class of ANN parameter vectors with the same realization function is, up to a multiplicative constant, bounded from above by the sum of powers of the Lipschitz norm of the ANN realization function (with the exponents $ 1/2 $ and $ 1 $). Moreover, we prove that this upper bound only holds when employing the Lipschitz norm but does neither hold for Hölder norms nor for Sobolev-Slobodeckij norms. Furthermore, we prove that this upper bound only holds for sums of powers of the Lipschitz norm with the exponents $ 1/2 $ and $ 1 $ but does not hold for the Lipschitz norm alone.
comment: 39 pages, 1 figure
♻ ☆ TTF-VLA: Temporal Token Fusion via Pixel-Attention Integration for Vision-Language-Action Models AAAI 2026
Vision-Language-Action (VLA) models process visual inputs independently at each timestep, discarding valuable temporal information inherent in robotic manipulation tasks. This frame-by-frame processing makes models vulnerable to visual noise while ignoring the substantial coherence between consecutive frames in manipulation sequences. We propose Temporal Token Fusion (TTF), a training-free approach that intelligently integrates historical and current visual representations to enhance VLA inference quality. Our method employs dual-dimension detection combining efficient grayscale pixel difference analysis with attention-based semantic relevance assessment, enabling selective temporal token fusion through hard fusion strategies and keyframe anchoring to prevent error accumulation. Comprehensive experiments across LIBERO, SimplerEnv, and real robot tasks demonstrate consistent improvements: 4.0 percentage points average on LIBERO (72.4\% vs 68.4\% baseline), cross-environment validation on SimplerEnv (4.8\% relative improvement), and 8.7\% relative improvement on real robot tasks. Our approach proves model-agnostic, working across OpenVLA and VLA-Cache architectures. Notably, TTF reveals that selective Query matrix reuse in attention mechanisms enhances rather than compromises performance, suggesting promising directions for direct KQV matrix reuse strategies that achieve computational acceleration while improving task success rates.
comment: Accepted to AAAI 2026. Camera-ready version
♻ ☆ SGLP: A Similarity Guided Fast Layer Partition Pruning for Compressing Large Deep Models
Layer pruning has emerged as a potent approach to remove redundant layers in the pre-trained network on the purpose of reducing network size and improve computational efficiency. However, existing layer pruning methods mostly overlook the intrinsic connections and inter-dependencies between different layers within complicated deep neural networks. This oversight can result in pruned models that do not preserve the essential characteristics of the pre-trained network as effectively as desired. To address these limitations, we propose a Similarity-Guided Layer Partition (SGLP) Pruning, a novel pruning framework that exploits representation similarity to guide efficient and informed layer removal for compressing large deep models. Our method begins by employing Centered Kernel Alignment (CKA) to quantify representational similarity between layers, uncovering structural patterns within the network. We then apply Fisher Optimal Segmentation on the similarity matrix to partition the network into semantically coherent layer segments. This segmentation allows pruning decisions to respect layer interdependencies and preserve essential knowledge. Within each segment, we introduce a fine-tuning-free importance evaluation using GradNorm, identifying and removing redundant layers in a targeted, segment-wise manner. Experimental results on both image classification tasks and large language models (LLMs) demonstrate that our proposed SGLP outperforms the state-of-the-art methods in accuracy and efficiency. Our approach achieves significant model compression with minimal performance degradation, making it well-suited for deployment in resource-limited environments.
comment: 16 pages
♻ ☆ ICL-Router: In-Context Learned Model Representations for LLM Routing AAAI 2026
Large language models (LLMs) often exhibit complementary strengths. Model routing harnesses these strengths by dynamically directing each query to the most suitable model, given a candidate model pool. However, routing performance relies on accurate model representations, and adding new models typically requires retraining, limiting scalability. To address these challenges, we propose a novel routing method using in-context vectors to represent model capabilities. The method proceeds in two stages. First, queries are embedded and projected into vectors, with a projector and LLM-based router trained to reconstruct the original queries, aligning vector representations with the router's semantic space. Second, each candidate model is profiled on a query set, and the router learns -- based on in-context vectors of query and model performance -- to predict whether each model can correctly answer new queries. Extensive experiments demonstrate that our method achieves state-of-the-art routing performance in both in-distribution and out-of-distribution tasks. Moreover, our method allows for seamless integration of new models without retraining the router. The code is available at https://github.com/lalalamdbf/ICL-Router.
comment: Accepted by AAAI 2026
♻ ☆ Debiasing Machine Learning Predictions for Causal Inference Without Additional Ground Truth Data: "One Map, Many Trials" in Satellite-Driven Poverty Analysis AAAI 2026
Machine learning models trained on Earth observation data, such as satellite imagery, have demonstrated significant promise in predicting household-level wealth indices, enabling the creation of high-resolution wealth maps that can be leveraged across multiple causal trials while addressing chronic data scarcity in global development research. However, because standard training objectives prioritize overall predictive accuracy, these predictions often suffer from shrinkage toward the mean, leading to attenuated estimates of causal treatment effects and limiting their utility in policy evaluations. Existing debiasing methods, such as Prediction-Powered Inference (PPI), can handle this attenuation bias but require additional fresh ground-truth data at the downstream stage of causal inference, which restricts their applicability in data-scarce environments. We introduce and evaluate two post-hoc correction methods -- Linear Calibration Correction (LCC) and a Tweedie's correction approach -- that substantially reduce shrinkage-induced prediction bias without relying on newly collected labeled data. LCC applies a simple linear transformation estimated on a held-out calibration split; Tweedie's method locally de-shrink predictions using density score estimates and a noise scale learned upstream. We provide practical diagnostics for when a correction is warranted and discuss practical limitations. Across analytical results, simulations, and experiments with Demographic and Health Surveys (DHS) data, both approaches reduce attenuation; Tweedie's correction yields nearly unbiased treatment-effect estimates, enabling a "one map, many trials" paradigm. Although we demonstrate on EO-ML wealth mapping, the methods are not geospatial-specific: they apply to any setting where imputed outcomes are reused downstream (e.g., pollution indices, population density, or LLM-derived indicators).
comment: To appear in the Proceedings of AAAI 2026
♻ ☆ CHNNet: An Artificial Neural Network With Connected Hidden Neurons
In contrast to biological neural circuits, conventional artificial neural networks are commonly organized as strictly hierarchical architectures that exclude direct connections among neurons within the same layer. Consequently, information flow is primarily confined to feedforward and feedback pathways across layers, which limits lateral interactions and constrains the potential for intra-layer information integration. We introduce an artificial neural network featuring intra-layer connections among hidden neurons to overcome this limitation. Owing to the proposed method for facilitating intra-layer connections, the model is theoretically anticipated to achieve faster convergence compared to conventional feedforward neural networks. The experimental findings provide further validation of the theoretical analysis.
♻ ☆ SafeMIL: Learning Offline Safe Imitation Policy from Non-Preferred Trajectories AAAI 2026
In this work, we study the problem of offline safe imitation learning (IL). In many real-world settings, online interactions can be risky, and accurately specifying the reward and the safety cost information at each timestep can be difficult. However, it is often feasible to collect trajectories reflecting undesirable or risky behavior, implicitly conveying the behavior the agent should avoid. We refer to these trajectories as non-preferred trajectories. Unlike standard IL, which aims to mimic demonstrations, our agent must also learn to avoid risky behavior using non-preferred trajectories. In this paper, we propose a novel approach, SafeMIL, to learn a parameterized cost that predicts if the state-action pair is risky via Multiple Instance Learning. The learned cost is then used to avoid non-preferred behaviors, resulting in a policy that prioritizes safety. We empirically demonstrate that our approach can learn a safer policy that satisfies cost constraints without degrading the reward performance, thereby outperforming several baselines.
comment: 18 pages, Accepted at AAAI 2026
♻ ☆ Evolutionary Retrofitting
AfterLearnER (After Learning Evolutionary Retrofitting) consists in applying evolutionary optimization to refine fully trained machine learning models by optimizing a set of carefully chosen parameters or hyperparameters of the model, with respect to some actual, exact, and hence possibly non-differentiable error signal, performed on a subset of the standard validation set. The efficiency of AfterLearnER is demonstrated by tackling non-differentiable signals such as threshold-based criteria in depth sensing, the word error rate in speech re-synthesis, the number of kills per life at Doom, computational accuracy or BLEU in code translation, image quality in 3D generative adversarial networks (GANs), and user feedback in image generation via Latent Diffusion Models (LDM). This retrofitting can be done after training, or dynamically at inference time by taking into account the user feedback. The advantages of AfterLearnER are its versatility, the possibility to use non-differentiable feedback, including human evaluations (i.e., no gradient is needed), the limited overfitting supported by a theoretical study, and its anytime behavior. Last but not least, AfterLearnER requires only a small amount of feedback, i.e., a few dozen to a few hundred scalars, compared to the tens of thousands needed in most related published works.
♻ ☆ On the notion of missingness for path attribution explainability methods in medical settings: Guiding the selection of medically meaningful baselines
The explainability of deep learning models remains a significant challenge, particularly in the medical domain where interpretable outputs are critical for clinical trust and transparency. Path attribution methods such as Integrated Gradients rely on a baseline representing the absence of relevant features ("missingness"). Commonly used baselines, such as all-zero inputs, are often semantically meaningless, especially in medical contexts. While alternative baseline choices have been explored, existing methods lack a principled approach to dynamically select baselines tailored to each input. In this work, we examine the notion of missingness in the medical context, analyze its implications for baseline selection, and introduce a counterfactual-guided approach to address the limitations of conventional baselines. We argue that a generated counterfactual (i.e. clinically "normal" variation of the pathological input) represents a more accurate representation of a meaningful absence of features. We use a Variational Autoencoder in our implementation, though our concept is model-agnostic and can be applied with any suitable counterfactual method. We evaluate our concept on three distinct medical data sets and empirically demonstrate that counterfactual baselines yield more faithful and medically relevant attributions, outperforming standard baseline choices as well as other related methods.
♻ ☆ StreamDiT: Real-Time Streaming Text-to-Video Generation
Recently, great progress has been achieved in text-to-video (T2V) generation by scaling transformer-based diffusion models to billions of parameters, which can generate high-quality videos. However, existing models typically produce only short clips offline, restricting their use cases in interactive and real-time applications. This paper addresses these challenges by proposing StreamDiT, a streaming video generation model. StreamDiT training is based on flow matching by adding a moving buffer. We design mixed training with different partitioning schemes of buffered frames to boost both content consistency and visual quality. StreamDiT modeling is based on adaLN DiT with varying time embedding and window attention. To practice the proposed method, we train a StreamDiT model with 4B parameters. In addition, we propose a multistep distillation method tailored for StreamDiT. Sampling distillation is performed in each segment of a chosen partitioning scheme. After distillation, the total number of function evaluations (NFEs) is reduced to the number of chunks in a buffer. Finally, our distilled model reaches real-time performance at 16 FPS on one GPU, which can generate video streams at 512p resolution. We evaluate our method through both quantitative metrics and human evaluation. Our model enables real-time applications, e.g. streaming generation, interactive generation, and video-to-video. We provide video results and more examples in our project website: https://cumulo-autumn.github.io/StreamDiT/
♻ ☆ Augmented data and neural networks for robust epidemic forecasting: application to COVID-19 in Italy
In this work, we propose a data augmentation strategy aimed at improving the training phase of neural networks and, consequently, the accuracy of their predictions. Our approach relies on generating synthetic data through a suitable compartmental model combined with the incorporation of uncertainty. The available data are then used to calibrate the model, which is further integrated with deep learning techniques to produce additional synthetic data for training. The results show that neural networks trained on these augmented datasets exhibit significantly improved predictive performance. We focus in particular on two different neural network architectures: Physics-Informed Neural Networks (PINNs) and Nonlinear Autoregressive (NAR) models. The NAR approach proves especially effective for short-term forecasting, providing accurate quantitative estimates by directly learning the dynamics from data and avoiding the additional computational cost of embedding physical constraints into the training. In contrast, PINNs yield less accurate quantitative predictions but capture the qualitative long-term behavior of the system, making them more suitable for exploring broader dynamical trends. Numerical simulations of the second phase of the COVID-19 pandemic in the Lombardy region (Italy) validate the effectiveness of the proposed approach.
♻ ☆ Fairness for the People, by the People: Minority Collective Action
Machine learning models often preserve biases present in training data, leading to unfair treatment of certain minority groups. Despite an array of existing firm-side bias mitigation techniques, they typically incur utility costs and require organizational buy-in. Recognizing that many models rely on user-contributed data, end-users can induce fairness through the framework of Algorithmic Collective Action, where a coordinated minority group strategically relabels its own data to enhance fairness, without altering the firm's training process. We propose three practical, model-agnostic methods to approximate ideal relabeling and validate them on real-world datasets. Our findings show that a subgroup of the minority can substantially reduce unfairness with a small impact on the overall prediction error.
♻ ☆ ORIC: Benchmarking Object Recognition under Contextual Incongruity in Large Vision-Language Models
Large Vision-Language Models (LVLMs) excel at captioning, visual question answering, and robotics by combining vision and language, yet they often miss obvious objects or hallucinate nonexistent ones in atypical scenes. We examine these failures through the lens of uncertainty, focusing on contextual incongruity, where objects appear unexpectedly or fail to appear in expected contexts, and show that such cases increase recognition difficulty for state-of-the-art LVLMs. To study this regime, we introduce the Object Recognition in Incongruous Context (ORIC) framework, which constructs incongruous object-context pairs through two complementary strategies: (1) LLM-guided sampling to identify hard-to-recognize objects present in the image and (2) CLIP-guided sampling to mine plausible but absent ones. Applied to MSCOCO, ORIC produces ORIC-Bench and ORIC-style training data. Evaluating 18 LVLMs and 2 open-vocabulary detectors reveals substantial performance drops and bias patterns under incongruous contexts. Fine-tuning Qwen3-VL-8B-Instruct with Visual Reinforcement Fine-Tuning on 600 ORIC-style samples improves results on ORIC-Bench, AMBER, and HallusionBench. Overall, we show that contextual incongruity is a key source of uncertainty and provide tools for more reliable LVLMs. The code is available at https://github.com/ZhaoyangLi-1/ORIC.
♻ ☆ Neuro-Spectral Architectures for Causal Physics-Informed Networks NeurIPS 2025
Physics-Informed Neural Networks (PINNs) have emerged as a powerful framework for solving partial differential equations (PDEs). However, standard MLP-based PINNs often fail to converge when dealing with complex initial value problems, leading to solutions that violate causality and suffer from a spectral bias towards low-frequency components. To address these issues, we introduce NeuSA (Neuro-Spectral Architectures), a novel class of PINNs inspired by classical spectral methods, designed to solve linear and nonlinear PDEs with variable coefficients. NeuSA learns a projection of the underlying PDE onto a spectral basis, leading to a finite-dimensional representation of the dynamics which is then integrated with an adapted Neural ODE (NODE). This allows us to overcome spectral bias, by leveraging the high-frequency components enabled by the spectral representation; to enforce causality, by inheriting the causal structure of NODEs, and to start training near the target solution, by means of an initialization scheme based on classical methods. We validate NeuSA on canonical benchmarks for linear and nonlinear wave equations, demonstrating strong performance as compared to other architectures, with faster convergence, improved temporal consistency and superior predictive accuracy. Code and pretrained models are available in https://github.com/arthur-bizzi/neusa.
comment: Accepted at NeurIPS 2025 (poster). 24 pages, 10 figures
♻ ☆ MoPE: Mixture of Prompt Experts for Parameter-Efficient and Scalable Multimodal Fusion
Despite the demonstrated parameter efficiency of prompt-based fusion, its limited adaptivity and expressiveness hinder its effectiveness for multimodal applications at scale. In this paper, we present the first comprehensive study addressing these limitations. Our key motivation is to ``divide and conquer'' the vanilla prompt, traditionally shared across all instances, by generating instance-specific prompts. Specifically, we propose the Mixture of Prompt Experts (MoPE), a framework that significantly enhances prompt adaptivity and expressiveness by dynamically generating instance-specific prompts. MoPE leverages multimodal pairings as additional evidence, allowing the model to adaptively select optimal prompts tailored to each individual instance. Unlike traditional prompt-fusion methods, which encounter scalability bottlenecks when optimizing long unified prompts, MoPE maintains fixed prompt length while effectively scaling the number of specialized experts. Moreover, we investigate regularization terms to encourage expert specialization, resulting in highly adaptive and interpretable prompting. MoPE fundamentally changes the scaling dynamic, unlocking greater expressiveness and adaptability to complex multimodal relationships, enabling the model to selectively attend to task-relevant sub-sequences based on instance-specific multimodal input. Extensive experiments across six multimodal datasets spanning four modalities demonstrate state-of-the-art performance for multimodal fusion, matching or surpassing the performance of fine-tuning while requiring only 0.8% of the trainable parameters. Code is available: https://github.com/songrise/MoPE.
comment: Accepted to IEEE TMM
♻ ☆ A filtering scheme for confocal laser endomicroscopy (CLE)-video sequences for self-supervised learning
Confocal laser endomicroscopy (CLE) is a non-invasive, real-time imaging modality that can be used for in-situ, in-vivo imaging and the microstructural analysis of mucous structures. The diagnosis using CLE is, however, complicated by images being hard to interpret for non-experienced physicians. Utilizing machine learning as an augmentative tool would hence be beneficial, but is complicated by the shortage of histopathology-correlated CLE imaging sequences with respect to the plurality of patterns in this domain, leading to overfitting of machine learning models. To overcome this, self-supervised learning (SSL) can be employed on larger unlabeled datasets. CLE is a video-based modality with high inter-frame correlation, leading to a non-stratified data distribution for SSL training. In this work, we propose a filter functionality on CLE video sequences to reduce the dataset redundancy in SSL training and improve SSL training convergence and training efficiency. We use four state-of-the-art baseline networks and a SSL teacher-student network with a vision transformer small backbone for the evaluation. These networks were evaluated on downstream tasks for a sinonasal tumor dataset and a squamous cell carcinoma of the skin dataset. On both datasets, we found the highest test accuracy on the filtered SSL-pretrained model, with 67.48% and 73.52%, both considerably outperforming their non-SSL baselines. Our results show that SSL is an effective method for CLE pretraining. Further, we show that our proposed CLE video filter can be utilized to improve training efficiency in self-supervised scenarios, resulting in a reduction of 67% in training time.
♻ ☆ Strada-LLM: Graph LLM for traffic prediction
Traffic forecasting is pivotal for intelligent transportation systems, where accurate and interpretable predictions can significantly enhance operational efficiency and safety. A key challenge stems from the heterogeneity of traffic conditions across diverse locations, leading to highly varied traffic data distributions. Large language models (LLMs) show exceptional promise for few-shot learning in such dynamic and data-sparse scenarios. However, existing LLM-based solutions often rely on prompt-tuning, which can struggle to fully capture complex graph relationships and spatiotemporal dependencies-thereby limiting adaptability and interpretability in real-world traffic networks. We address these gaps by introducing Strada-LLM, a novel multivariate probabilistic forecasting LLM that explicitly models both temporal and spatial traffic patterns. By incorporating proximal traffic information as covariates, Strada-LLM more effectively captures local variations and outperforms prompt-based existing LLMs. To further enhance adaptability, we propose a lightweight distribution-derived strategy for domain adaptation, enabling parameter-efficient model updates when encountering new data distributions or altered network topologies-even under few-shot constraints. Empirical evaluations on spatio-temporal transportation datasets demonstrate that Strada-LLM consistently surpasses state-of-the-art LLM-driven and traditional GNN-based predictors. Specifically, it improves long-term forecasting by 17% in RMSE error and 16% more efficiency. Moreover, it maintains robust performance across different LLM backbones with minimal degradation, making it a versatile and powerful solution for real-world traffic prediction tasks.
comment: 13 pages
♻ ☆ Beyond $\tilde{O}(\sqrt{T})$ Constraint Violation for Online Convex Optimization with Adversarial Constraints NeurIPS 2025
We study Online Convex Optimization with adversarial constraints (COCO). At each round a learner selects an action from a convex decision set and then an adversary reveals a convex cost and a convex constraint function. The goal of the learner is to select a sequence of actions to minimize both regret and the cumulative constraint violation (CCV) over a horizon of length $T$. The best-known policy for this problem achieves $O(\sqrt{T})$ regret and $\tilde{O}(\sqrt{T})$ CCV. In this paper, we improve this by trading off regret to achieve substantially smaller CCV. This trade-off is especially important in safety-critical applications, where satisfying the safety constraints is non-negotiable. Specifically, for any bounded convex cost and constraint functions, we propose an online policy that achieves $\tilde{O}(\sqrt{dT}+ T^β)$ regret and $\tilde{O}(dT^{1-β})$ CCV, where $d$ is the dimension of the decision set and $β\in [0,1]$ is a tunable parameter. We begin with a special case, called the $\textsf{Constrained Expert}$ problem, where the decision set is a probability simplex and the cost and constraint functions are linear. Leveraging a new adaptive small-loss regret bound, we propose a computationally efficient policy for the $\textsf{Constrained Expert}$ problem, that attains $O(\sqrt{T\ln N}+T^β)$ regret and $\tilde{O}(T^{1-β} \ln N)$ CCV for $N$ number of experts. The original problem is then reduced to the $\textsf{Constrained Expert}$ problem via a covering argument. Finally, with an additional $M$-smoothness assumption, we propose a computationally efficient first-order policy attaining $O(\sqrt{MT}+T^β)$ regret and $\tilde{O}(MT^{1-β})$ CCV.
comment: To appear in NeurIPS 2025
♻ ☆ PrivDFS: Private Inference via Distributed Feature Sharing against Data Reconstruction Attacks
In this paper, we introduce PrivDFS, a distributed feature-sharing framework for input-private inference in image classification. A single holistic intermediate representation in split inference gives diffusion-based Data Reconstruction Attacks (DRAs) sufficient signal to reconstruct the input with high fidelity. PrivDFS restructures this vulnerability by fragmenting the representation and processing the fragments independently across a majority-honest set of servers. As a result, each branch observes only an incomplete and reconstruction-insufficient view of the input. To realize this, PrivDFS employs learnable binary masks that partition the intermediate representation into sparse and largely non-overlapping feature shares, each processed by a separate server, while a lightweight fusion module aggregates their predictions on the client. This design preserves full task accuracy when all branches are combined, yet sharply limits the reconstructive power available to any individual server. PrivDFS applies seamlessly to both ResNet-based CNNs and Vision Transformers. Across CIFAR-10/100, CelebA, and ImageNet-1K, PrivDFS induces a pronounced collapse in DRA performance, e.g., on CIFAR-10, PSNR drops from 23.25 -> 12.72 and SSIM from 0.963 -> 0.260, while maintaining accuracy within 1% of non-private split inference. These results establish structural feature partitioning as a practical and architecture-agnostic approach to reducing reconstructive leakage in cloud-based vision inference.
♻ ☆ Self-supervised Learning of Echocardiographic Video Representations via Online Cluster Distillation
Self-supervised learning (SSL) has achieved major advances in natural images and video understanding, but challenges remain in domains like echocardiography (heart ultrasound) due to subtle anatomical structures, complex temporal dynamics, and the current lack of domain-specific pre-trained models. Existing SSL approaches such as contrastive, masked modeling, and clustering-based methods struggle with high intersample similarity, sensitivity to low PSNR inputs common in ultrasound, or aggressive augmentations that distort clinically relevant features. We present DISCOVR (Distilled Image Supervision for Cross Modal Video Representation), a self-supervised dual branch framework for cardiac ultrasound video representation learning. DISCOVR combines a clustering-based video encoder that models temporal dynamics with an online image encoder that extracts fine-grained spatial semantics. These branches are connected through a semantic cluster distillation loss that transfers anatomical knowledge from the evolving image encoder to the video encoder, enabling temporally coherent representations enriched with fine-grained semantic understanding.Evaluated on six echocardiography datasets spanning fetal, pediatric, and adult populations, DISCOVR outperforms both specialized video anomaly detection methods and state-of-the-art video-SSL baselines in zero-shot and linear probing setups,achieving superior segmentation transfer and strong downstream performance on clinically relevant tasks such as LVEF prediction. Code available at: https://github.com/mdivyanshu97/DISCOVR
♻ ☆ ADPO: Anchored Direct Preference Optimization
Direct Preference Optimization (DPO) has emerged as a simple alternative to reinforcement learning from human feedback (RLHF) for aligning language models, but its reliance on hard pairwise labels makes it brittle under noise; our experiments show performance degrading by up to 93 percent in noisy settings. We introduce Anchored Direct Preference Optimization (ADPO), a unified framework that addresses this fragility through reference anchoring. By minimizing KL(q || softmax((l - l_ref) / tau_anc)), where l_ref are reference policy log probabilities, ADPO provides three key advantages: (1) it unifies major learning paradigms, including supervised fine-tuning, knowledge distillation, maximum-entropy reinforcement learning, and DPO, as special cases through different choices of target distribution q, anchor policy pi_ref, and temperature tau_anc; (2) it induces an implicit trust region governed by the softmax Fisher metric with curvature scaling as 1 / tau_anc^2, providing geometric regularization absent in standard methods; and (3) it enables flexible anchor strategies tailored to different learning contexts. Empirically, ADPO consistently outperforms standard DPO by 12 to 93 percent across twelve noisy scenarios, with listwise variants achieving top performance in eleven of twelve cases. In offline distillation, ADPO reduces student-teacher KL by 4 to 49 times while achieving superior returns (for example, 279.3 vs -309.0 for knowledge distillation on HalfCheetah). We further uncover a task-dependent tradeoff: dynamic anchors excel at online exploration in noisy environments (plus 5 to 11 percent), while fixed anchors enable stable offline distillation. Our work establishes anchoring as a general principle for robust policy optimization, with clear practical guidance for anchor selection across diverse learning scenarios.
♻ ☆ Multistep Quasimetric Learning for Scalable Goal-conditioned Reinforcement Learning
Learning how to reach goals in an environment is a longstanding challenge in AI, yet reasoning over long horizons remains a challenge for modern methods. The key question is how to estimate the temporal distance between pairs of observations. While temporal difference methods leverage local updates to provide optimality guarantees, they often perform worse than Monte Carlo methods that perform global updates (e.g., with multi-step returns), which lack such guarantees. We show how these approaches can be integrated into a practical GCRL method that fits a quasimetric distance using a multistep Monte-Carlo return. We show our method outperforms existing GCRL methods on long-horizon simulated tasks with up to 4000 steps, even with visual observations. We also demonstrate that our method can enable stitching in the real-world robotic manipulation domain (Bridge setup). Our approach is the first end-to-end GCRL method that enables multistep stitching in this real-world manipulation domain from an unlabeled offline dataset of visual observations.
♻ ☆ Convergence Bound and Critical Batch Size of Muon Optimizer
Muon, a recently proposed optimizer that leverages the inherent matrix structure of neural network parameters, has demonstrated strong empirical performance, indicating its potential as a successor to standard optimizers such as AdamW. This paper presents theoretical analysis to support its practical success. We provide convergence proofs for Muon across four practical settings, systematically examining its behavior with and without the inclusion of Nesterov momentum and weight decay. Our analysis covers the standard configuration using both, thereby elucidating its real-world performance. We then demonstrate that the addition of weight decay yields strictly tighter theoretical bounds and clarify the interplay between the weight decay coefficient and the learning rate. Finally, we derive the critical batch size for Muon that minimizes the computational cost of training. Our analysis identifies the hyperparameters governing this value, and our experiments validate the corresponding theoretical findings across workloads including image classification and language modeling task.
LeJEPA: Provable and Scalable Self-Supervised Learning Without the Heuristics
Learning manipulable representations of the world and its dynamics is central to AI. Joint-Embedding Predictive Architectures (JEPAs) offer a promising blueprint, but lack of practical guidance and theory has led to ad-hoc R&D. We present a comprehensive theory of JEPAs and instantiate it in {\bf LeJEPA}, a lean, scalable, and theoretically grounded training objective. First, we identify the isotropic Gaussian as the optimal distribution that JEPAs' embeddings should follow to minimize downstream prediction risk. Second, we introduce a novel objective--{\bf Sketched Isotropic Gaussian Regularization} (SIGReg)--to constrain embeddings to reach that ideal distribution. Combining the JEPA predictive loss with SIGReg yields LeJEPA with numerous theoretical and practical benefits: (i) single trade-off hyperparameter, (ii) linear time and memory complexity, (iii) stability across hyper-parameters, architectures (ResNets, ViTs, ConvNets) and domains, (iv) heuristics-free, e.g., no stop-gradient, no teacher-student, no hyper-parameter schedulers, and (v) distributed training-friendly implementation requiring only $\approx$50 lines of code. Our empirical validation covers 10+ datasets, 60+ architectures, all with varying scales and domains. As an example, using imagenet-1k for pretraining and linear evaluation with frozen backbone, LeJEPA reaches 79\% with a ViT-H/14. We hope that the simplicity and theory-friendly ecosystem offered by LeJEPA will reestablish self-supervised pre-training as a core pillar of AI research (\href{https://github.com/rbalestr-lab/lejepa}{GitHub repo}).
♻ ☆ NTSFormer: A Self-Teaching Graph Transformer for Multimodal Isolated Cold-Start Node Classification AAAI 2026
Isolated cold-start node classification on multimodal graphs is challenging because such nodes have no edges and often have missing modalities (e.g., absent text or image features). Existing methods address structural isolation by degrading graph learning models to multilayer perceptrons (MLPs) for isolated cold-start inference, using a teacher model (with graph access) to guide the MLP. However, this results in limited model capacity in the student, which is further challenged when modalities are missing. In this paper, we propose Neighbor-to-Self Graph Transformer (NTSFormer), a unified Graph Transformer framework that jointly tackles the isolation and missing-modality issues via a self-teaching paradigm. Specifically, NTSFormer uses a cold-start attention mask to simultaneously make two predictions for each node: a "student" prediction based only on self information (i.e., the node's own features), and a "teacher" prediction incorporating both self and neighbor information. This enables the model to supervise itself without degrading to an MLP, thereby fully leveraging the Transformer's capacity to handle missing modalities. To handle diverse graph information and missing modalities, NTSFormer performs a one-time multimodal graph pre-computation that converts structural and feature data into token sequences, which are then processed by Mixture-of-Experts (MoE) Input Projection and Transformer layers for effective fusion. Experiments on public datasets show that NTSFormer achieves superior performance for multimodal isolated cold-start node classification.
comment: Accepted by AAAI 2026
♻ ☆ MULTIBENCH++: A Unified and Comprehensive Multimodal Fusion Benchmarking Across Specialized Domains
Although multimodal fusion has made significant progress, its advancement is severely hindered by the lack of adequate evaluation benchmarks. Current fusion methods are typically evaluated on a small selection of public datasets, a limited scope that inadequately represents the complexity and diversity of real-world scenarios, potentially leading to biased evaluations. This issue presents a twofold challenge. On one hand, models may overfit to the biases of specific datasets, hindering their generalization to broader practical applications. On the other hand, the absence of a unified evaluation standard makes fair and objective comparisons between different fusion methods difficult. Consequently, a truly universal and high-performance fusion model has yet to emerge. To address these challenges, we have developed a large-scale, domain-adaptive benchmark for multimodal evaluation. This benchmark integrates over 30 datasets, encompassing 15 modalities and 20 predictive tasks across key application domains. To complement this, we have also developed an open-source, unified, and automated evaluation pipeline that includes standardized implementations of state-of-the-art models and diverse fusion paradigms. Leveraging this platform, we have conducted large-scale experiments, successfully establishing new performance baselines across multiple tasks. This work provides the academic community with a crucial platform for rigorous and reproducible assessment of multimodal models, aiming to propel the field of multimodal artificial intelligence to new heights.
♻ ☆ Flow-Attentional Graph Neural Networks
Graph Neural Networks (GNNs) have become essential for learning from graph-structured data. However, existing GNNs do not consider the conservation law inherent in graphs associated with a flow of physical resources, such as electrical current in power grids or traffic in transportation networks, which can lead to reduced model performance. To address this, we propose flow attention, which adapts existing graph attention mechanisms to satisfy Kirchhoff$\text{'}$s first law. Furthermore, we discuss how this modification influences the expressivity and identify sets of non-isomorphic graphs that can be discriminated by flow attention but not by standard attention. Through extensive experiments on two flow graph datasets (electronic circuits and power grids) we demonstrate that flow attention enhances the performance of attention-based GNNs on both graph-level classification and regression tasks.
comment: Accepted @ Transactions on Machine Learning Research (TMLR): https://openreview.net/forum?id=tOzg7UxTPD
♻ ☆ EMOD: A Unified EEG Emotion Representation Framework Leveraging V-A Guided Contrastive Learning
Emotion recognition from EEG signals is essential for affective computing and has been widely explored using deep learning. While recent deep learning approaches have achieved strong performance on single EEG emotion datasets, their generalization across datasets remains limited due to the heterogeneity in annotation schemes and data formats. Existing models typically require dataset-specific architectures tailored to input structure and lack semantic alignment across diverse emotion labels. To address these challenges, we propose EMOD: A Unified EEG Emotion Representation Framework Leveraging Valence-Arousal (V-A) Guided Contrastive Learning. EMOD learns transferable and emotion-aware representations from heterogeneous datasets by bridging both semantic and structural gaps. Specifically, we project discrete and continuous emotion labels into a unified V-A space and formulate a soft-weighted supervised contrastive loss that encourages emotionally similar samples to cluster in the latent space. To accommodate variable EEG formats, EMOD employs a flexible backbone comprising a Triple-Domain Encoder followed by a Spatial-Temporal Transformer, enabling robust extraction and integration of temporal, spectral, and spatial features. We pretrain EMOD on 8 public EEG datasets and evaluate its performance on three benchmark datasets. Experimental results show that EMOD achieves the state-of-the-art performance, demonstrating strong adaptability and generalization across diverse EEG-based emotion recognition scenarios.
♻ ☆ Posterior Label Smoothing for Node Classification AAAI 2026
Label smoothing is a widely studied regularization technique in machine learning. However, its potential for node classification in graph-structured data, spanning homophilic to heterophilic graphs, remains largely unexplored. We introduce posterior label smoothing, a novel method for transductive node classification that derives soft labels from a posterior distribution conditioned on neighborhood labels. The likelihood and prior distributions are estimated from the global statistics of the graph structure, allowing our approach to adapt naturally to various graph properties. We evaluate our method on 10 benchmark datasets using eight baseline models, demonstrating consistent improvements in classification accuracy. The following analysis demonstrates that soft labels mitigate overfitting during training, leading to better generalization performance, and that pseudo-labeling effectively refines the global label statistics of the graph. Our code is available at https://github.com/ml-postech/PosteL.
comment: Accepted by AAAI 2026
♻ ☆ A Closer Look at Knowledge Distillation in Spiking Neural Network Training AAAI 2026
Spiking Neural Networks (SNNs) become popular due to excellent energy efficiency, yet facing challenges for effective model training. Recent works improve this by introducing knowledge distillation (KD) techniques, with the pre-trained artificial neural networks (ANNs) used as teachers and the target SNNs as students. This is commonly accomplished through a straightforward element-wise alignment of intermediate features and prediction logits from ANNs and SNNs, often neglecting the intrinsic differences between their architectures. Specifically, ANN's outputs exhibit a continuous distribution, whereas SNN's outputs are characterized by sparsity and discreteness. To mitigate this issue, we introduce two innovative KD strategies. Firstly, we propose the Saliency-scaled Activation Map Distillation (SAMD), which aligns the spike activation map of the student SNN with the class-aware activation map of the teacher ANN. Rather than performing KD directly on the raw %and distinct features of ANN and SNN, our SAMD directs the student to learn from saliency activation maps that exhibit greater semantic and distribution consistency. Additionally, we propose a Noise-smoothed Logits Distillation (NLD), which utilizes Gaussian noise to smooth the sparse logits of student SNN, facilitating the alignment with continuous logits from teacher ANN. Extensive experiments on multiple datasets demonstrate the effectiveness of our methods. Code is available~\footnote{https://github.com/SinoLeu/CKDSNN.git}.
comment: Accepted by AAAI 2026
♻ ☆ Human-Corrected Labels Learning: Enhancing Labels Quality via Human Correction of VLMs Discrepancies
Vision-Language Models (VLMs), with their powerful content generation capabilities, have been successfully applied to data annotation processes. However, the VLM-generated labels exhibit dual limitations: low quality (i.e., label noise) and absence of error correction mechanisms. To enhance label quality, we propose Human-Corrected Labels (HCLs), a novel setting that efficient human correction for VLM-generated noisy labels. As shown in Figure 1(b), HCL strategically deploys human correction only for instances with VLM discrepancies, achieving both higher-quality annotations and reduced labor costs. Specifically, we theoretically derive a risk-consistent estimator that incorporates both human-corrected labels and VLM predictions to train classifiers. Besides, we further propose a conditional probability method to estimate the label distribution using a combination of VLM outputs and model predictions. Extensive experiments demonstrate that our approach achieves superior classification performance and is robust to label noise, validating the effectiveness of HCL in practical weak supervision scenarios. Code https://github.com/Lilianach24/HCL.git
comment: 11 pages, 3 figures
♻ ☆ Advantage Shaping as Surrogate Reward Maximization: Unifying Pass@K Policy Gradients
This note reconciles two seemingly distinct approaches to policy gradient optimization for the Pass@K objective in reinforcement learning with verifiable rewards: (1) direct REINFORCE-style methods, and (2) advantage-shaping techniques that directly modify GRPO. We show that these are two sides of the same coin. By reverse-engineering existing advantage-shaping algorithms, we reveal that they implicitly optimize surrogate rewards. We specifically interpret practical "hard-example up-weighting" modifications to GRPO as reward-level regularization. Conversely, starting from surrogate reward objectives, we provide a simple recipe for deriving both existing and new advantage-shaping methods. This perspective provides a lens for RLVR policy gradient optimization beyond our original motivation of Pass@K.
comment: v2: Typos fixed. Added summary table in intro. Clarified PPO-style objective vs. surrogate reward
♻ ☆ FAST-CAD: A Fairness-Aware Framework for Non-Contact Stroke Diagnosis AAAI
Stroke is an acute cerebrovascular disease, and timely diagnosis significantly improves patient survival. However, existing automated diagnosis methods suffer from fairness issues across demographic groups, potentially exacerbating healthcare disparities. In this work we propose FAST-CAD, a theoretically grounded framework that combines domain-adversarial training (DAT) with group distributionally robust optimization (Group-DRO) for fair and accurate non-contact stroke diagnosis. Our approach is built on domain adaptation and minimax fairness theory and provides convergence guarantees and fairness bounds. We curate a multimodal dataset covering 12 demographic subgroups defined by age, gender, and posture. FAST-CAD employs self-supervised encoders with adversarial domain discrimination to learn demographic-invariant representations, while Group-DRO optimizes worst-group risk to ensure robust performance across all subgroups. Extensive experiments show that our method achieves superior diagnostic performance while maintaining fairness across demographic groups, and our theoretical analysis supports the effectiveness of the unified DAT + Group-DRO framework. This work provides both practical advances and theoretical insights for fair medical AI systems.
comment: Accepted for oral presentation at the AAAI Conference on Artificial Intelligence 2026 (AAAI 2026)
♻ ☆ Unitho: A Unified Multi-Task Framework for Computational Lithography
Reliable, generalizable data foundations are critical for enabling large-scale models in computational lithography. However, essential tasks-mask generation, rule violation detection, and layout optimization-are often handled in isolation, hindered by scarce datasets and limited modeling approaches. To address these challenges, we introduce Unitho, a unified multi-task large vision model built upon the Transformer architecture. Trained on a large-scale industrial lithography simulation dataset with hundreds of thousands of cases, Unitho supports end-to-end mask generation, lithography simulation, and rule violation detection. By enabling agile and high-fidelity lithography simulation, Unitho further facilitates the construction of robust data foundations for intelligent EDA. Experimental results validate its effectiveness and generalizability, with performance substantially surpassing academic baselines.
comment: Published in ACM/IEEE International Conference on Computer-Aided Design (ICCAD), 2025
Artificial Intelligence 150
☆ Private Frequency Estimation Via Residue Number Systems AAAI 2026
We present \textsf{ModularSubsetSelection} (MSS), a new algorithm for locally differentially private (LDP) frequency estimation. Given a universe of size $k$ and $n$ users, our $\varepsilon$-LDP mechanism encodes each input via a Residue Number System (RNS) over $\ell$ pairwise-coprime moduli $m_0, \ldots, m_{\ell-1}$, and reports a randomly chosen index $j \in [\ell]$ along with the perturbed residue using the statistically optimal \textsf{SubsetSelection}~(SS) (Wang et al. 2016). This design reduces the user communication cost from $Θ\bigl(ω\log_2(k/ω)\bigr)$ bits required by standard SS (with $ω\approx k/(e^\varepsilon+1)$) down to $\lceil \log_2 \ell \rceil + \lceil \log_2 m_j \rceil$ bits, where $m_j < k$. Server-side decoding runs in $Θ(n + r k \ell)$ time, where $r$ is the number of LSMR (Fong and Saunders 2011) iterations. In practice, with well-conditioned moduli (\textit{i.e.}, constant $r$ and $\ell = Θ(\log k)$), this becomes $Θ(n + k \log k)$. We prove that MSS achieves worst-case MSE within a constant factor of state-of-the-art protocols such as SS and \textsf{ProjectiveGeometryResponse} (PGR) (Feldman et al. 2022), while avoiding the algebraic prerequisites and dynamic-programming decoder required by PGR. Empirically, MSS matches the estimation accuracy of SS, PGR, and \textsf{RAPPOR} (Erlingsson, Pihur, and Korolova 2014) across realistic $(k, \varepsilon)$ settings, while offering faster decoding than PGR and shorter user messages than SS. Lastly, by sampling from multiple moduli and reporting only a single perturbed residue, MSS achieves the lowest reconstruction-attack success rate among all evaluated LDP protocols.
comment: AAAI 2026
☆ A Unified Convergence Analysis for Semi-Decentralized Learning: Sampled-to-Sampled vs. Sampled-to-All Communication AAAI 2026
In semi-decentralized federated learning, devices primarily rely on device-to-device communication but occasionally interact with a central server. Periodically, a sampled subset of devices uploads their local models to the server, which computes an aggregate model. The server can then either (i) share this aggregate model only with the sampled clients (sampled-to-sampled, S2S) or (ii) broadcast it to all clients (sampled-to-all, S2A). Despite their practical significance, a rigorous theoretical and empirical comparison of these two strategies remains absent. We address this gap by analyzing S2S and S2A within a unified convergence framework that accounts for key system parameters: sampling rate, server aggregation frequency, and network connectivity. Our results, both analytical and experimental, reveal distinct regimes where one strategy outperforms the other, depending primarily on the degree of data heterogeneity across devices. These insights lead to concrete design guidelines for practical semi-decentralized FL deployments.
comment: Accepted as a conference paper at AAAI 2026 (oral presentation). This is the extended version including the appendix
☆ Human-AI collaborative autonomous synthesis with pulsed laser deposition for remote epitaxy
Autonomous laboratories typically rely on data-driven decision-making, occasionally with human-in-the-loop oversight to inject domain expertise. Fully leveraging AI agents, however, requires tightly coupled, collaborative workflows spanning hypothesis generation, experimental planning, execution, and interpretation. To address this, we develop and deploy a human-AI collaborative (HAIC) workflow that integrates large language models for hypothesis generation and analysis, with collaborative policy updates driving autonomous pulsed laser deposition (PLD) experiments for remote epitaxy of BaTiO$_3$/graphene. HAIC accelerated the hypothesis formation and experimental design and efficiently mapped the growth space to graphene-damage. In situ Raman spectroscopy reveals that chemistry drives degradation while the highest energy plume components seed defects, identifying a low-O$_2$ pressure low-temperature synthesis window that preserves graphene but is incompatible with optimal BaTiO$_3$ growth. Thus, we show a two-step Ar/O$_2$ deposition is required to exfoliate ferroelectric BaTiO$_3$ while maintaining a monolayer graphene interlayer. HAIC stages human insight with AI reasoning between autonomous batches to drive rapid scientific progress, providing an evolution to many existing human-in-the-loop autonomous workflows.
☆ Aligning Machiavellian Agents: Behavior Steering via Test-Time Policy Shaping AAAI 2026
The deployment of decision-making AI agents presents a critical challenge in maintaining alignment with human values or guidelines while operating in complex, dynamic environments. Agents trained solely to achieve their objectives may adopt harmful behavior, exposing a key trade-off between maximizing the reward function and maintaining the alignment. For the pre-trained agents, ensuring alignment is particularly challenging, as retraining can be a costly and slow process. This is further complicated by the diverse and potentially conflicting attributes representing the ethical values for alignment. To address these challenges, we propose a test-time alignment technique based on model-guided policy shaping. Our method allows precise control over individual behavioral attributes, generalizes across diverse reinforcement learning (RL) environments, and facilitates a principled trade-off between ethical alignment and reward maximization without requiring agent retraining. We evaluate our approach using the MACHIAVELLI benchmark, which comprises 134 text-based game environments and thousands of annotated scenarios involving ethical decisions. The RL agents are first trained to maximize the reward in their respective games. At test time, we apply policy shaping via scenario-action attribute classifiers to ensure decision alignment with ethical attributes. We compare our approach against prior training-time methods and general-purpose agents, as well as study several types of ethical violations and power-seeking behavior. Our results demonstrate that test-time policy shaping provides an effective and scalable solution for mitigating unethical behavior across diverse environments and alignment attributes.
comment: Accepted to AAAI 2026 AI Alignment Track
☆ Volumetric Ergodic Control
Ergodic control synthesizes optimal coverage behaviors over spatial distributions for nonlinear systems. However, existing formulations model the robot as a non-volumetric point, but in practice a robot interacts with the environment through its body and sensors with physical volume. In this work, we introduce a new ergodic control formulation that optimizes spatial coverage using a volumetric state representation. Our method preserves the asymptotic coverage guarantees of ergodic control, adds minimal computational overhead for real-time control, and supports arbitrary sample-based volumetric models. We evaluate our method across search and manipulation tasks -- with multiple robot dynamics and end-effector geometries or sensor models -- and show that it improves coverage efficiency by more than a factor of two while maintaining a 100% task completion rate across all experiments, outperforming the standard ergodic control method. Finally, we demonstrate the effectiveness of our method on a robot arm performing mechanical erasing tasks.
comment: 8 pages, 8 figures
☆ Experience-Guided Adaptation of Inference-Time Reasoning Strategies
Enabling agentic AI systems to adapt their problem-solving approaches based on post-training interactions remains a fundamental challenge. While systems that update and maintain a memory at inference time have been proposed, existing designs only steer the system by modifying textual input to a language model or agent, which means that they cannot change sampling parameters, remove tools, modify system prompts, or switch between agentic and workflow paradigms. On the other hand, systems that adapt more flexibly require offline optimization and remain static once deployed. We present Experience-Guided Reasoner (EGuR), which generates tailored strategies -- complete computational procedures involving LLM calls, tools, sampling parameters, and control logic -- dynamically at inference time based on accumulated experience. We achieve this using an LLM-based meta-strategy -- a strategy that outputs strategies -- enabling adaptation of all strategy components (prompts, sampling parameters, tool configurations, and control logic). EGuR operates through two components: a Guide generates multiple candidate strategies conditioned on the current problem and structured memory of past experiences, while a Consolidator integrates execution feedback to improve future strategy generation. This produces complete, ready-to-run strategies optimized for each problem, which can be cached, retrieved, and executed as needed without wasting resources. Across five challenging benchmarks (AIME 2025, 3-SAT, and three Big Bench Extra Hard tasks), EGuR achieves up to 14% accuracy improvements over the strongest baselines while reducing computational costs by up to 111x, with both metrics improving as the system gains experience.
comment: 29 pages, 5 figures
☆ PAS : Prelim Attention Score for Detecting Object Hallucinations in Large Vision--Language Models
Large vision-language models (LVLMs) are powerful, yet they remain unreliable due to object hallucinations. In this work, we show that in many hallucinatory predictions the LVLM effectively ignores the image and instead relies on previously generated output (prelim) tokens to infer new objects. We quantify this behavior via the mutual information between the image and the predicted object conditioned on the prelim, demonstrating that weak image dependence strongly correlates with hallucination. Building on this finding, we introduce the Prelim Attention Score (PAS), a lightweight, training-free signal computed from attention weights over prelim tokens. PAS requires no additional forward passes and can be computed on the fly during inference. Exploiting this previously overlooked signal, PAS achieves state-of-the-art object-hallucination detection across multiple models and datasets, enabling real-time filtering and intervention.
