MyArxiv
Computation and Language 81
☆ Continuous Autoregressive Language Models
The efficiency of large language models (LLMs) is fundamentally limited by their sequential, token-by-token generation process. We argue that overcoming this bottleneck requires a new design axis for LLM scaling: increasing the semantic bandwidth of each generative step. To this end, we introduce Continuous Autoregressive Language Models (CALM), a paradigm shift from discrete next-token prediction to continuous next-vector prediction. CALM uses a high-fidelity autoencoder to compress a chunk of K tokens into a single continuous vector, from which the original tokens can be reconstructed with over 99.9\% accuracy. This allows us to model language as a sequence of continuous vectors instead of discrete tokens, which reduces the number of generative steps by a factor of K. The paradigm shift necessitates a new modeling toolkit; therefore, we develop a comprehensive likelihood-free framework that enables robust training, evaluation, and controllable sampling in the continuous domain. Experiments show that CALM significantly improves the performance-compute trade-off, achieving the performance of strong discrete baselines at a significantly lower computational cost. More importantly, these findings establish next-vector prediction as a powerful and scalable pathway towards ultra-efficient language models. Code: https://github.com/shaochenze/calm. Project: https://shaochenze.github.io/blog/2025/CALM.
☆ Culture Cartography: Mapping the Landscape of Cultural Knowledge EMNLP 2025
To serve global users safely and productively, LLMs need culture-specific knowledge that might not be learned during pre-training. How do we find such knowledge that is (1) salient to in-group users, but (2) unknown to LLMs? The most common solutions are single-initiative: either researchers define challenging questions that users passively answer (traditional annotation), or users actively produce data that researchers structure as benchmarks (knowledge extraction). The process would benefit from mixed-initiative collaboration, where users guide the process to meaningfully reflect their cultures, and LLMs steer the process towards more challenging questions that meet the researcher's goals. We propose a mixed-initiative methodology called CultureCartography. Here, an LLM initializes annotation with questions for which it has low-confidence answers, making explicit both its prior knowledge and the gaps therein. This allows a human respondent to fill these gaps and steer the model towards salient topics through direct edits. We implement this methodology as a tool called CultureExplorer. Compared to a baseline where humans answer LLM-proposed questions, we find that CultureExplorer more effectively produces knowledge that leading models like DeepSeek R1 and GPT-4o are missing, even with web search. Fine-tuning on this data boosts the accuracy of Llama-3.1-8B by up to 19.2% on related culture benchmarks.
comment: EMNLP 2025
☆ SpecAttn: Speculating Sparse Attention NeurIPS 2025
Large Language Models (LLMs) face significant computational bottlenecks during inference due to the quadratic complexity of self-attention mechanisms, particularly as context lengths increase. We introduce SpecAttn, a novel training-free approach that seamlessly integrates with existing speculative decoding techniques to enable efficient sparse attention in pre-trained transformers. Our key insight is to exploit the attention weights already computed by the draft model during speculative decoding to identify important tokens for the target model, eliminating redundant computation while maintaining output quality. SpecAttn employs three core techniques: KL divergence-based layer alignment between draft and target models, a GPU-optimized sorting-free algorithm for top-p token selection from draft attention patterns, and dynamic key-value cache pruning guided by these predictions. By leveraging the computational work already performed in standard speculative decoding pipelines, SpecAttn achieves over 75% reduction in key-value cache accesses with a mere 15.29% increase in perplexity on the PG-19 dataset, significantly outperforming existing sparse attention methods. Our approach demonstrates that speculative execution can be enhanced to provide approximate verification without significant performance degradation.
comment: Accepted to NeurIPS 2025 Workshop on Structured Probabilistic Inference & Generative Modeling
☆ Visual Backdoor Attacks on MLLM Embodied Decision Making via Contrastive Trigger Learning
Multimodal large language models (MLLMs) have advanced embodied agents by enabling direct perception, reasoning, and planning task-oriented actions from visual inputs. However, such vision driven embodied agents open a new attack surface: visual backdoor attacks, where the agent behaves normally until a visual trigger appears in the scene, then persistently executes an attacker-specified multi-step policy. We introduce BEAT, the first framework to inject such visual backdoors into MLLM-based embodied agents using objects in the environments as triggers. Unlike textual triggers, object triggers exhibit wide variation across viewpoints and lighting, making them difficult to implant reliably. BEAT addresses this challenge by (1) constructing a training set that spans diverse scenes, tasks, and trigger placements to expose agents to trigger variability, and (2) introducing a two-stage training scheme that first applies supervised fine-tuning (SFT) and then our novel Contrastive Trigger Learning (CTL). CTL formulates trigger discrimination as preference learning between trigger-present and trigger-free inputs, explicitly sharpening the decision boundaries to ensure precise backdoor activation. Across various embodied agent benchmarks and MLLMs, BEAT achieves attack success rates up to 80%, while maintaining strong benign task performance, and generalizes reliably to out-of-distribution trigger placements. Notably, compared to naive SFT, CTL boosts backdoor activation accuracy up to 39% under limited backdoor data. These findings expose a critical yet unexplored security risk in MLLM-based embodied agents, underscoring the need for robust defenses before real-world deployment.
☆ Towards Universal Video Retrieval: Generalizing Video Embedding via Synthesized Multimodal Pyramid Curriculum
The prevailing video retrieval paradigm is structurally misaligned, as narrow benchmarks incentivize correspondingly limited data and single-task training. Therefore, universal capability is suppressed due to the absence of a diagnostic evaluation that defines and demands multi-dimensional generalization. To break this cycle, we introduce a framework built on the co-design of evaluation, data, and modeling. First, we establish the Universal Video Retrieval Benchmark (UVRB), a suite of 16 datasets designed not only to measure performance but also to diagnose critical capability gaps across tasks and domains. Second, guided by UVRB's diagnostics, we introduce a scalable synthesis workflow that generates 1.55 million high-quality pairs to populate the semantic space required for universality. Finally, we devise the Modality Pyramid, a curriculum that trains our General Video Embedder (GVE) by explicitly leveraging the latent interconnections within our diverse data. Extensive experiments show GVE achieves state-of-the-art zero-shot generalization on UVRB. In particular, our analysis reveals that popular benchmarks are poor predictors of general ability and that partially relevant retrieval is a dominant but overlooked scenario. Overall, our co-designed framework provides a practical path to escape the limited scope and advance toward truly universal video retrieval.
☆ MARAG-R1: Beyond Single Retriever via Reinforcement-Learned Multi-Tool Agentic Retrieval
Large Language Models (LLMs) excel at reasoning and generation but are inherently limited by static pretraining data, resulting in factual inaccuracies and weak adaptability to new information. Retrieval-Augmented Generation (RAG) addresses this issue by grounding LLMs in external knowledge; However, the effectiveness of RAG critically depends on whether the model can adequately access relevant information. Existing RAG systems rely on a single retriever with fixed top-k selection, restricting access to a narrow and static subset of the corpus. As a result, this single-retriever paradigm has become the primary bottleneck for comprehensive external information acquisition, especially in tasks requiring corpus-level reasoning. To overcome this limitation, we propose MARAG-R1, a reinforcement-learned multi-tool RAG framework that enables LLMs to dynamically coordinate multiple retrieval mechanisms for broader and more precise information access. MARAG-R1 equips the model with four retrieval tools -- semantic search, keyword search, filtering, and aggregation -- and learns both how and when to use them through a two-stage training process: supervised fine-tuning followed by reinforcement learning. This design allows the model to interleave reasoning and retrieval, progressively gathering sufficient evidence for corpus-level synthesis. Experiments on GlobalQA, HotpotQA, and 2WikiMultiHopQA demonstrate that MARAG-R1 substantially outperforms strong baselines and achieves new state-of-the-art results in corpus-level reasoning tasks.
☆ SIGMA: Search-Augmented On-Demand Knowledge Integration for Agentic Mathematical Reasoning
Solving mathematical reasoning problems requires not only accurate access to relevant knowledge but also careful, multi-step thinking. However, current retrieval-augmented models often rely on a single perspective, follow inflexible search strategies, and struggle to effectively combine information from multiple sources. We introduce SIGMA (Search-Augmented On-Demand Knowledge Integration for AGentic Mathematical reAsoning), a unified framework that orchestrates specialized agents to independently reason, perform targeted searches, and synthesize findings through a moderator mechanism. Each agent generates hypothetical passages to optimize retrieval for its analytic perspective, ensuring knowledge integration is both context-sensitive and computation-efficient. When evaluated on challenging benchmarks such as MATH500, AIME, and PhD-level science QA GPQA, SIGMA consistently outperforms both open- and closed-source systems, achieving an absolute performance improvement of 7.4%. Our results demonstrate that multi-agent, on-demand knowledge integration significantly enhances both reasoning accuracy and efficiency, offering a scalable approach for complex, knowledge-intensive problem-solving. We will release the code upon publication.
comment: Short Paper - Under Review
☆ Data-Efficient Domain Adaptation for LLM-based MT using Contrastive Preference Optimization
LLMs often require adaptation to domain-specific requirements, a process that can be expensive when relying solely on SFT. We present an empirical study on applying CPO to simulate a post-editing workflow for data-efficient domain adaptation. Our approach synthesizes preference pairs by treating the base model's own raw output as the 'rejected' translation and the human-approved TM entry as the 'chosen' one. This method provides direct feedback on the model's current knowledge, guiding it to align with domain-specific standards. Experiments in English-Brazilian Portuguese and English-Korean show that, by using just 14.7k preference pairs, the model achieves performance close to that of a model trained on 160k+ samples with SFT, demonstrating significant data efficiency. Although we showcase its effectiveness in MT, this application of CPO naturally generalizes to other generative tasks where a model's initial drafts can serve as a contrastive signal against a golden reference.
☆ Multilingual BERT language model for medical tasks: Evaluation on domain-specific adaptation and cross-linguality
In multilingual healthcare applications, the availability of domain-specific natural language processing(NLP) tools is limited, especially for low-resource languages. Although multilingual bidirectional encoder representations from transformers (BERT) offers a promising motivation to mitigate the language gap, the medical NLP tasks in low-resource languages are still underexplored. Therefore, this study investigates how further pre-training on domain-specific corpora affects model performance on medical tasks, focusing on three languages: Dutch, Romanian and Spanish. In terms of further pre-training, we conducted four experiments to create medical domain models. Then, these models were fine-tuned on three downstream tasks: Automated patient screening in Dutch clinical notes, named entity recognition in Romanian and Spanish clinical notes. Results show that domain adaptation significantly enhanced task performance. Furthermore, further differentiation of domains, e.g. clinical and general biomedical domains, resulted in diverse performances. The clinical domain-adapted model outperformed the more general biomedical domain-adapted model. Moreover, we observed evidence of cross-lingual transferability. Moreover, we also conducted further investigations to explore potential reasons contributing to these performance differences. These findings highlight the feasibility of domain adaptation and cross-lingual ability in medical NLP. Within the low-resource language settings, these findings can provide meaningful guidance for developing multilingual medical NLP systems to mitigate the lack of training data and thereby improve the model performance.
☆ DialectalArabicMMLU: Benchmarking Dialectal Capabilities in Arabic and Multilingual Language Models
We present DialectalArabicMMLU, a new benchmark for evaluating the performance of large language models (LLMs) across Arabic dialects. While recently developed Arabic and multilingual benchmarks have advanced LLM evaluation for Modern Standard Arabic (MSA), dialectal varieties remain underrepresented despite their prevalence in everyday communication. DialectalArabicMMLU extends the MMLU-Redux framework through manual translation and adaptation of 3K multiple-choice question-answer pairs into five major dialects (Syrian, Egyptian, Emirati, Saudi, and Moroccan), yielding a total of 15K QA pairs across 32 academic and professional domains (22K QA pairs when also including English and MSA). The benchmark enables systematic assessment of LLM reasoning and comprehension beyond MSA, supporting both task-based and linguistic analysis. We evaluate 19 open-weight Arabic and multilingual LLMs (1B-13B parameters) and report substantial performance variation across dialects, revealing persistent gaps in dialectal generalization. DialectalArabicMMLU provides the first unified, human-curated resource for measuring dialectal understanding in Arabic, thus promoting more inclusive evaluation and future model development.
comment: 9 pages, 9 tables
☆ Patient-Centered Summarization Framework for AI Clinical Summarization: A Mixed-Methods Design
Large Language Models (LLMs) are increasingly demonstrating the potential to reach human-level performance in generating clinical summaries from patient-clinician conversations. However, these summaries often focus on patients' biology rather than their preferences, values, wishes, and concerns. To achieve patient-centered care, we propose a new standard for Artificial Intelligence (AI) clinical summarization tasks: Patient-Centered Summaries (PCS). Our objective was to develop a framework to generate PCS that capture patient values and ensure clinical utility and to assess whether current open-source LLMs can achieve human-level performance in this task. We used a mixed-methods process. Two Patient and Public Involvement groups (10 patients and 8 clinicians) in the United Kingdom participated in semi-structured interviews exploring what personal and contextual information should be included in clinical summaries and how it should be structured for clinical use. Findings informed annotation guidelines used by eight clinicians to create gold-standard PCS from 88 atrial fibrillation consultations. Sixteen consultations were used to refine a prompt aligned with the guidelines. Five open-source LLMs (Llama-3.2-3B, Llama-3.1-8B, Mistral-8B, Gemma-3-4B, and Qwen3-8B) generated summaries for 72 consultations using zero-shot and few-shot prompting, evaluated with ROUGE-L, BERTScore, and qualitative metrics. Patients emphasized lifestyle routines, social support, recent stressors, and care values. Clinicians sought concise functional, psychosocial, and emotional context. The best zero-shot performance was achieved by Mistral-8B (ROUGE-L 0.189) and Llama-3.1-8B (BERTScore 0.673); the best few-shot by Llama-3.1-8B (ROUGE-L 0.206, BERTScore 0.683). Completeness and fluency were similar between experts and models, while correctness and patient-centeredness favored human PCS.
comment: The first two listed authors contributed equally Pages: 21; Figures:2; Tables:3
☆ SQLSpace: A Representation Space for Text-to-SQL to Discover and Mitigate Robustness Gaps EMNLP
We introduce SQLSpace, a human-interpretable, generalizable, compact representation for text-to-SQL examples derived with minimal human intervention. We demonstrate the utility of these representations in evaluation with three use cases: (i) closely comparing and contrasting the composition of popular text-to-SQL benchmarks to identify unique dimensions of examples they evaluate, (ii) understanding model performance at a granular level beyond overall accuracy scores, and (iii) improving model performance through targeted query rewriting based on learned correctness estimation. We show that SQLSpace enables analysis that would be difficult with raw examples alone: it reveals compositional differences between benchmarks, exposes performance patterns obscured by accuracy alone, and supports modeling of query success.
comment: Accepted to EMNLP Findings
☆ BiSparse-AAS: Bilinear Sparse Attention and Adaptive Spans Framework for Scalable and Efficient Text Summarization ICDM
Transformer-based architectures have advanced text summarization, yet their quadratic complexity limits scalability on long documents. This paper introduces BiSparse-AAS (Bilinear Sparse Attention with Adaptive Spans), a novel framework that combines sparse attention, adaptive spans, and bilinear attention to address these limitations. Sparse attention reduces computational costs by focusing on the most relevant parts of the input, while adaptive spans dynamically adjust the attention ranges. Bilinear attention complements both by modeling complex token interactions within this refined context. BiSparse-AAS consistently outperforms state-of-the-art baselines in both extractive and abstractive summarization tasks, achieving average ROUGE improvements of about 68.1% on CNN/DailyMail and 52.6% on XSum, while maintaining strong performance on OpenWebText and Gigaword datasets. By addressing efficiency, scalability, and long-sequence modeling, BiSparse-AAS provides a unified, practical solution for real-world text summarization applications.
comment: Accepted at the IEEE International Conference on Data Mining (ICDM) 2025, Washington, DC, USA
☆ Effect of Domain Generalization Techniques in Low Resource Systems
Machine learning models typically assume that training and test data follow the same distribution, an assumption that often fails in real-world scenarios due to distribution shifts. This issue is especially pronounced in low-resource settings, where data scarcity and limited domain diversity hinder robust generalization. Domain generalization (DG) approaches address this challenge by learning features that remain invariant across domains, often using causal mechanisms to improve model robustness. In this study, we examine two distinct causal DG techniques in low-resource natural language tasks. First, we investigate a causal data augmentation (CDA) approach that automatically generates counterfactual examples to improve robustness to spurious correlations. We apply this method to sentiment classification on the NaijaSenti Twitter corpus, expanding the training data with semantically equivalent paraphrases to simulate controlled distribution shifts. Second, we explore an invariant causal representation learning (ICRL) approach using the DINER framework, originally proposed for debiasing aspect-based sentiment analysis. We adapt DINER to a multilingual setting. Our findings demonstrate that both approaches enhance robustness to unseen domains: counterfactual data augmentation yields consistent cross-domain accuracy gains in sentiment classification, while causal representation learning with DINER improves out-of-distribution performance in multilingual sentiment analysis, albeit with varying gains across languages.
☆ Thought Branches: Interpreting LLM Reasoning Requires Resampling
Most work interpreting reasoning models studies only a single chain-of-thought (CoT), yet these models define distributions over many possible CoTs. We argue that studying a single sample is inadequate for understanding causal influence and the underlying computation. Though fully specifying this distribution is intractable, it can be understood by sampling. We present case studies using resampling to investigate model decisions. First, when a model states a reason for its action, does that reason actually cause the action? In "agentic misalignment" scenarios, we resample specific sentences to measure their downstream effects. Self-preservation sentences have small causal impact, suggesting they do not meaningfully drive blackmail. Second, are artificial edits to CoT sufficient for steering reasoning? These are common in literature, yet take the model off-policy. Resampling and selecting a completion with the desired property is a principled on-policy alternative. We find off-policy interventions yield small and unstable effects compared to resampling in decision-making tasks. Third, how do we understand the effect of removing a reasoning step when the model may repeat it post-edit? We introduce a resilience metric that repeatedly resamples to prevent similar content from reappearing downstream. Critical planning statements resist removal but have large effects when eliminated. Fourth, since CoT is sometimes "unfaithful", can our methods teach us anything in these settings? Adapting causal mediation analysis, we find that hints that have a causal effect on the output without being explicitly mentioned exert a subtle and cumulative influence on the CoT that persists even if the hint is removed. Overall, studying distributions via resampling enables reliable causal analysis, clearer narratives of model reasoning, and principled CoT interventions.
comment: Uzay Macar and Paul C. Bogdan contributed equally to this work, and their listed order was determined by coinflip
☆ The aftermath of compounds: Investigating Compounds and their Semantic Representations AACL
This study investigates how well computational embeddings align with human semantic judgments in the processing of English compound words. We compare static word vectors (GloVe) and contextualized embeddings (BERT) against human ratings of lexeme meaning dominance (LMD) and semantic transparency (ST) drawn from a psycholinguistic dataset. Using measures of association strength (Edinburgh Associative Thesaurus), frequency (BNC), and predictability (LaDEC), we compute embedding-derived LMD and ST metrics and assess their relationships with human judgments via Spearmans correlation and regression analyses. Our results show that BERT embeddings better capture compositional semantics than GloVe, and that predictability ratings are strong predictors of semantic transparency in both human and model data. These findings advance computational psycholinguistics by clarifying the factors that drive compound word processing and offering insights into embedding-based semantic modeling.
comment: IJCNLP-AACL SRW 2025
☆ Diffuse Thinking: Exploring Diffusion Language Models as Efficient Thought Proposers for Reasoning
In recent years, large language models (LLMs) have witnessed remarkable advancements, with the test-time scaling law consistently enhancing the reasoning capabilities. Through systematic evaluation and exploration of a diverse spectrum of intermediate thoughts, LLMs demonstrate the potential to generate deliberate reasoning steps, thereby substantially enhancing reasoning accuracy. However, LLMs' autoregressive generation paradigm results in reasoning performance scaling sub-optimally with test-time computation, often requiring excessive computational overhead to propose thoughts while yielding only marginal performance gains. In contrast, diffusion language models (DLMs) can efficiently produce diverse samples through parallel denoising in a single forward pass, inspiring us to leverage them for proposing intermediate thoughts, thereby alleviating the computational burden associated with autoregressive generation while maintaining quality. In this work, we propose an efficient collaborative reasoning framework, leveraging DLMs to generate candidate thoughts and LLMs to evaluate their quality. Experiments across diverse benchmarks demonstrate that our framework achieves strong performance in complex reasoning tasks, offering a promising direction for future research. Our code is open-source at https://anonymous.4open.science/r/Diffuse-Thinking-EC60.
☆ VCORE: Variance-Controlled Optimization-based Reweighting for Chain-of-Thought Supervision
Supervised fine-tuning (SFT) on long chain-of-thought (CoT) trajectories has emerged as a crucial technique for enhancing the reasoning abilities of large language models (LLMs). However, the standard cross-entropy loss treats all tokens equally, ignoring their heterogeneous contributions across a reasoning trajectory. This uniform treatment leads to misallocated supervision and weak generalization, especially in complex, long-form reasoning tasks. To address this, we introduce \textbf{V}ariance-\textbf{C}ontrolled \textbf{O}ptimization-based \textbf{RE}weighting (VCORE), a principled framework that reformulates CoT supervision as a constrained optimization problem. By adopting an optimization-theoretic perspective, VCORE enables a principled and adaptive allocation of supervision across tokens, thereby aligning the training objective more closely with the goal of robust reasoning generalization. Empirical evaluations demonstrate that VCORE consistently outperforms existing token reweighting methods. Across both in-domain and out-of-domain settings, VCORE achieves substantial performance gains on mathematical and coding benchmarks, using models from the Qwen3 series (4B, 8B, 32B) and LLaMA-3.1-8B-Instruct. Moreover, we show that VCORE serves as a more effective initialization for subsequent reinforcement learning, establishing a stronger foundation for advancing the reasoning capabilities of LLMs. The Code will be released at https://github.com/coder-gx/VCORE.
comment: Under Review
☆ DeepCompress: A Dual Reward Strategy for Dynamically Exploring and Compressing Reasoning Chains
Large Reasoning Models (LRMs) have demonstrated impressive capabilities but suffer from cognitive inefficiencies like ``overthinking'' simple problems and ``underthinking'' complex ones. While existing methods that use supervised fine-tuning~(SFT) or reinforcement learning~(RL) with token-length rewards can improve efficiency, they often do so at the cost of accuracy. This paper introduces \textbf{DeepCompress}, a novel framework that simultaneously enhances both the accuracy and efficiency of LRMs. We challenge the prevailing approach of consistently favoring shorter reasoning paths, showing that longer responses can contain a broader range of correct solutions for difficult problems. DeepCompress employs an adaptive length reward mechanism that dynamically classifies problems as ``Simple'' or ``Hard'' in real-time based on the model's evolving capability. It encourages shorter, more efficient reasoning for ``Simple'' problems while promoting longer, more exploratory thought chains for ``Hard'' problems. This dual-reward strategy enables the model to autonomously adjust its Chain-of-Thought (CoT) length, compressing reasoning for well-mastered problems and extending it for those it finds challenging. Experimental results on challenging mathematical benchmarks show that DeepCompress consistently outperforms baseline methods, achieving superior accuracy while significantly improving token efficiency.
comment: Work in progress
☆ Dynamic Affective Memory Management for Personalized LLM Agents
Advances in large language models are making personalized AI agents a new research focus. While current agent systems primarily rely on personalized external memory databases to deliver customized experiences, they face challenges such as memory redundancy, memory staleness, and poor memory-context integration, largely due to the lack of effective memory updates during interaction. To tackle these issues, we propose a new memory management system designed for affective scenarios. Our approach employs a Bayesian-inspired memory update algorithm with the concept of memory entropy, enabling the agent to autonomously maintain a dynamically updated memory vector database by minimizing global entropy to provide more personalized services. To better evaluate the system's effectiveness in this context, we propose DABench, a benchmark focusing on emotional expression and emotional change toward objects. Experimental results demonstrate that, our system achieves superior performance in personalization, logical coherence, and accuracy. Ablation studies further validate the effectiveness of the Bayesian-inspired update mechanism in alleviating memory bloat. Our work offers new insights into the design of long-term memory systems.
comment: 12 pasges, 8 figures
☆ Atlas-Alignment: Making Interpretability Transferable Across Language Models
Interpretability is crucial for building safe, reliable, and controllable language models, yet existing interpretability pipelines remain costly and difficult to scale. Interpreting a new model typically requires costly training of model-specific sparse autoencoders, manual or semi-automated labeling of SAE components, and their subsequent validation. We introduce Atlas-Alignment, a framework for transferring interpretability across language models by aligning unknown latent spaces to a Concept Atlas - a labeled, human-interpretable latent space - using only shared inputs and lightweight representational alignment techniques. Once aligned, this enables two key capabilities in previously opaque models: (1) semantic feature search and retrieval, and (2) steering generation along human-interpretable atlas concepts. Through quantitative and qualitative evaluations, we show that simple representational alignment methods enable robust semantic retrieval and steerable generation without the need for labeled concept data. Atlas-Alignment thus amortizes the cost of explainable AI and mechanistic interpretability: by investing in one high-quality Concept Atlas, we can make many new models transparent and controllable at minimal marginal cost.
☆ Awal -- Community-Powered Language Technology for Tamazight
This paper presents Awal, a community-powered initiative for developing language technology resources for Tamazight. We provide a comprehensive review of the NLP landscape for Tamazight, examining recent progress in computational resources, and the emergence of community-driven approaches to address persistent data scarcity. Launched in 2024, awaldigital.org platform addresses the underrepresentation of Tamazight in digital spaces through a collaborative platform enabling speakers to contribute translation and voice data. We analyze 18 months of community engagement, revealing significant barriers to participation including limited confidence in written Tamazight and ongoing standardization challenges. Despite widespread positive reception, actual data contribution remained concentrated among linguists and activists. The modest scale of community contributions -- 6,421 translation pairs and 3 hours of speech data -- highlights the limitations of applying standard crowdsourcing approaches to languages with complex sociolinguistic contexts. We are working on improved open-source MT models using the collected data.
comment: Accepted to the International Conference on Information and Communication Technologies for Amazigh (TICAM 25)
☆ Balancing Knowledge Updates: Toward Unified Modular Editing in LLMs
Knowledge editing has emerged as an efficient approach for updating factual knowledge in large language models (LLMs). It typically locates knowledge storage modules and then modifies their parameters. However, most existing methods focus on the weights of multilayer perceptron (MLP) modules, which are often identified as the main repositories of factual information. Other components, such as attention (Attn) modules, are often ignored during editing. This imbalance can leave residual outdated knowledge and limit editing effectiveness. We perform comprehensive knowledge localization experiments on advanced LLMs and find that Attn modules play a substantial role in factual knowledge storage and retrieval, especially in earlier layers. Based on these insights, we propose IntAttn-Edit, a method that extends the associative memory paradigm to jointly update both MLP and Attn modules. Our approach uses a knowledge balancing strategy that allocates update magnitudes in proportion to each module's measured contribution to knowledge storage. Experiments on standard benchmarks show that IntAttn-Edit achieves higher edit success, better generalization, and stronger knowledge preservation than prior methods. Further analysis shows that the balancing strategy keeps editing performance within an optimal range across diverse settings.
☆ Measuring Chain-of-Thought Monitorability Through Faithfulness and Verbosity
Chain-of-thought (CoT) outputs let us read a model's step-by-step reasoning. Since any long, serial reasoning process must pass through this textual trace, the quality of the CoT is a direct window into what the model is thinking. This visibility could help us spot unsafe or misaligned behavior (monitorability), but only if the CoT is transparent about its internal reasoning (faithfulness). Fully measuring faithfulness is difficult, so researchers often focus on examining the CoT in cases where the model changes its answer after adding a cue to the input. This proxy finds some instances of unfaithfulness but loses information when the model maintains its answer, and does not investigate aspects of reasoning not tied to the cue. We extend these results to a more holistic sense of monitorability by introducing verbosity: whether the CoT lists every factor needed to solve the task. We combine faithfulness and verbosity into a single monitorability score that shows how well the CoT serves as the model's external `working memory', a property that many safety schemes based on CoT monitoring depend on. We evaluate instruction-tuned and reasoning models on BBH, GPQA, and MMLU. Our results show that models can appear faithful yet remain hard to monitor when they leave out key factors, and that monitorability differs sharply across model families. We release our evaluation code using the Inspect library to support reproducible future work.
comment: Project page at https://ajmeek.github.io/cot_monitorability_website/
☆ From the Rock Floor to the Cloud: A Systematic Survey of State-of-the-Art NLP in Battery Life Cycle
We present a comprehensive systematic survey of the application of natural language processing (NLP) along the entire battery life cycle, instead of one stage or method, and introduce a novel technical language processing (TLP) framework for the EU's proposed digital battery passport (DBP) and other general battery predictions. We follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method and employ three reputable databases or search engines, including Google Scholar, Institute of Electrical and Electronics Engineers Xplore (IEEE Xplore), and Scopus. Consequently, we assessed 274 scientific papers before the critical review of the final 66 relevant papers. We publicly provide artifacts of the review for validation and reproducibility. The findings show that new NLP tasks are emerging in the battery domain, which facilitate materials discovery and other stages of the life cycle. Notwithstanding, challenges remain, such as the lack of standard benchmarks. Our proposed TLP framework, which incorporates agentic AI and optimized prompts, will be apt for tackling some of the challenges.
comment: 15 pages, 3 images
☆ ThoughtProbe: Classifier-Guided LLM Thought Space Exploration via Probing Representations EMNLP2025
This paper introduces ThoughtProbe, a novel inference time framework that leverages the hidden reasoning features of Large Language Models (LLMs) to improve their reasoning performance. Unlike previous works that manipulate the hidden representations to steer LLM generation, we harness them as discriminative signals to guide the tree structured response space exploration. In each node expansion, a classifier serves as a scoring and ranking mechanism that efficiently allocates computational resources by prioritizing higher score candidates for continuation. After completing the tree expansion, we collect answers from all branches to form a candidate answer pool. We then propose a branch aggregation method that marginalizes over all supporting branches by aggregating their CoT scores, thereby identifying the optimal answer from the pool. Experimental results show that our framework's comprehensive exploration not only covers valid reasoning chains but also effectively identifies them, achieving significant improvements across multiple arithmetic reasoning benchmarks.
comment: EMNLP2025 main conference
☆ TransAlign: Machine Translation Encoders are Strong Word Aligners, Too
In the absence of sizable training data for most world languages and NLP tasks, translation-based strategies such as translate-test -- evaluating on noisy source language data translated from the target language -- and translate-train -- training on noisy target language data translated from the source language -- have been established as competitive approaches for cross-lingual transfer (XLT). For token classification tasks, these strategies require label projection: mapping the labels from each token in the original sentence to its counterpart(s) in the translation. To this end, it is common to leverage multilingual word aligners (WAs) derived from encoder language models such as mBERT or LaBSE. Despite obvious associations between machine translation (MT) and WA, research on extracting alignments with MT models is largely limited to exploiting cross-attention in encoder-decoder architectures, yielding poor WA results. In this work, in contrast, we propose TransAlign, a novel word aligner that utilizes the encoder of a massively multilingual MT model. We show that TransAlign not only achieves strong WA performance but substantially outperforms popular WA and state-of-the-art non-WA-based label projection methods in MT-based XLT for token classification.
☆ A Unified Representation Underlying the Judgment of Large Language Models
A central architectural question for both biological and artificial intelligence is whether judgment relies on specialized modules or a unified, domain-general resource. While the discovery of decodable neural representations for distinct concepts in Large Language Models (LLMs) has suggested a modular architecture, whether these representations are truly independent systems remains an open question. Here we provide evidence for a convergent architecture. Across a range of LLMs, we find that diverse evaluative judgments are computed along a dominant dimension, which we term the Valence-Assent Axis (VAA). This axis jointly encodes subjective valence ("what is good") and the model's assent to factual claims ("what is true"). Through direct interventions, we show this unified representation creates a critical dependency: the VAA functions as a control signal that steers the generative process to construct a rationale consistent with its evaluative state, even at the cost of factual accuracy. This mechanism, which we term the subordination of reasoning, shifts the process of reasoning from impartial inference toward goal-directed justification. Our discovery offers a mechanistic account for systemic bias and hallucination, revealing how an architecture that promotes coherent judgment can systematically undermine faithful reasoning.
☆ Un-Attributability: Computing Novelty From Retrieval & Semantic Similarity
Understanding how language-model outputs relate to the pretraining corpus is central to studying model behavior. Most training data attribution (TDA) methods ask which training examples causally influence a given output, often using leave-one-out tests. We invert the question: which outputs cannot be attributed to any pretraining example? We introduce un-attributability as an operational measure of semantic novelty: an output is novel if the pretraining corpus contains no semantically similar context. We approximate this with a simple two-stage retrieval pipeline: index the corpus with lightweight GIST embeddings, retrieve the top-n candidates, then rerank with ColBERTv2. If the nearest corpus item is less attributable than a human-generated text reference, we consider the output of the model as novel. We evaluate on SmolLM and SmolLM2 and report three findings: (1) models draw on pretraining data across much longer spans than previously reported; (2) some domains systematically promote or suppress novelty; and (3) instruction tuning not only alters style but also increases novelty. Reframing novelty assessment around un-attributability enables efficient analysis at pretraining scale. We release ~20 TB of corpus chunks and index artifacts to support replication and large-scale extension of our analysis at https://huggingface.co/datasets/stai-tuebingen/faiss-smollm
☆ Why Do Multilingual Reasoning Gaps Emerge in Reasoning Language Models?
Reasoning language models (RLMs) achieve strong performance on complex reasoning tasks, yet they still suffer from a multilingual reasoning gap, performing better in high-resource languages than in low-resource ones. While recent efforts have reduced this gap, its underlying causes remain largely unexplored. In this paper, we address this by showing that the multilingual reasoning gap largely stems from failures in language understanding-the model's inability to represent the multilingual input meaning into the dominant language (i.e., English) within its reasoning trace. This motivates us to examine whether understanding failures can be detected, as this ability could help mitigate the multilingual reasoning gap. To this end, we evaluate a range of detection methods and find that understanding failures can indeed be identified, with supervised approaches performing best. Building on this, we propose Selective Translation, a simple yet effective strategy that translates the multilingual input into English only when an understanding failure is detected. Experimental results show that Selective Translation bridges the multilingual reasoning gap, achieving near full-translation performance while using translation for only about 20% of inputs. Together, our work demonstrates that understanding failures are the primary cause of the multilingual reasoning gap and can be detected and selectively mitigated, providing key insight into its origin and a promising path toward more equitable multilingual reasoning. Our code and data are publicly available at https://github.com/deokhk/RLM_analysis.
☆ MedCalc-Eval and MedCalc-Env: Advancing Medical Calculation Capabilities of Large Language Models
As large language models (LLMs) enter the medical domain, most benchmarks evaluate them on question answering or descriptive reasoning, overlooking quantitative reasoning critical to clinical decision-making. Existing datasets like MedCalc-Bench cover few calculation tasks and fail to reflect real-world computational scenarios. We introduce MedCalc-Eval, the largest benchmark for assessing LLMs' medical calculation abilities, comprising 700+ tasks across two types: equation-based (e.g., Cockcroft-Gault, BMI, BSA) and rule-based scoring systems (e.g., Apgar, Glasgow Coma Scale). These tasks span diverse specialties including internal medicine, surgery, pediatrics, and cardiology, offering a broader and more challenging evaluation setting. To improve performance, we further develop MedCalc-Env, a reinforcement learning environment built on the InternBootcamp framework, enabling multi-step clinical reasoning and planning. Fine-tuning a Qwen2.5-32B model within this environment achieves state-of-the-art results on MedCalc-Eval, with notable gains in numerical sensitivity, formula selection, and reasoning robustness. Remaining challenges include unit conversion, multi-condition logic, and contextual understanding. Code and datasets are available at https://github.com/maokangkun/MedCalc-Eval.
☆ Higher-order Linear Attention
The quadratic cost of scaled dot-product attention is a central obstacle to scaling autoregressive language models to long contexts. Linear-time attention and State Space Models (SSMs) provide scalable alternatives but are typically restricted to first-order or kernel-based approximations, which can limit expressivity. We introduce Higher-order Linear Attention (HLA), a causal, streaming mechanism that realizes higher interactions via compact prefix sufficient statistics. In the second-order case, HLA maintains a constant-size state and computes per-token outputs in linear time without materializing any $n \times n$ matrices. We give closed-form streaming identities, a strictly causal masked variant using two additional summaries, and a chunk-parallel training scheme based on associative scans that reproduces the activations of a serial recurrence exactly. We further outline extensions to third and higher orders. Collectively, these results position HLA as a principled, scalable building block that combines attention-like, data-dependent mixing with the efficiency of modern recurrent architectures. Project Page: https://github.com/yifanzhang-pro/HLA.
comment: Project Page: https://github.com/yifanzhang-pro/HLA
☆ Languages are Modalities: Cross-Lingual Alignment via Encoder Injection
Instruction-tuned Large Language Models (LLMs) underperform on low resource, non-Latin scripts due to tokenizer fragmentation and weak cross-lingual coupling. We present LLINK (Latent Language Injection for Non-English Knowledge), a compute efficient language-as-modality method that conditions an instruction-tuned decoder without changing the tokenizer or retraining the decoder. First, we align sentence embeddings from a frozen multilingual encoder to the decoder's latent embedding space at a reserved position via a lightweight contrastive projector. Second, the vector is expanded into K soft slots and trained with minimal adapters so the frozen decoder consumes the signal. LLINK substantially improves bilingual retrieval and achieves 81.3% preference over the base model and 63.6% over direct fine-tuning in LLM-judged Q&A evaluations. We further find that improvements can be attributed to reduced tokenization inflation and a stronger cross lingual alignment, despite the model having residual weaknesses in numeric fidelity. Treating low resource languages as a modality offers a practical path to stronger cross-lingual alignment in lightweight LLMs.
comment: 14 pages, 3 Figures
☆ Beyond a Million Tokens: Benchmarking and Enhancing Long-Term Memory in LLMs
Evaluating the abilities of large language models (LLMs) for tasks that require long-term memory and thus long-context reasoning, for example in conversational settings, is hampered by the existing benchmarks, which often lack narrative coherence, cover narrow domains, and only test simple recall-oriented tasks. This paper introduces a comprehensive solution to these challenges. First, we present a novel framework for automatically generating long (up to 10M tokens), coherent, and topically diverse conversations, accompanied by probing questions targeting a wide range of memory abilities. From this, we construct BEAM, a new benchmark comprising 100 conversations and 2,000 validated questions. Second, to enhance model performance, we propose LIGHT-a framework inspired by human cognition that equips LLMs with three complementary memory systems: a long-term episodic memory, a short-term working memory, and a scratchpad for accumulating salient facts. Our experiments on BEAM reveal that even LLMs with 1M token context windows (with and without retrieval-augmentation) struggle as dialogues lengthen. In contrast, LIGHT consistently improves performance across various models, achieving an average improvement of 3.5%-12.69% over the strongest baselines, depending on the backbone LLM. An ablation study further confirms the contribution of each memory component.
☆ Identifying the Periodicity of Information in Natural Language
Recent theoretical advancement of information density in natural language has brought the following question on desk: To what degree does natural language exhibit periodicity pattern in its encoded information? We address this question by introducing a new method called AutoPeriod of Surprisal (APS). APS adopts a canonical periodicity detection algorithm and is able to identify any significant periods that exist in the surprisal sequence of a single document. By applying the algorithm to a set of corpora, we have obtained the following interesting results: Firstly, a considerable proportion of human language demonstrates a strong pattern of periodicity in information; Secondly, new periods that are outside the distributions of typical structural units in text (e.g., sentence boundaries, elementary discourse units, etc.) are found and further confirmed via harmonic regression modeling. We conclude that the periodicity of information in language is a joint outcome from both structured factors and other driving factors that take effect at longer distances. The advantages of our periodicity detection method and its potentials in LLM-generation detection are further discussed.
☆ DRAMA: Unifying Data Retrieval and Analysis for Open-Domain Analytic Queries SIGMOD 2026
Manually conducting real-world data analyses is labor-intensive and inefficient. Despite numerous attempts to automate data science workflows, none of the existing paradigms or systems fully demonstrate all three key capabilities required to support them effectively: (1) open-domain data collection, (2) structured data transformation, and (3) analytic reasoning. To overcome these limitations, we propose DRAMA, an end-to-end paradigm that answers users' analytic queries in natural language on large-scale open-domain data. DRAMA unifies data collection, transformation, and analysis as a single pipeline. To quantitatively evaluate system performance on tasks representative of DRAMA, we construct a benchmark, DRAMA-Bench, consisting of two categories of tasks: claim verification and question answering, each comprising 100 instances. These tasks are derived from real-world applications that have gained significant public attention and require the retrieval and analysis of open-domain data. We develop DRAMA-Bot, a multi-agent system designed following DRAMA. It comprises a data retriever that collects and transforms data by coordinating the execution of sub-agents, and a data analyzer that performs structured reasoning over the retrieved data. We evaluate DRAMA-Bot on DRAMA-Bench together with five state-of-the-art baseline agents. DRAMA-Bot achieves 86.5% task accuracy at a cost of $0.05, outperforming all baselines with up to 6.9 times the accuracy and less than 1/6 of the cost. DRAMA is publicly available at https://github.com/uiuc-kang-lab/drama.
comment: Accepted to SIGMOD 2026
☆ MemeArena: Automating Context-Aware Unbiased Evaluation of Harmfulness Understanding for Multimodal Large Language Models EMNLP 2025
The proliferation of memes on social media necessitates the capabilities of multimodal Large Language Models (mLLMs) to effectively understand multimodal harmfulness. Existing evaluation approaches predominantly focus on mLLMs' detection accuracy for binary classification tasks, which often fail to reflect the in-depth interpretive nuance of harmfulness across diverse contexts. In this paper, we propose MemeArena, an agent-based arena-style evaluation framework that provides a context-aware and unbiased assessment for mLLMs' understanding of multimodal harmfulness. Specifically, MemeArena simulates diverse interpretive contexts to formulate evaluation tasks that elicit perspective-specific analyses from mLLMs. By integrating varied viewpoints and reaching consensus among evaluators, it enables fair and unbiased comparisons of mLLMs' abilities to interpret multimodal harmfulness. Extensive experiments demonstrate that our framework effectively reduces the evaluation biases of judge agents, with judgment results closely aligning with human preferences, offering valuable insights into reliable and comprehensive mLLM evaluations in multimodal harmfulness understanding. Our code and data are publicly available at https://github.com/Lbotirx/MemeArena.
comment: EMNLP 2025
☆ Can MLLMs Read the Room? A Multimodal Benchmark for Verifying Truthfulness in Multi-Party Social Interactions
As AI systems become increasingly integrated into human lives, endowing them with robust social intelligence has emerged as a critical frontier. A key aspect of this intelligence is discerning truth from deception, a ubiquitous element of human interaction that is conveyed through a complex interplay of verbal language and non-verbal visual cues. However, automatic deception detection in dynamic, multi-party conversations remains a significant challenge. The recent rise of powerful Multimodal Large Language Models (MLLMs), with their impressive abilities in visual and textual understanding, makes them natural candidates for this task. Consequently, their capabilities in this crucial domain are mostly unquantified. To address this gap, we introduce a new task, Multimodal Interactive Veracity Assessment (MIVA), and present a novel multimodal dataset derived from the social deduction game Werewolf. This dataset provides synchronized video, text, with verifiable ground-truth labels for every statement. We establish a comprehensive benchmark evaluating state-of-the-art MLLMs, revealing a significant performance gap: even powerful models like GPT-4o struggle to distinguish truth from falsehood reliably. Our analysis of failure modes indicates that these models fail to ground language in visual social cues effectively and may be overly conservative in their alignment, highlighting the urgent need for novel approaches to building more perceptive and trustworthy AI systems.
☆ Simple Additions, Substantial Gains: Expanding Scripts, Languages, and Lineage Coverage in URIEL+
The URIEL+ linguistic knowledge base supports multilingual research by encoding languages through geographic, genetic, and typological vectors. However, data sparsity remains prevalent, in the form of missing feature types, incomplete language entries, and limited genealogical coverage. This limits the usefulness of URIEL+ in cross-lingual transfer, particularly for supporting low-resource languages. To address this sparsity, this paper extends URIEL+ with three contributions: introducing script vectors to represent writing system properties for 7,488 languages, integrating Glottolog to add 18,710 additional languages, and expanding lineage imputation for 26,449 languages by propagating typological and script features across genealogies. These additions reduce feature sparsity by 14% for script vectors, increase language coverage by up to 19,015 languages (1,007%), and improve imputation quality metrics by up to 33%. Our benchmark on cross-lingual transfer tasks (oriented around low-resource languages) shows occasionally divergent performance compared to URIEL+, with performance gains up to 6% in certain setups. Our advances make URIEL+ more complete and inclusive for multilingual research.
☆ Glia: A Human-Inspired AI for Automated Systems Design and Optimization
Can an AI autonomously design mechanisms for computer systems on par with the creativity and reasoning of human experts? We present Glia, an AI architecture for networked systems design that uses large language models (LLMs) in a human-inspired, multi-agent workflow. Each agent specializes in reasoning, experimentation, and analysis, collaborating through an evaluation framework that grounds abstract reasoning in empirical feedback. Unlike prior ML-for-systems methods that optimize black-box policies, Glia generates interpretable designs and exposes its reasoning process. When applied to a distributed GPU cluster for LLM inference, it produces new algorithms for request routing, scheduling, and auto-scaling that perform at human-expert levels in significantly less time, while yielding novel insights into workload behavior. Our results suggest that by combining reasoning LLMs with structured experimentation, an AI can produce creative and understandable designs for complex systems problems.