☆ Intrinsic Dimension Estimation for Radio Galaxy Zoo using Diffusion Models NeurIPS 2025
In this work, we estimate the intrinsic dimension (iD) of the Radio Galaxy Zoo (RGZ) dataset using a score-based diffusion model. We examine how the iD estimates vary as a function of Bayesian neural network (BNN) energy scores, which measure how similar the radio sources are to the MiraBest subset of the RGZ dataset. We find that out-of-distribution sources exhibit higher iD values, and that the overall iD for RGZ exceeds those typically reported for natural image datasets. Furthermore, we analyse how iD varies across Fanaroff-Riley (FR) morphological classes and as a function of the signal-to-noise ratio (SNR). While no relationship is found between FR I and FR II classes, a weak trend toward higher SNR at lower iD. Future work using the RGZ dataset could make use of the relationship between iD and energy scores to quantitatively study and improve the representations learned by various self-supervised learning algorithms.
comment: 9 pages, 5 figures, 2 tables, submitted to NeurIPS 2025 ML4PS Workshop
☆ ImAgent: A Unified Multimodal Agent Framework for Test-Time Scalable Image Generation
Recent text-to-image (T2I) models have made remarkable progress in generating visually realistic and semantically coherent images. However, they still suffer from randomness and inconsistency with the given prompts, particularly when textual descriptions are vague or underspecified. Existing approaches, such as prompt rewriting, best-of-N sampling, and self-refinement, can mitigate these issues but usually require additional modules and operate independently, hindering test-time scaling efficiency and increasing computational overhead. In this paper, we introduce ImAgent, a training-free unified multimodal agent that integrates reasoning, generation, and self-evaluation within a single framework for efficient test-time scaling. Guided by a policy controller, multiple generation actions dynamically interact and self-organize to enhance image fidelity and semantic alignment without relying on external models. Extensive experiments on image generation and editing tasks demonstrate that ImAgent consistently improves over the backbone and even surpasses other strong baselines where the backbone model fails, highlighting the potential of unified multimodal agents for adaptive and efficient image generation under test-time scaling.
comment: 12 pages, 5 tables, 6 figures
☆ Inferring response times of perceptual decisions with Poisson variational autoencoders NeurIPS 2025
Many properties of perceptual decision making are well-modeled by deep neural networks. However, such architectures typically treat decisions as instantaneous readouts, overlooking the temporal dynamics of the decision process. We present an image-computable model of perceptual decision making in which choices and response times arise from efficient sensory encoding and Bayesian decoding of neural spiking activity. We use a Poisson variational autoencoder to learn unsupervised representations of visual stimuli in a population of rate-coded neurons, modeled as independent homogeneous Poisson processes. A task-optimized decoder then continually infers an approximate posterior over actions conditioned on incoming spiking activity. Combining these components with an entropy-based stopping rule yields a principled and image-computable model of perceptual decisions capable of generating trial-by-trial patterns of choices and response times. Applied to MNIST digit classification, the model reproduces key empirical signatures of perceptual decision making, including stochastic variability, right-skewed response time distributions, logarithmic scaling of response times with the number of alternatives (Hick's law), and speed-accuracy trade-offs.
comment: To appear at the NeurIPS 2025 Workshop on Data on the Mind and Brain
☆ Context-aware Adaptive Visualizations for Critical Decision Making
Effective decision-making often relies on timely insights from complex visual data. While Information Visualization (InfoVis) dashboards can support this process, they rarely adapt to users' cognitive state, and less so in real time. We present Symbiotik, an intelligent, context-aware adaptive visualization system that leverages neurophysiological signals to estimate mental workload (MWL) and dynamically adapt visual dashboards using reinforcement learning (RL). Through a user study with 120 participants and three visualization types, we demonstrate that our approach improves task performance and engagement. Symbiotik offers a scalable, real-time adaptation architecture, and a validated methodology for neuroadaptive user interfaces.
☆ Benchmarking Visual LLMs Resilience to Unanswerable Questions on Visually Rich Documents
The evolution of Visual Large Language Models (VLLMs) has revolutionized the automatic understanding of Visually Rich Documents (VRDs), which contain both textual and visual elements. Although VLLMs excel in Visual Question Answering (VQA) on multi-page VRDs, their ability to detect unanswerable questions is still an open research question. Our research delves into the robustness of the VLLMs to plausible yet unanswerable questions, i.e., questions that appear valid but cannot be answered due to subtle corruptions caused by swaps between related concepts or plausible question formulations. Corruptions are generated by replacing the original natural language entities with other ones of the same type, belonging to different document elements, and in different layout positions or pages of the related document. To this end, we present VRD-UQA (VISUALLY RICH DOCUMENT UNANSWERABLE QUESTION ANSWERING), a benchmark for evaluating VLLMs' resilience to plausible yet unanswerable questions across multiple dimensions. It automatically alters the questions of existing VQA datasets consisting of multi-page VRDs, verifies their unanswerability using a VLLM-as-a-judge approach, and then thoroughly evaluates VLLMs' performance. Experiments, run on 12 models, analyze: (1) The VLLMs' accuracy in detecting unanswerable questions at both page and document levels; (2) The effect of different types of corruption (NLP entity, document element, layout); (3) The effectiveness of different knowledge injection strategies based on in-context learning (OCR, multi-page selection, or the possibility of unanswerability). Our findings reveal VLLMs' limitations and demonstrate that VRD-UQA can serve as an evaluation framework for developing resilient document VQA systems.
☆ Epistemic Error Decomposition for Multi-step Time Series Forecasting: Rethinking Bias-Variance in Recursive and Direct Strategies
Multi-step forecasting is often described through a simple rule of thumb: recursive strategies are said to have high bias and low variance, while direct strategies are said to have low bias and high variance. We revisit this belief by decomposing the expected multi-step forecast error into three parts: irreducible noise, a structural approximation gap, and an estimation-variance term. For linear predictors we show that the structural gap is identically zero for any dataset. For nonlinear predictors, however, the repeated composition used in recursion can increase model expressivity, making the structural gap depend on both the model and the data. We further show that the estimation variance of the recursive strategy at any horizon can be written as the one-step variance multiplied by a Jacobian-based amplification factor that measures how sensitive the composed predictor is to parameter error. This perspective explains when recursive forecasting may simultaneously have lower bias and higher variance than direct forecasting. Experiments with multilayer perceptrons on the ETTm1 dataset confirm these findings. The results offer practical guidance for choosing between recursive and direct strategies based on model nonlinearity and noise characteristics, rather than relying on traditional bias-variance intuition.
comment: 2025 EIML Eurips Workshop, 6 pages
☆ Retrofit: Continual Learning with Bounded Forgetting for Security Applications
Modern security analytics are increasingly powered by deep learning models, but their performance often degrades as threat landscapes evolve and data representations shift. While continual learning (CL) offers a promising paradigm to maintain model effectiveness, many approaches rely on full retraining or data replay, which are infeasible in data-sensitive environments. Moreover, existing methods remain inadequate for security-critical scenarios, facing two coupled challenges in knowledge transfer: preserving prior knowledge without old data and integrating new knowledge with minimal interference. We propose RETROFIT, a data retrospective-free continual learning method that achieves bounded forgetting for effective knowledge transfer. Our key idea is to consolidate previously trained and newly fine-tuned models, serving as teachers of old and new knowledge, through parameter-level merging that eliminates the need for historical data. To mitigate interference, we apply low-rank and sparse updates that confine parameter changes to independent subspaces, while a knowledge arbitration dynamically balances the teacher contributions guided by model confidence. Our evaluation on two representative applications demonstrates that RETROFIT consistently mitigates forgetting while maintaining adaptability. In malware detection under temporal drift, it substantially improves the retention score, from 20.2% to 38.6% over CL baselines, and exceeds the oracle upper bound on new data. In binary summarization across decompilation levels, where analyzing stripped binaries is especially challenging, RETROFIT achieves around twice the BLEU score of transfer learning used in prior work and surpasses all baselines in cross-representation generalization.
☆ The Persistence of Cultural Memory: Investigating Multimodal Iconicity in Diffusion Models
Our work addresses the ambiguity between generalization and memorization in text-to-image diffusion models, focusing on a specific case we term multimodal iconicity. This refers to instances where images and texts evoke culturally shared associations, such as when a title recalls a familiar artwork or film scene. While prior research on memorization and unlearning emphasizes forgetting, we examine what is remembered and how, focusing on the balance between recognizing cultural references and reproducing them. We introduce an evaluation framework that separates recognition, whether a model identifies a reference, from realization, how it depicts it through replication or reinterpretation, quantified through measures capturing both dimensions. By evaluating five diffusion models across 767 Wikidata-derived cultural references spanning static and dynamic imagery, we show that our framework distinguishes replication from transformation more effectively than existing similarity-based methods. To assess linguistic sensitivity, we conduct prompt perturbation experiments using synonym substitutions and literal image descriptions, finding that models often reproduce iconic visual structures even when textual cues are altered. Finally, our analysis shows that cultural alignment correlates not only with training data frequency, but also textual uniqueness, reference popularity, and creation date. Our work reveals that the value of diffusion models lies not only in what they reproduce but in how they transform and recontextualize cultural knowledge, advancing evaluation beyond simple text-image matching toward richer contextual understanding.
☆ CURENet: Combining Unified Representations for Efficient Chronic Disease Prediction
Electronic health records (EHRs) are designed to synthesize diverse data types, including unstructured clinical notes, structured lab tests, and time-series visit data. Physicians draw on these multimodal and temporal sources of EHR data to form a comprehensive view of a patient's health, which is crucial for informed therapeutic decision-making. Yet, most predictive models fail to fully capture the interactions, redundancies, and temporal patterns across multiple data modalities, often focusing on a single data type or overlooking these complexities. In this paper, we present CURENet, a multimodal model (Combining Unified Representations for Efficient chronic disease prediction) that integrates unstructured clinical notes, lab tests, and patients' time-series data by utilizing large language models (LLMs) for clinical text processing and textual lab tests, as well as transformer encoders for longitudinal sequential visits. CURENet has been capable of capturing the intricate interaction between different forms of clinical data and creating a more reliable predictive model for chronic illnesses. We evaluated CURENet using the public MIMIC-III and private FEMH datasets, where it achieved over 94\% accuracy in predicting the top 10 chronic conditions in a multi-label framework. Our findings highlight the potential of multimodal EHR integration to enhance clinical decision-making and improve patient outcomes.
☆ Variational Quantum Algorithms for Particle Track Reconstruction
Quantum Computing is a rapidly developing field with the potential to tackle the increasing computational challenges faced in high-energy physics. In this work, we explore the potential and limitations of variational quantum algorithms in solving the particle track reconstruction problem. We present an analysis of two distinct formulations for identifying straight-line tracks in a multilayer detection system, inspired by the LHCb vertex detector. The first approach is formulated as a ground-state energy problem, while the second approach is formulated as a system of linear equations. This work addresses one of the main challenges when dealing with variational quantum algorithms on general problems, namely designing an expressive and efficient quantum ansatz working on tracking events with fixed detector geometry. For this purpose, we employed a quantum architecture search method based on Monte Carlo Tree Search to design the quantum circuits for different problem sizes. We provide experimental results to test our approach on both formulations for different problem sizes in terms of performance and computational cost.
comment: 17 pages, 5 figures, 2 tables, pre-proceedings BNAIC 2024
☆ Robust and Efficient Communication in Multi-Agent Reinforcement Learning
Multi-agent reinforcement learning (MARL) has made significant strides in enabling coordinated behaviors among autonomous agents. However, most existing approaches assume that communication is instantaneous, reliable, and has unlimited bandwidth; these conditions are rarely met in real-world deployments. This survey systematically reviews recent advances in robust and efficient communication strategies for MARL under realistic constraints, including message perturbations, transmission delays, and limited bandwidth. Furthermore, because the challenges of low-latency reliability, bandwidth-intensive data sharing, and communication-privacy trade-offs are central to practical MARL systems, we focus on three applications involving cooperative autonomous driving, distributed simultaneous localization and mapping, and federated learning. Finally, we identify key open challenges and future research directions, advocating a unified approach that co-designs communication, learning, and robustness to bridge the gap between theoretical MARL models and practical implementations.
☆ MarsRL: Advancing Multi-Agent Reasoning System via Reinforcement Learning with Agentic Pipeline Parallelism
Recent progress in large language models (LLMs) has been propelled by reinforcement learning with verifiable rewards (RLVR) and test-time scaling. However, the limited output length of LLMs constrains the depth of reasoning attainable in a single inference process. Multi-agent reasoning systems offer a promising alternative by employing multiple agents including Solver, Verifier, and Corrector, to iteratively refine solutions. While effective in closed-source models like Gemini 2.5 Pro, they struggle to generalize to open-source models due to insufficient critic and correction capabilities. To address this, we propose MarsRL, a novel reinforcement learning framework with agentic pipeline parallelism, designed to jointly optimize all agents in the system. MarsRL introduces agent-specific reward mechanisms to mitigate reward noise and employs pipeline-inspired training to enhance efficiency in handling long trajectories. Applied to Qwen3-30B-A3B-Thinking-2507, MarsRL improves AIME2025 accuracy from 86.5% to 93.3% and BeyondAIME from 64.9% to 73.8%, even surpassing Qwen3-235B-A22B-Thinking-2507. These findings highlight the potential of MarsRL to advance multi-agent reasoning systems and broaden their applicability across diverse reasoning tasks.
comment: 10 pages
☆ KarmaTS: A Universal Simulation Platform for Multivariate Time Series with Functional Causal Dynamics
We introduce KarmaTS, an interactive framework for constructing lag-indexed, executable spatiotemporal causal graphical models for multivariate time series (MTS) simulation. Motivated by the challenge of access-restricted physiological data, KarmaTS generates synthetic MTS with known causal dynamics and augments real-world datasets with expert knowledge. The system constructs a discrete-time structural causal process (DSCP) by combining expert knowledge and algorithmic proposals in a mixed-initiative, human-in-the-loop workflow. The resulting DSCP supports simulation and causal interventions, including those under user-specified distribution shifts. KarmaTS handles mixed variable types, contemporaneous and lagged edges, and modular edge functionals ranging from parameterizable templates to neural network models. Together, these features enable flexible validation and benchmarking of causal discovery algorithms through expert-informed simulation.
☆ Privacy Challenges and Solutions in Retrieval-Augmented Generation-Enhanced LLMs for Healthcare Chatbots: A Review of Applications, Risks, and Future Directions
Retrieval-augmented generation (RAG) has rapidly emerged as a transformative approach for integrating large language models into clinical and biomedical workflows. However, privacy risks, such as protected health information (PHI) exposure, remain inconsistently mitigated. This review provides a thorough analysis of the current landscape of RAG applications in healthcare, including (i) sensitive data type across clinical scenarios, (ii) the associated privacy risks, (iii) current and emerging data-privacy protection mechanisms and (iv) future direction for patient data privacy protection. We synthesize 23 articles on RAG applications in healthcare and systematically analyze privacy challenges through a pipeline-structured framework encompassing data storage, transmission, retrieval and generation stages, delineating potential failure modes, their underlying causes in threat models and system mechanisms, and their practical implications. Building on this analysis, we critically review 17 articles on privacy-preserving strategies for RAG systems. Our evaluation reveals critical gaps, including insufficient clinical validation, absence of standardized evaluation frameworks, and lack of automated assessment tools. We propose actionable directions based on these limitations and conclude with a call to action. This review provides researchers and practitioners with a structured framework for understanding privacy vulnerabilities in healthcare RAG and offers a roadmap toward developing systems that achieve both clinical effectiveness and robust privacy preservation.
comment: 23 pages, 2 figures
☆ M-DAIGT: A Shared Task on Multi-Domain Detection of AI-Generated Text
The generation of highly fluent text by Large Language Models (LLMs) poses a significant challenge to information integrity and academic research. In this paper, we introduce the Multi-Domain Detection of AI-Generated Text (M-DAIGT) shared task, which focuses on detecting AI-generated text across multiple domains, particularly in news articles and academic writing. M-DAIGT comprises two binary classification subtasks: News Article Detection (NAD) (Subtask 1) and Academic Writing Detection (AWD) (Subtask 2). To support this task, we developed and released a new large-scale benchmark dataset of 30,000 samples, balanced between human-written and AI-generated texts. The AI-generated content was produced using a variety of modern LLMs (e.g., GPT-4, Claude) and diverse prompting strategies. A total of 46 unique teams registered for the shared task, of which four teams submitted final results. All four teams participated in both Subtask 1 and Subtask 2. We describe the methods employed by these participating teams and briefly discuss future directions for M-DAIGT.
☆ NOVA: An Agentic Framework for Automated Histopathology Analysis and Discovery
Digitized histopathology analysis involves complex, time-intensive workflows and specialized expertise, limiting its accessibility. We introduce NOVA, an agentic framework that translates scientific queries into executable analysis pipelines by iteratively generating and running Python code. NOVA integrates 49 domain-specific tools (e.g., nuclei segmentation, whole-slide encoding) built on open-source software, and can also create new tools ad hoc. To evaluate such systems, we present SlideQuest, a 90-question benchmark -- verified by pathologists and biomedical scientists -- spanning data processing, quantitative analysis, and hypothesis testing. Unlike prior biomedical benchmarks focused on knowledge recall or diagnostic QA, SlideQuest demands multi-step reasoning, iterative coding, and computational problem solving. Quantitative evaluation shows NOVA outperforms coding-agent baselines, and a pathologist-verified case study links morphology to prognostically relevant PAM50 subtypes, demonstrating its scalable discovery potential.
☆ RLSLM: A Hybrid Reinforcement Learning Framework Aligning Rule-Based Social Locomotion Model with Human Social Norms AAAI 2026
Navigating human-populated environments without causing discomfort is a critical capability for socially-aware agents. While rule-based approaches offer interpretability through predefined psychological principles, they often lack generalizability and flexibility. Conversely, data-driven methods can learn complex behaviors from large-scale datasets, but are typically inefficient, opaque, and difficult to align with human intuitions. To bridge this gap, we propose RLSLM, a hybrid Reinforcement Learning framework that integrates a rule-based Social Locomotion Model, grounded in empirical behavioral experiments, into the reward function of a reinforcement learning framework. The social locomotion model generates an orientation-sensitive social comfort field that quantifies human comfort across space, enabling socially aligned navigation policies with minimal training. RLSLM then jointly optimizes mechanical energy and social comfort, allowing agents to avoid intrusions into personal or group space. A human-agent interaction experiment using an immersive VR-based setup demonstrates that RLSLM outperforms state-of-the-art rule-based models in user experience. Ablation and sensitivity analyses further show the model's significantly improved interpretability over conventional data-driven methods. This work presents a scalable, human-centered methodology that effectively integrates cognitive science and machine learning for real-world social navigation.
comment: AAAI 2026
☆ LAET: A Layer-wise Adaptive Ensemble Tuning Framework for Pretrained Language Models
Natural Language Processing (NLP) has transformed the financial industry, enabling advancements in areas such as textual analysis, risk management, and forecasting. Large language models (LLMs) like BloombergGPT and FinMA have set new benchmarks across various financial NLP tasks, including sentiment analysis, stock movement prediction, and credit risk assessment. Furthermore, FinMA-ES, a bilingual financial LLM, has also demonstrated strong performance using the FLARE and FLARE-ES benchmarks. However, the high computational demands of these models limit the accessibility of many organizations. To address this, we propose Layer-wise Adaptive Ensemble Tuning (LAET), a novel strategy that selectively fine-tunes the most effective layers of pre-trained LLMs by analyzing hidden state representations while freezing less critical layers. LAET significantly reduces computational overhead while enhancing task-specific performance. Our approach shows strong results in financial NLP tasks, outperforming existing benchmarks and state-of-the-art LLMs such as GPT-4, even with smaller LLMs ($\sim$3B parameters). This work bridges cutting-edge financial NLP research and real-world deployment with efficient and scalable models for financial applications.
☆ Large-scale modality-invariant foundation models for brain MRI analysis: Application to lesion segmentation
The field of computer vision is undergoing a paradigm shift toward large-scale foundation model pre-training via self-supervised learning (SSL). Leveraging large volumes of unlabeled brain MRI data, such models can learn anatomical priors that improve few-shot performance in diverse neuroimaging tasks. However, most SSL frameworks are tailored to natural images, and their adaptation to capture multi-modal MRI information remains underexplored. This work proposes a modality-invariant representation learning setup and evaluates its effectiveness in stroke and epilepsy lesion segmentation, following large-scale pre-training. Experimental results suggest that despite successful cross-modality alignment, lesion segmentation primarily benefits from preserving fine-grained modality-specific features. Model checkpoints and code are made publicly available.
comment: Submitted to IEEE ISBI 2026
☆ iMAD: Intelligent Multi-Agent Debate for Efficient and Accurate LLM Inference AAAI 2026
Large Language Model (LLM) agent systems have advanced rapidly, driven by their strong generalization in zero-shot settings. To further enhance reasoning and accuracy on complex tasks, Multi-Agent Debate (MAD) has emerged as a promising framework that engages multiple LLM agents in structured debates to encourage diverse reasoning. However, triggering MAD for every query is inefficient, as it incurs substantial computational (token) cost and may even degrade accuracy by overturning correct single-agent answers. To address these limitations, we propose intelligent Multi-Agent Debate (iMAD), a token-efficient framework that selectively triggers MAD only when it is likely to be beneficial (i.e., correcting an initially wrong answer). To achieve this goal, iMAD learns generalizable model behaviors to make accurate debate decisions. Specifically, iMAD first prompts a single agent to produce a structured self-critique response, from which we extract 41 interpretable linguistic and semantic features capturing hesitation cues. Then, iMAD uses a lightweight debate-decision classifier, trained using our proposed FocusCal loss, to determine whether to trigger MAD, enabling robust debate decisions without test dataset-specific tuning. Through extensive experiments using six (visual) question answering datasets against five competitive baselines, we have shown that iMAD significantly reduces token usage (by up to 92%) while also improving final answer accuracy (by up to 13.5%).
comment: Accepted in AAAI 2026 (Oral)
☆ MOON Embedding: Multimodal Representation Learning for E-commerce Search Advertising
We introduce MOON, our comprehensive set of sustainable iterative practices for multimodal representation learning for e-commerce applications. MOON has already been fully deployed across all stages of Taobao search advertising system, including retrieval, relevance, ranking, and so on. The performance gains are particularly significant on click-through rate (CTR) prediction task, which achieves an overall +20.00% online CTR improvement. Over the past three years, this project has delivered the largest improvement on CTR prediction task and undergone five full-scale iterations. Throughout the exploration and iteration of our MOON, we have accumulated valuable insights and practical experience that we believe will benefit the research community. MOON contains a three-stage training paradigm of "Pretraining, Post-training, and Application", allowing effective integration of multimodal representations with downstream tasks. Notably, to bridge the misalignment between the objectives of multimodal representation learning and downstream training, we define the exchange rate to quantify how effectively improvements in an intermediate metric can translate into downstream gains. Through this analysis, we identify the image-based search recall as a critical intermediate metric guiding the optimization of multimodal models. Over three years and five iterations, MOON has evolved along four critical dimensions: data processing, training strategy, model architecture, and downstream application. The lessons and insights gained through the iterative improvements will also be shared. As part of our exploration into scaling effects in the e-commerce field, we further conduct a systematic study of the scaling laws governing multimodal representation learning, examining multiple factors such as the number of training tokens, negative samples, and the length of user behavior sequences.
comment: 31 pages, 12 figures
☆ EcoAlign: An Economically Rational Framework for Efficient LVLM Alignment
Large Vision-Language Models (LVLMs) exhibit powerful reasoning capabilities but suffer sophisticated jailbreak vulnerabilities. Fundamentally, aligning LVLMs is not just a safety challenge but a problem of economic efficiency. Current alignment methods struggle with the trade-off between safety, utility, and operational costs. Critically, a focus solely on final outputs (process-blindness) wastes significant computational budget on unsafe deliberation. This flaw allows harmful reasoning to be disguised with benign justifications, thereby circumventing simple additive safety scores. To address this, we propose EcoAlign, an inference-time framework that reframes alignment as an economically rational search by treating the LVLM as a boundedly rational agent. EcoAlign incrementally expands a thought graph and scores actions using a forward-looking function (analogous to net present value) that dynamically weighs expected safety, utility, and cost against the remaining budget. To prevent deception, path safety is enforced via the weakest-link principle. Extensive experiments across 3 closed-source and 2 open-source models on 6 datasets show that EcoAlign matches or surpasses state-of-the-art safety and utility at a lower computational cost, thereby offering a principled, economical pathway to robust LVLM alignment.
☆ AUVIC: Adversarial Unlearning of Visual Concepts for Multi-modal Large Language Models AAAI 2026
Multimodal Large Language Models (MLLMs) achieve impressive performance once optimized on massive datasets. Such datasets often contain sensitive or copyrighted content, raising significant data privacy concerns. Regulatory frameworks mandating the 'right to be forgotten' drive the need for machine unlearning. This technique allows for the removal of target data without resource-consuming retraining. However, while well-studied for text, visual concept unlearning in MLLMs remains underexplored. A primary challenge is precisely removing a target visual concept without disrupting model performance on related entities. To address this, we introduce AUVIC, a novel visual concept unlearning framework for MLLMs. AUVIC applies adversarial perturbations to enable precise forgetting. This approach effectively isolates the target concept while avoiding unintended effects on similar entities. To evaluate our method, we construct VCUBench. It is the first benchmark designed to assess visual concept unlearning in group contexts. Experimental results demonstrate that AUVIC achieves state-of-the-art target forgetting rates while incurs minimal performance degradation on non-target concepts.
comment: AAAI 2026. Code: https://github.com/HaokunChen245/AUVIC
☆ Experiences from Benchmarking Vision-Language-Action Models for Robotic Manipulation
Foundation models applied in robotics, particularly \textbf{Vision--Language--Action (VLA)} models, hold great promise for achieving general-purpose manipulation. Yet, systematic real-world evaluations and cross-model comparisons remain scarce. This paper reports our \textbf{empirical experiences} from benchmarking four representative VLAs -- \textbf{ACT}, \textbf{OpenVLA--OFT}, \textbf{RDT-1B}, and \boldmath{$π_0$} -- across four manipulation tasks conducted in both simulation and on the \textbf{ALOHA Mobile} platform. We establish a \textbf{standardized evaluation framework} that measures performance along three key dimensions: (1) \textit{accuracy and efficiency} (success rate and time-to-success), (2) \textit{adaptability} across in-distribution, spatial out-of-distribution, and instance-plus-spatial out-of-distribution settings, and (3) \textit{language instruction-following accuracy}. Through this process, we observe that \boldmath{$π_0$} demonstrates superior adaptability in out-of-distribution scenarios, while \textbf{ACT} provides the highest stability in-distribution. Further analysis highlights differences in computational demands, data-scaling behavior, and recurring failure modes such as near-miss grasps, premature releases, and long-horizon state drift. These findings reveal practical trade-offs among VLA model architectures in balancing precision, generalization, and deployment cost, offering actionable insights for selecting and deploying VLAs in real-world robotic manipulation tasks.
☆ Building the Web for Agents: A Declarative Framework for Agent-Web Interaction
The increasing deployment of autonomous AI agents on the web is hampered by a fundamental misalignment: agents must infer affordances from human-oriented user interfaces, leading to brittle, inefficient, and insecure interactions. To address this, we introduce VOIX, a web-native framework that enables websites to expose reliable, auditable, and privacy-preserving capabilities for AI agents through simple, declarative HTML elements. VOIX introduces and tags, allowing developers to explicitly define available actions and relevant state, thereby creating a clear, machine-readable contract for agent behavior. This approach shifts control to the website developer while preserving user privacy by disconnecting the conversational interactions from the website. We evaluated the framework's practicality, learnability, and expressiveness in a three-day hackathon study with 16 developers. The results demonstrate that participants, regardless of prior experience, were able to rapidly build diverse and functional agent-enabled web applications. Ultimately, this work provides a foundational mechanism for realizing the Agentic Web, enabling a future of seamless and secure human-AI collaboration on the web.
comment: for associated documentation, see https://svenschultze.github.io/VOIX/
☆ D-GAP: Improving Out-of-Domain Robustness via Dataset-Agnostic and Gradient-Guided Augmentation in Amplitude and Pixel Spaces
Out-of-domain (OOD) robustness is challenging to achieve in real-world computer vision applications, where shifts in image background, style, and acquisition instruments always degrade model performance. Generic augmentations show inconsistent gains under such shifts, whereas dataset-specific augmentations require expert knowledge and prior analysis. Moreover, prior studies show that neural networks adapt poorly to domain shifts because they exhibit a learning bias to domain-specific frequency components. Perturbing frequency values can mitigate such bias but overlooks pixel-level details, leading to suboptimal performance. To address these problems, we propose D-GAP (Dataset-agnostic and Gradient-guided augmentation in Amplitude and Pixel spaces), improving OOD robustness by introducing targeted augmentation in both the amplitude space (frequency space) and pixel space. Unlike conventional handcrafted augmentations, D-GAP computes sensitivity maps in the frequency space from task gradients, which reflect how strongly the model responds to different frequency components, and uses the maps to adaptively interpolate amplitudes between source and target samples. This way, D-GAP reduces the learning bias in frequency space, while a complementary pixel-space blending procedure restores fine spatial details. Extensive experiments on four real-world datasets and three domain-adaptation benchmarks show that D-GAP consistently outperforms both generic and dataset-specific augmentations, improving average OOD performance by +5.3% on real-world datasets and +1.8% on benchmark datasets.
☆ Can You Tell the Difference? Contrastive Explanations for ABox Entailments AAAI-2026
We introduce the notion of contrastive ABox explanations to answer questions of the type "Why is a an instance of C, but b is not?". While there are various approaches for explaining positive entailments (why is C(a) entailed by the knowledge base) as well as missing entailments (why is C(b) not entailed) in isolation, contrastive explanations consider both at the same time, which allows them to focus on the relevant commonalities and differences between a and b. We develop an appropriate notion of contrastive explanations for the special case of ABox reasoning with description logic ontologies, and analyze the computational complexity for different variants under different optimality criteria, considering lightweight as well as more expressive description logics. We implemented a first method for computing one variant of contrastive explanations, and evaluated it on generated problems for realistic knowledge bases.
comment: Technical report to the paper accepted at AAAI-2026
☆ A Workflow for Full Traceability of AI Decisions
An ever increasing number of high-stake decisions are made or assisted by automated systems employing brittle artificial intelligence technology. There is a substantial risk that some of these decision induce harm to people, by infringing their well-being or their fundamental human rights. The state-of-the-art in AI systems makes little effort with respect to appropriate documentation of the decision process. This obstructs the ability to trace what went into a decision, which in turn is a prerequisite to any attempt of reconstructing a responsibility chain. Specifically, such traceability is linked to a documentation that will stand up in court when determining the cause of some AI-based decision that inadvertently or intentionally violates the law. This paper takes a radical, yet practical, approach to this problem, by enforcing the documentation of each and every component that goes into the training or inference of an automated decision. As such, it presents the first running workflow supporting the generation of tamper-proof, verifiable and exhaustive traces of AI decisions. In doing so, we expand the DBOM concept into an effective running workflow leveraging confidential computing technology. We demonstrate the inner workings of the workflow in the development of an app to tell poisonous and edible mushrooms apart, meant as a playful example of high-stake decision support.
comment: 10 pages, 10 figures
☆ SQuaD: The Software Quality Dataset
Software quality research increasingly relies on large-scale datasets that measure both the product and process aspects of software systems. However, existing resources often focus on limited dimensions, such as code smells, technical debt, or refactoring activity, thereby restricting comprehensive analyses across time and quality dimensions. To address this gap, we present the Software Quality Dataset (SQuaD), a multi-dimensional, time-aware collection of software quality metrics extracted from 450 mature open-source projects across diverse ecosystems, including Apache, Mozilla, FFmpeg, and the Linux kernel. By integrating nine state-of-the-art static analysis tools, i.e., SonarQube, CodeScene, PMD, Understand, CK, JaSoMe, RefactoringMiner, RefactoringMiner++, and PyRef, our dataset unifies over 700 unique metrics at method, class, file, and project levels. Covering a total of 63,586 analyzed project releases, SQuaD also provides version control and issue-tracking histories, software vulnerability data (CVE/CWE), and process metrics proven to enhance Just-In-Time (JIT) defect prediction. The SQuaD enables empirical research on maintainability, technical debt, software evolution, and quality assessment at unprecedented scale. We also outline emerging research directions, including automated dataset updates and cross-project quality modeling to support the continuous evolution of software analytics. The dataset is publicly available on ZENODO (DOI: 10.5281/zenodo.17566690).
☆ KGQuest: Template-Driven QA Generation from Knowledge Graphs with LLM-Based Refinement
The generation of questions and answers (QA) from knowledge graphs (KG) plays a crucial role in the development and testing of educational platforms, dissemination tools, and large language models (LLM). However, existing approaches often struggle with scalability, linguistic quality, and factual consistency. This paper presents a scalable and deterministic pipeline for generating natural language QA from KGs, with an additional refinement step using LLMs to further enhance linguistic quality. The approach first clusters KG triplets based on their relations, creating reusable templates through natural language rules derived from the entity types of objects and relations. A module then leverages LLMs to refine these templates, improving clarity and coherence while preserving factual accuracy. Finally, the instantiation of answer options is achieved through a selection strategy that introduces distractors from the KG. Our experiments demonstrate that this hybrid approach efficiently generates high-quality QA pairs, combining scalability with fluency and linguistic precision.
☆ AIonopedia: an LLM agent orchestrating multimodal learning for ionic liquid discovery
The discovery of novel Ionic Liquids (ILs) is hindered by critical challenges in property prediction, including limited data, poor model accuracy, and fragmented workflows. Leveraging the power of Large Language Models (LLMs), we introduce AIonopedia, to the best of our knowledge, the first LLM agent for IL discovery. Powered by an LLM-augmented multimodal domain foundation model for ILs, AIonopedia enables accurate property predictions and incorporates a hierarchical search architecture for molecular screening and design. Trained and evaluated on a newly curated and comprehensive IL dataset, our model delivers superior performance. Complementing these results, evaluations on literature-reported systems indicate that the agent can perform effective IL modification. Moving beyond offline tests, the practical efficacy was further confirmed through real-world wet-lab validation, in which the agent demonstrated exceptional generalization capabilities on challenging out-of-distribution tasks, underscoring its ability to accelerate real-world IL discovery.
☆ UAVBench: An Open Benchmark Dataset for Autonomous and Agentic AI UAV Systems via LLM-Generated Flight Scenarios
Autonomous aerial systems increasingly rely on large language models (LLMs) for mission planning, perception, and decision-making, yet the lack of standardized and physically grounded benchmarks limits systematic evaluation of their reasoning capabilities. To address this gap, we introduce UAVBench, an open benchmark dataset comprising 50,000 validated UAV flight scenarios generated through taxonomy-guided LLM prompting and multi-stage safety validation. Each scenario is encoded in a structured JSON schema that includes mission objectives, vehicle configuration, environmental conditions, and quantitative risk labels, providing a unified representation of UAV operations across diverse domains. Building on this foundation, we present UAVBench_MCQ, a reasoning-oriented extension containing 50,000 multiple-choice questions spanning ten cognitive and ethical reasoning styles, ranging from aerodynamics and navigation to multi-agent coordination and integrated reasoning. This framework enables interpretable and machine-checkable assessment of UAV-specific cognition under realistic operational contexts. We evaluate 32 state-of-the-art LLMs, including GPT-5, ChatGPT-4o, Gemini 2.5 Flash, DeepSeek V3, Qwen3 235B, and ERNIE 4.5 300B, and find strong performance in perception and policy reasoning but persistent challenges in ethics-aware and resource-constrained decision-making. UAVBench establishes a reproducible and physically grounded foundation for benchmarking agentic AI in autonomous aerial systems and advancing next-generation UAV reasoning intelligence. To support open science and reproducibility, we release the UAVBench dataset, the UAVBench_MCQ benchmark, evaluation scripts, and all related materials on GitHub at https://github.com/maferrag/UAVBench
comment: 18 pages, 5 Figures
☆ Toward Gaze Target Detection of Young Autistic Children AAAI 2026
The automatic detection of gaze targets in autistic children through artificial intelligence can be impactful, especially for those who lack access to a sufficient number of professionals to improve their quality of life. This paper introduces a new, real-world AI application for gaze target detection in autistic children, which predicts a child's point of gaze from an activity image. This task is foundational for building automated systems that can measure joint attention-a core challenge in Autism Spectrum Disorder (ASD). To facilitate the study of this challenging application, we collected the first-ever Autism Gaze Target (AGT) dataset. We further propose a novel Socially Aware Coarse-to-Fine (SACF) gaze detection framework that explicitly leverages the social context of a scene to overcome the class imbalance common in autism datasets-a consequence of autistic children's tendency to show reduced gaze to faces. It utilizes a two-pathway architecture with expert models specialized in social and non-social gaze, guided by a context-awareness gate module. The results of our comprehensive experiments demonstrate that our framework achieves new state-of-the-art performance for gaze target detection in this population, significantly outperforming existing methods, especially on the critical minority class of face-directed gaze.
comment: AAAI 2026 Artificial Intelligence for Social Impact Track
☆ HealSplit: Towards Self-Healing through Adversarial Distillation in Split Federated Learning AAAI 2026
Split Federated Learning (SFL) is an emerging paradigm for privacy-preserving distributed learning. However, it remains vulnerable to sophisticated data poisoning attacks targeting local features, labels, smashed data, and model weights. Existing defenses, primarily adapted from traditional Federated Learning (FL), are less effective under SFL due to limited access to complete model updates. This paper presents HealSplit, the first unified defense framework tailored for SFL, offering end-to-end detection and recovery against five sophisticated types of poisoning attacks. HealSplit comprises three key components: (1) a topology-aware detection module that constructs graphs over smashed data to identify poisoned samples via topological anomaly scoring (TAS); (2) a generative recovery pipeline that synthesizes semantically consistent substitutes for detected anomalies, validated by a consistency validation student; and (3) an adversarial multi-teacher distillation framework trains the student using semantic supervision from a Vanilla Teacher and anomaly-aware signals from an Anomaly-Influence Debiasing (AD) Teacher, guided by the alignment between topological and gradient-based interaction matrices. Extensive experiments on four benchmark datasets demonstrate that HealSplit consistently outperforms ten state-of-the-art defenses, achieving superior robustness and defense effectiveness across diverse attack scenarios.
comment: Accepted by AAAI 2026
☆ Virtual Width Networks
We introduce Virtual Width Networks (VWN), a framework that delivers the benefits of wider representations without incurring the quadratic cost of increasing the hidden size. VWN decouples representational width from backbone width, expanding the embedding space while keeping backbone compute nearly constant. In our large-scale experiment, an 8-times expansion accelerates optimization by over 2 times for next-token and 3 times for next-2-token prediction. The advantage amplifies over training as both the loss gap grows and the convergence-speedup ratio increases, showing that VWN is not only token-efficient but also increasingly effective with scale. Moreover, we identify an approximately log-linear scaling relation between virtual width and loss reduction, offering an initial empirical basis and motivation for exploring virtual-width scaling as a new dimension of large-model efficiency.
☆ STaR: Towards Cognitive Table Reasoning via Slow-Thinking Large Language Models
Table reasoning with the large language models (LLMs) is a fundamental path toward building intelligent systems that can understand and analyze over structured data. While recent progress has shown promising results, they still suffer from two key limitations: (i) the reasoning processes lack the depth and iterative refinement characteristic of human cognition; and (ii) the reasoning processes exhibit instability, which compromises their reliability in downstream applications. In this work, we present STaR (slow-thinking for table reasoning), a new framework achieving cognitive table reasoning, in which LLMs are equipped with slow-thinking capabilities by explicitly modeling step-by-step thinking and uncertainty-aware inference. During training, STaR employs two-stage difficulty-aware reinforcement learning (DRL), progressively learning from simple to complex queries under a composite reward. During inference, STaR performs trajectory-level uncertainty quantification by integrating token-level confidence and answer consistency, enabling selection of more credible reasoning paths. Extensive experiments on benchmarks demonstrate that STaR achieves superior performance and enhanced reasoning stability. Moreover, strong generalization over out-of-domain datasets further demonstrates STaR's potential as a reliable and cognitively inspired solution for table reasoning with LLMs.
☆ 3D Gaussian and Diffusion-Based Gaze Redirection
High-fidelity gaze redirection is critical for generating augmented data to improve the generalization of gaze estimators. 3D Gaussian Splatting (3DGS) models like GazeGaussian represent the state-of-the-art but can struggle with rendering subtle, continuous gaze shifts. In this paper, we propose DiT-Gaze, a framework that enhances 3D gaze redirection models using a novel combination of Diffusion Transformer (DiT), weak supervision across gaze angles, and an orthogonality constraint loss. DiT allows higher-fidelity image synthesis, while our weak supervision strategy using synthetically generated intermediate gaze angles provides a smooth manifold of gaze directions during training. The orthogonality constraint loss mathematically enforces the disentanglement of internal representations for gaze, head pose, and expression. Comprehensive experiments show that DiT-Gaze sets a new state-of-the-art in both perceptual quality and redirection accuracy, reducing the state-of-the-art gaze error by 4.1% to 6.353 degrees, providing a superior method for creating synthetic training data. Our code and models will be made available for the research community to benchmark against.
☆ Multi-agent Undercover Gaming: Hallucination Removal via Counterfactual Test for Multimodal Reasoning AAAI 2026
Hallucination continues to pose a major obstacle in the reasoning capabilities of large language models (LLMs). Although the Multi-Agent Debate (MAD) paradigm offers a promising solution by promoting consensus among multiple agents to enhance reliability, it relies on the unrealistic assumption that all debaters are rational and reflective, which is a condition that may not hold when agents themselves are prone to hallucinations. To address this gap, we introduce the Multi-agent Undercover Gaming (MUG) protocol, inspired by social deduction games like "Who is Undercover?". MUG reframes MAD as a process of detecting "undercover" agents (those suffering from hallucinations) by employing multimodal counterfactual tests. Specifically, we modify reference images to introduce counterfactual evidence and observe whether agents can accurately identify these changes, providing ground-truth for identifying hallucinating agents and enabling robust, crowd-powered multimodal reasoning. MUG advances MAD protocols along three key dimensions: (1) enabling factual verification beyond statistical consensus through counterfactual testing; (2) introducing cross-evidence reasoning via dynamically modified evidence sources instead of relying on static inputs; and (3) fostering active reasoning, where agents engage in probing discussions rather than passively answering questions. Collectively, these innovations offer a more reliable and effective framework for multimodal reasoning in LLMs. The source code can be accessed at https://github.com/YongLD/MUG.git.
comment: Accepted by AAAI 2026
☆ Enhancing Group Recommendation using Soft Impute Singular Value Decomposition
The growing popularity of group activities increased the need to develop methods for providing recommendations to a group of users based on the collective preferences of the group members. Several group recommender systems have been proposed, but these methods often struggle due to sparsity and high-dimensionality of the available data, common in many real-world applications. In this paper, we propose a group recommender system called Group Soft-Impute SVD, which leverages soft-impute singular value decomposition to enhance group recommendations. This approach addresses the challenge of sparse high-dimensional data using low-rank matrix completion. We compared the performance of Group Soft-Impute SVD with Group MF based approaches and found that our method outperforms the baselines in recall for small user groups while achieving comparable results across all group sizes when tasked on Goodbooks, Movielens, and Synthetic datasets. Furthermore, our method recovers lower matrix ranks than the baselines, demonstrating its effectiveness in handling high-dimensional data.
comment: ((1) African University of Science and Technology (Abuja, Nigeria), (2) Baze University (Abuja, Nigeria), (3) Babes-Bolyai University (Cluj-Napoca, Romania))
☆ Refine and Align: Confidence Calibration through Multi-Agent Interaction in VQA AAAI 2026
In the context of Visual Question Answering (VQA) and Agentic AI, calibration refers to how closely an AI system's confidence in its answers reflects their actual correctness. This aspect becomes especially important when such systems operate autonomously and must make decisions under visual uncertainty. While modern VQA systems, powered by advanced vision-language models (VLMs), are increasingly used in high-stakes domains like medical diagnostics and autonomous navigation due to their improved accuracy, the reliability of their confidence estimates remains under-examined. Particularly, these systems often produce overconfident responses. To address this, we introduce AlignVQA, a debate-based multi-agent framework, in which diverse specialized VLM -- each following distinct prompting strategies -- generate candidate answers and then engage in two-stage interaction: generalist agents critique, refine and aggregate these proposals. This debate process yields confidence estimates that more accurately reflect the model's true predictive performance. We find that more calibrated specialized agents produce better aligned confidences. Furthermore, we introduce a novel differentiable calibration-aware loss function called aligncal designed to fine-tune the specialized agents by minimizing an upper bound on the calibration error. This objective explicitly improves the fidelity of each agent's confidence estimates. Empirical results across multiple benchmark VQA datasets substantiate the efficacy of our approach, demonstrating substantial reductions in calibration discrepancies. Furthermore, we propose a novel differentiable calibration-aware loss to fine-tune the specialized agents and improve the quality of their individual confidence estimates based on minimising upper bound calibration error.
comment: 17 pages, 6 figures, 5 tables. Accepted to Special Track on AI Alignment, AAAI 2026. Project Page- https://refine-align.github.io/
☆ OT-ALD: Aligning Latent Distributions with Optimal Transport for Accelerated Image-to-Image Translation
The Dual Diffusion Implicit Bridge (DDIB) is an emerging image-to-image (I2I) translation method that preserves cycle consistency while achieving strong flexibility. It links two independently trained diffusion models (DMs) in the source and target domains by first adding noise to a source image to obtain a latent code, then denoising it in the target domain to generate the translated image. However, this method faces two key challenges: (1) low translation efficiency, and (2) translation trajectory deviations caused by mismatched latent distributions. To address these issues, we propose a novel I2I translation framework, OT-ALD, grounded in optimal transport (OT) theory, which retains the strengths of DDIB-based approach. Specifically, we compute an OT map from the latent distribution of the source domain to that of the target domain, and use the mapped distribution as the starting point for the reverse diffusion process in the target domain. Our error analysis confirms that OT-ALD eliminates latent distribution mismatches. Moreover, OT-ALD effectively balances faster image translation with improved image quality. Experiments on four translation tasks across three high-resolution datasets show that OT-ALD improves sampling efficiency by 20.29% and reduces the FID score by 2.6 on average compared to the top-performing baseline models.
☆ Specification, Application, and Operationalization of a Metamodel of Fairness
This paper presents the AR fairness metamodel, aimed at formally representing, analyzing, and comparing fairness scenarios. The metamodel provides an abstract representation of fairness, enabling the formal definition of fairness notions. We instantiate the metamodel through several examples, with a particular focus on comparing the notions of equity and equality. We use the Tiles framework, which offers modular components that can be interconnected to represent various definitions of fairness. Its primary objective is to support the operationalization of AR-based fairness definitions in a range of scenarios, providing a robust method for defining, comparing, and evaluating fairness. Tiles has an open-source implementation for fairness modeling and evaluation.
☆ GGBench: A Geometric Generative Reasoning Benchmark for Unified Multimodal Models
The advent of Unified Multimodal Models (UMMs) signals a paradigm shift in artificial intelligence, moving from passive perception to active, cross-modal generation. Despite their unprecedented ability to synthesize information, a critical gap persists in evaluation: existing benchmarks primarily assess discriminative understanding or unconstrained image generation separately, failing to measure the integrated cognitive process of generative reasoning. To bridge this gap, we propose that geometric construction provides an ideal testbed as it inherently demands a fusion of language comprehension and precise visual generation. We introduce GGBench, a benchmark designed specifically to evaluate geometric generative reasoning. It provides a comprehensive framework for systematically diagnosing a model's ability to not only understand and reason but to actively construct a solution, thereby setting a more rigorous standard for the next generation of intelligent systems. Project website: https://opendatalab-raiser.github.io/GGBench/.
comment: 35 pages, 22 figures
☆ Utilizing LLMs for Industrial Process Automation: A Case Study on Modifying RAPID Programs ICSE
How to best use Large Language Models (LLMs) for software engineering is covered in many publications in recent years. However, most of this work focuses on widely-used general purpose programming languages. The utility of LLMs for software within the industrial process automation domain, with highly-specialized languages that are typically only used in proprietary contexts, is still underexplored. Within this paper, we study enterprises can achieve on their own without investing large amounts of effort into the training of models specific to the domain-specific languages that are used. We show that few-shot prompting approaches are sufficient to solve simple problems in a language that is otherwise not well-supported by an LLM and that is possible on-premise, thereby ensuring the protection of sensitive company data.
comment: Submitted to the International Conference on Software Engineering (ICSE) track Software Engineering in Practice (SEIP) 2026
☆ AV-Dialog: Spoken Dialogue Models with Audio-Visual Input
Dialogue models falter in noisy, multi-speaker environments, often producing irrelevant responses and awkward turn-taking. We present AV-Dialog, the first multimodal dialog framework that uses both audio and visual cues to track the target speaker, predict turn-taking, and generate coherent responses. By combining acoustic tokenization with multi-task, multi-stage training on monadic, synthetic, and real audio-visual dialogue datasets, AV-Dialog achieves robust streaming transcription, semantically grounded turn-boundary detection and accurate responses, resulting in a natural conversational flow. Experiments show that AV-Dialog outperforms audio-only models under interference, reducing transcription errors, improving turn-taking prediction, and enhancing human-rated dialogue quality. These results highlight the power of seeing as well as hearing for speaker-aware interaction, paving the way for {spoken} dialogue agents that perform {robustly} in real-world, noisy environments.
☆ VIDEOP2R: Video Understanding from Perception to Reasoning
Reinforcement fine-tuning (RFT), a two-stage framework consisting of supervised fine-tuning (SFT) and reinforcement learning (RL) has shown promising results on improving reasoning ability of large language models (LLMs). Yet extending RFT to large video language models (LVLMs) remains challenging. We propose VideoP2R, a novel process-aware video RFT framework that enhances video reasoning by modeling perception and reasoning as distinct processes. In the SFT stage, we develop a three-step pipeline to generate VideoP2R-CoT-162K, a high-quality, process-aware chain-of-thought (CoT) dataset for perception and reasoning. In the RL stage, we introduce a novel process-aware group relative policy optimization (PA-GRPO) algorithm that supplies separate rewards for perception and reasoning. Extensive experiments show that VideoP2R achieves state-of-the-art (SotA) performance on six out of seven video reasoning and understanding benchmarks. Ablation studies further confirm the effectiveness of our process-aware modeling and PA-GRPO and demonstrate that model's perception output is information-sufficient for downstream reasoning.
☆ Satisficing and Optimal Generalised Planning via Goal Regression (Extended Version) AAAI 2026
Generalised planning (GP) refers to the task of synthesising programs that solve families of related planning problems. We introduce a novel, yet simple method for GP: given a set of training problems, for each problem, compute an optimal plan for each goal atom in some order, perform goal regression on the resulting plans, and lift the corresponding outputs to obtain a set of first-order $\textit{Condition} \rightarrow \textit{Actions}$ rules. The rules collectively constitute a generalised plan that can be executed as is or alternatively be used to prune the planning search space. We formalise and prove the conditions under which our method is guaranteed to learn valid generalised plans and state space pruning axioms for search. Experiments demonstrate significant improvements over state-of-the-art (generalised) planners with respect to the 3 metrics of synthesis cost, planning coverage, and solution quality on various classical and numeric planning domains.
comment: Extended version of AAAI 2026 paper
☆ Scalable Population Training for Zero-Shot Coordination
Zero-shot coordination(ZSC) has become a hot topic in reinforcement learning research recently. It focuses on the generalization ability of agents, requiring them to coordinate well with collaborators that are not seen before without any fine-tuning. Population-based training has been proven to provide good zero-shot coordination performance; nevertheless, existing methods are limited by computational resources, mainly focusing on optimizing diversity in small populations while neglecting the potential performance gains from scaling population size. To address this issue, this paper proposes the Scalable Population Training (ScaPT), an efficient training framework comprising two key components: a meta-agent that efficiently realizes a population by selectively sharing parameters across agents, and a mutual information regularizer that guarantees population diversity. To empirically validate the effectiveness of ScaPT, this paper evaluates it along with representational frameworks in Hanabi and confirms its superiority.
☆ ARCTraj: A Dataset and Benchmark of Human Reasoning Trajectories for Abstract Problem Solving
We present ARCTraj, a dataset and methodological framework for modeling human reasoning through complex visual tasks in the Abstraction and Reasoning Corpus (ARC). While ARC has inspired extensive research on abstract reasoning, most existing approaches rely on static input--output supervision, which limits insight into how reasoning unfolds over time. ARCTraj addresses this gap by recording temporally ordered, object-level actions that capture how humans iteratively transform inputs into outputs, revealing intermediate reasoning steps that conventional datasets overlook. Collected via the O2ARC web interface, it contains around 10,000 trajectories annotated with task identifiers, timestamps, and success labels across 400 training tasks from the ARC-AGI-1 benchmark. It further defines a unified reasoning pipeline encompassing data collection, action abstraction, Markov decision process (MDP) formulation, and downstream learning, enabling integration with reinforcement learning, generative modeling, and sequence modeling methods such as PPO, World Models, GFlowNets, Diffusion agents, and Decision Transformers. Analyses of spatial selection, color attribution, and strategic convergence highlight the structure and diversity of human reasoning. Together, these contributions position ARCTraj as a structured and interpretable foundation for studying human-like reasoning, advancing explainability, alignment, and generalizable intelligence.
☆ S2D-ALIGN: Shallow-to-Deep Auxiliary Learning for Anatomically-Grounded Radiology Report Generation
Radiology Report Generation (RRG) aims to automatically generate diagnostic reports from radiology images. To achieve this, existing methods have leveraged the powerful cross-modal generation capabilities of Multimodal Large Language Models (MLLMs), primarily focusing on optimizing cross-modal alignment between radiographs and reports through Supervised Fine-Tuning (SFT). However, by only performing instance-level alignment with the image-text pairs, the standard SFT paradigm fails to establish anatomically-grounded alignment, where the templated nature of reports often leads to sub-optimal generation quality. To address this, we propose \textsc{S2D-Align}, a novel SFT paradigm that establishes anatomically-grounded alignment by leveraging auxiliary signals of varying granularities. \textsc{S2D-Align} implements a shallow-to-deep strategy, progressively enriching the alignment process: it begins with the coarse radiograph-report pairing, then introduces reference reports for instance-level guidance, and ultimately utilizes key phrases to ground the generation in specific anatomical details. To bridge the different alignment stages, we introduce a memory-based adapter that empowers feature sharing, thereby integrating coarse and fine-grained guidance. For evaluation, we conduct experiments on the public \textsc{MIMIC-CXR} and \textsc{IU X-Ray} benchmarks, where \textsc{S2D-Align} achieves state-of-the-art performance compared to existing methods. Ablation studies validate the effectiveness of our multi-stage, auxiliary-guided approach, highlighting a promising direction for enhancing grounding capabilities in complex, multi-modal generation tasks.
☆ From Retinal Pixels to Patients: Evolution of Deep Learning Research in Diabetic Retinopathy Screening
Diabetic Retinopathy (DR) remains a leading cause of preventable blindness, with early detection critical for reducing vision loss worldwide. Over the past decade, deep learning has transformed DR screening, progressing from early convolutional neural networks trained on private datasets to advanced pipelines addressing class imbalance, label scarcity, domain shift, and interpretability. This survey provides the first systematic synthesis of DR research spanning 2016-2025, consolidating results from 50+ studies and over 20 datasets. We critically examine methodological advances, including self- and semi-supervised learning, domain generalization, federated training, and hybrid neuro-symbolic models, alongside evaluation protocols, reporting standards, and reproducibility challenges. Benchmark tables contextualize performance across datasets, while discussion highlights open gaps in multi-center validation and clinical trust. By linking technical progress with translational barriers, this work outlines a practical agenda for reproducible, privacy-preserving, and clinically deployable DR AI. Beyond DR, many of the surveyed innovations extend broadly to medical imaging at scale.
comment: Accepted in IEEE BigData 2025
☆ LiteAttention: A Temporal Sparse Attention for Diffusion Transformers
Diffusion Transformers, particularly for video generation, achieve remarkable quality but suffer from quadratic attention complexity, leading to prohibitive latency. Existing acceleration methods face a fundamental trade-off: dynamically estimating sparse attention patterns at each denoising step incurs high computational overhead and estimation errors, while static sparsity patterns remain fixed and often suboptimal throughout denoising. We identify a key structural property of diffusion attention, namely, its sparsity patterns exhibit strong temporal coherence across denoising steps. Tiles deemed non-essential at step $t$ typically remain so at step $t+δ$. Leveraging this observation, we introduce LiteAttention, a method that exploits temporal coherence to enable evolutionary computation skips across the denoising sequence. By marking non-essential tiles early and propagating skip decisions forward, LiteAttention eliminates redundant attention computations without repeated profiling overheads, combining the adaptivity of dynamic methods with the efficiency of static ones. We implement a highly optimized LiteAttention kernel on top of FlashAttention and demonstrate substantial speedups on production video diffusion models, with no degradation in quality. The code and implementation details will be publicly released.
☆ PINGS-X: Physics-Informed Normalized Gaussian Splatting with Axes Alignment for Efficient Super-Resolution of 4D Flow MRI AAAI 2026
4D flow magnetic resonance imaging (MRI) is a reliable, non-invasive approach for estimating blood flow velocities, vital for cardiovascular diagnostics. Unlike conventional MRI focused on anatomical structures, 4D flow MRI requires high spatiotemporal resolution for early detection of critical conditions such as stenosis or aneurysms. However, achieving such resolution typically results in prolonged scan times, creating a trade-off between acquisition speed and prediction accuracy. Recent studies have leveraged physics-informed neural networks (PINNs) for super-resolution of MRI data, but their practical applicability is limited as the prohibitively slow training process must be performed for each patient. To overcome this limitation, we propose PINGS-X, a novel framework modeling high-resolution flow velocities using axes-aligned spatiotemporal Gaussian representations. Inspired by the effectiveness of 3D Gaussian splatting (3DGS) in novel view synthesis, PINGS-X extends this concept through several non-trivial novel innovations: (i) normalized Gaussian splatting with a formal convergence guarantee, (ii) axes-aligned Gaussians that simplify training for high-dimensional data while preserving accuracy and the convergence guarantee, and (iii) a Gaussian merging procedure to prevent degenerate solutions and boost computational efficiency. Experimental results on computational fluid dynamics (CFD) and real 4D flow MRI datasets demonstrate that PINGS-X substantially reduces training time while achieving superior super-resolution accuracy. Our code and datasets are available at https://github.com/SpatialAILab/PINGS-X.
comment: Accepted at AAAI 2026. Supplementary material included after references. 27 pages, 21 figures, 11 tables
☆ Enhancing Graph Representations with Neighborhood-Contextualized Message-Passing
Graph neural networks (GNNs) have become an indispensable tool for analyzing relational data. In the literature, classical GNNs may be classified into three variants: convolutional, attentional, and message-passing. While the standard message-passing variant is highly expressive, its typical pair-wise messages nevertheless only consider the features of the center node and each neighboring node individually. This design fails to incorporate the rich contextual information contained within the broader local neighborhood, potentially hindering its ability to learn complex relationships within the entire set of neighboring nodes. To address this limitation, this work first formalizes the concept of neighborhood-contextualization, rooted in a key property of the attentional variant. This then serves as the foundation for generalizing the message-passing variant to the proposed neighborhood-contextualized message-passing (NCMP) framework. To demonstrate its utility, a simple, practical, and efficient method to parametrize and operationalize NCMP is presented, leading to the development of the proposed Soft-Isomorphic Neighborhood-Contextualized Graph Convolution Network (SINC-GCN). A preliminary analysis on a synthetic binary node classification problem then underscores both the expressivity and efficiency of the proposed GNN architecture. Overall, the paper lays the foundation for the novel NCMP framework as a practical path toward further enhancing the graph representational power of classical GNNs.
☆ Autonomous Vehicle Path Planning by Searching With Differentiable Simulation
Planning allows an agent to safely refine its actions before executing them in the real world. In autonomous driving, this is crucial to avoid collisions and navigate in complex, dense traffic scenarios. One way to plan is to search for the best action sequence. However, this is challenging when all necessary components - policy, next-state predictor, and critic - have to be learned. Here we propose Differentiable Simulation for Search (DSS), a framework that leverages the differentiable simulator Waymax as both a next state predictor and a critic. It relies on the simulator's hardcoded dynamics, making state predictions highly accurate, while utilizing the simulator's differentiability to effectively search across action sequences. Our DSS agent optimizes its actions using gradient descent over imagined future trajectories. We show experimentally that DSS - the combination of planning gradients and stochastic search - significantly improves tracking and path planning accuracy compared to sequence prediction, imitation learning, model-free RL, and other planning methods.
☆ Correcting Mean Bias in Text Embeddings: A Refined Renormalization with Training-Free Improvements on MMTEB
We find that current text embedding models produce outputs with a consistent bias, i.e., each embedding vector $e$ can be decomposed as $\tilde{e} + μ$, where $μ$ is almost identical across all sentences. We propose a plug-and-play, training-free and lightweight solution called Renormalization. Through extensive experiments, we show that renormalization consistently and statistically significantly improves the performance of existing models on the Massive Multilingual Text Embedding Benchmark (MMTEB). In particular, across 38 models, renormalization improves performance by 9.7 $σ$ on retrieval tasks, 3.1 $σ$ on classification tasks, and 0.8 $σ$ on other types of tasks. Renormalization has two variants: directly subtracting $μ$ from $e$, or subtracting the projection of $e$ onto $μ$. We theoretically predict that the latter performs better, and our experiments confirm this prediction.
☆ Key Decision-Makers in Multi-Agent Debates: Who Holds the Power?
Recent studies on LLM agent scaling have highlighted the potential of Multi-Agent Debate (MAD) to enhance reasoning abilities. However, the critical aspect of role allocation strategies remains underexplored. In this study, we demonstrate that allocating roles with differing viewpoints to specific positions significantly impacts MAD's performance in reasoning tasks. Specifically, we find a novel role allocation strategy, "Truth Last", which can improve MAD performance by up to 22% in reasoning tasks. To address the issue of unknown truth in practical applications, we propose the Multi-Agent Debate Consistency (MADC) strategy, which systematically simulates and optimizes its core mechanisms. MADC incorporates path consistency to assess agreement among independent roles, simulating the role with the highest consistency score as the truth. We validated MADC across a range of LLMs (9 models), including the DeepSeek-R1 Distilled Models, on challenging reasoning tasks. MADC consistently demonstrated advanced performance, effectively overcoming MAD's performance bottlenecks and providing a crucial pathway for further improvements in LLM agent scaling.
☆ SemanticNN: Compressive and Error-Resilient Semantic Offloading for Extremely Weak Devices
With the rapid growth of the Internet of Things (IoT), integrating artificial intelligence (AI) on extremely weak embedded devices has garnered significant attention, enabling improved real-time performance and enhanced data privacy. However, the resource limitations of such devices and unreliable network conditions necessitate error-resilient device-edge collaboration systems. Traditional approaches focus on bit-level transmission correctness, which can be inefficient under dynamic channel conditions. In contrast, we propose SemanticNN, a semantic codec that tolerates bit-level errors in pursuit of semantic-level correctness, enabling compressive and resilient collaborative inference offloading under strict computational and communication constraints. It incorporates a Bit Error Rate (BER)-aware decoder that adapts to dynamic channel conditions and a Soft Quantization (SQ)-based encoder to learn compact representations. Building on this architecture, we introduce Feature-augmentation Learning, a novel training strategy that enhances offloading efficiency. To address encoder-decoder capability mismatches from asymmetric resources, we propose XAI-based Asymmetry Compensation to enhance decoding semantic fidelity. We conduct extensive experiments on STM32 using three models and six datasets across image classification and object detection tasks. Experimental results demonstrate that, under varying transmission error rates, SemanticNN significantly reduces feature transmission volume by 56.82-344.83x while maintaining superior inference accuracy.
☆ CrossMed: A Multimodal Cross-Task Benchmark for Compositional Generalization in Medical Imaging
Recent advances in multimodal large language models have enabled unified processing of visual and textual inputs, offering promising applications in general-purpose medical AI. However, their ability to generalize compositionally across unseen combinations of imaging modality, anatomy, and task type remains underexplored. We introduce CrossMed, a benchmark designed to evaluate compositional generalization (CG) in medical multimodal LLMs using a structured Modality-Anatomy-Task (MAT) schema. CrossMed reformulates four public datasets, CheXpert (X-ray classification), SIIM-ACR (X-ray segmentation), BraTS 2020 (MRI classification and segmentation), and MosMedData (CT classification) into a unified visual question answering (VQA) format, resulting in 20,200 multiple-choice QA instances. We evaluate two open-source multimodal LLMs, LLaVA-Vicuna-7B and Qwen2-VL-7B, on both Related and Unrelated MAT splits, as well as a zero-overlap setting where test triplets share no Modality, Anatomy, or Task with the training data. Models trained on Related splits achieve 83.2 percent classification accuracy and 0.75 segmentation cIoU, while performance drops significantly under Unrelated and zero-overlap conditions, demonstrating the benchmark difficulty. We also show cross-task transfer, where segmentation performance improves by 7 percent cIoU even when trained using classification-only data. Traditional models (ResNet-50 and U-Net) show modest gains, confirming the broad utility of the MAT framework, while multimodal LLMs uniquely excel at compositional generalization. CrossMed provides a rigorous testbed for evaluating zero-shot, cross-task, and modality-agnostic generalization in medical vision-language models.
☆ Algorithms Trained on Normal Chest X-rays Can Predict Health Insurance Types
Artificial intelligence is revealing what medicine never intended to encode. Deep vision models, trained on chest X-rays, can now detect not only disease but also invisible traces of social inequality. In this study, we show that state-of-the-art architectures (DenseNet121, SwinV2-B, MedMamba) can predict a patient's health insurance type, a strong proxy for socioeconomic status, from normal chest X-rays with significant accuracy (AUC around 0.67 on MIMIC-CXR-JPG, 0.68 on CheXpert). The signal persists even when age, race, and sex are controlled for, and remains detectable when the model is trained exclusively on a single racial group. Patch-based occlusion reveals that the signal is diffuse rather than localized, embedded in the upper and mid-thoracic regions. This suggests that deep networks may be internalizing subtle traces of clinical environments, equipment differences, or care pathways; learning socioeconomic segregation itself. These findings challenge the assumption that medical images are neutral biological data. By uncovering how models perceive and exploit these hidden social signatures, this work reframes fairness in medical AI: the goal is no longer only to balance datasets or adjust thresholds, but to interrogate and disentangle the social fingerprints embedded in clinical data itself.
comment: Submitting to MIDL 2026
☆ Faster Symmetry Breaking Constraints for Abstract Structures
In constraint programming and related paradigms, a modeller specifies their problem in a modelling language for a solver to search and return its solution(s). Using high-level modelling languages such as Essence, a modeller may express their problems in terms of abstract structures. These are structures not natively supported by the solvers, and so they have to be transformed into or represented as other structures before solving. For example, nested sets are abstract structures, and they can be represented as matrices in constraint solvers. Many problems contain symmetries and one very common and highly successful technique used in constraint programming is to "break" symmetries, to avoid searching for symmetric solutions. This can speed up the solving process by many orders of magnitude. Most of these symmetry-breaking techniques involve placing some kind of ordering for the variables of the problem, and picking a particular member under the symmetries, usually the smallest. Unfortunately, applying this technique to abstract variables produces a very large number of complex constraints that perform poorly in practice. In this paper, we demonstrate a new incomplete method of breaking the symmetries of abstract structures by better exploiting their representations. We apply the method in breaking the symmetries arising from indistinguishable objects, a commonly occurring type of symmetry, and show that our method is faster than the previous methods proposed in (Akgün et al. 2025).
☆ AirCopBench: A Benchmark for Multi-drone Collaborative Embodied Perception and Reasoning
Multimodal Large Language Models (MLLMs) have shown promise in single-agent vision tasks, yet benchmarks for evaluating multi-agent collaborative perception remain scarce. This gap is critical, as multi-drone systems provide enhanced coverage, robustness, and collaboration compared to single-sensor setups. Existing multi-image benchmarks mainly target basic perception tasks using high-quality single-agent images, thus failing to evaluate MLLMs in more complex, egocentric collaborative scenarios, especially under real-world degraded perception conditions.To address these challenges, we introduce AirCopBench, the first comprehensive benchmark designed to evaluate MLLMs in embodied aerial collaborative perception under challenging perceptual conditions. AirCopBench includes 14.6k+ questions derived from both simulator and real-world data, spanning four key task dimensions: Scene Understanding, Object Understanding, Perception Assessment, and Collaborative Decision, across 14 task types. We construct the benchmark using data from challenging degraded-perception scenarios with annotated collaborative events, generating large-scale questions through model-, rule-, and human-based methods under rigorous quality control. Evaluations on 40 MLLMs show significant performance gaps in collaborative perception tasks, with the best model trailing humans by 24.38% on average and exhibiting inconsistent results across tasks. Fine-tuning experiments further confirm the feasibility of sim-to-real transfer in aerial collaborative perception and reasoning.
☆ Data Poisoning Vulnerabilities Across Healthcare AI Architectures: A Security Threat Analysis
Healthcare AI systems face major vulnerabilities to data poisoning that current defenses and regulations cannot adequately address. We analyzed eight attack scenarios in four categories: architectural attacks on convolutional neural networks, large language models, and reinforcement learning agents; infrastructure attacks exploiting federated learning and medical documentation systems; critical resource allocation attacks affecting organ transplantation and crisis triage; and supply chain attacks targeting commercial foundation models. Our findings indicate that attackers with access to only 100-500 samples can compromise healthcare AI regardless of dataset size, often achieving over 60 percent success, with detection taking an estimated 6 to 12 months or sometimes not occurring at all. The distributed nature of healthcare infrastructure creates many entry points where insiders with routine access can launch attacks with limited technical skill. Privacy laws such as HIPAA and GDPR can unintentionally shield attackers by restricting the analyses needed for detection. Supply chain weaknesses allow a single compromised vendor to poison models across 50 to 200 institutions. The Medical Scribe Sybil scenario shows how coordinated fake patient visits can poison data through legitimate clinical workflows without requiring a system breach. Current regulations lack mandatory adversarial robustness testing, and federated learning can worsen risks by obscuring attribution. We recommend multilayer defenses including required adversarial testing, ensemble-based detection, privacy-preserving security mechanisms, and international coordination on AI security standards. We also question whether opaque black-box models are suitable for high-stakes clinical decisions, suggesting a shift toward interpretable systems with verifiable safety guarantees.
☆ Automata-Based Steering of Large Language Models for Diverse Structured Generation
Large language models (LLMs) are increasingly tasked with generating structured outputs. While structured generation methods ensure validity, they often lack output diversity, a critical limitation that we confirm in our preliminary study. We propose a novel method to enhance diversity in automaton-based structured generation. Our approach utilizes automata traversal history to steer LLMs towards novel structural patterns. Evaluations show our method significantly improves structural and content diversity while maintaining comparable generation efficiency. Furthermore, we conduct a case study showcasing the effectiveness of our method in generating diverse test cases for testing open-source libraries.
comment: ICFEM 2025 (Best Paper Award)
☆ AI Agent-Driven Framework for Automated Product Knowledge Graph Construction in E-Commerce
The rapid expansion of e-commerce platforms generates vast amounts of unstructured product data, creating significant challenges for information retrieval, recommendation systems, and data analytics. Knowledge Graphs (KGs) offer a structured, interpretable format to organize such data, yet constructing product-specific KGs remains a complex and manual process. This paper introduces a fully automated, AI agent-driven framework for constructing product knowledge graphs directly from unstructured product descriptions. Leveraging Large Language Models (LLMs), our method operates in three stages using dedicated agents: ontology creation and expansion, ontology refinement, and knowledge graph population. This agent-based approach ensures semantic coherence, scalability, and high-quality output without relying on predefined schemas or handcrafted extraction rules. We evaluate the system on a real-world dataset of air conditioner product descriptions, demonstrating strong performance in both ontology generation and KG population. The framework achieves over 97\% property coverage and minimal redundancy, validating its effectiveness and practical applicability. Our work highlights the potential of LLMs to automate structured knowledge extraction in retail, providing a scalable path toward intelligent product data integration and utilization.
comment: Proceedings of the 1st GOBLIN Workshop on Knowledge Graph Technologies
☆ VisMem: Latent Vision Memory Unlocks Potential of Vision-Language Models
Despite the remarkable success of Vision-Language Models (VLMs), their performance on a range of complex visual tasks is often hindered by a "visual processing bottleneck": a propensity to lose grounding in visual evidence and exhibit a deficit in contextualized visual experience during prolonged generation. Drawing inspiration from human cognitive memory theory, which distinguishes short-term visually-dominant memory and long-term semantically-dominant memory, we propose VisMem, a cognitively-aligned framework that equips VLMs with dynamic latent vision memories, a short-term module for fine-grained perceptual retention and a long-term module for abstract semantic consolidation. These memories are seamlessly invoked during inference, allowing VLMs to maintain both perceptual fidelity and semantic consistency across thinking and generation. Extensive experiments across diverse visual benchmarks for understanding, reasoning, and generation reveal that VisMem delivers a significant average performance boost of 11.8% relative to the vanilla model and outperforms all counterparts, establishing a new paradigm for latent-space memory enhancement. The code will be available: https://github.com/YU-deep/VisMem.git.
☆ MSMT-FN: Multi-segment Multi-task Fusion Network for Marketing Audio Classification
Audio classification plays an essential role in sentiment analysis and emotion recognition, especially for analyzing customer attitudes in marketing phone calls. Efficiently categorizing customer purchasing propensity from large volumes of audio data remains challenging. In this work, we propose a novel Multi-Segment Multi-Task Fusion Network (MSMT-FN) that is uniquely designed for addressing this business demand. Evaluations conducted on our proprietary MarketCalls dataset, as well as established benchmarks (CMU-MOSI, CMU-MOSEI, and MELD), show MSMT-FN consistently outperforms or matches state-of-the-art methods. Additionally, our newly curated MarketCalls dataset will be available upon request, and the code base is made accessible at GitHub Repository MSMT-FN, to facilitate further research and advancements in audio classification domain.
comment: Accepted at The 21st International Conference on Advanced Data Mining and Applications (ADMA 2025). In book: Advanced Data Mining and Applications (pp.306-320)
☆ DialogGraph-LLM: Graph-Informed LLMs for End-to-End Audio Dialogue Intent Recognition ECAI 2025
Recognizing speaker intent in long audio dialogues among speakers has a wide range of applications, but is a non-trivial AI task due to complex inter-dependencies in speaker utterances and scarce annotated data. To address these challenges, an end-to-end framework, namely DialogGraph-LLM, is proposed in the current work. DialogGraph-LLM combines a novel Multi-Relational Dialogue Attention Network (MR-DAN) architecture with multimodal foundation models (e.g., Qwen2.5-Omni-7B) for direct acoustic-to-intent inference. An adaptive semi-supervised learning strategy is designed using LLM with a confidence-aware pseudo-label generation mechanism based on dual-threshold filtering using both global and class confidences, and an entropy-based sample selection process that prioritizes high-information unlabeled instances. Extensive evaluations on the proprietary MarketCalls corpus and the publicly available MIntRec 2.0 benchmark demonstrate DialogGraph-LLM's superiority over strong audio and text-driven baselines. The framework demonstrates strong performance and efficiency in intent recognition in real world scenario audio dialogues, proving its practical value for audio-rich domains with limited supervision. Our code is available at https://github.com/david188888/DialogGraph-LLM.
comment: 8 pages, 2 figures; Series: Frontiers in Artificial Intelligence and Applications, Volume 413: ECAI 2025
☆ When Data is the Algorithm: A Systematic Study and Curation of Preference Optimization Datasets
Aligning large language models (LLMs) is a central objective of post-training, often achieved through reward modeling and reinforcement learning methods. Among these, direct preference optimization (DPO) has emerged as a widely adopted technique that fine-tunes LLMs on preferred completions over less favorable ones. While most frontier LLMs do not disclose their curated preference pairs, the broader LLM community has released several open-source DPO datasets, including TuluDPO, ORPO, UltraFeedback, HelpSteer, and Code-Preference-Pairs. However, systematic comparisons remain scarce, largely due to the high computational cost and the lack of rich quality annotations, making it difficult to understand how preferences were selected, which task types they span, and how well they reflect human judgment on a per-sample level. In this work, we present the first comprehensive, data-centric analysis of popular open-source DPO corpora. We leverage the Magpie framework to annotate each sample for task category, input quality, and preference reward, a reward-model-based signal that validates the preference order without relying on human annotations. This enables a scalable, fine-grained inspection of preference quality across datasets, revealing structural and qualitative discrepancies in reward margins. Building on these insights, we systematically curate a new DPO mixture, UltraMix, that draws selectively from all five corpora while removing noisy or redundant samples. UltraMix is 30% smaller than the best-performing individual dataset yet exceeds its performance across key benchmarks. We publicly release all annotations, metadata, and our curated mixture to facilitate future research in data-centric preference optimization.
☆ DiscoX: Benchmarking Discourse-Level Translation task in Expert Domains
The evaluation of discourse-level translation in expert domains remains inadequate, despite its centrality to knowledge dissemination and cross-lingual scholarly communication. While these translations demand discourse-level coherence and strict terminological precision, current evaluation methods predominantly focus on segment-level accuracy and fluency. To address this limitation, we introduce DiscoX, a new benchmark for discourse-level and expert-level Chinese-English translation. It comprises 200 professionally-curated texts from 7 domains, with an average length exceeding 1700 tokens. To evaluate performance on DiscoX, we also develop Metric-S, a reference-free system that provides fine-grained automatic assessments across accuracy, fluency, and appropriateness. Metric-S demonstrates strong consistency with human judgments, significantly outperforming existing metrics. Our experiments reveal a remarkable performance gap: even the most advanced LLMs still trail human experts on these tasks. This finding validates the difficulty of DiscoX and underscores the challenges that remain in achieving professional-grade machine translation. The proposed benchmark and evaluation system provide a robust framework for more rigorous evaluation, facilitating future advancements in LLM-based translation.
comment: 36 pages
☆ Binary Verification for Zero-Shot Vision
We propose a training-free, binary verification workflow for zero-shot vision with off-the-shelf VLMs. It comprises two steps: (i) quantization, which turns the open-ended query into a multiple-choice question (MCQ) with a small, explicit list of unambiguous candidates; and (ii) binarization, which asks one True/False question per candidate and resolves deterministically: if exactly one is True, select it; otherwise, revert to an MCQ over the remaining plausible candidates. We evaluate the workflow on referring expression grounding (REC), spatial reasoning (Spatial-Map, Spatial-Grid, Spatial-Maze), and BLINK-Jigsaw. Relative to answering open-ended queries directly, quantization to MCQ yields large gains, and True/False binarization provides a consistent additional boost. Across all tasks, the same workflow produces significant improvements, indicating generality. Our theory formalizes how open-ended vision queries can be quantized to MCQs and further binarized into True/False verifications, establishing a hardness ladder. A simple analysis explains why Boolean resolution boosts accuracy. Together, these components yield a simple and unified workflow that emphasizes inference-time design over task-specific training. It offers a practical, drop-in path to stronger zero-shot vision with today's VLMs.
☆ PAS: A Training-Free Stabilizer for Temporal Encoding in Video LLMs
Video LLMs suffer from temporal inconsistency: small shifts in frame timing can flip attention and suppress relevant frames. We trace this instability to the common extension of Rotary Position Embeddings to video through multimodal RoPE. The induced inverse Fourier time kernel exhibits frame-scale ripples that multiply adjacent frames by different factors, which perturbs attention that should otherwise be governed by the raw query key inner product. We present Phase Aggregated Smoothing (PAS), a simple, training-free mechanism that applies small opposed phase offsets across heads and then aggregates their outputs. PAS preserves the per-head spectrum magnitude, while the aggregation effectively smooths the temporal kernel and reduces phase sensitivity without changing the positional encoding structure. Our analysis shows that the RoPE rotated logit can be approximated as a content dot product scaled by a time kernel; smoothing this kernel yields Lipschitz stability of attention to small temporal shifts; multi phase averaging attenuates high frequency ripples while preserving per-head spectra under Nyquist-valid sampling. Experiments on multiple video understanding benchmarks under matched token budgets show consistent improvements with negligible computational overhead. PAS provides a plug and play upgrade for robust temporal encoding in Video LLMs.
comment: 13 pages, 5 figures
☆ How Data Quality Affects Machine Learning Models for Credit Risk Assessment
Machine Learning (ML) models are being increasingly employed for credit risk evaluation, with their effectiveness largely hinging on the quality of the input data. In this paper we investigate the impact of several data quality issues, including missing values, noisy attributes, outliers, and label errors, on the predictive accuracy of the machine learning model used in credit risk assessment. Utilizing an open-source dataset, we introduce controlled data corruption using the Pucktrick library to assess the robustness of 10 frequently used models like Random Forest, SVM, and Logistic Regression and so on. Our experiments show significant differences in model robustness based on the nature and severity of the data degradation. Moreover, the proposed methodology and accompanying tools offer practical support for practitioners seeking to enhance data pipeline robustness, and provide researchers with a flexible framework for further experimentation in data-centric AI contexts.
♻ ☆ The Empty Chair: Using LLMs to Raise Missing Perspectives in Policy Deliberations NeurIPS 2025
Deliberation is essential to well-functioning democracies, yet physical, economic, and social barriers often exclude certain groups, reducing representativeness and contributing to issues like group polarization. In this work, we explore the use of large language model (LLM) personas to introduce missing perspectives in policy deliberations. We develop and evaluate a tool that transcribes conversations in real-time and simulates input from relevant but absent stakeholders. We deploy this tool in a 19-person student citizens' assembly on campus sustainability. Participants and facilitators found that the tool was useful to spark new discussions and surfaced valuable perspectives they had not previously considered. However, they also raised skepticism about the ability of LLMs to accurately characterize the perspectives of different groups, especially ones that are already underrepresented. Overall, this case study highlights that while AI personas can usefully surface new perspectives and prompt discussion in deliberative settings, their successful deployment depends on clarifying their limitations and emphasizing that they complement rather than replace genuine participation.
comment: 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: PersonaLLM: Workshop on LLM Persona Modeling
♻ ☆ Sensory-Motor Control with Large Language Models via Iterative Policy Refinement
We propose a method that enables large language models (LLMs) to control embodied agents through the generation of control policies that directly map continuous observation vectors to continuous action vectors. At the outset, the LLMs generate a control strategy based on a textual description of the agent, its environment, and the intended goal. This strategy is then iteratively refined through a learning process in which the LLMs are repeatedly prompted to improve the current strategy, using performance feedback and sensory-motor data collected during its evaluation. The method is validated on classic control tasks from the Gymnasium library and the inverted pendulum task from the MuJoCo library. The approach proves effective with relatively compact models such as GPT-oss:120b and Qwen2.5:72b. In most cases, it successfully identifies optimal or near-optimal solutions by integrating symbolic knowledge derived through reasoning with sub-symbolic sensory-motor data gathered as the agent interacts with its environment.
comment: Article updated with results from gpt-oss:120b and gpt-oss:20b. 27 pages (13 pages are from appendix), 8 figures, 2 tables, code for experiments replication and supplementary material provided at https://github.com/jtyska/llm-robotics-article/
♻ ☆ LDC: Learning to Generate Research Idea with Dynamic Control
Recent advancements in large language models (LLMs) have demonstrated their potential in automating the scientific research ideation. Existing approaches primarily focus on prompting techniques, often producing ideas misaligned with expert standards - novelty, feasibility, and effectiveness, which are widely recognized by the research community as the three key subdimensions of high-quality ideas. Also, balancing these dimensions remains challenging due to their inherent trade-offs. To address these limitations, we propose the first framework that employs a two-stage approach combining Supervised Fine-Tuning (SFT) and controllable Reinforcement Learning (RL) for the task. In the SFT stage, the model learns foundational patterns from pairs of research papers and their corresponding follow-up ideas. In the RL stage, multi-dimensional reward models guided by fine-grained feedback evaluate and optimize the model across key dimensions. During inference, dimensional controllers coordinated by a sentence-level decoder enable dynamic context-aware steering of the idea generation process. Our framework provides a balanced approach to research idea generation, achieving high-quality outcomes in the experiment by dynamically navigating the trade-offs among novelty, feasibility, and effectiveness.
♻ ☆ STAGE: A Symbolic Tensor grAph GEnerator for distributed AI system co-design
Optimizing the performance of large language models (LLMs) on large-scale AI training and inference systems requires a scalable and expressive mechanism to model distributed workload execution. Such modeling is essential for pre-deployment system-level optimizations (e.g., parallelization strategies) and design-space explorations. While recent efforts have proposed collecting execution traces from real systems, access to large-scale infrastructure remains limited to major cloud providers. Moreover, traces obtained from existing platforms cannot be easily adapted to study future larger-scale system configurations. We introduce Symbolic Tensor grAph GEnerator(STAGE), a framework that synthesizes high-fidelity execution traces to accurately model LLM workloads. STAGE supports a comprehensive set of parallelization strategies, allowing users to systematically explore a wide spectrum of LLM architectures and system configurations. STAGE demonstrates its scalability by synthesizing high-fidelity LLM traces spanning over 32K GPUs, while preserving tensor-level accuracy in compute, memory, and communication. STAGE is publicly available to facilitate further research in distributed machine learning systems: https://github.com/astra-sim/symbolic tensor graph
♻ ☆ Reflections on the Reproducibility of Commercial LLM Performance in Empirical Software Engineering Studies
Large Language Models have gained remarkable interest in industry and academia. The increasing interest in LLMs in academia is also reflected in the number of publications on this topic over the last years. For instance, alone 78 of the around 425 publications at ICSE 2024 performed experiments with LLMs. Conducting empirical studies with LLMs remains challenging and raises questions on how to achieve reproducible results, for both other researchers and practitioners. One important step towards excelling in empirical research on LLMs and their application is to first understand to what extent current research results are eventually reproducible and what factors may impede reproducibility. This investigation is within the scope of our work. We contribute an analysis of the reproducibility of LLM-centric studies, provide insights into the factors impeding reproducibility, and discuss suggestions on how to improve the current state. In particular, we studied the 86 articles describing LLM-centric studies, published at ICSE 2024 and ASE 2024. Of the 86 articles, 18 provided research artefacts and used OpenAI models. We attempted to replicate those 18 studies. Of the 18 studies, only five were fit for reproduction. For none of the five studies, we were able to fully reproduce the results. Two studies seemed to be partially reproducible, and three studies did not seem to be reproducible. Our results highlight not only the need for stricter research artefact evaluations but also for more robust study designs to ensure the reproducible value of future publications.
♻ ☆ On the Necessity of Output Distribution Reweighting for Effective Class Unlearning
In this paper, we reveal a significant shortcoming in class unlearning evaluations: overlooking the underlying class geometry can cause privacy leakage. We further propose a simple yet effective solution to mitigate this issue. We introduce a membership-inference attack via nearest neighbors (MIA-NN) that uses the probabilities the model assigns to neighboring classes to detect unlearned samples. Our experiments show that existing unlearning methods are vulnerable to MIA-NN across multiple datasets. We then propose a new fine-tuning objective that mitigates this privacy leakage by approximating, for forget-class inputs, the distribution over the remaining classes that a retrained-from-scratch model would produce. To construct this approximation, we estimate inter-class similarity and tilt the target model's distribution accordingly. The resulting Tilted ReWeighting (TRW) distribution serves as the desired distribution during fine-tuning. We also show that across multiple benchmarks, TRW matches or surpasses existing unlearning methods on prior unlearning metrics. More specifically, on CIFAR-10, it reduces the gap with retrained models by 19% and 46% for U-LiRA and MIA-NN scores, accordingly, compared to the SOTA method for each category.
♻ ☆ Dynamic Sparsity: Challenging Common Sparsity Assumptions for Learning World Models in Robotic Reinforcement Learning Benchmarks
The use of learned dynamics models, also known as world models, can improve the sample efficiency of reinforcement learning. Recent work suggests that the underlying causal graphs of such dynamics models are sparsely connected, with each of the future state variables depending only on a small subset of the current state variables, and that learning may therefore benefit from sparsity priors. Similarly, temporal sparsity, i.e. sparsely and abruptly changing local dynamics, has also been proposed as a useful inductive bias. In this work, we critically examine these assumptions by analyzing ground-truth dynamics from a set of robotic reinforcement learning environments in the MuJoCo Playground benchmark suite, aiming to determine whether the proposed notions of state and temporal sparsity actually tend to hold in typical reinforcement learning tasks. We study (i) whether the causal graphs of environment dynamics are sparse, (ii) whether such sparsity is state-dependent, and (iii) whether local system dynamics change sparsely. Our results indicate that global sparsity is rare, but instead the tasks show local, state-dependent sparsity in their dynamics and this sparsity exhibits distinct structures, appearing in temporally localized clusters (e.g., during contact events) and affecting specific subsets of state dimensions. These findings challenge common sparsity prior assumptions in dynamics learning, emphasizing the need for grounded inductive biases that reflect the state-dependent sparsity structure of real-world dynamics.
♻ ☆ Symmetrical Flow Matching: Unified Image Generation, Segmentation, and Classification with Score-Based Generative Models AAAI 2026
Flow Matching has emerged as a powerful framework for learning continuous transformations between distributions, enabling high-fidelity generative modeling. This work introduces Symmetrical Flow Matching (SymmFlow), a new formulation that unifies semantic segmentation, classification, and image generation within a single model. Using a symmetric learning objective, SymmFlow models forward and reverse transformations jointly, ensuring bi-directional consistency, while preserving sufficient entropy for generative diversity. A new training objective is introduced to explicitly retain semantic information across flows, featuring efficient sampling while preserving semantic structure, allowing for one-step segmentation and classification without iterative refinement. Unlike previous approaches that impose strict one-to-one mapping between masks and images, SymmFlow generalizes to flexible conditioning, supporting both pixel-level and image-level class labels. Experimental results on various benchmarks demonstrate that SymmFlow achieves state-of-the-art performance on semantic image synthesis, obtaining FID scores of 11.9 on CelebAMask-HQ and 7.0 on COCO-Stuff with only 25 inference steps. Additionally, it delivers competitive results on semantic segmentation and shows promising capabilities in classification tasks.
comment: AAAI 2026
♻ ☆ Speech-Audio Compositional Attacks on Multimodal LLMs and Their Mitigation with SALMONN-Guard
Recent progress in large language models (LLMs) has enabled understanding of both speech and non-speech audio, but exposing new safety risks emerging from complex audio inputs that are inadequately handled by current safeguards. We introduce SACRED-Bench (Speech-Audio Composition for RED-teaming) to evaluate the robustness of LLMs under complex audio-based attacks. Unlike existing perturbation-based methods that rely on noise optimization or white-box access, SACRED-Bench exploits speech-audio composition mechanisms. SACRED-Bench adopts three mechanisms: (a) speech overlap and multi-speaker dialogue, which embeds harmful prompts beneath or alongside benign speech; (b) speech-audio mixture, which imply unsafe intent via non-speech audio alongside benign speech or audio; and (c) diverse spoken instruction formats (open-ended QA, yes/no) that evade text-only filters. Experiments show that, even Gemini 2.5 Pro, the state-of-the-art proprietary LLM, still exhibits 66% attack success rate in SACRED-Bench test set, exposing vulnerabilities under cross-modal, speech-audio composition attacks. To bridge this gap, we propose SALMONN-Guard, a safeguard LLM that jointly inspects speech, audio, and text for safety judgments, reducing attack success down to 20%. Our results highlight the need for audio-aware defenses for the safety of multimodal LLMs. The benchmark and SALMONN-Guard checkpoints can be found at https://huggingface.co/datasets/tsinghua-ee/SACRED-Bench. Warning: this paper includes examples that may be offensive or harmful.
♻ ☆ $\textit{New News}$: System-2 Fine-tuning for Robust Integration of New Knowledge
Humans and intelligent animals can internalize new information and accurately internalize their implications to perform downstream tasks. While large language models (LLMs) can achieve this through in-context learning (ICL) when the information (news) is explicitly given as context, adequately integrating the information into model weights via fine-tuning remains challenging. In this paper, we introduce New News, a dataset composed of hypothetical yet plausible news spanning multiple domains (mathematics, coding, discoveries, leaderboards, events), accompanied by downstream evaluation questions whose correct answers critically depend on understanding and internalizing the news. First, we demonstrate a substantial gap between naive fine-tuning and in-context learning (FT-ICL gap) on our dataset. To address this gap, we explore a suite of self-play data generation protocols -- paraphrases, implications, and Self-QA -- designed to distill the knowledge processed by the model with context into the weights of the model, which we term System-2 Fine-tuning (Sys2-FT). We systematically evaluate ICL and Sys2-FT performance across data domains and model scales with the Qwen 2.5 family of models. Our results demonstrate that the Self-QA protocol of Sys2-FT significantly improves models' in-weight learning of the news while preserving general capabilities. Furthermore, we discover the contextual shadowing effect, where training with the news in context followed by its rephrases or QAs catastrophically degrades learning of the news. Finally, we show preliminary evidence of an emerging scaling law of Sys2-FT.