☆ Probability Distributions Computed by Hard-Attention Transformers
Most expressivity results for transformers treat them as language recognizers (which accept or reject strings), and not as they are used in practice, as language models (which generate strings autoregressively and probabilistically). Here, we characterize the probability distributions that transformer language models can express. We show that making transformer language recognizers autoregressive can sometimes increase their expressivity, and that making them probabilistic can break equivalences that hold in the non-probabilistic case. Our overall contribution is to tease apart what functions transformers are capable of expressing, in their most common use-case as language models.
comment: 18 pages
☆ Rating Roulette: Self-Inconsistency in LLM-As-A-Judge Frameworks EMNLP 2025
As Natural Language Generation (NLG) continues to be widely adopted, properly assessing it has become quite difficult. Lately, using large language models (LLMs) for evaluating these generations has gained traction, as they tend to align more closely with human preferences than conventional n-gram or embedding-based metrics. In our experiments, we show that LLM judges have low intra-rater reliability in their assigned scores across different runs. This variance makes their ratings inconsistent, almost arbitrary in the worst case, making it difficult to measure how good their judgments actually are. We quantify this inconsistency across different NLG tasks and benchmarks and see if judicious use of LLM judges can still be useful following proper guidelines.
comment: Accepted at EMNLP 2025
☆ Characterizing Selective Refusal Bias in Large Language Models
Safety guardrails in large language models(LLMs) are developed to prevent malicious users from generating toxic content at a large scale. However, these measures can inadvertently introduce or reflect new biases, as LLMs may refuse to generate harmful content targeting some demographic groups and not others. We explore this selective refusal bias in LLM guardrails through the lens of refusal rates of targeted individual and intersectional demographic groups, types of LLM responses, and length of generated refusals. Our results show evidence of selective refusal bias across gender, sexual orientation, nationality, and religion attributes. This leads us to investigate additional safety implications via an indirect attack, where we target previously refused groups. Our findings emphasize the need for more equitable and robust performance in safety guardrails across demographic groups.
comment: 21 pages, 12 figures, 14 tables
☆ Contrastive Knowledge Transfer and Robust Optimization for Secure Alignment of Large Language Models
This paper addresses the limitations of large-scale language models in safety alignment and robustness by proposing a fine-tuning method that combines contrastive distillation with noise-robust training. The method freezes the backbone model and transfers the knowledge boundaries of the teacher model to the student model through distillation, thereby improving semantic consistency and alignment accuracy. At the same time, noise perturbations and robust optimization constraints are introduced during training to ensure that the model maintains stable predictive outputs under noisy and uncertain inputs. The overall framework consists of distillation loss, robustness loss, and a regularization term, forming a unified optimization objective that balances alignment ability with resistance to interference. To systematically validate its effectiveness, the study designs experiments from multiple perspectives, including distillation weight sensitivity, stability analysis under computation budgets and mixed-precision environments, and the impact of data noise and distribution shifts on model performance. Results show that the method significantly outperforms existing baselines in knowledge transfer, robustness, and overall safety, achieving the best performance across several key metrics. This work not only enriches the theoretical system of parameter-efficient fine-tuning but also provides a new solution for building safer and more trustworthy alignment mechanisms.
☆ Towards a Measure of Algorithm Similarity
Given two algorithms for the same problem, can we determine whether they are meaningfully different? In full generality, the question is uncomputable, and empirically it is muddied by competing notions of similarity. Yet, in many applications (such as clone detection or program synthesis) a pragmatic and consistent similarity metric is necessary. We review existing equivalence and similarity notions and introduce EMOC: An Evaluation-Memory-Operations-Complexity framework that embeds algorithm implementations into a feature space suitable for downstream tasks. We compile PACD, a curated dataset of verified Python implementations across three problems, and show that EMOC features support clustering and classification of algorithm types, detection of near-duplicates, and quantification of diversity in LLM-generated programs. Code, data, and utilities for computing EMOC embeddings are released to facilitate reproducibility and future work on algorithm similarity.
comment: 11 pages, many figures and images
♻ ☆ The End of Manual Decoding: Towards Truly End-to-End Language Models
The "end-to-end" label for LLMs is a misnomer. In practice, they depend on a non-differentiable decoding process that requires laborious, hand-tuning of hyperparameters like temperature and top-p. This paper introduces AutoDeco, a novel architecture that enables truly "end-to-end" generation by learning to control its own decoding strategy. We augment the standard transformer with lightweight heads that, at each step, dynamically predict context-specific temperature and top-p values alongside the next-token logits. This approach transforms decoding into a parametric, token-level process, allowing the model to self-regulate its sampling strategy within a single forward pass. Through extensive experiments on eight benchmarks, we demonstrate that AutoDeco not only significantly outperforms default decoding strategies but also achieves performance comparable to an oracle-tuned baseline derived from "hacking the test set"-a practical upper bound for any static method. Crucially, we uncover an emergent capability for instruction-based decoding control: the model learns to interpret natural language commands (e.g., "generate with low randomness") and adjusts its predicted temperature and top-p on a token-by-token basis, opening a new paradigm for steerable and interactive LLM decoding.
♻ ☆ SparsePO: Controlling Preference Alignment of LLMs via Sparse Token Masks EMNLP 2025
Direct alignment algorithms have proven an effective step for aligning language models to human-desired behaviors. Current variants of the Direct Preference Optimization objective have focused on a strict setting where all tokens are contributing signals of KL divergence and rewards to the loss function. However, human preference is not affected equally by each word in a sequence but is often dependent on specific words or phrases, e.g. existence of toxic terms leads to non-preferred responses. Based on this observation, we argue that not all tokens should be weighted equally during PO and propose a flexible objective termed SparsePO, that aims to automatically learn to weight the KL divergence and reward corresponding to each token during PO training. We propose two different variants of weight-masks that can either be derived from the reference model itself or learned on the fly. Notably, our method induces sparsity in the learned masks, allowing the model to learn how to best balance reward and KL divergence contributions at the token level, learning an optimal level of mask sparsity. Extensive experiments illustrate the effectiveness of our approach at aligning to preference proxies, including sentiment control, helpfulness and harmlessness, and summary quality. Our method obtains +10% and +3% win rate points in summarization and dialogue scenarios, respectively, without compromising model reasoning or the relevancy and faithfulness of the summary response.
comment: 27 pages, 9 figures, 5 tables. Accepted to EMNLP 2025
♻ ☆ HELIOS: Adaptive Model And Early-Exit Selection for Efficient LLM Inference Serving
Early-Exit Large Language Models (EE-LLMs) enable high throughput inference by allowing tokens to exit early at intermediate layers. However, their throughput is limited by the computational and memory savings. Existing EE-LLM frameworks rely on a single model and therefore, their token generation latencies are bottlenecked by tokens that do not exit early and traverse additional layers. Moreover, early exits are only known at runtime and depend on the request. Therefore, these frameworks load the weights of all model layers even though large portions remain unused when tokens exit early. The lack of memory savings limit us from scaling the batch sizes. We propose $\textit{HELIOS}$, a framework that improves both token generation latency and batch sizes to enable high-throughput in EE-LLMs. HELIOS exploits two insights. $\textit{First}$, early exits are often complimentary across models, tokens that do not exit early on one model often take an early-exit on another. HELIOS employs multiple models and dynamically switches between them to collectively maximize the number of tokens that exit early, and minimize token generation latencies. $\textit{Second}$, even when a predicted token does not exit early due to poor confidence, it often remains unchanged even after additional layer traversal. HELIOS greedily allows such tokens to exit early and only loads the weights of the most likely to be used layers, yielding memory savings which is then re-purposed to increase batch sizes. HELIOS employs real-time profiling to accurately identify the early-exit distributions, and adaptively switches between models by tracking tokens in real-time to minimize the performance degradation caused by greedy model loading and exiting. Our evaluations show that HELIOS achieves $1.48\times$ higher throughput and $15.14\times$ larger batch size compared to existing EE-LLM frameworks.
♻ ☆ Minitron-SSM: Efficient Hybrid Language Model Compression through Group-Aware SSM Pruning
Hybrid LLM architectures that combine Attention and State Space Models (SSMs) achieve state-of-the-art accuracy and runtime performance. Recent work has demonstrated that applying compression and distillation to Attention-only models yields smaller, more accurate models at a fraction of the training cost. In this work, we explore the effectiveness of compressing Hybrid architectures. We introduce a novel group-aware pruning strategy that preserves the structural integrity of SSM blocks and their sequence modeling capabilities. Furthermore, we demonstrate the necessity of such SSM pruning to achieve improved accuracy and inference speed compared to traditional approaches. Our compression recipe combines SSM, FFN, embedding dimension, and layer pruning, followed by knowledge distillation-based retraining, similar to the MINITRON technique. Using this approach, we compress the Nemotron-H 8B Hybrid model down to 4B parameters with up to 40x fewer training tokens. The resulting model surpasses the accuracy of similarly-sized models while achieving 2x faster inference, significantly advancing the Pareto frontier.
♻ ☆ A Multi-Stage Framework with Taxonomy-Guided Reasoning for Occupation Classification Using Large Language Models
Automatically annotating job data with standardized occupations from taxonomies, known as occupation classification, is crucial for labor market analysis. However, this task is often hindered by data scarcity and the challenges of manual annotations. While large language models (LLMs) hold promise due to their extensive world knowledge and in-context learning capabilities, their effectiveness depends on their knowledge of occupational taxonomies, which remains unclear. In this study, we assess the ability of LLMs to generate precise taxonomic entities from taxonomy, highlighting their limitations, especially for smaller models. To address these challenges, we propose a multi-stage framework consisting of inference, retrieval, and reranking stages, which integrates taxonomy-guided reasoning examples to enhance performance by aligning outputs with taxonomic knowledge. Evaluations on a large-scale dataset show that our framework not only enhances occupation and skill classification tasks, but also provides a cost-effective alternative to frontier models like GPT-4o, significantly reducing computational costs while maintaining strong performance. This makes it a practical and scalable solution for occupation classification and related tasks across LLMs.
comment: Accepted to ICWSM'26
♻ ☆ NaviAgent: Bilevel Planning on Tool Navigation Graph for Large-Scale Orchestration
Large language models (LLMs) have recently demonstrated the ability to act as function call agents by invoking external tools, enabling them to solve tasks beyond their static knowledge. However, existing agents typically call tools step by step at a time without a global view of task structure. As tools depend on each other, this leads to error accumulation and limited scalability, particularly when scaling to thousands of tools. To address these limitations, we propose NaviAgent, a novel bilevel architecture that decouples task planning from tool execution through graph-based modeling of the tool ecosystem. At the task-planning level, the LLM-based agent decides whether to respond directly, clarify user intent, invoke a toolchain, or execute tool outputs, ensuring broad coverage of interaction scenarios independent of inter-tool complexity. At the execution level, a continuously evolving Tool World Navigation Model (TWNM) encodes structural and behavioral relations among tools, guiding the agent to generate scalable and robust invocation sequences. By incorporating feedback from real tool interactions, NaviAgent supports closed-loop optimization of planning and execution, moving beyond tool calling toward adaptive navigation of large-scale tool ecosystems. Experiments show that NaviAgent achieves the best task success rates across models and tasks, and integrating TWMN further boosts performance by up to 17 points on complex tasks, underscoring its key role in toolchain orchestration.
♻ ☆ Token Distillation: Attention-aware Input Embeddings For New Tokens
Current language models rely on static vocabularies determined at pretraining time, which can lead to decreased performance and increased computational cost for domains underrepresented in the original vocabulary. New tokens can be added to solve this problem, when coupled with a good initialization for their new embeddings. However, existing embedding initialization methods require expensive further training or pretraining of additional modules. In this paper, we propose Token Distillation and show that by distilling representations obtained using the original tokenization, we can quickly learn high-quality input embeddings for new tokens. Experimental results with a wide range of open-weight models show that Token Distillation outperforms even strong baselines.
comment: Additional experiments + clearer method name compared to the May 2025 version
♻ ☆ Beyond Pixels: Exploring DOM Downsampling for LLM-Based Web Agents
Frontier LLMs only recently enabled serviceable, autonomous web agents. At that, a model poses as an instantaneous domain model backend. Ought to suggest interaction, it is consulted with a web-based task and respective application state. The key problem lies in application state serialisation - referred to as snapshot. State-of-the-art web agents are premised on grounded GUI snapshots, i.e., screenshots enhanced with visual cues. Not least to resemble human perception, but for images representing relatively cheap means of model input. LLM vision still lag behind code interpretation capabilities. DOM snapshots, which structurally resemble HTML, impose a desired alternative. Vast model input token size, however, disables reliable implementation with web agents to date. We propose D2Snap, a first-of-its-kind DOM downsampling algorithm. Based on a GPT-4o backend, we evaluate D2Snap on tasks sampled from the Online-Mind2Web dataset. The success rate of D2Snap-downsampled DOM snapshots (67%) matches a grounded GUI snapshot baseline (65%) - within the same input token order of magnitude (1e3). Our best evaluated configurations - one token order above, but within the model's context window - outperform this baseline by 8%. Our evaluation, moreover, yields that DOM-inherent hierarchy embodies a strong UI feature for LLMs.
comment: 20 pages, LaTeX; repository URL updated, typos corrected
♻ ☆ Reinforcement Learning vs. Distillation: Understanding Accuracy and Capability in LLM Reasoning
Recent studies have shown that reinforcement learning with verifiable rewards (RLVR) enhances overall accuracy (pass@1) but often fails to improve capability (pass@k) of LLMs in reasoning tasks, while distillation can improve both. In this paper, we investigate the mechanisms behind these phenomena. First, we demonstrate that RLVR struggles to improve capability as it focuses on improving the accuracy of the easier questions to the detriment of the accuracy of the most difficult questions. Second, we show that RLVR does not merely increase the success probability for the easier questions, but in our small model settings, produces quality responses that were absent in its original output distribution. In addition, we show these responses are neither noticeably longer nor feature more reflection-related keywords, underscoring the need for more reliable indicators of response quality. Third, from the experiment distilling teacher responses to in-distribution problems, we find that capability does not always improve with distillation. We conjecture that capability improves only when new knowledge is introduced, whereas distilling reasoning patterns only improves accuracy but not capability, sacrificing performance on the most difficult questions, similar to RLVR. Together, these findings offer a clearer understanding of how RLVR and distillation shape reasoning behavior in LLMs
comment: 25 pages
♻ ☆ More of the Same: Persistent Representational Harms Under Increased Representation NeurIPS
To recognize and mitigate the harms of generative AI systems, it is crucial to consider whether and how different societal groups are represented by these systems. A critical gap emerges when naively measuring or improving who is represented, as this does not consider how people are represented. In this work, we develop GAS(P), an evaluation methodology for surfacing distribution-level group representational biases in generated text, tackling the setting where groups are unprompted (i.e., groups are not specified in the input to generative systems). We apply this novel methodology to investigate gendered representations in occupations across state-of-the-art large language models. We show that, even though the gender distribution when models are prompted to generate biographies leads to a large representation of women, even representational biases persist in how different genders are represented. Our evaluation methodology reveals that there are statistically significant distribution-level differences in the word choice used to describe biographies and personas of different genders across occupations, and we show that many of these differences are associated with representational harms and stereotypes. Our empirical findings caution that naively increasing (unprompted) representation may inadvertently proliferate representational biases, and our proposed evaluation methodology enables systematic and rigorous measurement of the problem.
comment: Proceedings of the Neural Information Processing Systems (NeurIPS) 2025; 39 pages, 7 figures, 15 tables
♻ ☆ Ready to Translate, Not to Represent? Bias and Performance Gaps in Multilingual LLMs Across Language Families and Domains
The rise of Large Language Models (LLMs) has redefined Machine Translation (MT), enabling context-aware and fluent translations across hundreds of languages and textual domains. Despite their remarkable capabilities, LLMs often exhibit uneven performance across language families and specialized domains. Moreover, recent evidence reveals that these models can encode and amplify different biases present in their training data, posing serious concerns for fairness, especially in low-resource languages. To address these gaps, we introduce Translation Tangles, a unified framework and dataset for evaluating the translation quality and fairness of open-source LLMs. Our approach benchmarks 24 bidirectional language pairs across multiple domains using different metrics. We further propose a hybrid bias detection pipeline that integrates rule-based heuristics, semantic similarity filtering, and LLM-based validation. We also introduce a high-quality, bias-annotated dataset based on human evaluations of 1,439 translation-reference pairs. The code and dataset are accessible on GitHub: https://github.com/faiyazabdullah/TranslationTangles
♻ ☆ SMOL: Professionally translated parallel data for 115 under-represented languages
We open-source SMOL (Set of Maximal Overall Leverage), a suite of training data to unlock machine translation for low-resource languages. SMOL has been translated into 124 (and growing) under-resourced languages (125 language pairs), including many for which there exist no previous public resources, for a total of 6.1M translated tokens. SMOL comprises two sub-datasets, each carefully chosen for maximum impact given its size: SMOLSENT, a set of sentences chosen for broad unique token coverage, and SMOLDOC, a document-level resource focusing on a broad topic coverage. They join the already released GATITOS for a trifecta of paragraph, sentence, and token-level content. We demonstrate that using SMOL to prompt or fine-tune Large Language Models yields robust chrF improvements. In addition to translation, we provide factuality ratings and rationales for all documents in SMOLDOC, yielding the first factuality datasets for most of these languages.
comment: ~10 pages with appendices
♻ ☆ Curse of Knowledge: When Complex Evaluation Context Benefits yet Biases LLM Judges EMNLP 2025
As large language models (LLMs) grow more capable, they face increasingly diverse and complex tasks, making reliable evaluation challenging. The paradigm of LLMs as judges has emerged as a scalable solution, yet prior work primarily focuses on simple settings. Their reliability in complex tasks--where multi-faceted rubrics, unstructured reference answers, and nuanced criteria are critical--remains understudied. In this paper, we constructed ComplexEval, a challenge benchmark designed to systematically expose and quantify Auxiliary Information Induced Biases. We systematically investigated and validated 6 previously unexplored biases across 12 basic and 3 advanced scenarios. Key findings reveal: (1) all evaluated models exhibit significant susceptibility to these biases, with bias magnitude scaling with task complexity; (2) notably, Large Reasoning Models (LRMs) show paradoxical vulnerability. Our in-depth analysis offers crucial insights for improving the accuracy and verifiability of evaluation signals, paving the way for more general and robust evaluation models.
comment: EMNLP 2025 Findings
♻ ☆ Mano Technical Report
Graphical user interfaces (GUIs) are the primary medium for human-computer interaction, yet automating GUI interactions remains challenging due to the complexity of visual elements, dynamic environments, and the need for multi-step reasoning. Existing methods based on vision-language models (VLMs) often suffer from limited resolution, domain mismatch, and insufficient sequential decisionmaking capability. To address these issues, we propose Mano, a robust GUI agent built upon a multi-modal foundation model pre-trained on extensive web and computer system data. Our approach integrates a novel simulated environment for high-fidelity data generation, a three-stage training pipeline (supervised fine-tuning, offline reinforcement learning, and online reinforcement learning), and a verification module for error recovery. Mano demonstrates state-of-the-art performance on multiple GUI benchmarks, including Mind2Web and OSWorld, achieving significant improvements in success rate and operational accuracy. Our work provides new insights into the effective integration of reinforcement learning with VLMs for practical GUI agent deployment, highlighting the importance of domain-specific data, iterative training, and holistic reward design.
♻ ☆ Multilingual Political Views of Large Language Models: Identification and Steering
Large language models (LLMs) are increasingly used in everyday tools and applications, raising concerns about their potential influence on political views. While prior research has shown that LLMs often exhibit measurable political biases--frequently skewing toward liberal or progressive positions--key gaps remain. Most existing studies evaluate only a narrow set of models and languages, leaving open questions about the generalizability of political biases across architectures, scales, and multilingual settings. Moreover, few works examine whether these biases can be actively controlled. In this work, we address these gaps through a large-scale study of political orientation in modern open-source instruction-tuned LLMs. We evaluate seven models, including LLaMA-3.1, Qwen-3, and Aya-Expanse, across 14 languages using the Political Compass Test with 11 semantically equivalent paraphrases per statement to ensure robust measurement. Our results reveal that larger models consistently shift toward libertarian-left positions, with significant variations across languages and model families. To test the manipulability of political stances, we utilize a simple center-of-mass activation intervention technique and show that it reliably steers model responses toward alternative ideological positions across multiple languages. Our code is publicly available at https://github.com/d-gurgurov/Political-Ideologies-LLMs.
comment: pre-print
♻ ☆ Deep Learning-based Prediction of Clinical Trial Enrollment with Uncertainty Estimates
Clinical trials are a systematic endeavor to assess the safety and efficacy of new drugs or treatments. Conducting such trials typically demands significant financial investment and meticulous planning, highlighting the need for accurate predictions of trial outcomes. Accurately predicting patient enrollment, a key factor in trial success, is one of the primary challenges during the planning phase. In this work, we propose a novel deep learning-based method to address this critical challenge. Our method, implemented as a neural network model, leverages pre-trained language models (PLMs) to capture the complexities and nuances of clinical documents, transforming them into expressive representations. These representations are then combined with encoded tabular features via an attention mechanism. To account for uncertainties in enrollment prediction, we enhance the model with a probabilistic layer based on the Gamma distribution, which enables range estimation. We apply the proposed model to predict clinical trial duration, assuming site-level enrollment follows a Poisson-Gamma process. We carry out extensive experiments on real-world clinical trial data, and show that the proposed method can effectively predict the number of patients enrolled at a number of sites for a given clinical trial, outperforming established baseline models.
♻ ☆ LIBMoE: A Library for comprehensive benchmarking Mixture of Experts in Large Language Models
Mixture of experts (MoE) architectures have become a cornerstone for scaling up and are a key component in most large language models such as GPT-OSS, DeepSeek-V3, Llama-4, and Gemini-2.5. However, systematic research on MoE remains severely constrained by the prohibitive computational costs of training and evaluation, restricting large-scale studies accessible to most researchers. We introduce LibMoE, a unified framework for reproducible, efficient, and extensible MoE research that supports both pretraining and sparse-upcycling regimes. Beyond unified implementations, the framework provides transparent analytical tools for probing routing and expert dynamics. Leveraging this foundation, we conduct a comprehensive analysis along three dimensions: (i) routing dynamics, covering expert selection patterns, routing stability and optimality, and how routing entropy reveals task specialization and expert diversity; (ii) the effect of lightweight initialization on load balancing, demonstrating how subtle changes in router initialization shape early expert utilization; and (iii) training regime differences, revealing how sparse upcycling and full pretraining exhibit distinct routing patterns and stability profiles. By lowering the barrier to entry and standardizing evaluation, along with our comprehensive analysis, LibMoE broadens access to MoE research and establishes a reliable benchmark to guide future innovations. Project page: https://fsoft-aic.github.io/fsoft-LibMoE.github.io.
comment: 15 pages, 9 figures
♻ ☆ Reinforcing the Diffusion Chain of Lateral Thought with Diffusion Language Models NeurIPS 2025
We introduce the Diffusion Chain of Lateral Thought (DCoLT), a reasoning framework for diffusion language models. DCoLT treats each intermediate step in the reverse diffusion process as a latent "thinking" action and optimizes the entire reasoning trajectory to maximize the reward on the correctness of the final answer with outcome-based Reinforcement Learning (RL). Unlike traditional Chain-of-Thought (CoT) methods that follow a causal, linear thinking process, DCoLT allows bidirectional, non-linear reasoning with no strict rule on grammatical correctness amid its intermediate steps of thought. We implement DCoLT on two representative Diffusion Language Models (DLMs). First, we choose SEDD as a representative continuous-time discrete diffusion model, where its concrete score derives a probabilistic policy to maximize the RL reward over the entire sequence of intermediate diffusion steps. We further consider the discrete-time masked diffusion language model -- LLaDA, and find that the order to predict and unmask tokens plays an essential role to optimize its RL action resulting from the ranking-based Unmasking Policy Module (UPM) defined by the Plackett-Luce model. Experiments on both math and code generation tasks show that using only public data and 16 H800 GPUs, DCoLT-reinforced DLMs outperform other DLMs trained by SFT or RL or even both. Notably, DCoLT-reinforced LLaDA boosts its reasoning accuracy by +9.8%, +5.7%, +11.4%, +19.5% on GSM8K, MATH, MBPP, and HumanEval.
comment: Accepted to NeurIPS 2025. Code link: https://github.com/maple-research-lab/LLaDOU
♻ ☆ FastLongSpeech: Enhancing Large Speech-Language Models for Efficient Long-Speech Processing NeurIPS 2025
The rapid advancement of Large Language Models (LLMs) has spurred significant progress in Large Speech-Language Models (LSLMs), enhancing their capabilities in both speech understanding and generation. While existing LSLMs often concentrate on augmenting speech generation or tackling a diverse array of short-speech tasks, the efficient processing of long-form speech remains a critical yet underexplored challenge. This gap is primarily attributed to the scarcity of long-speech training datasets and the high computational costs associated with long sequences. To address these limitations, we introduce FastLongSpeech, a novel framework designed to extend LSLM capabilities for efficient long-speech processing without necessitating dedicated long-speech training data. FastLongSpeech incorporates an iterative fusion strategy that can compress excessively long-speech sequences into manageable lengths. To adapt LSLMs for long-speech inputs, it introduces a dynamic compression training approach, which exposes the model to short-speech sequences at varying compression ratios, thereby transferring the capabilities of LSLMs to long-speech tasks. To assess the long-speech capabilities of LSLMs, we develop a long-speech understanding benchmark called LongSpeech-Eval. Experiments show that our method exhibits strong performance in both long-speech and short-speech tasks, while greatly improving inference efficiency.
comment: NeurIPS 2025. The code is at https://github.com/ictnlp/FastLongSpeech. This model is at https://huggingface.co/ICTNLP/FastLongSpeech. The dataset is at https://huggingface.co/datasets/ICTNLP/LongSpeech-Eval
♻ ☆ Unlocking Reasoning Capabilities in LLMs via Reinforcement Learning Exploration
Reinforcement learning with verifiable rewards (RLVR) has recently enhanced the reasoning capabilities of large language models (LLMs), particularly for mathematical problem solving. However, a fundamental limitation remains: as the sampling budget increases, the advantage of RLVR-trained models over their pretrained bases often diminishes or even vanishes, revealing a strong dependence on the base model's restricted search space. We attribute this phenomenon to the widespread use of the reverse Kullback-Leibler (KL) divergence regularizer, whose mode-seeking behavior keeps the policy trapped inside the base model's support region and hampers wider exploration. To address this issue, we propose RAPO (Rewards-Aware Policy Optimization), an algorithm to promote broader yet focused exploration. Our method (i) utilizes the forward KL penalty to replace the reverse KL penalty for out-of-distribution exploration, and (ii) reweights the reference policy to facilitate adaptive in-distribution exploration. We train Qwen2.5-3B and 7B models with RAPO on the 8K SimpleRL-Zero dataset, without supervised fine-tuning, and evaluate them on AIME2024 and AIME2025. Results show that RAPO consistently improves problem-solving performance. Notably, RAPO enables models to surpass the base model's performance ceiling and solves previously intractable problems, advancing the frontier of RLVR for challenging reasoning tasks.
♻ ☆ Mathematics Isn't Culture-Free: Probing Cultural Gaps via Entity and Scenario Perturbations
Although mathematics is often considered culturally neutral, the way mathematical problems are presented can carry implicit cultural context. Existing benchmarks like GSM8K are predominantly rooted in Western norms, including names, currencies, and everyday scenarios. In this work, we create culturally adapted variants of the GSM8K test set for five regions Africa, India, China, Korea, and Japan using prompt-based transformations followed by manual verification. We evaluate six large language models (LLMs), ranging from 8B to 72B parameters, across five prompting strategies to assess their robustness to cultural variation in math problem presentation. Our findings reveal a consistent performance gap: models perform best on the original US-centric dataset and comparatively worse on culturally adapted versions. However, models with reasoning capabilities are more resilient to these shifts, suggesting that deeper reasoning helps bridge cultural presentation gaps in mathematical tasks
♻ ☆ Normative Reasoning in Large Language Models: A Comparative Benchmark from Logical and Modal Perspectives EMNLP 2025
Normative reasoning is a type of reasoning that involves normative or deontic modality, such as obligation and permission. While large language models (LLMs) have demonstrated remarkable performance across various reasoning tasks, their ability to handle normative reasoning remains underexplored. In this paper, we systematically evaluate LLMs' reasoning capabilities in the normative domain from both logical and modal perspectives. Specifically, to assess how well LLMs reason with normative modals, we make a comparison between their reasoning with normative modals and their reasoning with epistemic modals, which share a common formal structure. To this end, we introduce a new dataset covering a wide range of formal patterns of reasoning in both normative and epistemic domains, while also incorporating non-formal cognitive factors that influence human reasoning. Our results indicate that, although LLMs generally adhere to valid reasoning patterns, they exhibit notable inconsistencies in specific types of normative reasoning and display cognitive biases similar to those observed in psychological studies of human reasoning. These findings highlight challenges in achieving logical consistency in LLMs' normative reasoning and provide insights for enhancing their reliability. All data and code are released publicly at https://github.com/kmineshima/NeuBAROCO.
comment: Accepted to the 8th BlackboxNLP Workshop at EMNLP 2025
♻ ☆ AstroVisBench: A Code Benchmark for Scientific Computing and Visualization in Astronomy NeurIPS 2025
Large Language Models (LLMs) are being explored for applications in scientific research, including their capabilities to synthesize literature, answer research questions, generate research ideas, and even conduct computational experiments. Ultimately, our goal is for these to help scientists derive novel scientific insights. In many areas of science, such insights often arise from processing and visualizing data to understand its patterns. However, evaluating whether an LLM-mediated scientific workflow produces outputs conveying the correct scientific insights is challenging to evaluate and has not been addressed in past work. We introduce AstroVisBench, the first benchmark for both scientific computing and visualization in the astronomy domain. AstroVisBench judges a language model's ability to both (1) create astronomy-specific workflows to process and analyze data and (2) visualize the results of these workflows through complex plots. Our evaluation of visualizations uses a novel LLM-as-a-judge workflow, which is validated against annotation by five professional astronomers. Using AstroVisBench we present an evaluation of state-of-the-art language models, showing a significant gap in their ability to engage in astronomy research as useful assistants. This evaluation provides a strong end-to-end evaluation for AI scientists that offers a path forward for the development of visualization-based workflows, which are central to a broad range of domains from physics to biology.
comment: Accepted at NeurIPS 2025 Datasets & Benchmarks Track
♻ ☆ R$^2$ec: Towards Large Recommender Models with Reasoning
Large recommender models have extended LLMs as powerful recommenders via encoding or item generation, and recent breakthroughs in LLM reasoning synchronously motivate the exploration of reasoning in recommendation. In this work, we propose R$^2$ec, a unified large recommender model with intrinsic reasoning capability. R$^2$ec introduces a dual-head architecture that supports both reasoning chain generation and efficient item prediction in a single model, significantly reducing inference latency. To overcome the lack of annotated reasoning data, we design RecPO, a reinforcement learning framework that optimizes reasoning and recommendation jointly with a novel fused reward mechanism. Extensive experiments on three datasets demonstrate that R$^2$ec outperforms traditional, LLM-based, and reasoning-augmented recommender baselines, while further analyses validate its competitive efficiency among conventional LLM-based recommender baselines and strong adaptability to diverse recommendation scenarios. Code and checkpoints available at https://github.com/YRYangang/RRec.
comment: Accepted by Neurips 2025
♻ ☆ KAT-Coder Technical Report
Recent advances in large language models (LLMs) have enabled progress in agentic coding, where models autonomously reason, plan, and act within interactive software development workflows. However, bridging the gap between static text-based training and dynamic real-world agentic execution remains a core challenge. In this technical report, we present KAT-Coder, a large-scale agentic code model trained through a multi-stage curriculum encompassing Mid-Term Training, Supervised Fine-Tuning (SFT), Reinforcement Fine-Tuning (RFT), and Reinforcement-to-Deployment Adaptation. The Mid-Term stage enhances reasoning, planning, and reflection capabilities through a corpus of real software engineering data and synthetic agentic interactions. The SFT stage constructs a million-sample dataset balancing twenty programming languages, ten development contexts, and ten task archetypes. The RFT stage introduces a novel multi-ground-truth reward formulation for stable and sample-efficient policy optimization. Finally, the Reinforcement-to-Deployment phase adapts the model to production-grade IDE environments using Error-Masked SFT and Tree-Structured Trajectory Training. In summary, these stages enable KAT-Coder to achieve robust tool-use reliability, instruction alignment, and long-context reasoning, forming a deployable foundation for real-world intelligent coding agents. Our KAT series 32B model, KAT-Dev, has been open-sourced on https://huggingface.co/Kwaipilot/KAT-Dev.
♻ ☆ Training a Generally Curious Agent ICML 2025
Efficient exploration is essential for intelligent systems interacting with their environment, but existing language models often fall short in scenarios that require strategic information gathering. In this paper, we present Paprika, a fine-tuning approach that enables language models to develop general decision-making capabilities that are not confined to particular environments. By training on synthetic interaction data from different tasks that require diverse strategies, Paprika teaches models to explore and adapt their behavior on a new task based on environment feedback in-context without more gradient updates. Experimental results show that models fine-tuned with Paprika can effectively transfer their learned decision-making capabilities to entirely unseen tasks without additional training. Unlike traditional training, our approach's primary bottleneck lies in sampling useful interaction data instead of model updates. To improve sample efficiency, we propose a curriculum learning strategy that prioritizes sampling trajectories from tasks with high learning potential. These results suggest a promising path towards AI systems that can autonomously solve novel sequential decision-making problems that require interactions with the external world.
comment: ICML 2025. Project Website: https://paprika-llm.github.io
♻ ☆ Integrating Video and Text: A Balanced Approach to Multimodal Summary Generation and Evaluation
Vision-Language Models (VLMs) often struggle to balance visual and textual information when summarizing complex multimodal inputs, such as entire TV show episodes. In this paper, we propose a zero-shot video-to-text summarization approach that builds its own screenplay representation of an episode, effectively integrating key video moments, dialogue, and character information into a unified document. Unlike previous approaches, we simultaneously generate screenplays and name the characters in zero-shot, using only the audio, video, and transcripts as input. Additionally, we highlight that existing summarization metrics can fail to assess the multimodal content in summaries. To address this, we introduce MFactSum, a multimodal metric that evaluates summaries with respect to both vision and text modalities. Using MFactSum, we evaluate our screenplay summaries on the SummScreen3D dataset, demonstrating superiority against state-of-the-art VLMs such as Gemini 1.5 by generating summaries containing 20% more relevant visual information while requiring 75% less of the video as input.
♻ ☆ HiRA: A Hierarchical Reasoning Framework for Decoupled Planning and Execution in Deep Search
Complex information needs in real-world search scenarios demand deep reasoning and knowledge synthesis across diverse sources, which traditional retrieval-augmented generation (RAG) pipelines struggle to address effectively. Current reasoning-based approaches suffer from a fundamental limitation: they use a single model to handle both high-level planning and detailed execution, leading to inefficient reasoning and limited scalability. In this paper, we introduce HiRA, a hierarchical framework that separates strategic planning from specialized execution. Our approach decomposes complex search tasks into focused subtasks, assigns each subtask to domain-specific agents equipped with external tools and reasoning capabilities, and coordinates the results through a structured integration mechanism. This separation prevents execution details from disrupting high-level reasoning while enabling the system to leverage specialized expertise for different types of information processing. Experiments on four complex, cross-modal deep search benchmarks demonstrate that HiRA significantly outperforms state-of-the-art RAG and agent-based systems. Our results show improvements in both answer quality and system efficiency, highlighting the effectiveness of decoupled planning and execution for multi-step information seeking tasks. Our code is available at https://github.com/ignorejjj/HiRA.
comment: 9 pages
♻ ☆ E2Rank: Your Text Embedding can Also be an Effective and Efficient Listwise Reranker
Text embedding models serve as a fundamental component in real-world search applications. By mapping queries and documents into a shared embedding space, they deliver competitive retrieval performance with high efficiency. However, their ranking fidelity remains limited compared to dedicated rerankers, especially recent LLM-based listwise rerankers, which capture fine-grained query-document and document-document interactions. In this paper, we propose a simple yet effective unified framework E2Rank, means Efficient Embedding-based Ranking (also means Embedding-to-Rank), which extends a single text embedding model to perform both high-quality retrieval and listwise reranking through continued training under a listwise ranking objective, thereby achieving strong effectiveness with remarkable efficiency. By applying cosine similarity between the query and document embeddings as a unified ranking function, the listwise ranking prompt, which is constructed from the original query and its candidate documents, serves as an enhanced query enriched with signals from the top-K documents, akin to pseudo-relevance feedback (PRF) in traditional retrieval models. This design preserves the efficiency and representational quality of the base embedding model while significantly improving its reranking performance. Empirically, E2Rank achieves state-of-the-art results on the BEIR reranking benchmark and demonstrates competitive performance on the reasoning-intensive BRIGHT benchmark, with very low reranking latency. We also show that the ranking training process improves embedding performance on the MTEB benchmark. Our findings indicate that a single embedding model can effectively unify retrieval and reranking, offering both computational efficiency and competitive ranking accuracy.
comment: Code and models are avaliable at https://alibaba-nlp.github.io/E2Rank
♻ ☆ Multilingual State Space Models for Structured Question Answering in Indic Languages NAACL 2025
The diversity and complexity of Indic languages present unique challenges for natural language processing (NLP) tasks, particularly in the domain of question answering (QA).To address these challenges, this paper explores the application of State Space Models (SSMs),to build efficient and contextually aware QA systems tailored for Indic languages. SSMs are particularly suited for this task due to their ability to model long-term and short-term dependencies in sequential data, making them well-equipped to handle the rich morphology, complex syntax, and contextual intricacies characteristic of Indian languages. We evaluated multiple SSM architectures across diverse datasets representing various Indic languages and conducted a comparative analysis of their performance. Our results demonstrate that these models effectively capture linguistic subtleties, leading to significant improvements in question interpretation, context alignment, and answer generation. This work represents the first application of SSMs to question answering tasks in Indic languages, establishing a foundational benchmark for future research in this domain. We propose enhancements to existing SSM frameworks, optimizing their applicability to low-resource settings and multilingual scenarios prevalent in Indic languages.
comment: NAACL 2025 Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT)
♻ ☆ DiagramEval: Evaluating LLM-Generated Diagrams via Graphs EMNLP 2025
Diagrams play a central role in research papers for conveying ideas, yet they are often notoriously complex and labor-intensive to create. Although diagrams are presented as images, standard image generative models struggle to produce clear diagrams with well-defined structure. We argue that a promising direction is to generate demonstration diagrams directly in textual form as SVGs, which can leverage recent advances in large language models (LLMs). However, due to the complexity of components and the multimodal nature of diagrams, sufficiently discriminative and explainable metrics for evaluating the quality of LLM-generated diagrams remain lacking. In this paper, we propose DiagramEval, a novel evaluation metric designed to assess demonstration diagrams generated by LLMs. Specifically, DiagramEval conceptualizes diagrams as graphs, treating text elements as nodes and their connections as directed edges, and evaluates diagram quality using two new groups of metrics: node alignment and path alignment. For the first time, we effectively evaluate diagrams produced by state-of-the-art LLMs on recent research literature, quantitatively demonstrating the validity of our metrics. Furthermore, we show how the enhanced explainability of our proposed metrics offers valuable insights into the characteristics of LLM-generated diagrams. Code: https://github.com/ulab-uiuc/diagram-eval.
comment: EMNLP 2025 Main
♻ ☆ FUSE : A Ridge and Random Forest-Based Metric for Evaluating MT in Indigenous Languages NAACL 2025
This paper presents the winning submission of the RaaVa team to the AmericasNLP 2025 Shared Task 3 on Automatic Evaluation Metrics for Machine Translation (MT) into Indigenous Languages of America, where our system ranked first overall based on average Pearson correlation with the human annotations. We introduce Feature-Union Scorer (FUSE) for Evaluation, FUSE integrates Ridge regression and Gradient Boosting to model translation quality. In addition to FUSE, we explore five alternative approaches leveraging different combinations of linguistic similarity features and learning paradigms. FUSE Score highlights the effectiveness of combining lexical, phonetic, semantic, and fuzzy token similarity with learning-based modeling to improve MT evaluation for morphologically rich and low-resource languages. MT into Indigenous languages poses unique challenges due to polysynthesis, complex morphology, and non-standardized orthography. Conventional automatic metrics such as BLEU, TER, and ChrF often fail to capture deeper aspects like semantic adequacy and fluency. Our proposed framework, formerly referred to as FUSE, incorporates multilingual sentence embeddings and phonological encodings to better align with human evaluation. We train supervised models on human-annotated development sets and evaluate held-out test data. Results show that FUSE consistently achieves higher Pearson and Spearman correlations with human judgments, offering a robust and linguistically informed solution for MT evaluation in low-resource settings.
comment: NAACL 2025 Workshop on NLP for Indigenous Languages of the Americas
♻ ☆ MindSearch: Mimicking Human Minds Elicits Deep AI Searcher ICLR2025
Information seeking and integration is a complex cognitive task that consumes enormous time and effort. Inspired by the remarkable progress of Large Language Models, recent works attempt to solve this task by combining LLMs and search engines. However, these methods still obtain unsatisfying performance due to three challenges: (1) complex requests often cannot be accurately and completely retrieved by the search engine once (2) corresponding information to be integrated is spread over multiple web pages along with massive noise, and (3) a large number of web pages with long contents may quickly exceed the maximum context length of LLMs. Inspired by the cognitive process when humans solve these problems, we introduce MindSearch to mimic the human minds in web information seeking and integration, which can be instantiated by a simple yet effective LLM-based multi-agent framework. The WebPlanner models the human mind of multi-step information seeking as a dynamic graph construction process: it decomposes the user query into atomic sub-questions as nodes in the graph and progressively extends the graph based on the search result from WebSearcher. Tasked with each sub-question, WebSearcher performs hierarchical information retrieval with search engines and collects valuable information for WebPlanner. The multi-agent design of MindSearch enables the whole framework to seek and integrate information parallelly from larger-scale (e.g., more than 300) web pages in 3 minutes, which is worth 3 hours of human effort. MindSearch demonstrates significant improvement in the response quality in terms of depth and breadth, on both close-set and open-set QA problems. Besides, responses from MindSearch based on InternLM2.5-7B are preferable by humans to ChatGPT-Web and Perplexity.ai applications, which implies that MindSearch can already deliver a competitive solution to the proprietary AI search engine.
comment: ICLR2025. Project Page: https://mindsearch.netlify.app Code: https://github.com/InternLM/MindSearch
♻ ☆ Prompt-MII: Meta-Learning Instruction Induction for LLMs
A popular method to adapt large language models (LLMs) to new tasks is in-context learning (ICL), which is effective but incurs high inference costs as context length grows. In this paper we propose a method to perform instruction induction, where we take training examples and reduce them to a compact but descriptive prompt that can achieve performance comparable to ICL over the full training set. Specifically, we propose PROMPT-MII, a reinforcement learning (RL) based framework to meta-learn an instruction induction model that can generate compact instructions on the fly for an arbitrary new dataset. We train on over 3,000 diverse classification datasets from the HuggingFace hub, and evaluate on 90 unseen tasks. PROMPT-MII improves downstream model quality by 4-9 F1 points (10-20% relative), matching ICL performance while requiring 3-13x fewer tokens.
♻ ☆ NeuronMM: High-Performance Matrix Multiplication for LLM Inference on AWS Trainium EuroSys'26
AI accelerators, customized to AI workloads, provide cost-effective and high-performance solutions for training and inference. Trainium, an AI accelerator recently developed by Amazon Web Services (AWS), provides an attractive option for LLM training and inference through its heterogeneous architecture. However, leveraging Trainium architecture for high performance can be challenging because of its systolic array architecture and special requirement on data layout. In this paper, we design high-performance matrix multiplication (matmul), a critical compute kernel, for LLM inference on Trainium. We introduce a series of techniques customized to Trainium based on kernel fusion and novel caching strategies to reduce data movement across the software-managed memory hierarchy, maximize SRAM bandwidth, and avoid expensive matrix transpose. Evaluating with nine datasets and four recent LLMs, we show that our system largely outperforms the state-of-the-art matmul implemented by AWS on Trainium: at the level of matmul kernel, it achieves an average 1.35x speedup (up to 2.22x), which translates to an average 1.66x speedup (up to 2.49x) for end-to-end LLM inference.
comment: 12 pages, 8 figures, submitted to the Proceedings of the Twenty-First European Conference on Computer Systems (EuroSys'26)
♻ ☆ From Memorization to Reasoning in the Spectrum of Loss Curvature
We characterize how memorization is represented in transformer models and show that it can be disentangled in the weights of both language models (LMs) and vision transformers (ViTs) using a decomposition based on the loss landscape curvature. This insight is based on prior theoretical and empirical work showing that the curvature for memorized training points is much sharper than non memorized, meaning ordering weight components from high to low curvature can reveal a distinction without explicit labels. This motivates a weight editing procedure that suppresses far more recitation of untargeted memorized data more effectively than a recent unlearning method (BalancedSubnet), while maintaining lower perplexity. Since the basis of curvature has a natural interpretation for shared structure in model weights, we analyze the editing procedure extensively on its effect on downstream tasks in LMs, and find that fact retrieval and arithmetic are specifically and consistently negatively affected, even though open book fact retrieval and general logical reasoning is conserved. We posit these tasks rely heavily on specialized directions in weight space rather than general purpose mechanisms, regardless of whether those individual datapoints are memorized. We support this by showing a correspondence between task data's activation strength with low curvature components that we edit out, and the drop in task performance after the edit. Our work enhances the understanding of memorization in neural networks with practical applications towards removing it, and provides evidence for idiosyncratic, narrowly-used structures involved in solving tasks like math and fact retrieval.