♻ ☆ Comprehension Without Competence: Architectural Limits of LLMs in Symbolic Computation and Reasoning
Large Language Models (LLMs) display striking surface fluency yet systematically fail at tasks requiring symbolic reasoning, arithmetic accuracy, and logical consistency. This paper offers a structural diagnosis of such failures, revealing a persistent gap between \textit{comprehension} and \textit{competence}. Through controlled experiments and architectural analysis, we demonstrate that LLMs often articulate correct principles without reliably applying them--a failure rooted not in knowledge access, but in computational execution. We term this phenomenon the computational \textit{split-brain syndrome}, where instruction and action pathways are geometrically and functionally dissociated. This core limitation recurs across domains, from mathematical operations to relational inferences, and explains why model behavior remains brittle even under idealized prompting. We argue that LLMs function as powerful pattern completion engines, but lack the architectural scaffolding for principled, compositional reasoning. Our findings delineate the boundary of current LLM capabilities and motivate future models with metacognitive control, principle lifting, and structurally grounded execution. This diagnosis also clarifies why mechanistic interpretability findings may reflect training-specific pattern coordination rather than universal computational principles, and why the geometric separation between instruction and execution pathways suggests limitations in neural introspection and mechanistic analysis.
comment: v2: Two TMLR revision rounds addressing reviewer feedback. Added real-world validation (3.4), interpretability analysis (7), computational hallucination framework, strengthened theory. v3: Sec 3.2 - added transformer architecture diagram, clarified UAT capacity vs computational limits, improved role specialization theorem presentation
♻ ☆ Large Language Model-assisted Autonomous Vehicle Recovery from Immobilization
Despite significant advancements in recent decades, autonomous vehicles (AVs) continue to face challenges in navigating certain traffic scenarios where human drivers excel. In such situations, AVs often become immobilized, disrupting overall traffic flow. Current recovery solutions, such as remote intervention (which is costly and inefficient) and manual takeover (which excludes non-drivers and limits AV accessibility), are inadequate. This paper introduces StuckSolver, a novel Large Language Model (LLM) driven recovery framework that enables AVs to resolve immobilization scenarios through self-reasoning and/or passenger-guided decision-making. StuckSolver is designed as a plug-in add-on module that operates on top of the AV's existing perception-planning-control stack, requiring no modification to its internal architecture. Instead, it interfaces with standard sensor data streams to detect immobilization states, interpret environmental context, and generate high-level recovery commands that can be executed by the AV's native planner. We evaluate StuckSolver on the Bench2Drive benchmark and in custom-designed uncertainty scenarios. Results show that StuckSolver achieves near-state-of-the-art performance through autonomous self-reasoning alone and exhibits further improvements when passenger guidance is incorporated.
comment: 7 pages
♻ ☆ Latent Principle Discovery for Language Model Self-Improvement NeurIPS 2025
When language model (LM) users aim to improve the quality of its generations, it is crucial to specify concrete behavioral attributes that the model should strive to reflect. However, curating such principles across many domains, even non-exhaustively, requires a labor-intensive annotation process. To automate this process, we propose eliciting these latent attributes that guide model reasoning toward human-preferred responses by explicitly modeling them in a self-correction setting. Our approach mines new principles from the LM itself and compresses the discovered elements to an interpretable set via clustering. Specifically, we employ a form of posterior-regularized Monte Carlo Expectation-Maximization to both identify a condensed set of the most effective latent principles and teach the LM to strategically invoke them in order to intrinsically refine its responses. We demonstrate that bootstrapping our algorithm over multiple iterations enables smaller language models (7-8B parameters) to self-improve, achieving +8-10% in AlpacaEval win-rate, an average of +0.3 on MT-Bench, and +19-23% in principle-following win-rate on IFEval. We also show that clustering the principles yields interpretable and diverse model-generated constitutions while retaining model performance. The gains that our method achieves highlight the potential of automated, principle-driven post-training recipes toward continual self-improvement.
comment: Accepted at NeurIPS 2025
♻ ☆ Efficient Story Point Estimation With Comparative Learning
Story point estimation is an essential part of agile software development. Story points are unitless, project-specific effort estimates that help developers plan their sprints. Traditionally, developers estimate story points collaboratively using planning poker or other manual techniques. While the initial calibrating of the estimates to each project is helpful, once a team has converged on a set of precedents, story point estimation can become tedious and labor-intensive. Machine learning can reduce this burden, but only with enough context from the historical decisions made by the project team. That is, state-of-the-art models, such as GPT2SP and FastText-SVM, only make accurate predictions (within-project) when trained on data from the same project. The goal of this work is to streamline story point estimation by evaluating a comparative learning-based framework for calibrating project-specific story point prediction models. Instead of assigning a specific story point value to every backlog item, developers are presented with pairs of items, and indicate which item requires more effort. Using these comparative judgments, a machine learning model is trained to predict the story point estimates. We empirically evaluated our technique using data with 23,313 manual estimates in 16 projects. The model learned from comparative judgments can achieve on average 0.34 Spearman's rank correlation coefficient between its predictions and the ground truth story points. This is similar to, if not better than, the performance of a regression model learned from the ground truth story points. Therefore, the proposed comparative learning approach is more efficient than state-of-the-art regression-based approaches according to the law of comparative judgments - providing comparative judgments yields a lower cognitive burden on humans than providing ratings or categorical labels.
♻ ☆ MUDAS: Mote-scale Unsupervised Domain Adaptation in Multi-label Sound Classification
Unsupervised Domain Adaptation (UDA) is essential for adapting machine learning models to new, unlabeled environments where data distribution shifts can degrade performance. Existing UDA algorithms are designed for single-label tasks and rely on significant computational resources, limiting their use in multi-label scenarios and in resource-constrained IoT devices. Overcoming these limitations is particularly challenging in contexts such as urban sound classification, where overlapping sounds and varying acoustics require robust, adaptive multi-label capabilities on low-power, on-device systems. To address these limitations, we introduce Mote-scale Unsupervised Domain Adaptation for Sounds (MUDAS), a UDA framework developed for multi-label sound classification in resource-constrained IoT settings. MUDAS efficiently adapts models by selectively retraining the classifier in situ using high-confidence data, minimizing computational and memory requirements to suit on-device deployment. Additionally, MUDAS incorporates class-specific adaptive thresholds to generate reliable pseudo-labels and applies diversity regularization to improve multi-label classification accuracy. In evaluations on the SONYC Urban Sound Tagging (SONYC-UST) dataset recorded at various New York City locations, MUDAS demonstrates notable improvements in classification accuracy over existing UDA algorithms, achieving good performance in a resource-constrained IoT setting.
comment: BuildSys 25
♻ ☆ Representation Meets Optimization: Training PINNs and PIKANs for Gray-Box Discovery in Systems Pharmacology
Physics-Informed Kolmogorov-Arnold Networks (PIKANs) are gaining attention as an effective counterpart to the original multilayer perceptron-based Physics-Informed Neural Networks (PINNs). Both representation models can address inverse problems and facilitate gray-box system identification. However, a comprehensive understanding of their performance in terms of accuracy and speed remains underexplored. In particular, we introduce a modified PIKAN architecture, tanh-cPIKAN, which is based on Chebyshev polynomials for parametrization of the univariate functions with an extra nonlinearity for enhanced performance. We then present a systematic investigation of how choices of the optimizer, representation, and training configuration influence the performance of PINNs and PIKANs in the context of systems pharmacology modeling. We benchmark a wide range of first-order, second-order, and hybrid optimizers, including various learning rate schedulers. We use the new Optax library to identify the most effective combinations for learning gray-boxes under ill-posed, non-unique, and data-sparse conditions. We examine the influence of model architecture (MLP vs. KAN), numerical precision (single vs. double), the need for warm-up phases for second-order methods, and sensitivity to the initial learning rate. We also assess the optimizer scalability for larger models and analyze the trade-offs introduced by JAX in terms of computational efficiency and numerical accuracy. Using two representative systems pharmacology case studies - a pharmacokinetics model and a chemotherapy drug-response model - we offer practical guidance on selecting optimizers and representation models/architectures for robust and efficient gray-box discovery. Our findings provide actionable insights for improving the training of physics-informed networks in biomedical applications and beyond.
♻ ☆ CAMA: Enhancing Mathematical Reasoning in Large Language Models with Causal Knowledge
Large Language Models (LLMs) have demonstrated strong performance across a wide range of tasks, yet they still struggle with complex mathematical reasoning, a challenge fundamentally rooted in deep structural dependencies. To address this challenge, we propose \textbf{CA}usal \textbf{MA}thematician (\textbf{CAMA}), a two-stage causal framework that equips LLMs with explicit, reusable mathematical structure. In the learning stage, CAMA first constructs the \textbf{M}athematical \textbf{C}ausal \textbf{G}raph (\textbf{MCG}), a high-level representation of solution strategies, by combining LLM priors with causal discovery algorithms applied to a corpus of question-solution pairs. The resulting MCG encodes essential knowledge points and their causal dependencies. To better align the graph with downstream reasoning tasks, CAMA further refines the MCG through iterative feedback derived from a selected subset of the question-solution pairs. In the reasoning stage, given a new question, CAMA dynamically extracts a task-relevant subgraph from the MCG, conditioned on both the question content and the LLM's intermediate reasoning trace. This subgraph, which encodes the most pertinent knowledge points and their causal dependencies, is then injected back into the LLM to guide its reasoning process. Empirical results on real-world datasets show that CAMA significantly improves LLM performance on challenging mathematical problems. Furthermore, our experiments demonstrate that structured guidance consistently outperforms unstructured alternatives, and that incorporating asymmetric causal relationships yields greater improvements than using symmetric associations alone.
♻ ☆ Modeling the Diachronic Evolution of Legal Norms: An LRMoo-Based, Component-Level, Event-Centric Approach to Legal Knowledge Graphs
Representing the temporal evolution of legal norms is a critical challenge for automated processing. While foundational frameworks exist, they lack a formal pattern for granular, component-level versioning, hindering the deterministic point-in-time reconstruction of legal texts required by reliable AI applications. This paper proposes a structured, temporal modeling pattern grounded in the LRMoo ontology. Our approach models a norm's evolution as a diachronic chain of versioned F1 Works, distinguishing between language-agnostic Temporal Versions (TV)-each being a distinct Work-and their monolingual Language Versions (LV), modeled as F2 Expressions. The legislative amendment process is formalized through event-centric modeling, allowing changes to be traced precisely. Using the Brazilian Constitution as a case study, we demonstrate that our architecture enables the exact reconstruction of any part of a legal text as it existed on a specific date. This provides a verifiable semantic backbone for legal knowledge graphs, offering a deterministic foundation for trustworthy legal AI.
comment: Model Refinement: Defining Temporal Versions as F1 Works
♻ ☆ FedALT: Federated Fine-Tuning through Adaptive Local Training with Rest-of-World LoRA AAAI 2026
Fine-tuning large language models (LLMs) in federated settings enables privacy-preserving adaptation but suffers from cross-client interference due to model aggregation. Existing federated LoRA fine-tuning methods, primarily based on FedAvg, struggle with data heterogeneity, leading to harmful cross-client interference and suboptimal personalization. In this work, we propose \textbf{FedALT}, a novel personalized federated LoRA fine-tuning algorithm that fundamentally departs from FedAvg. Instead of using an aggregated model to initialize local training, each client continues training its individual LoRA while incorporating shared knowledge through a separate Rest-of-World (RoW) LoRA component. To effectively balance local adaptation and global information, FedALT introduces an adaptive mixer that dynamically learns input-specific weightings between the individual and RoW LoRA components, drawing conceptual foundations from the Mixture-of-Experts (MoE) paradigm. Through extensive experiments on NLP benchmarks, we demonstrate that FedALT significantly outperforms state-of-the-art personalized federated LoRA fine-tuning methods, achieving superior local adaptation without sacrificing computational efficiency.
comment: Accepted by AAAI 2026
♻ ☆ Partial Information Decomposition for Data Interpretability and Feature Selection
In this paper, we introduce Partial Information Decomposition of Features (PIDF), a new paradigm for simultaneous data interpretability and feature selection. Contrary to traditional methods that assign a single importance value, our approach is based on three metrics per feature: the mutual information shared with the target variable, the feature's contribution to synergistic information, and the amount of this information that is redundant. In particular, we develop a novel procedure based on these three metrics, which reveals not only how features are correlated with the target but also the additional and overlapping information provided by considering them in combination with other features. We extensively evaluate PIDF using both synthetic and real-world data, demonstrating its potential applications and effectiveness, by considering case studies from genetics and neuroscience.
♻ ☆ Optimization-Induced Dynamics of Lipschitz Continuity in Neural Networks
Lipschitz continuity characterizes the worst-case sensitivity of neural networks to small input perturbations; yet its dynamics (i.e. temporal evolution) during training remains under-explored. We present a rigorous mathematical framework to model the temporal evolution of Lipschitz continuity during training with stochastic gradient descent (SGD). This framework leverages a system of stochastic differential equations (SDEs) to capture both deterministic and stochastic forces. Our theoretical analysis identifies three principal factors driving the evolution: (i) the projection of gradient flows, induced by the optimization dynamics, onto the operator-norm Jacobian of parameter matrices; (ii) the projection of gradient noise, arising from the randomness in mini-batch sampling, onto the operator-norm Jacobian; and (iii) the projection of the gradient noise onto the operator-norm Hessian of parameter matrices. Furthermore, our theoretical framework sheds light on such as how noisy supervision, parameter initialization, batch size, and mini-batch sampling trajectories, among other factors, shape the evolution of the Lipschitz continuity of neural networks. Our experimental results demonstrate strong agreement between the theoretical implications and the observed behaviors.
♻ ☆ GreatSplicing: A Semantically Rich Splicing Dataset
In existing splicing forgery datasets, the insufficient semantic variety of spliced regions causes trained detection models to overfit semantic features rather than learn genuine splicing traces. Meanwhile, the lack of a reasonable benchmark dataset has led to inconsistent experimental settings across existing detection methods. To address these issues, we propose GreatSplicing, a manually created, large-scale, high-quality splicing dataset. GreatSplicing comprises 5,000 spliced images and covers spliced regions across 335 distinct semantic categories, enabling detection models to learn splicing traces more effectively. Empirical results show that detection models trained on GreatSplicing achieve low misidentification rates and stronger cross-dataset generalization compared to existing datasets. GreatSplicing is now publicly available for research purposes at the following link.
comment: This version updates the author list and author order, and incorporates changes to the content
♻ ☆ Practical, Utilitarian Algorithm Configuration
Utilitarian algorithm configuration identifies a parameter setting for a given algorithm that maximizes a user's utility. Utility functions offer a theoretically well-grounded approach to optimizing decision-making under uncertainty and are flexible enough to capture a user's preferences over algorithm runtimes (e.g., they can describe a sharp cutoff after which a solution is no longer required, a per-hour cost for compute, or diminishing returns from algorithms that take longer to run). COUP is a recently-introduced utilitarian algorithm configuration procedure which was designed mainly to offer strong theoretical guarantees about the quality of the configuration it returns, with less attention paid to its practical performance. This paper closes that gap, bringing theoretically-grounded, utilitarian algorithm configuration to the point where it is competitive with widely used, heuristic configuration procedures that offer no performance guarantees. We present a series of improvements to COUP that improve its empirical performance without degrading its theoretical guarantees and demonstrate their benefit experimentally. Using a case study, we also illustrate ways of exploring the robustness of a given solution to the algorithm selection problem to variations in the utility function.
♻ ☆ The Carbon Footprint Wizard: A Knowledge-Augmented AI Interface for Streamlining Food Carbon Footprint Analysis
Environmental sustainability, particularly in relation to climate change, is a key concern for consumers, producers, and policymakers. The carbon footprint, based on greenhouse gas emissions, is a standard metric for quantifying the contribution to climate change of activities and is often assessed using life cycle assessment (LCA). However, conducting LCA is complex due to opaque and global supply chains, as well as fragmented data. This paper presents a methodology that combines advances in LCA and publicly available databases with knowledge-augmented AI techniques, including retrieval-augmented generation, to estimate cradle-to-gate carbon footprints of food products. We introduce a chatbot interface that allows users to interactively explore the carbon impact of composite meals and relate the results to familiar activities. A live web demonstration showcases our proof-of-concept system with arbitrary food items and follow-up questions, highlighting both the potential and limitations - such as database uncertainties and AI misinterpretations - of delivering LCA insights in an accessible format.
♻ ☆ Adaptive Pareto-Optimal Token Merging for Edge Transformer Models in Semantic Communication
Large-scale transformer models have emerged as a powerful tool for semantic communication systems, enabling edge devices to extract rich representations for robust inference across noisy wireless channels. However, their substantial computational demands remain a major barrier to practical deployment in resource-constrained 6G networks. In this paper, we present a training-free framework for adaptive token merging in pretrained vision transformers to jointly reduce inference time and transmission resource usage. We formulate the selection of per-layer merging proportions as a multi-objective optimization problem to balance accuracy and computational cost. We employ Gaussian process-based Bayesian optimization to construct a Pareto frontier of optimal configurations, enabling flexible runtime adaptation to dynamic application requirements and channel conditions. Extensive experiments demonstrate that our method consistently outperforms other baselines and achieves significant reductions in floating-point operations while maintaining competitive accuracy across a wide range of signal-to-noise ratio (SNR) conditions. Additional results highlight the effectiveness of adaptive policies that adjust merging aggressiveness in response to channel quality, providing a practical mechanism to trade off latency and semantic fidelity on demand. These findings establish a scalable and efficient approach for deploying transformer-based semantic communication in future edge intelligence systems.
comment: Accepted for presentation in IEEE Globecom 2025
♻ ☆ Pelican-VL 1.0: A Foundation Brain Model for Embodied Intelligence
This report presents Pelican-VL 1.0, a new family of open-source embodied brain models with parameter scales ranging from 7 billion to 72 billion. Our explicit mission is clearly stated as: To embed powerful intelligence into various embodiments. Pelican-VL 1.0 is currently the largest-scale open-source embodied multimodal brain model. Its core advantage lies in the in-depth integration of data power and intelligent adaptive learning mechanisms. Specifically, metaloop distilled a high-quality dataset from a raw dataset containing 4+ billion tokens. Pelican-VL 1.0 is trained on a large-scale cluster of 1000+ A800 GPUs, consuming over 50k+ A800 GPU-hours per checkpoint. This translates to a 20.3% performance uplift from its base model and outperforms 100B-level open-source counterparts by 10.6%, placing it on par with leading proprietary systems on well-known embodied benchmarks. We establish a novel framework, DPPO (Deliberate Practice Policy Optimization), inspired by human metacognition to train Pelican-VL 1.0. We operationalize this as a metaloop that teaches the AI to practice deliberately, which is a RL-Refine-Diagnose-SFT loop.
♻ ☆ First-Order Error Matters: Accurate Compensation for Quantized Large Language Models AAAI 2026
Post-training quantization (PTQ) offers an efficient approach to compressing large language models (LLMs), significantly reducing memory access and computational costs. Existing compensation-based weight calibration methods often rely on a second-order Taylor expansion to model quantization error, under the assumption that the first-order term is negligible in well-trained full-precision models. However, we reveal that the progressive compensation process introduces accumulated first-order deviations between latent weights and their full-precision counterparts, making this assumption fundamentally flawed. To address this, we propose FOEM, a novel PTQ method that explicitly incorporates first-order gradient terms to improve quantization error compensation. FOEM approximates gradients by performing a first-order Taylor expansion around the pre-quantization weights. This yields an approximation based on the difference between latent and full-precision weights as well as the Hessian matrix. When substituted into the theoretical solution, the formulation eliminates the need to explicitly compute the Hessian, thereby avoiding the high computational cost and limited generalization of backpropagation-based gradient methods. This design introduces only minimal additional computational overhead. Extensive experiments across a wide range of models and benchmarks demonstrate that FOEM consistently outperforms the classical GPTQ method. In 3-bit weight-only quantization, FOEM reduces the perplexity of Llama3-8B by 17.3% and increases the 5-shot MMLU accuracy from 53.8% achieved by GPTAQ to 56.1%. Moreover, FOEM can be seamlessly combined with advanced techniques such as SpinQuant, delivering additional gains under the challenging W4A4KV4 setting and further narrowing the performance gap with full-precision baselines, surpassing existing state-of-the-art methods.
comment: Accepted by AAAI 2026. The code is available at https://github.com/Xingyu-Zheng/FOEM
♻ ☆ CoEvo: Continual Evolution of Symbolic Solutions Using Large Language Models AAAI 2026
The discovery of symbolic solutions -- mathematical expressions, logical rules, and algorithmic structures -- is fundamental to advancing scientific and engineering progress. However, traditional methods often struggle with search efficiency and fail to integrate knowledge effectively. While recent large language model-based (LLM-based) approaches have demonstrated improvements in search efficiency, they lack the ability to continually refine and expand upon discovered solutions and their underlying knowledge, limiting their potential for open-ended innovation. To address these limitations, we introduce CoEvo, a novel framework that leverages large language models within an evolutionary search methodology to continually generate and refine symbolic solutions. CoEvo integrates a dynamic knowledge library, enabling open-ended innovation of solutions through effective knowledge management. Additionally, CoEvo leverages multiple representations of solutions -- including natural language, mathematical expressions, and code -- to further enhance search efficiency. By combining the reasoning capabilities of LLMs with the exploratory power of evolutionary algorithms, CoEvo significantly improves the efficiency and scope of symbolic discovery. Our experimental results demonstrate that this method not only enhances the efficiency of searching for symbolic solutions but also supports the ongoing discovery process, akin to human scientific endeavors. This study represents a first effort in conceptualizing the search for symbolic solutions as a lifelong, iterative process, marking a significant step towards harnessing LLMs in the perpetual pursuit of scientific and engineering breakthroughs. Our code is available at https://github.com/pgg3/CoEvo.
comment: Camera ready version for AAAI 2026
♻ ☆ NOCTIS: Novel Object Cyclic Threshold based Instance Segmentation CVPR 2026
Instance segmentation of novel objects instances in RGB images, given some example images for each object, is a well known problem in computer vision. Designing a model general enough to be employed for all kinds of novel objects without (re-) training has proven to be a difficult task. To handle this, we present a new training-free framework, called: Novel Object Cyclic Threshold based Instance Segmentation (NOCTIS). NOCTIS integrates two pre-trained models: Grounded-SAM 2 for object proposals with precise bounding boxes and corresponding segmentation masks; and DINOv2 for robust class and patch embeddings, due to its zero-shot capabilities. Internally, the proposal-object matching is realized by determining an object matching score based on the similarity of the class embeddings and the average maximum similarity of the patch embeddings with a new cyclic thresholding (CT) mechanism that mitigates unstable matches caused by repetitive textures or visually similar patterns. Beyond CT, NOCTIS introduces: (i) an appearance score that is unaffected by object selection bias; (ii) the usage of the average confidence of the proposals' bounding box and mask as a scoring component; and (iii) an RGB-only pipeline that performs even better than RGB-D ones. We empirically show that NOCTIS, without further training/fine tuning, outperforms the best RGB and RGB-D methods regarding the mean AP score on the seven core datasets of the BOP 2023 challenge for the "Model-based 2D segmentation of unseen objects" task.
comment: 9 pages, 3 figures, 5 tables, CVPR 2026 preprint
♻ ☆ Survey in Characterization of Semantic Change
Live languages continuously evolve to integrate the cultural change of human societies. This evolution manifests through neologisms (new words) or \textbf{semantic changes} of words (new meaning to existing words). Understanding the meaning of words is vital for interpreting texts coming from different cultures (regionalism or slang), domains (e.g., technical terms), or periods. In computer science, these words are relevant to computational linguistics algorithms such as translation, information retrieval, question answering, etc. Semantic changes can potentially impact the quality of the outcomes of these algorithms. Therefore, it is important to understand and characterize these changes formally. The study of this impact is a recent problem that has attracted the attention of the computational linguistics community. Several approaches propose methods to detect semantic changes with good precision, but more effort is needed to characterize how the meaning of words changes and to reason about how to reduce the impact of semantic change. This survey provides an understandable overview of existing approaches to the \textit{characterization of semantic changes} and also formally defines three classes of characterizations: if the meaning of a word becomes more general or narrow (change in dimension) if the word is used in a more pejorative or positive/ameliorated sense (change in orientation), and if there is a trend to use the word in a, for instance, metaphoric or metonymic context (change in relation). We summarized the main aspects of the selected publications in a table and discussed the needs and trends in the research activities on semantic change characterization.
♻ ☆ Clutch Control: An Attention-based Combinatorial Bandit for Efficient Mutation in JavaScript Engine Fuzzing
JavaScript engines are widely used in web browsers, PDF readers, and server-side applications. The rise in concern over their security has led to the development of several targeted fuzzing techniques. However, existing approaches use random selection to determine where to perform mutations in JavaScript code. We postulate that the problem of selecting better mutation targets is suitable for combinatorial bandits with a volatile number of arms. Thus, we propose CLUTCH, a novel deep combinatorial bandit that can observe variable length JavaScript test case representations, using an attention mechanism from deep learning. Furthermore, using Concrete Dropout, CLUTCH can dynamically adapt its exploration. We show that CLUTCH increases efficiency in JavaScript fuzzing compared to three state-of-the-art solutions by increasing the number of valid test cases and coverage-per-testcase by, respectively, 20.3% and 8.9% on average. In volatile and combinatorial settings we show that CLUTCH outperforms state-of-the-art bandits, achieving at least 78.1% and 4.1% less regret in volatile and combinatorial settings, respectively.
♻ ☆ TTF-VLA: Temporal Token Fusion via Pixel-Attention Integration for Vision-Language-Action Models AAAI 2026
Vision-Language-Action (VLA) models process visual inputs independently at each timestep, discarding valuable temporal information inherent in robotic manipulation tasks. This frame-by-frame processing makes models vulnerable to visual noise while ignoring the substantial coherence between consecutive frames in manipulation sequences. We propose Temporal Token Fusion (TTF), a training-free approach that intelligently integrates historical and current visual representations to enhance VLA inference quality. Our method employs dual-dimension detection combining efficient grayscale pixel difference analysis with attention-based semantic relevance assessment, enabling selective temporal token fusion through hard fusion strategies and keyframe anchoring to prevent error accumulation. Comprehensive experiments across LIBERO, SimplerEnv, and real robot tasks demonstrate consistent improvements: 4.0 percentage points average on LIBERO (72.4\% vs 68.4\% baseline), cross-environment validation on SimplerEnv (4.8\% relative improvement), and 8.7\% relative improvement on real robot tasks. Our approach proves model-agnostic, working across OpenVLA and VLA-Cache architectures. Notably, TTF reveals that selective Query matrix reuse in attention mechanisms enhances rather than compromises performance, suggesting promising directions for direct KQV matrix reuse strategies that achieve computational acceleration while improving task success rates.
comment: Accepted to AAAI 2026. Camera-ready version
♻ ☆ Re-FRAME the Meeting Summarization SCOPE: Fact-Based Summarization and Personalization via Questions EMNLP 2025
Meeting summarization with large language models (LLMs) remains error-prone, often producing outputs with hallucinations, omissions, and irrelevancies. We present FRAME, a modular pipeline that reframes summarization as a semantic enrichment task. FRAME extracts and scores salient facts, organizes them thematically, and uses these to enrich an outline into an abstractive summary. To personalize summaries, we introduce SCOPE, a reason-out-loud protocol that has the model build a reasoning trace by answering nine questions before content selection. For evaluation, we propose P-MESA, a multi-dimensional, reference-free evaluation framework to assess if a summary fits a target reader. P-MESA reliably identifies error instances, achieving >= 89% balanced accuracy against human annotations and strongly aligns with human severity ratings (r >= 0.70). On QMSum and FAME, FRAME reduces hallucination and omission by 2 out of 5 points (measured with MESA), while SCOPE improves knowledge fit and goal alignment over prompt-only baselines. Our findings advocate for rethinking summarization to improve control, faithfulness, and personalization.
comment: Accepted at EMNLP 2025
♻ ☆ Synthetic Object Compositions for Scalable and Accurate Learning in Detection, Segmentation, and Grounding
Visual grouping -- operationalized through tasks such as instance segmentation, visual grounding, and object detection -- enables applications ranging from robotic perception to photo editing. These fundamental problems in computer vision are powered by large-scale, painstakingly annotated datasets. Despite their impact, these datasets are costly to build, biased in coverage, and difficult to scale. Synthetic datasets offer a promising alternative but struggle with flexibility, accuracy, and compositional diversity. We introduce Synthetic Object Compositions (SOC), an accurate and scalable data synthesis pipeline via a novel object-centric composition strategy. It composes high-quality synthetic object segments into new images using 3D geometric layout augmentation and camera configuration augmentation with generative harmonization and mask-area-weighted blending, yielding accurate and diverse masks, boxes, and referring expressions. Models trained on just 100K of our synthetic images outperform those trained on larger real datasets (GRIT 20M, V3Det 200K) and synthetic pipelines (Copy-Paste, X-Paste, SynGround, SegGen) by +24-36% -- achieving +10.9 AP on LVIS and +8.4 NAcc on gRefCOCO. Beyond the general open-vocabulary setup, SOC also enables controllable dataset construction for different use cases and boosts performance in both low-data and closed-vocabulary scenarios. Augmenting LVIS and COCO with synthetic object segments delivers strong performance across different real-data scales and yields even greater improvements under extremely limited real-data conditions, including +6.59 AP on a 1% COCO data setup. Furthermore, this controllability enables targeted data generation for intra-class referring, a diagnostic grounding task we propose that requires fine-grained attribute discrimination.
comment: Project website: https://github.com/weikaih04/Synthetic-Detection-Segmentation-Grounding-Data
♻ ☆ Strategic Opponent Modeling with Graph Neural Networks, Deep Reinforcement Learning and Probabilistic Topic Modeling
This paper provides a comprehensive review of mainly Graph Neural Networks, Deep Reinforcement Learning, and Probabilistic Topic Modeling methods with a focus on their potential incorporation in strategic multiagent settings. We draw interest in (i) Machine Learning methods currently utilized for uncovering unknown model structures adaptable to the task of strategic opponent modeling, and (ii) the integration of these methods with Game Theoretic concepts that avoid relying on assumptions often invalid in real-world scenarios, such as the Common Prior Assumption (CPA) and the Self-Interest Hypothesis (SIH). We analyze the ability to handle uncertainty and heterogeneity, two characteristics that are very common in real-world application cases, as well as scalability. As a potential answer to effectively modeling relationships and interactions in multiagent settings, we champion the use of Graph Neural Networks (GNN). Such approaches are designed to operate upon graph-structured data, and have been shown to be a very powerful tool for performing tasks such as node classification and link prediction. Next, we review the domain of Reinforcement Learning (RL), and in particular that of Multiagent Deep Reinforcement Learning (MADRL). Following, we describe existing relevant game theoretic solution concepts and consider properties such as fairness and stability. Our review comes complete with a note on the literature that utilizes PTM in domains other than that of document analysis and classification. The capability of PTM to estimate unknown underlying distributions can help with tackling heterogeneity and unknown agent beliefs. Finally, we identify certain open challenges specifically, the need to (i) fit non-stationary environments, (ii) balance the degrees of stability and adaptation, (iii) tackle uncertainty and heterogeneity, (iv) guarantee scalability and solution tractability.
comment: 26 pages
♻ ☆ ICL-Router: In-Context Learned Model Representations for LLM Routing AAAI 2026
Large language models (LLMs) often exhibit complementary strengths. Model routing harnesses these strengths by dynamically directing each query to the most suitable model, given a candidate model pool. However, routing performance relies on accurate model representations, and adding new models typically requires retraining, limiting scalability. To address these challenges, we propose a novel routing method using in-context vectors to represent model capabilities. The method proceeds in two stages. First, queries are embedded and projected into vectors, with a projector and LLM-based router trained to reconstruct the original queries, aligning vector representations with the router's semantic space. Second, each candidate model is profiled on a query set, and the router learns -- based on in-context vectors of query and model performance -- to predict whether each model can correctly answer new queries. Extensive experiments demonstrate that our method achieves state-of-the-art routing performance in both in-distribution and out-of-distribution tasks. Moreover, our method allows for seamless integration of new models without retraining the router. The code is available at https://github.com/lalalamdbf/ICL-Router.
comment: Accepted by AAAI 2026
♻ ☆ Towards Efficient and Reliable AI Through Neuromorphic Principles
Artificial intelligence (AI) research today is largely driven by ever-larger neural network models trained on graphics processing units (GPUs). This paradigm has yielded remarkable progress, but it also risks entrenching a hardware lottery in which algorithmic choices succeed primarily because they align with current hardware, rather than because they are inherently superior. In particular, the dominance of Transformer architectures running on GPU clusters has led to an arms race of scaling up models, resulting in exorbitant computational costs and energy usage. At the same time, today's AI models often remain unreliable in the sense that they cannot properly quantify uncertainty in their decisions -- for example, large language models tend to hallucinate incorrect outputs with high confidence. This article argues that achieving more efficient and reliable AI will require embracing a set of principles that are well-aligned with the goals of neuromorphic engineering, which are in turn inspired by how the brain processes information. Specifically, we outline six key neuromorphic principles, spanning algorithms, architectures, and hardware, that can inform the design of future AI systems: (i) the use of stateful, recurrent models; (ii) extreme dynamic sparsity, possibly down to spike-based processing; (iii) backpropagation-free on-device learning and fine-tuning; (iv) probabilistic decision-making; (v) in-memory computing; and (vi) hardware-software co-design via stochastic computing. We discuss each of these principles in turn, surveying relevant prior work and pointing to directions for research.
comment: Accepted for publication in Philosophical Transactions A
♻ ☆ Efficient Learning-Based Control of a Legged Robot in Lunar Gravity
Legged robots are promising candidates for exploring challenging areas on low-gravity bodies such as the Moon, Mars, or asteroids, thanks to their advanced mobility on unstructured terrain. However, as planetary robots' power and thermal budgets are highly restricted, these robots need energy-efficient control approaches that easily transfer to multiple gravity environments. In this work, we introduce a reinforcement learning-based control approach for legged robots with gravity-scaled power-optimized reward functions. We use our approach to develop and validate a locomotion controller and a base pose controller in gravity environments from lunar gravity (1.62 m/s2) to a hypothetical super-Earth (19.62 m/s2). Our approach successfully scales across these gravity levels for locomotion and base pose control with the gravity-scaled reward functions. The power-optimized locomotion controller reached a power consumption for locomotion of 23.4 W in Earth gravity on a 15.65 kg robot at 0.4 m/s, a 23 % improvement over the baseline policy. Additionally, we designed a constant-force spring offload system that allowed us to conduct real-world experiments on legged locomotion in lunar gravity. In lunar gravity, the power-optimized control policy reached 12.2 W, 36 % less than a baseline controller which is not optimized for power efficiency. Our method provides a scalable approach to developing power-efficient locomotion controllers for legged robots across multiple gravity levels.
♻ ☆ VoiceAgentEval: A Dual-Dimensional Benchmark for Expert-Level Intelligent Voice-Agent Evaluation of Xbench's Professional-Aligned Series
We propose OutboundEval, a comprehensive benchmark for evaluating large language models (LLMs) in expert-level intelligent outbound calling scenarios. Unlike existing methods that suffer from three key limitations - insufficient dataset diversity and category coverage, unrealistic user simulation, and inaccurate evaluation metrics - OutboundEval addresses these issues through a structured framework. First, we design a benchmark spanning six major business domains and 30 representative sub-scenarios, each with scenario-specific process decomposition, weighted scoring, and domain-adaptive metrics. Second, we develop a large-model-driven User Simulator that generates diverse, persona-rich virtual users with realistic behaviors, emotional variability, and communication styles, providing a controlled yet authentic testing environment. Third, we introduce a dynamic evaluation method that adapts to task variations, integrating automated and human-in-the-loop assessment to measure task execution accuracy, professional knowledge application, adaptability, and user experience quality. Experiments on 12 state-of-the-art LLMs reveal distinct trade-offs between expert-level task completion and interaction fluency, offering practical insights for building reliable, human-like outbound AI systems. OutboundEval establishes a practical, extensible, and domain-oriented standard for benchmarking LLMs in professional applications.
♻ ☆ FastDriveVLA: Efficient End-to-End Driving via Plug-and-Play Reconstruction-based Token Pruning AAAI 2026
Vision-Language-Action (VLA) models have demonstrated significant potential in complex scene understanding and action reasoning, leading to their increasing adoption in end-to-end autonomous driving systems. However, the long visual tokens of VLA models greatly increase computational costs. Current visual token pruning methods in Vision-Language Models (VLM) rely on either visual token similarity or visual-text attention, but both have shown poor performance in autonomous driving scenarios. Given that human drivers concentrate on relevant foreground areas while driving, we assert that retaining visual tokens containing this foreground information is essential for effective decision-making. Inspired by this, we propose FastDriveVLA, a novel reconstruction-based vision token pruning framework designed specifically for autonomous driving. FastDriveVLA includes a plug-and-play visual token pruner called ReconPruner, which prioritizes foreground information through MAE-style pixel reconstruction. A novel adversarial foreground-background reconstruction strategy is designed to train ReconPruner for the visual encoder of VLA models. Once trained, ReconPruner can be seamlessly applied to different VLA models with the same visual encoder without retraining. To train ReconPruner, we also introduce a large-scale dataset called nuScenes-FG, consisting of 241K image-mask pairs with annotated foreground regions. Our approach achieves state-of-the-art results on the nuScenes open-loop planning benchmark across different pruning ratios.
comment: Accepted by AAAI 2026
♻ ☆ An Adaptive Multi Agent Bitcoin Trading System
This paper presents a Multi Agent Bitcoin Trading system that utilizes Large Language Models (LLMs) for alpha generation and portfolio management in the cryptocurrencies market. Unlike equities, cryptocurrencies exhibit extreme volatility and are heavily influenced by rapidly shifting market sentiments and regulatory announcements, making them difficult to model using static regression models or neural networks trained solely on historical data. The proposed framework overcomes this by structuring LLMs into specialised agents for technical analysis, sentiment evaluation, decision-making, and performance reflection. The agents improve over time via a novel verbal feedback mechanism where a Reflect agent provides daily and weekly natural-language critiques of trading decisions. These textual evaluations are then injected into future prompts of the agents, allowing them to adjust allocation logic without weight updates or finetuning. Back-testing on Bitcoin price data from July 2024 to April 2025 shows consistent outperformance across market regimes: the Quantitative agent delivered over 30\% higher returns in bullish phases and 15\% overall gains versus buy-and-hold, while the sentiment-driven agent turned sideways markets from a small loss into a gain of over 100\%. Adding weekly feedback further improved total performance by 31\% and reduced bearish losses by 10\%. The results demonstrate that verbal feedback represents a new, scalable, and low-cost approach of tuning LLMs for financial goals.
comment: 18 pages, 6 figures , 2 tables
♻ ☆ SafeMIL: Learning Offline Safe Imitation Policy from Non-Preferred Trajectories AAAI 2026
In this work, we study the problem of offline safe imitation learning (IL). In many real-world settings, online interactions can be risky, and accurately specifying the reward and the safety cost information at each timestep can be difficult. However, it is often feasible to collect trajectories reflecting undesirable or risky behavior, implicitly conveying the behavior the agent should avoid. We refer to these trajectories as non-preferred trajectories. Unlike standard IL, which aims to mimic demonstrations, our agent must also learn to avoid risky behavior using non-preferred trajectories. In this paper, we propose a novel approach, SafeMIL, to learn a parameterized cost that predicts if the state-action pair is risky via Multiple Instance Learning. The learned cost is then used to avoid non-preferred behaviors, resulting in a policy that prioritizes safety. We empirically demonstrate that our approach can learn a safer policy that satisfies cost constraints without degrading the reward performance, thereby outperforming several baselines.
comment: 18 pages, Accepted at AAAI 2026
♻ ☆ Causal Digital Twins for Cyber-Physical Security: A Framework for Robust Anomaly Detection in Industrial Control Systems
Industrial Control Systems (ICS) in water distribution and treatment face cyber-physical attacks exploiting network and physical vulnerabilities. Current water system anomaly detection methods rely on correlations, yielding high false alarms and poor root cause analysis. We propose a Causal Digital Twin (CDT) framework for water infrastructures, combining causal inference with digital twin modeling. CDT supports association for pattern detection, intervention for system response, and counterfactual analysis for water attack prevention. Evaluated on water-related datasets SWaT, WADI, and HAI, CDT shows 90.8\% compliance with physical constraints and structural Hamming distance 0.133 $\pm$ 0.02. F1-scores are $0.944 \pm 0.014$ (SWaT), $0.902 \pm 0.021$ (WADI), $0.923 \pm 0.018$ (HAI, $p<0.0024$). CDT reduces false positives by 74\%, achieves 78.4\% root cause accuracy, and enables counterfactual defenses reducing attack success by 73.2\%. Real-time performance at 3.2 ms latency ensures safe and interpretable operation for medium-scale water systems.
comment: 22 Pages, six figures, and 14 tables,
♻ ☆ StreamDiT: Real-Time Streaming Text-to-Video Generation
Recently, great progress has been achieved in text-to-video (T2V) generation by scaling transformer-based diffusion models to billions of parameters, which can generate high-quality videos. However, existing models typically produce only short clips offline, restricting their use cases in interactive and real-time applications. This paper addresses these challenges by proposing StreamDiT, a streaming video generation model. StreamDiT training is based on flow matching by adding a moving buffer. We design mixed training with different partitioning schemes of buffered frames to boost both content consistency and visual quality. StreamDiT modeling is based on adaLN DiT with varying time embedding and window attention. To practice the proposed method, we train a StreamDiT model with 4B parameters. In addition, we propose a multistep distillation method tailored for StreamDiT. Sampling distillation is performed in each segment of a chosen partitioning scheme. After distillation, the total number of function evaluations (NFEs) is reduced to the number of chunks in a buffer. Finally, our distilled model reaches real-time performance at 16 FPS on one GPU, which can generate video streams at 512p resolution. We evaluate our method through both quantitative metrics and human evaluation. Our model enables real-time applications, e.g. streaming generation, interactive generation, and video-to-video. We provide video results and more examples in our project website: https://cumulo-autumn.github.io/StreamDiT/
♻ ☆ MoPE: Mixture of Prompt Experts for Parameter-Efficient and Scalable Multimodal Fusion
Despite the demonstrated parameter efficiency of prompt-based fusion, its limited adaptivity and expressiveness hinder its effectiveness for multimodal applications at scale. In this paper, we present the first comprehensive study addressing these limitations. Our key motivation is to ``divide and conquer'' the vanilla prompt, traditionally shared across all instances, by generating instance-specific prompts. Specifically, we propose the Mixture of Prompt Experts (MoPE), a framework that significantly enhances prompt adaptivity and expressiveness by dynamically generating instance-specific prompts. MoPE leverages multimodal pairings as additional evidence, allowing the model to adaptively select optimal prompts tailored to each individual instance. Unlike traditional prompt-fusion methods, which encounter scalability bottlenecks when optimizing long unified prompts, MoPE maintains fixed prompt length while effectively scaling the number of specialized experts. Moreover, we investigate regularization terms to encourage expert specialization, resulting in highly adaptive and interpretable prompting. MoPE fundamentally changes the scaling dynamic, unlocking greater expressiveness and adaptability to complex multimodal relationships, enabling the model to selectively attend to task-relevant sub-sequences based on instance-specific multimodal input. Extensive experiments across six multimodal datasets spanning four modalities demonstrate state-of-the-art performance for multimodal fusion, matching or surpassing the performance of fine-tuning while requiring only 0.8% of the trainable parameters. Code is available: https://github.com/songrise/MoPE.
comment: Accepted to IEEE TMM
♻ ☆ A filtering scheme for confocal laser endomicroscopy (CLE)-video sequences for self-supervised learning
Confocal laser endomicroscopy (CLE) is a non-invasive, real-time imaging modality that can be used for in-situ, in-vivo imaging and the microstructural analysis of mucous structures. The diagnosis using CLE is, however, complicated by images being hard to interpret for non-experienced physicians. Utilizing machine learning as an augmentative tool would hence be beneficial, but is complicated by the shortage of histopathology-correlated CLE imaging sequences with respect to the plurality of patterns in this domain, leading to overfitting of machine learning models. To overcome this, self-supervised learning (SSL) can be employed on larger unlabeled datasets. CLE is a video-based modality with high inter-frame correlation, leading to a non-stratified data distribution for SSL training. In this work, we propose a filter functionality on CLE video sequences to reduce the dataset redundancy in SSL training and improve SSL training convergence and training efficiency. We use four state-of-the-art baseline networks and a SSL teacher-student network with a vision transformer small backbone for the evaluation. These networks were evaluated on downstream tasks for a sinonasal tumor dataset and a squamous cell carcinoma of the skin dataset. On both datasets, we found the highest test accuracy on the filtered SSL-pretrained model, with 67.48% and 73.52%, both considerably outperforming their non-SSL baselines. Our results show that SSL is an effective method for CLE pretraining. Further, we show that our proposed CLE video filter can be utilized to improve training efficiency in self-supervised scenarios, resulting in a reduction of 67% in training time.
♻ ☆ Strada-LLM: Graph LLM for traffic prediction
Traffic forecasting is pivotal for intelligent transportation systems, where accurate and interpretable predictions can significantly enhance operational efficiency and safety. A key challenge stems from the heterogeneity of traffic conditions across diverse locations, leading to highly varied traffic data distributions. Large language models (LLMs) show exceptional promise for few-shot learning in such dynamic and data-sparse scenarios. However, existing LLM-based solutions often rely on prompt-tuning, which can struggle to fully capture complex graph relationships and spatiotemporal dependencies-thereby limiting adaptability and interpretability in real-world traffic networks. We address these gaps by introducing Strada-LLM, a novel multivariate probabilistic forecasting LLM that explicitly models both temporal and spatial traffic patterns. By incorporating proximal traffic information as covariates, Strada-LLM more effectively captures local variations and outperforms prompt-based existing LLMs. To further enhance adaptability, we propose a lightweight distribution-derived strategy for domain adaptation, enabling parameter-efficient model updates when encountering new data distributions or altered network topologies-even under few-shot constraints. Empirical evaluations on spatio-temporal transportation datasets demonstrate that Strada-LLM consistently surpasses state-of-the-art LLM-driven and traditional GNN-based predictors. Specifically, it improves long-term forecasting by 17% in RMSE error and 16% more efficiency. Moreover, it maintains robust performance across different LLM backbones with minimal degradation, making it a versatile and powerful solution for real-world traffic prediction tasks.
comment: 13 pages
♻ ☆ Scientists' First Exam: Probing Cognitive Abilities of MLLM via Perception, Understanding, and Reasoning
Scientific discoveries increasingly rely on complex multimodal reasoning based on information-intensive scientific data and domain-specific expertise. Empowered by expert-level scientific benchmarks, scientific Multimodal Large Language Models (MLLMs) hold the potential to significantly enhance this discovery process in realistic workflows. However, current scientific benchmarks mostly focus on evaluating the knowledge understanding capabilities of MLLMs, leading to an inadequate assessment of their perception and reasoning abilities. To address this gap, we present the Scientists' First Exam (SFE) benchmark, designed to evaluate the scientific cognitive capacities of MLLMs through three interconnected levels: scientific signal perception, scientific attribute understanding, scientific comparative reasoning. Specifically, SFE comprises 830 expert-verified VQA pairs across three question types, spanning 66 multimodal tasks across five high-value disciplines. Extensive experiments reveal that current state-of-the-art GPT-o3 and InternVL-3 achieve only 34.08% and 26.52% on SFE, highlighting significant room for MLLMs to improve in scientific realms. We hope the insights obtained in SFE will facilitate further developments in AI-enhanced scientific discoveries.
comment: 82 pages
♻ ☆ Self-supervised Learning of Echocardiographic Video Representations via Online Cluster Distillation
Self-supervised learning (SSL) has achieved major advances in natural images and video understanding, but challenges remain in domains like echocardiography (heart ultrasound) due to subtle anatomical structures, complex temporal dynamics, and the current lack of domain-specific pre-trained models. Existing SSL approaches such as contrastive, masked modeling, and clustering-based methods struggle with high intersample similarity, sensitivity to low PSNR inputs common in ultrasound, or aggressive augmentations that distort clinically relevant features. We present DISCOVR (Distilled Image Supervision for Cross Modal Video Representation), a self-supervised dual branch framework for cardiac ultrasound video representation learning. DISCOVR combines a clustering-based video encoder that models temporal dynamics with an online image encoder that extracts fine-grained spatial semantics. These branches are connected through a semantic cluster distillation loss that transfers anatomical knowledge from the evolving image encoder to the video encoder, enabling temporally coherent representations enriched with fine-grained semantic understanding.Evaluated on six echocardiography datasets spanning fetal, pediatric, and adult populations, DISCOVR outperforms both specialized video anomaly detection methods and state-of-the-art video-SSL baselines in zero-shot and linear probing setups,achieving superior segmentation transfer and strong downstream performance on clinically relevant tasks such as LVEF prediction. Code available at: https://github.com/mdivyanshu97/DISCOVR
♻ ☆ ADPO: Anchored Direct Preference Optimization
Direct Preference Optimization (DPO) has emerged as a simple alternative to reinforcement learning from human feedback (RLHF) for aligning language models, but its reliance on hard pairwise labels makes it brittle under noise; our experiments show performance degrading by up to 93 percent in noisy settings. We introduce Anchored Direct Preference Optimization (ADPO), a unified framework that addresses this fragility through reference anchoring. By minimizing KL(q || softmax((l - l_ref) / tau_anc)), where l_ref are reference policy log probabilities, ADPO provides three key advantages: (1) it unifies major learning paradigms, including supervised fine-tuning, knowledge distillation, maximum-entropy reinforcement learning, and DPO, as special cases through different choices of target distribution q, anchor policy pi_ref, and temperature tau_anc; (2) it induces an implicit trust region governed by the softmax Fisher metric with curvature scaling as 1 / tau_anc^2, providing geometric regularization absent in standard methods; and (3) it enables flexible anchor strategies tailored to different learning contexts. Empirically, ADPO consistently outperforms standard DPO by 12 to 93 percent across twelve noisy scenarios, with listwise variants achieving top performance in eleven of twelve cases. In offline distillation, ADPO reduces student-teacher KL by 4 to 49 times while achieving superior returns (for example, 279.3 vs -309.0 for knowledge distillation on HalfCheetah). We further uncover a task-dependent tradeoff: dynamic anchors excel at online exploration in noisy environments (plus 5 to 11 percent), while fixed anchors enable stable offline distillation. Our work establishes anchoring as a general principle for robust policy optimization, with clear practical guidance for anchor selection across diverse learning scenarios.
LeJEPA: Provable and Scalable Self-Supervised Learning Without the Heuristics
Learning manipulable representations of the world and its dynamics is central to AI. Joint-Embedding Predictive Architectures (JEPAs) offer a promising blueprint, but lack of practical guidance and theory has led to ad-hoc R&D. We present a comprehensive theory of JEPAs and instantiate it in {\bf LeJEPA}, a lean, scalable, and theoretically grounded training objective. First, we identify the isotropic Gaussian as the optimal distribution that JEPAs' embeddings should follow to minimize downstream prediction risk. Second, we introduce a novel objective--{\bf Sketched Isotropic Gaussian Regularization} (SIGReg)--to constrain embeddings to reach that ideal distribution. Combining the JEPA predictive loss with SIGReg yields LeJEPA with numerous theoretical and practical benefits: (i) single trade-off hyperparameter, (ii) linear time and memory complexity, (iii) stability across hyper-parameters, architectures (ResNets, ViTs, ConvNets) and domains, (iv) heuristics-free, e.g., no stop-gradient, no teacher-student, no hyper-parameter schedulers, and (v) distributed training-friendly implementation requiring only $\approx$50 lines of code. Our empirical validation covers 10+ datasets, 60+ architectures, all with varying scales and domains. As an example, using imagenet-1k for pretraining and linear evaluation with frozen backbone, LeJEPA reaches 79\% with a ViT-H/14. We hope that the simplicity and theory-friendly ecosystem offered by LeJEPA will reestablish self-supervised pre-training as a core pillar of AI research (\href{https://github.com/rbalestr-lab/lejepa}{GitHub repo}).
♻ ☆ FQ-PETR: Fully Quantized Position Embedding Transformation for Multi-View 3D Object Detection AAAI 2026
Camera-based multi-view 3D detection is crucial for autonomous driving. PETR and its variants (PETRs) excel in benchmarks but face deployment challenges due to high computational cost and memory footprint. Quantization is an effective technique for compressing deep neural networks by reducing the bit width of weights and activations. However, directly applying existing quantization methods to PETRs leads to severe accuracy degradation. This issue primarily arises from two key challenges: (1) significant magnitude disparity between multi-modal features-specifically, image features and camera-ray positional embeddings (PE), and (2) the inefficiency and approximation error of quantizing non-linear operators, which commonly rely on hardware-unfriendly computations. In this paper, we propose FQ-PETR, a fully quantized framework for PETRs, featuring three key innovations: (1) Quantization-Friendly LiDAR-ray Position Embedding (QFPE): Replacing multi-point sampling with LiDAR-prior-guided single-point sampling and anchor-based embedding eliminates problematic non-linearities (e.g., inverse-sigmoid) and aligns PE scale with image features, preserving accuracy. (2) Dual-Lookup Table (DULUT): This algorithm approximates complex non-linear functions using two cascaded linear LUTs, achieving high fidelity with minimal entries and no specialized hardware. (3) Quantization After Numerical Stabilization (QANS): Performing quantization after softmax numerical stabilization mitigates attention distortion from large inputs. On PETRs (e.g. PETR, StreamPETR, PETRv2, MV2d), FQ-PETR under W8A8 achieves near-floating-point accuracy (1% degradation) while reducing latency by up to 75%, significantly outperforming existing PTQ and QAT baselines.
comment: This paper is acceptted by AAAI 2026
♻ ☆ Threat Modeling for Enhancing Security of IoT Audio Classification Devices under a Secure Protocols Framework
The rapid proliferation of IoT nodes equipped with microphones and capable of performing on-device audio classification exposes highly sensitive data while operating under tight resource constraints. To protect against this, we present a defence-in-depth architecture comprising a security protocol that treats the edge device, cellular network and cloud backend as three separate trust domains, linked by TPM-based remote attestation and mutually authenticated TLS 1.3. A STRIDE-driven threat model and attack-tree analysis guide the design. At startup, each boot stage is measured into TPM PCRs. The node can only decrypt its LUKS-sealed partitions after the cloud has verified a TPM quote and released a one-time unlock key. This ensures that rogue or tampered devices remain inert. Data in transit is protected by TLS 1.3 and hybridised with Kyber and Dilithium to provide post-quantum resilience. Meanwhile, end-to-end encryption and integrity hashes safeguard extracted audio features. Signed, rollback-protected AI models and tamper-responsive sensors harden firmware and hardware. Data at rest follows a 3-2-1 strategy comprising a solid-state drive sealed with LUKS, an offline cold archive encrypted with a hybrid post-quantum cipher and an encrypted cloud replica. Finally, we set out a plan for evaluating the physical and logical security of the proposed protocol.
comment: Accepted at Computing Conference 2026, London, UK
♻ ☆ EMOD: A Unified EEG Emotion Representation Framework Leveraging V-A Guided Contrastive Learning
Emotion recognition from EEG signals is essential for affective computing and has been widely explored using deep learning. While recent deep learning approaches have achieved strong performance on single EEG emotion datasets, their generalization across datasets remains limited due to the heterogeneity in annotation schemes and data formats. Existing models typically require dataset-specific architectures tailored to input structure and lack semantic alignment across diverse emotion labels. To address these challenges, we propose EMOD: A Unified EEG Emotion Representation Framework Leveraging Valence-Arousal (V-A) Guided Contrastive Learning. EMOD learns transferable and emotion-aware representations from heterogeneous datasets by bridging both semantic and structural gaps. Specifically, we project discrete and continuous emotion labels into a unified V-A space and formulate a soft-weighted supervised contrastive loss that encourages emotionally similar samples to cluster in the latent space. To accommodate variable EEG formats, EMOD employs a flexible backbone comprising a Triple-Domain Encoder followed by a Spatial-Temporal Transformer, enabling robust extraction and integration of temporal, spectral, and spatial features. We pretrain EMOD on 8 public EEG datasets and evaluate its performance on three benchmark datasets. Experimental results show that EMOD achieves the state-of-the-art performance, demonstrating strong adaptability and generalization across diverse EEG-based emotion recognition scenarios.
♻ ☆ Optimizing Multi-Tier Supply Chain Ordering with LNN+XGBoost: Mitigating the Bullwhip Effect
Supply chain management faces significant challenges, including demand fluctuations, inventory imbalances, and amplified upstream order variability due to the bullwhip effect. Traditional methods, such as simple moving averages, struggle to address dynamic market conditions. Emerging machine learning techniques, including LSTM, reinforcement learning, and XGBoost, offer potential solutions but are limited by computational complexity, training inefficiencies, or constraints in time-series modeling. Liquid Neural Networks, inspired by dynamic biological systems, present a promising alternative due to their adaptability, low computational cost, and robustness to noise, making them suitable for real-time decision-making and edge computing. Despite their success in applications like autonomous vehicles and medical monitoring, their potential in supply chain optimization remains underexplored. This study introduces a hybrid LNN and XGBoost model to optimize ordering strategies in multi-tier supply chains. By leveraging LNN's dynamic feature extraction and XGBoost's global optimization capabilities, the model aims to mitigate the bullwhip effect and enhance cumulative profitability. The research investigates how local and global synergies within the hybrid framework address the dual demands of adaptability and efficiency in SCM. The proposed approach fills a critical gap in existing methodologies, offering an innovative solution for dynamic and efficient supply chain management.
♻ ☆ Posterior Label Smoothing for Node Classification AAAI 2026
Label smoothing is a widely studied regularization technique in machine learning. However, its potential for node classification in graph-structured data, spanning homophilic to heterophilic graphs, remains largely unexplored. We introduce posterior label smoothing, a novel method for transductive node classification that derives soft labels from a posterior distribution conditioned on neighborhood labels. The likelihood and prior distributions are estimated from the global statistics of the graph structure, allowing our approach to adapt naturally to various graph properties. We evaluate our method on 10 benchmark datasets using eight baseline models, demonstrating consistent improvements in classification accuracy. The following analysis demonstrates that soft labels mitigate overfitting during training, leading to better generalization performance, and that pseudo-labeling effectively refines the global label statistics of the graph. Our code is available at https://github.com/ml-postech/PosteL.
comment: Accepted by AAAI 2026
♻ ☆ Advantage Shaping as Surrogate Reward Maximization: Unifying Pass@K Policy Gradients
This note reconciles two seemingly distinct approaches to policy gradient optimization for the Pass@K objective in reinforcement learning with verifiable rewards: (1) direct REINFORCE-style methods, and (2) advantage-shaping techniques that directly modify GRPO. We show that these are two sides of the same coin. By reverse-engineering existing advantage-shaping algorithms, we reveal that they implicitly optimize surrogate rewards. We specifically interpret practical "hard-example up-weighting" modifications to GRPO as reward-level regularization. Conversely, starting from surrogate reward objectives, we provide a simple recipe for deriving both existing and new advantage-shaping methods. This perspective provides a lens for RLVR policy gradient optimization beyond our original motivation of Pass@K.
comment: v2: Typos fixed. Added summary table in intro. Clarified PPO-style objective vs. surrogate reward
♻ ☆ PustakAI: Curriculum-Aligned and Interactive Textbooks Using Large Language Models
Large Language Models (LLMs) have demonstrated remarkable capabilities in understanding and generating human-like content. This has revolutionized various sectors such as healthcare, software development, and education. In education, LLMs offer potential for personalized and interactive learning experiences, especially in regions with limited teaching resources. However, adapting these models effectively to curriculum-specific content, such as the National Council of Educational Research and Training (NCERT) syllabus in India, presents unique challenges in terms of accuracy, alignment, and pedagogical relevance. In this paper, we present the framework "PustakAI"\footnote{Pustak means `book' in many Indian languages.} for the design and evaluation of a novel question-answering dataset "NCERT-QA" aligned with the NCERT curriculum for English and Science subjects of grades 6 to 8. We classify the curated QA pairs as Factoid, Inferential, and Others (evaluative and reasoning). We evaluate the dataset with various prompting techniques, such as meta-prompt, few-shot, and CoT-style prompting, using diverse evaluation metrics to understand which approach aligns more efficiently with the structure and demands of the curriculum. Along with the usability of the dataset, we analyze the strengths and limitations of current open-source LLMs (Gemma3:1b, Llama3.2:3b, and Nemotron-mini:4b) and high-end LLMs (Llama-4-Scout-17B and Deepseek-r1-70B) as AI-based learning tools in formal education systems.
♻ ☆ An Efficient Training Pipeline for Reasoning Graphical User Interface Agents
Visual grounding is the task of localising image regions from natural language queries and is critical for reasoning capable Graphical User Interface agents. Many existing methods rely on massive, noisy synthetic datasets. This work introduces an efficient training pipeline that combines model-based data filtering with parameter-efficient fine-tuning. From 4.8M synthetic examples, 12K clean and diverse instances are curated by first identifying challenging cases, removing misaligned and then selecting a diverse set of multimodal instances. On this data, a 3B-parameter Vision-Language Model is trained under three regimes: supervised fine-tuning, chain-of-thought-augmented fine-tuning, and reinforcement learning via Group Relative Policy Optimization. Models trained with the filtered data and lightweight training strategies match or surpass larger baselines on benchmarks such as ScreenSpot, Multimodal-Mind2Web, and AndroidControl. These results demonstrate that principled data curation and robust adaptation can rival large-scale training, enabling compact yet capable multimodal reasoning agents.
♻ ☆ FAST-CAD: A Fairness-Aware Framework for Non-Contact Stroke Diagnosis AAAI
Stroke is an acute cerebrovascular disease, and timely diagnosis significantly improves patient survival. However, existing automated diagnosis methods suffer from fairness issues across demographic groups, potentially exacerbating healthcare disparities. In this work we propose FAST-CAD, a theoretically grounded framework that combines domain-adversarial training (DAT) with group distributionally robust optimization (Group-DRO) for fair and accurate non-contact stroke diagnosis. Our approach is built on domain adaptation and minimax fairness theory and provides convergence guarantees and fairness bounds. We curate a multimodal dataset covering 12 demographic subgroups defined by age, gender, and posture. FAST-CAD employs self-supervised encoders with adversarial domain discrimination to learn demographic-invariant representations, while Group-DRO optimizes worst-group risk to ensure robust performance across all subgroups. Extensive experiments show that our method achieves superior diagnostic performance while maintaining fairness across demographic groups, and our theoretical analysis supports the effectiveness of the unified DAT + Group-DRO framework. This work provides both practical advances and theoretical insights for fair medical AI systems.
comment: Accepted for oral presentation at the AAAI Conference on Artificial Intelligence 2026 (AAAI 2026)
♻ ☆ Visual Document Understanding and Reasoning: A Multi-Agent Collaboration Framework with Agent-Wise Adaptive Test-Time Scaling
The dominant paradigm of monolithic scaling in Vision-Language Models (VLMs) is failing for understanding and reasoning in documents, yielding diminishing returns as it struggles with the inherent need of this domain for document-based procedural reasoning, cognitive complexity, and factual accuracy. To this end, we introduce MACT, a Multi-Agent Collaboration framework with agent-wise adaptive Test-time scaling that pioneers a paradigm shift to procedural scaling, adapting dynamically to the functional entities of visual documents understanding and reasoning. MACT decomposes the visual document processing flow into four specialized agents, i.e., planning, execution, judgment, and answer, to resolve cognitive overload and introduce a critical self-correction loop for factual grounding. This collaborative architecture is amplified by an agent-wise adaptive test-time scaling strategy that intelligently allocates computational resources based on the complexity and redundancy of each functionality. Evaluated on multiple visual document understanding benchmarks, MACT achieves superior performance with a smaller parameter scale, adapting effectively to various document scenarios without compromising its general or mathematical reasoning capabilities. The three variants of MACT consistently attain top-three average performance rankings, with average performance enhancements of 9.9-11.5% over the base models. The source code will be released publicly.
♻ ☆ Intelligence Foundation Model: A New Perspective to Approach Artificial General Intelligence
We propose a new perspective for approaching artificial general intelligence (AGI) through an intelligence foundation model (IFM). Unlike existing foundation models (FMs), which specialize in pattern learning within specific domains such as language, vision, or time series, IFM aims to acquire the underlying mechanisms of intelligence by learning directly from diverse intelligent behaviors. Vision, language, and other cognitive abilities are manifestations of intelligent behavior; learning from this broad range of behaviors enables the system to internalize the general principles of intelligence. Based on the fact that intelligent behaviors emerge from the collective dynamics of biological neural systems, IFM consists of two core components: a novel network architecture, termed the state neural network, which captures neuron-like dynamic processes, and a new learning objective, neuron output prediction, which trains the system to predict neuronal outputs from collective dynamics. The state neural network emulates the temporal dynamics of biological neurons, allowing the system to store, integrate, and process information over time, while the neuron output prediction objective provides a unified computational principle for learning these structural dynamics from intelligent behaviors. Together, these innovations establish a biologically grounded and computationally scalable foundation for building systems capable of generalization, reasoning, and adaptive learning across domains, representing a step toward truly AGI.
♻ ☆ DreamRunner: Fine-Grained Compositional Story-to-Video Generation with Retrieval-Augmented Motion Adaptation AAAI 2026
Storytelling video generation (SVG) aims to produce coherent and visually rich multi-scene videos that follow a structured narrative. Existing methods primarily employ LLM for high-level planning to decompose a story into scene-level descriptions, which are then independently generated and stitched together. However, these approaches struggle with generating high-quality videos aligned with the complex single-scene description, as visualizing such complex description involves coherent composition of multiple characters and events, complex motion synthesis and multi-character customization. To address these challenges, we propose DREAMRUNNER, a novel story-to-video generation method: First, we structure the input script using a large language model (LLM) to facilitate both coarse-grained scene planning as well as fine-grained object-level layout planning. Next, DREAMRUNNER presents retrieval-augmented test-time adaptation to capture target motion priors for objects in each scene, supporting diverse motion customization based on retrieved videos, thus facilitating the generation of new videos with complex, scripted motions. Lastly, we propose a novel spatial-temporal region-based 3D attention and prior injection module SR3AI for fine-grained object-motion binding and frame-by-frame spatial-temporal semantic control. We compare DREAMRUNNER with various SVG baselines, demonstrating state-of-the-art performance in character consistency, text alignment, and smooth transitions. Additionally, DREAMRUNNER exhibits strong fine-grained condition-following ability in compositional text-to-video generation, significantly outperforming baselines on T2V-ComBench. Finally, we validate DREAMRUNNER's robust ability to generate multi-object interactions with qualitative examples.
comment: AAAI 2026, Project website: https://zunwang1.github.io/DreamRunner
♻ ☆ Orthogonal Soft Pruning for Efficient Class Unlearning
Efficient and controllable data unlearning in federated learning remains challenging, due to the trade-off between forgetting and retention performance. Especially under non-independent and identically distributed (non-IID) settings, where deep feature entanglement exacerbates this dilemma. To address this challenge, we propose FedOrtho, a federated unlearning framework that combines orthogonalized deep convolutional kernels with an activation-driven controllable one-shot soft pruning (OSP) mechanism. FedOrtho enforces kernel orthogonality and local-global alignment to decouple feature representations and mitigate client drift. This structural independence enables precise one-shot pruning of forgetting-related kernels while preserving retained knowledge. FedOrtho achieves SOTA performance on CIFAR-10, CIFAR100 and TinyImageNet with ResNet and VGG frameworks, verifying that FedOrtho supports class-, client-, and sample-level unlearning with over 98% forgetting quality. It reduces computational and communication costs by 2-3 orders of magnitude in federated settings and achieves subsecond-level erasure in centralized scenarios while maintaining over 97% retention accuracy and mitigating membership inference risks.
comment: 17 pages,8 figures
♻ ☆ Zero-Shot Temporal Interaction Localization for Egocentric Videos IROS 2025
Locating human-object interaction (HOI) actions within video serves as the foundation for multiple downstream tasks, such as human behavior analysis and human-robot skill transfer. Current temporal action localization methods typically rely on annotated action and object categories of interactions for optimization, which leads to domain bias and low deployment efficiency. Although some recent works have achieved zero-shot temporal action localization (ZS-TAL) with large vision-language models (VLMs), their coarse-grained estimations and open-loop pipelines hinder further performance improvements for temporal interaction localization (TIL). To address these issues, we propose a novel zero-shot TIL approach dubbed EgoLoc to locate the timings of grasp actions for human-object interaction in egocentric videos. EgoLoc introduces a self-adaptive sampling strategy to generate reasonable visual prompts for VLM reasoning. By absorbing both 2D and 3D observations, it directly samples high-quality initial guesses around the possible contact/separation timestamps of HOI according to 3D hand velocities, leading to high inference accuracy and efficiency. In addition, EgoLoc generates closed-loop feedback from visual and dynamic cues to further refine the localization results. Comprehensive experiments on the publicly available dataset and our newly proposed benchmark demonstrate that EgoLoc achieves better temporal interaction localization for egocentric videos compared to state-of-the-art baselines. We have released our code and relevant data as open-source at https://github.com/IRMVLab/EgoLoc.
comment: Accepted to IROS 2025
♻ ☆ Synthetic Data-Driven Prompt Tuning for Financial QA over Tables and Documents
Financial documents like earning reports or balance sheets often involve long tables and multi-page reports. Large language models have become a new tool to help numerical reasoning and understanding these documents. However, prompt quality can have a major effect on how well LLMs perform these financial reasoning tasks. Most current methods tune prompts on fixed datasets of financial text or tabular data, which limits their ability to adapt to new question types or document structures, or they involve costly and manually labeled/curated dataset to help build the prompts. We introduce a self-improving prompt framework driven by data-augmented optimization. In this closed-loop process, we generate synthetic financial tables and document excerpts, verify their correctness and robustness, and then update the prompt based on the results. Specifically, our framework combines a synthetic data generator with verifiers and a prompt optimizer, where the generator produces new examples that exposes weaknesses in the current prompt, the verifiers check the validity and robustness of the produced examples, and the optimizer incrementally refines the prompt in response. By iterating these steps in a feedback cycle, our method steadily improves prompt accuracy on financial reasoning tasks without needing external labels. Evaluation on DocMath-Eval benchmark demonstrates that our system achieves higher performance in both accuracy and robustness than standard prompt methods, underscoring the value of incorporating synthetic data generation into prompt learning for financial applications.
♻ ☆ Potent but Stealthy: Rethink Profile Pollution against Sequential Recommendation via Bi-level Constrained Reinforcement Paradigm
Sequential Recommenders, which exploit dynamic user intents through interaction sequences, is vulnerable to adversarial attacks. While existing attacks primarily rely on data poisoning, they require large-scale user access or fake profiles thus lacking practicality. In this paper, we focus on the Profile Pollution Attack that subtly contaminates partial user interactions to induce targeted mispredictions. Previous PPA methods suffer from two limitations, i.e., i) over-reliance on sequence horizon impact restricts fine-grained perturbations on item transitions, and ii) holistic modifications cause detectable distribution shifts. To address these challenges, we propose a constrained reinforcement driven attack CREAT that synergizes a bi-level optimization framework with multi-reward reinforcement learning to balance adversarial efficacy and stealthiness. We first develop a Pattern Balanced Rewarding Policy, which integrates pattern inversion rewards to invert critical patterns and distribution consistency rewards to minimize detectable shifts via unbalanced co-optimal transport. Then we employ a Constrained Group Relative Reinforcement Learning paradigm, enabling step-wise perturbations through dynamic barrier constraints and group-shared experience replay, achieving targeted pollution with minimal detectability. Extensive experiments demonstrate the effectiveness of CREAT.
♻ ☆ Concept-as-Tree: A Controllable Synthetic Data Framework Makes Stronger Personalized VLMs
Vision-Language Models (VLMs) have demonstrated exceptional performance in various multi-modal tasks. Recently, there has been an increasing interest in improving the personalization capabilities of VLMs. To better integrate user-provided concepts into VLMs, many methods use positive and negative samples to fine-tune these models. However, the scarcity of user-provided positive samples and the low quality of retrieved negative samples pose challenges for existing techniques. To reveal the relationship between sample and model performance, we systematically investigate the amount and diversity impact of positive and negative samples (easy and hard) on VLM personalization tasks. Based on the detailed analysis, we introduce Concept-as-Tree (CaT), which represents a concept as a tree structure, thereby enabling the data generation of positive and negative samples with varying difficulty and diversity, and can be easily extended to multi-concept scenarios. With a well-designed data filtering strategy, our CaT framework can ensure the quality of generated data, constituting a powerful pipeline. We perform thorough experiments with various VLM personalization baselines to assess the effectiveness of the pipeline, alleviating the lack of positive samples and the low quality of negative samples. Our results demonstrate that CaT equipped with the proposed data filter significantly enhances the capabilities of VLMs across personalization benchmarks. To the best of our knowledge, this work is the first controllable synthetic data pipeline for VLM personalization. The code will be released.
♻ ☆ Invisible Triggers, Visible Threats! Road-Style Adversarial Creation Attack for Visual 3D Detection in Autonomous Driving AAAI 2026
Modern autonomous driving (AD) systems leverage 3D object detection to perceive foreground objects in 3D environments for subsequent prediction and planning. Visual 3D detection based on RGB cameras provides a cost-effective solution compared to the LiDAR paradigm. While achieving promising detection accuracy, current deep neural network-based models remain highly susceptible to adversarial examples. The underlying safety concerns motivate us to investigate realistic adversarial attacks in AD scenarios. Previous work has demonstrated the feasibility of placing adversarial posters on the road surface to induce hallucinations in the detector. However, the unnatural appearance of the posters makes them easily noticeable by humans, and their fixed content can be readily targeted and defended. To address these limitations, we propose the AdvRoad to generate diverse road-style adversarial posters. The adversaries have naturalistic appearances resembling the road surface while compromising the detector to perceive non-existent objects at the attack locations. We employ a two-stage approach, termed Road-Style Adversary Generation and Scenario-Associated Adaptation, to maximize the attack effectiveness on the input scene while ensuring the natural appearance of the poster, allowing the attack to be carried out stealthily without drawing human attention. Extensive experiments show that AdvRoad generalizes well to different detectors, scenes, and spoofing locations. Moreover, physical attacks further demonstrate the practical threats in real-world environments.
comment: Accepted by the AAAI 2026 (Main Track)
♻ ☆ Thinker: Training LLMs in Hierarchical Thinking for Deep Search via Multi-Turn Interaction AAAI 2026
Efficient retrieval of external knowledge bases and web pages is crucial for enhancing the reasoning abilities of LLMs. Previous works on training LLMs to leverage external retrievers for solving complex problems have predominantly employed end-to-end reinforcement learning. However, these approaches neglect supervision over the reasoning process, making it difficult to guarantee logical coherence and rigor. To address these limitations, we propose Thinker, a hierarchical thinking model for deep search through multi-turn interaction, making the reasoning process supervisable and verifiable. It decomposes complex problems into independently solvable sub-problems, each dually represented in both natural language and an equivalent logical function to support knowledge base and web searches. Concurrently, dependencies between sub-problems are passed as parameters via these logical functions, enhancing the logical coherence of the problem-solving process. To avoid unnecessary external searches, we perform knowledge boundary determination to check if a sub-problem is within the LLM's intrinsic knowledge, allowing it to answer directly. Experimental results indicate that with as few as several hundred training samples, the performance of Thinker is competitive with established baselines. Furthermore, when scaled to the full training set, Thinker significantly outperforms these methods across various datasets and model sizes. The source code is available at https://github.com/OpenSPG/KAG-Thinker.
comment: Accepted to AAAI 2026. Extended version with full Appendix
Computation and Language 61
☆ Leveraging Parameter Space Symmetries for Reasoning Skill Transfer in LLMs
Task arithmetic is a powerful technique for transferring skills between Large Language Models (LLMs), but it often suffers from negative interference when models have diverged during training. We address this limitation by first aligning the models' parameter spaces, leveraging the inherent permutation, rotation, and scaling symmetries of Transformer architectures. We adapt parameter space alignment for modern Grouped-Query Attention (GQA) and SwiGLU layers, exploring both weight-based and activation-based approaches. Using this alignment-first strategy, we successfully transfer advanced reasoning skills to a non-reasoning model. Experiments on challenging reasoning benchmarks show that our method consistently outperforms standard task arithmetic. This work provides an effective approach for merging and transferring specialized skills across evolving LLM families, reducing redundant fine-tuning and enhancing model adaptability.
☆ Reinforcing Stereotypes of Anger: Emotion AI on African American Vernacular English
Automated emotion detection is widely used in applications ranging from well-being monitoring to high-stakes domains like mental health and hiring. However, models often rely on annotations that reflect dominant cultural norms, limiting model ability to recognize emotional expression in dialects often excluded from training data distributions, such as African American Vernacular English (AAVE). This study examines emotion recognition model performance on AAVE compared to General American English (GAE). We analyze 2.7 million tweets geo-tagged within Los Angeles. Texts are scored for strength of AAVE using computational approximations of dialect features. Annotations of emotion presence and intensity are collected on a dataset of 875 tweets with both high and low AAVE densities. To assess model accuracy on a task as subjective as emotion perception, we calculate community-informed "silver" labels where AAVE-dense tweets are labeled by African American, AAVE-fluent (ingroup) annotators. On our labeled sample, GPT and BERT-based models exhibit false positive prediction rates of anger on AAVE more than double than on GAE. SpanEmo, a popular text-based emotion model, increases false positive rates of anger from 25 percent on GAE to 60 percent on AAVE. Additionally, a series of linear regressions reveals that models and non-ingroup annotations are significantly more correlated with profanity-based AAVE features than ingroup annotations. Linking Census tract demographics, we observe that neighborhoods with higher proportions of African American residents are associated with higher predictions of anger (Pearson's correlation r = 0.27) and lower joy (r = -0.10). These results find an emergent safety issue of emotion AI reinforcing racial stereotypes through biased emotion classification. We emphasize the need for culturally and dialect-informed affective computing systems.
☆ Tracing Multilingual Representations in LLMs with Cross-Layer Transcoders
Multilingual Large Language Models (LLMs) can process many languages, yet how they internally represent this diversity remains unclear. Do they form shared multilingual representations with language-specific decoding, and if so, why does performance still favor the dominant training language? To address this, we train a series of LLMs on different mixtures of multilingual data and analyze their internal mechanisms using cross-layer transcoders (CLT) and attribution graphs. Our results provide strong evidence for pivot language representations: the model employs nearly identical representations across languages, while language-specific decoding emerges in later layers. Attribution analyses reveal that decoding relies in part on a small set of high-frequency language features in the final layers, which linearly read out language identity from the first layers in the model. By intervening on these features, we can suppress one language and substitute another in the model's outputs. Finally, we study how the dominant training language influences these mechanisms across attribution graphs and decoding pathways. We argue that understanding this pivot-language mechanism is crucial for improving multilingual alignment in LLMs.
comment: 28 pages, 35 figures, under review. Extensive supplementary materials. Code and models available at https://huggingface.co/collections/CausalNLP/multilingual-tinystories-6862b6562414eb84d183f82a and https://huggingface.co/flodraye
☆ The Map of Misbelief: Tracing Intrinsic and Extrinsic Hallucinations Through Attention Patterns AAAI 2025
Large Language Models (LLMs) are increasingly deployed in safety-critical domains, yet remain susceptible to hallucinations. While prior works have proposed confidence representation methods for hallucination detection, most of these approaches rely on computationally expensive sampling strategies and often disregard the distinction between hallucination types. In this work, we introduce a principled evaluation framework that differentiates between extrinsic and intrinsic hallucination categories and evaluates detection performance across a suite of curated benchmarks. In addition, we leverage a recent attention-based uncertainty quantification algorithm and propose novel attention aggregation strategies that improve both interpretability and hallucination detection performance. Our experimental findings reveal that sampling-based methods like Semantic Entropy are effective for detecting extrinsic hallucinations but generally fail on intrinsic ones. In contrast, our method, which aggregates attention over input tokens, is better suited for intrinsic hallucinations. These insights provide new directions for aligning detection strategies with the nature of hallucination and highlight attention as a rich signal for quantifying model uncertainty.
comment: Accepted at AAAI 2025-FS-ATRACC
LLM-as-a-Grader: Practical Insights from Large Language Model for Short-Answer and Report Evaluation
Large Language Models (LLMs) are increasingly explored for educational tasks such as grading, yet their alignment with human evaluation in real classrooms remains underexamined. In this study, we investigate the feasibility of using an LLM (GPT-4o) to evaluate short-answer quizzes and project reports in an undergraduate Computational Linguistics course. We collect responses from approximately 50 students across five quizzes and receive project reports from 14 teams. LLM-generated scores are compared against human evaluations conducted independently by the course teaching assistants (TAs). Our results show that GPT-4o achieves strong correlation with human graders (up to 0.98) and exact score agreement in 55\% of quiz cases. For project reports, it also shows strong overall alignment with human grading, while exhibiting some variability in scoring technical, open-ended responses. We release all code and sample data to support further research on LLMs in educational assessment. This work highlights both the potential and limitations of LLM-based grading systems and contributes to advancing automated grading in real-world academic settings.
☆ From Efficiency to Adaptivity: A Deeper Look at Adaptive Reasoning in Large Language Models
Recent advances in large language models (LLMs) have made reasoning a central benchmark for evaluating intelligence. While prior surveys focus on efficiency by examining how to shorten reasoning chains or reduce computation, this view overlooks a fundamental challenge: current LLMs apply uniform reasoning strategies regardless of task complexity, generating long traces for trivial problems while failing to extend reasoning for difficult tasks. This survey reframes reasoning through the lens of {adaptivity}: the capability to allocate reasoning effort based on input characteristics such as difficulty and uncertainty. We make three contributions. First, we formalize deductive, inductive, and abductive reasoning within the LLM context, connecting these classical cognitive paradigms with their algorithmic realizations. Second, we formalize adaptive reasoning as a control-augmented policy optimization problem balancing task performance with computational cost, distinguishing learned policies from inference-time control mechanisms. Third, we propose a systematic taxonomy organizing existing methods into training-based approaches that internalize adaptivity through reinforcement learning, supervised fine-tuning, and learned controllers, and training-free approaches that achieve adaptivity through prompt conditioning, feedback-driven halting, and modular composition. This framework clarifies how different mechanisms realize adaptive reasoning in practice and enables systematic comparison across diverse strategies. We conclude by identifying open challenges in self-evaluation, meta-reasoning, and human-aligned reasoning control.
☆ Sabiá: Um Chatbot de Inteligência Artificial Generativa para Suporte no Dia a Dia do Ensino Superior
Students often report difficulties in accessing day-to-day academic information, which is usually spread across numerous institutional documents and websites. This fragmentation results in a lack of clarity and causes confusion about routine university information. This project proposes the development of a chatbot using Generative Artificial Intelligence (GenAI) and Retrieval-Augmented Generation (RAG) to simplify access to such information. Several GenAI models were tested and evaluated based on quality metrics and the LLM-as-a-Judge approach. Among them, Gemini 2.0 Flash stood out for its quality and speed, and Gemma 3n for its good performance and open-source nature.
comment: Accepte for publishing in SBIE2025, in Portuguese language
☆ TEDxTN: A Three-way Speech Translation Corpus for Code-Switched Tunisian Arabic - English
In this paper, we introduce TEDxTN, the first publicly available Tunisian Arabic to English speech translation dataset. This work is in line with the ongoing effort to mitigate the data scarcity obstacle for a number of Arabic dialects. We collected, segmented, transcribed and translated 108 TEDx talks following our internally developed annotations guidelines. The collected talks represent 25 hours of speech with code-switching that cover speakers with various accents from over 11 different regions of Tunisia. We make the annotation guidelines and corpus publicly available. This will enable the extension of TEDxTN to new talks as they become available. We also report results for strong baseline systems of Speech Recognition and Speech Translation using multiple pre-trained and fine-tuned end-to-end models. This corpus is the first open source and publicly available speech translation corpus of Code-Switching Tunisian dialect. We believe that this is a valuable resource that can motivate and facilitate further research on the natural language processing of Tunisian Dialect.
comment: The Third Arabic Natural Language Processing Conference. Association for Computational Linguistics. 2025
☆ Faithful Summarization of Consumer Health Queries: A Cross-Lingual Framework with LLMs NeurIPS 2025
Summarizing consumer health questions (CHQs) can ease communication in healthcare, but unfaithful summaries that misrepresent medical details pose serious risks. We propose a framework that combines TextRank-based sentence extraction and medical named entity recognition with large language models (LLMs) to enhance faithfulness in medical text summarization. In our experiments, we fine-tuned the LLaMA-2-7B model on the MeQSum (English) and BanglaCHQ-Summ (Bangla) datasets, achieving consistent improvements across quality (ROUGE, BERTScore, readability) and faithfulness (SummaC, AlignScore) metrics, and outperforming zero-shot baselines and prior systems. Human evaluation further shows that over 80\% of generated summaries preserve critical medical information. These results highlight faithfulness as an essential dimension for reliable medical summarization and demonstrate the potential of our approach for safer deployment of LLMs in healthcare contexts.
comment: Accepted at the 5th Muslims in Machine Learning (MusIML) Workshop, co-located with NeurIPS 2025
☆ ParoQuant: Pairwise Rotation Quantization for Efficient Reasoning LLM Inference
Weight-only post-training quantization (PTQ) compresses the weights of Large Language Models (LLMs) into low-precision representations to reduce memory footprint and accelerate inference. However, the presence of outliers in weights and activations often leads to large quantization errors and severe accuracy degradation, especially in recent reasoning LLMs where errors accumulate across long chains of thought. Existing PTQ methods either fail to sufficiently suppress outliers or introduce significant overhead during inference. In this paper, we propose Pairwise Rotation Quantization (ParoQuant), a weight-only PTQ method that combines hardware-efficient and optimizable independent Givens rotations with channel-wise scaling to even out the magnitude across channels and narrow the dynamic range within each quantization group. We further co-design the inference kernel to fully exploit GPU parallelism and keep the rotations and scaling lightweight at runtime. ParoQuant achieves an average 2.4% accuracy improvement over AWQ on reasoning tasks with less than 10% overhead. This paves the way for more efficient and accurate deployment of reasoning LLMs.
☆ Black-Box On-Policy Distillation of Large Language Models
Black-box distillation creates student large language models (LLMs) by learning from a proprietary teacher model's text outputs alone, without access to its internal logits or parameters. In this work, we introduce Generative Adversarial Distillation (GAD), which enables on-policy and black-box distillation. GAD frames the student LLM as a generator and trains a discriminator to distinguish its responses from the teacher LLM's, creating a minimax game. The discriminator acts as an on-policy reward model that co-evolves with the student, providing stable, adaptive feedback. Experimental results show that GAD consistently surpasses the commonly used sequence-level knowledge distillation. In particular, Qwen2.5-14B-Instruct (student) trained with GAD becomes comparable to its teacher, GPT-5-Chat, on the LMSYS-Chat automatic evaluation. The results establish GAD as a promising and effective paradigm for black-box LLM distillation.
☆ PISanitizer: Preventing Prompt Injection to Long-Context LLMs via Prompt Sanitization
Long context LLMs are vulnerable to prompt injection, where an attacker can inject an instruction in a long context to induce an LLM to generate an attacker-desired output. Existing prompt injection defenses are designed for short contexts. When extended to long-context scenarios, they have limited effectiveness. The reason is that an injected instruction constitutes only a very small portion of a long context, making the defense very challenging. In this work, we propose PISanitizer, which first pinpoints and sanitizes potential injected tokens (if any) in a context before letting a backend LLM generate a response, thereby eliminating the influence of the injected instruction. To sanitize injected tokens, PISanitizer builds on two observations: (1) prompt injection attacks essentially craft an instruction that compels an LLM to follow it, and (2) LLMs intrinsically leverage the attention mechanism to focus on crucial input tokens for output generation. Guided by these two observations, we first intentionally let an LLM follow arbitrary instructions in a context and then sanitize tokens receiving high attention that drive the instruction-following behavior of the LLM. By design, PISanitizer presents a dilemma for an attacker: the more effectively an injected instruction compels an LLM to follow it, the more likely it is to be sanitized by PISanitizer. Our extensive evaluation shows that PISanitizer can successfully prevent prompt injection, maintain utility, outperform existing defenses, is efficient, and is robust to optimization-based and strong adaptive attacks. The code is available at https://github.com/sleeepeer/PISanitizer.
comment: The code is available at https://github.com/sleeepeer/PISanitizer
☆ SSR: Socratic Self-Refine for Large Language Model Reasoning
Large Language Models (LLMs) have demonstrated remarkable reasoning abilities, yet existing test-time frameworks often rely on coarse self-verification and self-correction, limiting their effectiveness on complex tasks. In this paper, we propose Socratic Self-Refine (SSR), a novel framework for fine-grained evaluation and precise refinement of LLM reasoning. Our proposed SSR decomposes model responses into verifiable (sub-question, sub-answer) pairs, enabling step-level confidence estimation through controlled re-solving and self-consistency checks. By pinpointing unreliable steps and iteratively refining them, SSR produces more accurate and interpretable reasoning chains. Empirical results across five reasoning benchmarks and three LLMs show that SSR consistently outperforms state-of-the-art iterative self-refinement baselines. Beyond performance gains, SSR provides a principled black-box approach for evaluating and understanding the internal reasoning processes of LLMs. Code is available at https://github.com/SalesforceAIResearch/socratic-self-refine-reasoning.
comment: Preprint; work in progress
☆ Know Your Limits: Entropy Estimation Modeling for Compression and Generalization
Language prediction is constrained by informational entropy intrinsic to language, such that there exists a limit to how accurate any language model can become and equivalently a lower bound to language compression. The most efficient language compression algorithms today are causal (next token prediction) large language models, but the use of these models to form accurate estimates of language entropy is currently computationally infeasible. We introduce encoder-augmented causal decoder model architectures that exhibit superior training efficiency characteristics and achieve higher compression than causal transformers even when trained on modest hardware. We demonstrate how entropy estimates can be obtained on a per-token basis, and show that the generalization of models trained to approach the entropy of their training data necessarily exceeds the generalization of models trained to minimize loss beyond this value. We show empirically that causal models trained to approach but not exceed estimated per-token entropies exhibit greater generalization than models trained without taking entropy into account.
☆ Towards Blind and Low-Vision Accessibility of Lightweight VLMs and Custom LLM-Evals
Large Vision-Language Models (VLMs) excel at understanding and generating video descriptions but their high memory, computation, and deployment demands hinder practical use particularly for blind and low-vision (BLV) users who depend on detailed, context-aware descriptions. To study the effect of model size on accessibility-focused description quality, we evaluate SmolVLM2 variants with 500M and 2.2B parameters across two diverse datasets: AVCaps (outdoor), and Charades (indoor). In this work, we introduce two novel evaluation frameworks specifically designed for BLV accessibility assessment: the Multi-Context BLV Framework evaluating spatial orientation, social interaction, action events, and ambience contexts; and the Navigational Assistance Framework focusing on mobility-critical information. Additionally, we conduct a systematic evaluation of four different prompt design strategies and deploy both models on a smartphone, evaluating FP32 and INT8 precision variants to assess real-world performance constraints on resource-limited mobile devices.
comment: 8 pages
☆ Mined Prompting and Metadata-Guided Generation for Wound Care Visual Question Answering
The rapid expansion of asynchronous remote care has intensified provider workload, creating demand for AI systems that can assist clinicians in managing patient queries more efficiently. The MEDIQA-WV 2025 shared task addresses this challenge by focusing on generating free-text responses to wound care queries paired with images. In this work, we present two complementary approaches developed for the English track. The first leverages a mined prompting strategy, where training data is embedded and the top-k most similar examples are retrieved to serve as few-shot demonstrations during generation. The second approach builds on a metadata ablation study, which identified four metadata attributes that consistently enhance response quality. We train classifiers to predict these attributes for test cases and incorporate them into the generation pipeline, dynamically adjusting outputs based on prediction confidence. Experimental results demonstrate that mined prompting improves response relevance, while metadata-guided generation further refines clinical precision. Together, these methods highlight promising directions for developing AI-driven tools that can provide reliable and efficient wound care support.
comment: 2 figures, 11 pages
☆ Evaluating Prompting Strategies with MedGemma for Medical Order Extraction
The accurate extraction of medical orders from doctor-patient conversations is a critical task for reducing clinical documentation burdens and ensuring patient safety. This paper details our team submission to the MEDIQA-OE-2025 Shared Task. We investigate the performance of MedGemma, a new domain-specific open-source language model, for structured order extraction. We systematically evaluate three distinct prompting paradigms: a straightforward one-Shot approach, a reasoning-focused ReAct framework, and a multi-step agentic workflow. Our experiments reveal that while more complex frameworks like ReAct and agentic flows are powerful, the simpler one-shot prompting method achieved the highest performance on the official validation set. We posit that on manually annotated transcripts, complex reasoning chains can lead to "overthinking" and introduce noise, making a direct approach more robust and efficient. Our work provides valuable insights into selecting appropriate prompting strategies for clinical information extraction in varied data conditions.
comment: 2 figures 7 pages
☆ DESS: DeBERTa Enhanced Syntactic-Semantic Aspect Sentiment Triplet Extraction
Fine-grained sentiment analysis faces ongoing challenges in Aspect Sentiment Triple Extraction (ASTE), particularly in accurately capturing the relationships between aspects, opinions, and sentiment polarities. While researchers have made progress using BERT and Graph Neural Networks, the full potential of advanced language models in understanding complex language patterns remains unexplored. We introduce DESS, a new approach that builds upon previous work by integrating DeBERTa's enhanced attention mechanism to better understand context and relationships in text. Our framework maintains a dual-channel structure, where DeBERTa works alongside an LSTM channel to process both meaning and grammatical patterns in text. We have carefully refined how these components work together, paying special attention to how different types of language information interact. When we tested DESS on standard datasets, it showed meaningful improvements over current methods, with F1-score increases of 4.85, 8.36, and 2.42 in identifying aspect opinion pairs and determining sentiment accurately. Looking deeper into the results, we found that DeBERTa's sophisticated attention system helps DESS handle complicated sentence structures better, especially when important words are far apart. Our findings suggest that upgrading to more advanced language models when thoughtfully integrated, can lead to real improvements in how well we can analyze sentiments in text. The implementation of our approach is publicly available at: https://github.com/VishalRepos/DESS.
comment: 15 pages, 2 figures. Published in Proceedings of the 17th International Conference on Computational Collective Intelligence (ICCCI 2025), Lecture Notes in Artificial Intelligence, Springer
☆ Towards Emotionally Intelligent and Responsible Reinforcement Learning
Personalized decision systems in healthcare and behavioral support often rely on static rule-based or engagement-maximizing heuristics that overlook users' emotional context and ethical constraints. Such approaches risk recommending insensitive or unsafe interventions, especially in domains involving serious mental illness, substance use disorders, or depression. To address this limitation, we propose a Responsible Reinforcement Learning (RRL) framework that integrates emotional and contextual understanding with ethical considerations into the sequential decision-making process. RRL formulates personalization as a Constrained Markov Decision Process (CMDP), where the agent optimizes engagement and adherence while ensuring emotional alignment and ethical safety. We introduce a multi-objective reward function that explicitly balances short-term behavioral engagement with long-term user well-being, and define an emotion-informed state representation that captures fluctuations in emotional readiness, affect, and risk. The proposed architecture can be instantiated with any RL algorithm (e.g., DQN, PPO) augmented with safety constraints or Lagrangian regularization. Conceptually, this framework operationalizes empathy and responsibility within machine learning policy optimization, bridging safe RL, affective computing and responsible AI. We discuss the implications of this approach for human-centric domains such as behavioral health, education, and digital therapeutics, and outline simulation-based validation paths for future empirical work. This paper aims to initiate a methodological conversation about ethically aligned reinforcement learning for emotionally aware and trustworthy personalization systems.