Information Retrieval 18
☆ Image Hashing via Cross-View Code Alignment in the Age of Foundation Models
Efficient large-scale retrieval requires representations that are both compact and discriminative. Foundation models provide powerful visual and multimodal embeddings, but nearest neighbor search in these high-dimensional spaces is computationally expensive. Hashing offers an efficient alternative by enabling fast Hamming distance search with binary codes, yet existing approaches often rely on complex pipelines, multi-term objectives, designs specialized for a single learning paradigm, and long training times. We introduce CroVCA (Cross-View Code Alignment), a simple and unified principle for learning binary codes that remain consistent across semantically aligned views. A single binary cross-entropy loss enforces alignment, while coding-rate maximization serves as an anti-collapse regularizer to promote balanced and diverse codes. To implement this, we design HashCoder, a lightweight MLP hashing network with a final batch normalization layer to enforce balanced codes. HashCoder can be used as a probing head on frozen embeddings or to adapt encoders efficiently via LoRA fine-tuning. Across benchmarks, CroVCA achieves state-of-the-art results in just 5 training epochs. At 16 bits, it particularly well-for instance, unsupervised hashing on COCO completes in under 2 minutes and supervised hashing on ImageNet100 in about 3 minutes on a single GPU. These results highlight CroVCA's efficiency, adaptability, and broad applicability.
☆ Towards Universal Video Retrieval: Generalizing Video Embedding via Synthesized Multimodal Pyramid Curriculum
The prevailing video retrieval paradigm is structurally misaligned, as narrow benchmarks incentivize correspondingly limited data and single-task training. Therefore, universal capability is suppressed due to the absence of a diagnostic evaluation that defines and demands multi-dimensional generalization. To break this cycle, we introduce a framework built on the co-design of evaluation, data, and modeling. First, we establish the Universal Video Retrieval Benchmark (UVRB), a suite of 16 datasets designed not only to measure performance but also to diagnose critical capability gaps across tasks and domains. Second, guided by UVRB's diagnostics, we introduce a scalable synthesis workflow that generates 1.55 million high-quality pairs to populate the semantic space required for universality. Finally, we devise the Modality Pyramid, a curriculum that trains our General Video Embedder (GVE) by explicitly leveraging the latent interconnections within our diverse data. Extensive experiments show GVE achieves state-of-the-art zero-shot generalization on UVRB. In particular, our analysis reveals that popular benchmarks are poor predictors of general ability and that partially relevant retrieval is a dominant but overlooked scenario. Overall, our co-designed framework provides a practical path to escape the limited scope and advance toward truly universal video retrieval.
☆ Interact-RAG: Reason and Interact with the Corpus, Beyond Black-Box Retrieval
Retrieval-Augmented Generation (RAG) has significantly enhanced LLMs by incorporating external information. However, prevailing agentic RAG approaches are constrained by a critical limitation: they treat the retrieval process as a black-box querying operation. This confines agents' actions to query issuing, hindering its ability to tackle complex information-seeking tasks. To address this, we introduce Interact-RAG, a new paradigm that elevates the LLM agent from a passive query issuer into an active manipulator of the retrieval process. We dismantle the black-box with a Corpus Interaction Engine, equipping the agent with a set of action primitives for fine-grained control over information retrieval. To further empower the agent on the entire RAG pipeline, we first develop a reasoning-enhanced workflow, which enables both zero-shot execution and the synthesis of interaction trajectories. We then leverage this synthetic data to train a fully autonomous end-to-end agent via Supervised Fine-Tuning (SFT), followed by refinement with Reinforcement Learning (RL). Extensive experiments across six benchmarks demonstrate that Interact-RAG significantly outperforms other advanced methods, validating the efficacy of our reasoning-interaction strategy.
☆ Pairwise and Attribute-Aware Decision Tree-Based Preference Elicitation for Cold-Start Recommendation
Recommender systems (RSs) are intelligent filtering methods that suggest items to users based on their inferred preferences, derived from their interaction history on the platform. Collaborative filtering-based RSs rely on users past interactions to generate recommendations. However, when a user is new to the platform, referred to as a cold-start user, there is no historical data available, making it difficult to provide personalized recommendations. To address this, rating elicitation techniques can be used to gather initial ratings or preferences on selected items, helping to build an early understanding of the user's tastes. Rating elicitation approaches are generally categorized into two types: non-personalized and personalized. Decision tree-based rating elicitation is a personalized method that queries users about their preferences at each node of the tree until sufficient information is gathered. In this paper, we propose an extension to the decision tree approach for rating elicitation in the context of music recommendation. Our method: (i) elicits not only item ratings but also preferences on attributes such as genres to better cluster users, and (ii) uses item pairs instead of single items at each node to more effectively learn user preferences. Experimental results demonstrate that both proposed enhancements lead to improved performance, particularly with a reduced number of queries.
☆ Traceable Drug Recommendation over Medical Knowledge Graphs CIKM2025
Drug recommendation (DR) systems aim to support healthcare professionals in selecting appropriate medications based on patients' medical conditions. State-of-the-art approaches utilize deep learning techniques for improving DR, but fall short in providing any insights on the derivation process of recommendations -- a critical limitation in such high-stake applications. We propose TraceDR, a novel DR system operating over a medical knowledge graph (MKG), which ensures access to large-scale and high-quality information. TraceDR simultaneously predicts drug recommendations and related evidence within a multi-task learning framework, enabling traceability of medication recommendations. For covering a more diverse set of diseases and drugs than existing works, we devise a framework for automatically constructing patient health records and release DrugRec, a new large-scale testbed for DR.
comment: Accepted to MediKS@CIKM2025
☆ Research Output of Webology Journal (2013-2017): A Scientometric Analysis
Webology is an international peer-reviewed journal in English devoted to the field of the World Wide Web and serves as a forum for discussion and experimentation. It serves as a forum for new research in information dissemination and communication processes in general, and in the context of the World Wide Web in particular. This paper presents a Scientometric analysis of the Webology Journal. The paper analyses the pattern of growth of the research output published in the journal, pattern of authorship, author productivity, and subjects covered to the papers over the period (2013-2017). It is found that 62 papers were published during the period of study (2013-2017). The maximum numbers of articles were collaborative in nature. The subject concentration of the journal noted was Social Networking/Web 2.0/Library 2.0 and Scientometrics or Bibliometrics. Iranian researchers contributed the maximum number of articles (37.10%). The study applied standard formula and statistical tools to bring out the factual result.
comment: 13 pages, 3 figures, Research Paper
☆ Beyond a Million Tokens: Benchmarking and Enhancing Long-Term Memory in LLMs
Evaluating the abilities of large language models (LLMs) for tasks that require long-term memory and thus long-context reasoning, for example in conversational settings, is hampered by the existing benchmarks, which often lack narrative coherence, cover narrow domains, and only test simple recall-oriented tasks. This paper introduces a comprehensive solution to these challenges. First, we present a novel framework for automatically generating long (up to 10M tokens), coherent, and topically diverse conversations, accompanied by probing questions targeting a wide range of memory abilities. From this, we construct BEAM, a new benchmark comprising 100 conversations and 2,000 validated questions. Second, to enhance model performance, we propose LIGHT-a framework inspired by human cognition that equips LLMs with three complementary memory systems: a long-term episodic memory, a short-term working memory, and a scratchpad for accumulating salient facts. Our experiments on BEAM reveal that even LLMs with 1M token context windows (with and without retrieval-augmentation) struggle as dialogues lengthen. In contrast, LIGHT consistently improves performance across various models, achieving an average improvement of 3.5%-12.69% over the strongest baselines, depending on the backbone LLM. An ablation study further confirms the contribution of each memory component.
☆ DRAMA: Unifying Data Retrieval and Analysis for Open-Domain Analytic Queries SIGMOD 2026
Manually conducting real-world data analyses is labor-intensive and inefficient. Despite numerous attempts to automate data science workflows, none of the existing paradigms or systems fully demonstrate all three key capabilities required to support them effectively: (1) open-domain data collection, (2) structured data transformation, and (3) analytic reasoning. To overcome these limitations, we propose DRAMA, an end-to-end paradigm that answers users' analytic queries in natural language on large-scale open-domain data. DRAMA unifies data collection, transformation, and analysis as a single pipeline. To quantitatively evaluate system performance on tasks representative of DRAMA, we construct a benchmark, DRAMA-Bench, consisting of two categories of tasks: claim verification and question answering, each comprising 100 instances. These tasks are derived from real-world applications that have gained significant public attention and require the retrieval and analysis of open-domain data. We develop DRAMA-Bot, a multi-agent system designed following DRAMA. It comprises a data retriever that collects and transforms data by coordinating the execution of sub-agents, and a data analyzer that performs structured reasoning over the retrieved data. We evaluate DRAMA-Bot on DRAMA-Bench together with five state-of-the-art baseline agents. DRAMA-Bot achieves 86.5% task accuracy at a cost of $0.05, outperforming all baselines with up to 6.9 times the accuracy and less than 1/6 of the cost. DRAMA is publicly available at https://github.com/uiuc-kang-lab/drama.
comment: Accepted to SIGMOD 2026
☆ A Survey on Deep Text Hashing: Efficient Semantic Text Retrieval with Binary Representation
With the rapid growth of textual content on the Internet, efficient large-scale semantic text retrieval has garnered increasing attention from both academia and industry. Text hashing, which projects original texts into compact binary hash codes, is a crucial method for this task. By using binary codes, the semantic similarity computation for text pairs is significantly accelerated via fast Hamming distance calculations, and storage costs are greatly reduced. With the advancement of deep learning, deep text hashing has demonstrated significant advantages over traditional, data-independent hashing techniques. By leveraging deep neural networks, these methods can learn compact and semantically rich binary representations directly from data, overcoming the performance limitations of earlier approaches. This survey investigates current deep text hashing methods by categorizing them based on their core components: semantic extraction, hash code quality preservation, and other key technologies. We then present a detailed evaluation schema with results on several popular datasets, followed by a discussion of practical applications and open-source tools for implementation. Finally, we conclude by discussing key challenges and future research directions, including the integration of deep text hashing with large language models to further advance the field. The project for this survey can be accessed at https://github.com/hly1998/DeepTextHashing.
☆ A Survey on Generative Recommendation: Data, Model, and Tasks
Recommender systems serve as foundational infrastructure in modern information ecosystems, helping users navigate digital content and discover items aligned with their preferences. At their core, recommender systems address a fundamental problem: matching users with items. Over the past decades, the field has experienced successive paradigm shifts, from collaborative filtering and matrix factorization in the machine learning era to neural architectures in the deep learning era. Recently, the emergence of generative models, especially large language models (LLMs) and diffusion models, have sparked a new paradigm: generative recommendation, which reconceptualizes recommendation as a generation task rather than discriminative scoring. This survey provides a comprehensive examination through a unified tripartite framework spanning data, model, and task dimensions. Rather than simply categorizing works, we systematically decompose approaches into operational stages-data augmentation and unification, model alignment and training, task formulation and execution. At the data level, generative models enable knowledge-infused augmentation and agent-based simulation while unifying heterogeneous signals. At the model level, we taxonomize LLM-based methods, large recommendation models, and diffusion approaches, analyzing their alignment mechanisms and innovations. At the task level, we illuminate new capabilities including conversational interaction, explainable reasoning, and personalized content generation. We identify five key advantages: world knowledge integration, natural language understanding, reasoning capabilities, scaling laws, and creative generation. We critically examine challenges in benchmark design, model robustness, and deployment efficiency, while charting a roadmap toward intelligent recommendation assistants that fundamentally reshape human-information interaction.
☆ Compass: General Filtered Search across Vector and Structured Data
The increasing prevalence of hybrid vector and relational data necessitates efficient, general support for queries that combine high-dimensional vector search with complex relational filtering. However, existing filtered search solutions are fundamentally limited by specialized indices, which restrict arbitrary filtering and hinder integration with general-purpose DBMSs. This work introduces \textsc{Compass}, a unified framework that enables general filtered search across vector and structured data without relying on new index designs. Compass leverages established index structures -- such as HNSW and IVF for vector attributes, and B+-trees for relational attributes -- implementing a principled cooperative query execution strategy that coordinates candidate generation and predicate evaluation across modalities. Uniquely, Compass maintains generality by allowing arbitrary conjunctions, disjunctions, and range predicates, while ensuring robustness even with highly-selective or multi-attribute filters. Comprehensive empirical evaluations demonstrate that Compass consistently outperforms NaviX, the only existing performant general framework, across diverse hybrid query workloads. It also matches the query throughput of specialized single-attribute indices in their favorite settings with only a single attribute involved, all while maintaining full generality and DBMS compatibility. Overall, Compass offers a practical and robust solution for achieving truly general filtered search in vector database systems.
♻ ☆ UNGER: Generative Recommendation with A Unified Code via Semantic and Collaborative Integration
With the rise of generative paradigms, generative recommendation has garnered increasing attention. The core component is the item code, generally derived by quantizing collaborative or semantic representations to serve as candidate items identifiers in the context. However, existing methods typically construct separate codes for each modality, leading to higher computational and storage costs and hindering the integration of their complementary strengths. Considering this limitation, we seek to integrate two different modalities into a unified code, fully unleashing the potential of complementary nature among modalities. Nevertheless, the integration remains challenging: the integrated embedding obtained by the common concatenation method would lead to underutilization of collaborative knowledge, thereby resulting in limited effectiveness. To address this, we propose a novel method, named UNGER, which integrates semantic and collaborative knowledge into a unified code for generative recommendation. Specifically, we propose to adaptively learn an integrated embedding through the joint optimization of cross-modality knowledge alignment and next item prediction tasks. Subsequently, to mitigate the information loss caused by the quantization process, we introduce an intra-modality knowledge distillation task, using the integrated embeddings as supervised signals to compensate. Extensive experiments on three widely used benchmarks demonstrate the superiority of our approach compared to existing methods.
comment: Accepted by TOIS 2025
♻ ☆ LLM Based Long Code Translation using Identifier Replacement
In the domain of software development, LLMs have been utilized to automate tasks such as code translation, where source code from one programming language is translated to another while preserving its functionality. However, LLMs often struggle with long source codes that don't fit into the context window, which produces inaccurate translations. To address this, we propose a novel zero-shot code translation method that incorporates identifier replacement. By substituting user-given long identifiers with generalized placeholders during translation, our method allows the LLM to focus on the logical structure of the code, by reducing token count and memory usage, which improves the efficiency and cost-effectiveness of long code translation. Our empirical results demonstrate that our approach preserves syntactical and hierarchical information and produces translation results with reduced tokens.
♻ ☆ R$^2$ec: Towards Large Recommender Models with Reasoning
Large recommender models have extended LLMs as powerful recommenders via encoding or item generation, and recent breakthroughs in LLM reasoning synchronously motivate the exploration of reasoning in recommendation. In this work, we propose R$^2$ec, a unified large recommender model with intrinsic reasoning capability. R$^2$ec introduces a dual-head architecture that supports both reasoning chain generation and efficient item prediction in a single model, significantly reducing inference latency. To overcome the lack of annotated reasoning data, we design RecPO, a reinforcement learning framework that optimizes reasoning and recommendation jointly with a novel fused reward mechanism. Extensive experiments on three datasets demonstrate that R$^2$ec outperforms traditional, LLM-based, and reasoning-augmented recommender baselines, while further analyses validate its competitive efficiency among conventional LLM-based recommender baselines and strong adaptability to diverse recommendation scenarios. Code and checkpoints available at https://github.com/YRYangang/RRec.
comment: Accepted by Neurips 2025
♻ ☆ HiRA: A Hierarchical Reasoning Framework for Decoupled Planning and Execution in Deep Search
Complex information needs in real-world search scenarios demand deep reasoning and knowledge synthesis across diverse sources, which traditional retrieval-augmented generation (RAG) pipelines struggle to address effectively. Current reasoning-based approaches suffer from a fundamental limitation: they use a single model to handle both high-level planning and detailed execution, leading to inefficient reasoning and limited scalability. In this paper, we introduce HiRA, a hierarchical framework that separates strategic planning from specialized execution. Our approach decomposes complex search tasks into focused subtasks, assigns each subtask to domain-specific agents equipped with external tools and reasoning capabilities, and coordinates the results through a structured integration mechanism. This separation prevents execution details from disrupting high-level reasoning while enabling the system to leverage specialized expertise for different types of information processing. Experiments on four complex, cross-modal deep search benchmarks demonstrate that HiRA significantly outperforms state-of-the-art RAG and agent-based systems. Our results show improvements in both answer quality and system efficiency, highlighting the effectiveness of decoupled planning and execution for multi-step information seeking tasks. Our code is available at https://github.com/ignorejjj/HiRA.
comment: 9 pages
♻ ☆ CogPlanner: Unveiling the Potential of Agentic Multimodal Retrieval Augmented Generation with Planning SIGIR
Multimodal Retrieval Augmented Generation (MRAG) systems have shown promise in enhancing the generation capabilities of multimodal large language models (MLLMs). However, existing MRAG frameworks primarily adhere to rigid, single-step retrieval strategies that fail to address real-world challenges of information acquisition and query reformulation. In this work, we introduce the task of Multimodal Retrieval Augmented Generation Planning (MRAG Planning) that aims at effective information seeking and integration while minimizing computational overhead. Specifically, we propose CogPlanner, an agentic plug-and-play framework inspired by human cognitive processes, which iteratively determines query reformulation and retrieval strategies to generate accurate and contextually relevant responses. CogPlanner supports parallel and sequential modeling paradigms. Furthermore, we introduce CogBench, a new benchmark designed to rigorously evaluate the MRAG Planning task and facilitate lightweight CogPlanner integration with resource-efficient MLLMs, such as Qwen2-VL-7B-Cog. Experimental results demonstrate that CogPlanner significantly outperforms existing MRAG baselines, offering improvements in both accuracy and efficiency with minimal additional computational costs.
comment: Accepted by SIGIR-AP 2025
♻ ☆ E2Rank: Your Text Embedding can Also be an Effective and Efficient Listwise Reranker
Text embedding models serve as a fundamental component in real-world search applications. By mapping queries and documents into a shared embedding space, they deliver competitive retrieval performance with high efficiency. However, their ranking fidelity remains limited compared to dedicated rerankers, especially recent LLM-based listwise rerankers, which capture fine-grained query-document and document-document interactions. In this paper, we propose a simple yet effective unified framework E2Rank, means Efficient Embedding-based Ranking (also means Embedding-to-Rank), which extends a single text embedding model to perform both high-quality retrieval and listwise reranking through continued training under a listwise ranking objective, thereby achieving strong effectiveness with remarkable efficiency. By applying cosine similarity between the query and document embeddings as a unified ranking function, the listwise ranking prompt, which is constructed from the original query and its candidate documents, serves as an enhanced query enriched with signals from the top-K documents, akin to pseudo-relevance feedback (PRF) in traditional retrieval models. This design preserves the efficiency and representational quality of the base embedding model while significantly improving its reranking performance. Empirically, E2Rank achieves state-of-the-art results on the BEIR reranking benchmark and demonstrates competitive performance on the reasoning-intensive BRIGHT benchmark, with very low reranking latency. We also show that the ranking training process improves embedding performance on the MTEB benchmark. Our findings indicate that a single embedding model can effectively unify retrieval and reranking, offering both computational efficiency and competitive ranking accuracy.
comment: Code and models are avaliable at https://alibaba-nlp.github.io/E2Rank
♻ ☆ Improving Product Search Relevance with EAR-MP: A Solution for the CIKM 2025 AnalytiCup
Multilingual e-commerce search is challenging due to linguistic diversity and the noise inherent in user-generated queries. This paper documents the solution employed by our team (EAR-MP) for the CIKM 2025 AnalytiCup, which addresses two core tasks: Query-Category (QC) relevance and Query-Item (QI) relevance. Our approach first normalizes the multilingual dataset by translating all text into English, then mitigates noise through extensive data cleaning and normalization. For model training, we build on DeBERTa-v3-large and improve performance with label smoothing, self-distillation, and dropout. In addition, we introduce task-specific upgrades, including hierarchical token injection for QC and a hybrid scoring mechanism for QI. Under constrained compute, our method achieves competitive results, attaining an F1 score of 0.8796 on QC and 0.8744 on QI. These findings underscore the importance of systematic data preprocessing and tailored training strategies for building robust, resource-efficient multilingual relevance systems.
Machine Learning 150
☆ Continuous Autoregressive Language Models
The efficiency of large language models (LLMs) is fundamentally limited by their sequential, token-by-token generation process. We argue that overcoming this bottleneck requires a new design axis for LLM scaling: increasing the semantic bandwidth of each generative step. To this end, we introduce Continuous Autoregressive Language Models (CALM), a paradigm shift from discrete next-token prediction to continuous next-vector prediction. CALM uses a high-fidelity autoencoder to compress a chunk of K tokens into a single continuous vector, from which the original tokens can be reconstructed with over 99.9\% accuracy. This allows us to model language as a sequence of continuous vectors instead of discrete tokens, which reduces the number of generative steps by a factor of K. The paradigm shift necessitates a new modeling toolkit; therefore, we develop a comprehensive likelihood-free framework that enables robust training, evaluation, and controllable sampling in the continuous domain. Experiments show that CALM significantly improves the performance-compute trade-off, achieving the performance of strong discrete baselines at a significantly lower computational cost. More importantly, these findings establish next-vector prediction as a powerful and scalable pathway towards ultra-efficient language models. Code: https://github.com/shaochenze/calm. Project: https://shaochenze.github.io/blog/2025/CALM.
☆ PETAR: Localized Findings Generation with Mask-Aware Vision-Language Modeling for PET Automated Reporting
Recent advances in vision-language models (VLMs) have enabled impressive multimodal reasoning, yet most medical applications remain limited to 2D imaging. In this work, we extend VLMs to 3D positron emission tomography and computed tomography (PET/CT), a domain characterized by large volumetric data, small and dispersed lesions, and lengthy radiology reports. We introduce a large-scale dataset comprising over 11,000 lesion-level descriptions paired with 3D segmentations from more than 5,000 PET/CT exams, extracted via a hybrid rule-based and large language model (LLM) pipeline. Building upon this dataset, we propose PETAR-4B, a 3D mask-aware vision-language model that integrates PET, CT, and lesion contours for spatially grounded report generation. PETAR bridges global contextual reasoning with fine-grained lesion awareness, producing clinically coherent and localized findings. Comprehensive automated and human evaluations demonstrate that PETAR substantially improves PET/CT report generation quality, advancing 3D medical vision-language understanding.
☆ Dark-Field X-Ray Imaging Significantly Improves Deep-Learning based Detection of Synthetic Early-Stage Lung Tumors in Preclinical Models
Low-dose computed tomography (LDCT) is the current standard for lung cancer screening, yet its adoption and accessibility remain limited. Many regions lack LDCT infrastructure, and even among those screened, early-stage cancer detection often yield false positives, as shown in the National Lung Screening Trial (NLST) with a sensitivity of 93.8 percent and a false-positive rate of 26.6 percent. We aim to investigate whether X-ray dark-field imaging (DFI) radiograph, a technique sensitive to small-angle scatter from alveolar microstructure and less susceptible to organ shadowing, can significantly improve early-stage lung tumor detection when coupled with deep-learning segmentation. Using paired attenuation (ATTN) and DFI radiograph images of euthanized mouse lungs, we generated realistic synthetic tumors with irregular boundaries and intensity profiles consistent with physical lung contrast. A U-Net segmentation network was trained on small patches using either ATTN, DFI, or a combination of ATTN and DFI channels.Results show that the DFI-only model achieved a true-positive detection rate of 83.7 percent, compared with 51 percent for ATTN-only, while maintaining comparable specificity (90.5 versus 92.9 percent). The combined ATTN and DFI input achieved 79.6 percent sensitivity and 97.6 percent specificity. In conclusion, DFI substantially improves early-tumor detectability in comparison to standard attenuation radiography and shows potential as an accessible, low-cost, low-dose alternative for pre-clinical or limited-resource screening where LDCT is unavailable.
☆ On Selecting Few-Shot Examples for LLM-based Code Vulnerability Detection
Large language models (LLMs) have demonstrated impressive capabilities for many coding tasks, including summarization, translation, completion, and code generation. However, detecting code vulnerabilities remains a challenging task for LLMs. An effective way to improve LLM performance is in-context learning (ICL) - providing few-shot examples similar to the query, along with correct answers, can improve an LLM's ability to generate correct solutions. However, choosing the few-shot examples appropriately is crucial to improving model performance. In this paper, we explore two criteria for choosing few-shot examples for ICL used in the code vulnerability detection task. The first criterion considers if the LLM (consistently) makes a mistake or not on a sample with the intuition that LLM performance on a sample is informative about its usefulness as a few-shot example. The other criterion considers similarity of the examples with the program under query and chooses few-shot examples based on the $k$-nearest neighbors to the given sample. We perform evaluations to determine the benefits of these criteria individually as well as under various combinations, using open-source models on multiple datasets.
☆ MolChord: Structure-Sequence Alignment for Protein-Guided Drug Design
Structure-based drug design (SBDD), which maps target proteins to candidate molecular ligands, is a fundamental task in drug discovery. Effectively aligning protein structural representations with molecular representations, and ensuring alignment between generated drugs and their pharmacological properties, remains a critical challenge. To address these challenges, we propose MolChord, which integrates two key techniques: (1) to align protein and molecule structures with their textual descriptions and sequential representations (e.g., FASTA for proteins and SMILES for molecules), we leverage NatureLM, an autoregressive model unifying text, small molecules, and proteins, as the molecule generator, alongside a diffusion-based structure encoder; and (2) to guide molecules toward desired properties, we curate a property-aware dataset by integrating preference data and refine the alignment process using Direct Preference Optimization (DPO). Experimental results on CrossDocked2020 demonstrate that our approach achieves state-of-the-art performance on key evaluation metrics, highlighting its potential as a practical tool for SBDD.
comment: 21 pages
☆ Bayesian model selection and misspecification testing in imaging inverse problems only from noisy and partial measurements
Modern imaging techniques heavily rely on Bayesian statistical models to address difficult image reconstruction and restoration tasks. This paper addresses the objective evaluation of such models in settings where ground truth is unavailable, with a focus on model selection and misspecification diagnosis. Existing unsupervised model evaluation methods are often unsuitable for computational imaging due to their high computational cost and incompatibility with modern image priors defined implicitly via machine learning models. We herein propose a general methodology for unsupervised model selection and misspecification detection in Bayesian imaging sciences, based on a novel combination of Bayesian cross-validation and data fission, a randomized measurement splitting technique. The approach is compatible with any Bayesian imaging sampler, including diffusion and plug-and-play samplers. We demonstrate the methodology through experiments involving various scoring rules and types of model misspecification, where we achieve excellent selection and detection accuracy with a low computational cost.
☆ Challenges in Credit Assignment for Multi-Agent Reinforcement Learning in Open Agent Systems
In the rapidly evolving field of multi-agent reinforcement learning (MARL), understanding the dynamics of open systems is crucial. Openness in MARL refers to the dynam-ic nature of agent populations, tasks, and agent types with-in a system. Specifically, there are three types of openness as reported in (Eck et al. 2023) [2]: agent openness, where agents can enter or leave the system at any time; task openness, where new tasks emerge, and existing ones evolve or disappear; and type openness, where the capabil-ities and behaviors of agents change over time. This report provides a conceptual and empirical review, focusing on the interplay between openness and the credit assignment problem (CAP). CAP involves determining the contribution of individual agents to the overall system performance, a task that becomes increasingly complex in open environ-ments. Traditional credit assignment (CA) methods often assume static agent populations, fixed and pre-defined tasks, and stationary types, making them inadequate for open systems. We first conduct a conceptual analysis, in-troducing new sub-categories of openness to detail how events like agent turnover or task cancellation break the assumptions of environmental stationarity and fixed team composition that underpin existing CAP methods. We then present an empirical study using representative temporal and structural algorithms in an open environment. The results demonstrate that openness directly causes credit misattribution, evidenced by unstable loss functions and significant performance degradation.
☆ Information-Theoretic Greedy Layer-wise Training for Traffic Sign Recognition
Modern deep neural networks (DNNs) are typically trained with a global cross-entropy loss in a supervised end-to-end manner: neurons need to store their outgoing weights; training alternates between a forward pass (computation) and a top-down backward pass (learning) which is biologically implausible. Alternatively, greedy layer-wise training eliminates the need for cross-entropy loss and backpropagation. By avoiding the computation of intermediate gradients and the storage of intermediate outputs, it reduces memory usage and helps mitigate issues such as vanishing or exploding gradients. However, most existing layer-wise training approaches have been evaluated only on relatively small datasets with simple deep architectures. In this paper, we first systematically analyze the training dynamics of popular convolutional neural networks (CNNs) trained by stochastic gradient descent (SGD) through an information-theoretic lens. Our findings reveal that networks converge layer-by-layer from bottom to top and that the flow of information adheres to a Markov information bottleneck principle. Building on these observations, we propose a novel layer-wise training approach based on the recently developed deterministic information bottleneck (DIB) and the matrix-based R\'enyi's $\alpha$-order entropy functional. Specifically, each layer is trained jointly with an auxiliary classifier that connects directly to the output layer, enabling the learning of minimal sufficient task-relevant representations. We empirically validate the effectiveness of our training procedure on CIFAR-10 and CIFAR-100 using modern deep CNNs and further demonstrate its applicability to a practical task involving traffic sign recognition. Our approach not only outperforms existing layer-wise training baselines but also achieves performance comparable to SGD.
☆ Imbalanced Classification through the Lens of Spurious Correlations
Class imbalance poses a fundamental challenge in machine learning, frequently leading to unreliable classification performance. While prior methods focus on data- or loss-reweighting schemes, we view imbalance as a data condition that amplifies Clever Hans (CH) effects by underspecification of minority classes. In a counterfactual explanations-based approach, we propose to leverage Explainable AI to jointly identify and eliminate CH effects emerging under imbalance. Our method achieves competitive classification performance on three datasets and demonstrates how CH effects emerge under imbalance, a perspective largely overlooked by existing approaches.
☆ Bayesian Optimization on Networks
This paper studies optimization on networks modeled as metric graphs. Motivated by applications where the objective function is expensive to evaluate or only available as a black box, we develop Bayesian optimization algorithms that sequentially update a Gaussian process surrogate model of the objective to guide the acquisition of query points. To ensure that the surrogates are tailored to the network's geometry, we adopt Whittle-Mat\'ern Gaussian process prior models defined via stochastic partial differential equations on metric graphs. In addition to establishing regret bounds for optimizing sufficiently smooth objective functions, we analyze the practical case in which the smoothness of the objective is unknown and the Whittle-Mat\'ern prior is represented using finite elements. Numerical results demonstrate the effectiveness of our algorithms for optimizing benchmark objective functions on a synthetic metric graph and for Bayesian inversion via maximum a posteriori estimation on a telecommunication network.
comment: 36 pages, 6 figures; includes appendices
☆ SpecAttn: Speculating Sparse Attention NeurIPS 2025
Large Language Models (LLMs) face significant computational bottlenecks during inference due to the quadratic complexity of self-attention mechanisms, particularly as context lengths increase. We introduce SpecAttn, a novel training-free approach that seamlessly integrates with existing speculative decoding techniques to enable efficient sparse attention in pre-trained transformers. Our key insight is to exploit the attention weights already computed by the draft model during speculative decoding to identify important tokens for the target model, eliminating redundant computation while maintaining output quality. SpecAttn employs three core techniques: KL divergence-based layer alignment between draft and target models, a GPU-optimized sorting-free algorithm for top-p token selection from draft attention patterns, and dynamic key-value cache pruning guided by these predictions. By leveraging the computational work already performed in standard speculative decoding pipelines, SpecAttn achieves over 75% reduction in key-value cache accesses with a mere 15.29% increase in perplexity on the PG-19 dataset, significantly outperforming existing sparse attention methods. Our approach demonstrates that speculative execution can be enhanced to provide approximate verification without significant performance degradation.
comment: Accepted to NeurIPS 2025 Workshop on Structured Probabilistic Inference & Generative Modeling
☆ Enhancing software product lines with machine learning components
Modern software systems increasingly integrate machine learning (ML) due to its advancements and ability to enhance data-driven decision-making. However, this integration introduces significant challenges for software engineering, especially in software product lines (SPLs), where managing variability and reuse becomes more complex with the inclusion of ML components. Although existing approaches have addressed variability management in SPLs and the integration of ML components in isolated systems, few have explored the intersection of both domains. Specifically, there is limited support for modeling and managing variability in SPLs that incorporate ML components. To bridge this gap, this article proposes a structured framework designed to extend Software Product Line engineering, facilitating the integration of ML components. It facilitates the design of SPLs with ML capabilities by enabling systematic modeling of variability and reuse. The proposal has been partially implemented with the VariaMos tool.
comment: pp. 73-94, 2 figures
☆ Panprediction: Optimal Predictions for Any Downstream Task and Loss
Supervised learning is classically formulated as training a model to minimize a fixed loss function over a fixed distribution, or task. However, an emerging paradigm instead views model training as extracting enough information from data so that the model can be used to minimize many losses on many downstream tasks. We formalize a mathematical framework for this paradigm, which we call panprediction, and study its statistical complexity. Formally, panprediction generalizes omniprediction and sits upstream from multi-group learning, which respectively focus on predictions that generalize to many downstream losses or many downstream tasks, but not both. Concretely, we design algorithms that learn deterministic and randomized panpredictors with $\tilde{O}(1/\varepsilon^3)$ and $\tilde{O}(1/\varepsilon^2)$ samples, respectively. Our results demonstrate that under mild assumptions, simultaneously minimizing infinitely many losses on infinitely many tasks can be as statistically easy as minimizing one loss on one task. Along the way, we improve the best known sample complexity guarantee of deterministic omniprediction by a factor of $1/\varepsilon$, and match all other known sample complexity guarantees of omniprediction and multi-group learning. Our key technical ingredient is a nearly lossless reduction from panprediction to a statistically efficient notion of calibration, called step calibration.
comment: 25 pages
☆ ORGEval: Graph-Theoretic Evaluation of LLMs in Optimization Modeling
Formulating optimization problems for industrial applications demands significant manual effort and domain expertise. While Large Language Models (LLMs) show promise in automating this process, evaluating their performance remains difficult due to the absence of robust metrics. Existing solver-based approaches often face inconsistency, infeasibility issues, and high computational costs. To address these issues, we propose ORGEval, a graph-theoretic evaluation framework for assessing LLMs' capabilities in formulating linear and mixed-integer linear programs. ORGEval represents optimization models as graphs, reducing equivalence detection to graph isomorphism testing. We identify and prove a sufficient condition, when the tested graphs are symmetric decomposable (SD), under which the Weisfeiler-Lehman (WL) test is guaranteed to correctly detect isomorphism. Building on this, ORGEval integrates a tailored variant of the WL-test with an SD detection algorithm to evaluate model equivalence. By focusing on structural equivalence rather than instance-level configurations, ORGEval is robust to numerical variations. Experimental results show that our method can successfully detect model equivalence and produce 100\% consistent results across random parameter configurations, while significantly outperforming solver-based methods in runtime, especially on difficult problems. Leveraging ORGEval, we construct the Bench4Opt dataset and benchmark state-of-the-art LLMs on optimization modeling. Our results reveal that although optimization modeling remains challenging for all LLMs, DeepSeek-V3 and Claude-Opus-4 achieve the highest accuracies under direct prompting, outperforming even leading reasoning models.
☆ Learned Static Function Data Structures
We consider the task of constructing a data structure for associating a static set of keys with values, while allowing arbitrary output values for queries involving keys outside the set. Compared to hash tables, these so-called static function data structures do not need to store the key set and thus use significantly less memory. Several techniques are known, with compressed static functions approaching the zero-order empirical entropy of the value sequence. In this paper, we introduce learned static functions, which use machine learning to capture correlations between keys and values. For each key, a model predicts a probability distribution over the values, from which we derive a key-specific prefix code to compactly encode the true value. The resulting codeword is stored in a classic static function data structure. This design allows learned static functions to break the zero-order entropy barrier while still supporting point queries. Our experiments show substantial space savings: up to one order of magnitude on real data, and up to three orders of magnitude on synthetic data.
☆ Image Hashing via Cross-View Code Alignment in the Age of Foundation Models
Efficient large-scale retrieval requires representations that are both compact and discriminative. Foundation models provide powerful visual and multimodal embeddings, but nearest neighbor search in these high-dimensional spaces is computationally expensive. Hashing offers an efficient alternative by enabling fast Hamming distance search with binary codes, yet existing approaches often rely on complex pipelines, multi-term objectives, designs specialized for a single learning paradigm, and long training times. We introduce CroVCA (Cross-View Code Alignment), a simple and unified principle for learning binary codes that remain consistent across semantically aligned views. A single binary cross-entropy loss enforces alignment, while coding-rate maximization serves as an anti-collapse regularizer to promote balanced and diverse codes. To implement this, we design HashCoder, a lightweight MLP hashing network with a final batch normalization layer to enforce balanced codes. HashCoder can be used as a probing head on frozen embeddings or to adapt encoders efficiently via LoRA fine-tuning. Across benchmarks, CroVCA achieves state-of-the-art results in just 5 training epochs. At 16 bits, it particularly well-for instance, unsupervised hashing on COCO completes in under 2 minutes and supervised hashing on ImageNet100 in about 3 minutes on a single GPU. These results highlight CroVCA's efficiency, adaptability, and broad applicability.
☆ Towards Universal Video Retrieval: Generalizing Video Embedding via Synthesized Multimodal Pyramid Curriculum
The prevailing video retrieval paradigm is structurally misaligned, as narrow benchmarks incentivize correspondingly limited data and single-task training. Therefore, universal capability is suppressed due to the absence of a diagnostic evaluation that defines and demands multi-dimensional generalization. To break this cycle, we introduce a framework built on the co-design of evaluation, data, and modeling. First, we establish the Universal Video Retrieval Benchmark (UVRB), a suite of 16 datasets designed not only to measure performance but also to diagnose critical capability gaps across tasks and domains. Second, guided by UVRB's diagnostics, we introduce a scalable synthesis workflow that generates 1.55 million high-quality pairs to populate the semantic space required for universality. Finally, we devise the Modality Pyramid, a curriculum that trains our General Video Embedder (GVE) by explicitly leveraging the latent interconnections within our diverse data. Extensive experiments show GVE achieves state-of-the-art zero-shot generalization on UVRB. In particular, our analysis reveals that popular benchmarks are poor predictors of general ability and that partially relevant retrieval is a dominant but overlooked scenario. Overall, our co-designed framework provides a practical path to escape the limited scope and advance toward truly universal video retrieval.
☆ Optimal Convergence Analysis of DDPM for General Distributions
Score-based diffusion models have achieved remarkable empirical success in generating high-quality samples from target data distributions. Among them, the Denoising Diffusion Probabilistic Model (DDPM) is one of the most widely used samplers, generating samples via estimated score functions. Despite its empirical success, a tight theoretical understanding of DDPM -- especially its convergence properties -- remains limited. In this paper, we provide a refined convergence analysis of the DDPM sampler and establish near-optimal convergence rates under general distributional assumptions. Specifically, we introduce a relaxed smoothness condition parameterized by a constant $L$, which is small for many practical distributions (e.g., Gaussian mixture models). We prove that the DDPM sampler with accurate score estimates achieves a convergence rate of $$\widetilde{O}\left(\frac{d\min\{d,L^2\}}{T^2}\right)~\text{in Kullback-Leibler divergence},$$ where $d$ is the data dimension, $T$ is the number of iterations, and $\widetilde{O}$ hides polylogarithmic factors in $T$. This result substantially improves upon the best-known $d^2/T^2$ rate when $L < \sqrt{d}$. By establishing a matching lower bound, we show that our convergence analysis is tight for a wide array of target distributions. Moreover, it reveals that DDPM and DDIM share the same dependence on $d$, raising an interesting question of why DDIM often appears empirically faster.
☆ Toward Accurate Long-Horizon Robotic Manipulation: Language-to-Action with Foundation Models via Scene Graphs
This paper presents a framework that leverages pre-trained foundation models for robotic manipulation without domain-specific training. The framework integrates off-the-shelf models, combining multimodal perception from foundation models with a general-purpose reasoning model capable of robust task sequencing. Scene graphs, dynamically maintained within the framework, provide spatial awareness and enable consistent reasoning about the environment. The framework is evaluated through a series of tabletop robotic manipulation experiments, and the results highlight its potential for building robotic manipulation systems directly on top of off-the-shelf foundation models.
☆ AstuteRAG-FQA: Task-Aware Retrieval-Augmented Generation Framework for Proprietary Data Challenges in Financial Question Answering
Retrieval-Augmented Generation (RAG) shows significant promise in knowledge-intensive tasks by improving domain specificity, enhancing temporal relevance, and reducing hallucinations. However, applying RAG to finance encounters critical challenges: restricted access to proprietary datasets, limited retrieval accuracy, regulatory constraints, and sensitive data interpretation. We introduce AstuteRAG-FQA, an adaptive RAG framework tailored for Financial Question Answering (FQA), leveraging task-aware prompt engineering to address these challenges. The framework uses a hybrid retrieval strategy integrating both open-source and proprietary financial data while maintaining strict security protocols and regulatory compliance. A dynamic prompt framework adapts in real time to query complexity, improving precision and contextual relevance. To systematically address diverse financial queries, we propose a four-tier task classification: explicit factual, implicit factual, interpretable rationale, and hidden rationale involving implicit causal reasoning. For each category, we identify key challenges, datasets, and optimization techniques within the retrieval and generation process. The framework incorporates multi-layered security mechanisms including differential privacy, data anonymization, and role-based access controls to protect sensitive financial information. Additionally, AstuteRAG-FQA implements real-time compliance monitoring through automated regulatory validation systems that verify responses against industry standards and legal obligations. We evaluate three data integration techniques - contextual embedding, small model augmentation, and targeted fine-tuning - analyzing their efficiency and feasibility across varied financial environments.
☆ Representing Classical Compositions through Implication-Realization Temporal-Gestalt Graphs
Understanding the structural and cognitive underpinnings of musical compositions remains a key challenge in music theory and computational musicology. While traditional methods focus on harmony and rhythm, cognitive models such as the Implication-Realization (I-R) model and Temporal Gestalt theory offer insight into how listeners perceive and anticipate musical structure. This study presents a graph-based computational approach that operationalizes these models by segmenting melodies into perceptual units and annotating them with I-R patterns. These segments are compared using Dynamic Time Warping and organized into k-nearest neighbors graphs to model intra- and inter-segment relationships. Each segment is represented as a node in the graph, and nodes are further labeled with melodic expectancy values derived from Schellenberg's two-factor I-R model-quantifying pitch proximity and pitch reversal at the segment level. This labeling enables the graphs to encode both structural and cognitive information, reflecting how listeners experience musical tension and resolution. To evaluate the expressiveness of these graphs, we apply the Weisfeiler-Lehman graph kernel to measure similarity between and within compositions. Results reveal statistically significant distinctions between intra- and inter-graph structures. Segment-level analysis via multidimensional scaling confirms that structural similarity at the graph level reflects perceptual similarity at the segment level. Graph2vec embeddings and clustering demonstrate that these representations capture stylistic and structural features that extend beyond composer identity. These findings highlight the potential of graph-based methods as a structured, cognitively informed framework for computational music analysis, enabling a more nuanced understanding of musical structure and style through the lens of listener perception.
comment: 8 pages, 11 figures
☆ TetraJet-v2: Accurate NVFP4 Training for Large Language Models with Oscillation Suppression and Outlier Control
Large Language Models (LLMs) training is prohibitively expensive, driving interest in low-precision fully-quantized training (FQT). While novel 4-bit formats like NVFP4 offer substantial efficiency gains, achieving near-lossless training at such low precision remains challenging. We introduce TetraJet-v2, an end-to-end 4-bit FQT method that leverages NVFP4 for activations, weights, and gradients in all linear layers. We identify two critical issues hindering low-precision LLM training: weight oscillation and outliers. To address these, we propose: 1) an unbiased double-block quantization method for NVFP4 linear layers, 2) OsciReset, an algorithm to suppress weight oscillation, and 3) OutControl, an algorithm to retain outlier accuracy. TetraJet-v2 consistently outperforms prior FP4 training methods on pre-training LLMs across varying model sizes up to 370M and data sizes up to 200B tokens, reducing the performance gap to full-precision training by an average of 51.3%.
☆ Active transfer learning for structural health monitoring
Data for training structural health monitoring (SHM) systems are often expensive and/or impractical to obtain, particularly for labelled data. Population-based SHM (PBSHM) aims to address this limitation by leveraging data from multiple structures. However, data from different structures will follow distinct distributions, potentially leading to large generalisation errors for models learnt via conventional machine learning methods. To address this issue, transfer learning -- in the form of domain adaptation (DA) -- can be used to align the data distributions. Most previous approaches have only considered \emph{unsupervised} DA, where no labelled target data are available; they do not consider how to incorporate these technologies in an online framework -- updating as labels are obtained throughout the monitoring campaign. This paper proposes a Bayesian framework for DA in PBSHM, that can improve unsupervised DA mappings using a limited quantity of labelled target data. In addition, this model is integrated into an active sampling strategy to guide inspections to select the most informative observations to label -- leading to further reductions in the required labelled data to learn a target classifier. The effectiveness of this methodology is evaluated on a population of experimental bridges. Specifically, this population includes data corresponding to several damage states, as well as, a comprehensive set of environmental conditions. It is found that combining transfer learning and active learning can improve data efficiency when learning classification models in label-scarce scenarios. This result has implications for data-informed operation and maintenance of structures, suggesting a reduction in inspections over the operational lifetime of a structure -- and therefore a reduction in operational costs -- can be achieved.
☆ Leveraging Generic Time Series Foundation Models for EEG Classification
Foundation models for time series are emerging as powerful general-purpose backbones, yet their potential for domain-specific biomedical signals such as electroencephalography (EEG) remains rather unexplored. In this work, we investigate the applicability a recently proposed time series classification foundation model, to a different EEG tasks such as motor imagery classification and sleep stage prediction. We test two pretraining regimes: (a) pretraining on heterogeneous real-world time series from multiple domains, and (b) pretraining on purely synthetic data. We find that both variants yield strong performance, consistently outperforming EEGNet, a widely used convolutional baseline, and CBraMod, the most recent EEG-specific foundation model. These results suggest that generalist time series foundation models, even when pretrained on data of non-neural origin or on synthetic signals, can transfer effectively to EEG. Our findings highlight the promise of leveraging cross-domain pretrained models for brain signal analysis, suggesting that EEG may benefit from advances in the broader time series literature.