☆ Impact of Layer Norm on Memorization and Generalization in Transformers NeurIPS 2025
Layer Normalization (LayerNorm) is one of the fundamental components in transformers that stabilizes training and improves optimization. In recent times, Pre-LayerNorm transformers have become the preferred choice over Post-LayerNorm transformers due to their stable gradient flow. However, the impact of LayerNorm on learning and memorization across these architectures remains unclear. In this work, we investigate how LayerNorm influences memorization and learning for Pre- and Post-LayerNorm transformers. We identify that LayerNorm serves as a key factor for stable learning in Pre-LayerNorm transformers, while in Post-LayerNorm transformers, it impacts memorization. Our analysis reveals that eliminating LayerNorm parameters in Pre-LayerNorm models exacerbates memorization and destabilizes learning, while in Post-LayerNorm models, it effectively mitigates memorization by restoring genuine labels. We further precisely identify that early layers LayerNorm are the most critical over middle/later layers and their influence varies across Pre and Post LayerNorm models. We have validated it through 13 models across 6 Vision and Language datasets. These insights shed new light on the role of LayerNorm in shaping memorization and learning in transformers.
comment: NeurIPS 2025
☆ URaG: Unified Retrieval and Generation in Multimodal LLMs for Efficient Long Document Understanding AAAI 2026
Recent multimodal large language models (MLLMs) still struggle with long document understanding due to two fundamental challenges: information interference from abundant irrelevant content, and the quadratic computational cost of Transformer-based architectures. Existing approaches primarily fall into two categories: token compression, which sacrifices fine-grained details; and introducing external retrievers, which increase system complexity and prevent end-to-end optimization. To address these issues, we conduct an in-depth analysis and observe that MLLMs exhibit a human-like coarse-to-fine reasoning pattern: early Transformer layers attend broadly across the document, while deeper layers focus on relevant evidence pages. Motivated by this insight, we posit that the inherent evidence localization capabilities of MLLMs can be explicitly leveraged to perform retrieval during the reasoning process, facilitating efficient long document understanding. To this end, we propose URaG, a simple-yet-effective framework that Unifies Retrieval and Generation within a single MLLM. URaG introduces a lightweight cross-modal retrieval module that converts the early Transformer layers into an efficient evidence selector, identifying and preserving the most relevant pages while discarding irrelevant content. This design enables the deeper layers to concentrate computational resources on pertinent information, improving both accuracy and efficiency. Extensive experiments demonstrate that URaG achieves state-of-the-art performance while reducing computational overhead by 44-56%. The code is available at https://github.com/shi-yx/URaG.
comment: Accepted by AAAI 2026 (Oral)
☆ Computing the Formal and Institutional Boundaries of Contemporary Genre and Literary Fiction
Though the concept of genre has been a subject of discussion for millennia, the relatively recent emergence of genre fiction has added a new layer to this ongoing conversation. While more traditional perspectives on genre have emphasized form, contemporary scholarship has invoked both formal and institutional characteristics in its taxonomy of genre, genre fiction, and literary fiction. This project uses computational methods to explore the soundness of genre as a formal designation as opposed to an institutional one. Pulling from Andrew Piper's CONLIT dataset of Contemporary Literature, we assemble a corpus of literary and genre fiction, with the latter category containing romance, mystery, and science fiction novels. We use Welch's ANOVA to compare the distribution of narrative features according to author gender within each genre and within genre versus literary fiction. Then, we use logistic regression to model the effect that each feature has on literary classification and to measure how author gender moderates these effects. Finally, we analyze stylistic and semantic vector representations of our genre categories to understand the importance of form and content in literary classification. This project finds statistically significant formal markers of each literary category and illustrates how female authorship narrows and blurs the target for achieving literary status.
comment: To be presented at Computational Humanities Research (CHR) Conference, 2025
☆ Convomem Benchmark: Why Your First 150 Conversations Don't Need RAG
We introduce a comprehensive benchmark for conversational memory evaluation containing 75,336 question-answer pairs across diverse categories including user facts, assistant recall, abstention, preferences, temporal changes, and implicit connections. While existing benchmarks have advanced the field, our work addresses fundamental challenges in statistical power, data generation consistency, and evaluation flexibility that limit current memory evaluation frameworks. We examine the relationship between conversational memory and retrieval-augmented generation (RAG). While these systems share fundamental architectural patterns--temporal reasoning, implicit extraction, knowledge updates, and graph representations--memory systems have a unique characteristic: they start from zero and grow progressively with each conversation. This characteristic enables naive approaches that would be impractical for traditional RAG. Consistent with recent findings on long context effectiveness, we observe that simple full-context approaches achieve 70-82% accuracy even on our most challenging multi-message evidence cases, while sophisticated RAG-based memory systems like Mem0 achieve only 30-45% when operating on conversation histories under 150 interactions. Our analysis reveals practical transition points: long context excels for the first 30 conversations, remains viable with manageable trade-offs up to 150 conversations, and typically requires hybrid or RAG approaches beyond that point as costs and latencies become prohibitive. These patterns indicate that the small-corpus advantage of conversational memory--where exhaustive search and complete reranking are feasible--deserves dedicated research attention rather than simply applying general RAG solutions to conversation histories.
☆ Say It Differently: Linguistic Styles as Jailbreak Vectors
Large Language Models (LLMs) are commonly evaluated for robustness against paraphrased or semantically equivalent jailbreak prompts, yet little attention has been paid to linguistic variation as an attack surface. In this work, we systematically study how linguistic styles such as fear or curiosity can reframe harmful intent and elicit unsafe responses from aligned models. We construct style-augmented jailbreak benchmark by transforming prompts from 3 standard datasets into 11 distinct linguistic styles using handcrafted templates and LLM-based rewrites, while preserving semantic intent. Evaluating 16 open- and close-source instruction-tuned models, we find that stylistic reframing increases jailbreak success rates by up to +57 percentage points. Styles such as fearful, curious and compassionate are most effective and contextualized rewrites outperform templated variants. To mitigate this, we introduce a style neutralization preprocessing step using a secondary LLM to strip manipulative stylistic cues from user inputs, significantly reducing jailbreak success rates. Our findings reveal a systemic and scaling-resistant vulnerability overlooked in current safety pipelines.
☆ LOCA-R: Near-Perfect Performance on the Chinese Physics Olympiad 2025
Olympiad-level physics problem-solving presents a significant challenge for both humans and artificial intelligence (AI), as it requires a sophisticated integration of precise calculation, abstract reasoning, and a fundamental grasp of physical principles. The Chinese Physics Olympiad (CPhO), renowned for its complexity and depth, serves as an ideal and rigorous testbed for these advanced capabilities. In this paper, we introduce LOCA-R (LOgical Chain Augmentation for Reasoning), an improved version of the LOCA framework adapted for complex reasoning, and apply it to the CPhO 2025 theory examination. LOCA-R achieves a near-perfect score of 313 out of 320 points, solidly surpassing the highest-scoring human competitor and significantly outperforming all baseline methods.
comment: 19 pages, 3 figures
☆ Rubric-Based Benchmarking and Reinforcement Learning for Advancing LLM Instruction Following
Recent progress in large language models (LLMs) has led to impressive performance on a range of tasks, yet advanced instruction following (IF)-especially for complex, multi-turn, and system-prompted instructions-remains a significant challenge. Rigorous evaluation and effective training for such capabilities are hindered by the lack of high-quality, human-annotated benchmarks and reliable, interpretable reward signals. In this work, we introduce AdvancedIF (we will release this benchmark soon), a comprehensive benchmark featuring over 1,600 prompts and expert-curated rubrics that assess LLMs ability to follow complex, multi-turn, and system-level instructions. We further propose RIFL (Rubric-based Instruction-Following Learning), a novel post-training pipeline that leverages rubric generation, a finetuned rubric verifier, and reward shaping to enable effective reinforcement learning for instruction following. Extensive experiments demonstrate that RIFL substantially improves the instruction-following abilities of LLMs, achieving a 6.7% absolute gain on AdvancedIF and strong results on public benchmarks. Our ablation studies confirm the effectiveness of each component in RIFL. This work establishes rubrics as a powerful tool for both training and evaluating advanced IF in LLMs, paving the way for more capable and reliable AI systems.
☆ Beyond Elicitation: Provision-based Prompt Optimization for Knowledge-Intensive Tasks
While prompt optimization has emerged as a critical technique for enhancing language model performance, existing approaches primarily focus on elicitation-based strategies that search for optimal prompts to activate models' capabilities. These methods exhibit fundamental limitations when addressing knowledge-intensive tasks, as they operate within fixed parametric boundaries rather than providing the factual knowledge, terminology precision, and reasoning patterns required in specialized domains. To address these limitations, we propose Knowledge-Provision-based Prompt Optimization (KPPO), a framework that reformulates prompt optimization as systematic knowledge integration rather than potential elicitation. KPPO introduces three key innovations: 1) a knowledge gap filling mechanism for knowledge gap identification and targeted remediation; 2) a batch-wise candidate evaluation approach that considers both performance improvement and distributional stability; 3) an adaptive knowledge pruning strategy that balances performance and token efficiency, reducing up to 29% token usage. Extensive evaluation on 15 knowledge-intensive benchmarks from various domains demonstrates KPPO's superiority over elicitation-based methods, with an average performance improvement of ~6% over the strongest baseline while achieving comparable or lower token consumption. Code at: https://github.com/xyz9911/KPPO.
comment: 16 pages, 19 figures
☆ LocalBench: Benchmarking LLMs on County-Level Local Knowledge and Reasoning
Large language models (LLMs) have been widely evaluated on macro-scale geographic tasks, such as global factual recall, event summarization, and regional reasoning. Yet, their ability to handle hyper-local knowledge remains poorly understood. This gap is increasingly consequential as real-world applications, from civic platforms to community journalism, demand AI systems that can reason about neighborhood-specific dynamics, cultural narratives, and local governance. Existing benchmarks fall short in capturing this complexity, often relying on coarse-grained data or isolated references. We present LocalBench, the first benchmark designed to systematically evaluate LLMs on county-level local knowledge across the United States. Grounded in the Localness Conceptual Framework, LocalBench includes 14,782 validated question-answer pairs across 526 U.S. counties in 49 states, integrating diverse sources such as Census statistics, local subreddit discourse, and regional news. It spans physical, cognitive, and relational dimensions of locality. Using LocalBench, we evaluate 13 state-of-the-art LLMs under both closed-book and web-augmented settings. Our findings reveal critical limitations: even the best-performing models reach only 56.8% accuracy on narrative-style questions and perform below 15.5% on numerical reasoning. Moreover, larger model size and web augmentation do not guarantee better performance, for example, search improves Gemini's accuracy by +13.6%, but reduces GPT-series performance by -11.4%. These results underscore the urgent need for language models that can support equitable, place-aware AI systems: capable of engaging with the diverse, fine-grained realities of local communities across geographic and cultural contexts.
☆ Exploring State Tracking Capabilities of Large Language Models
Large Language Models (LLMs) have demonstrated impressive capabilities in solving complex tasks, including those requiring a certain level of reasoning. In this paper, we focus on state tracking, a problem where models need to keep track of the state governing a number of entities. To isolate the state tracking component from other factors, we propose a benchmark based on three well-defined state tracking tasks and analyse the performance of LLMs in different scenarios. The results indicate that the recent generation of LLMs (specifically, GPT-4 and Llama3) are capable of tracking state, especially when integrated with mechanisms such as Chain of Thought. However, models from the former generation, while understanding the task and being able to solve it at the initial stages, often fail at this task after a certain number of steps.
☆ Reasoning About Intent for Ambiguous Requests
Large language models often respond to ambiguous requests by implicitly committing to one interpretation. Intent misunderstandings can frustrate users and create safety risks. To address this, we propose generating multiple interpretation-answer pairs in a single structured response to ambiguous requests. Our models are trained with reinforcement learning and customized reward functions using multiple valid answers as supervision. Experiments on conversational question answering and semantic parsing demonstrate that our method achieves higher coverage of valid answers than baseline approaches. Human evaluation confirms that predicted interpretations are highly aligned with their answers. Our approach promotes transparency with explicit interpretations, achieves efficiency by requiring only one generation step, and supports downstream applications through its structured output format.
☆ Analogical Structure, Minimal Contextual Cues and Contrastive Distractors: Input Design for Sample-Efficient Linguistic Rule Induction
Large language models achieve strong performance through training on vast datasets. Can analogical paradigm organization enable lightweight models to match this performance with minimal data? We develop a computational approach implementing three cognitive-inspired principles: analogical structure, contrastive learning, and minimal contextual cues. We test this approach with structured completion tasks where models identify correct sentence completions from analogical patterns with contrastive alternatives. Training lightweight models (BERT+CNN, $0.5M$ parameters) on only one hundred structured examples of English causative/inchoative alternations achieves $F1=0.95$, outperforming zero-shot \texttt{GPT-o3} ($F1=0.87$). Ablation studies confirm that analogical organization and contrastive structure improve performance, consistently surpassing randomly shuffled baselines across architectures. Cross-phenomenon validation using unspecified object alternations replicates these efficiency gains, confirming approach robustness. Our results show that analogical paradigm organization enables competitive linguistic rule learning with orders of magnitude less data than conventional approaches require.
☆ DELICATE: Diachronic Entity LInking using Classes And Temporal Evidence
In spite of the remarkable advancements in the field of Natural Language Processing, the task of Entity Linking (EL) remains challenging in the field of humanities due to complex document typologies, lack of domain-specific datasets and models, and long-tail entities, i.e., entities under-represented in Knowledge Bases (KBs). The goal of this paper is to address these issues with two main contributions. The first contribution is DELICATE, a novel neuro-symbolic method for EL on historical Italian which combines a BERT-based encoder with contextual information from Wikidata to select appropriate KB entities using temporal plausibility and entity type consistency. The second contribution is ENEIDE, a multi-domain EL corpus in historical Italian semi-automatically extracted from two annotated editions spanning from the 19th to the 20th century and including literary and political texts. Results show how DELICATE outperforms other EL models in historical Italian even if compared with larger architectures with billions of parameters. Moreover, further analyses reveal how DELICATE confidence scores and features sensitivity provide results which are more explainable and interpretable than purely neural methods.
☆ Rethinking the Reliability of Multi-agent System: A Perspective from Byzantine Fault Tolerance
Ensuring the reliability of agent architectures and effectively identifying problematic agents when failures occur are crucial challenges in multi-agent systems (MAS). Advances in large language models (LLMs) have established LLM-based agents as a major branch of MAS, enabling major breakthroughs in complex problem solving and world modeling. However, the reliability implications of this shift remain largely unexplored. i.e., whether substituting traditional agents with LLM-based agents can effectively enhance the reliability of MAS. In this work, we investigate and quantify the reliability of LLM-based agents from the perspective of Byzantine fault tolerance. We observe that LLM-based agents demonstrate stronger skepticism when processing erroneous message flows, a characteristic that enables them to outperform traditional agents across different topological structures. Motivated by the results of the pilot experiment, we design CP-WBFT, a confidence probe-based weighted Byzantine Fault Tolerant consensus mechanism to enhance the stability of MAS with different topologies. It capitalizes on the intrinsic reflective and discriminative capabilities of LLMs by employing a probe-based, weighted information flow transmission method to improve the reliability of LLM-based agents. Extensive experiments demonstrate that CP-WBFT achieves superior performance across diverse network topologies under extreme Byzantine conditions (85.7\% fault rate). Notably, our approach surpasses traditional methods by attaining remarkable accuracy on various topologies and maintaining strong reliability in both mathematical reasoning and safety assessment tasks.
☆ AgentEvolver: Towards Efficient Self-Evolving Agent System
Autonomous agents powered by large language models (LLMs) have the potential to significantly enhance human productivity by reasoning, using tools, and executing complex tasks in diverse environments. However, current approaches to developing such agents remain costly and inefficient, as they typically require manually constructed task datasets and reinforcement learning (RL) pipelines with extensive random exploration. These limitations lead to prohibitively high data-construction costs, low exploration efficiency, and poor sample utilization. To address these challenges, we present AgentEvolver, a self-evolving agent system that leverages the semantic understanding and reasoning capabilities of LLMs to drive autonomous agent learning. AgentEvolver introduces three synergistic mechanisms: (i) self-questioning, which enables curiosity-driven task generation in novel environments, reducing dependence on handcrafted datasets; (ii) self-navigating, which improves exploration efficiency through experience reuse and hybrid policy guidance; and (iii) self-attributing, which enhances sample efficiency by assigning differentiated rewards to trajectory states and actions based on their contribution. By integrating these mechanisms into a unified framework, AgentEvolver enables scalable, cost-effective, and continual improvement of agent capabilities. Preliminary experiments indicate that AgentEvolver achieves more efficient exploration, better sample utilization, and faster adaptation compared to traditional RL-based baselines.
☆ Simulating Misinformation Propagation in Social Networks using Large Language Models CIKM 2025
Misinformation on social media thrives on surprise, emotion, and identity-driven reasoning, often amplified through human cognitive biases. To investigate these mechanisms, we model large language model (LLM) personas as synthetic agents that mimic user-level biases, ideological alignments, and trust heuristics. Within this setup, we introduce an auditor--node framework to simulate and analyze how misinformation evolves as it circulates through networks of such agents. News articles are propagated across networks of persona-conditioned LLM nodes, each rewriting received content. A question--answering-based auditor then measures factual fidelity at every step, offering interpretable, claim-level tracking of misinformation drift. We formalize a misinformation index and a misinformation propagation rate to quantify factual degradation across homogeneous and heterogeneous branches of up to 30 sequential rewrites. Experiments with 21 personas across 10 domains reveal that identity- and ideology-based personas act as misinformation accelerators, especially in politics, marketing, and technology. By contrast, expert-driven personas preserve factual stability. Controlled-random branch simulations further show that once early distortions emerge, heterogeneous persona interactions rapidly escalate misinformation to propaganda-level distortion. Our taxonomy of misinformation severity -- spanning factual errors, lies, and propaganda -- connects observed drift to established theories in misinformation studies. These findings demonstrate the dual role of LLMs as both proxies for human-like biases and as auditors capable of tracing information fidelity. The proposed framework provides an interpretable, empirically grounded approach for studying, simulating, and mitigating misinformation diffusion in digital ecosystems.
comment: Accepted to CIKM 2025 Workshop LASS
☆ Position: On the Methodological Pitfalls of Evaluating Base LLMs for Reasoning
Existing work investigates the reasoning capabilities of large language models (LLMs) to uncover their limitations, human-like biases and underlying processes. Such studies include evaluations of base LLMs (pre-trained on unlabeled corpora only) for this purpose. Our position paper argues that evaluating base LLMs' reasoning capabilities raises inherent methodological concerns that are overlooked in such existing studies. We highlight the fundamental mismatch between base LLMs' pretraining objective and normative qualities, such as correctness, by which reasoning is assessed. In particular, we show how base LLMs generate logically valid or invalid conclusions as coincidental byproducts of conforming to purely linguistic patterns of statistical plausibility. This fundamental mismatch challenges the assumptions that (a) base LLMs' outputs can be assessed as their bona fide attempts at correct answers or conclusions; and (b) conclusions about base LLMs' reasoning can generalize to post-trained LLMs optimized for successful instruction-following. We call for a critical re-examination of existing work that relies implicitly on these assumptions, and for future work to account for these methodological pitfalls.
comment: Preprint
☆ TruthfulRAG: Resolving Factual-level Conflicts in Retrieval-Augmented Generation with Knowledge Graphs AAAI 2026
Retrieval-Augmented Generation (RAG) has emerged as a powerful framework for enhancing the capabilities of Large Language Models (LLMs) by integrating retrieval-based methods with generative models. As external knowledge repositories continue to expand and the parametric knowledge within models becomes outdated, a critical challenge for RAG systems is resolving conflicts between retrieved external information and LLMs' internal knowledge, which can significantly compromise the accuracy and reliability of generated content. However, existing approaches to conflict resolution typically operate at the token or semantic level, often leading to fragmented and partial understanding of factual discrepancies between LLMs' knowledge and context, particularly in knowledge-intensive tasks. To address this limitation, we propose TruthfulRAG, the first framework that leverages Knowledge Graphs (KGs) to resolve factual-level knowledge conflicts in RAG systems. Specifically, TruthfulRAG constructs KGs by systematically extracting triples from retrieved content, utilizes query-based graph retrieval to identify relevant knowledge, and employs entropy-based filtering mechanisms to precisely locate conflicting elements and mitigate factual inconsistencies, thereby enabling LLMs to generate faithful and accurate responses. Extensive experiments reveal that TruthfulRAG outperforms existing methods, effectively alleviating knowledge conflicts and improving the robustness and trustworthiness of RAG systems.
comment: 12 pages, 3 figures, accepted at AAAI 2026
☆ destroR: Attacking Transfer Models with Obfuscous Examples to Discard Perplexity
Advancements in Machine Learning & Neural Networks in recent years have led to widespread implementations of Natural Language Processing across a variety of fields with remarkable success, solving a wide range of complicated problems. However, recent research has shown that machine learning models may be vulnerable in a number of ways, putting both the models and the systems theyre used in at risk. In this paper, we intend to analyze and experiment with the best of existing adversarial attack recipes and create new ones. We concentrated on developing a novel adversarial attack strategy on current state-of-the-art machine learning models by producing ambiguous inputs for the models to confound them and then constructing the path to the future development of the robustness of the models. We will develop adversarial instances with maximum perplexity, utilizing machine learning and deep learning approaches in order to trick the models. In our attack recipe, we will analyze several datasets and focus on creating obfuscous adversary examples to put the models in a state of perplexity, and by including the Bangla Language in the field of adversarial attacks. We strictly uphold utility usage reduction and efficiency throughout our work.
comment: 9 pages, 2 figures, 6 Table
☆ Knowledge Graphs Generation from Cultural Heritage Texts: Combining LLMs and Ontological Engineering for Scholarly Debates
Cultural Heritage texts contain rich knowledge that is difficult to query systematically due to the challenges of converting unstructured discourse into structured Knowledge Graphs (KGs). This paper introduces ATR4CH (Adaptive Text-to-RDF for Cultural Heritage), a systematic five-step methodology for Large Language Model-based Knowledge Extraction from Cultural Heritage documents. We validate the methodology through a case study on authenticity assessment debates. Methodology - ATR4CH combines annotation models, ontological frameworks, and LLM-based extraction through iterative development: foundational analysis, annotation schema development, pipeline architecture, integration refinement, and comprehensive evaluation. We demonstrate the approach using Wikipedia articles about disputed items (documents, artifacts...), implementing a sequential pipeline with three LLMs (Claude Sonnet 3.7, Llama 3.3 70B, GPT-4o-mini). Findings - The methodology successfully extracts complex Cultural Heritage knowledge: 0.96-0.99 F1 for metadata extraction, 0.7-0.8 F1 for entity recognition, 0.65-0.75 F1 for hypothesis extraction, 0.95-0.97 for evidence extraction, and 0.62 G-EVAL for discourse representation. Smaller models performed competitively, enabling cost-effective deployment. Originality - This is the first systematic methodology for coordinating LLM-based extraction with Cultural Heritage ontologies. ATR4CH provides a replicable framework adaptable across CH domains and institutional resources. Research Limitations - The produced KG is limited to Wikipedia articles. While the results are encouraging, human oversight is necessary during post-processing. Practical Implications - ATR4CH enables Cultural Heritage institutions to systematically convert textual knowledge into queryable KGs, supporting automated metadata enrichment and knowledge discovery.
comment: 46 pages
☆ BhashaKritika: Building Synthetic Pretraining Data at Scale for Indic Languages
In the context of pretraining of Large Language Models (LLMs), synthetic data has emerged as an alternative for generating high-quality pretraining data at scale. This is particularly beneficial in low-resource language settings where the benefits of recent LLMs have been unevenly distributed across languages. In this work, we present a systematic study on the generation and evaluation of synthetic multilingual pretraining data for Indic languages, where we construct a large-scale synthetic dataset BhashaKritika, comprising 540B tokens using 5 different techniques for 10 languages. We explore the impact of grounding generation in documents, personas, and topics. We analyze how language choice, both in the prompt instructions and document grounding, affects data quality, and we compare translations of English content with native generation in Indic languages. To support scalable and language-sensitive evaluation, we introduce a modular quality evaluation pipeline that integrates script and language detection, metadata consistency checks, n-gram repetition analysis, and perplexity-based filtering using KenLM models. Our framework enables robust quality control across diverse scripts and linguistic contexts. Empirical results through model runs reveal key trade-offs in generation strategies and highlight best practices for constructing effective multilingual corpora.
☆ Rectify Evaluation Preference: Improving LLMs' Critique on Math Reasoning via Perplexity-aware Reinforcement Learning AAAI2026
To improve Multi-step Mathematical Reasoning (MsMR) of Large Language Models (LLMs), it is crucial to obtain scalable supervision from the corpus by automatically critiquing mistakes in the reasoning process of MsMR and rendering a final verdict of the problem-solution. Most existing methods rely on crafting high-quality supervised fine-tuning demonstrations for critiquing capability enhancement and pay little attention to delving into the underlying reason for the poor critiquing performance of LLMs. In this paper, we orthogonally quantify and investigate the potential reason -- imbalanced evaluation preference, and conduct a statistical preference analysis. Motivated by the analysis of the reason, a novel perplexity-aware reinforcement learning algorithm is proposed to rectify the evaluation preference, elevating the critiquing capability. Specifically, to probe into LLMs' critiquing characteristics, a One-to-many Problem-Solution (OPS) benchmark is meticulously constructed to quantify the behavior difference of LLMs when evaluating the problem solutions generated by itself and others. Then, to investigate the behavior difference in depth, we conduct a statistical preference analysis oriented on perplexity and find an intriguing phenomenon -- ``LLMs incline to judge solutions with lower perplexity as correct'', which is dubbed as \textit{imbalanced evaluation preference}. To rectify this preference, we regard perplexity as the baton in the algorithm of Group Relative Policy Optimization, supporting the LLMs to explore trajectories that judge lower perplexity as wrong and higher perplexity as correct. Extensive experimental results on our built OPS and existing available critic benchmarks demonstrate the validity of our method.
comment: Accepted by AAAI2026
☆ Local Hybrid Retrieval-Augmented Document QA ACL
Organizations handling sensitive documents face a critical dilemma: adopt cloud-based AI systems that offer powerful question-answering capabilities but compromise data privacy, or maintain local processing that ensures security but delivers poor accuracy. We present a question-answering system that resolves this trade-off by combining semantic understanding with keyword precision, operating entirely on local infrastructure without internet access. Our approach demonstrates that organizations can achieve competitive accuracy on complex queries across legal, scientific, and conversational documents while keeping all data on their machines. By balancing two complementary retrieval strategies and using consumer-grade hardware acceleration, the system delivers reliable answers with minimal errors, letting banks, hospitals, and law firms adopt conversational document AI without transmitting proprietary information to external providers. This work establishes that privacy and performance need not be mutually exclusive in enterprise AI deployment.
comment: 10 pages, 5 figures, 3 tables; conference-style (ACL format); fully local RAG system
☆ Music Flamingo: Scaling Music Understanding in Audio Language Models
We introduce Music Flamingo, a novel large audio-language model designed to advance music (including song) understanding in foundational audio models. While audio-language research has progressed rapidly, music remains challenging due to its dynamic, layered, and information-dense nature. Progress has been further limited by the difficulty of scaling open audio understanding models, primarily because of the scarcity of high-quality music data and annotations. As a result, prior models are restricted to producing short, high-level captions, answering only surface-level questions, and showing limited generalization across diverse musical cultures. To address these challenges, we curate MF-Skills, a large-scale dataset labeled through a multi-stage pipeline that yields rich captions and question-answer pairs covering harmony, structure, timbre, lyrics, and cultural context. We fine-tune an enhanced Audio Flamingo 3 backbone on MF-Skills and further strengthen multiple skills relevant to music understanding. To improve the model's reasoning abilities, we introduce a post-training recipe: we first cold-start with MF-Think, a novel chain-of-thought dataset grounded in music theory, followed by GRPO-based reinforcement learning with custom rewards. Music Flamingo achieves state-of-the-art results across 10+ benchmarks for music understanding and reasoning, establishing itself as a generalist and musically intelligent audio-language model. Beyond strong empirical results, Music Flamingo sets a new standard for advanced music understanding by demonstrating how models can move from surface-level recognition toward layered, human-like perception of songs. We believe this work provides both a benchmark and a foundation for the community to build the next generation of models that engage with music as meaningfully as humans do.
comment: Project Page: https://research.nvidia.com/labs/adlr/MF/
♻ ☆ RASTeR: Robust, Agentic, and Structured Temporal Reasoning AACL 2025
Temporal question answering (TQA) remains a challenge for large language models (LLMs), particularly when retrieved content may be irrelevant, outdated, or temporally inconsistent. This is especially critical in applications like clinical event ordering, and policy tracking, which require reliable temporal reasoning even under noisy or outdated information. To address this challenge, we introduce RASTeR: \textbf{R}obust, \textbf{A}gentic, and \textbf{S}tructured, \textbf{Te}mporal \textbf{R}easoning, a prompting framework that separates context evaluation from answer generation. RASTeR first assesses the relevance and temporal coherence of the retrieved context, then constructs a temporal knolwedge graph (TKG) to better facilitate reasoning. When inconsistencies are detected, RASTeR selectively corrects or discards context before generating an answer. Across multiple datasets and LLMs, RASTeR consistently improves robustness\footnote{\ Some TQA work defines robustness as handling diverse temporal phenomena. Here, we define it as the ability to answer correctly despite suboptimal context}. We further validate our approach through a ``needle-in-the-haystack'' study, in which relevant context is buried among distractors. With forty distractors, RASTeR achieves 75\% accuracy, over 12\% ahead of the runner up
comment: Accepted to AACL 2025
♻ ☆ Q2E: Query-to-Event Decomposition for Zero-Shot Multilingual Text-to-Video Retrieval AACL 2025
Recent approaches have shown impressive proficiency in extracting and leveraging parametric knowledge from Large-Language Models (LLMs) and Vision-Language Models (VLMs). In this work, we consider how we can improve the identification and retrieval of videos related to complex real-world events by automatically extracting latent parametric knowledge about those events. We present Q2E: a Query-to-Event decomposition method for zero-shot multilingual text-to-video retrieval, adaptable across datasets, domains, LLMs, or VLMs. Our approach demonstrates that we can enhance the understanding of otherwise overly simplified human queries by decomposing the query using the knowledge embedded in LLMs and VLMs. We additionally show how to apply our approach to both visual and speech-based inputs. To combine this varied multimodal knowledge, we adopt entropy-based fusion scoring for zero-shot fusion. Through evaluations on two diverse datasets and multiple retrieval metrics, we demonstrate that Q2E outperforms several state-of-the-art baselines. Our evaluation also shows that integrating audio information can significantly improve text-to-video retrieval. We have released code and data for future research.
comment: Accepted in IJCNLP-AACL 2025 (also presented in MAGMAR 2025 at ACL 2025)
♻ ☆ BanglaTalk: Towards Real-Time Speech Assistance for Bengali Regional Dialects
Real-time speech assistants are becoming increasingly popular for ensuring improved accessibility to information. Bengali, being a low-resource language with a high regional dialectal diversity, has seen limited progress in developing such systems. Existing systems are not optimized for real-time use and focus only on standard Bengali. In this work, we present BanglaTalk, the first real-time speech assistance system for Bengali regional dialects. BanglaTalk follows the client-server architecture and uses the Real-time Transport Protocol (RTP) to ensure low-latency communication. To address dialectal variation, we introduce a dialect-aware ASR system, BRDialect, developed by fine-tuning the IndicWav2Vec model in ten Bengali regional dialects. It outperforms the baseline ASR models by 12.41-33.98% on the RegSpeech12 dataset. Furthermore, BanglaTalk can operate at a low bandwidth of 24 kbps while maintaining an average end-to-end delay of 4.9 seconds. Low bandwidth usage and minimal end-to-end delay make the system both cost-effective and interactive for real-time use cases, enabling inclusive and accessible speech technology for the diverse community of Bengali speakers. Code is available in https://github.com/Jak57/BanglaTalk
♻ ☆ CyPortQA: Benchmarking Multimodal Large Language Models for Cyclone Preparedness in Port Operation
As tropical cyclones intensify and track forecasts become increasingly uncertain, U.S. ports face heightened supply-chain risk under extreme weather conditions. Port operators need to rapidly synthesize diverse multimodal forecast products, such as probabilistic wind maps, track cones, and official advisories, into clear, actionable guidance as cyclones approach. Multimodal large language models (MLLMs) offer a powerful means to integrate these heterogeneous data sources alongside broader contextual knowledge, yet their accuracy and reliability in the specific context of port cyclone preparedness have not been rigorously evaluated. To fill this gap, we introduce CyPortQA, the first multimodal benchmark tailored to port operations under cyclone threat. CyPortQA assembles 2,917 realworld disruption scenarios from 2015 through 2023, spanning 145 U.S. principal ports and 90 named storms. Each scenario fuses multisource data (i.e., tropical cyclone products, port operational impact records, and port condition bulletins) and is expanded through an automated pipeline into 117,178 structured question answer pairs. Using this benchmark, we conduct extensive experiments on diverse MLLMs, including both open-source and proprietary model. MLLMs demonstrate great potential in situation understanding but still face considerable challenges in reasoning tasks, including potential impact estimation and decision reasoning.
comment: 9 pages, 5 figures
♻ ☆ AlignSurvey: A Comprehensive Benchmark for Human Preferences Alignment in Social Surveys
Understanding human attitudes, preferences, and behaviors through social surveys is essential for academic research and policymaking. Yet traditional surveys face persistent challenges, including fixed-question formats, high costs, limited adaptability, and difficulties ensuring cross-cultural equivalence. While recent studies explore large language models (LLMs) to simulate survey responses, most are limited to structured questions, overlook the entire survey process, and risks under-representing marginalized groups due to training data biases. We introduce AlignSurvey, the first benchmark that systematically replicates and evaluates the full social survey pipeline using LLMs. It defines four tasks aligned with key survey stages: social role modeling, semi-structured interview modeling, attitude stance modeling and survey response modeling. It also provides task-specific evaluation metrics to assess alignment fidelity, consistency, and fairness at both individual and group levels, with a focus on demographic diversity. To support AlignSurvey, we construct a multi-tiered dataset architecture: (i) the Social Foundation Corpus, a cross-national resource with 44K+ interview dialogues and 400K+ structured survey records; and (ii) a suite of Entire-Pipeline Survey Datasets, including the expert-annotated AlignSurvey-Expert (ASE) and two nationally representative surveys for cross-cultural evaluation. We release the SurveyLM family, obtained through two-stage fine-tuning of open-source LLMs, and offer reference models for evaluating domain-specific alignment. All datasets, models, and tools are available at github and huggingface to support transparent and socially responsible research.
♻ ☆ Collapse of Irrelevant Representations (CIR) Ensures Robust and Non-Disruptive LLM Unlearning
Current unlearning and safety training methods consistently fail to remove dangerous knowledge from language models. We identify the root cause - unlearning targets representations which are too general - and develop a highly selective technique that unlearns robustly while preserving general performance. Our method performs PCA on activations and module-output gradients to identify subspaces containing common representations, then collapses these subspaces before computing unlearning updates, a technique we term Collapse of Irrelevant Representations (CIR). This avoids unlearning general knowledge and targets only representations specific to the facts being unlearned. When unlearning bio- and cyber-hazardous facts from Llama-3.1-8B, we achieve over 30x greater reduction in post-attack accuracy than the best baseline (Circuit Breakers), while disrupting general performance 30x less, and using less than 3 GPU-seconds per fact. Thus, by disentangling harmful and benign capabilities at the level of representations, CIR enables robust and non-disruptive unlearning.
♻ ☆ Reducing the Scope of Language Models AAAI 2026
Large language models (LLMs) are deployed in a wide variety of user-facing applications. Typically, these deployments have some specific purpose, like answering questions grounded on documentation or acting as coding assistants, but they require general language understanding. In such deployments, LLMs should respond only to queries that align with the intended purpose and reject all other requests, such as generating poetry or answering questions about physics, a task we refer to as `scoping'. We conduct a comprehensive empirical evaluation of various methods, ranging from prompting, fine-tuning to preference learning and the recently proposed general alignment technique known as Circuit Breakers (CB). Across three families of language models and a broad variety of tasks, we show that it is possible to scope language models. We examine scoping for multiple topics, and fine-grained topics. We ablate diversity of irrelevant queries, layer different techniques, conduct adversarial evaluations and more. Among other results, we find that when diverse examples of irrelevant queries are available, simple supervised fine-tuning produces the best results, but when such diversity is low, Circuit Breakers perform quite well. One can often get the benefits of both methods by layering them in succession. We intend our study to serve as a practitioner's guide to scoping LLMs.
comment: Appears in AAAI 2026 in the Main Technical Track
♻ ☆ PITA: Preference-Guided Inference-Time Alignment for LLM Post-Training
Inference-time alignment enables large language models (LLMs) to generate outputs aligned with end-user preferences without further training. Recent post-training methods achieve this by using small guidance models to modify token generation during inference. These methods typically optimize a reward function KL-regularized by the original LLM taken as the reference policy. A critical limitation, however, is their dependence on a pre-trained reward model, which requires fitting to human preference feedback--a potentially unstable process. In contrast, we introduce PITA, a novel framework that integrates preference feedback directly into the LLM's token generation, eliminating the need for a reward model. PITA learns a small preference-based guidance policy to modify token probabilities at inference time without LLM fine-tuning, reducing computational cost and bypassing the pre-trained reward model dependency. The problem is framed as identifying an underlying preference distribution, solved through stochastic search and iterative refinement of the preference-based guidance model. We evaluate PITA across diverse tasks, including mathematical reasoning and sentiment classification, demonstrating its effectiveness in aligning LLM outputs with user preferences.
♻ ☆ CCD-Bench: Probing Cultural Conflict in Large Language Model Decision-Making
Although large language models (LLMs) are increasingly implicated in interpersonal and societal decision-making, their ability to navigate explicit conflicts between legitimately different cultural value systems remains largely unexamined. Existing benchmarks predominantly target cultural knowledge (CulturalBench), value prediction (WorldValuesBench), or single-axis bias diagnostics (CDEval); none evaluate how LLMs adjudicate when multiple culturally grounded values directly clash. We address this gap with CCD-Bench, a benchmark that assesses LLM decision-making under cross-cultural value conflict. CCD-Bench comprises 2,182 open-ended dilemmas spanning seven domains, each paired with ten anonymized response options corresponding to the ten GLOBE cultural clusters. These dilemmas are presented using a stratified Latin square to mitigate ordering effects. We evaluate 17 non-reasoning LLMs. Models disproportionately prefer Nordic Europe (mean 20.2 percent) and Germanic Europe (12.4 percent), while options for Eastern Europe and the Middle East and North Africa are underrepresented (5.6 to 5.8 percent). Although 87.9 percent of rationales reference multiple GLOBE dimensions, this pluralism is superficial: models recombine Future Orientation and Performance Orientation, and rarely ground choices in Assertiveness or Gender Egalitarianism (both under 3 percent). Ordering effects are negligible (Cramer's V less than 0.10), and symmetrized KL divergence shows clustering by developer lineage rather than geography. These patterns suggest that current alignment pipelines promote a consensus-oriented worldview that underserves scenarios demanding power negotiation, rights-based reasoning, or gender-aware analysis. CCD-Bench shifts evaluation beyond isolated bias detection toward pluralistic decision making and highlights the need for alignment strategies that substantively engage diverse worldviews.
♻ ☆ Test Set Quality in Multilingual LLM Evaluation AACL 2025
Several multilingual benchmark datasets have been developed in a semi-automatic manner in the recent past to measure progress and understand the state-of-the-art in the multilingual capabilities of Large Language Models. However, there is not a lot of attention paid to the quality of the datasets themselves, despite the existence of previous work in identifying errors in even fully human-annotated test sets. In this paper, we manually analyze recent multilingual evaluation sets in two languages - French and Telugu, identifying several errors in the process. We compare the performance difference across several LLMs with the original and revised versions of the datasets and identify large differences (almost 10% in some cases) in both languages). Based on these results, we argue that test sets should not be considered immutable and should be revisited, checked for correctness, and potentially versioned. We end with some recommendations for both the dataset creators as well as consumers on addressing the dataset quality issues.
comment: to appear in the proceedings of Eval4NLP workshop at AACL 2025. Camera ready version
♻ ☆ Semantic, Orthographic, and Phonological Biases in Humans' Wordle Gameplay ACL
We show that human players' gameplay in the game of Wordle is influenced by the semantics, orthography, and phonology of the player's previous guesses. We compare actual human players' guesses with near-optimal guesses using NLP techniques. We study human language use in the constrained environment of Wordle, which is situated between natural language use and the artificial word association task
comment: Findings of the ACL: IJCNLP-AACL 2025 (accepted)
♻ ☆ Multi-Turn Interactions for Text-to-SQL with Large Language Models CIKM 2025
This study explores text-to-SQL parsing by leveraging the powerful reasoning capabilities of large language models (LLMs). Despite recent advancements, existing LLM-based methods are still inefficient and struggle to handle cases with wide tables effectively. Furthermore, current interaction-based approaches either lack a step-by-step, interpretable SQL generation process or fail to provide a universally applicable interaction design. To address these challenges, we introduce Interactive-T2S, a framework that generates SQL queries through direct interactions with databases. This framework includes four general tools that facilitate proactive and efficient information retrieval by the LLM. Additionally, we have developed detailed exemplars to demonstrate the step-wise reasoning processes within our framework. Our approach achieves advanced performance on the Spider and BIRD datasets as well as their variants. Notably, we obtain state-of-the-art results on the BIRD leaderboard under the setting without oracle knowledge, demonstrating the effectiveness of our method.
comment: This work has been accepted to CIKM 2025
♻ ☆ FlowMM: Cross-Modal Information Flow Guided KV Cache Merging for Efficient Multimodal Context Inference
Traditional KV cache eviction strategies, which discard less critical KV-pairs based on attention scores, often degrade generation quality, causing context loss or hallucinations. Recent efforts shift toward KV merging, merging eviction tokens with retention tokens based on similarity. However, in multimodal scenarios, distributional biases across modality tokens and attentional biases in cross-modal interactions limit its effectiveness. This work introduces FlowMM, an adaptive framework for cross-modal information flow-guided multimodal KV cache merging. FlowMM leverages cross-modal information flow to dynamically apply layer-specific merging strategies, capturing modality-specific patterns while preserving contextual integrity. Furthermore, we introduce a sensitivity-adaptive token matching mechanism that jointly evaluates token similarity and task-critical sensitivity, merging low-risk tokens while safeguarding high-sensitivity ones. Extensive experiments across diverse leading MLLMs show that FlowMM reduces KV cache memory by 80% to 95% and decoding latency by 1.3-1.8x, while maintaining competitive task performance.
♻ ☆ Investigating CoT Monitorability in Large Reasoning Models
Large Reasoning Models (LRMs) have demonstrated remarkable performance on complex tasks by engaging in extended reasoning before producing final answers. Beyond improving abilities, these detailed reasoning traces also create a new opportunity for AI safety, CoT Monitorability: monitoring potential model misbehavior, such as the use of shortcuts or sycophancy, through their chain-of-thought (CoT) during decision-making. However, two key fundamental challenges arise when attempting to build more effective monitors through CoT analysis. First, as prior research on CoT faithfulness has pointed out, models do not always truthfully represent their internal decision-making in the generated reasoning. Second, monitors themselves may be either overly sensitive or insufficiently sensitive, and can potentially be deceived by models' long, elaborate reasoning traces. In this paper, we present the first systematic investigation of the challenges and potential of CoT monitorability. Motivated by two fundamental challenges we mentioned before, we structure our study around two central perspectives: (i) verbalization: to what extent do LRMs faithfully verbalize the true factors guiding their decisions in the CoT, and (ii) monitor reliability: to what extent can misbehavior be reliably detected by a CoT-based monitor? Specifically, we provide empirical evidence and correlation analyses between verbalization quality, monitor reliability, and LLM performance across mathematical, scientific, and ethical domains. Then we further investigate how different CoT intervention methods, designed to improve reasoning efficiency or performance, will affect monitoring effectiveness. Finally, we propose MoME, a new paradigm in which LLMs monitor other models' misbehavior through their CoT and provide structured judgments along with supporting evidence.
♻ ☆ Guess or Recall? Training CNNs to Classify and Localize Memorization in LLMs AAAI-26
Verbatim memorization in Large Language Models (LLMs) is a multifaceted phenomenon involving distinct underlying mechanisms. We introduce a novel method to analyze the different forms of memorization described by the existing taxonomy. Specifically, we train Convolutional Neural Networks (CNNs) on the attention weights of the LLM and evaluate the alignment between this taxonomy and the attention weights involved in decoding. We find that the existing taxonomy performs poorly and fails to reflect distinct mechanisms within the attention blocks. We propose a new taxonomy that maximizes alignment with the attention weights, consisting of three categories: memorized samples that are guessed using language modeling abilities, memorized samples that are recalled due to high duplication in the training set, and non-memorized samples. Our results reveal that few-shot verbatim memorization does not correspond to a distinct attention mechanism. We also show that a significant proportion of extractable samples are in fact guessed by the model and should therefore be studied separately. Finally, we develop a custom visual interpretability technique to localize the regions of the attention weights involved in each form of memorization.
comment: This paper has been accepted for publication at AAAI-26
♻ ☆ Retrieval-Augmented Generation for Reliable Interpretation of Radio Regulations NeurIPS 2025
We study question answering in the domain of radio regulations, a legally sensitive and high-stakes area. We propose a telecom-specific Retrieval-Augmented Generation (RAG) pipeline and introduce, to our knowledge, the first multiple-choice evaluation set for this domain, constructed from authoritative sources using automated filtering and human validation. To assess retrieval quality, we define a domain-specific retrieval metric, under which our retriever achieves approximately 97% accuracy. Beyond retrieval, our approach consistently improves generation accuracy across all tested models. In particular, while naively inserting documents without structured retrieval yields only marginal gains for GPT-4o (less than 1%), applying our pipeline results in nearly a 12% relative improvement. These findings demonstrate that carefully targeted grounding provides a simple yet strong baseline and an effective domain-specific solution for regulatory question answering. All code and evaluation scripts, along with our derived question-answer dataset, are available at https://github.com/Zakaria010/Radio-RAG.
comment: 12 pages, 7 figures, AI4NextG @ NeurIPS 2025
♻ ☆ Chain-of-Lure: A Universal Jailbreak Attack Framework using Unconstrained Synthetic Narratives
In the era of rapid generative AI development, interactions with large language models (LLMs) pose increasing risks of misuse. Prior research has primarily focused on attacks using template-based prompts and optimization-oriented methods, while overlooking the fact that LLMs possess strong unconstrained deceptive capabilities to attack other LLMs. This paper introduces a novel jailbreaking method inspired by the Chain-of-Thought mechanism. The attacker employs mission transfer to conceal harmful user intent within dialogue and generates a progressive chain of lure questions without relying on predefined templates, enabling successful jailbreaks. To further improve the attack's strength, we incorporate a helper LLM model that performs randomized narrative optimization over multi-turn interactions, enhancing the attack performance while preserving alignment with the original intent. We also propose a toxicity-based framework using third-party LLMs to evaluate harmful content and its alignment with malicious intent. Extensive experiments demonstrate that our method consistently achieves high attack success rates and elevated toxicity scores across diverse types of LLMs under black-box API settings. These findings reveal the intrinsic potential of LLMs to perform unrestricted attacks in the absence of robust alignment constraints. Our approach offers data-driven insights to inform the design of future alignment mechanisms. Finally, we propose two concrete defense strategies to support the development of safer generative models.
comment: 23 pages, 3 main figures
♻ ☆ Beyond Perplexity: Let the Reader Select Retrieval Summaries via Spectrum Projection Score AAAI 2026
Large Language Models (LLMs) have shown improved generation performance through retrieval-augmented generation (RAG) following the retriever-reader paradigm, which supplements model inputs with externally retrieved knowledge. However, prior work often evaluates RAG holistically, assessing the retriever and reader jointly, making it difficult to isolate the true contribution of retrieval, particularly given the prompt sensitivity of LLMs used as readers. We move beyond perplexity and introduce Spectrum Projection Score (SPS), a lightweight and supervision-free metric that allows the reader to gauge the semantic alignment of a retrieved summary with its hidden representation by comparing the area formed by generated tokens from the summary, and the principal directions of subspace in the reader and to measure the relevance. Building on SPS we present xCompress, an inference-time controller framework that dynamically samples, ranks, and compresses retrieval summary candidates. Extensive experiments on five QA benchmarks with four open-sourced LLMs show that SPS not only enhances performance across a range of tasks but also provides a principled perspective on the interaction between retrieval and generation.
comment: Accepted by AAAI 2026 Oral. Project link: https://zhanghao-aaai2026-sps.github.io/AAAI2026-SPS/
Information Retrieval 11
☆ Don't Waste It: Guiding Generative Recommenders with Structured Human Priors via Multi-head Decoding
Optimizing recommender systems for objectives beyond accuracy, such as diversity, novelty, and personalization, is crucial for long-term user satisfaction. To this end, industrial practitioners have accumulated vast amounts of structured domain knowledge, which we term human priors (e.g., item taxonomies, temporal patterns). This knowledge is typically applied through post-hoc adjustments during ranking or post-ranking. However, this approach remains decoupled from the core model learning, which is particularly undesirable as the industry shifts to end-to-end generative recommendation foundation models. On the other hand, many methods targeting these beyond-accuracy objectives often require architecture-specific modifications and discard these valuable human priors by learning user intent in a fully unsupervised manner. Instead of discarding the human priors accumulated over years of practice, we introduce a backbone-agnostic framework that seamlessly integrates these human priors directly into the end-to-end training of generative recommenders. With lightweight, prior-conditioned adapter heads inspired by efficient LLM decoding strategies, our approach guides the model to disentangle user intent along human-understandable axes (e.g., interaction types, long- vs. short-term interests). We also introduce a hierarchical composition strategy for modeling complex interactions across different prior types. Extensive experiments on three large-scale datasets demonstrate that our method significantly enhances both accuracy and beyond-accuracy objectives. We also show that human priors allow the backbone model to more effectively leverage longer context lengths and larger model sizes.