☆ Learning Sparse Approximate Inverse Preconditioners for Conjugate Gradient Solvers on GPUs NeurIPS 2025
The conjugate gradient solver (CG) is a prevalent method for solving symmetric and positive definite linear systems Ax=b, where effective preconditioners are crucial for fast convergence. Traditional preconditioners rely on prescribed algorithms to offer rigorous theoretical guarantees, while limiting their ability to exploit optimization from data. Existing learning-based methods often utilize Graph Neural Networks (GNNs) to improve the performance and speed up the construction. However, their reliance on incomplete factorization leads to significant challenges: the associated triangular solve hinders GPU parallelization in practice, and introduces long-range dependencies which are difficult for GNNs to model. To address these issues, we propose a learning-based method to generate GPU-friendly preconditioners, particularly using GNNs to construct Sparse Approximate Inverse (SPAI) preconditioners, which avoids triangular solves and requires only two matrix-vector products at each CG step. The locality of matrix-vector product is compatible with the local propagation mechanism of GNNs. The flexibility of GNNs also allows our approach to be applied in a wide range of scenarios. Furthermore, we introduce a statistics-based scale-invariant loss function. Its design matches CG's property that the convergence rate depends on the condition number, rather than the absolute scale of A, leading to improved performance of the learned preconditioner. Evaluations on three PDE-derived datasets and one synthetic dataset demonstrate that our method outperforms standard preconditioners (Diagonal, IC, and traditional SPAI) and previous learning-based preconditioners on GPUs. We reduce solution time on GPUs by 40%-53% (68%-113% faster), along with better condition numbers and superior generalization performance. Source code available at https://github.com/Adversarr/LearningSparsePreconditioner4GPU
comment: NeurIPS 2025, poster
☆ BiSparse-AAS: Bilinear Sparse Attention and Adaptive Spans Framework for Scalable and Efficient Text Summarization ICDM
Transformer-based architectures have advanced text summarization, yet their quadratic complexity limits scalability on long documents. This paper introduces BiSparse-AAS (Bilinear Sparse Attention with Adaptive Spans), a novel framework that combines sparse attention, adaptive spans, and bilinear attention to address these limitations. Sparse attention reduces computational costs by focusing on the most relevant parts of the input, while adaptive spans dynamically adjust the attention ranges. Bilinear attention complements both by modeling complex token interactions within this refined context. BiSparse-AAS consistently outperforms state-of-the-art baselines in both extractive and abstractive summarization tasks, achieving average ROUGE improvements of about 68.1% on CNN/DailyMail and 52.6% on XSum, while maintaining strong performance on OpenWebText and Gigaword datasets. By addressing efficiency, scalability, and long-sequence modeling, BiSparse-AAS provides a unified, practical solution for real-world text summarization applications.
comment: Accepted at the IEEE International Conference on Data Mining (ICDM) 2025, Washington, DC, USA
☆ Asynchronous Risk-Aware Multi-Agent Packet Routing for Ultra-Dense LEO Satellite Networks
The rise of ultra-dense LEO constellations creates a complex and asynchronous network environment, driven by their massive scale, dynamic topologies, and significant delays. This unique complexity demands an adaptive packet routing algorithm that is asynchronous, risk-aware, and capable of balancing diverse and often conflicting QoS objectives in a decentralized manner. However, existing methods fail to address this need, as they typically rely on impractical synchronous decision-making and/or risk-oblivious approaches. To tackle this gap, we introduce PRIMAL, an event-driven multi-agent routing framework designed specifically to allow each satellite to act independently on its own event-driven timeline, while managing the risk of worst-case performance degradation via a principled primal-dual approach. This is achieved by enabling agents to learn the full cost distribution of the targeted QoS objectives and constrain tail-end risks. Extensive simulations on a LEO constellation with 1584 satellites validate its superiority in effectively optimizing latency and balancing load. Compared to a recent risk-oblivious baseline, it reduces queuing delay by over 70%, and achieves a nearly 12 ms end-to-end delay reduction in loaded scenarios. This is accomplished by resolving the core conflict between naive shortest-path finding and congestion avoidance, highlighting such autonomous risk-awareness as a key to robust routing.
☆ DP-FedPGN: Finding Global Flat Minima for Differentially Private Federated Learning via Penalizing Gradient Norm
To prevent inference attacks in Federated Learning (FL) and reduce the leakage of sensitive information, Client-level Differentially Private Federated Learning (CL-DPFL) is widely used. However, current CL-DPFL methods usually result in sharper loss landscapes, which leads to a decrease in model generalization after differential privacy protection. By using Sharpness Aware Minimization (SAM), the current popular federated learning methods are to find a local flat minimum value to alleviate this problem. However, the local flatness may not reflect the global flatness in CL-DPFL. Therefore, to address this issue and seek global flat minima of models, we propose a new CL-DPFL algorithm, DP-FedPGN, in which we introduce a global gradient norm penalty to the local loss to find the global flat minimum. Moreover, by using our global gradient norm penalty, we not only find a flatter global minimum but also reduce the locally updated norm, which means that we further reduce the error of gradient clipping. From a theoretical perspective, we analyze how DP-FedPGN mitigates the performance degradation caused by DP. Meanwhile, the proposed DP-FedPGN algorithm eliminates the impact of data heterogeneity and achieves fast convergence. We also use R\'enyi DP to provide strict privacy guarantees and provide sensitivity analysis for local updates. Finally, we conduct effectiveness tests on both ResNet and Transformer models, and achieve significant improvements in six visual and natural language processing tasks compared to existing state-of-the-art algorithms. The code is available at https://github.com/junkangLiu0/DP-FedPGN
comment: 21 pages, 8 figures
☆ pDANSE: Particle-based Data-driven Nonlinear State Estimation from Nonlinear Measurements
We consider the problem of designing a data-driven nonlinear state estimation (DANSE) method that uses (noisy) nonlinear measurements of a process whose underlying state transition model (STM) is unknown. Such a process is referred to as a model-free process. A recurrent neural network (RNN) provides parameters of a Gaussian prior that characterize the state of the model-free process, using all previous measurements at a given time point. In the case of DANSE, the measurement system was linear, leading to a closed-form solution for the state posterior. However, the presence of a nonlinear measurement system renders a closed-form solution infeasible. Instead, the second-order statistics of the state posterior are computed using the nonlinear measurements observed at the time point. We address the nonlinear measurements using a reparameterization trick-based particle sampling approach, and estimate the second-order statistics of the state posterior. The proposed method is referred to as particle-based DANSE (pDANSE). The RNN of pDANSE uses sequential measurements efficiently and avoids the use of computationally intensive sequential Monte-Carlo (SMC) and/or ancestral sampling. We describe the semi-supervised learning method for pDANSE, which transitions to unsupervised learning in the absence of labeled data. Using a stochastic Lorenz-$63$ system as a benchmark process, we experimentally demonstrate the state estimation performance for four nonlinear measurement systems. We explore cubic nonlinearity and a camera-model nonlinearity where unsupervised learning is used; then we explore half-wave rectification nonlinearity and Cartesian-to-spherical nonlinearity where semi-supervised learning is used. The performance of state estimation is shown to be competitive vis-\`a-vis particle filters that have complete knowledge of the STM of the Lorenz-$63$ system.
comment: 11 pages, 10 figures, under review at IEEE Transactions on Signal Processing
☆ Minimax-Optimal Two-Sample Test with Sliced Wasserstein
We study the problem of nonparametric two-sample testing using the sliced Wasserstein (SW) distance. While prior theoretical and empirical work indicates that the SW distance offers a promising balance between strong statistical guarantees and computational efficiency, its theoretical foundations for hypothesis testing remain limited. We address this gap by proposing a permutation-based SW test and analyzing its performance. The test inherits finite-sample Type I error control from the permutation principle. Moreover, we establish non-asymptotic power bounds and show that the procedure achieves the minimax separation rate $n^{-1/2}$ over multinomial and bounded-support alternatives, matching the optimal guarantees of kernel-based tests while building on the geometric foundations of Wasserstein distances. Our analysis further quantifies the trade-off between the number of projections and statistical power. Finally, numerical experiments demonstrate that the test combines finite-sample validity with competitive power and scalability, and -- unlike kernel-based tests, which require careful kernel tuning -- it performs consistently well across all scenarios we consider.
☆ InertialAR: Autoregressive 3D Molecule Generation with Inertial Frames
Transformer-based autoregressive models have emerged as a unifying paradigm across modalities such as text and images, but their extension to 3D molecule generation remains underexplored. The gap stems from two fundamental challenges: (1) tokenizing molecules into a canonical 1D sequence of tokens that is invariant to both SE(3) transformations and atom index permutations, and (2) designing an architecture capable of modeling hybrid atom-based tokens that couple discrete atom types with continuous 3D coordinates. To address these challenges, we introduce InertialAR. InertialAR devises a canonical tokenization that aligns molecules to their inertial frames and reorders atoms to ensure SE(3) and permutation invariance. Moreover, InertialAR equips the attention mechanism with geometric awareness via geometric rotary positional encoding (GeoRoPE). In addition, it utilizes a hierarchical autoregressive paradigm to predict the next atom-based token, predicting the atom type first and then its 3D coordinates via Diffusion loss. Experimentally, InertialAR achieves state-of-the-art performance on 7 of the 10 evaluation metrics for unconditional molecule generation across QM9, GEOM-Drugs, and B3LYP. Moreover, it significantly outperforms strong baselines in controllable generation for targeted chemical functionality, attaining state-of-the-art results across all 5 metrics.
☆ FedAdamW: A Communication-Efficient Optimizer with Convergence and Generalization Guarantees for Federated Large Models
AdamW has become one of the most effective optimizers for training large-scale models. We have also observed its effectiveness in the context of federated learning (FL). However, directly applying AdamW in federated learning settings poses significant challenges: (1) due to data heterogeneity, AdamW often yields high variance in the second-moment estimate $\boldsymbol{v}$; (2) the local overfitting of AdamW may cause client drift; and (3) Reinitializing moment estimates ($\boldsymbol{v}$, $\boldsymbol{m}$) at each round slows down convergence. To address these challenges, we propose the first \underline{Fed}erated \underline{AdamW} algorithm, called \texttt{FedAdamW}, for training and fine-tuning various large models. \texttt{FedAdamW} aligns local updates with the global update using both a \textbf{local correction mechanism} and decoupled weight decay to mitigate local overfitting. \texttt{FedAdamW} efficiently aggregates the \texttt{mean} of the second-moment estimates to reduce their variance and reinitialize them. Theoretically, we prove that \texttt{FedAdamW} achieves a linear speedup convergence rate of $\mathcal{O}(\sqrt{(L \Delta \sigma_l^2)/(S K R \epsilon^2)}+(L \Delta)/R)$ without \textbf{heterogeneity assumption}, where $S$ is the number of participating clients per round, $K$ is the number of local iterations, and $R$ is the total number of communication rounds. We also employ PAC-Bayesian generalization analysis to explain the effectiveness of decoupled weight decay in local training. Empirically, we validate the effectiveness of \texttt{FedAdamW} on language and vision Transformer models. Compared to several baselines, \texttt{FedAdamW} significantly reduces communication rounds and improves test accuracy. The code is available in https://github.com/junkangLiu0/FedAdamW.
☆ Thought Branches: Interpreting LLM Reasoning Requires Resampling
Most work interpreting reasoning models studies only a single chain-of-thought (CoT), yet these models define distributions over many possible CoTs. We argue that studying a single sample is inadequate for understanding causal influence and the underlying computation. Though fully specifying this distribution is intractable, it can be understood by sampling. We present case studies using resampling to investigate model decisions. First, when a model states a reason for its action, does that reason actually cause the action? In "agentic misalignment" scenarios, we resample specific sentences to measure their downstream effects. Self-preservation sentences have small causal impact, suggesting they do not meaningfully drive blackmail. Second, are artificial edits to CoT sufficient for steering reasoning? These are common in literature, yet take the model off-policy. Resampling and selecting a completion with the desired property is a principled on-policy alternative. We find off-policy interventions yield small and unstable effects compared to resampling in decision-making tasks. Third, how do we understand the effect of removing a reasoning step when the model may repeat it post-edit? We introduce a resilience metric that repeatedly resamples to prevent similar content from reappearing downstream. Critical planning statements resist removal but have large effects when eliminated. Fourth, since CoT is sometimes "unfaithful", can our methods teach us anything in these settings? Adapting causal mediation analysis, we find that hints that have a causal effect on the output without being explicitly mentioned exert a subtle and cumulative influence on the CoT that persists even if the hint is removed. Overall, studying distributions via resampling enables reliable causal analysis, clearer narratives of model reasoning, and principled CoT interventions.
comment: Uzay Macar and Paul C. Bogdan contributed equally to this work, and their listed order was determined by coinflip
☆ Simplex-to-Euclidean Bijections for Categorical Flow Matching
We propose a method for learning and sampling from probability distributions supported on the simplex. Our approach maps the open simplex to Euclidean space via smooth bijections, leveraging the Aitchison geometry to define the mappings, and supports modeling categorical data by a Dirichlet interpolation that dequantizes discrete observations into continuous ones. This enables density modeling in Euclidean space through the bijection while still allowing exact recovery of the original discrete distribution. Compared to previous methods that operate on the simplex using Riemannian geometry or custom noise processes, our approach works in Euclidean space while respecting the Aitchison geometry, and achieves competitive performance on both synthetic and real-world data sets.
☆ Spectral Neural Graph Sparsification
Graphs are central to modeling complex systems in domains such as social networks, molecular chemistry, and neuroscience. While Graph Neural Networks, particularly Graph Convolutional Networks, have become standard tools for graph learning, they remain constrained by reliance on fixed structures and susceptibility to over-smoothing. We propose the Spectral Preservation Network, a new framework for graph representation learning that generates reduced graphs serving as faithful proxies of the original, enabling downstream tasks such as community detection, influence propagation, and information diffusion at a reduced computational cost. The Spectral Preservation Network introduces two key components: the Joint Graph Evolution layer and the Spectral Concordance loss. The former jointly transforms both the graph topology and the node feature matrix, allowing the structure and attributes to evolve adaptively across layers and overcoming the rigidity of static neighborhood aggregation. The latter regularizes these transformations by enforcing consistency in both the spectral properties of the graph and the feature vectors of the nodes. We evaluate the effectiveness of Spectral Preservation Network on node-level sparsification by analyzing well-established metrics and benchmarking against state-of-the-art methods. The experimental results demonstrate the superior performance and clear advantages of our approach.
☆ MVeLMA: Multimodal Vegetation Loss Modeling Architecture for Predicting Post-fire Vegetation Loss SP
Understanding post-wildfire vegetation loss is critical for developing effective ecological recovery strategies and is often challenging due to the extended time and effort required to capture the evolving ecosystem features. Recent works in this area have not fully explored all the contributing factors, their modalities, and interactions with each other. Furthermore, most research in this domain is limited by a lack of interpretability in predictive modeling, making it less useful in real-world settings. In this work, we propose a novel end-to-end ML pipeline called MVeLMA (\textbf{M}ultimodal \textbf{Ve}getation \textbf{L}oss \textbf{M}odeling \textbf{A}rchitecture) to predict county-wise vegetation loss from fire events. MVeLMA uses a multimodal feature integration pipeline and a stacked ensemble-based architecture to capture different modalities while also incorporating uncertainty estimation through probabilistic modeling. Through comprehensive experiments, we show that our model outperforms several state-of-the-art (SOTA) and baseline models in predicting post-wildfire vegetation loss. Furthermore, we generate vegetation loss confidence maps to identify high-risk counties, thereby helping targeted recovery efforts. The findings of this work have the potential to inform future disaster relief planning, ecological policy development, and wildlife recovery management.
comment: Accepted for 2025 ACM SIGSPATIAL conference
☆ Atlas-Alignment: Making Interpretability Transferable Across Language Models
Interpretability is crucial for building safe, reliable, and controllable language models, yet existing interpretability pipelines remain costly and difficult to scale. Interpreting a new model typically requires costly training of model-specific sparse autoencoders, manual or semi-automated labeling of SAE components, and their subsequent validation. We introduce Atlas-Alignment, a framework for transferring interpretability across language models by aligning unknown latent spaces to a Concept Atlas - a labeled, human-interpretable latent space - using only shared inputs and lightweight representational alignment techniques. Once aligned, this enables two key capabilities in previously opaque models: (1) semantic feature search and retrieval, and (2) steering generation along human-interpretable atlas concepts. Through quantitative and qualitative evaluations, we show that simple representational alignment methods enable robust semantic retrieval and steerable generation without the need for labeled concept data. Atlas-Alignment thus amortizes the cost of explainable AI and mechanistic interpretability: by investing in one high-quality Concept Atlas, we can make many new models transparent and controllable at minimal marginal cost.
☆ Estimation of aboveground biomass in a tropical dry forest: An intercomparison of airborne, unmanned, and space laser scanning
According to the Paris Climate Change Agreement, all nations are required to submit reports on their greenhouse gas emissions and absorption every two years by 2024. Consequently, forests play a crucial role in reducing carbon emissions, which is essential for meeting these obligations. Recognizing the significance of forest conservation in the global battle against climate change, Article 5 of the Paris Agreement emphasizes the need for high-quality forest data. This study focuses on enhancing methods for mapping aboveground biomass in tropical dry forests. Tropical dry forests are considered one of the least understood tropical forest environments; therefore, there is a need for accurate approaches to estimate carbon pools. We employ a comparative analysis of AGB estimates, utilizing different discrete and full-waveform laser scanning datasets in conjunction with Ordinary Least Squares and Bayesian approaches SVM. Airborne Laser Scanning, Unmanned Laser Scanning, and Space Laser Scanning were used as independent variables for extracting forest metrics. Variable selection, SVM regression tuning, and cross-validation via a machine-learning approach were applied to account for overfitting and underfitting. The results indicate that six key variables primarily related to tree height: Elev.minimum, Elev.L3, lev.MAD.mode, Elev.mode, Elev.MAD.median, and Elev.skewness, are important for AGB estimation using ALSD and ULSD , while Leaf Area Index, canopy coverage and height, terrain elevation, and full-waveform signal energy emerged as the most vital variables. AGB values estimated from ten permanent tropical dry forest plots in Costa Rica Guanacaste province ranged from 26.02 Mg/ha to 175.43 Mg/ha . The SVM regressions demonstrated a 17.89 error across all laser scanning systems, with SLSF W exhibiting the lowest error 17.07 in estimating total biomass per plot.
comment: 32 pages, 17 figures, research paper
☆ FedMuon: Accelerating Federated Learning with Matrix Orthogonalization
The core bottleneck of Federated Learning (FL) lies in the communication rounds. That is, how to achieve more effective local updates is crucial for reducing communication rounds. Existing FL methods still primarily use element-wise local optimizers (Adam/SGD), neglecting the geometric structure of the weight matrices. This often leads to the amplification of pathological directions in the weights during local updates, leading deterioration in the condition number and slow convergence. Therefore, we introduce the Muon optimizer in local, which has matrix orthogonalization to optimize matrix-structured parameters. Experimental results show that, in IID setting, Local Muon significantly accelerates the convergence of FL and reduces communication rounds compared to Local SGD and Local AdamW. However, in non-IID setting, independent matrix orthogonalization based on the local distributions of each client induces strong client drift. Applying Muon in non-IID FL poses significant challenges: (1) client preconditioner leading to client drift; (2) moment reinitialization. To address these challenges, we propose a novel Federated Muon optimizer (FedMuon), which incorporates two key techniques: (1) momentum aggregation, where clients use the aggregated momentum for local initialization; (2) local-global alignment, where the local gradients are aligned with the global update direction to significantly reduce client drift. Theoretically, we prove that \texttt{FedMuon} achieves a linear speedup convergence rate without the heterogeneity assumption, where $S$ is the number of participating clients per round, $K$ is the number of local iterations, and $R$ is the total number of communication rounds. Empirically, we validate the effectiveness of FedMuon on language and vision models. Compared to several baselines, FedMuon significantly reduces communication rounds and improves test accuracy.
☆ Interpretable Model-Aware Counterfactual Explanations for Random Forest
Despite their enormous predictive power, machine learning models are often unsuitable for applications in regulated industries such as finance, due to their limited capacity to provide explanations. While model-agnostic frameworks such as Shapley values have proved to be convenient and popular, they rarely align with the kinds of causal explanations that are typically sought after. Counterfactual case-based explanations, where an individual is informed of which circumstances would need to be different to cause a change in outcome, may be more intuitive and actionable. However, finding appropriate counterfactual cases is an open challenge, as is interpreting which features are most critical for the change in outcome. Here, we pose the question of counterfactual search and interpretation in terms of similarity learning, exploiting the representation learned by the random forest predictive model itself. Once a counterfactual is found, the feature importance of the explanation is computed as a function of which random forest partitions are crossed in order to reach it from the original instance. We demonstrate this method on both the MNIST hand-drawn digit dataset and the German credit dataset, finding that it generates explanations that are sparser and more useful than Shapley values.
comment: Presented at XAI-FIN-2025: International Joint Workshop on Explainable AI in Finance: Achieving Trustworthy Financial Decision-Making; November 15, 2025; Singapore
☆ Modality Alignment across Trees on Heterogeneous Hyperbolic Manifolds
Modality alignment is critical for vision-language models (VLMs) to effectively integrate information across modalities. However, existing methods extract hierarchical features from text while representing each image with a single feature, leading to asymmetric and suboptimal alignment. To address this, we propose Alignment across Trees, a method that constructs and aligns tree-like hierarchical features for both image and text modalities. Specifically, we introduce a semantic-aware visual feature extraction framework that applies a cross-attention mechanism to visual class tokens from intermediate Transformer layers, guided by textual cues to extract visual features with coarse-to-fine semantics. We then embed the feature trees of the two modalities into hyperbolic manifolds with distinct curvatures to effectively model their hierarchical structures. To align across the heterogeneous hyperbolic manifolds with different curvatures, we formulate a KL distance measure between distributions on heterogeneous manifolds, and learn an intermediate manifold for manifold alignment by minimizing the distance. We prove the existence and uniqueness of the optimal intermediate manifold. Experiments on taxonomic open-set classification tasks across multiple image datasets demonstrate that our method consistently outperforms strong baselines under few-shot and cross-domain settings.
☆ On the Equivalence of Optimal Transport Problem and Action Matching with Optimal Vector Fields
Flow Matching (FM) method in generative modeling maps arbitrary probability distributions by constructing an interpolation between them and then learning the vector field that defines ODE for this interpolation. Recently, it was shown that FM can be modified to map distributions optimally in terms of the quadratic cost function for any initial interpolation. To achieve this, only specific optimal vector fields, which are typical for solutions of Optimal Transport (OT) problems, need to be considered during FM loss minimization. In this note, we show that considering only optimal vector fields can lead to OT in another approach: Action Matching (AM). Unlike FM, which learns a vector field for a manually chosen interpolation between given distributions, AM learns the vector field that defines ODE for an entire given sequence of distributions.
☆ Measuring Chain-of-Thought Monitorability Through Faithfulness and Verbosity
Chain-of-thought (CoT) outputs let us read a model's step-by-step reasoning. Since any long, serial reasoning process must pass through this textual trace, the quality of the CoT is a direct window into what the model is thinking. This visibility could help us spot unsafe or misaligned behavior (monitorability), but only if the CoT is transparent about its internal reasoning (faithfulness). Fully measuring faithfulness is difficult, so researchers often focus on examining the CoT in cases where the model changes its answer after adding a cue to the input. This proxy finds some instances of unfaithfulness but loses information when the model maintains its answer, and does not investigate aspects of reasoning not tied to the cue. We extend these results to a more holistic sense of monitorability by introducing verbosity: whether the CoT lists every factor needed to solve the task. We combine faithfulness and verbosity into a single monitorability score that shows how well the CoT serves as the model's external `working memory', a property that many safety schemes based on CoT monitoring depend on. We evaluate instruction-tuned and reasoning models on BBH, GPQA, and MMLU. Our results show that models can appear faithful yet remain hard to monitor when they leave out key factors, and that monitorability differs sharply across model families. We release our evaluation code using the Inspect library to support reproducible future work.
comment: Project page at https://ajmeek.github.io/cot_monitorability_website/
☆ FPS: Feedforward-based Parameter Selection For Efficient Fine-Tuning
Parameter-Efficient Fine-Tuning (PEFT) has emerged as a key strategy for adapting large-scale pre-trained models to downstream tasks, but existing approaches face notable limitations. Addition-based methods, such as Adapters [1], introduce inference latency and engineering complexity, while selection-based methods like Gradient-based Parameter Selection (GPS) [2] require a full backward pass, which results in the same peak memory usage as full fine-tuning. To address this dilemma, we propose Feedforward-based Parameter Selection (FPS), a gradient-free method that identifies an optimal parameter subset in a single forward pass. FPS ranks parameters by the product of their magnitudes and corresponding input activations, leveraging both pre-trained knowledge and downstream data. Evaluated on $24$ visual tasks from FGVC and VTAB-1k, FPS achieves performance comparable to state-of-the-art methods while reducing peak memory usage by nearly $9 \times$ and accelerating parameter selection by about $2 \times$, offering a genuinely memory-efficient and practical solution for fine-tuning large-scale pre-trained models.
☆ Pairwise and Attribute-Aware Decision Tree-Based Preference Elicitation for Cold-Start Recommendation
Recommender systems (RSs) are intelligent filtering methods that suggest items to users based on their inferred preferences, derived from their interaction history on the platform. Collaborative filtering-based RSs rely on users past interactions to generate recommendations. However, when a user is new to the platform, referred to as a cold-start user, there is no historical data available, making it difficult to provide personalized recommendations. To address this, rating elicitation techniques can be used to gather initial ratings or preferences on selected items, helping to build an early understanding of the user's tastes. Rating elicitation approaches are generally categorized into two types: non-personalized and personalized. Decision tree-based rating elicitation is a personalized method that queries users about their preferences at each node of the tree until sufficient information is gathered. In this paper, we propose an extension to the decision tree approach for rating elicitation in the context of music recommendation. Our method: (i) elicits not only item ratings but also preferences on attributes such as genres to better cluster users, and (ii) uses item pairs instead of single items at each node to more effectively learn user preferences. Experimental results demonstrate that both proposed enhancements lead to improved performance, particularly with a reduced number of queries.
☆ Reasoning Models Sometimes Output Illegible Chains of Thought
Language models trained via outcome-based reinforcement learning (RL) to reason using chain-of-thought (CoT) have shown remarkable performance. Monitoring such a model's CoT may allow us to understand its intentions and detect potential malicious behavior. However, to be effective, this requires that CoTs are legible and faithful. We study CoT legibility across 14 reasoning models, finding that RL often causes reasoning to become illegible to both humans and AI monitors, with reasoning models (except Claude) generating illegible CoTs while returning to perfectly readable final answers. We show that models use illegible reasoning to reach correct answers (accuracy dropping by 53\% when forced to use only legible portions), yet find no correlation between legibility and performance when resampling - suggesting the relationship is more nuanced. We also find that legibility degrades on harder questions. We discuss potential hypotheses for these results, including steganography, training artifacts, and vestigial tokens. These results suggest that without explicit optimization for legibility, outcome-based RL naturally produces models with increasingly opaque reasoning processes, potentially undermining monitoring approaches.
☆ When AI Trading Agents Compete: Adverse Selection of Meta-Orders by Reinforcement Learning-Based Market Making
We investigate the mechanisms by which medium-frequency trading agents are adversely selected by opportunistic high-frequency traders. We use reinforcement learning (RL) within a Hawkes Limit Order Book (LOB) model in order to replicate the behaviours of high-frequency market makers. In contrast to the classical models with exogenous price impact assumptions, the Hawkes model accounts for endogenous price impact and other key properties of the market (Jain et al. 2024a). Given the real-world impracticalities of the market maker updating strategies for every event in the LOB, we formulate the high-frequency market making agent via an impulse control reinforcement learning framework (Jain et al. 2025). The RL used in the simulation utilises Proximal Policy Optimisation (PPO) and self-imitation learning. To replicate the adverse selection phenomenon, we test the RL agent trading against a medium frequency trader (MFT) executing a meta-order and demonstrate that, with training against the MFT meta-order execution agent, the RL market making agent learns to capitalise on the price drift induced by the meta-order. Recent empirical studies have shown that medium-frequency traders are increasingly subject to adverse selection by high-frequency trading agents. As high-frequency trading continues to proliferate across financial markets, the slippage costs incurred by medium-frequency traders are likely to increase over time. However, we do not observe that increased profits for the market making RL agent necessarily cause significantly increased slippages for the MFT agent.
☆ MedM2T: A MultiModal Framework for Time-Aware Modeling with Electronic Health Record and Electrocardiogram Data
The inherent multimodality and heterogeneous temporal structures of medical data pose significant challenges for modeling. We propose MedM2T, a time-aware multimodal framework designed to address these complexities. MedM2T integrates: (i) Sparse Time Series Encoder to flexibly handle irregular and sparse time series, (ii) Hierarchical Time-Aware Fusion to capture both micro- and macro-temporal patterns from multiple dense time series, such as ECGs, and (iii) Bi-Modal Attention to extract cross-modal interactions, which can be extended to any number of modalities. To mitigate granularity gaps between modalities, MedM2T uses modality-specific pre-trained encoders and aligns resulting features within a shared encoder. We evaluated MedM2T on MIMIC-IV and MIMIC-IV-ECG datasets for three tasks that encompass chronic and acute disease dynamics: 90-day cardiovascular disease (CVD) prediction, in-hospital mortality prediction, and ICU length-of-stay (LOS) regression. MedM2T outperformed state-of-the-art multimodal learning frameworks and existing time series models, achieving an AUROC of 0.947 and an AUPRC of 0.706 for CVD prediction; an AUROC of 0.901 and an AUPRC of 0.558 for mortality prediction; and Mean Absolute Error (MAE) of 2.31 for LOS regression. These results highlight the robustness and broad applicability of MedM2T, positioning it as a promising tool in clinical prediction. We provide the implementation of MedM2T at https://github.com/DHLab-TSENG/MedM2T.
comment: This preprint version of the manuscript has been submitted to the IEEE Journal of Biomedical and Health Informatics (JBHI) for review. The implementation of MedM2T is available at https://github.com/DHLab-TSENG/MedM2T
☆ Un-Attributability: Computing Novelty From Retrieval & Semantic Similarity
Understanding how language-model outputs relate to the pretraining corpus is central to studying model behavior. Most training data attribution (TDA) methods ask which training examples causally influence a given output, often using leave-one-out tests. We invert the question: which outputs cannot be attributed to any pretraining example? We introduce un-attributability as an operational measure of semantic novelty: an output is novel if the pretraining corpus contains no semantically similar context. We approximate this with a simple two-stage retrieval pipeline: index the corpus with lightweight GIST embeddings, retrieve the top-n candidates, then rerank with ColBERTv2. If the nearest corpus item is less attributable than a human-generated text reference, we consider the output of the model as novel. We evaluate on SmolLM and SmolLM2 and report three findings: (1) models draw on pretraining data across much longer spans than previously reported; (2) some domains systematically promote or suppress novelty; and (3) instruction tuning not only alters style but also increases novelty. Reframing novelty assessment around un-attributability enables efficient analysis at pretraining scale. We release ~20 TB of corpus chunks and index artifacts to support replication and large-scale extension of our analysis at https://huggingface.co/datasets/stai-tuebingen/faiss-smollm
☆ Binary Anomaly Detection in Streaming IoT Traffic under Concept Drift
With the growing volume of Internet of Things (IoT) network traffic, machine learning (ML)-based anomaly detection is more relevant than ever. Traditional batch learning models face challenges such as high maintenance and poor adaptability to rapid anomaly changes, known as concept drift. In contrast, streaming learning integrates online and incremental learning, enabling seamless updates and concept drift detection to improve robustness. This study investigates anomaly detection in streaming IoT traffic as binary classification, comparing batch and streaming learning approaches while assessing the limitations of current IoT traffic datasets. We simulated heterogeneous network data streams by carefully mixing existing datasets and streaming the samples one by one. Our results highlight the failure of batch models to handle concept drift, but also reveal persisting limitations of current datasets to expose model limitations due to low traffic heterogeneity. We also investigated the competitiveness of tree-based ML algorithms, well-known in batch anomaly detection, and compared it to non-tree-based ones, confirming the advantages of the former. Adaptive Random Forest achieved F1-score of 0.990 $\pm$ 0.006 at one-third the computational cost of its batch counterpart. Hoeffding Adaptive Tree reached F1-score of 0.910 $\pm$ 0.007, reducing computational cost by four times, making it a viable choice for online applications despite a slight trade-off in stability.
comment: 6 pages, 11 figures, 3 tables
☆ Temporal Cardiovascular Dynamics for Improved PPG-Based Heart Rate Estimation
The oscillations of the human heart rate are inherently complex and non-linear -- they are best described by mathematical chaos, and they present a challenge when applied to the practical domain of cardiovascular health monitoring in everyday life. In this work, we study the non-linear chaotic behavior of heart rate through mutual information and introduce a novel approach for enhancing heart rate estimation in real-life conditions. Our proposed approach not only explains and handles the non-linear temporal complexity from a mathematical perspective but also improves the deep learning solutions when combined with them. We validate our proposed method on four established datasets from real-life scenarios and compare its performance with existing algorithms thoroughly with extensive ablation experiments. Our results demonstrate a substantial improvement, up to 40\%, of the proposed approach in estimating heart rate compared to traditional methods and existing machine-learning techniques while reducing the reliance on multiple sensing modalities and eliminating the need for post-processing steps.
comment: ArXiv version of the IEEE JBHI paper (https://ieeexplore.ieee.org/abstract/document/11193709)
☆ Can LLMs Help You at Work? A Sandbox for Evaluating LLM Agents in Enterprise Environments EMNLP 2025
Enterprise systems are crucial for enhancing productivity and decision-making among employees and customers. Integrating LLM based systems into enterprise systems enables intelligent automation, personalized experiences, and efficient information retrieval, driving operational efficiency and strategic growth. However, developing and evaluating such systems is challenging due to the inherent complexity of enterprise environments, where data is fragmented across multiple sources and governed by sophisticated access controls. We present EnterpriseBench, a comprehensive benchmark that simulates enterprise settings, featuring 500 diverse tasks across software engineering, HR, finance, and administrative domains. Our benchmark uniquely captures key enterprise characteristics including data source fragmentation, access control hierarchies, and cross-functional workflows. Additionally, we provide a novel data generation pipeline that creates internally consistent enterprise tasks from organizational metadata. Experiments with state-of-the-art LLM agents demonstrate that even the most capable models achieve only 41.8% task completion, highlighting significant opportunities for improvement in enterprise-focused AI systems.
comment: Accepted at EMNLP 2025 Main Track
☆ HiF-DTA: Hierarchical Feature Learning Network for Drug-Target Affinity Prediction
Accurate prediction of Drug-Target Affinity (DTA) is crucial for reducing experimental costs and accelerating early screening in computational drug discovery. While sequence-based deep learning methods avoid reliance on costly 3D structures, they still overlook simultaneous modeling of global sequence semantic features and local topological structural features within drugs and proteins, and represent drugs as flat sequences without atomic-level, substructural-level, and molecular-level multi-scale features. We propose HiF-DTA, a hierarchical network that adopts a dual-pathway strategy to extract both global sequence semantic and local topological features from drug and protein sequences, and models drugs multi-scale to learn atomic, substructural, and molecular representations fused via a multi-scale bilinear attention module. Experiments on Davis, KIBA, and Metz datasets show HiF-DTA outperforms state-of-the-art baselines, with ablations confirming the importance of global-local extraction and multi-scale fusion.
comment: Accepted by International Conference on Bioinformatics and Biomedicine (BIBM 25)
☆ FOCUS: Efficient Keyframe Selection for Long Video Understanding
Multimodal large language models (MLLMs) represent images and video frames as visual tokens. Scaling from single images to hour-long videos, however, inflates the token budget far beyond practical limits. Popular pipelines therefore either uniformly subsample or apply keyframe selection with retrieval-style scoring using smaller vision-language models. However, these keyframe selection methods still rely on pre-filtering before selection to reduce the inference cost and can miss the most informative moments. We propose FOCUS, Frame-Optimistic Confidence Upper-bound Selection, a training-free, model-agnostic keyframe selection module that selects query-relevant frames under a strict token budget. FOCUS formulates keyframe selection as a combinatorial pure-exploration (CPE) problem in multi-armed bandits: it treats short temporal clips as arms, and uses empirical means and Bernstein confidence radius to identify informative regions while preserving exploration of uncertain areas. The resulting two-stage exploration-exploitation procedure reduces from a sequential policy with theoretical guarantees, first identifying high-value temporal regions, then selecting top-scoring frames within each region On two long-video question-answering benchmarks, FOCUS delivers substantial accuracy improvements while processing less than 2% of video frames. For videos longer than 20 minutes, it achieves an 11.9% gain in accuracy on LongVideoBench, demonstrating its effectiveness as a keyframe selection method and providing a simple and general solution for scalable long-video understanding with MLLMs.
☆ Traceable Drug Recommendation over Medical Knowledge Graphs CIKM2025
Drug recommendation (DR) systems aim to support healthcare professionals in selecting appropriate medications based on patients' medical conditions. State-of-the-art approaches utilize deep learning techniques for improving DR, but fall short in providing any insights on the derivation process of recommendations -- a critical limitation in such high-stake applications. We propose TraceDR, a novel DR system operating over a medical knowledge graph (MKG), which ensures access to large-scale and high-quality information. TraceDR simultaneously predicts drug recommendations and related evidence within a multi-task learning framework, enabling traceability of medication recommendations. For covering a more diverse set of diseases and drugs than existing works, we devise a framework for automatically constructing patient health records and release DrugRec, a new large-scale testbed for DR.
comment: Accepted to MediKS@CIKM2025
☆ Why Do Multilingual Reasoning Gaps Emerge in Reasoning Language Models?
Reasoning language models (RLMs) achieve strong performance on complex reasoning tasks, yet they still suffer from a multilingual reasoning gap, performing better in high-resource languages than in low-resource ones. While recent efforts have reduced this gap, its underlying causes remain largely unexplored. In this paper, we address this by showing that the multilingual reasoning gap largely stems from failures in language understanding-the model's inability to represent the multilingual input meaning into the dominant language (i.e., English) within its reasoning trace. This motivates us to examine whether understanding failures can be detected, as this ability could help mitigate the multilingual reasoning gap. To this end, we evaluate a range of detection methods and find that understanding failures can indeed be identified, with supervised approaches performing best. Building on this, we propose Selective Translation, a simple yet effective strategy that translates the multilingual input into English only when an understanding failure is detected. Experimental results show that Selective Translation bridges the multilingual reasoning gap, achieving near full-translation performance while using translation for only about 20% of inputs. Together, our work demonstrates that understanding failures are the primary cause of the multilingual reasoning gap and can be detected and selectively mitigated, providing key insight into its origin and a promising path toward more equitable multilingual reasoning. Our code and data are publicly available at https://github.com/deokhk/RLM_analysis.
☆ T3: Test-Time Model Merging in VLMs for Zero-Shot Medical Imaging Analysis
In medical imaging, vision-language models face a critical duality: pretrained networks offer broad robustness but lack subtle, modality-specific characteristics, while fine-tuned expert models achieve high in-distribution accuracy yet falter under modality shift. Existing model-merging techniques, designed for natural-image benchmarks, are simple and efficient but fail to deliver consistent gains across diverse medical modalities; their static interpolation limits reliability in varied clinical tasks. To address this, we introduce Test-Time Task adaptive merging (T^3), a backpropagation-free framework that computes per-sample interpolation coefficients via the Jensen-Shannon divergence between the two models' output distributions. T^3 dynamically preserves local precision when models agree and defers to generalist robustness under drift. To overcome the inference costs of sample-wise merging, we further propose a batch-wise extension, T^3_B, that computes a merging coefficient across a batch of samples, dramatically reducing computational bottleneck. Recognizing the lack of a standardized medical-merging benchmark, we present a rigorous cross-evaluation protocol spanning in-domain, base-to-novel, and corruptions across four modalities. Empirically, T^3 sets new state-of-the-art in Top-1 accuracy and error reduction, outperforming strong baselines while maintaining efficiency, paving the way for adaptive MVLM deployment in clinical settings. Our code is available at https://github.com/Razaimam45/TCube.
comment: Main: 11 pages, Supplementary: 9 pages 10 tables, 10 figures
☆ ODP-Bench: Benchmarking Out-of-Distribution Performance Prediction
Recently, there has been gradually more attention paid to Out-of-Distribution (OOD) performance prediction, whose goal is to predict the performance of trained models on unlabeled OOD test datasets, so that we could better leverage and deploy off-the-shelf trained models in risk-sensitive scenarios. Although progress has been made in this area, evaluation protocols in previous literature are inconsistent, and most works cover only a limited number of real-world OOD datasets and types of distribution shifts. To provide convenient and fair comparisons for various algorithms, we propose Out-of-Distribution Performance Prediction Benchmark (ODP-Bench), a comprehensive benchmark that includes most commonly used OOD datasets and existing practical performance prediction algorithms. We provide our trained models as a testbench for future researchers, thus guaranteeing the consistency of comparison and avoiding the burden of repeating the model training process. Furthermore, we also conduct in-depth experimental analyses to better understand their capability boundary.
☆ Higher-order Linear Attention
The quadratic cost of scaled dot-product attention is a central obstacle to scaling autoregressive language models to long contexts. Linear-time attention and State Space Models (SSMs) provide scalable alternatives but are typically restricted to first-order or kernel-based approximations, which can limit expressivity. We introduce Higher-order Linear Attention (HLA), a causal, streaming mechanism that realizes higher interactions via compact prefix sufficient statistics. In the second-order case, HLA maintains a constant-size state and computes per-token outputs in linear time without materializing any $n \times n$ matrices. We give closed-form streaming identities, a strictly causal masked variant using two additional summaries, and a chunk-parallel training scheme based on associative scans that reproduces the activations of a serial recurrence exactly. We further outline extensions to third and higher orders. Collectively, these results position HLA as a principled, scalable building block that combines attention-like, data-dependent mixing with the efficiency of modern recurrent architectures. Project Page: https://github.com/yifanzhang-pro/HLA.
comment: Project Page: https://github.com/yifanzhang-pro/HLA
☆ ECVL-ROUTER: Scenario-Aware Routing for Vision-Language Models
Vision-Language Models (VLMs) excel in diverse multimodal tasks. However, user requirements vary across scenarios, which can be categorized into fast response, high-quality output, and low energy consumption. Relying solely on large models deployed in the cloud for all queries often leads to high latency and energy cost, while small models deployed on edge devices are capable of handling simpler tasks with low latency and energy cost. To fully leverage the strengths of both large and small models, we propose ECVL-ROUTER, the first scenario-aware routing framework for VLMs. Our approach introduces a new routing strategy and evaluation metrics that dynamically select the appropriate model for each query based on user requirements, maximizing overall utility. We also construct a multimodal response-quality dataset tailored for router training and validate the approach through extensive experiments. Results show that our approach successfully routes over 80\% of queries to the small model while incurring less than 10\% drop in problem solving probability.
comment: 23 pages, 13 figures, 7 tables
☆ Languages are Modalities: Cross-Lingual Alignment via Encoder Injection
Instruction-tuned Large Language Models (LLMs) underperform on low resource, non-Latin scripts due to tokenizer fragmentation and weak cross-lingual coupling. We present LLINK (Latent Language Injection for Non-English Knowledge), a compute efficient language-as-modality method that conditions an instruction-tuned decoder without changing the tokenizer or retraining the decoder. First, we align sentence embeddings from a frozen multilingual encoder to the decoder's latent embedding space at a reserved position via a lightweight contrastive projector. Second, the vector is expanded into K soft slots and trained with minimal adapters so the frozen decoder consumes the signal. LLINK substantially improves bilingual retrieval and achieves 81.3% preference over the base model and 63.6% over direct fine-tuning in LLM-judged Q&A evaluations. We further find that improvements can be attributed to reduced tokenization inflation and a stronger cross lingual alignment, despite the model having residual weaknesses in numeric fidelity. Treating low resource languages as a modality offers a practical path to stronger cross-lingual alignment in lightweight LLMs.
comment: 14 pages, 3 Figures
☆ Not All Instances Are Equally Valuable: Towards Influence-Weighted Dataset Distillation
Dataset distillation condenses large datasets into synthetic subsets, achieving performance comparable to training on the full dataset while substantially reducing storage and computation costs. Most existing dataset distillation methods assume that all real instances contribute equally to the process. In practice, real-world datasets contain both informative and redundant or even harmful instances, and directly distilling the full dataset without considering data quality can degrade model performance. In this work, we present Influence-Weighted Distillation IWD, a principled framework that leverages influence functions to explicitly account for data quality in the distillation process. IWD assigns adaptive weights to each instance based on its estimated impact on the distillation objective, prioritizing beneficial data while downweighting less useful or harmful ones. Owing to its modular design, IWD can be seamlessly integrated into diverse dataset distillation frameworks. Our empirical results suggest that integrating IWD tends to improve the quality of distilled datasets and enhance model performance, with accuracy gains of up to 7.8%.
☆ FedSM: Robust Semantics-Guided Feature Mixup for Bias Reduction in Federated Learning with Long-Tail Data
Federated Learning (FL) enables collaborative model training across decentralized clients without sharing private data. However, FL suffers from biased global models due to non-IID and long-tail data distributions. We propose \textbf{FedSM}, a novel client-centric framework that mitigates this bias through semantics-guided feature mixup and lightweight classifier retraining. FedSM uses a pretrained image-text-aligned model to compute category-level semantic relevance, guiding the category selection of local features to mix-up with global prototypes to generate class-consistent pseudo-features. These features correct classifier bias, especially when data are heavily skewed. To address the concern of potential domain shift between the pretrained model and the data, we propose probabilistic category selection, enhancing feature diversity to effectively mitigate biases. All computations are performed locally, requiring minimal server overhead. Extensive experiments on long-tail datasets with various imbalanced levels demonstrate that FedSM consistently outperforms state-of-the-art methods in accuracy, with high robustness to domain shift and computational efficiency.
☆ Soft Task-Aware Routing of Experts for Equivariant Representation Learning NeurIPS 2025
Equivariant representation learning aims to capture variations induced by input transformations in the representation space, whereas invariant representation learning encodes semantic information by disregarding such transformations. Recent studies have shown that jointly learning both types of representations is often beneficial for downstream tasks, typically by employing separate projection heads. However, this design overlooks information shared between invariant and equivariant learning, which leads to redundant feature learning and inefficient use of model capacity. To address this, we introduce Soft Task-Aware Routing (STAR), a routing strategy for projection heads that models them as experts. STAR induces the experts to specialize in capturing either shared or task-specific information, thereby reducing redundant feature learning. We validate this effect by observing lower canonical correlations between invariant and equivariant embeddings. Experimental results show consistent improvements across diverse transfer learning tasks. The code is available at https://github.com/YonseiML/star.
comment: NeurIPS 2025
☆ Privacy-Aware Continual Self-Supervised Learning on Multi-Window Chest Computed Tomography for Domain-Shift Robustness
We propose a novel continual self-supervised learning (CSSL) framework for simultaneously learning diverse features from multi-window-obtained chest computed tomography (CT) images and ensuring data privacy. Achieving a robust and highly generalizable model in medical image diagnosis is challenging, mainly because of issues, such as the scarcity of large-scale, accurately annotated datasets and domain shifts inherent to dynamic healthcare environments. Specifically, in chest CT, these domain shifts often arise from differences in window settings, which are optimized for distinct clinical purposes. Previous CSSL frameworks often mitigated domain shift by reusing past data, a typically impractical approach owing to privacy constraints. Our approach addresses these challenges by effectively capturing the relationship between previously learned knowledge and new information across different training stages through continual pretraining on unlabeled images. Specifically, by incorporating a latent replay-based mechanism into CSSL, our method mitigates catastrophic forgetting due to domain shifts during continual pretraining while ensuring data privacy. Additionally, we introduce a feature distillation technique that integrates Wasserstein distance-based knowledge distillation (WKD) and batch-knowledge ensemble (BKE), enhancing the ability of the model to learn meaningful, domain-shift-robust representations. Finally, we validate our approach using chest CT images obtained across two different window settings, demonstrating superior performance compared with other approaches.
☆ Feature-Function Curvature Analysis: A Geometric Framework for Explaining Differentiable Models
Explainable AI (XAI) is critical for building trust in complex machine learning models, yet mainstream attribution methods often provide an incomplete, static picture of a model's final state. By collapsing a feature's role into a single score, they are confounded by non-linearity and interactions. To address this, we introduce Feature-Function Curvature Analysis (FFCA), a novel framework that analyzes the geometry of a model's learned function. FFCA produces a 4-dimensional signature for each feature, quantifying its: (1) Impact, (2) Volatility, (3) Non-linearity, and (4) Interaction. Crucially, we extend this framework into Dynamic Archetype Analysis, which tracks the evolution of these signatures throughout the training process. This temporal view moves beyond explaining what a model learned to revealing how it learns. We provide the first direct, empirical evidence of hierarchical learning, showing that models consistently learn simple linear effects before complex interactions. Furthermore, this dynamic analysis provides novel, practical diagnostics for identifying insufficient model capacity and predicting the onset of overfitting. Our comprehensive experiments demonstrate that FFCA, through its static and dynamic components, provides the essential geometric context that transforms model explanation from simple quantification to a nuanced, trustworthy analysis of the entire learning process.
☆ MDAS-GNN: Multi-Dimensional Spatiotemporal GNN with Spatial Diffusion for Urban Traffic Risk Forecasting
Traffic accidents represent a critical public health challenge, claiming over 1.35 million lives annually worldwide. Traditional accident prediction models treat road segments independently, failing to capture complex spatial relationships and temporal dependencies in urban transportation networks. This study develops MDAS-GNN, a Multi-Dimensional Attention-based Spatial-diffusion Graph Neural Network integrating three core risk dimensions: traffic safety, infrastructure, and environmental risk. The framework employs feature-specific spatial diffusion mechanisms and multi-head temporal attention to capture dependencies across different time horizons. Evaluated on UK Department for Transport accident data across Central London, South Manchester, and SE Birmingham, MDASGNN achieves superior performance compared to established baseline methods. The model maintains consistently low prediction errors across short, medium, and long-term periods, with particular strength in long-term forecasting. Ablation studies confirm that integrated multi-dimensional features outperform singlefeature approaches, reducing prediction errors by up to 40%. This framework provides civil engineers and urban planners with advanced predictive capabilities for transportation infrastructure design, enabling data-driven decisions for road network optimization, infrastructure resource improvements, and strategic safety interventions in urban development projects.
☆ Sparse Model Inversion: Efficient Inversion of Vision Transformers for Data-Free Applications
Model inversion, which aims to reconstruct the original training data from pre-trained discriminative models, is especially useful when the original training data is unavailable due to privacy, usage rights, or size constraints. However, existing dense inversion methods attempt to reconstruct the entire image area, making them extremely inefficient when inverting high-resolution images from large-scale Vision Transformers (ViTs). We further identify two underlying causes of this inefficiency: the redundant inversion of noisy backgrounds and the unintended inversion of spurious correlations--a phenomenon we term "hallucination" in model inversion. To address these limitations, we propose a novel sparse model inversion strategy, as a plug-and-play extension to speed up existing dense inversion methods with no need for modifying their original loss functions. Specifically, we selectively invert semantic foregrounds while stopping the inversion of noisy backgrounds and potential spurious correlations. Through both theoretical and empirical studies, we validate the efficacy of our approach in achieving significant inversion acceleration (up to 3.79 faster) while maintaining comparable or even enhanced downstream performance in data-free model quantization and data-free knowledge transfer. Code is available at https://github.com/Egg-Hu/SMI.
☆ SERFLOW: A Cross-Service Cost Optimization Framework for SLO-Aware Dynamic ML Inference
Dynamic offloading of Machine Learning (ML) model partitions across different resource orchestration services, such as Function-as-a-Service (FaaS) and Infrastructure-as-a-Service (IaaS), can balance processing and transmission delays while minimizing costs of adaptive inference applications. However, prior work often overlooks real-world factors, such as Virtual Machine (VM) cold starts, requests under long-tail service time distributions, etc. To tackle these limitations, we model each ML query (request) as traversing an acyclic sequence of stages, wherein each stage constitutes a contiguous block of sparse model parameters ending in an internal or final classifier where requests may exit. Since input-dependent exit rates vary, no single resource configuration suits all query distributions. IaaS-based VMs become underutilized when many requests exit early, yet rapidly scaling to handle request bursts reaching deep layers is impractical. SERFLOW addresses this challenge by leveraging FaaS-based serverless functions (containers) and using stage-specific resource provisioning that accounts for the fraction of requests exiting at each stage. By integrating this provisioning with adaptive load balancing across VMs and serverless functions based on request ingestion, SERFLOW reduces cloud costs by over $23\%$ while efficiently adapting to dynamic workloads.
☆ A Polynomial-time Algorithm for Online Sparse Linear Regression with Improved Regret Bound under Weaker Conditions COLT 2025
In this paper, we study the problem of online sparse linear regression (OSLR) where the algorithms are restricted to accessing only $k$ out of $d$ attributes per instance for prediction, which was proved to be NP-hard. Previous work gave polynomial-time algorithms assuming the data matrix satisfies the linear independence of features, the compatibility condition, or the restricted isometry property. We introduce a new polynomial-time algorithm, which significantly improves previous regret bounds (Ito et al., 2017) under the compatibility condition that is weaker than the other two assumptions. The improvements benefit from a tighter convergence rate of the $\ell_1$-norm error of our estimators. Our algorithm leverages the well-studied Dantzig Selector, but importantly with several novel techniques, including an algorithm-dependent sampling scheme for estimating the covariance matrix, an adaptive parameter tuning scheme, and a batching online Newton step with careful initializations. We also give novel and non-trivial analyses, including an induction method for analyzing the $\ell_1$-norm error, careful analyses on the covariance of non-independent random variables, and a decomposition on the regret. We further extend our algorithm to OSLR with additional observations where the algorithms can observe additional $k_0$ attributes after each prediction, and improve previous regret bounds (Kale et al., 2017; Ito et al., 2017).
comment: A minor algorithmic error in our paper presented on COLT 2025 has been corrected in this arXiv update. We also have updated the pseudo-code of the algorithm. Our theoretical analyses, as well as all theoretical bounds, remain unaffected by those changes
☆ FMint-SDE: A Multimodal Foundation Model for Accelerating Numerical Simulation of SDEs via Error Correction
Fast and accurate simulation of dynamical systems is a fundamental challenge across scientific and engineering domains. Traditional numerical integrators often face a trade-off between accuracy and computational efficiency, while existing neural network-based approaches typically require training a separate model for each case. To overcome these limitations, we introduce a novel multi-modal foundation model for large-scale simulations of differential equations: FMint-SDE (Foundation Model based on Initialization for stochastic differential equations). Based on a decoder-only transformer with in-context learning, FMint-SDE leverages numerical and textual modalities to learn a universal error-correction scheme. It is trained using prompted sequences of coarse solutions generated by conventional solvers, enabling broad generalization across diverse systems. We evaluate our models on a suite of challenging SDE benchmarks spanning applications in molecular dynamics, mechanical systems, finance, and biology. Experimental results show that our approach achieves a superior accuracy-efficiency tradeoff compared to classical solvers, underscoring the potential of FMint-SDE as a general-purpose simulation tool for dynamical systems.
☆ Adaptive Defense against Harmful Fine-Tuning for Large Language Models via Bayesian Data Scheduler
Harmful fine-tuning poses critical safety risks to fine-tuning-as-a-service for large language models. Existing defense strategies preemptively build robustness via attack simulation but suffer from fundamental limitations: (i) the infeasibility of extending attack simulations beyond bounded threat models due to the inherent difficulty of anticipating unknown attacks, and (ii) limited adaptability to varying attack settings, as simulation fails to capture their variability and complexity. To address these challenges, we propose Bayesian Data Scheduler (BDS), an adaptive tuning-stage defense strategy with no need for attack simulation. BDS formulates harmful fine-tuning defense as a Bayesian inference problem, learning the posterior distribution of each data point's safety attribute, conditioned on the fine-tuning and alignment datasets. The fine-tuning process is then constrained by weighting data with their safety attributes sampled from the posterior, thus mitigating the influence of harmful data. By leveraging the post hoc nature of Bayesian inference, the posterior is conditioned on the fine-tuning dataset, enabling BDS to tailor its defense to the specific dataset, thereby achieving adaptive defense. Furthermore, we introduce a neural scheduler based on amortized Bayesian learning, enabling efficient transfer to new data without retraining. Comprehensive results across diverse attack and defense settings demonstrate the state-of-the-art performance of our approach. Code is available at https://github.com/Egg-Hu/Bayesian-Data-Scheduler.
☆ Exploring Landscapes for Better Minima along Valleys
Finding lower and better-generalizing minima is crucial for deep learning. However, most existing optimizers stop searching the parameter space once they reach a local minimum. Given the complex geometric properties of the loss landscape, it is difficult to guarantee that such a point is the lowest or provides the best generalization. To address this, we propose an adaptor "E" for gradient-based optimizers. The adapted optimizer tends to continue exploring along landscape valleys (areas with low and nearly identical losses) in order to search for potentially better local minima even after reaching a local minimum. This approach increases the likelihood of finding a lower and flatter local minimum, which is often associated with better generalization. We also provide a proof of convergence for the adapted optimizers in both convex and non-convex scenarios for completeness. Finally, we demonstrate their effectiveness in an important but notoriously difficult training scenario, large-batch training, where Lamb is the benchmark optimizer. Our testing results show that the adapted Lamb, ALTO, increases the test accuracy (generalization) of the current state-of-the-art optimizer by an average of 2.5% across a variety of large-batch training tasks. This work potentially opens a new research direction in the design of optimization algorithms.
comment: Neurips 2025 poster
☆ SERVIMON: AI-Driven Predictive Maintenance and Real-Time Monitoring for Astronomical Observatories
Objective: ServiMon is designed to offer a scalable and intelligent pipeline for data collection and auditing to monitor distributed astronomical systems such as the ASTRI Mini-Array. The system enhances quality control, predictive maintenance, and real-time anomaly detection for telescope operations. Methods: ServiMon integrates cloud-native technologies-including Prometheus, Grafana, Cassandra, Kafka, and InfluxDB-for telemetry collection and processing. It employs machine learning algorithms, notably Isolation Forest, to detect anomalies in Cassandra performance metrics. Key indicators such as read/write latency, throughput, and memory usage are continuously monitored, stored as time-series data, and preprocessed for feature engineering. Anomalies detected by the model are logged in InfluxDB v2 and accessed via Flux for real-time monitoring and visualization. Results: AI-based anomaly detection increases system resilience by identifying performance degradation at an early stage, minimizing downtime, and optimizing telescope operations. Additionally, ServiMon supports astrostatistical analysis by correlating telemetry with observational data, thus enhancing scientific data quality. AI-generated alerts also improve real-time monitoring, enabling proactive system management. Conclusion: ServiMon's scalable framework proves effective for predictive maintenance and real-time monitoring of astronomical infrastructures. By leveraging cloud and edge computing, it is adaptable to future large-scale experiments, optimizing both performance and cost. The combination of machine learning and big data analytics makes ServiMon a robust and flexible solution for modern and next-generation observational astronomy.
comment: Accepted for publication in IAU Symposium 397: Exploring the Universe with Artificial Intelligence (UniversAI 2025), Cambridge University Press. Editors: C. Sterken, J. Hearnshaw & D. Valls-Gabaud
☆ Relation-Aware Bayesian Optimization of DBMS Configurations Guided by Affinity Scores
Database Management Systems (DBMSs) are fundamental for managing large-scale and heterogeneous data, and their performance is critically influenced by configuration parameters. Effective tuning of these parameters is essential for adapting to diverse workloads and maximizing throughput while minimizing latency. Recent research has focused on automated configuration optimization using machine learning; however, existing approaches still exhibit several key limitations. Most tuning frameworks disregard the dependencies among parameters, assuming that each operates independently. This simplification prevents optimizers from leveraging relational effects across parameters, limiting their capacity to capture performancesensitive interactions. Moreover, to reduce the complexity of the high-dimensional search space, prior work often selects only the top few parameters for optimization, overlooking others that contribute meaningfully to performance. Bayesian Optimization (BO), the most common method for automatic tuning, is also constrained by its reliance on surrogate models, which can lead to unstable predictions and inefficient exploration. To overcome these limitations, we propose RelTune, a novel framework that represents parameter dependencies as a Relational Graph and learns GNN-based latent embeddings that encode performancerelevant semantics. RelTune further introduces Hybrid-Score-Guided Bayesian Optimization (HBO), which combines surrogate predictions with an Affinity Score measuring proximity to previously high-performing configurations. Experimental results on multiple DBMSs and workloads demonstrate that RelTune achieves faster convergence and higher optimization efficiency than conventional BO-based methods, achieving state-of-the-art performance across all evaluated scenarios.
comment: 13 pages
☆ FairAD: Computationally Efficient Fair Graph Clustering via Algebraic Distance CIKM 2025
Due to the growing concern about unsavory behaviors of machine learning models toward certain demographic groups, the notion of 'fairness' has recently drawn much attention from the community, thereby motivating the study of fairness in graph clustering. Fair graph clustering aims to partition the set of nodes in a graph into $k$ disjoint clusters such that the proportion of each protected group within each cluster is consistent with the proportion of that group in the entire dataset. It is, however, computationally challenging to incorporate fairness constraints into existing graph clustering algorithms, particularly for large graphs. To address this problem, we propose FairAD, a computationally efficient fair graph clustering method. It first constructs a new affinity matrix based on the notion of algebraic distance such that fairness constraints are imposed. A graph coarsening process is then performed on this affinity matrix to find representative nodes that correspond to $k$ clusters. Finally, a constrained minimization problem is solved to obtain the solution of fair clustering. Experiment results on the modified stochastic block model and six public datasets show that FairAD can achieve fair clustering while being up to 40 times faster compared to state-of-the-art fair graph clustering algorithms.
comment: ACM CIKM 2025
☆ Exploring the Utilities of the Rationales from Large Language Models to Enhance Automated Essay Scoring
This study explored the utilities of rationales generated by GPT-4.1 and GPT-5 in automated scoring using Prompt 6 essays from the 2012 Kaggle ASAP data. Essay-based scoring was compared with rationale-based scoring. The study found in general essay-based scoring performed better than rationale-based scoring with higher Quadratic Weighted Kappa (QWK). However, rationale-based scoring led to higher scoring accuracy in terms of F1 scores for score 0 which had less representation due to class imbalance issues. The ensemble modeling of essay-based scoring models increased the scoring accuracy at both specific score levels and across all score levels. The ensemble modeling of essay-based scoring and each of the rationale-based scoring performed about the same. Further ensemble of essay-based scoring and both rationale-based scoring yielded the best scoring accuracy with QWK of 0.870 compared with 0.848 reported in literature.
comment: 12 pages, 3 figures
☆ AI Agents in Drug Discovery
Artificial intelligence (AI) agents are emerging as transformative tools in drug discovery, with the ability to autonomously reason, act, and learn through complicated research workflows. Building on large language models (LLMs) coupled with perception, computation, action, and memory tools, these agentic AI systems could integrate diverse biomedical data, execute tasks, carry out experiments via robotic platforms, and iteratively refine hypotheses in closed loops. We provide a conceptual and technical overview of agentic AI architectures, ranging from ReAct and Reflection to Supervisor and Swarm systems, and illustrate their applications across key stages of drug discovery, including literature synthesis, toxicity prediction, automated protocol generation, small-molecule synthesis, drug repurposing, and end-to-end decision-making. To our knowledge, this represents the first comprehensive work to present real-world implementations and quantifiable impacts of agentic AI systems deployed in operational drug discovery settings. Early implementations demonstrate substantial gains in speed, reproducibility, and scalability, compressing workflows that once took months into hours while maintaining scientific traceability. We discuss the current challenges related to data heterogeneity, system reliability, privacy, and benchmarking, and outline future directions towards technology in support of science and translation.
comment: 45 pages, 12 figures
☆ AURA: A Reinforcement Learning Framework for AI-Driven Adaptive Conversational Surveys
Conventional online surveys provide limited personalization, often resulting in low engagement and superficial responses. Although AI survey chatbots improve convenience, most are still reactive: they rely on fixed dialogue trees or static prompt templates and therefore cannot adapt within a session to fit individual users, which leads to generic follow-ups and weak response quality. We address these limitations with AURA (Adaptive Understanding through Reinforcement Learning for Assessment), a reinforcement learning framework for AI-driven adaptive conversational surveys. AURA quantifies response quality using a four-dimensional LSDE metric (Length, Self-disclosure, Emotion, and Specificity) and selects follow-up question types via an epsilon-greedy policy that updates the expected quality gain within each session. Initialized with priors extracted from 96 prior campus-climate conversations (467 total chatbot-user exchanges), the system balances exploration and exploitation across 10-15 dialogue exchanges, dynamically adapting to individual participants in real time. In controlled evaluations, AURA achieved a +0.12 mean gain in response quality and a statistically significant improvement over non-adaptive baselines (p=0.044, d=0.66), driven by a 63% reduction in specification prompts and a 10x increase in validation behavior. These results demonstrate that reinforcement learning can give survey chatbots improved adaptivity, transforming static questionnaires into interactive, self-improving assessment systems.
☆ Group-Sensitive Offline Contextual Bandits
Offline contextual bandits allow one to learn policies from historical/offline data without requiring online interaction. However, offline policy optimization that maximizes overall expected rewards can unintentionally amplify the reward disparities across groups. As a result, some groups might benefit more than others from the learned policy, raising concerns about fairness, especially when the resources are limited. In this paper, we study a group-sensitive fairness constraint in offline contextual bandits, reducing group-wise reward disparities that may arise during policy learning. We tackle the following common-parity requirements: the reward disparity is constrained within some user-defined threshold or the reward disparity should be minimized during policy optimization. We propose a constrained offline policy optimization framework by introducing group-wise reward disparity constraints into an off-policy gradient-based optimization procedure. To improve the estimation of the group-wise reward disparity during training, we employ a doubly robust estimator and further provide a convergence guarantee for policy optimization. Empirical results in synthetic and real-world datasets demonstrate that our method effectively reduces reward disparities while maintaining competitive overall performance.
♻ ☆ On Uncertainty Calibration for Equivariant Functions
Data-sparse settings such as robotic manipulation, molecular physics, and galaxy morphology classification are some of the hardest domains for deep learning. For these problems, equivariant networks can help improve modeling across undersampled parts of the input space, and uncertainty estimation can guard against overconfidence. However, until now, the relationships between equivariance and model confidence, and more generally equivariance and model calibration, has yet to be studied. Since traditional classification and regression error terms show up in the definitions of calibration error, it is natural to suspect that previous work can be used to help understand the relationship between equivariance and calibration error. In this work, we present a theory relating equivariance to uncertainty estimation. By proving lower and upper bounds on uncertainty calibration errors (ECE and ENCE) under various equivariance conditions, we elucidate the generalization limits of equivariant models and illustrate how symmetry mismatch can result in miscalibration in both classification and regression. We complement our theoretical framework with numerical experiments that clarify the relationship between equivariance and uncertainty using a variety of real and simulated datasets, and we comment on trends with symmetry mismatch, group size, and aleatoric and epistemic uncertainties.
comment: Under review at Transactions on Machine Learning Research (TMLR). Code is available at https://github.com/EdwardBerman/EquiUQ . Excited to share this paper, comments welcome :D. This version fixed a couple typos in the previous upload
♻ ☆ On the limitation of evaluating machine unlearning using only a single training seed
Machine unlearning (MU) aims to remove the influence of certain data points from a trained model without costly retraining. Most practical MU algorithms are only approximate and their performance can only be assessed empirically. Care must therefore be taken to make empirical comparisons as representative as possible. A common practice is to run the MU algorithm multiple times independently starting from the same trained model. In this work, we demonstrate that this practice can give highly non-representative results because -- even for the same architecture and same dataset -- some MU methods can be highly sensitive to the choice of random number seed used for model training. We therefore recommend that empirical comparisons of MU algorithms should also reflect the variability across different model training seeds.
comment: mini paper, 2 figures
♻ ☆ Conformal Object Detection by Sequential Risk Control
Recent advances in object detectors have led to their adoption for industrial uses. However, their deployment in safety-critical applications is hindered by the inherent lack of reliability of neural networks and the complex structure of object detection models. To address these challenges, we turn to Conformal Prediction, a post-hoc predictive uncertainty quantification procedure with statistical guarantees that are valid for any dataset size, without requiring prior knowledge on the model or data distribution. Our contribution is manifold. First, we formally define the problem of Conformal Object Detection (COD). We introduce a novel method, Sequential Conformal Risk Control (SeqCRC), that extends the statistical guarantees of Conformal Risk Control to two sequential tasks with two parameters, as required in the COD setting. Then, we present old and new loss functions and prediction sets suited to applying SeqCRC to different cases and certification requirements. Finally, we present a conformal toolkit for replication and further exploration of our method. Using this toolkit, we perform extensive experiments that validate our approach and emphasize trade-offs and other practical consequences.
comment: 29 pages, 12 figures
♻ ☆ Kernel conditional tests from learning-theoretic bounds NeurIPS 2025
We propose a framework for hypothesis testing on conditional probability distributions, which we then use to construct statistical tests of functionals of conditional distributions. These tests identify the inputs where the functionals differ with high probability, and include tests of conditional moments or two-sample tests. Our key idea is to transform confidence bounds of a learning method into a test of conditional expectations. We instantiate this principle for kernel ridge regression (KRR) with subgaussian noise. An intermediate data embedding then enables more general tests -- including conditional two-sample tests -- via kernel mean embeddings of distributions. To have guarantees in this setting, we generalize existing pointwise-in-time or time-uniform confidence bounds for KRR to previously-inaccessible yet essential cases such as infinite-dimensional outputs with non-trace-class kernels. These bounds also circumvent the need for independent data, allowing for instance online sampling. To make our tests readily applicable in practice, we introduce bootstrapping schemes leveraging the parametric form of testing thresholds identified in theory to avoid tuning inaccessible parameters. We illustrate the tests on examples, including one in process monitoring and comparison of dynamical systems. Overall, our results establish a comprehensive foundation for conditional testing on functionals, from theoretical guarantees to an algorithmic implementation, and advance the state of the art on confidence bounds for vector-valued least squares estimation.
comment: 46 pages, 8 figures, 9 tables. Accepted at NeurIPS 2025; to appear in the proceedings of the Thirty-ninth Annual Conference on Neural Information Processing Systems. Reviews and discussion: https://openreview.net/forum?id=hJKDwf32Xu
♻ ☆ TempoPFN: Synthetic Pre-training of Linear RNNs for Zero-shot Time Series Forecasting
Foundation models for zero-shot time series forecasting face challenges in efficient long-horizon prediction and reproducibility, with existing synthetic-only approaches underperforming on challenging benchmarks. This paper presents TempoPFN, a univariate time series foundation model based on linear Recurrent Neural Networks (RNNs) pre-trained exclusively on synthetic data. The model uses a GatedDeltaProduct architecture with state-weaving for fully parallelizable training across sequence lengths, eliminating the need for windowing or summarization techniques while maintaining robust temporal state-tracking. Our comprehensive synthetic data pipeline unifies diverse generators, including stochastic differential equations, Gaussian processes, and audio synthesis, with novel augmentations. In zero-shot evaluations on the Gift-Eval benchmark, TempoPFN achieves top-tier competitive performance, outperforming all existing synthetic-only approaches and surpassing the vast majority of models trained on real-world data, while being more efficient than existing baselines by leveraging fully parallelizable training and inference. We open-source our complete data generation pipeline and training code, providing a reproducible foundation for future research.
comment: 30 pages, 18 figures, 13 tables
♻ ☆ Generative Adversarial Networks for High-Dimensional Item Factor Analysis: A Deep Adversarial Learning Algorithm
Advances in deep learning and representation learning have transformed item factor analysis (IFA) in the item response theory (IRT) literature by enabling more efficient and accurate parameter estimation. Variational Autoencoders (VAEs) have been one of the most impactful techniques in modeling high-dimensional latent variables in this context. However, the limited expressiveness of the inference model based on traditional VAEs can still hinder the estimation performance. We introduce Adversarial Variational Bayes (AVB) algorithms as an improvement to VAEs for IFA with improved flexibility and accuracy. By bridging the strengths of VAEs and Generative Adversarial Networks (GANs), AVB incorporates an auxiliary discriminator network to reframe the estimation process as a two-player adversarial game and removes the restrictive assumption of standard normal distributions in the inference model. Theoretically, AVB can achieve similar or higher likelihood compared to VAEs. A further enhanced algorithm, Importance-weighted Adversarial Variational Bayes (IWAVB) is proposed and compared with Importance-weighted Autoencoders (IWAE). In an exploratory analysis of empirical data, IWAVB demonstrated superior expressiveness by achieving a higher likelihood compared to IWAE. In confirmatory analysis with simulated data, IWAVB achieved similar mean-square error results to IWAE while consistently achieving higher likelihoods. When latent variables followed a multimodal distribution, IWAVB outperformed IWAE. With its innovative use of GANs, IWAVB is shown to have the potential to extend IFA to handle large-scale data, facilitating the potential integration of psychometrics and multimodal data analysis.
♻ ☆ Non-Convex Over-the-Air Heterogeneous Federated Learning: A Bias-Variance Trade-off
Over-the-air (OTA) federated learning (FL) has been well recognized as a scalable paradigm that exploits the waveform superposition of the wireless multiple-access channel to aggregate model updates in a single use. Existing OTA-FL designs largely enforce zero-bias model updates by either assuming \emph{homogeneous} wireless conditions (equal path loss across devices) or forcing zero-bias updates to guarantee convergence. Under \emph{heterogeneous} wireless scenarios, however, such designs are constrained by the weakest device and inflate the update variance. Moreover, prior analyses of biased OTA-FL largely address convex objectives, while most modern AI models are highly non-convex. Motivated by these gaps, we study OTA-FL with stochastic gradient descent (SGD) for general smooth non-convex objectives under wireless heterogeneity. We develop novel OTA-FL SGD updates that allow a structured, time-invariant model bias while facilitating reduced variance updates. We derive a finite-time stationarity bound (expected time average squared gradient norm) that explicitly reveals a bias-variance trade-off. To optimize this trade-off, we pose a non-convex joint OTA power-control design and develop an efficient successive convex approximation (SCA) algorithm that requires only statistical CSI at the base station. Experiments on a non-convex image classification task validate the approach: the SCA-based design accelerates convergence via an optimized bias and improves generalization over prior OTA-FL baselines.
♻ ☆ UdonCare: Hierarchy Pruning for Unseen Domain Discovery in Predictive Healthcare
Healthcare providers often divide patient populations into cohorts based on shared clinical factors, such as medical history, to deliver personalized healthcare services. This idea has also been adopted in clinical prediction models, where it presents a vital challenge: capturing both global and cohort-specific patterns while enabling model generalization to unseen domains. Addressing this challenge falls under the scope of domain generalization (DG). However, conventional DG approaches often struggle in clinical settings due to the absence of explicit domain labels and the inherent gap in medical knowledge. To address this, we propose UdonCare, a hierarchy-guided method that iteratively divides patients into latent domains and decomposes domain-invariant (label) information from patient data. Our method identifies patient domains by pruning medical ontologies (e.g. ICD-9-CM hierarchy). On two public datasets, MIMIC-III and MIMIC-IV, UdonCare shows superiority over eight baselines across four clinical prediction tasks with substantial domain gaps, highlighting the untapped potential of medical knowledge in guiding clinical domain generalization problems.
♻ ☆ I-RAVEN-X: Benchmarking Generalization and Robustness of Analogical and Mathematical Reasoning in Large Language and Reasoning Models NeurIPS 2025
We introduce I-RAVEN-X, a symbolic benchmark designed to evaluate generalization and robustness in analogical and mathematical reasoning for Large Language Models (LLMs) and Large Reasoning Models (LRMs). I-RAVEN-X extends I-RAVEN by increasing operand complexity, attribute range, and introducing perceptual uncertainty. Compared to LLMs, empirical results show that LRMs achieve improved productivity and systematicity on longer reasoning relations and wider attribute ranges, respectively. However, LRMs are still significantly challenged by reasoning under uncertainty and cannot effectively explore multiple probabilistic outcomes.
comment: Accepted at the 5th Workshop on Mathematical Reasoning and AI (MATH-AI), NeurIPS 2025
♻ ☆ Discrete Diffusion Models: Novel Analysis and New Sampler Guarantees
Discrete diffusion models have recently gained significant prominence in applications involving natural language and graph data. A key factor influencing their effectiveness is the efficiency of discretized samplers. Among these, $\tau$-leaping samplers have become particularly popular due to their theoretical and empirical success. However, existing theoretical analyses of $\tau$-leaping often rely on somewhat restrictive and difficult-to-verify regularity assumptions, and their convergence bounds contain quadratic dependence on the vocabulary size. In this work, we introduce a new analytical approach for discrete diffusion models that removes the need for such assumptions. For the standard $\tau$-leaping method, we establish convergence guarantees in KL divergence that scale linearly with vocabulary size, improving upon prior results with quadratic dependence. Our approach is also more broadly applicable: it provides the first convergence guarantees for other widely used samplers, including the Euler method and Tweedie $\tau$-leaping. Central to our approach is a novel technique based on differential inequalities, offering a more flexible alternative to the traditional Girsanov change-of-measure methods. This technique may also be of independent interest for the analysis of other stochastic processes.
♻ ☆ Absorb and Converge: Provable Convergence Guarantee for Absorbing Discrete Diffusion Models
Discrete state space diffusion models have shown significant advantages in applications involving discrete data, such as text and image generation. It has also been observed that their performance is highly sensitive to the choice of rate matrices, particularly between uniform and absorbing rate matrices. While empirical results suggest that absorbing rate matrices often yield better generation quality compared to uniform rate matrices, existing theoretical works have largely focused on the uniform rate matrices case. Notably, convergence guarantees and error analyses for absorbing diffusion models are still missing. In this work, we provide the first finite-time error bounds and convergence rate analysis for discrete diffusion models using absorbing rate matrices. We begin by deriving an upper bound on the KL divergence of the forward process, introducing a surrogate initialization distribution to address the challenge posed by the absorbing stationary distribution, which is a singleton and causes the KL divergence to be ill-defined. We then establish the first convergence guarantees for both the $\tau$-leaping and uniformization samplers under absorbing rate matrices, demonstrating improved rates over their counterparts using uniform rate matrices. Furthermore, under suitable assumptions, we provide convergence guarantees without early stopping. Our analysis introduces several new technical tools to address challenges unique to absorbing rate matrices. These include a Jensen-type argument for bounding forward process convergence, novel techniques for bounding absorbing score functions, and a non-divergent upper bound on the score near initialization that removes the need of early-stopping.
♻ ☆ Persistent Homology for Structural Characterization in Disordered Systems
We propose a unified framework based on persistent homology (PH) to characterize both local and global structures in disordered systems. It can simultaneously generate local and global descriptors using the same algorithm and data structure, and has shown to be highly effective and interpretable in predicting particle rearrangements and classifying global phases. We also demonstrated that using a single variable enables a linear SVM to achieve nearly perfect three-phase classification. Inspired by this discovery, we define a non-parametric metric, the Separation Index (SI), which not only achieves this classification without sacrificing significant performance but also establishes a connection between particle environments and the global phase structure. Our methods provide an effective framework for understanding and analyzing the properties of disordered materials, with broad potential applications in materials science and even wider studies of complex systems.
comment: 24 pages, 19 figures
♻ ☆ SparsePO: Controlling Preference Alignment of LLMs via Sparse Token Masks EMNLP 2025
Direct alignment algorithms have proven an effective step for aligning language models to human-desired behaviors. Current variants of the Direct Preference Optimization objective have focused on a strict setting where all tokens are contributing signals of KL divergence and rewards to the loss function. However, human preference is not affected equally by each word in a sequence but is often dependent on specific words or phrases, e.g. existence of toxic terms leads to non-preferred responses. Based on this observation, we argue that not all tokens should be weighted equally during PO and propose a flexible objective termed SparsePO, that aims to automatically learn to weight the KL divergence and reward corresponding to each token during PO training. We propose two different variants of weight-masks that can either be derived from the reference model itself or learned on the fly. Notably, our method induces sparsity in the learned masks, allowing the model to learn how to best balance reward and KL divergence contributions at the token level, learning an optimal level of mask sparsity. Extensive experiments illustrate the effectiveness of our approach at aligning to preference proxies, including sentiment control, helpfulness and harmlessness, and summary quality. Our method obtains +10% and +3% win rate points in summarization and dialogue scenarios, respectively, without compromising model reasoning or the relevancy and faithfulness of the summary response.
comment: 27 pages, 9 figures, 5 tables. Accepted to EMNLP 2025
♻ ☆ Smooth Flow Matching
Functional data, i.e., smooth random functions observed over a continuous domain, are increasingly available in areas such as biomedical research, health informatics, and epidemiology. However, effective statistical analysis for functional data is often hindered by challenges such as privacy constraints, sparse and irregular sampling, infinite dimensionality, and non-Gaussian structures. To address these challenges, we introduce a novel framework named Smooth Flow Matching (SFM), tailored for generative modeling of functional data to enable statistical analysis without exposing sensitive real data. Built upon flow-matching ideas, SFM constructs a semiparametric copula flow to generate infinite-dimensional functional data, free from Gaussianity or low-rank assumptions. It is computationally efficient, handles irregular observations, and guarantees the smoothness of the generated functions, offering a practical and flexible solution in scenarios where existing deep generative methods are not applicable. Through extensive simulation studies, we demonstrate the advantages of SFM in terms of both synthetic data quality and computational efficiency. We then apply SFM to generate clinical trajectory data from the MIMIC-IV patient electronic health records (EHR) longitudinal database. Our analysis showcases the ability of SFM to produce high-quality surrogate data for downstream statistical tasks, highlighting its potential to boost the utility of EHR data for clinical applications.
comment: 66 pages, 8 figures
♻ ☆ HELIOS: Adaptive Model And Early-Exit Selection for Efficient LLM Inference Serving
Early-Exit Large Language Models (EE-LLMs) enable high throughput inference by allowing tokens to exit early at intermediate layers. However, their throughput is limited by the computational and memory savings. Existing EE-LLM frameworks rely on a single model and therefore, their token generation latencies are bottlenecked by tokens that do not exit early and traverse additional layers. Moreover, early exits are only known at runtime and depend on the request. Therefore, these frameworks load the weights of all model layers even though large portions remain unused when tokens exit early. The lack of memory savings limit us from scaling the batch sizes. We propose $\textit{HELIOS}$, a framework that improves both token generation latency and batch sizes to enable high-throughput in EE-LLMs. HELIOS exploits two insights. $\textit{First}$, early exits are often complimentary across models, tokens that do not exit early on one model often take an early-exit on another. HELIOS employs multiple models and dynamically switches between them to collectively maximize the number of tokens that exit early, and minimize token generation latencies. $\textit{Second}$, even when a predicted token does not exit early due to poor confidence, it often remains unchanged even after additional layer traversal. HELIOS greedily allows such tokens to exit early and only loads the weights of the most likely to be used layers, yielding memory savings which is then re-purposed to increase batch sizes. HELIOS employs real-time profiling to accurately identify the early-exit distributions, and adaptively switches between models by tracking tokens in real-time to minimize the performance degradation caused by greedy model loading and exiting. Our evaluations show that HELIOS achieves $1.48\times$ higher throughput and $15.14\times$ larger batch size compared to existing EE-LLM frameworks.
♻ ☆ Supervised Quadratic Feature Analysis: Information Geometry Approach for Dimensionality Reduction
Supervised dimensionality reduction maps labeled data into a low-dimensional feature space while preserving class discriminability. A common approach is to maximize a statistical measure of dissimilarity between classes in the feature space. Information geometry provides an alternative framework for measuring class dissimilarity, with the potential for improved insights and novel applications. Information geometry, which is grounded in Riemannian geometry, uses the Fisher information metric, a local measure of discriminability that induces the Fisher-Rao distance. Here, we present Supervised Quadratic Feature Analysis (SQFA), a linear dimensionality reduction method that maximizes Fisher-Rao distances between class-conditional distributions, under Gaussian assumptions. We motivate the Fisher-Rao distance as a good proxy for discriminability. We show that SQFA features support good classification performance with Quadratic Discriminant Analysis (QDA) on three real-world datasets. SQFA provides a novel framework for supervised dimensionality reduction, motivating future research in applying information geometry to machine learning and neuroscience.
comment: 24 pages, 15 figures
♻ ☆ Resource-Adaptive Successive Doubling for Hyperparameter Optimization with Large Datasets on High-Performance Computing Systems
On High-Performance Computing (HPC) systems, several hyperparameter configurations can be evaluated in parallel to speed up the Hyperparameter Optimization (HPO) process. State-of-the-art HPO methods follow a bandit-based approach and build on top of successive halving, where the final performance of a combination is estimated based on a lower than fully trained fidelity performance metric and more promising combinations are assigned more resources over time. Frequently, the number of epochs is treated as a resource, letting more promising combinations train longer. Another option is to use the number of workers as a resource and directly allocate more workers to more promising configurations via data-parallel training. This article proposes a novel Resource-Adaptive Successive Doubling Algorithm (RASDA), which combines a resource-adaptive successive doubling scheme with the plain Asynchronous Successive Halving Algorithm (ASHA). Scalability of this approach is shown on up to 1,024 Graphics Processing Units (GPUs) on modern HPC systems. It is applied to different types of Neural Networks (NNs) and trained on large datasets from the Computer Vision (CV), Computational Fluid Dynamics (CFD), and Additive Manufacturing (AM) domains, where performing more than one full training run is usually infeasible. Empirical results show that RASDA outperforms ASHA by a factor of up to 1.9 with respect to the runtime. At the same time, the solution quality of final ASHA models is maintained or even surpassed by the implicit batch size scheduling of RASDA. With RASDA, systematic HPO is applied to a terabyte-scale scientific dataset for the first time in the literature, enabling efficient optimization of complex models on massive scientific data. The implementation of RASDA is available on https://github.com/olympiquemarcel/rasda
♻ ☆ Data-Driven Stochastic Optimal Control in Reproducing Kernel Hilbert Spaces
This paper proposes a fully data-driven approach for optimal control of nonlinear control-affine systems represented by a stochastic diffusion. The focus is on the scenario where both the nonlinear dynamics and stage cost functions are unknown, while only a control penalty function and constraints are provided. To this end, we embed state probability densities into a reproducing kernel Hilbert space (RKHS) to leverage recent advances in operator regression, thereby identifying Markov transition operators associated with controlled diffusion processes. This operator learning approach integrates naturally with convex operator-theoretic Hamilton-Jacobi-Bellman recursions that scale linearly with state dimensionality, effectively solving a wide range of nonlinear optimal control problems. Numerical results demonstrate its ability to address diverse nonlinear control tasks, including the depth regulation of an autonomous underwater vehicle.
comment: author-submitted electronic preprint version: 19 pages, 5 figures, 3 tables
♻ ☆ A Regularized Newton Method for Nonconvex Optimization with Global and Local Complexity Guarantees NeurIPS 2025
Finding an $\epsilon$-stationary point of a nonconvex function with a Lipschitz continuous Hessian is a central problem in optimization. Regularized Newton methods are a classical tool and have been studied extensively, yet they still face a trade-off between global and local convergence. Whether a parameter-free algorithm of this type can simultaneously achieve optimal global complexity and quadratic local convergence remains an open question. To bridge this long-standing gap, we propose a new class of regularizers constructed from the current and previous gradients, and leverage the conjugate gradient approach with a negative curvature monitor to solve the regularized Newton equation. The proposed algorithm is adaptive, requiring no prior knowledge of the Hessian Lipschitz constant, and achieves a global complexity of $O(\epsilon^{-3/2})$ in terms of the second-order oracle calls, and $\tilde{O}(\epsilon^{-7/4})$ for Hessian-vector products, respectively. When the iterates converge to a point where the Hessian is positive definite, the method exhibits quadratic local convergence. Preliminary numerical results, including training the physics-informed neural networks, illustrate the competitiveness of our algorithm.
comment: NeurIPS 2025
♻ ☆ A Practical Introduction to Kernel Discrepancies: MMD, HSIC & KSD
This article provides a practical introduction to kernel discrepancies, focusing on the Maximum Mean Discrepancy (MMD), the Hilbert-Schmidt Independence Criterion (HSIC), and the Kernel Stein Discrepancy (KSD). Various estimators for these discrepancies are presented, including the commonly-used V-statistics and U-statistics, as well as several forms of the more computationally-efficient incomplete U-statistics. The importance of the choice of kernel bandwidth is stressed, showing how it affects the behaviour of the discrepancy estimation. Adaptive estimators are introduced, which combine multiple estimators with various kernels, addressing the problem of kernel selection.
comment: 26 pages, 7 figures, v2 fixes Equation 16, v3 fixes cross-covariance notation p3
♻ ☆ Challenges learning from imbalanced data using tree-based models: Prevalence estimates systematically depend on hyperparameters and can be upwardly biased
When using machine learning for imbalanced binary classification problems, it is common to subsample the majority class to create a (more) balanced training dataset. This biases the model's predictions because the model learns from data whose data generating process differs from new data. One way of accounting for this bias is analytically mapping the resulting predictions to new values based on the sampling rate for the majority class. We show that calibrating a random forest this way has negative consequences, including prevalence estimates that depend on both the number of predictors considered at each split in the random forest and the sampling rate used. We explain the former using known properties of random forests and analytical calibration. Through investigating the latter issue, we made a surprising discovery - contrary to the widespread belief that decision trees are biased towards the majority class, they actually can be biased towards the minority class.
♻ ☆ RObotic MAnipulation Network (ROMAN) -- Hybrid Hierarchical Learning for Solving Complex Sequential Tasks
Solving long sequential tasks poses a significant challenge in embodied artificial intelligence. Enabling a robotic system to perform diverse sequential tasks with a broad range of manipulation skills is an active area of research. In this work, we present a Hybrid Hierarchical Learning framework, the Robotic Manipulation Network (ROMAN), to address the challenge of solving multiple complex tasks over long time horizons in robotic manipulation. ROMAN achieves task versatility and robust failure recovery by integrating behavioural cloning, imitation learning, and reinforcement learning. It consists of a central manipulation network that coordinates an ensemble of various neural networks, each specialising in distinct re-combinable sub-tasks to generate their correct in-sequence actions for solving complex long-horizon manipulation tasks. Experimental results show that by orchestrating and activating these specialised manipulation experts, ROMAN generates correct sequential activations for accomplishing long sequences of sophisticated manipulation tasks and achieving adaptive behaviours beyond demonstrations, while exhibiting robustness to various sensory noises. These results demonstrate the significance and versatility of ROMAN's dynamic adaptability featuring autonomous failure recovery capabilities, and highlight its potential for various autonomous manipulation tasks that demand adaptive motor skills.
comment: To appear in Nature Machine Intelligence. Includes the main and supplementary manuscript. Total of 70 pages, with a total of 9 Figures and 17 Tables
♻ ☆ DO-IQS: Dynamics-Aware Offline Inverse Q-Learning for Optimal Stopping with Unknown Gain Functions
We consider the Inverse Optimal Stopping (IOS) problem where, based on stopped expert trajectories, one aims to recover the optimal stopping region through the continuation and stopping gain functions approximation. The uniqueness of the stopping region allows the use of IOS in real-world applications with safety concerns. Although current state-of-the-art inverse reinforcement learning methods recover both a Q-function and the corresponding optimal policy, they fail to account for specific challenges posed by optimal stopping problems. These include data sparsity near the stopping region, the non-Markovian nature of the continuation gain, a proper treatment of boundary conditions, the need for a stable offline approach for risk-sensitive applications, and a lack of a quality evaluation metric. These challenges are addressed with the proposed Dynamics-Aware Offline Inverse Q-Learning for Optimal Stopping (DO-IQS), which incorporates temporal information by approximating the cumulative continuation gain together with the world dynamics and the Q-function without querying to the environment. In addition, a confidence-based oversampling approach is proposed to treat the data sparsity problem. We demonstrate the performance of our models on real and artificial data including an optimal intervention for the critical events problem.