☆ Fixed-Persona SLMs with Modular Memory: Scalable NPC Dialogue on Consumer Hardware
Large Language Models (LLMs) have demonstrated remarkable capabilities in generating human-like text, yet their applicability to dialogue systems in computer games remains limited. This limitation arises from their substantial hardware requirements, latency constraints, and the necessity to maintain clearly defined knowledge boundaries within a game setting. In this paper, we propose a modular NPC dialogue system that leverages Small Language Models (SLMs), fine-tuned to encode specific NPC personas and integrated with runtime-swappable memory modules. These memory modules preserve character-specific conversational context and world knowledge, enabling expressive interactions and long-term memory without retraining or model reloading during gameplay. We comprehensively evaluate our system using three open-source SLMs: DistilGPT-2, TinyLlama-1.1B-Chat, and Mistral-7B-Instruct, trained on synthetic persona-aligned data and benchmarked on consumer-grade hardware. While our approach is motivated by applications in gaming, its modular design and persona-driven memory architecture hold significant potential for broader adoption in domains requiring expressive, scalable, and memory-rich conversational agents, such as virtual assistants, customer support bots, or interactive educational systems.
☆ GPR: Towards a Generative Pre-trained One-Model Paradigm for Large-Scale Advertising Recommendation
As an intelligent infrastructure connecting users with commercial content, advertising recommendation systems play a central role in information flow and value creation within the digital economy. However, existing multi-stage advertising recommendation systems suffer from objective misalignment and error propagation, making it difficult to achieve global optimality, while unified generative recommendation models still struggle to meet the demands of practical industrial applications. To address these issues, we propose GPR (Generative Pre-trained Recommender), the first one-model framework that redefines advertising recommendation as an end-to-end generative task, replacing the traditional cascading paradigm with a unified generative approach. To realize GPR, we introduce three key innovations spanning unified representation, network architecture, and training strategy. First, we design a unified input schema and tokenization method tailored to advertising scenarios, mapping both ads and organic content into a shared multi-level semantic ID space, thereby enhancing semantic alignment and modeling consistency across heterogeneous data. Second, we develop the Heterogeneous Hierarchical Decoder (HHD), a dual-decoder architecture that decouples user intent modeling from ad generation, achieving a balance between training efficiency and inference flexibility while maintaining strong modeling capacity. Finally, we propose a multi-stage joint training strategy that integrates Multi-Token Prediction (MTP), Value-Aware Fine-Tuning and the Hierarchy Enhanced Policy Optimization (HEPO) algorithm, forming a complete generative recommendation pipeline that unifies interest modeling, value alignment, and policy optimization. GPR has been fully deployed in the Tencent Weixin Channels advertising system, delivering significant improvements in key business metrics including GMV and CTCVR.
comment: 12 pages, 5 figures
♻ ☆ BroadGen: A Framework for Generating Effective and Efficient Advertiser Broad Match Keyphrase Recommendations
In the domain of sponsored search advertising, the focus of Keyphrase recommendation has largely been on exact match types, which pose issues such as high management expenses, limited targeting scope, and evolving search query patterns. Alternatives like Broad match types can alleviate certain drawbacks of exact matches but present challenges like poor targeting accuracy and minimal supervisory signals owing to limited advertiser usage. This research defines the criteria for an ideal broad match, emphasizing on both efficiency and effectiveness, ensuring that a significant portion of matched queries are relevant. We propose BroadGen, an innovative framework that recommends efficient and effective broad match keyphrases by utilizing historical search query data. Additionally, we demonstrate that BroadGen, through token correspondence modeling, maintains better query stability over time. BroadGen's capabilities allow it to serve daily, millions of sellers at eBay with over 2.5 billion items.
♻ ☆ Retrieval-Augmented Generation for Reliable Interpretation of Radio Regulations NeurIPS 2025
We study question answering in the domain of radio regulations, a legally sensitive and high-stakes area. We propose a telecom-specific Retrieval-Augmented Generation (RAG) pipeline and introduce, to our knowledge, the first multiple-choice evaluation set for this domain, constructed from authoritative sources using automated filtering and human validation. To assess retrieval quality, we define a domain-specific retrieval metric, under which our retriever achieves approximately 97% accuracy. Beyond retrieval, our approach consistently improves generation accuracy across all tested models. In particular, while naively inserting documents without structured retrieval yields only marginal gains for GPT-4o (less than 1%), applying our pipeline results in nearly a 12% relative improvement. These findings demonstrate that carefully targeted grounding provides a simple yet strong baseline and an effective domain-specific solution for regulatory question answering. All code and evaluation scripts, along with our derived question-answer dataset, are available at https://github.com/Zakaria010/Radio-RAG.
comment: 12 pages, 7 figures, AI4NextG @ NeurIPS 2025
♻ ☆ Why Do Open-Source LLMs Struggle with Data Analysis? A Systematic Empirical Study AAAI 2026
Large Language Models (LLMs) hold promise in automating data analysis tasks, yet open-source models face significant limitations in these kinds of reasoning-intensive scenarios. In this work, we investigate strategies to enhance the data analysis capabilities of open-source LLMs. By curating a seed dataset of diverse, realistic scenarios, we evaluate model behavior across three core dimensions: data understanding, code generation, and strategic planning. Our analysis reveals three key findings: (1) Strategic planning quality serves as the primary determinant of model performance; (2) Interaction design and task complexity significantly influence reasoning capabilities; (3) Data quality demonstrates a greater impact than diversity in achieving optimal performance. We leverage these insights to develop a data synthesis methodology, demonstrating significant improvements in open-source LLMs' analytical reasoning capabilities. Code is available at https://github.com/zjunlp/DataMind.
comment: AAAI 2026 (oral)
♻ ☆ LoVR: A Benchmark for Long Video Retrieval in Multimodal Contexts
Long videos contain a vast amount of information, making video-text retrieval an essential and challenging task in multimodal learning. However, existing benchmarks suffer from limited video duration, low-quality captions, and coarse annotation granularity, which hinder the evaluation of advanced video-text retrieval methods. To address these limitations, we introduce LoVR, a benchmark specifically designed for long video-text retrieval. LoVR contains 467 long videos and over 40,804 fine-grained clips with high-quality captions. To overcome the issue of poor machine-generated annotations, we propose an efficient caption generation framework that integrates VLM automatic generation, caption quality scoring, and dynamic refinement. This pipeline improves annotation accuracy while maintaining scalability. Furthermore, we introduce a semantic fusion method to generate coherent full-video captions without losing important contextual information. Our benchmark introduces longer videos, more detailed captions, and a larger-scale dataset, presenting new challenges for video understanding and retrieval. Extensive experiments on various advanced embedding models demonstrate that LoVR is a challenging benchmark, revealing the limitations of current approaches and providing valuable insights for future research. We release the code and dataset link at https://github.com/TechNomad-ds/LoVR-benchmark
♻ ☆ DatAasee -- A Metadata-Lake as Metadata Catalog for a Virtual Data-Lake
Metadata management for distributed data sources is a long-standing but ever-growing problem. To counter this challenge in a research-data and library-oriented setting, this work constructs a data architecture, derived from the data-lake: the metadata-lake. A proof-of-concept implementation of this proposed metadata aggregator is presented, too, and also evaluated.
♻ ☆ MMTEB: Massive Multilingual Text Embedding Benchmark ICLR
Text embeddings are typically evaluated on a limited set of tasks, which are constrained by language, domain, and task diversity. To address these limitations and provide a more comprehensive evaluation, we introduce the Massive Multilingual Text Embedding Benchmark (MMTEB) - a large-scale, community-driven expansion of MTEB, covering over 500 quality-controlled evaluation tasks across 250+ languages. MMTEB includes a diverse set of challenging, novel tasks such as instruction following, long-document retrieval, and code retrieval, representing the largest multilingual collection of evaluation tasks for embedding models to date. Using this collection, we develop several highly multilingual benchmarks, which we use to evaluate a representative set of models. We find that while large language models (LLMs) with billions of parameters can achieve state-of-the-art performance on certain language subsets and task categories, the best-performing publicly available model is multilingual-e5-large-instruct with only 560 million parameters. To facilitate accessibility and reduce computational cost, we introduce a novel downsampling method based on inter-task correlation, ensuring a diverse selection while preserving relative model rankings. Furthermore, we optimize tasks such as retrieval by sampling hard negatives, creating smaller but effective splits. These optimizations allow us to introduce benchmarks that drastically reduce computational demands. For instance, our newly introduced zero-shot English benchmark maintains a ranking order similar to the full-scale version but at a fraction of the computational cost.
comment: Accepted for ICLR: https://openreview.net/forum?id=zl3pfz4VCV
♻ ☆ Thinking Forward and Backward: Multi-Objective Reinforcement Learning for Retrieval-Augmented Reasoning
Retrieval-augmented generation (RAG) has proven to be effective in mitigating hallucinations in large language models, yet its effectiveness remains limited in complex, multi-step reasoning scenarios. Recent efforts have incorporated search-based interactions into RAG, enabling iterative reasoning with real-time retrieval. Most approaches rely on outcome-based supervision, offering no explicit guidance for intermediate steps. This often leads to reward hacking and degraded response quality. We propose Bi-RAR, a novel retrieval-augmented reasoning framework that evaluates each intermediate step jointly in both forward and backward directions. To assess the information completeness of each step, we introduce a bidirectional information distance grounded in Kolmogorov complexity, approximated via language model generation probabilities. This quantification measures both how far the current reasoning is from the answer and how well it addresses the question. To optimize reasoning under these bidirectional signals, we adopt a multi-objective reinforcement learning framework with a cascading reward structure that emphasizes early trajectory alignment. Empirical results on seven question answering benchmarks demonstrate that Bi-RAR surpasses previous methods and enables efficient interaction and reasoning with the search engine during training and inference.
♻ ☆ Planning Agents on an Ego-Trip: Leveraging Hybrid Ego-Graph Ensembles for Improved Tool Retrieval in Enterprise Task Planning
Effective tool pre-selection via retrieval is essential for AI agents to select from a vast array of tools when identifying and planning actions in the context of complex user queries. Despite its central role in planning, this aspect remains underexplored in the literature. Traditional approaches rely primarily on similarities between user queries and tool descriptions, which significantly limits retrieval accuracy, specifically when handling multi-step user requests. To address these limitations, we propose a Knowledge Graph (KG)-based tool retrieval framework that captures the semantic relationships between tools and their functional dependencies. Our retrieval algorithm leverages ensembles of 1-hop ego tool graphs to model direct and indirect connections between tools, enabling more comprehensive and contextual tool selection for multi-step tasks. We evaluate our approach on a synthetically generated internal dataset across six defined user classes, extending previous work on coherent dialogue synthesis and tool retrieval benchmarks. Results demonstrate that our tool graph-based method achieves 91.85% tool coverage on the micro-average CompleteRecall metric, compared to 89.26% for re-ranked semantic-lexical hybrid retrieval, the strongest non-KG baseline in our experiments. These findings support our hypothesis that the structural information modeled in the graph provides complementary signals to pure similarity matching, particularly for queries requiring sequential tool composition.
Information Retrieval 15
☆ Practical RAG Evaluation: A Rarity-Aware Set-Based Metric and Cost-Latency-Quality Trade-offs
This paper addresses the guessing game in building production RAG. Classical rank-centric IR metrics (nDCG/MAP/MRR) are a poor fit for RAG, where LLMs consume a set of passages rather than a browsed list; position discounts and prevalence-blind aggregation miss what matters: whether the prompt at cutoff K contains the decisive evidence. Second, there is no standardized, reproducible way to build and audit golden sets. Third, leaderboards exist but lack end-to-end, on-corpus benchmarking that reflects production trade-offs. Fourth, how state-of-the-art embedding models handle proper-name identity signals and conversational noise remains opaque. To address these, we contribute: (1) RA-nWG@K, a rarity-aware, per-query-normalized set score, and operational ceilings via the pool-restricted oracle ceiling (PROC) and the percentage of PROC (%PROC) to separate retrieval from ordering headroom within a Cost-Latency-Quality (CLQ) lens; (2) rag-gs (MIT), a lean golden-set pipeline with Plackett-Luce listwise refinement whose iterative updates outperform single-shot LLM ranking; (3) a comprehensive benchmark on a production RAG (scientific-papers corpus) spanning dense retrieval, hybrid dense+BM25, embedding models and dimensions, cross-encoder rerankers, ANN (HNSW), and quantization; and (4) targeted diagnostics that quantify proper-name identity signal and conversational-noise sensitivity via identity-destroying and formatting ablations. Together, these components provide practitioner Pareto guidance and auditable guardrails to support reproducible, budget/SLA-aware decisions.
☆ Sim4IA-Bench: A User Simulation Benchmark Suite for Next Query and Utterance Prediction
Validating user simulation is a difficult task due to the lack of established measures and benchmarks, which makes it challenging to assess whether a simulator accurately reflects real user behavior. As part of the Sim4IA Micro-Shared Task at the Sim4IA Workshop, SIGIR 2025, we present Sim4IA-Bench, a simulation benchmark suit for the prediction of the next queries and utterances, the first of its kind in the IR community. Our dataset as part of the suite comprises 160 real-world search sessions from the CORE search engine. For 70 of these sessions, up to 62 simulator runs are available, divided into Task A and Task B, in which different approaches predicted users next search queries or utterances. Sim4IA-Bench provides a basis for evaluating and comparing user simulation approaches and for developing new measures of simulator validity. Although modest in size, the suite represents the first publicly available benchmark that links real search sessions with simulated next-query predictions. In addition to serving as a testbed for next query prediction, it also enables exploratory studies on query reformulation behavior, intent drift, and interaction-aware retrieval evaluation. We also introduce a new measure for evaluating next-query predictions in this task. By making the suite publicly available, we aim to promote reproducible research and stimulate further work on realistic and explainable user simulation for information access: https://github.com/irgroup/Sim4IA-Bench.
☆ NeuroCLIP: Brain-Inspired Prompt Tuning for EEG-to-Image Multimodal Contrastive Learning
Recent advances in brain-inspired artificial intelligence have sought to align neural signals with visual semantics using multimodal models such as CLIP. However, existing methods often treat CLIP as a static feature extractor, overlooking its adaptability to neural representations and the inherent physiological-symbolic gap in EEG-image alignment. To address these challenges, we present NeuroCLIP, a prompt tuning framework tailored for EEG-to-image contrastive learning. Our approach introduces three core innovations: (1) We design a dual-stream visual embedding pipeline that combines dynamic filtering and token-level fusion to generate instance-level adaptive prompts, which guide the adjustment of patch embedding tokens based on image content, thereby enabling fine-grained modulation of visual representations under neural constraints; (2) We are the first to introduce visual prompt tokens into EEG-image alignment, acting as global, modality-level prompts that work in conjunction with instance-level adjustments. These visual prompt tokens are inserted into the Transformer architecture to facilitate neural-aware adaptation and parameter optimization at a global level; (3) Inspired by neuroscientific principles of human visual encoding, we propose a refined contrastive loss that better model the semantic ambiguity and cross-modal noise present in EEG signals. On the THINGS-EEG2 dataset, NeuroCLIP achieves a Top-1 accuracy of 63.2% in zero-shot image retrieval, surpassing the previous best method by +12.3%, and demonstrates strong generalization under inter-subject conditions (+4.6% Top-1), highlighting the potential of physiology-aware prompt tuning for bridging brain signals and visual semantics.
☆ Efficient Model-Agnostic Continual Learning for Next POI Recommendation ICDE2026
Next point-of-interest (POI) recommendation improves personalized location-based services by predicting users' next destinations based on their historical check-ins. However, most existing methods rely on static datasets and fixed models, limiting their ability to adapt to changes in user behavior over time. To address this limitation, we explore a novel task termed continual next POI recommendation, where models dynamically adapt to evolving user interests through continual updates. This task is particularly challenging, as it requires capturing shifting user behaviors while retaining previously learned knowledge. Moreover, it is essential to ensure efficiency in update time and memory usage for real-world deployment. To this end, we propose GIRAM (Generative Key-based Interest Retrieval and Adaptive Modeling), an efficient, model-agnostic framework that integrates context-aware sustained interests with recent interests. GIRAM comprises four components: (1) an interest memory to preserve historical preferences; (2) a context-aware key encoding module for unified interest key representation; (3) a generative key-based retrieval module to identify diverse and relevant sustained interests; and (4) an adaptive interest update and fusion module to update the interest memory and balance sustained and recent interests. In particular, GIRAM can be seamlessly integrated with existing next POI recommendation models. Experiments on three real-world datasets demonstrate that GIRAM consistently outperforms state-of-the-art methods while maintaining high efficiency in both update time and memory consumption.
comment: This paper was accepted by ICDE2026
♻ ☆ Search Is Not Retrieval: Decoupling Semantic Matching from Contextual Assembly in RAG
Retrieval systems are essential to contemporary AI pipelines, although most confuse two separate processes: finding relevant information and giving enough context for reasoning. We introduce the Search-Is-Not-Retrieve (SINR) framework, a dual-layer architecture that distinguishes between fine-grained search representations and coarse-grained retrieval contexts. SINR enhances the composability, scalability, and context fidelity of retrieval systems by directly connecting small, semantically accurate search chunks to larger, contextually complete retrieve chunks, all without incurring extra processing costs. This design changes retrieval from a passive step to an active one, making the system architecture more like how people process information. We discuss the SINR framework's conceptual foundation, formal structure, implementation issues, and qualitative outcomes. This provides a practical foundation for the next generation of AI systems that use retrieval.
comment: 22 pages, 2 figures, technical framework paper
♻ ☆ Captions Speak Louder than Images: Generalizing Foundation Models for E-commerce from High-quality Multimodal Instruction Data AACL 2025
Leveraging multimodal data to drive breakthroughs in e-commerce applications through Multimodal Foundation Models (MFMs) is gaining increasing attention from the research community. However, there are significant challenges that hinder the optimal use of multimodal e-commerce data by foundation models: (1) the scarcity of large-scale, high-quality multimodal benchmark datasets; and (2) the lack of effective multimodal information integration methods. To address these challenges, in this paper, we introduce MMECInstruct, the first-ever, large-scale, and high-quality multimodal instruction dataset for e-commerce. We also develop CASLIE, a simple, lightweight, yet effective framework for integrating multimodal information for e-commerce. Leveraging MMECInstruct, we fine-tune a series of e-commerce MFMs within CASLIE, denoted as CASLIE models. Our comprehensive evaluation demonstrates that CASLIE models substantially outperform 5 categories of advanced baseline models in the in-domain evaluation. Moreover, CASLIE models show strong generalizability to out-of-domain settings. MMECInstruct and CASLIE models are publicly accessible through https://ninglab.github.io/CASLIE/.
comment: IJCNLP-AACL 2025
♻ ☆ GraphRAFT: Retrieval Augmented Fine-Tuning for Knowledge Graphs on Graph Databases
Large language models have shown remarkable language processing and reasoning ability but are prone to hallucinate when asked about private data. Retrieval-augmented generation (RAG) retrieves relevant data that fit into an LLM's context window and prompts the LLM for an answer. GraphRAG extends this approach to structured Knowledge Graphs (KGs) and questions regarding entities multiple hops away. The majority of recent GraphRAG methods either overlook the retrieval step or have ad hoc retrieval processes that are abstract or inefficient. This prevents them from being adopted when the KGs are stored in graph databases supporting graph query languages. In this work, we present GraphRAFT, a retrieve-and-reason framework that finetunes LLMs to generate provably correct Cypher queries to retrieve high-quality subgraph contexts and produce accurate answers. Our method is the first such solution that can be taken off-the-shelf and used on KGs stored in native graph DBs. Benchmarks suggest that our method is sample-efficient and scales with the availability of training data. Our method achieves significantly better results than all state-of-the-art models across all four standard metrics on two challenging Q&As on large text-attributed KGs.
♻ ☆ ConvMix: A Mixed-Criteria Data Augmentation Framework for Conversational Dense Retrieval AAAI 2026
Conversational search aims to satisfy users' complex information needs via multiple-turn interactions. The key challenge lies in revealing real users' search intent from the context-dependent queries. Previous studies achieve conversational search by fine-tuning a conversational dense retriever with relevance judgments between pairs of context-dependent queries and documents. However, this training paradigm encounters data scarcity issues. To this end, we propose ConvMix, a mixed-criteria framework to augment conversational dense retrieval, which covers more aspects than existing data augmentation frameworks. We design a two-sided relevance judgment augmentation schema in a scalable manner via the aid of large language models. Besides, we integrate the framework with quality control mechanisms to obtain semantically diverse samples and near-distribution supervisions to combine various annotated data. Experimental results on five widely used benchmarks show that the conversational dense retriever trained by our ConvMix framework outperforms previous baseline methods, which demonstrates our superior effectiveness.
comment: Accepted by AAAI 2026
♻ ☆ Machine-Readable Ads: Accessibility and Trust Patterns for AI Web Agents interacting with Online Advertisements
Autonomous multimodal language models are rapidly evolving into web agents that can browse, click, and purchase items on behalf of users, posing a threat to display advertising designed for human eyes. Yet little is known about how these agents interact with ads or which design principles ensure reliable engagement. To address this, we ran a controlled experiment using a faithful clone of the news site TT.com, seeded with diverse ads: static banners, GIFs, carousels, videos, cookie dialogues, and paywalls. We ran 300 initial trials plus follow-ups using the Document Object Model (DOM)-centric Browser Use framework with GPT-4o, Claude 3.7 Sonnet, Gemini 2.0 Flash, and the pixel-based OpenAI Operator, across 10 realistic user tasks. Our results show these agents display severe satisficing: they never scroll beyond two viewports and ignore purely visual calls to action, clicking banners only when semantic button overlays or off-screen text labels are present. Critically, when sweepstake participation required a purchase, GPT-4o and Claude 3.7 Sonnet subscribed in 100% of trials, and Gemini 2.0 Flash in 70%, revealing gaps in cost-benefit analysis. We identified five actionable design principles-semantic overlays, hidden labels, top-left placement, static frames, and dialogue replacement, that make human-centric creatives machine-detectable without harming user experience. We also evaluated agent trustworthiness through "behavior patterns" such as cookie consent handling and subscription choices, highlighting model-specific risk boundaries and the urgent need for robust trust evaluation frameworks in real-world advertising.
♻ ☆ Multimodal Adversarial Defense for Vision-Language Models by Leveraging One-To-Many Relationships WACV 2026
Pre-trained vision-language (VL) models are highly vulnerable to adversarial attacks. However, existing defense methods primarily focus on image classification, overlooking two key aspects of VL tasks: multimodal attacks, where both image and text can be perturbed, and the one-to-many relationship of images and texts, where a single image can correspond to multiple textual descriptions and vice versa (1:N and N:1). This work is the first to explore defense strategies against multimodal attacks in VL tasks, whereas prior VL defense methods focus on vision robustness. We propose multimodal adversarial training (MAT), which incorporates adversarial perturbations in both image and text modalities during training, significantly outperforming existing unimodal defenses. Furthermore, we discover that MAT is limited by deterministic one-to-one (1:1) image-text pairs in VL training data. To address this, we conduct a comprehensive study on leveraging one-to-many relationships to enhance robustness, investigating diverse augmentation techniques. Our analysis shows that, for a more effective defense, augmented image-text pairs should be well-aligned, diverse, yet avoid distribution shift -- conditions overlooked by prior research. This work pioneers defense strategies against multimodal attacks, providing insights for building robust VLMs from both optimization and data perspectives.
comment: WACV 2026 Accepted
♻ ☆ M^2VAE: Multi-Modal Multi-View Variational Autoencoder for Cold-start Item Recommendation
Cold-start item recommendation is a significant challenge in recommendation systems, particularly when new items are introduced without any historical interaction data. While existing methods leverage multi-modal content to alleviate the cold-start issue, they often neglect the inherent multi-view structure of modalities, the distinction between shared and modality-specific features. In this paper, we propose Multi-Modal Multi-View Variational AutoEncoder (M^2VAE), a generative model that addresses the challenges of modeling common and unique views in attribute and multi-modal features, as well as user preferences over single-typed item features. Specifically, we generate type-specific latent variables for item IDs, categorical attributes, and image features, and use Product-of-Experts (PoE) to derive a common representation. A disentangled contrastive loss decouples the common view from unique views while preserving feature informativeness. To model user inclinations, we employ a preference-guided Mixture-of-Experts (MoE) to adaptively fuse representations. We further incorporate co-occurrence signals via contrastive learning, eliminating the need for pretraining. Extensive experiments on real-world datasets validate the effectiveness of our approach.
♻ ☆ ReFineG: Synergizing Small Supervised Models and LLMs for Low-Resource Grounded Multimodal NER
Grounded Multimodal Named Entity Recognition (GMNER) extends traditional NER by jointly detecting textual mentions and grounding them to visual regions. While existing supervised methods achieve strong performance, they rely on costly multimodal annotations and often underperform in low-resource domains. Multimodal Large Language Models (MLLMs) show strong generalization but suffer from Domain Knowledge Conflict, producing redundant or incorrect mentions for domain-specific entities. To address these challenges, we propose ReFineG, a three-stage collaborative framework that integrates small supervised models with frozen MLLMs for low-resource GMNER. In the Training Stage, a domain-aware NER data synthesis strategy transfers LLM knowledge to small models with supervised training while avoiding domain knowledge conflicts. In the Refinement Stage, an uncertainty-based mechanism retains confident predictions from supervised models and delegates uncertain ones to the MLLM. In the Grounding Stage, a multimodal context selection algorithm enhances visual grounding through analogical reasoning. In the CCKS2025 GMNER Shared Task, ReFineG ranked second with an F1 score of 0.6461 on the online leaderboard, demonstrating its effectiveness with limited annotations.
comment: CCKS 2025 Shared Task Paper
♻ ☆ TaoSR-AGRL: Adaptive Guided Reinforcement Learning Framework for E-commerce Search Relevance
Query-product relevance prediction is fundamental to e-commerce search and has become even more critical in the era of AI-powered shopping, where semantic understanding and complex reasoning directly shape the user experience and business conversion. Large Language Models (LLMs) enable generative, reasoning-based approaches, typically aligned via supervised fine-tuning (SFT) or preference optimization methods like Direct Preference Optimization (DPO). However, the increasing complexity of business rules and user queries exposes the inability of existing methods to endow models with robust reasoning capacity for long-tail and challenging cases. Efforts to address this via reinforcement learning strategies like Group Relative Policy Optimization (GRPO) often suffer from sparse terminal rewards, offering insufficient guidance for multi-step reasoning and slowing convergence. To address these challenges, we propose TaoSR-AGRL, an Adaptive Guided Reinforcement Learning framework for LLM-based relevance prediction in Taobao Search Relevance. TaoSR-AGRL introduces two key innovations: (1) Rule-aware Reward Shaping, which decomposes the final relevance judgment into dense, structured rewards aligned with domain-specific relevance criteria; and (2) Adaptive Guided Replay, which identifies low-accuracy rollouts during training and injects targeted ground-truth guidance to steer the policy away from stagnant, rule-violating reasoning patterns toward compliant trajectories. TaoSR-AGRL was evaluated on large-scale real-world datasets and through online side-by-side human evaluations on Taobao Search. It consistently outperforms DPO and standard GRPO baselines in offline experiments, improving relevance accuracy, rule adherence, and training stability. The model trained with TaoSR-AGRL has been successfully deployed in the main search scenario on Taobao, serving hundreds of millions of users.
♻ ☆ Read the Docs Before Rewriting: Equip Rewriter with Domain Knowledge via Continual Pre-training
A Retrieval-Augmented Generation (RAG)-based question-answering (QA) system enhances a large language model's knowledge by retrieving relevant documents based on user queries. Discrepancies between user queries and document phrasings often necessitate query rewriting. However, in specialized domains, the rewriter model may struggle due to limited domain-specific knowledge. To resolve this, we propose the R\&R (Read the doc before Rewriting) rewriter, which involves continual pre-training on professional documents, akin to how students prepare for open-book exams by reviewing textbooks. Additionally, it can be combined with supervised fine-tuning for improved results. Experiments on multiple datasets demonstrate that R\&R excels in professional QA across multiple domains, effectively bridging the query-document gap, while maintaining good performance in general scenarios, thus advancing the application of RAG-based QA systems in specialized fields.
comment: The paper is about to undergo significant revisions
♻ ☆ Positional Bias in Long-Document Ranking: Impact, Assessment, and Mitigation AACL 2025
We tested over 20 Transformer models for ranking long documents (including recent LongP models trained with FlashAttention and RankGPT models "powered" by OpenAI and Anthropic cloud APIs). We compared them with the simple FirstP baseline, which applied the same model to truncated input (up to 512 tokens). On MS MARCO, TREC DL, and Robust04 no long-document model outperformed FirstP by more than 5% (on average). We hypothesized that this lack of improvement is not due to inherent model limitations, but due to benchmark positional bias (most relevant passages tend to occur early in documents), which is known to exist in MS MARCO. To confirm this, we analyzed positional relevance distributions across four long-document corpora (with six query sets) and observed the same early-position bias. Surprisingly, we also found bias in six BEIR collections, which are typically categorized as short-document datasets. We then introduced a new diagnostic dataset, MS MARCO FarRelevant, where relevant spans were deliberately placed beyond the first 512 tokens. On this dataset, many long-context models (including RankGPT) performed at random-baseline level, suggesting overfitting to positional bias. We also experimented with debiasing training data, but with limited success. Our findings (1) highlight the need for careful benchmark design in evaluating long-context models for document ranking, (2) identify model types that are more robust to positional bias, and (3) motivate further work on approaches to debias training data. We release our code and data to support further research.
comment: Accepted at IJCNLP-AACL 2025 Main
Information Retrieval 25
☆ Compression then Matching: An Efficient Pre-training Paradigm for Multimodal Embedding
Vision-language models advance multimodal representation learning by acquiring transferable semantic embeddings, thereby substantially enhancing performance across a range of vision-language tasks, including cross-modal retrieval, clustering, and classification. An effective embedding is expected to comprehensively preserve the semantic content of the input while simultaneously emphasizing features that are discriminative for downstream tasks. Recent approaches demonstrate that VLMs can be adapted into competitive embedding models via large-scale contrastive learning, enabling the simultaneous optimization of two complementary objectives. We argue that the two aforementioned objectives can be decoupled: a comprehensive understanding of the input facilitates the embedding model in achieving superior performance in downstream tasks via contrastive learning. In this paper, we propose CoMa, a compressed pre-training phase, which serves as a warm-up stage for contrastive learning. Experiments demonstrate that with only a small amount of pre-training data, we can transform a VLM into a competitive embedding model. CoMa achieves new state-of-the-art results among VLMs of comparable size on the MMEB, realizing optimization in both efficiency and effectiveness.
comment: Multimodal Embedding
☆ Advancing Scientific Knowledge Retrieval and Reuse with a Novel Digital Library for Machine-Readable Knowledge
Digital libraries for research, such as the ACM Digital Library or Semantic Scholar, do not enable the machine-supported, efficient reuse of scientific knowledge (e.g., in synthesis research). This is because these libraries are based on document-centric models with narrative text knowledge expressions that require manual or semi-automated knowledge extraction, structuring, and organization. We present ORKG reborn, an emerging digital library that supports finding, accessing, and reusing accurate, fine-grained, and reproducible machine-readable expressions of scientific knowledge that relate scientific statements and their supporting evidence in terms of data and code. The rich expressions of scientific knowledge are published as reborn (born-reusable) articles and provide novel possibilities for scientific knowledge retrieval, for instance by statistical methods, software packages, variables, or data matching specific constraints. We describe the proposed system and demonstrate its practical viability and potential for information retrieval in contrast to state-of-the-art digital libraries and document-centric scholarly communication using several published articles in research fields ranging from computer science to soil science. Our work underscores the enormous potential of scientific knowledge databases and a viable approach to their construction.
☆ Bid Farewell to Seesaw: Towards Accurate Long-tail Session-based Recommendation via Dual Constraints of Hybrid Intents
Session-based recommendation (SBR) aims to predict anonymous users' next interaction based on their interaction sessions. In the practical recommendation scenario, low-exposure items constitute the majority of interactions, creating a long-tail distribution that severely compromises recommendation diversity. Existing approaches attempt to address this issue by promoting tail items but incur accuracy degradation, exhibiting a "see-saw" effect between long-tail and accuracy performance. We attribute such conflict to session-irrelevant noise within the tail items, which existing long-tail approaches fail to identify and constrain effectively. To resolve this fundamental conflict, we propose \textbf{HID} (\textbf{H}ybrid \textbf{I}ntent-based \textbf{D}ual Constraint Framework), a plug-and-play framework that transforms the conventional "see-saw" into "win-win" through introducing the hybrid intent-based dual constraints for both long-tail and accuracy. Two key innovations are incorporated in this framework: (i) \textit{Hybrid Intent Learning}, where we reformulate the intent extraction strategies by employing attribute-aware spectral clustering to reconstruct the item-to-intent mapping. Furthermore, discrimination of session-irrelevant noise is achieved through the assignment of the target and noise intents to each session. (ii) \textit{Intent Constraint Loss}, which incorporates two novel constraint paradigms regarding the \textit{diversity} and \textit{accuracy} to regulate the representation learning process of both items and sessions. These two objectives are unified into a single training loss through rigorous theoretical derivation. Extensive experiments across multiple SBR models and datasets demonstrate that HID can enhance both long-tail performance and recommendation accuracy, establishing new state-of-the-art performance in long-tail recommender systems.
☆ TurkEmbed: Turkish Embedding Model on NLI & STS Tasks
This paper introduces TurkEmbed, a novel Turkish language embedding model designed to outperform existing models, particularly in Natural Language Inference (NLI) and Semantic Textual Similarity (STS) tasks. Current Turkish embedding models often rely on machine-translated datasets, potentially limiting their accuracy and semantic understanding. TurkEmbed utilizes a combination of diverse datasets and advanced training techniques, including matryoshka representation learning, to achieve more robust and accurate embeddings. This approach enables the model to adapt to various resource-constrained environments, offering faster encoding capabilities. Our evaluation on the Turkish STS-b-TR dataset, using Pearson and Spearman correlation metrics, demonstrates significant improvements in semantic similarity tasks. Furthermore, TurkEmbed surpasses the current state-of-the-art model, Emrecan, on All-NLI-TR and STS-b-TR benchmarks, achieving a 1-4\% improvement. TurkEmbed promises to enhance the Turkish NLP ecosystem by providing a more nuanced understanding of language and facilitating advancements in downstream applications.
comment: 9 pages, 1 Figure, 4 Tables, ASYU Conference. 2025 IEEE 11th International Conference on Advances in Software, hardware and Systems Engineering (ASYU)
☆ AgentPRM: Process Reward Models for LLM Agents via Step-Wise Promise and Progress
Despite rapid development, large language models (LLMs) still encounter challenges in multi-turn decision-making tasks (i.e., agent tasks) like web shopping and browser navigation, which require making a sequence of intelligent decisions based on environmental feedback. Previous work for LLM agents typically relies on elaborate prompt engineering or fine-tuning with expert trajectories to improve performance. In this work, we take a different perspective: we explore constructing process reward models (PRMs) to evaluate each decision and guide the agent's decision-making process. Unlike LLM reasoning, where each step is scored based on correctness, actions in agent tasks do not have a clear-cut correctness. Instead, they should be evaluated based on their proximity to the goal and the progress they have made. Building on this insight, we propose a re-defined PRM for agent tasks, named AgentPRM, to capture both the interdependence between sequential decisions and their contribution to the final goal. This enables better progress tracking and exploration-exploitation balance. To scalably obtain labeled data for training AgentPRM, we employ a Temporal Difference-based (TD-based) estimation method combined with Generalized Advantage Estimation (GAE), which proves more sample-efficient than prior methods. Extensive experiments across different agentic tasks show that AgentPRM is over $8\times$ more compute-efficient than baselines, and it demonstrates robust improvement when scaling up test-time compute. Moreover, we perform detailed analyses to show how our method works and offer more insights, e.g., applying AgentPRM to the reinforcement learning of LLM agents.
comment: Preprint
☆ MARC: Multimodal and Multi-Task Agentic Retrieval-Augmented Generation for Cold-Start Recommender System CIKM 2025
Recommender systems (RS) are currently being studied to mitigate limitations during cold-start conditions by leveraging modality information or introducing Agent concepts based on the exceptional reasoning capabilities of Large Language Models (LLMs). Meanwhile, food and beverage recommender systems have traditionally used knowledge graph and ontology concepts due to the domain's unique data attributes and relationship characteristics. On this background, we propose MARC, a multimodal and multi-task cocktail recommender system based on Agentic Retrieval-Augmented Generation (RAG) utilizing graph database under cold-start conditions. The proposed system generates high-quality, contextually appropriate answers through two core processes: a task recognition router and a reflection process. The graph database was constructed by processing cocktail data from Kaggle, and its effectiveness was evaluated using 200 manually crafted questions. The evaluation used both LLM-as-a-judge and human evaluation to demonstrate that answers generated via the graph database outperformed those from a simple vector database in terms of quality. The code is available at https://github.com/diddbwls/cocktail_rec_agentrag
comment: 13 pages, 2 figures, Accepted at RDGENAI at CIKM 2025 workshop
☆ DiffuGR: Generative Document Retrieval with Diffusion Language Models
Generative retrieval (GR) re-frames document retrieval as a sequence-based document identifier (DocID) generation task, memorizing documents with model parameters and enabling end-to-end retrieval without explicit indexing. Existing GR methods are based on auto-regressive generative models, i.e., the token generation is performed from left to right. However, such auto-regressive methods suffer from: (1) mismatch between DocID generation and natural language generation, e.g., an incorrect DocID token generated in early left steps would lead to totally erroneous retrieval; and (2) failure to balance the trade-off between retrieval efficiency and accuracy dynamically, which is crucial for practical applications. To address these limitations, we propose generative document retrieval with diffusion language models, dubbed DiffuGR. It models DocID generation as a discrete diffusion process: during training, DocIDs are corrupted through a stochastic masking process, and a diffusion language model is learned to recover them under a retrieval-aware objective. For inference, DiffuGR attempts to generate DocID tokens in parallel and refines them through a controllable number of denoising steps. In contrast to conventional left-to-right auto-regressive decoding, DiffuGR provides a novel mechanism to first generate more confident DocID tokens and refine the generation through diffusion-based denoising. Moreover, DiffuGR also offers explicit runtime control over the qualitylatency tradeoff. Extensive experiments on benchmark retrieval datasets show that DiffuGR is competitive with strong auto-regressive generative retrievers, while offering flexible speed and accuracy tradeoffs through variable denoising budgets. Overall, our results indicate that non-autoregressive diffusion models are a practical and effective alternative for generative document retrieval.
comment: This paper is under review
☆ BiCA: Effective Biomedical Dense Retrieval with Citation-Aware Hard Negatives AAAI 2026
Hard negatives are essential for training effective retrieval models. Hard-negative mining typically relies on ranking documents using cross-encoders or static embedding models based on similarity metrics such as cosine distance. Hard negative mining becomes challenging for biomedical and scientific domains due to the difficulty in distinguishing between source and hard negative documents. However, referenced documents naturally share contextual relevance with the source document but are not duplicates, making them well-suited as hard negatives. In this work, we propose BiCA: Biomedical Dense Retrieval with Citation-Aware Hard Negatives, an approach for hard-negative mining by utilizing citation links in 20,000 PubMed articles for improving a domain-specific small dense retriever. We fine-tune the GTE_small and GTE_Base models using these citation-informed negatives and observe consistent improvements in zero-shot dense retrieval using nDCG@10 for both in-domain and out-of-domain tasks on BEIR and outperform baselines on long-tailed topics in LoTTE using Success@5. Our findings highlight the potential of leveraging document link structure to generate highly informative negatives, enabling state-of-the-art performance with minimal fine-tuning and demonstrating a path towards highly data-efficient domain adaptation.
comment: Accepted for oral presentation at AAAI 2026
☆ From IDs to Semantics: A Generative Framework for Cross-Domain Recommendation with Adaptive Semantic Tokenization
Cross-domain recommendation (CDR) is crucial for improving recommendation accuracy and generalization, yet traditional methods are often hindered by the reliance on shared user/item IDs, which are unavailable in most real-world scenarios. Consequently, many efforts have focused on learning disentangled representations through multi-domain joint training to bridge the domain gaps. Recent Large Language Model (LLM)-based approaches show promise, they still face critical challenges, including: (1) the \textbf{item ID tokenization dilemma}, which leads to vocabulary explosion and fails to capture high-order collaborative knowledge; and (2) \textbf{insufficient domain-specific modeling} for the complex evolution of user interests and item semantics. To address these limitations, we propose \textbf{GenCDR}, a novel \textbf{Gen}erative \textbf{C}ross-\textbf{D}omain \textbf{R}ecommendation framework. GenCDR first employs a \textbf{Domain-adaptive Tokenization} module, which generates disentangled semantic IDs for items by dynamically routing between a universal encoder and domain-specific adapters. Symmetrically, a \textbf{Cross-domain Autoregressive Recommendation} module models user preferences by fusing universal and domain-specific interests. Finally, a \textbf{Domain-aware Prefix-tree} enables efficient and accurate generation. Extensive experiments on multiple real-world datasets demonstrate that GenCDR significantly outperforms state-of-the-art baselines. Our code is available in the supplementary materials.
♻ ☆ From Questions to Queries: An AI-powered Multi-Agent Framework for Spatial Text-to-SQL
The complexity of Structured Query Language (SQL) and the specialized nature of geospatial functions in tools like PostGIS present significant barriers to non-experts seeking to analyze spatial data. While Large Language Models (LLMs) offer promise for translating natural language into SQL (Text-to-SQL), single-agent approaches often struggle with the semantic and syntactic complexities of spatial queries. To address this, we propose a multi-agent framework designed to accurately translate natural language questions into spatial SQL queries. The framework integrates several innovative components, including a knowledge base with programmatic schema profiling and semantic enrichment, embeddings for context retrieval, and a collaborative multi-agent pipeline as its core. This pipeline comprises specialized agents for entity extraction, metadata retrieval, query logic formulation, SQL generation, and a review agent that performs programmatic and semantic validation of the generated SQL to ensure correctness (self-verification). We evaluate our system using both the non-spatial KaggleDBQA benchmark and a new, comprehensive SpatialQueryQA benchmark that includes diverse geometry types, predicates, and three levels of query complexity. On KaggleDBQA, the system achieved an overall accuracy of 81.2% (221 out of 272 questions) after the review agent's review and corrections. For spatial queries, the system achieved an overall accuracy of 87.7% (79 out of 90 questions), compared with 76.7% without the review agent. Beyond accuracy, results also show that in some instances the system generates queries that are more semantically aligned with user intent than those in the benchmarks. This work makes spatial analysis more accessible, and provides a robust, generalizable foundation for spatial Text-to-SQL systems, advancing the development of autonomous GIS.