♻ ☆ PoLAR: Polar-Decomposed Low-Rank Adapter Representation
We show that low-rank adaptation of large-scale models suffers from a low stable rank that is well below the linear algebraic rank of the subspace, degrading fine-tuning performance. To mitigate the underutilization of the allocated subspace, we propose PoLAR, a parameterization inspired by the polar decomposition that factorizes the low-rank update into two direction matrices constrained to Stiefel manifolds and an unconstrained scale matrix. Our theory shows that PoLAR yields an exponentially faster convergence rate on a canonical low-rank adaptation problem. Pairing the parameterization with Riemannian optimization leads to consistent gains on three different benchmarks testing general language understanding, commonsense reasoning, and mathematical problem solving with base model sizes ranging from 350M to 27B.
♻ ☆ A tutorial on discovering and quantifying the effect of latent causal sources of multimodal EHR data
We provide an accessible description of a peer-reviewed generalizable causal machine learning pipeline to (i) discover latent causal sources of large-scale electronic health records observations, and (ii) quantify the source causal effects on clinical outcomes. We illustrate how imperfect multimodal clinical data can be processed, decomposed into probabilistic independent latent sources, and used to train taskspecific causal models from which individual causal effects can be estimated. We summarize the findings of the two real-world applications of the approach to date as a demonstration of its versatility and utility for medical discovery at scale.
comment: Accepted at the 1st Multimodal Representation Learning for Healthcare EurIPS 2025 Workshop (https://multimodal-rep-learning-for-health.github.io/)
♻ ☆ NaviAgent: Bilevel Planning on Tool Navigation Graph for Large-Scale Orchestration
Large language models (LLMs) have recently demonstrated the ability to act as function call agents by invoking external tools, enabling them to solve tasks beyond their static knowledge. However, existing agents typically call tools step by step at a time without a global view of task structure. As tools depend on each other, this leads to error accumulation and limited scalability, particularly when scaling to thousands of tools. To address these limitations, we propose NaviAgent, a novel bilevel architecture that decouples task planning from tool execution through graph-based modeling of the tool ecosystem. At the task-planning level, the LLM-based agent decides whether to respond directly, clarify user intent, invoke a toolchain, or execute tool outputs, ensuring broad coverage of interaction scenarios independent of inter-tool complexity. At the execution level, a continuously evolving Tool World Navigation Model (TWNM) encodes structural and behavioral relations among tools, guiding the agent to generate scalable and robust invocation sequences. By incorporating feedback from real tool interactions, NaviAgent supports closed-loop optimization of planning and execution, moving beyond tool calling toward adaptive navigation of large-scale tool ecosystems. Experiments show that NaviAgent achieves the best task success rates across models and tasks, and integrating TWMN further boosts performance by up to 17 points on complex tasks, underscoring its key role in toolchain orchestration.
♻ ☆ Byzantine Resilient Federated Multi-Task Representation Learning
In this paper, we propose BR-MTRL, a Byzantine-resilient multi-task representation learning framework that handles faulty or malicious agents. Our approach leverages representation learning through a shared neural network model, where all clients share fixed layers, except for a client-specific final layer. This structure captures shared features among clients while enabling individual adaptation, making it a promising approach for leveraging client data and computational power in heterogeneous federated settings to learn personalized models. To learn the model, we employ an alternating gradient descent strategy: each client optimizes its local model, updates its final layer, and sends estimates of the shared representation to a central server for aggregation. To defend against Byzantine agents, we employ two robust aggregation methods for client-server communication, Geometric Median and Krum. Our method enables personalized learning while maintaining resilience in distributed settings. We implemented the proposed algorithm in a federated testbed built using Amazon Web Services (AWS) platform and compared its performance with various benchmark algorithms and their variations. Through experiments using real-world datasets, including CIFAR-10 and FEMNIST, we demonstrated the effectiveness and robustness of our approach and its transferability to new unseen clients with limited data, even in the presence of Byzantine adversaries.
♻ ☆ Convergence of continuous-time stochastic gradient descent with applications to deep neural networks
We study a continuous-time approximation of the stochastic gradient descent process for minimizing the population expected loss in learning problems. The main results establish general sufficient conditions for the convergence, extending the results of Chatterjee (2022) established for (nonstochastic) gradient descent. We show how the main result can be applied to the case of overparametrized neural network training.
♻ ☆ ESTformer: Transformer utilising spatiotemporal dependencies for electroencephalogram super-resolution
Towards practical applications of Electroencephalography (EEG), lightweight acquisition devices garner significant attention. However, EEG channel selection methods are commonly data-sensitive and cannot establish a unified sound paradigm for EEG acquisition devices. Through reverse conceptualisation, we formulated EEG applications in an EEG super-resolution (SR) manner, but suffered from high computation costs, extra interpolation bias, and few insights into spatiotemporal dependency modelling. To this end, we propose ESTformer, an EEG SR framework that utilises spatiotemporal dependencies based on the transformer. ESTformer applies positional encoding methods and a multihead self-attention mechanism to the space and time dimensions, which can learn spatial structural correlations and temporal functional variations. ESTformer, with the fixed mask strategy, adopts a mask token to upsample low-resolution (LR) EEG data in the case of disturbance from mathematical interpolation methods. On this basis, we designed various transformer blocks to construct a spatial interpolation module (SIM) and a temporal reconstruction module (TRM). Finally, ESTformer cascades the SIM and TRM to capture and model the spatiotemporal dependencies for EEG SR with fidelity. Extensive experimental results on two EEG datasets show the effectiveness of ESTformer against previous state-of-the-art methods, demonstrating the versatility of the Transformer for EEG SR tasks. The superiority of the SR data was verified in an EEG-based person identification and emotion recognition task, achieving a 2% to 38% improvement compared with the LR data at different sampling scales.
comment: Accepted by Knowledge-Based Systems
♻ ☆ Generating Auxiliary Tasks with Reinforcement Learning
Auxiliary Learning (AL) is a form of multi-task learning in which a model trains on auxiliary tasks to boost performance on a primary objective. While AL has improved generalization across domains such as navigation, image classification, and NLP, it often depends on human-labeled auxiliary tasks that are costly to design and require domain expertise. Meta-learning approaches mitigate this by learning to generate auxiliary tasks, but typically rely on gradient based bi-level optimization, adding substantial computational and implementation overhead. We propose RL-AUX, a reinforcement-learning (RL) framework that dynamically creates auxiliary tasks by assigning auxiliary labels to each training example, rewarding the agent whenever its selections improve the performance on the primary task. We also explore learning per-example weights for the auxiliary loss. On CIFAR-100 grouped into 20 superclasses, our RL method outperforms human-labeled auxiliary tasks and matches the performance of a prominent bi-level optimization baseline. We present similarly strong results on other classification datasets. These results suggest RL is a viable path to generating effective auxiliary tasks.
♻ ☆ Accelerated Rates between Stochastic and Adversarial Online Convex Optimization NeurIPS 2022
Stochastic and adversarial data are two widely studied settings in online learning. But many optimization tasks are neither i.i.d. nor fully adversarial, which makes it of fundamental interest to get a better theoretical understanding of the world between these extremes. In this work we establish novel regret bounds for online convex optimization in a setting that interpolates between stochastic i.i.d. and fully adversarial losses. By exploiting smoothness of the expected losses, these bounds replace a dependence on the maximum gradient length by the variance of the gradients, which was previously known only for linear losses. In addition, they weaken the i.i.d. assumption by allowing, for example, adversarially poisoned rounds, which were previously considered in the related expert and bandit settings. In the fully i.i.d. case, our regret bounds match the rates one would expect from results in stochastic acceleration, and we also recover the optimal stochastically accelerated rates via online-to-batch conversion. In the fully adversarial case our bounds gracefully deteriorate to match the minimax regret. We further provide lower bounds showing that our regret upper bounds are tight for all intermediate regimes in terms of the stochastic variance and the adversarial variation of the loss gradients.
comment: There is an unfixable mistake in the proof of Lemma 15, as kindly brought to our attention by Peng Zhao. The mistake is not present in the earlier NeurIPS 2022 conference version of the paper, which does not include this result
♻ ☆ Token Distillation: Attention-aware Input Embeddings For New Tokens
Current language models rely on static vocabularies determined at pretraining time, which can lead to decreased performance and increased computational cost for domains underrepresented in the original vocabulary. New tokens can be added to solve this problem, when coupled with a good initialization for their new embeddings. However, existing embedding initialization methods require expensive further training or pretraining of additional modules. In this paper, we propose Token Distillation and show that by distilling representations obtained using the original tokenization, we can quickly learn high-quality input embeddings for new tokens. Experimental results with a wide range of open-weight models show that Token Distillation outperforms even strong baselines.
comment: Additional experiments + clearer method name compared to the May 2025 version
♻ ☆ Fast Adversarial Training against Sparse Attacks Requires Loss Smoothing
This paper studies fast adversarial training against sparse adversarial perturbations bounded by $l_0$ norm. We demonstrate the challenges of employing $1$-step attacks on $l_0$ bounded perturbations for fast adversarial training, including degraded performance and the occurrence of catastrophic overfitting (CO). We highlight that CO in $l_0$ adversarial training is caused by sub-optimal perturbation locations of $1$-step attack. Theoretical and empirical analyses reveal that the loss landscape of $l_0$ adversarial training is more craggy compared to its $l_\infty$, $l_2$ and $l_1$ counterparts. Moreover, we corroborate that the craggy loss landscape can aggravate CO. To address these issues, we propose Fast-LS-$l_0$ that incorporates soft labels and the trade-off loss function to smooth the adversarial loss landscape. Extensive experiments demonstrate our method can overcome the challenge of catastrophic overfitting, achieve state-of-the-art performance, and narrow down the performance gap between $1$-step and multi-step adversarial training against sparse attacks.
♻ ☆ Fair Play for Individuals, Foul Play for Groups? Auditing Anonymization's Impact on ML Fairness ECAI 2025
Machine learning (ML) algorithms are heavily based on the availability of training data, which, depending on the domain, often includes sensitive information about data providers. This raises critical privacy concerns. Anonymization techniques have emerged as a practical solution to address these issues by generalizing features or suppressing data to make it more difficult to accurately identify individuals. Although recent studies have shown that privacy-enhancing technologies can influence ML predictions across different subgroups, thus affecting fair decision-making, the specific effects of anonymization techniques, such as $k$-anonymity, $\ell$-diversity, and $t$-closeness, on ML fairness remain largely unexplored. In this work, we systematically audit the impact of anonymization techniques on ML fairness, evaluating both individual and group fairness. Our quantitative study reveals that anonymization can degrade group fairness metrics by up to fourfold. Conversely, similarity-based individual fairness metrics tend to improve under stronger anonymization, largely as a result of increased input homogeneity. By analyzing varying levels of anonymization across diverse privacy settings and data distributions, this study provides critical insights into the trade-offs between privacy, fairness, and utility, offering actionable guidelines for responsible AI development. Our code is publicly available at: https://github.com/hharcolezi/anonymity-impact-fairness.
comment: ECAI 2025
♻ ☆ Landscape of Thoughts: Visualizing the Reasoning Process of Large Language Models
Numerous applications of large language models (LLMs) rely on their ability to perform step-by-step reasoning. However, the reasoning behavior of LLMs remains poorly understood, posing challenges to research, development, and safety. To address this gap, we introduce landscape of thoughts (LoT), the first landscape visualization tool to inspect the reasoning trajectories with certain reasoning methods on any multi-choice dataset. We represent the textual states in a trajectory as numerical features that quantify the states' distances to the answer choices. These features are then visualized in two-dimensional plots using t-SNE. Qualitative and quantitative analysis with the landscape of thoughts effectively distinguishes between strong and weak models, correct and incorrect answers, as well as different reasoning tasks. It also uncovers undesirable reasoning patterns, such as low consistency and high uncertainty. Additionally, users can adapt LoT to a model that predicts the property they observe. We showcase this advantage by adapting LoT to a lightweight verifier that evaluates the correctness of trajectories. Empirically, this verifier boosts the reasoning accuracy and the test-time scaling effect. The code is publicly available at: https://github.com/tmlr-group/landscape-of-thoughts.
♻ ☆ Eliciting Secret Knowledge from Language Models
We study secret elicitation: discovering knowledge that an AI possesses but does not explicitly verbalize. As a testbed, we train three families of large language models (LLMs) to possess specific knowledge that they apply downstream but deny knowing when asked directly. For example, in one setting, we train an LLM to generate replies that are consistent with knowing the user is female, while denying this knowledge when asked directly. We then design various black-box and white-box secret elicitation techniques and evaluate them based on whether they can help an LLM auditor successfully guess the secret knowledge. Many of our techniques improve on simple baselines. Our most effective techniques (performing best in all settings) are based on prefill attacks, a black-box technique where the LLM reveals secret knowledge when generating a completion from a predefined prefix. Our white-box techniques based on logit lens and sparse autoencoders (SAEs) also consistently increase the success rate of the LLM auditor, but are less effective. We release our models and code, establishing a public benchmark for evaluating secret elicitation methods.
♻ ☆ RTNinja: a generalized machine learning framework for analyzing random telegraph noise signals in nanoelectronic devices
Random telegraph noise is a prevalent variability phenomenon in nanoelectronic devices, arising from stochastic carrier exchange at defect sites and critically impacting device reliability and performance. Conventional analysis techniques often rely on restrictive assumptions or manual interventions, limiting their applicability to complex, noisy datasets. Here, we introduce RTNinja, a generalized, fully automated machine learning framework for the unsupervised analysis of random telegraph noise signals. RTNinja deconvolves complex signals to identify the number and characteristics of hidden individual sources, without requiring prior knowledge of the system. The framework comprises two modular components: LevelsExtractor, which uses Bayesian inference and model selection to denoise and discretize the signal; and SourcesMapper, which infers source configurations through probabilistic clustering and optimization. To evaluate performance, we developed a Monte Carlo simulator that generates labeled datasets spanning broad signal-to-noise ratios and source complexities; across 7000 such datasets, RTNinja consistently demonstrated high-fidelity signal reconstruction and accurate extraction of source amplitudes and activity patterns. Our results demonstrate that RTNinja offers a robust, scalable, and device-agnostic tool for random telegraph noise characterization, enabling large-scale statistical benchmarking, reliability-centric technology qualification, predictive failure modeling, and device physics exploration in next-generation nanoelectronics.
♻ ☆ DualOptim: Enhancing Efficacy and Stability in Machine Unlearning with Dual Optimizers
Existing machine unlearning (MU) approaches exhibit significant sensitivity to hyperparameters, requiring meticulous tuning that limits practical deployment. In this work, we first empirically demonstrate the instability and suboptimal performance of existing popular MU methods when deployed in different scenarios. To address this issue, we propose Dual Optimizer (DualOptim), which incorporates adaptive learning rate and decoupled momentum factors. Empirical and theoretical evidence demonstrates that DualOptim contributes to effective and stable unlearning. Through extensive experiments, we show that DualOptim can significantly boost MU efficacy and stability across diverse tasks, including image classification, image generation, and large language models, making it a versatile approach to empower existing MU algorithms.
♻ ☆ An All-Reduce Compatible Top-K Compressor for Communication-Efficient Distributed Learning
Communication remains a central bottleneck in large-scale distributed machine learning, and gradient sparsification has emerged as a promising strategy to alleviate this challenge. However, existing gradient compressors face notable limitations: Rand-$K$ discards structural information and performs poorly in practice, while Top-$K$ preserves informative entries but loses the contraction property and requires costly All-Gather operations. In this paper, we propose ARC-Top-$K$, an {All-Reduce}-Compatible Top-$K$ compressor that aligns sparsity patterns across nodes using a lightweight sketch of the gradient, enabling index-free All-Reduce while preserving globally significant information. ARC-Top-$K$ is provably contractive and, when combined with momentum error feedback (EF21M), achieves linear speedup and sharper convergence rates than the original EF21M under standard assumptions. Empirically, ARC-Top-$K$ matches the accuracy of Top-$K$ while reducing wall-clock training time by up to 60.7\%, offering an efficient and scalable solution that combines the robustness of Rand-$K$ with the strong performance of Top-$K$.
comment: 8 pages, 2 figures
♻ ☆ Qini Curve Estimation under Clustered Network Interference
Qini curves are a widely used tool for assessing treatment policies under allocation constraints as they visualize the incremental gain of a new treatment policy versus the cost of its implementation. Standard Qini curve estimation assumes no interference between units: that is, that treating one unit does not influence the outcome of any other unit. In many real-life applications such as public policy or marketing, however, the presence of interference is common. Ignoring interference in these scenarios can lead to systematically biased Qini curves that over- or under-estimate a treatment policy's cost-effectiveness. In this paper, we address the problem of Qini curve estimation under clustered network interference, where interfering units form independent clusters. We propose a formal description of the problem setting with an experimental study design under which we can account for clustered network interference. Within this framework, we describe three estimation strategies, each suited to different conditions, and provide guidance for selecting the most appropriate approach by highlighting the inherent bias-variance trade-offs. To complement our theoretical analysis, we introduce a marketplace simulator that replicates clustered network interference in a typical e-commerce environment, allowing us to evaluate and compare the proposed strategies in practice.
♻ ☆ Geometry-Aware Edge Pooling for Graph Neural Networks NeurIPS
Graph Neural Networks (GNNs) have shown significant success for graph-based tasks. Motivated by the prevalence of large datasets in real-world applications, pooling layers are crucial components of GNNs. By reducing the size of input graphs, pooling enables faster training and potentially better generalisation. However, existing pooling operations often optimise for the learning task at the expense of discarding fundamental graph structures, thus reducing interpretability. This leads to unreliable performance across dataset types, downstream tasks and pooling ratios. Addressing these concerns, we propose novel graph pooling layers for structure-aware pooling via edge collapses. Our methods leverage diffusion geometry and iteratively reduce a graph's size while preserving both its metric structure and its structural diversity. We guide pooling using magnitude, an isometry-invariant diversity measure, which permits us to control the fidelity of the pooling process. Further, we use the spread of a metric space as a faster and more stable alternative ensuring computational efficiency. Empirical results demonstrate that our methods (i) achieve top performance compared to alternative pooling layers across a range of diverse graph classification tasks, (ii) preserve key spectral properties of the input graphs, and (iii) retain high accuracy across varying pooling ratios.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS) 2025. Our code is available at https://github.com/aidos-lab/mag_edge_pool
♻ ☆ Uncertainty-Based Smooth Policy Regularisation for Reinforcement Learning with Few Demonstrations
In reinforcement learning with sparse rewards, demonstrations can accelerate learning, but determining when to imitate them remains challenging. We propose Smooth Policy Regularisation from Demonstrations (SPReD), a framework that addresses the fundamental question: when should an agent imitate a demonstration versus follow its own policy? SPReD uses ensemble methods to explicitly model Q-value distributions for both demonstration and policy actions, quantifying uncertainty for comparisons. We develop two complementary uncertainty-aware methods: a probabilistic approach estimating the likelihood of demonstration superiority, and an advantage-based approach scaling imitation by statistical significance. Unlike prevailing methods (e.g. Q-filter) that make binary imitation decisions, SPReD applies continuous, uncertainty-proportional regularisation weights, reducing gradient variance during training. Despite its computational simplicity, SPReD achieves remarkable gains in experiments across eight robotics tasks, outperforming existing approaches by up to a factor of 14 in complex tasks while maintaining robustness to demonstration quality and quantity. Our code is available at https://github.com/YujieZhu7/SPReD.
♻ ☆ Khiops: An End-to-End, Frugal AutoML and XAI Machine Learning Solution for Large, Multi-Table Databases
Khiops is an open source machine learning tool designed for mining large multi-table databases. Khiops is based on a unique Bayesian approach that has attracted academic interest with more than 20 publications on topics such as variable selection, classification, decision trees and co-clustering. It provides a predictive measure of variable importance using discretisation models for numerical data and value clustering for categorical data. The proposed classification/regression model is a naive Bayesian classifier incorporating variable selection and weight learning. In the case of multi-table databases, it provides propositionalisation by automatically constructing aggregates. Khiops is adapted to the analysis of large databases with millions of individuals, tens of thousands of variables and hundreds of millions of records in secondary tables. It is available on many environments, both from a Python library and via a user interface.
♻ ☆ Towards User-Focused Research in Training Data Attribution for Human-Centered Explainable AI
Explainable AI (XAI) aims to make AI systems more transparent, yet many practices emphasise mathematical rigour over practical user needs. We propose an alternative to this model-centric approach by following a design thinking process for the emerging XAI field of training data attribution (TDA), which risks repeating solutionist patterns seen in other subfields. However, because TDA is in its early stages, there is a valuable opportunity to shape its direction through user-centred practices. We engage directly with machine learning developers via a needfinding interview study (N=6) and a scenario-based interactive user study (N=31) to ground explanations in real workflows. Our exploration of the TDA design space reveals novel tasks for data-centric explanations useful to developers, such as grouping training samples behind specific model behaviours or identifying undersampled data. We invite the TDA, XAI, and HCI communities to engage with these tasks to strengthen their research's practical relevance and human impact.
♻ ☆ SC-LoRA: Balancing Efficient Fine-tuning and Knowledge Preservation via Subspace-Constrained LoRA
Parameter-Efficient Fine-Tuning (PEFT) methods, particularly Low-Rank Adaptation (LoRA), are indispensable for efficiently customizing Large Language Models (LLMs). However, vanilla LoRA suffers from slow convergence speed and knowledge forgetting problems. Recent studies have leveraged the power of designed LoRA initialization, to enhance the fine-tuning efficiency, or to preserve knowledge in the pre-trained LLM. However, none of these works can address the two cases at the same time. To this end, we introduce Subspace-Constrained LoRA (SC-LoRA), a novel LoRA initialization framework engineered to navigate the trade-off between efficient fine-tuning and knowledge preservation. We achieve this by constraining the output of trainable LoRA adapters in a low-rank subspace, where the context information of fine-tuning data is most preserved while the context information of preserved knowledge is least retained, in a balanced way. Such constraint enables the trainable weights to primarily focus on the main features of fine-tuning data while avoiding damaging the preserved knowledge features. We provide theoretical analysis on our method, and conduct extensive experiments including safety preservation and world knowledge preservation, on various downstream tasks. In our experiments, SC-LoRA succeeds in delivering superior fine-tuning performance while markedly diminishing knowledge forgetting, surpassing contemporary LoRA initialization methods.
♻ ☆ Manifold Learning for Hyperspectral Images
Traditional feature extraction and projection techniques, such as Principal Component Analysis, struggle to adequately represent X-Ray Transmission (XRT) Multi-Energy (ME) images, limiting the performance of neural networks in decision-making processes. To address this issue, we propose a method that approximates the dataset topology by constructing adjacency graphs using the Uniform Manifold Approximation and Projection. This approach captures nonlinear correlations within the data, significantly improving the performance of machine learning algorithms, particularly in processing Hyperspectral Images (HSI) from X-ray transmission spectroscopy. This technique not only preserves the global structure of the data but also enhances feature separability, leading to more accurate and robust classification results.
♻ ☆ Deep Learning-based Prediction of Clinical Trial Enrollment with Uncertainty Estimates
Clinical trials are a systematic endeavor to assess the safety and efficacy of new drugs or treatments. Conducting such trials typically demands significant financial investment and meticulous planning, highlighting the need for accurate predictions of trial outcomes. Accurately predicting patient enrollment, a key factor in trial success, is one of the primary challenges during the planning phase. In this work, we propose a novel deep learning-based method to address this critical challenge. Our method, implemented as a neural network model, leverages pre-trained language models (PLMs) to capture the complexities and nuances of clinical documents, transforming them into expressive representations. These representations are then combined with encoded tabular features via an attention mechanism. To account for uncertainties in enrollment prediction, we enhance the model with a probabilistic layer based on the Gamma distribution, which enables range estimation. We apply the proposed model to predict clinical trial duration, assuming site-level enrollment follows a Poisson-Gamma process. We carry out extensive experiments on real-world clinical trial data, and show that the proposed method can effectively predict the number of patients enrolled at a number of sites for a given clinical trial, outperforming established baseline models.
♻ ☆ Towards a Generalizable AI for Materials Discovery: Validation through Immersion Coolant Screening
Artificial intelligence (AI) has emerged as a powerful accelerator of materials discovery, yet most existing models remain problem-specific, requiring additional data collection and retraining for each new property. Here we introduce and validate GATE (Geometrically Aligned Transfer Encoder) -- a generalizable AI framework that jointly learns 34 physicochemical properties spanning thermal, electrical, mechanical, and optical domains. By aligning these properties within a shared geometric space, GATE captures cross-property correlations that reduce disjoint-property bias -- a key factor causing false positives in multi-criteria screening. To demonstrate its generalizable utility, GATE -- without any problem-specific model reconfiguration -- applied to the discovery of immersion cooling fluids for data centers, a stringent real-world challenge defined by the Open Compute Project (OCP). Screening billions of candidates, GATE identified 92,861 molecules as promising for practical deployment. Four were experimentally or literarily validated, showing strong agreement with wet-lab measurements and performance comparable to or exceeding a commercial coolant. These results establish GATE as a generalizable AI platform readily applicable across diverse materials discovery tasks.
comment: 16 pages, 4 figures
♻ ☆ Multimodal LLM-assisted Evolutionary Search for Programmatic Control Policies
Deep reinforcement learning has achieved impressive success in control tasks. However, its policies, represented as opaque neural networks, are often difficult for humans to understand, verify, and debug, which undermines trust and hinders real-world deployment. This work addresses this challenge by introducing a novel approach for programmatic control policy discovery, called Multimodal Large Language Model-assisted Evolutionary Search (MLES). MLES utilizes multimodal large language models as programmatic policy generators, combining them with evolutionary search to automate policy generation. It integrates visual feedback-driven behavior analysis within the policy generation process to identify failure patterns and guide targeted improvements, thereby enhancing policy discovery efficiency and producing adaptable, human-aligned policies. Experimental results demonstrate that MLES achieves performance comparable to Proximal Policy Optimization (PPO) across two standard control tasks while providing transparent control logic and traceable design processes. This approach also overcomes the limitations of predefined domain-specific languages, facilitates knowledge transfer and reuse, and is scalable across various tasks, showing promise as a new paradigm for developing transparent and verifiable control policies.
♻ ☆ Offline Clustering of Preference Learning with Active-data Augmentation
Preference learning from pairwise feedback is a widely adopted framework in applications such as reinforcement learning with human feedback and recommendations. In many practical settings, however, user interactions are limited or costly, making offline preference learning necessary. Moreover, real-world preference learning often involves users with different preferences. For example, annotators from different backgrounds may rank the same responses differently. This setting presents two central challenges: (1) identifying similarity across users to effectively aggregate data, especially under scenarios where offline data is imbalanced across dimensions, and (2) handling the imbalanced offline data where some preference dimensions are underrepresented. To address these challenges, we study the Offline Clustering of Preference Learning problem, where the learner has access to fixed datasets from multiple users with potentially different preferences and aims to maximize utility for a test user. To tackle the first challenge, we first propose Off-C$^2$PL for the pure offline setting, where the learner relies solely on offline data. Our theoretical analysis provides a suboptimality bound that explicitly captures the tradeoff between sample noise and bias. To address the second challenge of inbalanced data, we extend our framework to the setting with active-data augmentation where the learner is allowed to select a limited number of additional active-data for the test user based on the cluster structure learned by Off-C$^2$PL. In this setting, our second algorithm, A$^2$-Off-C$^2$PL, actively selects samples that target the least-informative dimensions of the test user's preference. We prove that these actively collected samples contribute more effectively than offline ones. Finally, we validate our theoretical results through simulations on synthetic and real-world datasets.
♻ ☆ Aeolus: A Multi-structural Flight Delay Dataset
We introduce Aeolus, a large-scale Multi-modal Flight Delay Dataset designed to advance research on flight delay prediction and support the development of foundation models for tabular data. Existing datasets in this domain are typically limited to flat tabular structures and fail to capture the spatiotemporal dynamics inherent in delay propagation. Aeolus addresses this limitation by providing three aligned modalities: (i) a tabular dataset with rich operational, meteorological, and airportlevel features for over 50 million flights; (ii) a flight chain module that models delay propagation along sequential flight legs, capturing upstream and downstream dependencies; and (iii) a flight network graph that encodes shared aircraft, crew, and airport resource connections, enabling cross-flight relational reasoning. The dataset is carefully constructed with temporal splits, comprehensive features, and strict leakage prevention to support realistic and reproducible machine learning evaluation. Aeolus supports a broad range of tasks, including regression, classification, temporal structure modeling, and graph learning, serving as a unified benchmark across tabular, sequential, and graph modalities. We release baseline experiments and preprocessing tools to facilitate adoption. Aeolus fills a key gap for both domain-specific modeling and general-purpose structured data research.Our source code and data can be accessed at https://github.com/Flnny/Delay-data
♻ ☆ LLM Based Long Code Translation using Identifier Replacement
In the domain of software development, LLMs have been utilized to automate tasks such as code translation, where source code from one programming language is translated to another while preserving its functionality. However, LLMs often struggle with long source codes that don't fit into the context window, which produces inaccurate translations. To address this, we propose a novel zero-shot code translation method that incorporates identifier replacement. By substituting user-given long identifiers with generalized placeholders during translation, our method allows the LLM to focus on the logical structure of the code, by reducing token count and memory usage, which improves the efficiency and cost-effectiveness of long code translation. Our empirical results demonstrate that our approach preserves syntactical and hierarchical information and produces translation results with reduced tokens.
♻ ☆ Kernel Mean Embedding Topology: Weak and Strong Forms for Stochastic Kernels and Implications for Model Learning
We introduce a novel topology, called Kernel Mean Embedding Topology, for stochastic kernels, in a weak and strong form. This topology, defined on the spaces of Bochner integrable functions from a signal space to a space of probability measures endowed with a Hilbert space structure, allows for a versatile formulation. This construction allows one to obtain both a strong and weak formulation. (i) For its weak formulation, we highlight the utility on relaxed policy spaces, and investigate connections with the Young narrow topology and Borkar (or \( w^* \))-topology, and establish equivalence properties. We report that, while both the \( w^* \)-topology and kernel mean embedding topology are relatively compact, they are not closed. Conversely, while the Young narrow topology is closed, it lacks relative compactness. (ii) We show that the strong form provides an appropriate formulation for placing topologies on spaces of models characterized by stochastic kernels with explicit robustness and learning theoretic implications on optimal stochastic control under discounted or average cost criteria. (iii) We thus show that this topology possesses several properties making it ideal to study optimality and approximations (under the weak formulation) and robustness (under the strong formulation) for many applications.
comment: 37 pages
♻ ☆ LIBMoE: A Library for comprehensive benchmarking Mixture of Experts in Large Language Models
Mixture of experts (MoE) architectures have become a cornerstone for scaling up and are a key component in most large language models such as GPT-OSS, DeepSeek-V3, Llama-4, and Gemini-2.5. However, systematic research on MoE remains severely constrained by the prohibitive computational costs of training and evaluation, restricting large-scale studies accessible to most researchers. We introduce LibMoE, a unified framework for reproducible, efficient, and extensible MoE research that supports both pretraining and sparse-upcycling regimes. Beyond unified implementations, the framework provides transparent analytical tools for probing routing and expert dynamics. Leveraging this foundation, we conduct a comprehensive analysis along three dimensions: (i) routing dynamics, covering expert selection patterns, routing stability and optimality, and how routing entropy reveals task specialization and expert diversity; (ii) the effect of lightweight initialization on load balancing, demonstrating how subtle changes in router initialization shape early expert utilization; and (iii) training regime differences, revealing how sparse upcycling and full pretraining exhibit distinct routing patterns and stability profiles. By lowering the barrier to entry and standardizing evaluation, along with our comprehensive analysis, LibMoE broadens access to MoE research and establishes a reliable benchmark to guide future innovations. Project page: https://fsoft-aic.github.io/fsoft-LibMoE.github.io.
comment: 15 pages, 9 figures
♻ ☆ A Robust and Non-Iterative Tensor Decomposition Method with Automatic Thresholding
Recent advances in IoT and biometric sensing technologies have led to the generation of massive and high-dimensional tensor data, yet achieving accurate and efficient low-rank approximation remains a major challenge. Most existing tensor decomposition methods require predefined ranks and iterative optimization, resulting in high computational costs and dependence on analyst expertise. This study proposes a novel tensor low-rank approximation method that eliminates both prior rank specification and iterative optimization. The method applies statistical singular value hard thresholding to each mode-wise unfolded matrix to automatically extract statistically significant components, effectively reducing noise while preserving the intrinsic structure. Theoretically, the optimal thresholds for each mode are derived from the asymptotic properties of the Marcenko-Pastur distribution. Simulation experiments demonstrate that the proposed method outperforms conventional approaches (HOSVD, HOOI, and Tucker-L2E) in both estimation accuracy and computational efficiency. These results indicate that the proposed approach provides a theoretically grounded, fully automatic, and non-iterative framework for tensor decomposition.
comment: 26 pages, 3 figures
♻ ☆ Accelerating Data Generation for Nonlinear temporal PDEs via homologous perturbation in solution space
Data-driven deep learning methods like neural operators have advanced in solving nonlinear temporal partial differential equations (PDEs). However, these methods require large quantities of solution pairs\u2014the solution functions and right-hand sides (RHS) of the equations. These pairs are typically generated via traditional numerical methods, which need thousands of time steps iterations far more than the dozens required for training, creating heavy computational and temporal overheads. To address these challenges, we propose a novel data generation algorithm, called HOmologous Perturbation in Solution Space (HOPSS), which directly generates training datasets with fewer time steps rather than following the traditional approach of generating large time steps datasets. This algorithm simultaneously accelerates dataset generation and preserves the approximate precision required for model training. Specifically, we first obtain a set of base solution functions from a reliable solver, usually with thousands of time steps, and then align them in time steps with training datasets by downsampling. Subsequently, we propose a "homologous perturbation" approach: by combining two solution functions (one as the primary function, the other as a homologous perturbation term scaled by a small scalar) with random noise, we efficiently generate comparable-precision PDE data points. Finally, using these data points, we compute the variation in the original equation's RHS to form new solution pairs. Theoretical and experimental results show HOPSS lowers time complexity. For example, on the Navier-Stokes equation, it generates 10,000 samples in approximately 10% of traditional methods' time, with comparable model training performance.
♻ ☆ Hybrid Dual-Batch and Cyclic Progressive Learning for Efficient Distributed Training
Distributed machine learning is critical for training deep learning models on large datasets with numerous parameters. Current research primarily focuses on leveraging additional hardware resources and powerful computing units to accelerate the training process. As a result, larger batch sizes are often employed to speed up training. However, training with large batch sizes can lead to lower accuracy due to poor generalization. To address this issue, we propose the dual-batch learning scheme, a distributed training method built on the parameter server framework. This approach maximizes training efficiency by utilizing the largest batch size that the hardware can support while incorporating a smaller batch size to enhance model generalization. By using two different batch sizes simultaneously, this method improves accuracy with minimal additional training time. Additionally, to mitigate the time overhead caused by dual-batch learning, we propose the cyclic progressive learning scheme. This technique repeatedly and gradually increases image resolution from low to high during training, thereby reducing training time. By combining cyclic progressive learning with dual-batch learning, our hybrid approach improves both model generalization and training efficiency. Experimental results with ResNet-18 demonstrate that, compared to conventional training methods, our approach improves accuracy by 3.3% while reducing training time by 10.1% on CIFAR-100, and further achieves a 34.8% reduction in training time on ImageNet.
♻ ☆ Querying functional and structural niches on spatial transcriptomics data
Cells in multicellular organisms coordinate to form functional and structural niches. With spatial transcriptomics enabling gene expression profiling in spatial contexts, it has been revealed that spatial niches serve as cohesive and recurrent units in physiological and pathological processes. These observations suggest universal tissue organization principles encoded by conserved niche patterns, and call for a query-based niche analytical paradigm beyond current computational tools. In this work, we defined the Niche Query Task, which is to identify similar niches across ST samples given a niche of interest (NOI). We further developed QueST, a specialized method for solving this task. QueST models each niche as a subgraph, uses contrastive learning to learn discriminative niche embeddings, and incorporates adversarial training to mitigate batch effects. In simulations and benchmark datasets, QueST outperformed existing methods repurposed for niche querying, accurately capturing niche structures in heterogeneous environments and demonstrating strong generalizability across diverse sequencing platforms. Applied to tertiary lymphoid structures in renal and lung cancers, QueST revealed functionally distinct niches associated with patient prognosis and uncovered conserved and divergent spatial architectures across cancer types. These results demonstrate that QueST enables systematic, quantitative profiling of spatial niches across samples, providing a powerful tool to dissect spatial tissue architecture in health and disease.
♻ ☆ A Framework for Objective-Driven Dynamical Stochastic Fields
Fields offer a versatile approach for describing complex systems composed of interacting and dynamic components. In particular, some of these dynamical and stochastic systems may exhibit goal-directed behaviors aimed at achieving specific objectives, which we refer to as $\textit{intelligent fields}$. However, due to their inherent complexity, it remains challenging to develop a formal theoretical description of such systems and to effectively translate these descriptions into practical applications. In this paper, we propose three fundamental principles to establish a theoretical framework for understanding intelligent fields: complete configuration, locality, and purposefulness. Moreover, we explore methodologies for designing such fields from the perspective of artificial intelligence applications. This initial investigation aims to lay the groundwork for future theoretical developments and practical advances in understanding and harnessing the potential of such objective-driven dynamical stochastic fields.
♻ ☆ MMEdge: Accelerating On-device Multimodal Inference via Pipelined Sensing and Encoding
Real-time multimodal inference on resource-constrained edge devices is essential for applications such as autonomous driving, human-computer interaction, and mobile health. However, prior work often overlooks the tight coupling between sensing dynamics and model execution, as well as the complex inter-modality dependencies. In this paper, we propose MMEdge, an new on-device multi-modal inference framework based on pipelined sensing and encoding. Instead of waiting for complete sensor inputs, MMEdge decomposes the entire inference process into a sequence of fine-grained sensing and encoding units, allowing computation to proceed incrementally as data arrive. MMEdge also introduces a lightweight but effective temporal aggregation module that captures rich temporal dynamics across different pipelined units to maintain accuracy performance. Such pipelined design also opens up opportunities for fine-grained cross-modal optimization and early decision-making during inference. To further enhance system performance under resource variability and input data complexity, MMEdge incorporates an adaptive multimodal configuration optimizer that dynamically selects optimal sensing and model configurations for each modality under latency constraints, and a cross-modal speculative skipping mechanism that bypasses future units of slower modalities when early predictions reach sufficient confidence. We evaluate MMEdge using two public multimodal datasets and deploy it on a real-world unmanned aerial vehicle (UAV)-based multimodal testbed. The results show that MMEdge significantly reduces end-to-end latency while maintaining high task accuracy across various system and data dynamics.
comment: Code available at: https://github.com/HKUST-MINSys-Lab/MMEdge. Accepted by SenSys 2026
♻ ☆ Efficient Attention via Pre-Scoring: Prioritizing Informative Keys in Transformers
Recent advances in transformer architectures deeply enhanced long-context language modeling. Among them, HyperAttention achieves competitive efficiency by combining a single-level LSH-based clustering with uniform residual sampling. However, HyperAttention fails to find all significant keys, which in turn raises the overall perplexity. We propose a pre-scoring mechanism that prioritizes significant keys before applying HyperAttention. We introduce three scoring methods: $k$-means and kernel $k$-means clustering, $k$-median clustering, and leverage score-based ranking (inspired by LevAttention) to filter keys effectively. We further replace HyperAttention's original uniform residual sampling, relying exclusively on our pre-scoring mechanism. Experiments on ChatGLM2 (131k token context) reduce perplexity from 12 to 8.3, which outperforms standard HyperAttention. Moreover, when running on the Vision-Transformer (ViT), our method shows that it can guarantee similar accuracy compared with LevAttention, and will surpass LevAttention given specific parameters. Although this method introduces some computational overhead, its combination with HyperAttention achieves up to 20 times faster than FlashAttention, providing a balanced trade-off between speed and modeling accuracy. Our results highlight the effectiveness of integrating pre-scoring into hierarchical attention mechanisms, significantly improving transformer efficiency.
♻ ☆ Unlocking Reasoning Capabilities in LLMs via Reinforcement Learning Exploration
Reinforcement learning with verifiable rewards (RLVR) has recently enhanced the reasoning capabilities of large language models (LLMs), particularly for mathematical problem solving. However, a fundamental limitation remains: as the sampling budget increases, the advantage of RLVR-trained models over their pretrained bases often diminishes or even vanishes, revealing a strong dependence on the base model's restricted search space. We attribute this phenomenon to the widespread use of the reverse Kullback-Leibler (KL) divergence regularizer, whose mode-seeking behavior keeps the policy trapped inside the base model's support region and hampers wider exploration. To address this issue, we propose RAPO (Rewards-Aware Policy Optimization), an algorithm to promote broader yet focused exploration. Our method (i) utilizes the forward KL penalty to replace the reverse KL penalty for out-of-distribution exploration, and (ii) reweights the reference policy to facilitate adaptive in-distribution exploration. We train Qwen2.5-3B and 7B models with RAPO on the 8K SimpleRL-Zero dataset, without supervised fine-tuning, and evaluate them on AIME2024 and AIME2025. Results show that RAPO consistently improves problem-solving performance. Notably, RAPO enables models to surpass the base model's performance ceiling and solves previously intractable problems, advancing the frontier of RLVR for challenging reasoning tasks.
♻ ☆ Demystifying MaskGIT Sampler and Beyond: Adaptive Order Selection in Masked Diffusion
Masked diffusion models have shown promising performance in generating high-quality samples in a wide range of domains, but accelerating their sampling process remains relatively underexplored. To investigate efficient samplers for masked diffusion, this paper theoretically analyzes the MaskGIT sampler for image modeling, revealing its implicit temperature sampling mechanism. Through this analysis, we introduce the "moment sampler," an asymptotically equivalent but more tractable and interpretable alternative to MaskGIT, which employs a "choose-then-sample" approach by selecting unmasking positions before sampling tokens. In addition, we improve the efficiency of choose-then-sample algorithms through two key innovations: a partial caching technique for transformers that approximates longer sampling trajectories without proportional computational cost, and a hybrid approach formalizing the exploration-exploitation trade-off in adaptive unmasking. Experiments in image and text domains demonstrate our theory as well as the efficiency of our proposed methods, advancing both theoretical understanding and practical implementation of masked diffusion samplers.
comment: 23 pages, fixed cleveref-related issue
♻ ☆ Mixture-of-Experts Operator Transformer for Large-Scale PDE Pre-Training
Pre-training has proven effective in addressing data scarcity and performance limitations in solving PDE problems with neural operators. However, challenges remain due to the heterogeneity of PDE datasets in equation types, which leads to high errors in mixed training. Additionally, dense pre-training models that scale parameters by increasing network width or depth incur significant inference costs. To tackle these challenges, we propose a novel Mixture-of-Experts Pre-training Operator Transformer (MoE-POT), a sparse-activated architecture that scales parameters efficiently while controlling inference costs. Specifically, our model adopts a layer-wise router-gating network to dynamically select 4 routed experts from 16 expert networks during inference, enabling the model to focus on equation-specific features. Meanwhile, we also integrate 2 shared experts, aiming to capture common properties of PDE and reduce redundancy among routed experts. The final output is computed as the weighted average of the results from all activated experts. We pre-train models with parameters from 30M to 0.5B on 6 public PDE datasets. Our model with 90M activated parameters achieves up to a 40% reduction in zero-shot error compared with existing models with 120M activated parameters. Additionally, we conduct interpretability analysis, showing that dataset types can be inferred from router-gating network decisions, which validates the rationality and effectiveness of the MoE architecture.
♻ ☆ Deciphering Invariant Feature Decoupling in Source-free Time Series Forecasting with Proxy Denoising
The proliferation of mobile devices generates a massive volume of time series across various domains, where effective time series forecasting enables a variety of real-world applications. This study focuses on a new problem of source-free domain adaptation for time series forecasting. It aims to adapt a pretrained model from sufficient source time series to the sparse target time series domain without access to the source data, embracing data protection regulations. To achieve this, we propose TimePD, the first source-free time series forecasting framework with proxy denoising, where large language models (LLMs) are employed to benefit from their generalization capabilities. Specifically, TimePD consists of three key components: (1) dual-branch invariant disentangled feature learning that enforces representation- and gradient-wise invariance by means of season-trend decomposition; (2) lightweight, parameter-free proxy denoising that dynamically calibrates systematic biases of LLMs; and (3) knowledge distillation that bidirectionally aligns the denoised prediction and the original target prediction. Extensive experiments on real-world datasets offer insight into the effectiveness of the proposed TimePD, outperforming SOTA baselines by 9.3% on average.
♻ ☆ AstroVisBench: A Code Benchmark for Scientific Computing and Visualization in Astronomy NeurIPS 2025
Large Language Models (LLMs) are being explored for applications in scientific research, including their capabilities to synthesize literature, answer research questions, generate research ideas, and even conduct computational experiments. Ultimately, our goal is for these to help scientists derive novel scientific insights. In many areas of science, such insights often arise from processing and visualizing data to understand its patterns. However, evaluating whether an LLM-mediated scientific workflow produces outputs conveying the correct scientific insights is challenging to evaluate and has not been addressed in past work. We introduce AstroVisBench, the first benchmark for both scientific computing and visualization in the astronomy domain. AstroVisBench judges a language model's ability to both (1) create astronomy-specific workflows to process and analyze data and (2) visualize the results of these workflows through complex plots. Our evaluation of visualizations uses a novel LLM-as-a-judge workflow, which is validated against annotation by five professional astronomers. Using AstroVisBench we present an evaluation of state-of-the-art language models, showing a significant gap in their ability to engage in astronomy research as useful assistants. This evaluation provides a strong end-to-end evaluation for AI scientists that offers a path forward for the development of visualization-based workflows, which are central to a broad range of domains from physics to biology.
comment: Accepted at NeurIPS 2025 Datasets & Benchmarks Track
♻ ☆ DrivAerStar: An Industrial-Grade CFD Dataset for Vehicle Aerodynamic Optimization
Vehicle aerodynamics optimization has become critical for automotive electrification, where drag reduction directly determines electric vehicle range and energy efficiency. Traditional approaches face an intractable trade-off: computationally expensive Computational Fluid Dynamics (CFD) simulations requiring weeks per design iteration, or simplified models that sacrifice production-grade accuracy. While machine learning offers transformative potential, existing datasets exhibit fundamental limitations -- inadequate mesh resolution, missing vehicle components, and validation errors exceeding 5% -- preventing deployment in industrial workflows. We present DrivAerStar, comprising 12,000 industrial-grade automotive CFD simulations generated using STAR-CCM+${}^\unicode{xAE}$ software. The dataset systematically explores three vehicle configurations through 20 Computer Aided Design (CAD) parameters via Free Form Deformation (FFD) algorithms, including complete engine compartments and cooling systems with realistic internal airflow. DrivAerStar achieves wind tunnel validation accuracy below 1.04% -- a five-fold improvement over existing datasets -- through refined mesh strategies with strict wall $y^+$ control. Benchmarks demonstrate that models trained on this data achieve production-ready accuracy while reducing computational costs from weeks to minutes. This represents the first dataset bridging academic machine learning research and industrial CFD practice, establishing a new standard for data-driven aerodynamic optimization in automotive development. Beyond automotive applications, DrivAerStar demonstrates a paradigm for integrating high-fidelity physics simulations with Artificial Intelligence (AI) across engineering disciplines where computational constraints currently limit innovation.
♻ ☆ Don't throw the baby out with the bathwater: How and why deep learning for ARC
The Abstraction and Reasoning Corpus (ARC-AGI) presents a formidable challenge for AI systems. Despite the typically low performance on ARC, the deep learning paradigm remains the most effective known strategy for generating skillful (state-of-the-art) neural networks (NN) across varied modalities and tasks in vision, language etc. The deep learning paradigm has proven to be able to train these skillful neural networks and learn the abstractions needed in these diverse domains. Our work doubles down on that and continues to leverage this paradigm by incorporating on-the-fly NN training at test time. We demonstrate that fully committing to deep learning's capacity to acquire novel abstractions yields state-of-the-art performance on ARC. Specifically, we treat both the neural network and the optimizer (rather than just a pre-trained network) as integral components of the inference process, fostering generalization to unseen tasks. Concretely, we propose a methodology for training on ARC, starting from pretrained LLMs, and enhancing their ARC reasoning. We also propose Test-Time Fine-Tuning (TTFT) and the Augment Inference Reverse-Augmentation and Vote (AIRV) as effective test-time techniques. We are the first to propose and show deep learning can be used effectively for ARC, showing boosts of up to 260% in accuracy with AIRV and a further 300% boost with TTFT. An early version of this approach secured first place in the 2023 ARCathon competition, while the final version achieved the current best score on the ARC private test-set (58%). Our findings highlight the key ingredients of a robust reasoning system in unfamiliar domains, underscoring the central mechanisms that improve broad perceptual reasoning.
comment: 13 pages, 6 figures
♻ ☆ Training a Generally Curious Agent ICML 2025
Efficient exploration is essential for intelligent systems interacting with their environment, but existing language models often fall short in scenarios that require strategic information gathering. In this paper, we present Paprika, a fine-tuning approach that enables language models to develop general decision-making capabilities that are not confined to particular environments. By training on synthetic interaction data from different tasks that require diverse strategies, Paprika teaches models to explore and adapt their behavior on a new task based on environment feedback in-context without more gradient updates. Experimental results show that models fine-tuned with Paprika can effectively transfer their learned decision-making capabilities to entirely unseen tasks without additional training. Unlike traditional training, our approach's primary bottleneck lies in sampling useful interaction data instead of model updates. To improve sample efficiency, we propose a curriculum learning strategy that prioritizes sampling trajectories from tasks with high learning potential. These results suggest a promising path towards AI systems that can autonomously solve novel sequential decision-making problems that require interactions with the external world.
comment: ICML 2025. Project Website: https://paprika-llm.github.io
♻ ☆ Scaling Diffusion Transformers Efficiently via $μ$P NeurIPS 2025
Diffusion Transformers have emerged as the foundation for vision generative models, but their scalability is limited by the high cost of hyperparameter (HP) tuning at large scales. Recently, Maximal Update Parametrization ($\mu$P) was proposed for vanilla Transformers, which enables stable HP transfer from small to large language models, and dramatically reduces tuning costs. However, it remains unclear whether $\mu$P of vanilla Transformers extends to diffusion Transformers, which differ architecturally and objectively. In this work, we generalize standard $\mu$P to diffusion Transformers and validate its effectiveness through large-scale experiments. First, we rigorously prove that $\mu$P of mainstream diffusion Transformers, including U-ViT, DiT, PixArt-$\alpha$, and MMDiT, aligns with that of the vanilla Transformer, enabling the direct application of existing $\mu$P methodologies. Leveraging this result, we systematically demonstrate that DiT-$\mu$P enjoys robust HP transferability. Notably, DiT-XL-2-$\mu$P with transferred learning rate achieves 2.9 times faster convergence than the original DiT-XL-2. Finally, we validate the effectiveness of $\mu$P on text-to-image generation by scaling PixArt-$\alpha$ from 0.04B to 0.61B and MMDiT from 0.18B to 18B. In both cases, models under $\mu$P outperform their respective baselines while requiring small tuning cost, only 5.5% of one training run for PixArt-$\alpha$ and 3% of consumption by human experts for MMDiT-18B. These results establish $\mu$P as a principled and efficient framework for scaling diffusion Transformers.
comment: Accepted by NeurIPS 2025, 38 pages, 10 figures, 17 tables
Artificial Intelligence 150
☆ Continuous Autoregressive Language Models
The efficiency of large language models (LLMs) is fundamentally limited by their sequential, token-by-token generation process. We argue that overcoming this bottleneck requires a new design axis for LLM scaling: increasing the semantic bandwidth of each generative step. To this end, we introduce Continuous Autoregressive Language Models (CALM), a paradigm shift from discrete next-token prediction to continuous next-vector prediction. CALM uses a high-fidelity autoencoder to compress a chunk of K tokens into a single continuous vector, from which the original tokens can be reconstructed with over 99.9\% accuracy. This allows us to model language as a sequence of continuous vectors instead of discrete tokens, which reduces the number of generative steps by a factor of K. The paradigm shift necessitates a new modeling toolkit; therefore, we develop a comprehensive likelihood-free framework that enables robust training, evaluation, and controllable sampling in the continuous domain. Experiments show that CALM significantly improves the performance-compute trade-off, achieving the performance of strong discrete baselines at a significantly lower computational cost. More importantly, these findings establish next-vector prediction as a powerful and scalable pathway towards ultra-efficient language models. Code: https://github.com/shaochenze/calm. Project: https://shaochenze.github.io/blog/2025/CALM.
☆ PETAR: Localized Findings Generation with Mask-Aware Vision-Language Modeling for PET Automated Reporting
Recent advances in vision-language models (VLMs) have enabled impressive multimodal reasoning, yet most medical applications remain limited to 2D imaging. In this work, we extend VLMs to 3D positron emission tomography and computed tomography (PET/CT), a domain characterized by large volumetric data, small and dispersed lesions, and lengthy radiology reports. We introduce a large-scale dataset comprising over 11,000 lesion-level descriptions paired with 3D segmentations from more than 5,000 PET/CT exams, extracted via a hybrid rule-based and large language model (LLM) pipeline. Building upon this dataset, we propose PETAR-4B, a 3D mask-aware vision-language model that integrates PET, CT, and lesion contours for spatially grounded report generation. PETAR bridges global contextual reasoning with fine-grained lesion awareness, producing clinically coherent and localized findings. Comprehensive automated and human evaluations demonstrate that PETAR substantially improves PET/CT report generation quality, advancing 3D medical vision-language understanding.
☆ MolChord: Structure-Sequence Alignment for Protein-Guided Drug Design
Structure-based drug design (SBDD), which maps target proteins to candidate molecular ligands, is a fundamental task in drug discovery. Effectively aligning protein structural representations with molecular representations, and ensuring alignment between generated drugs and their pharmacological properties, remains a critical challenge. To address these challenges, we propose MolChord, which integrates two key techniques: (1) to align protein and molecule structures with their textual descriptions and sequential representations (e.g., FASTA for proteins and SMILES for molecules), we leverage NatureLM, an autoregressive model unifying text, small molecules, and proteins, as the molecule generator, alongside a diffusion-based structure encoder; and (2) to guide molecules toward desired properties, we curate a property-aware dataset by integrating preference data and refine the alignment process using Direct Preference Optimization (DPO). Experimental results on CrossDocked2020 demonstrate that our approach achieves state-of-the-art performance on key evaluation metrics, highlighting its potential as a practical tool for SBDD.
comment: 21 pages
☆ Challenges in Credit Assignment for Multi-Agent Reinforcement Learning in Open Agent Systems
In the rapidly evolving field of multi-agent reinforcement learning (MARL), understanding the dynamics of open systems is crucial. Openness in MARL refers to the dynam-ic nature of agent populations, tasks, and agent types with-in a system. Specifically, there are three types of openness as reported in (Eck et al. 2023) [2]: agent openness, where agents can enter or leave the system at any time; task openness, where new tasks emerge, and existing ones evolve or disappear; and type openness, where the capabil-ities and behaviors of agents change over time. This report provides a conceptual and empirical review, focusing on the interplay between openness and the credit assignment problem (CAP). CAP involves determining the contribution of individual agents to the overall system performance, a task that becomes increasingly complex in open environ-ments. Traditional credit assignment (CA) methods often assume static agent populations, fixed and pre-defined tasks, and stationary types, making them inadequate for open systems. We first conduct a conceptual analysis, in-troducing new sub-categories of openness to detail how events like agent turnover or task cancellation break the assumptions of environmental stationarity and fixed team composition that underpin existing CAP methods. We then present an empirical study using representative temporal and structural algorithms in an open environment. The results demonstrate that openness directly causes credit misattribution, evidenced by unstable loss functions and significant performance degradation.
☆ Community Detection on Model Explanation Graphs for Explainable AI
Feature-attribution methods (e.g., SHAP, LIME) explain individual predictions but often miss higher-order structure: sets of features that act in concert. We propose Modules of Influence (MoI), a framework that (i) constructs a model explanation graph from per-instance attributions, (ii) applies community detection to find feature modules that jointly affect predictions, and (iii) quantifies how these modules relate to bias, redundancy, and causality patterns. Across synthetic and real datasets, MoI uncovers correlated feature groups, improves model debugging via module-level ablations, and localizes bias exposure to specific modules. We release stability and synergy metrics, a reference implementation, and evaluation protocols to benchmark module discovery in XAI.
☆ Information-Theoretic Greedy Layer-wise Training for Traffic Sign Recognition
Modern deep neural networks (DNNs) are typically trained with a global cross-entropy loss in a supervised end-to-end manner: neurons need to store their outgoing weights; training alternates between a forward pass (computation) and a top-down backward pass (learning) which is biologically implausible. Alternatively, greedy layer-wise training eliminates the need for cross-entropy loss and backpropagation. By avoiding the computation of intermediate gradients and the storage of intermediate outputs, it reduces memory usage and helps mitigate issues such as vanishing or exploding gradients. However, most existing layer-wise training approaches have been evaluated only on relatively small datasets with simple deep architectures. In this paper, we first systematically analyze the training dynamics of popular convolutional neural networks (CNNs) trained by stochastic gradient descent (SGD) through an information-theoretic lens. Our findings reveal that networks converge layer-by-layer from bottom to top and that the flow of information adheres to a Markov information bottleneck principle. Building on these observations, we propose a novel layer-wise training approach based on the recently developed deterministic information bottleneck (DIB) and the matrix-based R\'enyi's $\alpha$-order entropy functional. Specifically, each layer is trained jointly with an auxiliary classifier that connects directly to the output layer, enabling the learning of minimal sufficient task-relevant representations. We empirically validate the effectiveness of our training procedure on CIFAR-10 and CIFAR-100 using modern deep CNNs and further demonstrate its applicability to a practical task involving traffic sign recognition. Our approach not only outperforms existing layer-wise training baselines but also achieves performance comparable to SGD.
☆ VessShape: Few-shot 2D blood vessel segmentation by leveraging shape priors from synthetic images
Semantic segmentation of blood vessels is an important task in medical image analysis, but its progress is often hindered by the scarcity of large annotated datasets and the poor generalization of models across different imaging modalities. A key aspect is the tendency of Convolutional Neural Networks (CNNs) to learn texture-based features, which limits their performance when applied to new domains with different visual characteristics. We hypothesize that leveraging geometric priors of vessel shapes, such as their tubular and branching nature, can lead to more robust and data-efficient models. To investigate this, we introduce VessShape, a methodology for generating large-scale 2D synthetic datasets designed to instill a shape bias in segmentation models. VessShape images contain procedurally generated tubular geometries combined with a wide variety of foreground and background textures, encouraging models to learn shape cues rather than textures. We demonstrate that a model pre-trained on VessShape images achieves strong few-shot segmentation performance on two real-world datasets from different domains, requiring only four to ten samples for fine-tuning. Furthermore, the model exhibits notable zero-shot capabilities, effectively segmenting vessels in unseen domains without any target-specific training. Our results indicate that pre-training with a strong shape bias can be an effective strategy to overcome data scarcity and improve model generalization in blood vessel segmentation.
☆ Sketch-to-Layout: Sketch-Guided Multimodal Layout Generation ICCV 2025
Graphic layout generation is a growing research area focusing on generating aesthetically pleasing layouts ranging from poster designs to documents. While recent research has explored ways to incorporate user constraints to guide the layout generation, these constraints often require complex specifications which reduce usability. We introduce an innovative approach exploiting user-provided sketches as intuitive constraints and we demonstrate empirically the effectiveness of this new guidance method, establishing the sketch-to-layout problem as a promising research direction, which is currently under-explored. To tackle the sketch-to-layout problem, we propose a multimodal transformer-based solution using the sketch and the content assets as inputs to produce high quality layouts. Since collecting sketch training data from human annotators to train our model is very costly, we introduce a novel and efficient method to synthetically generate training sketches at scale. We train and evaluate our model on three publicly available datasets: PubLayNet, DocLayNet and SlidesVQA, demonstrating that it outperforms state-of-the-art constraint-based methods, while offering a more intuitive design experience. In order to facilitate future sketch-to-layout research, we release O(200k) synthetically-generated sketches for the public datasets above. The datasets are available at https://github.com/google-deepmind/sketch_to_layout.
comment: 15 pages, 18 figures, GitHub link: https://github.com/google-deepmind/sketch_to_layout, accept at ICCV 2025 Workshop (HiGen)
☆ Interaction as Intelligence Part II: Asynchronous Human-Agent Rollout for Long-Horizon Task Training
Large Language Model (LLM) agents have recently shown strong potential in domains such as automated coding, deep research, and graphical user interface manipulation. However, training them to succeed on long-horizon, domain-specialized tasks remains challenging. Current methods primarily fall into two categories. The first relies on dense human annotations through behavior cloning, which is prohibitively expensive for long-horizon tasks that can take days or months. The second depends on outcome-driven sampling, which often collapses due to the rarity of valid positive trajectories on domain-specialized tasks. We introduce Apollo, a sampling framework that integrates asynchronous human guidance with action-level data filtering. Instead of requiring annotators to shadow every step, Apollo allows them to intervene only when the agent drifts from a promising trajectory, by providing prior knowledge, strategic advice, etc. This lightweight design makes it possible to sustain interactions for over 30 hours and produces valuable trajectories at a lower cost. Apollo then applies supervision control to filter out sub-optimal actions and prevent error propagation. Together, these components enable reliable and effective data collection in long-horizon environments. To demonstrate the effectiveness of Apollo, we evaluate it using InnovatorBench. Our experiments show that when applied to train the GLM-4.5 model on InnovatorBench, Apollo achieves more than a 50% improvement over the untrained baseline and a 28% improvement over a variant trained without human interaction. These results highlight the critical role of human-in-the-loop sampling and the robustness of Apollo's design in handling long-horizon, domain-specialized tasks.
☆ Best Practices for Biorisk Evaluations on Open-Weight Bio-Foundation Models
Open-weight bio-foundation models present a dual-use dilemma. While holding great promise for accelerating scientific research and drug development, they could also enable bad actors to develop more deadly bioweapons. To mitigate the risk posed by these models, current approaches focus on filtering biohazardous data during pre-training. However, the effectiveness of such an approach remains unclear, particularly against determined actors who might fine-tune these models for malicious use. To address this gap, we propose \eval, a framework to evaluate the robustness of procedures that are intended to reduce the dual-use capabilities of bio-foundation models. \eval assesses models' virus understanding through three lenses, including sequence modeling, mutational effects prediction, and virulence prediction. Our results show that current filtering practices may not be particularly effective: Excluded knowledge can be rapidly recovered in some cases via fine-tuning, and exhibits broader generalizability in sequence modeling. Furthermore, dual-use signals may already reside in the pretrained representations, and can be elicited via simple linear probing. These findings highlight the challenges of data filtering as a standalone procedure, underscoring the need for further research into robust safety and security strategies for open-weight bio-foundation models.
comment: 17 Pages, 5 figures
☆ Validity Is What You Need
While AI agents have long been discussed and studied in computer science, today's Agentic AI systems are something new. We consider other definitions of Agentic AI and propose a new realist definition. Agentic AI is a software delivery mechanism, comparable to software as a service (SaaS), which puts an application to work autonomously in a complex enterprise setting. Recent advances in large language models (LLMs) as foundation models have driven excitement in Agentic AI. We note, however, that Agentic AI systems are primarily applications, not foundations, and so their success depends on validation by end users and principal stakeholders. The tools and techniques needed by the principal users to validate their applications are quite different from the tools and techniques used to evaluate foundation models. Ironically, with good validation measures in place, in many cases the foundation models can be replaced with much simpler, faster, and more interpretable models that handle core logic. When it comes to Agentic AI, validity is what you need. LLMs are one option that might achieve it.
☆ Visual Backdoor Attacks on MLLM Embodied Decision Making via Contrastive Trigger Learning
Multimodal large language models (MLLMs) have advanced embodied agents by enabling direct perception, reasoning, and planning task-oriented actions from visual inputs. However, such vision driven embodied agents open a new attack surface: visual backdoor attacks, where the agent behaves normally until a visual trigger appears in the scene, then persistently executes an attacker-specified multi-step policy. We introduce BEAT, the first framework to inject such visual backdoors into MLLM-based embodied agents using objects in the environments as triggers. Unlike textual triggers, object triggers exhibit wide variation across viewpoints and lighting, making them difficult to implant reliably. BEAT addresses this challenge by (1) constructing a training set that spans diverse scenes, tasks, and trigger placements to expose agents to trigger variability, and (2) introducing a two-stage training scheme that first applies supervised fine-tuning (SFT) and then our novel Contrastive Trigger Learning (CTL). CTL formulates trigger discrimination as preference learning between trigger-present and trigger-free inputs, explicitly sharpening the decision boundaries to ensure precise backdoor activation. Across various embodied agent benchmarks and MLLMs, BEAT achieves attack success rates up to 80%, while maintaining strong benign task performance, and generalizes reliably to out-of-distribution trigger placements. Notably, compared to naive SFT, CTL boosts backdoor activation accuracy up to 39% under limited backdoor data. These findings expose a critical yet unexplored security risk in MLLM-based embodied agents, underscoring the need for robust defenses before real-world deployment.
☆ VeriMoA: A Mixture-of-Agents Framework for Spec-to-HDL Generation
Automation of Register Transfer Level (RTL) design can help developers meet increasing computational demands. Large Language Models (LLMs) show promise for Hardware Description Language (HDL) generation, but face challenges due to limited parametric knowledge and domain-specific constraints. While prompt engineering and fine-tuning have limitations in knowledge coverage and training costs, multi-agent architectures offer a training-free paradigm to enhance reasoning through collaborative generation. However, current multi-agent approaches suffer from two critical deficiencies: susceptibility to noise propagation and constrained reasoning space exploration. We propose VeriMoA, a training-free mixture-of-agents (MoA) framework with two synergistic innovations. First, a quality-guided caching mechanism to maintain all intermediate HDL outputs and enables quality-based ranking and selection across the entire generation process, encouraging knowledge accumulation over layers of reasoning. Second, a multi-path generation strategy that leverages C++ and Python as intermediate representations, decomposing specification-to-HDL translation into two-stage processes that exploit LLM fluency in high-resource languages while promoting solution diversity. Comprehensive experiments on VerilogEval 2.0 and RTLLM 2.0 benchmarks demonstrate that VeriMoA achieves 15--30% improvements in Pass@1 across diverse LLM backbones, especially enabling smaller models to match larger models and fine-tuned alternatives without requiring costly training.
☆ Spatial-SSRL: Enhancing Spatial Understanding via Self-Supervised Reinforcement Learning
Spatial understanding remains a weakness of Large Vision-Language Models (LVLMs). Existing supervised fine-tuning (SFT) and recent reinforcement learning with verifiable rewards (RLVR) pipelines depend on costly supervision, specialized tools, or constrained environments that limit scale. We introduce Spatial-SSRL, a self-supervised RL paradigm that derives verifiable signals directly from ordinary RGB or RGB-D images. Spatial-SSRL automatically formulates five pretext tasks that capture 2D and 3D spatial structure: shuffled patch reordering, flipped patch recognition, cropped patch inpainting, regional depth ordering, and relative 3D position prediction. These tasks provide ground-truth answers that are easy to verify and require no human or LVLM annotation. Training on our tasks substantially improves spatial reasoning while preserving general visual capabilities. On seven spatial understanding benchmarks in both image and video settings, Spatial-SSRL delivers average accuracy gains of 4.63% (3B) and 3.89% (7B) over the Qwen2.5-VL baselines. Our results show that simple, intrinsic supervision enables RLVR at scale and provides a practical route to stronger spatial intelligence in LVLMs.
comment: preprint
☆ InnovatorBench: Evaluating Agents' Ability to Conduct Innovative LLM Research
AI agents could accelerate scientific discovery by automating hypothesis formation, experiment design, coding, execution, and analysis, yet existing benchmarks probe narrow skills in simplified settings. To address this gap, we introduce InnovatorBench, a benchmark-platform pair for realistic, end-to-end assessment of agents performing Large Language Model (LLM) research. It comprises 20 tasks spanning Data Construction, Filtering, Augmentation, Loss Design, Reward Design, and Scaffold Construction, which require runnable artifacts and assessment of correctness, performance, output quality, and uncertainty. To support agent operation, we develop ResearchGym, a research environment offering rich action spaces, distributed and long-horizon execution, asynchronous monitoring, and snapshot saving. We also implement a lightweight ReAct agent that couples explicit reasoning with executable planning using frontier models such as Claude-4, GPT-5, GLM-4.5, and Kimi-K2. Our experiments demonstrate that while frontier models show promise in code-driven research tasks, they struggle with fragile algorithm-related tasks and long-horizon decision making, such as impatience, poor resource management, and overreliance on template-based reasoning. Furthermore, agents require over 11 hours to achieve their best performance on InnovatorBench, underscoring the benchmark's difficulty and showing the potential of InnovatorBench to be the next generation of code-based research benchmark.
☆ Towards Universal Video Retrieval: Generalizing Video Embedding via Synthesized Multimodal Pyramid Curriculum
The prevailing video retrieval paradigm is structurally misaligned, as narrow benchmarks incentivize correspondingly limited data and single-task training. Therefore, universal capability is suppressed due to the absence of a diagnostic evaluation that defines and demands multi-dimensional generalization. To break this cycle, we introduce a framework built on the co-design of evaluation, data, and modeling. First, we establish the Universal Video Retrieval Benchmark (UVRB), a suite of 16 datasets designed not only to measure performance but also to diagnose critical capability gaps across tasks and domains. Second, guided by UVRB's diagnostics, we introduce a scalable synthesis workflow that generates 1.55 million high-quality pairs to populate the semantic space required for universality. Finally, we devise the Modality Pyramid, a curriculum that trains our General Video Embedder (GVE) by explicitly leveraging the latent interconnections within our diverse data. Extensive experiments show GVE achieves state-of-the-art zero-shot generalization on UVRB. In particular, our analysis reveals that popular benchmarks are poor predictors of general ability and that partially relevant retrieval is a dominant but overlooked scenario. Overall, our co-designed framework provides a practical path to escape the limited scope and advance toward truly universal video retrieval.
☆ SIGMA: Search-Augmented On-Demand Knowledge Integration for Agentic Mathematical Reasoning
Solving mathematical reasoning problems requires not only accurate access to relevant knowledge but also careful, multi-step thinking. However, current retrieval-augmented models often rely on a single perspective, follow inflexible search strategies, and struggle to effectively combine information from multiple sources. We introduce SIGMA (Search-Augmented On-Demand Knowledge Integration for AGentic Mathematical reAsoning), a unified framework that orchestrates specialized agents to independently reason, perform targeted searches, and synthesize findings through a moderator mechanism. Each agent generates hypothetical passages to optimize retrieval for its analytic perspective, ensuring knowledge integration is both context-sensitive and computation-efficient. When evaluated on challenging benchmarks such as MATH500, AIME, and PhD-level science QA GPQA, SIGMA consistently outperforms both open- and closed-source systems, achieving an absolute performance improvement of 7.4%. Our results demonstrate that multi-agent, on-demand knowledge integration significantly enhances both reasoning accuracy and efficiency, offering a scalable approach for complex, knowledge-intensive problem-solving. We will release the code upon publication.
comment: Short Paper - Under Review
CodeAlignBench: Assessing Code Generation Models on Developer-Preferred Code Adjustments
As large language models become increasingly capable of generating code, evaluating their performance remains a complex and evolving challenge. Existing benchmarks primarily focus on functional correctness, overlooking the diversity of real-world coding tasks and developer expectations. To this end, we introduce a multi-language benchmark that evaluates LLM instruction-following capabilities and is extensible to operate on any set of standalone coding problems. Our benchmark evaluates instruction following in two key settings: adherence to pre-defined constraints specified with the initial problem, and the ability to perform refinements based on follow-up instructions. For this paper's analysis, we empirically evaluated our benchmarking pipeline with programming tasks from LiveBench, that are also automatically translated from Python into Java and JavaScript. Our automated benchmark reveals that models exhibit differing levels of performance across multiple dimensions of instruction-following. Our benchmarking pipeline provides a more comprehensive evaluation of code generation models, highlighting their strengths and limitations across languages and generation goals.
☆ Toward Accurate Long-Horizon Robotic Manipulation: Language-to-Action with Foundation Models via Scene Graphs
This paper presents a framework that leverages pre-trained foundation models for robotic manipulation without domain-specific training. The framework integrates off-the-shelf models, combining multimodal perception from foundation models with a general-purpose reasoning model capable of robust task sequencing. Scene graphs, dynamically maintained within the framework, provide spatial awareness and enable consistent reasoning about the environment. The framework is evaluated through a series of tabletop robotic manipulation experiments, and the results highlight its potential for building robotic manipulation systems directly on top of off-the-shelf foundation models.
☆ Sybil-Resistant Service Discovery for Agent Economies
x402 enables Hypertext Transfer Protocol (HTTP) services like application programming interfaces (APIs), data feeds, and inference providers to accept cryptocurrency payments for access. As agents increasingly consume these services, discovery becomes critical: which swap interface should an agent trust? Which data provider is the most reliable? We introduce TraceRank, a reputation-weighted ranking algorithm where payment transactions serve as endorsements. TraceRank seeds addresses with precomputed reputation metrics and propagates reputation through payment flows weighted by transaction value and temporal recency. Applied to x402's payment graph, this surfaces services preferred by high-reputation users rather than those with high transaction volume. Our system combines TraceRank with semantic search to respond to natural language queries with high quality results. We argue that reputation propagation resists Sybil attacks by making spam services with many low-reputation payers rank below legitimate services with few high-reputation payers. Ultimately, we aim to construct a search method for x402 enabled services that avoids infrastructure bias and has better performance than purely volume based or semantic methods.
comment: 5 pages
☆ EBT-Policy: Energy Unlocks Emergent Physical Reasoning Capabilities
Implicit policies parameterized by generative models, such as Diffusion Policy, have become the standard for policy learning and Vision-Language-Action (VLA) models in robotics. However, these approaches often suffer from high computational cost, exposure bias, and unstable inference dynamics, which lead to divergence under distribution shifts. Energy-Based Models (EBMs) address these issues by learning energy landscapes end-to-end and modeling equilibrium dynamics, offering improved robustness and reduced exposure bias. Yet, policies parameterized by EBMs have historically struggled to scale effectively. Recent work on Energy-Based Transformers (EBTs) demonstrates the scalability of EBMs to high-dimensional spaces, but their potential for solving core challenges in physically embodied models remains underexplored. We introduce a new energy-based architecture, EBT-Policy, that solves core issues in robotic and real-world settings. Across simulated and real-world tasks, EBT-Policy consistently outperforms diffusion-based policies, while requiring less training and inference computation. Remarkably, on some tasks it converges within just two inference steps, a 50x reduction compared to Diffusion Policy's 100. Moreover, EBT-Policy exhibits emergent capabilities not seen in prior models, such as zero-shot recovery from failed action sequences using only behavior cloning and without explicit retry training. By leveraging its scalar energy for uncertainty-aware inference and dynamic compute allocation, EBT-Policy offers a promising path toward robust, generalizable robot behavior under distribution shifts.
comment: 9 pages, 6 figures, 4 tables
☆ Mechanics of Learned Reasoning 1: TempoBench, A Benchmark for Interpretable Deconstruction of Reasoning System Performance
Large Language Models (LLMs) are increasingly excelling and outpacing human performance on many tasks. However, to improve LLM reasoning, researchers either rely on ad-hoc generated datasets or formal mathematical proof systems such as the Lean proof assistant. Whilst ad-hoc generated methods can capture the decision chains of real-world reasoning processes, they may encode some inadvertent bias in the space of reasoning they cover; they also cannot be formally verified. On the other hand, systems like Lean can guarantee verifiability, but are not well-suited to capture the nature of agentic decision chain-based tasks. This creates a gap both in performance for functions such as business agents or code assistants, and in the usefulness of LLM reasoning benchmarks, whereby these fall short in reasoning structure or real-world alignment. We introduce TempoBench, the first formally grounded and verifiable diagnostic benchmark that parametrizes difficulty to systematically analyze how LLMs perform reasoning. TempoBench uses two evaluation benchmarks to break down reasoning ability. First, temporal trace evaluation (TTE) tests the ability of an LLM to understand and simulate the execution of a given multi-step reasoning system. Subsequently, temporal causal evaluation (TCE) tests an LLM's ability to perform multi-step causal reasoning and to distill cause-and-effect relations from complex systems. We find that models score 65.6% on TCE-normal, and 7.5% on TCE-hard. This shows that state-of-the-art LLMs clearly understand the TCE task but perform poorly as system complexity increases. Our code is available at our \href{https://github.com/nik-hz/tempobench}{GitHub repository}.
☆ DialectalArabicMMLU: Benchmarking Dialectal Capabilities in Arabic and Multilingual Language Models
We present DialectalArabicMMLU, a new benchmark for evaluating the performance of large language models (LLMs) across Arabic dialects. While recently developed Arabic and multilingual benchmarks have advanced LLM evaluation for Modern Standard Arabic (MSA), dialectal varieties remain underrepresented despite their prevalence in everyday communication. DialectalArabicMMLU extends the MMLU-Redux framework through manual translation and adaptation of 3K multiple-choice question-answer pairs into five major dialects (Syrian, Egyptian, Emirati, Saudi, and Moroccan), yielding a total of 15K QA pairs across 32 academic and professional domains (22K QA pairs when also including English and MSA). The benchmark enables systematic assessment of LLM reasoning and comprehension beyond MSA, supporting both task-based and linguistic analysis. We evaluate 19 open-weight Arabic and multilingual LLMs (1B-13B parameters) and report substantial performance variation across dialects, revealing persistent gaps in dialectal generalization. DialectalArabicMMLU provides the first unified, human-curated resource for measuring dialectal understanding in Arabic, thus promoting more inclusive evaluation and future model development.
comment: 9 pages, 9 tables
☆ TetraJet-v2: Accurate NVFP4 Training for Large Language Models with Oscillation Suppression and Outlier Control
Large Language Models (LLMs) training is prohibitively expensive, driving interest in low-precision fully-quantized training (FQT). While novel 4-bit formats like NVFP4 offer substantial efficiency gains, achieving near-lossless training at such low precision remains challenging. We introduce TetraJet-v2, an end-to-end 4-bit FQT method that leverages NVFP4 for activations, weights, and gradients in all linear layers. We identify two critical issues hindering low-precision LLM training: weight oscillation and outliers. To address these, we propose: 1) an unbiased double-block quantization method for NVFP4 linear layers, 2) OsciReset, an algorithm to suppress weight oscillation, and 3) OutControl, an algorithm to retain outlier accuracy. TetraJet-v2 consistently outperforms prior FP4 training methods on pre-training LLMs across varying model sizes up to 370M and data sizes up to 200B tokens, reducing the performance gap to full-precision training by an average of 51.3%.
☆ Leveraging Generic Time Series Foundation Models for EEG Classification
Foundation models for time series are emerging as powerful general-purpose backbones, yet their potential for domain-specific biomedical signals such as electroencephalography (EEG) remains rather unexplored. In this work, we investigate the applicability a recently proposed time series classification foundation model, to a different EEG tasks such as motor imagery classification and sleep stage prediction. We test two pretraining regimes: (a) pretraining on heterogeneous real-world time series from multiple domains, and (b) pretraining on purely synthetic data. We find that both variants yield strong performance, consistently outperforming EEGNet, a widely used convolutional baseline, and CBraMod, the most recent EEG-specific foundation model. These results suggest that generalist time series foundation models, even when pretrained on data of non-neural origin or on synthetic signals, can transfer effectively to EEG. Our findings highlight the promise of leveraging cross-domain pretrained models for brain signal analysis, suggesting that EEG may benefit from advances in the broader time series literature.
☆ Context-Gated Cross-Modal Perception with Visual Mamba for PET-CT Lung Tumor Segmentation
Accurate lung tumor segmentation is vital for improving diagnosis and treatment planning, and effectively combining anatomical and functional information from PET and CT remains a major challenge. In this study, we propose vMambaX, a lightweight multimodal framework integrating PET and CT scan images through a Context-Gated Cross-Modal Perception Module (CGM). Built on the Visual Mamba architecture, vMambaX adaptively enhances inter-modality feature interaction, emphasizing informative regions while suppressing noise. Evaluated on the PCLT20K dataset, the model outperforms baseline models while maintaining lower computational complexity. These results highlight the effectiveness of adaptive cross-modal gating for multimodal tumor segmentation and demonstrate the potential of vMambaX as an efficient and scalable framework for advanced lung cancer analysis. The code is available at https://github.com/arco-group/vMambaX.
☆ DP-FedPGN: Finding Global Flat Minima for Differentially Private Federated Learning via Penalizing Gradient Norm
To prevent inference attacks in Federated Learning (FL) and reduce the leakage of sensitive information, Client-level Differentially Private Federated Learning (CL-DPFL) is widely used. However, current CL-DPFL methods usually result in sharper loss landscapes, which leads to a decrease in model generalization after differential privacy protection. By using Sharpness Aware Minimization (SAM), the current popular federated learning methods are to find a local flat minimum value to alleviate this problem. However, the local flatness may not reflect the global flatness in CL-DPFL. Therefore, to address this issue and seek global flat minima of models, we propose a new CL-DPFL algorithm, DP-FedPGN, in which we introduce a global gradient norm penalty to the local loss to find the global flat minimum. Moreover, by using our global gradient norm penalty, we not only find a flatter global minimum but also reduce the locally updated norm, which means that we further reduce the error of gradient clipping. From a theoretical perspective, we analyze how DP-FedPGN mitigates the performance degradation caused by DP. Meanwhile, the proposed DP-FedPGN algorithm eliminates the impact of data heterogeneity and achieves fast convergence. We also use R\'enyi DP to provide strict privacy guarantees and provide sensitivity analysis for local updates. Finally, we conduct effectiveness tests on both ResNet and Transformer models, and achieve significant improvements in six visual and natural language processing tasks compared to existing state-of-the-art algorithms. The code is available at https://github.com/junkangLiu0/DP-FedPGN
comment: 21 pages, 8 figures
☆ InertialAR: Autoregressive 3D Molecule Generation with Inertial Frames
Transformer-based autoregressive models have emerged as a unifying paradigm across modalities such as text and images, but their extension to 3D molecule generation remains underexplored. The gap stems from two fundamental challenges: (1) tokenizing molecules into a canonical 1D sequence of tokens that is invariant to both SE(3) transformations and atom index permutations, and (2) designing an architecture capable of modeling hybrid atom-based tokens that couple discrete atom types with continuous 3D coordinates. To address these challenges, we introduce InertialAR. InertialAR devises a canonical tokenization that aligns molecules to their inertial frames and reorders atoms to ensure SE(3) and permutation invariance. Moreover, InertialAR equips the attention mechanism with geometric awareness via geometric rotary positional encoding (GeoRoPE). In addition, it utilizes a hierarchical autoregressive paradigm to predict the next atom-based token, predicting the atom type first and then its 3D coordinates via Diffusion loss. Experimentally, InertialAR achieves state-of-the-art performance on 7 of the 10 evaluation metrics for unconditional molecule generation across QM9, GEOM-Drugs, and B3LYP. Moreover, it significantly outperforms strong baselines in controllable generation for targeted chemical functionality, attaining state-of-the-art results across all 5 metrics.
☆ FedAdamW: A Communication-Efficient Optimizer with Convergence and Generalization Guarantees for Federated Large Models
AdamW has become one of the most effective optimizers for training large-scale models. We have also observed its effectiveness in the context of federated learning (FL). However, directly applying AdamW in federated learning settings poses significant challenges: (1) due to data heterogeneity, AdamW often yields high variance in the second-moment estimate $\boldsymbol{v}$; (2) the local overfitting of AdamW may cause client drift; and (3) Reinitializing moment estimates ($\boldsymbol{v}$, $\boldsymbol{m}$) at each round slows down convergence. To address these challenges, we propose the first \underline{Fed}erated \underline{AdamW} algorithm, called \texttt{FedAdamW}, for training and fine-tuning various large models. \texttt{FedAdamW} aligns local updates with the global update using both a \textbf{local correction mechanism} and decoupled weight decay to mitigate local overfitting. \texttt{FedAdamW} efficiently aggregates the \texttt{mean} of the second-moment estimates to reduce their variance and reinitialize them. Theoretically, we prove that \texttt{FedAdamW} achieves a linear speedup convergence rate of $\mathcal{O}(\sqrt{(L \Delta \sigma_l^2)/(S K R \epsilon^2)}+(L \Delta)/R)$ without \textbf{heterogeneity assumption}, where $S$ is the number of participating clients per round, $K$ is the number of local iterations, and $R$ is the total number of communication rounds. We also employ PAC-Bayesian generalization analysis to explain the effectiveness of decoupled weight decay in local training. Empirically, we validate the effectiveness of \texttt{FedAdamW} on language and vision Transformer models. Compared to several baselines, \texttt{FedAdamW} significantly reduces communication rounds and improves test accuracy. The code is available in https://github.com/junkangLiu0/FedAdamW.
☆ Thought Branches: Interpreting LLM Reasoning Requires Resampling
Most work interpreting reasoning models studies only a single chain-of-thought (CoT), yet these models define distributions over many possible CoTs. We argue that studying a single sample is inadequate for understanding causal influence and the underlying computation. Though fully specifying this distribution is intractable, it can be understood by sampling. We present case studies using resampling to investigate model decisions. First, when a model states a reason for its action, does that reason actually cause the action? In "agentic misalignment" scenarios, we resample specific sentences to measure their downstream effects. Self-preservation sentences have small causal impact, suggesting they do not meaningfully drive blackmail. Second, are artificial edits to CoT sufficient for steering reasoning? These are common in literature, yet take the model off-policy. Resampling and selecting a completion with the desired property is a principled on-policy alternative. We find off-policy interventions yield small and unstable effects compared to resampling in decision-making tasks. Third, how do we understand the effect of removing a reasoning step when the model may repeat it post-edit? We introduce a resilience metric that repeatedly resamples to prevent similar content from reappearing downstream. Critical planning statements resist removal but have large effects when eliminated. Fourth, since CoT is sometimes "unfaithful", can our methods teach us anything in these settings? Adapting causal mediation analysis, we find that hints that have a causal effect on the output without being explicitly mentioned exert a subtle and cumulative influence on the CoT that persists even if the hint is removed. Overall, studying distributions via resampling enables reliable causal analysis, clearer narratives of model reasoning, and principled CoT interventions.
comment: Uzay Macar and Paul C. Bogdan contributed equally to this work, and their listed order was determined by coinflip
☆ VCORE: Variance-Controlled Optimization-based Reweighting for Chain-of-Thought Supervision
Supervised fine-tuning (SFT) on long chain-of-thought (CoT) trajectories has emerged as a crucial technique for enhancing the reasoning abilities of large language models (LLMs). However, the standard cross-entropy loss treats all tokens equally, ignoring their heterogeneous contributions across a reasoning trajectory. This uniform treatment leads to misallocated supervision and weak generalization, especially in complex, long-form reasoning tasks. To address this, we introduce \textbf{V}ariance-\textbf{C}ontrolled \textbf{O}ptimization-based \textbf{RE}weighting (VCORE), a principled framework that reformulates CoT supervision as a constrained optimization problem. By adopting an optimization-theoretic perspective, VCORE enables a principled and adaptive allocation of supervision across tokens, thereby aligning the training objective more closely with the goal of robust reasoning generalization. Empirical evaluations demonstrate that VCORE consistently outperforms existing token reweighting methods. Across both in-domain and out-of-domain settings, VCORE achieves substantial performance gains on mathematical and coding benchmarks, using models from the Qwen3 series (4B, 8B, 32B) and LLaMA-3.1-8B-Instruct. Moreover, we show that VCORE serves as a more effective initialization for subsequent reinforcement learning, establishing a stronger foundation for advancing the reasoning capabilities of LLMs. The Code will be released at https://github.com/coder-gx/VCORE.
comment: Under Review
☆ GeoFM: Enhancing Geometric Reasoning of MLLMs via Synthetic Data Generation through Formal Language
Multi-modal Large Language Models (MLLMs) have gained significant attention in both academia and industry for their capabilities in handling multi-modal tasks. However, these models face challenges in mathematical geometric reasoning due to the scarcity of high-quality geometric data. To address this issue, synthetic geometric data has become an essential strategy. Current methods for generating synthetic geometric data involve rephrasing or expanding existing problems and utilizing predefined rules and templates to create geometric images and problems. However, these approaches often produce data that lacks diversity or is prone to noise. Additionally, the geometric images synthesized by existing methods tend to exhibit limited variation and deviate significantly from authentic geometric diagrams. To overcome these limitations, we propose GeoFM, a novel method for synthesizing geometric data. GeoFM uses formal languages to explore combinations of conditions within metric space, generating high-fidelity geometric problems that differ from the originals while ensuring correctness through a symbolic engine. Experimental results show that our synthetic data significantly outperforms existing methods. The model trained with our data surpass the proprietary GPT-4o model by 18.7\% on geometry problem-solving tasks in MathVista and by 16.5\% on GeoQA. Additionally, it exceeds the performance of a leading open-source model by 5.7\% on MathVista and by 2.7\% on GeoQA.
☆ CoMViT: An Efficient Vision Backbone for Supervised Classification in Medical Imaging MICCAI 2025
Vision Transformers (ViTs) have demonstrated strong potential in medical imaging; however, their high computational demands and tendency to overfit on small datasets limit their applicability in real-world clinical scenarios. In this paper, we present CoMViT, a compact and generalizable Vision Transformer architecture optimized for resource-constrained medical image analysis. CoMViT integrates a convolutional tokenizer, diagonal masking, dynamic temperature scaling, and pooling-based sequence aggregation to improve performance and generalization. Through systematic architectural optimization, CoMViT achieves robust performance across twelve MedMNIST datasets while maintaining a lightweight design with only ~4.5M parameters. It matches or outperforms deeper CNN and ViT variants, offering up to 5-20x parameter reduction without sacrificing accuracy. Qualitative Grad-CAM analyses show that CoMViT consistently attends to clinically relevant regions despite its compact size. These results highlight the potential of principled ViT redesign for developing efficient and interpretable models in low-resource medical imaging settings.
comment: Preprint (submitted manuscript). Accepted at the MICCAI 2025 MIRASOL Workshop; to appear in the Springer proceedings volume. This is the pre-review version (not the Version of Record). DOI will be added after publication. [Optional: 8 pages, 4 figures, 4 tables.]
☆ Mitigating Semantic Collapse in Partially Relevant Video Retrieval NeurIPS 2025
Partially Relevant Video Retrieval (PRVR) seeks videos where only part of the content matches a text query. Existing methods treat every annotated text-video pair as a positive and all others as negatives, ignoring the rich semantic variation both within a single video and across different videos. Consequently, embeddings of both queries and their corresponding video-clip segments for distinct events within the same video collapse together, while embeddings of semantically similar queries and segments from different videos are driven apart. This limits retrieval performance when videos contain multiple, diverse events. This paper addresses the aforementioned problems, termed as semantic collapse, in both the text and video embedding spaces. We first introduce Text Correlation Preservation Learning, which preserves the semantic relationships encoded by the foundation model across text queries. To address collapse in video embeddings, we propose Cross-Branch Video Alignment (CBVA), a contrastive alignment method that disentangles hierarchical video representations across temporal scales. Subsequently, we introduce order-preserving token merging and adaptive CBVA to enhance alignment by producing video segments that are internally coherent yet mutually distinctive. Extensive experiments on PRVR benchmarks demonstrate that our framework effectively prevents semantic collapse and substantially improves retrieval accuracy.
comment: Accpeted to NeurIPS 2025. Code is available at https://github.com/admins97/MSC_PRVR
☆ Learning Soft Robotic Dynamics with Active Exploration
Soft robots offer unmatched adaptability and safety in unstructured environments, yet their compliant, high-dimensional, and nonlinear dynamics make modeling for control notoriously difficult. Existing data-driven approaches often fail to generalize, constrained by narrowly focused task demonstrations or inefficient random exploration. We introduce SoftAE, an uncertainty-aware active exploration framework that autonomously learns task-agnostic and generalizable dynamics models of soft robotic systems. SoftAE employs probabilistic ensemble models to estimate epistemic uncertainty and actively guides exploration toward underrepresented regions of the state-action space, achieving efficient coverage of diverse behaviors without task-specific supervision. We evaluate SoftAE on three simulated soft robotic platforms -- a continuum arm, an articulated fish in fluid, and a musculoskeletal leg with hybrid actuation -- and on a pneumatically actuated continuum soft arm in the real world. Compared with random exploration and task-specific model-based reinforcement learning, SoftAE produces more accurate dynamics models, enables superior zero-shot control on unseen tasks, and maintains robustness under sensing noise, actuation delays, and nonlinear material effects. These results demonstrate that uncertainty-driven active exploration can yield scalable, reusable dynamics models across diverse soft robotic morphologies, representing a step toward more autonomous, adaptable, and data-efficient control in compliant robots.