♻ ☆ FS-DAG: Few Shot Domain Adapting Graph Networks for Visually Rich Document Understanding COLING 2025
In this work, we propose Few Shot Domain Adapting Graph (FS-DAG), a scalable and efficient model architecture for visually rich document understanding (VRDU) in few-shot settings. FS-DAG leverages domain-specific and language/vision specific backbones within a modular framework to adapt to diverse document types with minimal data. The model is robust to practical challenges such as handling OCR errors, misspellings, and domain shifts, which are critical in real-world deployments. FS-DAG is highly performant with less than 90M parameters, making it well-suited for complex real-world applications for Information Extraction (IE) tasks where computational resources are limited. We demonstrate FS-DAG's capability through extensive experiments for information extraction task, showing significant improvements in convergence speed and performance compared to state-of-the-art methods. Additionally, this work highlights the ongoing progress in developing smaller, more efficient models that do not compromise on performance. Code : https://github.com/oracle-samples/fs-dag
comment: Proceedings of the 31st International Conference on Computational Linguistics (COLING 2025), Industry Track, pages 100-114
♻ ☆ Epistemic Diversity and Knowledge Collapse in Large Language Models
Large language models (LLMs) tend to generate lexically, semantically, and stylistically homogenous texts. This poses a risk of knowledge collapse, where homogenous LLMs mediate a shrinking in the range of accessible information over time. Existing works on homogenization are limited by a focus on closed-ended multiple-choice setups or fuzzy semantic features, and do not look at trends across time and cultural contexts. To overcome this, we present a new methodology to measure epistemic diversity, i.e., variation in real-world claims in LLM outputs, which we use to perform a broad empirical study of LLM knowledge collapse. We test 27 LLMs, 155 topics covering 12 countries, and 200 prompt variations sourced from real user chats. For the topics in our study, we show that while newer models tend to generate more diverse claims, nearly all models are less epistemically diverse than a basic web search. We find that model size has a negative impact on epistemic diversity, while retrieval-augmented generation (RAG) has a positive impact, though the improvement from RAG varies by the cultural context. Finally, compared to a traditional knowledge source (Wikipedia), we find that country-specific claims reflect the English language more than the local one, highlighting a gap in epistemic representation
comment: 16 pages; 8 figures, 4 tables; v2 changelog: Fixed the modeling for table 3, random effect is the model version; v3 changelog: Fixed minor formatting issues in tables 2 and 3; v4 changelog: Fixed some typos and model description; v5 changelog: Updated metadata
♻ ☆ OPERA: A Reinforcement Learning--Enhanced Orchestrated Planner-Executor Architecture for Reasoning-Oriented Multi-Hop Retrieval AAAI 2026
Recent advances in large language models (LLMs) and dense retrievers have driven significant progress in retrieval-augmented generation (RAG). However, existing approaches face significant challenges in complex reasoning-oriented multi-hop retrieval tasks: 1) Ineffective reasoning-oriented planning: Prior methods struggle to generate robust multi-step plans for complex queries, as rule-based decomposers perform poorly on out-of-template questions. 2) Suboptimal reasoning-driven retrieval: Related methods employ limited query reformulation, leading to iterative retrieval loops that often fail to locate golden documents. 3) Insufficient reasoning-guided filtering: Prevailing methods lack the fine-grained reasoning to effectively filter salient information from noisy results, hindering utilization of retrieved knowledge. Fundamentally, these limitations all stem from the weak coupling between retrieval and reasoning in current RAG architectures. We introduce the Orchestrated Planner-Executor Reasoning Architecture (OPERA), a novel reasoning-driven retrieval framework. OPERA's Goal Planning Module (GPM) decomposes questions into sub-goals, which are executed by a Reason-Execute Module (REM) with specialized components for precise reasoning and effective retrieval. To train OPERA, we propose Multi-Agents Progressive Group Relative Policy Optimization (MAPGRPO), a novel variant of GRPO. Experiments on complex multi-hop benchmarks show OPERA's superior performance, validating both the MAPGRPO method and OPERA's design.
comment: Accepted by AAAI 2026
♻ ☆ Hard vs. Noise: Resolving Hard-Noisy Sample Confusion in Recommender Systems via Large Language Models AAAI 2026
Implicit feedback, employed in training recommender systems, unavoidably confronts noise due to factors such as misclicks and position bias. Previous studies have attempted to identify noisy samples through their diverged data patterns, such as higher loss values, and mitigate their influence through sample dropping or reweighting. However, we observed that noisy samples and hard samples display similar patterns, leading to hard-noisy confusion issue. Such confusion is problematic as hard samples are vital for modeling user preferences. To solve this problem, we propose LLMHNI framework, leveraging two auxiliary user-item relevance signals generated by Large Language Models (LLMs) to differentiate hard and noisy samples. LLMHNI obtains user-item semantic relevance from LLM-encoded embeddings, which is used in negative sampling to select hard negatives while filtering out noisy false negatives. An objective alignment strategy is proposed to project LLM-encoded embeddings, originally for general language tasks, into a representation space optimized for user-item relevance modeling. LLMHNI also exploits LLM-inferred logical relevance within user-item interactions to identify hard and noisy samples. These LLM-inferred interactions are integrated into the interaction graph and guide denoising with cross-graph contrastive alignment. To eliminate the impact of unreliable interactions induced by LLM hallucination, we propose a graph contrastive learning strategy that aligns representations from randomly edge-dropped views to suppress unreliable edges. Empirical results demonstrate that LLMHNI significantly improves denoising and recommendation performance.
comment: Accepted by AAAI 2026
♻ ☆ Question-to-Knowledge (Q2K): Multi-Agent Generation of Inspectable Facts for Product Mapping
Identifying whether two product listings refer to the same Stock Keeping Unit (SKU) is a persistent challenge in ecommerce, especially when explicit identifiers are missing and product names vary widely across platforms. Rule based heuristics and keyword similarity often misclassify products by overlooking subtle distinctions in brand, specification, or bundle configuration. To overcome these limitations, we propose Question to Knowledge (Q2K), a multi agent framework that leverages Large Language Models (LLMs) for reliable SKU mapping. Q2K integrates: (1) a Reasoning Agent that generates targeted disambiguation questions, (2) a Knowledge Agent that resolves them via focused web searches, and (3) a Deduplication Agent that reuses validated reasoning traces to reduce redundancy and ensure consistency. A human in the loop mechanism further refines uncertain cases. Experiments on real world consumer goods datasets show that Q2K surpasses strong baselines, achieving higher accuracy and robustness in difficult scenarios such as bundle identification and brand origin disambiguation. By reusing retrieved reasoning instead of issuing repeated searches, Q2K balances accuracy with efficiency, offering a scalable and interpretable solution for product integration.
comment: Accepted by IEEE BigData 2025 Industry Track
♻ ☆ Agent-OM: Leveraging LLM Agents for Ontology Matching
Ontology matching (OM) enables semantic interoperability between different ontologies and resolves their conceptual heterogeneity by aligning related entities. OM systems currently have two prevailing design paradigms: conventional knowledge-based expert systems and newer machine learning-based predictive systems. While large language models (LLMs) and LLM agents have revolutionised data engineering and have been applied creatively in many domains, their potential for OM remains underexplored. This study introduces a novel agent-powered LLM-based design paradigm for OM systems. With consideration of several specific challenges in leveraging LLM agents for OM, we propose a generic framework, namely Agent-OM (Agent for Ontology Matching), consisting of two Siamese agents for retrieval and matching, with a set of OM tools. Our framework is implemented in a proof-of-concept system. Evaluations of three Ontology Alignment Evaluation Initiative (OAEI) tracks over state-of-the-art OM systems show that our system can achieve results very close to the long-standing best performance on simple OM tasks and can significantly improve the performance on complex and few-shot OM tasks.
comment: 31 pages
♻ ☆ ReCode: Updating Code API Knowledge with Reinforcement Learning AAAI 2026
Large Language Models (LLMs) exhibit remarkable code generation capabilities but falter when adapting to frequent updates in external library APIs. This critical limitation, stemming from reliance on outdated API knowledge from their training data, even with access to current documentation, impedes reliable code generation in dynamic environments. To tackle this issue, we propose ReCode (rule-based Reinforcement learning for Code Update), a novel framework that mimics human programmer adaptation to API changes. Specifically, we construct a dataset of approximately 2,000 data entries to train the LLMs to perform version migration based on updated information. Then, we introduce a modified string similarity metric for code evaluation as the reward for reinforcement learning. Our experiments demonstrate that ReCode substantially boosts LLMs' code generation performance in dynamic API scenarios, especially on the unseen CodeUpdateArena task. Crucially, compared to supervised fine-tuning, ReCode has less impact on LLMs' general code generation abilities. We apply ReCode on various LLMs and reinforcement learning algorithms (GRPO and DAPO), all achieving consistent improvements. Notably, after training, Qwen2.5-Coder-7B outperforms that of the 32B parameter code instruction-tuned model and the reasoning model with the same architecture. Code is available at https://github.com/zjunlp/ReCode.
comment: AAAI 2026
♻ ☆ Compass: General Filtered Search across Vector and Structured Data
The increasing prevalence of hybrid vector and relational data necessitates efficient, general support for queries that combine high-dimensional vector search with complex relational filtering. However, existing filtered search solutions are fundamentally limited by specialized indices, which restrict arbitrary filtering and hinder integration with general-purpose DBMSs. This work introduces \textsc{Compass}, a unified framework that enables general filtered search across vector and structured data without relying on new index designs. Compass leverages established index structures -- such as HNSW and IVF for vector attributes, and B+-trees for relational attributes -- implementing a principled cooperative query execution strategy that coordinates candidate generation and predicate evaluation across modalities. Uniquely, Compass maintains generality by allowing arbitrary conjunctions, disjunctions, and range predicates, while ensuring robustness even with highly-selective or multi-attribute filters. Comprehensive empirical evaluations demonstrate that Compass consistently outperforms NaviX, the only existing performant general framework, across diverse hybrid query workloads. It also matches the query throughput of specialized single-attribute indices in their favorite settings with only a single attribute involved, all while maintaining full generality and DBMS compatibility. Overall, Compass offers a practical and robust solution for achieving truly general filtered search in vector database systems.
♻ ☆ A Remarkably Efficient Paradigm to Multimodal Large Language Models for Sequential Recommendation
Sequential recommendations (SR) predict users' future interactions based on their historical behavior. The rise of Large Language Models (LLMs) has brought powerful generative and reasoning capabilities, significantly enhancing SR performance, while Multimodal LLMs (MLLMs) further extend this by introducing data like images and interactive relationships. However, critical issues remain, i.e., (a) Suboptimal item representations caused by lengthy and redundant descriptions, leading to inefficiencies in both training and inference; (b) Modality-related cognitive bias, as LLMs are predominantly pretrained on textual data, limiting their ability to effectively integrate and utilize non-textual modalities; (c) Weakening sequential perception in long interaction sequences, where attention mechanisms struggle to capture earlier interactions, hindering the modeling of long-range dependencies. To address these issues, we propose Speeder, an efficient MLLM-based paradigm for SR featuring three key innovations: 1) Multimodal Representation Compression (MRC), which condenses item attributes into concise yet informative tokens, reducing redundancy and computational cost; 2) Modality-aware Progressive Optimization (MPO), enabling gradual learning of multimodal representations; 3) Sequential Position Awareness Enhancement (SPAE), improving the LLM's capability to capture both relative and absolute sequential dependencies in long interaction sequences. Extensive experiments on real-world datasets demonstrate the effectiveness and efficiency of Speeder. Speeder increases training speed to 250% of the original while reducing inference time to 25% on the Amazon dataset.
♻ ☆ OneRec-Think: In-Text Reasoning for Generative Recommendation
The powerful generative capacity of Large Language Models (LLMs) has instigated a paradigm shift in recommendation. However, existing generative models (e.g., OneRec) operate as implicit predictors, critically lacking the capacity for explicit and controllable reasoning-a key advantage of LLMs. To bridge this gap, we propose OneRec-Think, a unified framework that seamlessly integrates dialogue, reasoning, and personalized recommendation. OneRec-Think incorporates: (1) Itemic Alignment: cross-modal Item-Textual Alignment for semantic grounding; (2) Reasoning Activation: Reasoning Scaffolding to activate LLM reasoning within the recommendation context; and (3) Reasoning Enhancement, where we design a recommendation-specific reward function that accounts for the multi-validity nature of user preferences. Experiments across public benchmarks show state-of-the-art performance. Moreover, our proposed "Think-Ahead" architecture enables effective industrial deployment on Kuaishou, achieving a 0.159\% gain in APP Stay Time and validating the practical efficacy of the model's explicit reasoning capability.
♻ ☆ Does Generative Retrieval Overcome the Limitations of Dense Retrieval?
Generative retrieval (GR) has emerged as a new paradigm in neural information retrieval, offering an alternative to dense retrieval (DR) by directly generating identifiers of relevant documents. In this paper, we theoretically and empirically investigate how GR fundamentally diverges from DR in both learning objectives and representational capacity. GR performs globally normalized maximum-likelihood optimization and encodes corpus and relevance information directly in the model parameters, whereas DR adopts locally normalized objectives and represents the corpus with external embeddings before computing similarity via a bilinear interaction. Our analysis suggests that, under scaling, GR can overcome the inherent limitations of DR, yielding two major benefits. First, with larger corpora, GR avoids the sharp performance degradation caused by the optimization drift induced by DR's local normalization. Second, with larger models, GR's representational capacity scales with parameter size, unconstrained by the global low-rank structure that limits DR. We validate these theoretical insights through controlled experiments on the Natural Questions and MS MARCO datasets, across varying negative sampling strategies, embedding dimensions, and model scales. But despite its theoretical advantages, GR does not universally outperform DR in practice. We outline directions to bridge the gap between GR's theoretical potential and practical performance, providing guidance for future research in scalable and robust generative retrieval.
♻ ☆ The Value of Personalized Recommendations: Evidence from Netflix
Personalized recommendation systems shape much of user choice online, yet their targeted nature makes separating out the value of recommendation and the underlying goods challenging. We build a discrete choice model that embeds recommendation-induced utility, low-rank heterogeneity, and flexible state dependence and apply the model to viewership data at Netflix. We exploit idiosyncratic variation introduced by the recommendation algorithm to identify and separately value these components as well as to recover model-free diversion ratios that we can use to validate our structural model. We use the model to evaluate counterfactuals that quantify the incremental engagement generated by personalized recommendations. First, we show that replacing the current recommender system with a matrix factorization or popularity-based algorithm would lead to 4% and 12% reduction in engagement, respectively, and decreased consumption diversity. Second, most of the consumption increase from recommendations comes from effective targeting, not mechanical exposure, with the largest gains for mid-popularity goods (as opposed to broadly appealing or very niche goods).
♻ ☆ LLM-based Relevance Assessment for Web-Scale Search Evaluation at Pinterest RecSys 2025
Relevance evaluation plays a crucial role in personalized search systems to ensure that search results align with a user's queries and intent. While human annotation is the traditional method for relevance evaluation, its high cost and long turnaround time limit its scalability. In this work, we present our approach at Pinterest Search to automate relevance evaluation for online experiments using fine-tuned LLMs. We rigorously validate the alignment between LLM-generated judgments and human annotations, demonstrating that LLMs can provide reliable relevance measurement for experiments while greatly improving the evaluation efficiency. Leveraging LLM-based labeling further unlocks the opportunities to expand the query set, optimize sampling design, and efficiently assess a wider range of search experiences at scale. This approach leads to higher-quality relevance metrics and significantly reduces the Minimum Detectable Effect (MDE) in online experiment measurements.
comment: RecSys 2025 EARL Workshop
♻ ☆ Enhancing Speech-to-Speech Dialogue Modeling with End-to-End Retrieval-Augmented Generation EMNLP 2025
End-to-end speech-to-speech (S2S) dialogue systems have recently garnered increasing research attention for their lower latency and more natural integration of nonverbal cues such as emotion and speaker identity. However, these systems face key challenges, particularly in incorporating external knowledge, a capability commonly addressed by Retrieval-Augmented Generation (RAG) in text-based large language models (LLMs). The core difficulty lies in the modality gap between input speech and retrieved textual knowledge, which hinders effective integration of information. To address this issue, we propose a novel end-to-end RAG framework that directly retrieves relevant textual knowledge from speech queries. Experimental results demonstrate that our method significantly improves the performance of end-to-end S2S dialogue systems while achieving higher retrieval efficiency. Although the overall performance still lags behind the SOTA cascaded models, our framework offers a promising direction for enhancing knowledge integration in end-to-end S2S systems. Our code and dataset are released.
comment: Accepted to EMNLP 2025 Findings
♻ ☆ Evaluating and Addressing Fairness Across User Groups in Negative Sampling for Recommender Systems CIKM 2025
Recommender systems trained on implicit feedback data rely on negative sampling to distinguish positive items from negative items for each user. Since the majority of positive interactions come from a small group of active users, negative samplers are often impacted by data imbalance, leading them to choose more informative negatives for prominent users while providing less useful ones for users who are not so active. This leads to inactive users being further marginalised in the training process, thus receiving inferior recommendations. In this paper, we conduct a comprehensive empirical study demonstrating that state-of-the-art negative sampling strategies provide more accurate recommendations for active users than for inactive users. We also find that increasing the number of negative samples for each positive item improves the average performance, but the benefit is distributed unequally across user groups, with active users experiencing performance gain while inactive users suffering performance degradation. To address this, we propose a group-specific negative sampling strategy that assigns smaller negative ratios to inactive user groups and larger ratios to active groups. Experiments on eight negative samplers show that our approach improves user-side fairness and performance when compared to a uniform global ratio.
comment: Accepted to CIKM 2025
Information Retrieval 23
☆ TurkEmbed4Retrieval: Turkish Embedding Model for Retrieval Task
In this work, we introduce TurkEmbed4Retrieval, a retrieval specialized variant of the TurkEmbed model originally designed for Natural Language Inference (NLI) and Semantic Textual Similarity (STS) tasks. By fine-tuning the base model on the MS MARCO TR dataset using advanced training techniques, including Matryoshka representation learning and a tailored multiple negatives ranking loss, we achieve SOTA performance for Turkish retrieval tasks. Extensive experiments demonstrate that our model outperforms Turkish colBERT by 19,26% on key retrieval metrics for the Scifact TR dataset, thereby establishing a new benchmark for Turkish information retrieval.
comment: 4 pages, in Turkish language, 1 figure, conference
☆ Think Before You Retrieve: Learning Test-Time Adaptive Search with Small Language Models
Effective information retrieval requires reasoning over partial evidence and refining strategies as information emerges. Yet current approaches fall short: neural retrievers lack reasoning capabilities, large language models (LLMs) provide semantic depth but at prohibitive cost, and query rewriting or decomposition limits improvement to static transformations. As a result, existing methods fail to capture the iterative dynamics of exploration, feedback, and revision that complex user queries demand. We introduce Orion, a training framework that enables compact models (350M-1.2B parameters) to perform iterative retrieval through learned search strategies. Orion combines: (1) synthetic trajectory generation and supervised fine-tuning to encourage diverse exploration patterns in models, (2) reinforcement learning (RL) that rewards effective query refinement and backtracking behaviors, and (3) inference-time beam search algorithms that exploit the self-reflection capabilities learned during RL. Despite using only 3% of the training data available, our 1.2B model achieves 77.6% success on SciFact (vs. 72.6% for prior retrievers), 25.2% on BRIGHT (vs. 22.1%), 63.2% on NFCorpus (vs. 57.8%), and remains competitive on FEVER, HotpotQA, and MSMarco. It outperforms retrievers up to 200-400x larger on five of six benchmarks. These findings suggest that retrieval performance can emerge from learned strategies, not just model scale, when models are trained to search, reflect, and revise.
comment: 37 images, 7 figures, and 15 tables
☆ A Decentralized Retrieval Augmented Generation System with Source Reliabilities Secured on Blockchain
Existing retrieval-augmented generation (RAG) systems typically use a centralized architecture, causing a high cost of data collection, integration, and management, as well as privacy concerns. There is a great need for a decentralized RAG system that enables foundation models to utilize information directly from data owners who maintain full control over their sources. However, decentralization brings a challenge: the numerous independent data sources vary significantly in reliability, which can diminish retrieval accuracy and response quality. To address this, our decentralized RAG system has a novel reliability scoring mechanism that dynamically evaluates each source based on the quality of responses it contributes to generate and prioritizes high-quality sources during retrieval. To ensure transparency and trust, the scoring process is securely managed through blockchain-based smart contracts, creating verifiable and tamper-proof reliability records without relying on a central authority. We evaluate our decentralized system with two Llama models (3B and 8B) in two simulated environments where six data sources have different levels of reliability. Our system achieves a +10.7\% performance improvement over its centralized counterpart in the real world-like unreliable data environments. Notably, it approaches the upper-bound performance of centralized systems under ideally reliable data environments. The decentralized infrastructure enables secure and trustworthy scoring management, achieving approximately 56\% marginal cost savings through batched update operations. Our code and system are open-sourced at github.com/yining610/Reliable-dRAG.
☆ A Hybrid Multimodal Deep Learning Framework for Intelligent Fashion Recommendation
The rapid expansion of online fashion platforms has created an increasing demand for intelligent recommender systems capable of understanding both visual and textual cues. This paper proposes a hybrid multimodal deep learning framework for fashion recommendation that jointly addresses two key tasks: outfit compatibility prediction and complementary item retrieval. The model leverages the visual and textual encoders of the CLIP architecture to obtain joint latent representations of fashion items, which are then integrated into a unified feature vector and processed by a transformer encoder. For compatibility prediction, an "outfit token" is introduced to model the holistic relationships among items, achieving an AUC of 0.95 on the Polyvore dataset. For complementary item retrieval, a "target item token" representing the desired item description is used to retrieve compatible items, reaching an accuracy of 69.24% under the Fill-in-the-Blank (FITB) metric. The proposed approach demonstrates strong performance across both tasks, highlighting the effectiveness of multimodal learning for fashion recommendation.
comment: 8 pages, 1 figure
☆ Q-RAG: Long Context Multi-step Retrieval via Value-based Embedder Training
Retrieval-Augmented Generation (RAG) methods enhance LLM performance by efficiently filtering relevant context for LLMs, reducing hallucinations and inference cost. However, most existing RAG methods focus on single-step retrieval, which is often insufficient for answering complex questions that require multi-step search. Recently, multi-step retrieval approaches have emerged, typically involving the fine-tuning of small LLMs to perform multi-step retrieval. This type of fine-tuning is highly resource-intensive and does not enable the use of larger LLMs. In this work, we propose Q-RAG, a novel approach that fine-tunes the Embedder model for multi-step retrieval using reinforcement learning (RL). Q-RAG offers a competitive, resource-efficient alternative to existing multi-step retrieval methods for open-domain question answering and achieves state-of-the-art results on the popular long-context benchmarks Babilong and RULER for contexts up to 10M tokens.
comment: 16 pages, 3 figures, 2 tables
☆ When Sufficient is not Enough: Utilizing the Rashomon Effect for Complete Evidence Extraction
Feature attribution methods typically provide minimal sufficient evidence justifying a model decision. However, in many applications this is inadequate. For compliance and cataloging, the full set of contributing features must be identified - complete evidence. We perform a case study on a medical dataset which contains human-annotated complete evidence. We show that individual models typically recover only subsets of complete evidence and that aggregating evidence from several models improves evidence recall from $\sim$0.60 (single best model) to $\sim$0.86 (ensemble). We analyze the recall-precision trade-off, the role of training with evidence, dynamic ensembles with certainty thresholds, and discuss implications.
☆ Wavelet Enhanced Adaptive Frequency Filter for Sequential Recommendation
Sequential recommendation has garnered significant attention for its ability to capture dynamic preferences by mining users' historical interaction data. Given that users' complex and intertwined periodic preferences are difficult to disentangle in the time domain, recent research is exploring frequency domain analysis to identify these hidden patterns. However, current frequency-domain-based methods suffer from two key limitations: (i) They primarily employ static filters with fixed characteristics, overlooking the personalized nature of behavioral patterns; (ii) While the global discrete Fourier transform excels at modeling long-range dependencies, it can blur non-stationary signals and short-term fluctuations. To overcome these limitations, we propose a novel method called Wavelet Enhanced Adaptive Frequency Filter for Sequential Recommendation. Specifically, it consists of two vital modules: dynamic frequency-domain filtering and wavelet feature enhancement. The former is used to dynamically adjust filtering operations based on behavioral sequences to extract personalized global information, and the latter integrates wavelet transform to reconstruct sequences, enhancing blurred non-stationary signals and short-term fluctuations. Finally, these two modules work to achieve comprehensive performance and efficiency optimization in long sequential recommendation scenarios. Extensive experiments on four widely-used benchmark datasets demonstrate the superiority of our work.
☆ Llama-Embed-Nemotron-8B: A Universal Text Embedding Model for Multilingual and Cross-Lingual Tasks
We introduce llama-embed-nemotron-8b, an open-weights text embedding model that achieves state-of-the-art performance on the Multilingual Massive Text Embedding Benchmark (MMTEB) leaderboard as of October 21, 2025. While recent models show strong performance, their training data or methodologies are often not fully disclosed. We aim to address this by developing a fully open-source model, publicly releasing its weights and detailed ablation studies, and planning to share the curated training datasets. Our model demonstrates superior performance across all major embedding tasks -- including retrieval, classification and semantic textual similarity (STS) -- and excels in challenging multilingual scenarios, such as low-resource languages and cross-lingual setups. This state-of-the-art performance is driven by a novel data mix of 16.1 million query-document pairs, split between 7.7 million samples from public datasets and 8.4 million synthetically generated examples from various open-weight LLMs. One of our key contributions is a detailed ablation study analyzing core design choices, including a comparison of contrastive loss implementations, an evaluation of synthetic data generation (SDG) strategies, and the impact of model merging. The llama-embed-nemotron-8b is an instruction-aware model, supporting user-defined instructions to enhance performance for specific use-cases. This combination of top-tier performance, broad applicability, and user-driven flexibility enables it to serve as a universal text embedding solution.
☆ CGLE: Class-label Graph Link Estimator for Link Prediction ICDM 2025
Link prediction is a pivotal task in graph mining with wide-ranging applications in social networks, recommendation systems, and knowledge graph completion. However, many leading Graph Neural Network (GNN) models often neglect the valuable semantic information aggregated at the class level. To address this limitation, this paper introduces CGLE (Class-label Graph Link Estimator), a novel framework designed to augment GNN-based link prediction models. CGLE operates by constructing a class-conditioned link probability matrix, where each entry represents the probability of a link forming between two node classes. This matrix is derived from either available ground-truth labels or from pseudo-labels obtained through clustering. The resulting class-based prior is then concatenated with the structural link embedding from a backbone GNN, and the combined representation is processed by a Multi-Layer Perceptron (MLP) for the final prediction. Crucially, CGLE's logic is encapsulated in an efficient preprocessing stage, leaving the computational complexity of the underlying GNN model unaffected. We validate our approach through extensive experiments on a broad suite of benchmark datasets, covering both homophilous and sparse heterophilous graphs. The results show that CGLE yields substantial performance gains over strong baselines such as NCN and NCNC, with improvements in HR@100 of over 10 percentage points on homophilous datasets like Pubmed and DBLP. On sparse heterophilous graphs, CGLE delivers an MRR improvement of over 4% on the Chameleon dataset. Our work underscores the efficacy of integrating global, data-driven semantic priors, presenting a compelling alternative to the pursuit of increasingly complex model architectures. Code to reproduce our findings is available at: https://github.com/data-iitd/cgle-icdm2025.
comment: Paper accepted at the IEEE International Conference on Data Mining (ICDM 2025)
☆ Fine-Tuning Diffusion-Based Recommender Systems via Reinforcement Learning with Reward Function Optimization
Diffusion models recently emerged as a powerful paradigm for recommender systems, offering state-of-the-art performance by modeling the generative process of user-item interactions. However, training such models from scratch is both computationally expensive and yields diminishing returns once convergence is reached. To remedy these challenges, we propose ReFiT, a new framework that integrates Reinforcement learning (RL)-based Fine-Tuning into diffusion-based recommender systems. In contrast to prior RL approaches for diffusion models depending on external reward models, ReFiT adopts a task-aligned design: it formulates the denoising trajectory as a Markov decision process (MDP) and incorporates a collaborative signal-aware reward function that directly reflects recommendation quality. By tightly coupling the MDP structure with this reward signal, ReFiT empowers the RL agent to exploit high-order connectivity for fine-grained optimization, while avoiding the noisy or uninformative feedback common in naive reward designs. Leveraging policy gradient optimization, ReFiT maximizes exact log-likelihood of observed interactions, thereby enabling effective post hoc fine-tuning of diffusion recommenders. Comprehensive experiments on wide-ranging real-world datasets demonstrate that the proposed ReFiT framework (a) exhibits substantial performance gains over strong competitors (up to 36.3% on sequential recommendation), (b) demonstrates strong efficiency with linear complexity in the number of users or items, and (c) generalizes well across multiple diffusion-based recommendation scenarios. The source code and datasets are publicly available at https://anonymous.4open.science/r/ReFiT-4C60.
comment: 14 pages, 12 figures, 9 tables
☆ Have We Really Understood Collaborative Information? An Empirical Investigation WSDM 2026
Collaborative information serves as the cornerstone of recommender systems which typically focus on capturing it from user-item interactions to deliver personalized services. However, current understanding of this crucial resource remains limited. Specifically, a quantitative definition of collaborative information is missing, its manifestation within user-item interactions remains unclear, and its impact on recommendation performance is largely unknown. To bridge this gap, this work conducts a systematic investigation of collaborative information. We begin by clarifying collaborative information in terms of item co-occurrence patterns, identifying its main characteristics, and presenting a quantitative definition. We then estimate the distribution of collaborative information from several aspects, shedding light on how collaborative information is structured in practice. Furthermore, we evaluate the impact of collaborative information on the performance of various recommendation algorithms. Finally, we highlight challenges in effectively capturing collaborative information and outlook promising directions for future research. By establishing an empirical framework, we uncover many insightful observations that advance our understanding of collaborative information and offer valuable guidelines for developing more effective recommender systems.
comment: This work has been accepted by WSDM 2026
☆ Learn to Select: Exploring Label Distribution Divergence for In-Context Demonstration Selection in Text Classification
In-context learning (ICL) for text classification, which uses a few input-label demonstrations to describe a task, has demonstrated impressive performance on large language models (LLMs). However, the selection of in-context demonstrations plays a crucial role and can significantly affect LLMs' performance. Most existing demonstration selection methods primarily focus on semantic similarity between test inputs and demonstrations, often overlooking the importance of label distribution alignment. To address this limitation, we propose a two-stage demonstration selection method, TopK + Label Distribution Divergence (L2D), which leverages a fine-tuned BERT-like small language model (SLM) to generate label distributions and calculate their divergence for both test inputs and candidate demonstrations. This enables the selection of demonstrations that are not only semantically similar but also aligned in label distribution with the test input. Extensive experiments across seven text classification benchmarks show that our method consistently outperforms previous demonstration selection strategies. Further analysis reveals a positive correlation between the performance of LLMs and the accuracy of the underlying SLMs used for label distribution estimation.
☆ Learning to Fast Unrank in Collaborative Filtering Recommendation
Modern data-driven recommendation systems risk memorizing sensitive user behavioral patterns, raising privacy concerns. Existing recommendation unlearning methods, while capable of removing target data influence, suffer from inefficient unlearning speed and degraded performance, failing to meet real-time unlearning demands. Considering the ranking-oriented nature of recommendation systems, we present unranking, the process of reducing the ranking positions of target items while ensuring the formal guarantees of recommendation unlearning. To achieve efficient unranking, we propose Learning to Fast Unrank in Collaborative Filtering Recommendation (L2UnRank), which operates through three key stages: (a) identifying the influenced scope via interaction-based p-hop propagation, (b) computing structural and semantic influences for entities within this scope, and (c) performing efficient, ranking-aware parameter updates guided by influence information. Extensive experiments across multiple datasets and backbone models demonstrate L2UnRank's model-agnostic nature, achieving state-of-the-art unranking effectiveness and maintaining recommendation quality comparable to retraining, while also delivering a 50x speedup over existing methods. Codes are available at https://github.com/Juniper42/L2UnRank.
☆ Accessibility Gaps in U.S. Government Dashboards for Blind and Low-Vision Residents
Public dashboards are now a common way for US government agencies to share high stakes information with residents. We audited six live systems at federal, state, and city levels: CDC respiratory illness, HUD homelessness PIT and HIC, California HCD Annual Progress Report, New York City Mayor's Management Report, Houston Permitting, and Chicago public health and budget dashboards. Using a rubric based on screen reader needs and WCAG, we checked five items: (1) discoverability of key metrics by assistive tech, (2) keyboard access without mouse hover, (3) clear semantic labels for axes, series, and categories, (4) short plain language status and trend notes, and (5) machine readable tables or CSVs that mirror what sighted users see. Findings are mixed. Many charts fail basic discoverability or depend on hover, which blocks keyboard and screen reader use. Plain language summaries are common in CDC and Chicago, but rare in HUD and Houston. Machine readable data is strong for NYC, California, and HUD; it is weaker or unclear for Houston. Several sites promise service for the public or for customers yet do not name accessibility in their descriptions. Across systems we also observe urgency inversion: faster, operational dashboards tend to provide fewer accessible affordances than slower accountability dashboards. These patterns matter for equal participation and for ADA Title II compliance that references WCAG 2.1 AA. We propose three steps for any public dashboard: add a brief status and trend text at the same update cadence, publish a matching table or CSV of the visual metrics, and state an explicit accessibility commitment.
comment: Preprint. Accessibility audit of six U.S. public dashboard ecosystems; 1 figure, 2 tables
☆ When Evidence Contradicts: Toward Safer Retrieval-Augmented Generation in Healthcare
In high-stakes information domains such as healthcare, where large language models (LLMs) can produce hallucinations or misinformation, retrieval-augmented generation (RAG) has been proposed as a mitigation strategy, grounding model outputs in external, domain-specific documents. Yet, this approach can introduce errors when source documents contain outdated or contradictory information. This work investigates the performance of five LLMs in generating RAG-based responses to medicine-related queries. Our contributions are three-fold: i) the creation of a benchmark dataset using consumer medicine information documents from the Australian Therapeutic Goods Administration (TGA), where headings are repurposed as natural language questions, ii) the retrieval of PubMed abstracts using TGA headings, stratified across multiple publication years, to enable controlled temporal evaluation of outdated evidence, and iii) a comparative analysis of the frequency and impact of outdated or contradictory content on model-generated responses, assessing how LLMs integrate and reconcile temporally inconsistent information. Our findings show that contradictions between highly similar abstracts do, in fact, degrade performance, leading to inconsistencies and reduced factual accuracy in model answers. These results highlight that retrieval similarity alone is insufficient for reliable medical RAG and underscore the need for contradiction-aware filtering strategies to ensure trustworthy responses in high-stakes domains.
☆ Can LLM Annotations Replace User Clicks for Learning to Rank?
Large-scale supervised data is essential for training modern ranking models, but obtaining high-quality human annotations is costly. Click data has been widely used as a low-cost alternative, and with recent advances in large language models (LLMs), LLM-based relevance annotation has emerged as another promising annotation. This paper investigates whether LLM annotations can replace click data for learning to rank (LTR) by conducting a comprehensive comparison across multiple dimensions. Experiments on both a public dataset, TianGong-ST, and an industrial dataset, Baidu-Click, show that click-supervised models perform better on high-frequency queries, while LLM annotation-supervised models are more effective on medium- and low-frequency queries. Further analysis shows that click-supervised models are better at capturing document-level signals such as authority or quality, while LLM annotation-supervised models are more effective at modeling semantic matching between queries and documents and at distinguishing relevant from non-relevant documents. Motivated by these observations, we explore two training strategies -- data scheduling and frequency-aware multi-objective learning -- that integrate both supervision signals. Both approaches enhance ranking performance across queries at all frequency levels, with the latter being more effective. Our code is available at https://github.com/Trustworthy-Information-Access/LLMAnn_Click.
comment: 12 pages, 7 figures
☆ TabRAG: Tabular Document Retrieval via Structured Language Representations NeurIPS 2025
Ingesting data for Retrieval-Augmented Generation (RAG) involves either fine-tuning the embedding model directly on the target corpus or parsing documents for embedding model encoding. The former, while accurate, incurs high computational hardware requirements, while the latter suffers from suboptimal performance when extracting tabular data. In this work, we address the latter by presenting TabRAG, a parsing-based RAG pipeline designed to tackle table-heavy documents via structured language representations. TabRAG outperforms existing popular parsing-based methods for generation and retrieval. Code is available at https://github.com/jacobyhsi/TabRAG.
comment: NeurIPS 2025 AI4Tab
♻ ☆ Quality Over Quantity? LLM-Based Curation for a Data-Efficient Audio-Video Foundation Model
Integrating audio and visual data for training multimodal foundational models remains a challenge. The Audio-Video Vector Alignment (AVVA) framework addresses this by considering AV scene alignment beyond mere temporal synchronization, and leveraging Large Language Models (LLMs) for data curation. AVVA implements a scoring mechanism for selecting aligned training data segments. It integrates Whisper, a speech-based foundation model, for audio and DINOv2 for video analysis in a dual-encoder structure with contrastive learning on AV pairs. Evaluations on AudioCaps, VALOR, and VGGSound demonstrate the effectiveness of the proposed model architecture and data curation approach. AVVA achieves a significant improvement in top-k accuracies for video-to-audio retrieval on all datasets compared to DenseAV, while using only 192 hrs of curated training data. Furthermore, an ablation study indicates that the data curation process effectively trades data quality for data quantity, yielding increases in top-k retrieval accuracies on AudioCaps, VALOR, and VGGSound, compared to training on the full spectrum of uncurated data.
comment: Accepted at EUSIPCO 2025 - 5 pages, 5 figures, 2 tables
♻ ☆ Text-to-Pipeline: Bridging Natural Language and Data Preparation Pipelines
Data preparation (DP) transforms raw data into a form suitable for downstream applications, typically by composing operations into executable pipelines. Building such pipelines is time-consuming and requires sophisticated programming skills, posing a significant barrier for non-experts. To lower this barrier, we introduce Text-to-Pipeline, a new task that translates NL data preparation instructions into DP pipelines, and PARROT, a large-scale benchmark to support systematic evaluation. To ensure realistic DP scenarios, PARROT is built by mining transformation patterns from production pipelines and instantiating them on 23,009 real-world tables, resulting in ~18,000 tasks spanning 16 core operators. Our empirical evaluation on PARROT reveals a critical failure mode in cutting-edge LLMs: they struggle not only with multi-step compositional logic but also with semantic parameter grounding. We thus establish a strong baseline with Pipeline-Agent, an execution-aware agent that iteratively reflects on intermediate states. While it achieves state-of-the-art performance, a significant gap remains, underscoring the deep, unsolved challenges for PARROT. It provides the essential, large-scale testbed for developing and evaluating the next generation of autonomous data preparation agentic systems.
♻ ☆ Deep Pareto Reinforcement Learning for Multi-Objective Recommender Systems
Optimizing multiple objectives simultaneously is an important task for recommendation platforms to improve their performance. However, this task is particularly challenging since the relationships between different objectives are heterogeneous across different consumers and dynamically fluctuating according to different contexts. Especially in those cases when objectives become conflicting with each other, the result of recommendations will form a pareto-frontier, where the improvements of any objective comes at the cost of a performance decrease of another objective. Existing multi-objective recommender systems do not systematically consider such dynamic relationships; instead, they balance between these objectives in a static and uniform manner, resulting in only suboptimal multi-objective recommendation performance. In this paper, we propose a Deep Pareto Reinforcement Learning (DeepPRL) approach, where we (1) comprehensively model the complex relationships between multiple objectives in recommendations; (2) effectively capture personalized and contextual consumer preference for each objective to provide better recommendations; (3) optimize both the short-term and the long-term performance of multi-objective recommendations. As a result, our method achieves significant pareto-dominance over the state-of-the-art baselines in the offline experiments. Furthermore, we conducted a controlled experiment at the video streaming platform of Alibaba, where our method simultaneously improved three conflicting business objectives over the latest production system significantly, demonstrating its tangible economic impact in practice.
♻ ☆ CoSQA+: Pioneering the Multi-Choice Code Search Benchmark with Test-Driven Agents
Semantic code search, retrieving code that matches a given natural language query, is an important task to improve productivity in software engineering. Existing code search datasets face limitations: they rely on human annotators who assess code primarily through semantic understanding rather than functional verification, leading to potential inaccuracies and scalability issues. Additionally, current evaluation metrics often overlook the multi-choice nature of code search. This paper introduces CoSQA+, pairing high-quality queries from CoSQA with multiple suitable codes. We develop an automated pipeline featuring multiple model-based candidate selections and the novel test-driven agent annotation system. Among a single Large Language Model (LLM) annotator and Python expert annotators (without test-based verification), agents leverage test-based verification and achieve the highest accuracy of 93.9%. Through extensive experiments, CoSQA+ has demonstrated superior quality over CoSQA. Models trained on CoSQA+ exhibit improved performance. We publicly release both CoSQA+_all, which contains 412,080 agent-annotated pairs, and CoSQA+_verified, which contains 1,000 human-verified pairs, at https://github.com/DeepSoftwareAnalytics/CoSQA_Plus.
comment: Accepted to TSE 2025. We provide the code and data at https://github.com/DeepSoftwareAnalytics/CoSQA_Plus
♻ ☆ Enhancing Multimodal Recommendations with Vision-Language Models and Information-Aware Fusion
Recent advances in multimodal recommendation (MMR) highlight the potential of integrating visual and textual content to enrich item representations. However, existing methods often rely on coarse visual features and naive fusion strategies, resulting in redundant or misaligned representations. From an information-theoretic perspective, effective fusion should balance unique, shared, and redundant modality information to preserve complementary cues. To this end, we propose VIRAL, a novel Vision-Language and Information-aware Recommendation framework that enhances multimodal fusion through two components: (i) a VLM-based visual enrichment module that generates fine-grained, title-guided descriptions for semantically aligned image representations, and (ii) an information-aware fusion module inspired by Partial Information Decomposition (PID) to disentangle and integrate complementary signals. Experiments on three Amazon datasets show that VIRAL consistently outperforms strong multimodal baselines and substantially improves the contribution of visual features.
♻ ☆ Secure Retrieval-Augmented Generation against Poisoning Attacks
Large language models (LLMs) have transformed natural language processing (NLP), enabling applications from content generation to decision support. Retrieval-Augmented Generation (RAG) improves LLMs by incorporating external knowledge but also introduces security risks, particularly from data poisoning, where the attacker injects poisoned texts into the knowledge database to manipulate system outputs. While various defenses have been proposed, they often struggle against advanced attacks. To address this, we introduce RAGuard, a detection framework designed to identify poisoned texts. RAGuard first expands the retrieval scope to increase the proportion of clean texts, reducing the likelihood of retrieving poisoned content. It then applies chunk-wise perplexity filtering to detect abnormal variations and text similarity filtering to flag highly similar texts. This non-parametric approach enhances RAG security, and experiments on large-scale datasets demonstrate its effectiveness in detecting and mitigating poisoning attacks, including strong adaptive attacks.
comment: To appear in IEEE BigData 2025
Information Retrieval 7
☆ TOOL4POI: A Tool-Augmented LLM Framework for Next POI Recommendation AAAI2026
Next Point-of-Interest (POI) recommendation is a fundamental task in location-based services. While recent advances leverage Large Language Model (LLM) for sequential modeling, existing LLM-based approaches face two key limitations: (i) strong reliance on the contextual completeness of user histories, resulting in poor performance on out-of-history (OOH) scenarios; (ii) limited scalability, due to the restricted context window of LLMs, which limits their ability to access and process a large number of candidate POIs. To address these challenges, we propose Tool4POI, a novel tool-augmented framework that enables LLMs to perform open-set POI recommendation through external retrieval and reasoning. Tool4POI consists of three key modules: preference extraction module, multi-turn candidate retrieval module, and reranking module, which together summarize long-term user interests, interact with external tools to retrieve relevant POIs, and refine final recommendations based on recent behaviors. Unlike existing methods, Tool4POI requires no task-specific fine-tuning and is compatible with off-the-shelf LLMs in a plug-and-play manner. Extensive experiments on three real-world datasets show that Tool4POI substantially outperforms state-of-the-art baselines, achieving up to 40% accuracy on challenging OOH scenarios where existing methods fail, and delivering average improvements of 20% and 30% on Acc@5 and Acc@10, respectively.
comment: Accepted by AAAI2026
☆ HyMoERec: Hybrid Mixture-of-Experts for Sequential Recommendation AAAI 2026
We propose HyMoERec, a novel sequential recommendation framework that addresses the limitations of uniform Position-wise Feed-Forward Networks in existing models. Current approaches treat all user interactions and items equally, overlooking the heterogeneity in user behavior patterns and diversity in item complexity. HyMoERec initially introduces a hybrid mixture-of-experts architecture that combines shared and specialized expert branches with an adaptive expert fusion mechanism for the sequential recommendation task. This design captures diverse reasoning for varied users and items while ensuring stable training. Experiments on MovieLens-1M and Beauty datasets demonstrate that HyMoERec consistently outperforms state-of-the-art baselines.
comment: AAAI 2026 Student Abstract
☆ LLaDA-Rec: Discrete Diffusion for Parallel Semantic ID Generation in Generative Recommendation
Generative recommendation represents each item as a semantic ID, i.e., a sequence of discrete tokens, and generates the next item through autoregressive decoding. While effective, existing autoregressive models face two intrinsic limitations: (1) unidirectional constraints, where causal attention restricts each token to attend only to its predecessors, hindering global semantic modeling; and (2) error accumulation, where the fixed left-to-right generation order causes prediction errors in early tokens to propagate to the predictions of subsequent token. To address these issues, we propose LLaDA-Rec, a discrete diffusion framework that reformulates recommendation as parallel semantic ID generation. By combining bidirectional attention with the adaptive generation order, the approach models inter-item and intra-item dependencies more effectively and alleviates error accumulation. Specifically, our approach comprises three key designs: (1) a parallel tokenization scheme that produces semantic IDs for bidirectional modeling, addressing the mismatch between residual quantization and bidirectional architectures; (2) two masking mechanisms at the user-history and next-item levels to capture both inter-item sequential dependencies and intra-item semantic relationships; and (3) an adapted beam search strategy for adaptive-order discrete diffusion decoding, resolving the incompatibility of standard beam search with diffusion-based generation. Experiments on three real-world datasets show that LLaDA-Rec consistently outperforms both ID-based and state-of-the-art generative recommenders, establishing discrete diffusion as a new paradigm for generative recommendation.
☆ Time Matters: A Novel Real-Time Long- and Short-term User Interest Model for Click-Through Rate Prediction
Click-Through Rate (CTR) prediction is a core task in online personalization platform. A key step for CTR prediction is to learn accurate user representation to capture their interests. Generally, the interest expressed by a user is time-variant, i.e., a user activates different interests at different time. However, most previous CTR prediction methods overlook the correlation between the activated interest and the occurrence time, resulting in what they actually learn is the mixture of the interests expressed by the user at all time, rather than the real-time interest at the certain prediction time. To capture the correlation between the activated interest and the occurrence time, in this paper we investigate users' interest evolution from the perspective of the whole time line and develop two regular patterns: periodic pattern and time-point pattern. Based on the two patterns, we propose a novel time-aware long- and short-term user interest modeling method to model users' dynamic interests at different time. Extensive experiments on public datasets as well as an industrial dataset verify the effectiveness of exploiting the two patterns and demonstrate the superiority of our proposed method compared with other state-of-the-art ones.
comment: This work was doned when the first author interned at Alibaba Group
☆ MemoriesDB: A Temporal-Semantic-Relational Database for Long-Term Agent Memory / Modeling Experience as a Graph of Temporal-Semantic Surfaces
We introduce MemoriesDB, a unified data architecture designed to avoid decoherence across time, meaning, and relation in long-term computational memory. Each memory is a time-semantic-relational entity-a structure that simultaneously encodes when an event occurred, what it means, and how it connects to other events. Built initially atop PostgreSQL with pgvector extensions, MemoriesDB combines the properties of a time-series datastore, a vector database, and a graph system within a single append-only schema. Each memory is represented as a vertex uniquely labeled by its microsecond timestamp and accompanied by low- and high-dimensional normalized embeddings that capture semantic context. Directed edges between memories form labeled relations with per-edge metadata, enabling multiple contextual links between the same vertices. Together these constructs form a time-indexed stack of temporal-semantic surfaces, where edges project as directional arrows in a 1+1-dimensional similarity field, tracing the evolution of meaning through time while maintaining cross-temporal coherence. This formulation supports efficient time-bounded retrieval, hybrid semantic search, and lightweight structural reasoning in a single query path. A working prototype demonstrates scalable recall and contextual reinforcement using standard relational infrastructure, and we discuss extensions toward a columnar backend, distributed clustering, and emergent topic modeling.
♻ ☆ Cross-Platform E-Commerce Product Categorization and Recategorization: A Multimodal Hierarchical Classification Approach
This study addresses critical industrial challenges in e-commerce product categorization, namely platform heterogeneity and the structural limitations of existing taxonomies, by developing and deploying a multimodal hierarchical classification framework. Using a dataset of 271,700 products from 40 international fashion e-commerce platforms, we integrate textual features (RoBERTa), visual features (ViT), and joint vision-language representations (CLIP). We investigate fusion strategies, including early, late, and attention-based fusion within a hierarchical architecture enhanced by dynamic masking to ensure taxonomic consistency. Results show that CLIP embeddings combined via an MLP-based late-fusion strategy achieve the highest hierarchical F1 (98.59%), outperforming unimodal baselines. To address shallow or inconsistent categories, we further introduce a self-supervised "product recategorization" pipeline using SimCLR, UMAP, and cascade clustering, which discovered new, fine-grained categories (for example, subtypes of "Shoes") with cluster purities above 86%. Cross-platform experiments reveal a deployment-relevant trade-off: complex late-fusion methods maximize accuracy with diverse training data, while simpler early-fusion methods generalize more effectively to unseen platforms. Finally, we demonstrate the framework's industrial scalability through deployment in EURWEB's commercial transaction intelligence platform via a two-stage inference pipeline, combining a lightweight RoBERTa stage with a GPU-accelerated multimodal stage to balance cost and accuracy.
comment: Accetped at IEEE BigData 2025, 10 pages, 5 figures, 3 tables
♻ ☆ Mean-Variance Efficient Collaborative Filtering for Stock Recommendation
The rise of FinTech has transformed financial services online, yet stock recommender systems have received limited attention. Personalized stock recommendations can significantly impact customer engagement and satisfaction within the industry. However, traditional investment recommendations focus on high-return stocks or highly diversified portfolios, often neglecting user preferences. The former would result in unsuccessful investment because accurately predicting stock prices is almost impossible, whereas the latter would not be accepted by investors because many investors, including both individuals and institutional portfolio managers, who typically hold focused portfolios based on their investment strategies and interests. Collaborative filtering (CF) also may not be directly applicable to stock recommendations, because it is inappropriate to just recommend stocks that users like. The key is to optimally blend user's preference with the portfolio theory. However, no existing model considers both aspects. We propose a simple yet effective model, called mean-variance efficient collaborative filtering (MVECF). Our model is designed to improve the Pareto optimality in a trade-off between the risk and return by systemically handling uncertainties in stock prices. Experiments on real-world data show our model can increase the mean-variance efficiency of recommended portfolios while sacrificing just a small amount of recommendation accuracy. Finally, we further show MVECF is easily applicable to the graph-based ranking model.
comment: To appear in the 6th ACM International Conference on AI in Finance (ICAIF '25), November 15-18, 2025, Singapore. 8 pages, 3 tables, 3 figures