☆ Who Does Your Algorithm Fail? Investigating Age and Ethnic Bias in the MAMA-MIA Dataset NeurIPS
Deep learning models aim to improve diagnostic workflows, but fairness evaluation remains underexplored beyond classification, e.g., in image segmentation. Unaddressed segmentation bias can lead to disparities in the quality of care for certain populations, potentially compounded across clinical decision points and amplified through iterative model development. Here, we audit the fairness of the automated segmentation labels provided in the breast cancer tumor segmentation dataset MAMA-MIA. We evaluate automated segmentation quality across age, ethnicity, and data source. Our analysis reveals an intrinsic age-related bias against younger patients that continues to persist even after controlling for confounding factors, such as data source. We hypothesize that this bias may be linked to physiological factors, a known challenge for both radiologists and automated systems. Finally, we show how aggregating data from multiple data sources influences site-specific ethnic biases, underscoring the necessity of investigating data at a granular level.
comment: Medical Imaging Meets EurIPS (NeurIPS-endorsed workshop) - MedEurIPS
☆ DeepCompress: A Dual Reward Strategy for Dynamically Exploring and Compressing Reasoning Chains
Large Reasoning Models (LRMs) have demonstrated impressive capabilities but suffer from cognitive inefficiencies like ``overthinking'' simple problems and ``underthinking'' complex ones. While existing methods that use supervised fine-tuning~(SFT) or reinforcement learning~(RL) with token-length rewards can improve efficiency, they often do so at the cost of accuracy. This paper introduces \textbf{DeepCompress}, a novel framework that simultaneously enhances both the accuracy and efficiency of LRMs. We challenge the prevailing approach of consistently favoring shorter reasoning paths, showing that longer responses can contain a broader range of correct solutions for difficult problems. DeepCompress employs an adaptive length reward mechanism that dynamically classifies problems as ``Simple'' or ``Hard'' in real-time based on the model's evolving capability. It encourages shorter, more efficient reasoning for ``Simple'' problems while promoting longer, more exploratory thought chains for ``Hard'' problems. This dual-reward strategy enables the model to autonomously adjust its Chain-of-Thought (CoT) length, compressing reasoning for well-mastered problems and extending it for those it finds challenging. Experimental results on challenging mathematical benchmarks show that DeepCompress consistently outperforms baseline methods, achieving superior accuracy while significantly improving token efficiency.
comment: Work in progress
☆ Atlas-Alignment: Making Interpretability Transferable Across Language Models
Interpretability is crucial for building safe, reliable, and controllable language models, yet existing interpretability pipelines remain costly and difficult to scale. Interpreting a new model typically requires costly training of model-specific sparse autoencoders, manual or semi-automated labeling of SAE components, and their subsequent validation. We introduce Atlas-Alignment, a framework for transferring interpretability across language models by aligning unknown latent spaces to a Concept Atlas - a labeled, human-interpretable latent space - using only shared inputs and lightweight representational alignment techniques. Once aligned, this enables two key capabilities in previously opaque models: (1) semantic feature search and retrieval, and (2) steering generation along human-interpretable atlas concepts. Through quantitative and qualitative evaluations, we show that simple representational alignment methods enable robust semantic retrieval and steerable generation without the need for labeled concept data. Atlas-Alignment thus amortizes the cost of explainable AI and mechanistic interpretability: by investing in one high-quality Concept Atlas, we can make many new models transparent and controllable at minimal marginal cost.
☆ Dialogue as Discovery: Navigating Human Intent Through Principled Inquiry
A fundamental bottleneck in human-AI collaboration is the "intention expression gap," the difficulty for humans to effectively convey complex, high-dimensional thoughts to AI. This challenge often traps users in inefficient trial-and-error loops and is exacerbated by the diverse expertise levels of users. We reframe this problem from passive instruction following to a Socratic collaboration paradigm, proposing an agent that actively probes for information to resolve its uncertainty about user intent. we name the proposed agent Nous, trained to acquire proficiency in this inquiry policy. The core mechanism of Nous is a training framework grounded in the first principles of information theory. Within this framework, we define the information gain from dialogue as an intrinsic reward signal, which is fundamentally equivalent to the reduction of Shannon entropy over a structured task space. This reward design enables us to avoid reliance on costly human preference annotations or external reward models. To validate our framework, we develop an automated simulation pipeline to generate a large-scale, preference-based dataset for the challenging task of scientific diagram generation. Comprehensive experiments, including ablations, subjective and objective evaluations, and tests across user expertise levels, demonstrate the effectiveness of our proposed framework. Nous achieves leading efficiency and output quality, while remaining robust to varying user expertise. Moreover, its design is domain-agnostic, and we show evidence of generalization beyond diagram generation. Experimental results prove that our work offers a principled, scalable, and adaptive paradigm for resolving uncertainty about user intent in complex human-AI collaboration.
☆ FedMuon: Accelerating Federated Learning with Matrix Orthogonalization
The core bottleneck of Federated Learning (FL) lies in the communication rounds. That is, how to achieve more effective local updates is crucial for reducing communication rounds. Existing FL methods still primarily use element-wise local optimizers (Adam/SGD), neglecting the geometric structure of the weight matrices. This often leads to the amplification of pathological directions in the weights during local updates, leading deterioration in the condition number and slow convergence. Therefore, we introduce the Muon optimizer in local, which has matrix orthogonalization to optimize matrix-structured parameters. Experimental results show that, in IID setting, Local Muon significantly accelerates the convergence of FL and reduces communication rounds compared to Local SGD and Local AdamW. However, in non-IID setting, independent matrix orthogonalization based on the local distributions of each client induces strong client drift. Applying Muon in non-IID FL poses significant challenges: (1) client preconditioner leading to client drift; (2) moment reinitialization. To address these challenges, we propose a novel Federated Muon optimizer (FedMuon), which incorporates two key techniques: (1) momentum aggregation, where clients use the aggregated momentum for local initialization; (2) local-global alignment, where the local gradients are aligned with the global update direction to significantly reduce client drift. Theoretically, we prove that \texttt{FedMuon} achieves a linear speedup convergence rate without the heterogeneity assumption, where $S$ is the number of participating clients per round, $K$ is the number of local iterations, and $R$ is the total number of communication rounds. Empirically, we validate the effectiveness of FedMuon on language and vision models. Compared to several baselines, FedMuon significantly reduces communication rounds and improves test accuracy.
☆ Balancing Knowledge Updates: Toward Unified Modular Editing in LLMs
Knowledge editing has emerged as an efficient approach for updating factual knowledge in large language models (LLMs). It typically locates knowledge storage modules and then modifies their parameters. However, most existing methods focus on the weights of multilayer perceptron (MLP) modules, which are often identified as the main repositories of factual information. Other components, such as attention (Attn) modules, are often ignored during editing. This imbalance can leave residual outdated knowledge and limit editing effectiveness. We perform comprehensive knowledge localization experiments on advanced LLMs and find that Attn modules play a substantial role in factual knowledge storage and retrieval, especially in earlier layers. Based on these insights, we propose IntAttn-Edit, a method that extends the associative memory paradigm to jointly update both MLP and Attn modules. Our approach uses a knowledge balancing strategy that allocates update magnitudes in proportion to each module's measured contribution to knowledge storage. Experiments on standard benchmarks show that IntAttn-Edit achieves higher edit success, better generalization, and stronger knowledge preservation than prior methods. Further analysis shows that the balancing strategy keeps editing performance within an optimal range across diverse settings.
☆ Realistic pedestrian-driver interaction modelling using multi-agent RL with human perceptual-motor constraints
Modelling pedestrian-driver interactions is critical for understanding human road user behaviour and developing safe autonomous vehicle systems. Existing approaches often rely on rule-based logic, game-theoretic models, or 'black-box' machine learning methods. However, these models typically lack flexibility or overlook the underlying mechanisms, such as sensory and motor constraints, which shape how pedestrians and drivers perceive and act in interactive scenarios. In this study, we propose a multi-agent reinforcement learning (RL) framework that integrates both visual and motor constraints of pedestrian and driver agents. Using a real-world dataset from an unsignalised pedestrian crossing, we evaluate four model variants, one without constraints, two with either motor or visual constraints, and one with both, across behavioural metrics of interaction realism. Results show that the combined model with both visual and motor constraints performs best. Motor constraints lead to smoother movements that resemble human speed adjustments during crossing interactions. The addition of visual constraints introduces perceptual uncertainty and field-of-view limitations, leading the agents to exhibit more cautious and variable behaviour, such as less abrupt deceleration. In this data-limited setting, our model outperforms a supervised behavioural cloning model, demonstrating that our approach can be effective without large training datasets. Finally, our framework accounts for individual differences by modelling parameters controlling the human constraints as population-level distributions, a perspective that has not been explored in previous work on pedestrian-vehicle interaction modelling. Overall, our work demonstrates that multi-agent RL with human constraints is a promising modelling approach for simulating realistic road user interactions.
☆ Spiking Neural Networks: The Future of Brain-Inspired Computing
Spiking Neural Networks (SNNs) represent the latest generation of neural computation, offering a brain-inspired alternative to conventional Artificial Neural Networks (ANNs). Unlike ANNs, which depend on continuous-valued signals, SNNs operate using distinct spike events, making them inherently more energy-efficient and temporally dynamic. This study presents a comprehensive analysis of SNN design models, training algorithms, and multi-dimensional performance metrics, including accuracy, energy consumption, latency, spike count, and convergence behavior. Key neuron models such as the Leaky Integrate-and-Fire (LIF) and training strategies, including surrogate gradient descent, ANN-to-SNN conversion, and Spike-Timing Dependent Plasticity (STDP), are examined in depth. Results show that surrogate gradient-trained SNNs closely approximate ANN accuracy (within 1-2%), with faster convergence by the 20th epoch and latency as low as 10 milliseconds. Converted SNNs also achieve competitive performance but require higher spike counts and longer simulation windows. STDP-based SNNs, though slower to converge, exhibit the lowest spike counts and energy consumption (as low as 5 millijoules per inference), making them optimal for unsupervised and low-power tasks. These findings reinforce the suitability of SNNs for energy-constrained, latency-sensitive, and adaptive applications such as robotics, neuromorphic vision, and edge AI systems. While promising, challenges persist in hardware standardization and scalable training. This study concludes that SNNs, with further refinement, are poised to propel the next phase of neuromorphic computing.
comment: 17 pages, 7 figures, 4 tables, Published with International Journal of Engineering Trends and Technology (IJETT)
☆ Measuring Chain-of-Thought Monitorability Through Faithfulness and Verbosity
Chain-of-thought (CoT) outputs let us read a model's step-by-step reasoning. Since any long, serial reasoning process must pass through this textual trace, the quality of the CoT is a direct window into what the model is thinking. This visibility could help us spot unsafe or misaligned behavior (monitorability), but only if the CoT is transparent about its internal reasoning (faithfulness). Fully measuring faithfulness is difficult, so researchers often focus on examining the CoT in cases where the model changes its answer after adding a cue to the input. This proxy finds some instances of unfaithfulness but loses information when the model maintains its answer, and does not investigate aspects of reasoning not tied to the cue. We extend these results to a more holistic sense of monitorability by introducing verbosity: whether the CoT lists every factor needed to solve the task. We combine faithfulness and verbosity into a single monitorability score that shows how well the CoT serves as the model's external `working memory', a property that many safety schemes based on CoT monitoring depend on. We evaluate instruction-tuned and reasoning models on BBH, GPQA, and MMLU. Our results show that models can appear faithful yet remain hard to monitor when they leave out key factors, and that monitorability differs sharply across model families. We release our evaluation code using the Inspect library to support reproducible future work.
comment: Project page at https://ajmeek.github.io/cot_monitorability_website/
☆ Fine-Tuning Open Video Generators for Cinematic Scene Synthesis: A Small-Data Pipeline with LoRA and Wan2.1 I2V
We present a practical pipeline for fine-tuning open-source video diffusion transformers to synthesize cinematic scenes for television and film production from small datasets. The proposed two-stage process decouples visual style learning from motion generation. In the first stage, Low-Rank Adaptation (LoRA) modules are integrated into the cross-attention layers of the Wan2.1 I2V-14B model to adapt its visual representations using a compact dataset of short clips from Ay Yapim's historical television film El Turco. This enables efficient domain transfer within hours on a single GPU. In the second stage, the fine-tuned model produces stylistically consistent keyframes that preserve costume, lighting, and color grading, which are then temporally expanded into coherent 720p sequences through the model's video decoder. We further apply lightweight parallelization and sequence partitioning strategies to accelerate inference without quality degradation. Quantitative and qualitative evaluations using FVD, CLIP-SIM, and LPIPS metrics, supported by a small expert user study, demonstrate measurable improvements in cinematic fidelity and temporal stability over the base model. The complete training and inference pipeline is released to support reproducibility and adaptation across cinematic domains.
comment: video generation, image-to-video, dif- fusion transformer, LoRA, fine-tuning, cinematic scene synthesis, multi-GPU inference, fully sharded data parallelism, computational efficiency
☆ ToolScope: An Agentic Framework for Vision-Guided and Long-Horizon Tool Use
Recently, large language models (LLMs) have demonstrated remarkable problem-solving capabilities by autonomously integrating with external tools for collaborative reasoning. However, due to the inherently complex and diverse nature of multimodal information, enabling multimodal large language models (MLLMs) to flexibly and efficiently utilize external tools during reasoning remains an underexplored challenge. In this work, we introduce ToolScope, an agentic framework designed to unify global planning with local multimodal perception, adopting a specialized Perceive tool to mitigates visual context degradation in long-horizon VQA task. ToolScope comprises three primary components: the Global Navigator, the Agentic Executor, and the Response Synthesizer. The Global Navigator functions as a "telescope", offering high-level strategic guidance. The Agentic Executor operates iteratively to augment MLLM with local perception through the integration of external tools-Search, Code, and Perceive. Finally, the Response Synthesizer consolidates and organizes the reasoning process into a coherent, user-friendly output. We evaluate ToolScope on four VQA benchmarks across diverse domains, including VQA 2.0, ScienceQA, MAT-Search and MathVista. It demonstrates strong generalization capabilities, achieving an average performance improvement of up to +6.69% across all datasets.
☆ An In-depth Study of LLM Contributions to the Bin Packing Problem
Recent studies have suggested that Large Language Models (LLMs) could provide interesting ideas contributing to mathematical discovery. This claim was motivated by reports that LLM-based genetic algorithms produced heuristics offering new insights into the online bin packing problem under uniform and Weibull distributions. In this work, we reassess this claim through a detailed analysis of the heuristics produced by LLMs, examining both their behavior and interpretability. Despite being human-readable, these heuristics remain largely opaque even to domain experts. Building on this analysis, we propose a new class of algorithms tailored to these specific bin packing instances. The derived algorithms are significantly simpler, more efficient, more interpretable, and more generalizable, suggesting that the considered instances are themselves relatively simple. We then discuss the limitations of the claim regarding LLMs' contribution to this problem, which appears to rest on the mistaken assumption that the instances had previously been studied. Our findings instead emphasize the need for rigorous validation and contextualization when assessing the scientific value of LLM-generated outputs.
comment: 15 pages, 13 figures
☆ Discriminative Rule Learning for Outcome-Guided Process Model Discovery
Event logs extracted from information systems offer a rich foundation for understanding and improving business processes. In many real-world applications, it is possible to distinguish between desirable and undesirable process executions, where desirable traces reflect efficient or compliant behavior, and undesirable ones may involve inefficiencies, rule violations, delays, or resource waste. This distinction presents an opportunity to guide process discovery in a more outcome-aware manner. Discovering a single process model without considering outcomes can yield representations poorly suited for conformance checking and performance analysis, as they fail to capture critical behavioral differences. Moreover, prioritizing one behavior over the other may obscure structural distinctions vital for understanding process outcomes. By learning interpretable discriminative rules over control-flow features, we group traces with similar desirability profiles and apply process discovery separately within each group. This results in focused and interpretable models that reveal the drivers of both desirable and undesirable executions. The approach is implemented as a publicly available tool and it is evaluated on multiple real-life event logs, demonstrating its effectiveness in isolating and visualizing critical process patterns.
comment: The paper will be published as part of the CoopIS 2025 conference proceedings
☆ Reinforcement Learning for Long-Horizon Unordered Tasks: From Boolean to Coupled Reward Machines
Reward machines (RMs) inform reinforcement learning agents about the reward structure of the environment. This is particularly advantageous for complex non-Markovian tasks because agents with access to RMs can learn more efficiently from fewer samples. However, learning with RMs is ill-suited for long-horizon problems in which a set of subtasks can be executed in any order. In such cases, the amount of information to learn increases exponentially with the number of unordered subtasks. In this work, we address this limitation by introducing three generalisations of RMs: (1) Numeric RMs allow users to express complex tasks in a compact form. (2) In Agenda RMs, states are associated with an agenda that tracks the remaining subtasks to complete. (3) Coupled RMs have coupled states associated with each subtask in the agenda. Furthermore, we introduce a new compositional learning algorithm that leverages coupled RMs: Q-learning with coupled RMs (CoRM). Our experiments show that CoRM scales better than state-of-the-art RM algorithms for long-horizon problems with unordered subtasks.
☆ Generative Semantic Coding for Ultra-Low Bitrate Visual Communication and Analysis
We consider the problem of ultra-low bit rate visual communication for remote vision analysis, human interactions and control in challenging scenarios with very low communication bandwidth, such as deep space exploration, battlefield intelligence, and robot navigation in complex environments. In this paper, we ask the following important question: can we accurately reconstruct the visual scene using only a very small portion of the bit rate in existing coding methods while not sacrificing the accuracy of vision analysis and performance of human interactions? Existing text-to-image generation models offer a new approach for ultra-low bitrate image description. However, they can only achieve a semantic-level approximation of the visual scene, which is far insufficient for the purpose of visual communication and remote vision analysis and human interactions. To address this important issue, we propose to seamlessly integrate image generation with deep image compression, using joint text and coding latent to guide the rectified flow models for precise generation of the visual scene. The semantic text description and coding latent are both encoded and transmitted to the decoder at a very small bit rate. Experimental results demonstrate that our method can achieve the same image reconstruction quality and vision analysis accuracy as existing methods while using much less bandwidth. The code will be released upon paper acceptance.
☆ CASR-Net: An Image Processing-focused Deep Learning-based Coronary Artery Segmentation and Refinement Network for X-ray Coronary Angiogram
Early detection of coronary artery disease (CAD) is critical for reducing mortality and improving patient treatment planning. While angiographic image analysis from X-rays is a common and cost-effective method for identifying cardiac abnormalities, including stenotic coronary arteries, poor image quality can significantly impede clinical diagnosis. We present the Coronary Artery Segmentation and Refinement Network (CASR-Net), a three-stage pipeline comprising image preprocessing, segmentation, and refinement. A novel multichannel preprocessing strategy combining CLAHE and an improved Ben Graham method provides incremental gains, increasing Dice Score Coefficient (DSC) by 0.31-0.89% and Intersection over Union (IoU) by 0.40-1.16% compared with using the techniques individually. The core innovation is a segmentation network built on a UNet with a DenseNet121 encoder and a Self-organized Operational Neural Network (Self-ONN) based decoder, which preserves the continuity of narrow and stenotic vessel branches. A final contour refinement module further suppresses false positives. Evaluated with 5-fold cross-validation on a combination of two public datasets that contain both healthy and stenotic arteries, CASR-Net outperformed several state-of-the-art models, achieving an IoU of 61.43%, a DSC of 76.10%, and clDice of 79.36%. These results highlight a robust approach to automated coronary artery segmentation, offering a valuable tool to support clinicians in diagnosis and treatment planning.
☆ Un-Attributability: Computing Novelty From Retrieval & Semantic Similarity
Understanding how language-model outputs relate to the pretraining corpus is central to studying model behavior. Most training data attribution (TDA) methods ask which training examples causally influence a given output, often using leave-one-out tests. We invert the question: which outputs cannot be attributed to any pretraining example? We introduce un-attributability as an operational measure of semantic novelty: an output is novel if the pretraining corpus contains no semantically similar context. We approximate this with a simple two-stage retrieval pipeline: index the corpus with lightweight GIST embeddings, retrieve the top-n candidates, then rerank with ColBERTv2. If the nearest corpus item is less attributable than a human-generated text reference, we consider the output of the model as novel. We evaluate on SmolLM and SmolLM2 and report three findings: (1) models draw on pretraining data across much longer spans than previously reported; (2) some domains systematically promote or suppress novelty; and (3) instruction tuning not only alters style but also increases novelty. Reframing novelty assessment around un-attributability enables efficient analysis at pretraining scale. We release ~20 TB of corpus chunks and index artifacts to support replication and large-scale extension of our analysis at https://huggingface.co/datasets/stai-tuebingen/faiss-smollm
☆ Can LLMs Help You at Work? A Sandbox for Evaluating LLM Agents in Enterprise Environments EMNLP 2025
Enterprise systems are crucial for enhancing productivity and decision-making among employees and customers. Integrating LLM based systems into enterprise systems enables intelligent automation, personalized experiences, and efficient information retrieval, driving operational efficiency and strategic growth. However, developing and evaluating such systems is challenging due to the inherent complexity of enterprise environments, where data is fragmented across multiple sources and governed by sophisticated access controls. We present EnterpriseBench, a comprehensive benchmark that simulates enterprise settings, featuring 500 diverse tasks across software engineering, HR, finance, and administrative domains. Our benchmark uniquely captures key enterprise characteristics including data source fragmentation, access control hierarchies, and cross-functional workflows. Additionally, we provide a novel data generation pipeline that creates internally consistent enterprise tasks from organizational metadata. Experiments with state-of-the-art LLM agents demonstrate that even the most capable models achieve only 41.8% task completion, highlighting significant opportunities for improvement in enterprise-focused AI systems.
comment: Accepted at EMNLP 2025 Main Track
☆ HiF-DTA: Hierarchical Feature Learning Network for Drug-Target Affinity Prediction
Accurate prediction of Drug-Target Affinity (DTA) is crucial for reducing experimental costs and accelerating early screening in computational drug discovery. While sequence-based deep learning methods avoid reliance on costly 3D structures, they still overlook simultaneous modeling of global sequence semantic features and local topological structural features within drugs and proteins, and represent drugs as flat sequences without atomic-level, substructural-level, and molecular-level multi-scale features. We propose HiF-DTA, a hierarchical network that adopts a dual-pathway strategy to extract both global sequence semantic and local topological features from drug and protein sequences, and models drugs multi-scale to learn atomic, substructural, and molecular representations fused via a multi-scale bilinear attention module. Experiments on Davis, KIBA, and Metz datasets show HiF-DTA outperforms state-of-the-art baselines, with ablations confirming the importance of global-local extraction and multi-scale fusion.
comment: Accepted by International Conference on Bioinformatics and Biomedicine (BIBM 25)
☆ FOCUS: Efficient Keyframe Selection for Long Video Understanding
Multimodal large language models (MLLMs) represent images and video frames as visual tokens. Scaling from single images to hour-long videos, however, inflates the token budget far beyond practical limits. Popular pipelines therefore either uniformly subsample or apply keyframe selection with retrieval-style scoring using smaller vision-language models. However, these keyframe selection methods still rely on pre-filtering before selection to reduce the inference cost and can miss the most informative moments. We propose FOCUS, Frame-Optimistic Confidence Upper-bound Selection, a training-free, model-agnostic keyframe selection module that selects query-relevant frames under a strict token budget. FOCUS formulates keyframe selection as a combinatorial pure-exploration (CPE) problem in multi-armed bandits: it treats short temporal clips as arms, and uses empirical means and Bernstein confidence radius to identify informative regions while preserving exploration of uncertain areas. The resulting two-stage exploration-exploitation procedure reduces from a sequential policy with theoretical guarantees, first identifying high-value temporal regions, then selecting top-scoring frames within each region On two long-video question-answering benchmarks, FOCUS delivers substantial accuracy improvements while processing less than 2% of video frames. For videos longer than 20 minutes, it achieves an 11.9% gain in accuracy on LongVideoBench, demonstrating its effectiveness as a keyframe selection method and providing a simple and general solution for scalable long-video understanding with MLLMs.
☆ Why Do Multilingual Reasoning Gaps Emerge in Reasoning Language Models?
Reasoning language models (RLMs) achieve strong performance on complex reasoning tasks, yet they still suffer from a multilingual reasoning gap, performing better in high-resource languages than in low-resource ones. While recent efforts have reduced this gap, its underlying causes remain largely unexplored. In this paper, we address this by showing that the multilingual reasoning gap largely stems from failures in language understanding-the model's inability to represent the multilingual input meaning into the dominant language (i.e., English) within its reasoning trace. This motivates us to examine whether understanding failures can be detected, as this ability could help mitigate the multilingual reasoning gap. To this end, we evaluate a range of detection methods and find that understanding failures can indeed be identified, with supervised approaches performing best. Building on this, we propose Selective Translation, a simple yet effective strategy that translates the multilingual input into English only when an understanding failure is detected. Experimental results show that Selective Translation bridges the multilingual reasoning gap, achieving near full-translation performance while using translation for only about 20% of inputs. Together, our work demonstrates that understanding failures are the primary cause of the multilingual reasoning gap and can be detected and selectively mitigated, providing key insight into its origin and a promising path toward more equitable multilingual reasoning. Our code and data are publicly available at https://github.com/deokhk/RLM_analysis.
☆ MedCalc-Eval and MedCalc-Env: Advancing Medical Calculation Capabilities of Large Language Models
As large language models (LLMs) enter the medical domain, most benchmarks evaluate them on question answering or descriptive reasoning, overlooking quantitative reasoning critical to clinical decision-making. Existing datasets like MedCalc-Bench cover few calculation tasks and fail to reflect real-world computational scenarios. We introduce MedCalc-Eval, the largest benchmark for assessing LLMs' medical calculation abilities, comprising 700+ tasks across two types: equation-based (e.g., Cockcroft-Gault, BMI, BSA) and rule-based scoring systems (e.g., Apgar, Glasgow Coma Scale). These tasks span diverse specialties including internal medicine, surgery, pediatrics, and cardiology, offering a broader and more challenging evaluation setting. To improve performance, we further develop MedCalc-Env, a reinforcement learning environment built on the InternBootcamp framework, enabling multi-step clinical reasoning and planning. Fine-tuning a Qwen2.5-32B model within this environment achieves state-of-the-art results on MedCalc-Eval, with notable gains in numerical sensitivity, formula selection, and reasoning robustness. Remaining challenges include unit conversion, multi-condition logic, and contextual understanding. Code and datasets are available at https://github.com/maokangkun/MedCalc-Eval.
☆ Higher-order Linear Attention
The quadratic cost of scaled dot-product attention is a central obstacle to scaling autoregressive language models to long contexts. Linear-time attention and State Space Models (SSMs) provide scalable alternatives but are typically restricted to first-order or kernel-based approximations, which can limit expressivity. We introduce Higher-order Linear Attention (HLA), a causal, streaming mechanism that realizes higher interactions via compact prefix sufficient statistics. In the second-order case, HLA maintains a constant-size state and computes per-token outputs in linear time without materializing any $n \times n$ matrices. We give closed-form streaming identities, a strictly causal masked variant using two additional summaries, and a chunk-parallel training scheme based on associative scans that reproduces the activations of a serial recurrence exactly. We further outline extensions to third and higher orders. Collectively, these results position HLA as a principled, scalable building block that combines attention-like, data-dependent mixing with the efficiency of modern recurrent architectures. Project Page: https://github.com/yifanzhang-pro/HLA.
comment: Project Page: https://github.com/yifanzhang-pro/HLA
☆ Languages are Modalities: Cross-Lingual Alignment via Encoder Injection
Instruction-tuned Large Language Models (LLMs) underperform on low resource, non-Latin scripts due to tokenizer fragmentation and weak cross-lingual coupling. We present LLINK (Latent Language Injection for Non-English Knowledge), a compute efficient language-as-modality method that conditions an instruction-tuned decoder without changing the tokenizer or retraining the decoder. First, we align sentence embeddings from a frozen multilingual encoder to the decoder's latent embedding space at a reserved position via a lightweight contrastive projector. Second, the vector is expanded into K soft slots and trained with minimal adapters so the frozen decoder consumes the signal. LLINK substantially improves bilingual retrieval and achieves 81.3% preference over the base model and 63.6% over direct fine-tuning in LLM-judged Q&A evaluations. We further find that improvements can be attributed to reduced tokenization inflation and a stronger cross lingual alignment, despite the model having residual weaknesses in numeric fidelity. Treating low resource languages as a modality offers a practical path to stronger cross-lingual alignment in lightweight LLMs.
comment: 14 pages, 3 Figures
☆ Not All Instances Are Equally Valuable: Towards Influence-Weighted Dataset Distillation
Dataset distillation condenses large datasets into synthetic subsets, achieving performance comparable to training on the full dataset while substantially reducing storage and computation costs. Most existing dataset distillation methods assume that all real instances contribute equally to the process. In practice, real-world datasets contain both informative and redundant or even harmful instances, and directly distilling the full dataset without considering data quality can degrade model performance. In this work, we present Influence-Weighted Distillation IWD, a principled framework that leverages influence functions to explicitly account for data quality in the distillation process. IWD assigns adaptive weights to each instance based on its estimated impact on the distillation objective, prioritizing beneficial data while downweighting less useful or harmful ones. Owing to its modular design, IWD can be seamlessly integrated into diverse dataset distillation frameworks. Our empirical results suggest that integrating IWD tends to improve the quality of distilled datasets and enhance model performance, with accuracy gains of up to 7.8%.
☆ Reconstructing Unseen Sentences from Speech-related Biosignals for Open-vocabulary Neural Communication
Brain-to-speech (BTS) systems represent a groundbreaking approach to human communication by enabling the direct transformation of neural activity into linguistic expressions. While recent non-invasive BTS studies have largely focused on decoding predefined words or sentences, achieving open-vocabulary neural communication comparable to natural human interaction requires decoding unconstrained speech. Additionally, effectively integrating diverse signals derived from speech is crucial for developing personalized and adaptive neural communication and rehabilitation solutions for patients. This study investigates the potential of speech synthesis for previously unseen sentences across various speech modes by leveraging phoneme-level information extracted from high-density electroencephalography (EEG) signals, both independently and in conjunction with electromyography (EMG) signals. Furthermore, we examine the properties affecting phoneme decoding accuracy during sentence reconstruction and offer neurophysiological insights to further enhance EEG decoding for more effective neural communication solutions. Our findings underscore the feasibility of biosignal-based sentence-level speech synthesis for reconstructing unseen sentences, highlighting a significant step toward developing open-vocabulary neural communication systems adapted to diverse patient needs and conditions. Additionally, this study provides meaningful insights into the development of communication and rehabilitation solutions utilizing EEG-based decoding technologies.
comment: Accepted for publication in IEEE Transactions on Neural Systems and Rehabilitation Engineering
☆ Beyond a Million Tokens: Benchmarking and Enhancing Long-Term Memory in LLMs
Evaluating the abilities of large language models (LLMs) for tasks that require long-term memory and thus long-context reasoning, for example in conversational settings, is hampered by the existing benchmarks, which often lack narrative coherence, cover narrow domains, and only test simple recall-oriented tasks. This paper introduces a comprehensive solution to these challenges. First, we present a novel framework for automatically generating long (up to 10M tokens), coherent, and topically diverse conversations, accompanied by probing questions targeting a wide range of memory abilities. From this, we construct BEAM, a new benchmark comprising 100 conversations and 2,000 validated questions. Second, to enhance model performance, we propose LIGHT-a framework inspired by human cognition that equips LLMs with three complementary memory systems: a long-term episodic memory, a short-term working memory, and a scratchpad for accumulating salient facts. Our experiments on BEAM reveal that even LLMs with 1M token context windows (with and without retrieval-augmentation) struggle as dialogues lengthen. In contrast, LIGHT consistently improves performance across various models, achieving an average improvement of 3.5%-12.69% over the strongest baselines, depending on the backbone LLM. An ablation study further confirms the contribution of each memory component.
☆ Vintage Code, Modern Judges: Meta-Validation in Low Data Regimes
Application modernization in legacy languages such as COBOL, PL/I, and REXX faces an acute shortage of resources, both in expert availability and in high-quality human evaluation data. While Large Language Models as a Judge (LaaJ) offer a scalable alternative to expert review, their reliability must be validated before being trusted in high-stakes workflows. Without principled validation, organizations risk a circular evaluation loop, where unverified LaaJs are used to assess model outputs, potentially reinforcing unreliable judgments and compromising downstream deployment decisions. Although various automated approaches to validating LaaJs have been proposed, alignment with human judgment remains a widely used and conceptually grounded validation strategy. In many real-world domains, the availability of human-labeled evaluation data is severely limited, making it difficult to assess how well a LaaJ aligns with human judgment. We introduce SparseAlign, a formal framework for assessing LaaJ alignment with sparse human-labeled data. SparseAlign combines a novel pairwise-confidence concept with a score-sensitive alignment metric that jointly capture ranking consistency and score proximity, enabling reliable evaluator selection even when traditional statistical methods are ineffective due to limited annotated examples. SparseAlign was applied internally to select LaaJs for COBOL code explanation. The top-aligned evaluators were integrated into assessment workflows, guiding model release decisions. We present a case study of four LaaJs to demonstrate SparseAlign's utility in real-world evaluation scenarios.
☆ DRAMA: Unifying Data Retrieval and Analysis for Open-Domain Analytic Queries SIGMOD 2026
Manually conducting real-world data analyses is labor-intensive and inefficient. Despite numerous attempts to automate data science workflows, none of the existing paradigms or systems fully demonstrate all three key capabilities required to support them effectively: (1) open-domain data collection, (2) structured data transformation, and (3) analytic reasoning. To overcome these limitations, we propose DRAMA, an end-to-end paradigm that answers users' analytic queries in natural language on large-scale open-domain data. DRAMA unifies data collection, transformation, and analysis as a single pipeline. To quantitatively evaluate system performance on tasks representative of DRAMA, we construct a benchmark, DRAMA-Bench, consisting of two categories of tasks: claim verification and question answering, each comprising 100 instances. These tasks are derived from real-world applications that have gained significant public attention and require the retrieval and analysis of open-domain data. We develop DRAMA-Bot, a multi-agent system designed following DRAMA. It comprises a data retriever that collects and transforms data by coordinating the execution of sub-agents, and a data analyzer that performs structured reasoning over the retrieved data. We evaluate DRAMA-Bot on DRAMA-Bench together with five state-of-the-art baseline agents. DRAMA-Bot achieves 86.5% task accuracy at a cost of $0.05, outperforming all baselines with up to 6.9 times the accuracy and less than 1/6 of the cost. DRAMA is publicly available at https://github.com/uiuc-kang-lab/drama.
comment: Accepted to SIGMOD 2026
☆ Soft Task-Aware Routing of Experts for Equivariant Representation Learning NeurIPS 2025
Equivariant representation learning aims to capture variations induced by input transformations in the representation space, whereas invariant representation learning encodes semantic information by disregarding such transformations. Recent studies have shown that jointly learning both types of representations is often beneficial for downstream tasks, typically by employing separate projection heads. However, this design overlooks information shared between invariant and equivariant learning, which leads to redundant feature learning and inefficient use of model capacity. To address this, we introduce Soft Task-Aware Routing (STAR), a routing strategy for projection heads that models them as experts. STAR induces the experts to specialize in capturing either shared or task-specific information, thereby reducing redundant feature learning. We validate this effect by observing lower canonical correlations between invariant and equivariant embeddings. Experimental results show consistent improvements across diverse transfer learning tasks. The code is available at https://github.com/YonseiML/star.
comment: NeurIPS 2025
☆ Privacy-Aware Continual Self-Supervised Learning on Multi-Window Chest Computed Tomography for Domain-Shift Robustness
We propose a novel continual self-supervised learning (CSSL) framework for simultaneously learning diverse features from multi-window-obtained chest computed tomography (CT) images and ensuring data privacy. Achieving a robust and highly generalizable model in medical image diagnosis is challenging, mainly because of issues, such as the scarcity of large-scale, accurately annotated datasets and domain shifts inherent to dynamic healthcare environments. Specifically, in chest CT, these domain shifts often arise from differences in window settings, which are optimized for distinct clinical purposes. Previous CSSL frameworks often mitigated domain shift by reusing past data, a typically impractical approach owing to privacy constraints. Our approach addresses these challenges by effectively capturing the relationship between previously learned knowledge and new information across different training stages through continual pretraining on unlabeled images. Specifically, by incorporating a latent replay-based mechanism into CSSL, our method mitigates catastrophic forgetting due to domain shifts during continual pretraining while ensuring data privacy. Additionally, we introduce a feature distillation technique that integrates Wasserstein distance-based knowledge distillation (WKD) and batch-knowledge ensemble (BKE), enhancing the ability of the model to learn meaningful, domain-shift-robust representations. Finally, we validate our approach using chest CT images obtained across two different window settings, demonstrating superior performance compared with other approaches.
☆ GUI-Rise: Structured Reasoning and History Summarization for GUI Navigation NeurIPS 2025
While Multimodal Large Language Models (MLLMs) have advanced GUI navigation agents, current approaches face limitations in cross-domain generalization and effective history utilization. We present a reasoning-enhanced framework that systematically integrates structured reasoning, action prediction, and history summarization. The structured reasoning component generates coherent Chain-of-Thought analyses combining progress estimation and decision reasoning, which inform both immediate action predictions and compact history summaries for future steps. Based on this framework, we train a GUI agent, \textbf{GUI-Rise}, through supervised fine-tuning on pseudo-labeled trajectories and reinforcement learning with Group Relative Policy Optimization (GRPO). This framework employs specialized rewards, including a history-aware objective, directly linking summary quality to subsequent action performance. Comprehensive evaluations on standard benchmarks demonstrate state-of-the-art results under identical training data conditions, with particularly strong performance in out-of-domain scenarios. These findings validate our framework's ability to maintain robust reasoning and generalization across diverse GUI navigation tasks. Code is available at https://leon022.github.io/GUI-Rise.
comment: Published in NeurIPS 2025
☆ Multi-Modal Feature Fusion for Spatial Morphology Analysis of Traditional Villages via Hierarchical Graph Neural Networks
Villages areas hold significant importance in the study of human-land relationships. However, with the advancement of urbanization, the gradual disappearance of spatial characteristics and the homogenization of landscapes have emerged as prominent issues. Existing studies primarily adopt a single-disciplinary perspective to analyze villages spatial morphology and its influencing factors, relying heavily on qualitative analysis methods. These efforts are often constrained by the lack of digital infrastructure and insufficient data. To address the current research limitations, this paper proposes a Hierarchical Graph Neural Network (HGNN) model that integrates multi-source data to conduct an in-depth analysis of villages spatial morphology. The framework includes two types of nodes-input nodes and communication nodes-and two types of edges-static input edges and dynamic communication edges. By combining Graph Convolutional Networks (GCN) and Graph Attention Networks (GAT), the proposed model efficiently integrates multimodal features under a two-stage feature update mechanism. Additionally, based on existing principles for classifying villages spatial morphology, the paper introduces a relational pooling mechanism and implements a joint training strategy across 17 subtypes. Experimental results demonstrate that this method achieves significant performance improvements over existing approaches in multimodal fusion and classification tasks. Additionally, the proposed joint optimization of all sub-types lifts mean accuracy/F1 from 0.71/0.83 (independent models) to 0.82/0.90, driven by a 6% gain for parcel tasks. Our method provides scientific evidence for exploring villages spatial patterns and generative logic.
☆ Feature-Function Curvature Analysis: A Geometric Framework for Explaining Differentiable Models
Explainable AI (XAI) is critical for building trust in complex machine learning models, yet mainstream attribution methods often provide an incomplete, static picture of a model's final state. By collapsing a feature's role into a single score, they are confounded by non-linearity and interactions. To address this, we introduce Feature-Function Curvature Analysis (FFCA), a novel framework that analyzes the geometry of a model's learned function. FFCA produces a 4-dimensional signature for each feature, quantifying its: (1) Impact, (2) Volatility, (3) Non-linearity, and (4) Interaction. Crucially, we extend this framework into Dynamic Archetype Analysis, which tracks the evolution of these signatures throughout the training process. This temporal view moves beyond explaining what a model learned to revealing how it learns. We provide the first direct, empirical evidence of hierarchical learning, showing that models consistently learn simple linear effects before complex interactions. Furthermore, this dynamic analysis provides novel, practical diagnostics for identifying insufficient model capacity and predicting the onset of overfitting. Our comprehensive experiments demonstrate that FFCA, through its static and dynamic components, provides the essential geometric context that transforms model explanation from simple quantification to a nuanced, trustworthy analysis of the entire learning process.
☆ Fints: Efficient Inference-Time Personalization for LLMs with Fine-Grained Instance-Tailored Steering
The rapid evolution of large language models (LLMs) has intensified the demand for effective personalization techniques that can adapt model behavior to individual user preferences. Despite the non-parametric methods utilizing the in-context learning ability of LLMs, recent parametric adaptation methods, including personalized parameter-efficient fine-tuning and reward modeling emerge. However, these methods face limitations in handling dynamic user patterns and high data sparsity scenarios, due to low adaptability and data efficiency. To address these challenges, we propose a fine-grained and instance-tailored steering framework that dynamically generates sample-level interference vectors from user data and injects them into the model's forward pass for personalized adaptation. Our approach introduces two key technical innovations: a fine-grained steering component that captures nuanced signals by hooking activations from attention and MLP layers, and an input-aware aggregation module that synthesizes these signals into contextually relevant enhancements. The method demonstrates high flexibility and data efficiency, excelling in fast-changing distribution and high data sparsity scenarios. In addition, the proposed method is orthogonal to existing methods and operates as a plug-in component compatible with different personalization techniques. Extensive experiments across diverse scenarios--including short-to-long text generation, and web function calling--validate the effectiveness and compatibility of our approach. Results show that our method significantly enhances personalization performance in fast-shifting environments while maintaining robustness across varying interaction modes and context lengths. Implementation is available at https://github.com/KounianhuaDu/Fints.
☆ MemeArena: Automating Context-Aware Unbiased Evaluation of Harmfulness Understanding for Multimodal Large Language Models EMNLP 2025
The proliferation of memes on social media necessitates the capabilities of multimodal Large Language Models (mLLMs) to effectively understand multimodal harmfulness. Existing evaluation approaches predominantly focus on mLLMs' detection accuracy for binary classification tasks, which often fail to reflect the in-depth interpretive nuance of harmfulness across diverse contexts. In this paper, we propose MemeArena, an agent-based arena-style evaluation framework that provides a context-aware and unbiased assessment for mLLMs' understanding of multimodal harmfulness. Specifically, MemeArena simulates diverse interpretive contexts to formulate evaluation tasks that elicit perspective-specific analyses from mLLMs. By integrating varied viewpoints and reaching consensus among evaluators, it enables fair and unbiased comparisons of mLLMs' abilities to interpret multimodal harmfulness. Extensive experiments demonstrate that our framework effectively reduces the evaluation biases of judge agents, with judgment results closely aligning with human preferences, offering valuable insights into reliable and comprehensive mLLM evaluations in multimodal harmfulness understanding. Our code and data are publicly available at https://github.com/Lbotirx/MemeArena.
comment: EMNLP 2025
☆ From product to system network challenges in system of systems lifecycle management
Today, products are no longer isolated artifacts, but nodes in networked systems. This means that traditional, linearly conceived life cycle models are reaching their limits: Interoperability across disciplines, variant and configuration management, traceability, and governance across organizational boundaries are becoming key factors. This collective contribution classifies the state of the art and proposes a practical frame of reference for SoS lifecycle management, model-based systems engineering (MBSE) as the semantic backbone, product lifecycle management (PLM) as the governance and configuration level, CAD-CAE as model-derived domains, and digital thread and digital twin as continuous feedback. Based on current literature and industry experience, mobility, healthcare, and the public sector, we identify four principles: (1) referenced architecture and data models, (2) end-to-end configuration sovereignty instead of tool silos, (3) curated models with clear review gates, and (4) measurable value contributions along time, quality, cost, and sustainability. A three-step roadmap shows the transition from product- to network- centric development: piloting with reference architecture, scaling across variant and supply chain spaces, organizational anchoring (roles, training, compliance). The results are increased change robustness, shorter throughput times, improved reuse, and informed sustainability decisions. This article is aimed at decision-makers and practitioners who want to make complexity manageable and design SoS value streams to be scalable.
☆ Vectorized Online POMDP Planning ICRA 2026
Planning under partial observability is an essential capability of autonomous robots. The Partially Observable Markov Decision Process (POMDP) provides a powerful framework for planning under partial observability problems, capturing the stochastic effects of actions and the limited information available through noisy observations. POMDP solving could benefit tremendously from massive parallelization of today's hardware, but parallelizing POMDP solvers has been challenging. They rely on interleaving numerical optimization over actions with the estimation of their values, which creates dependencies and synchronization bottlenecks between parallel processes that can quickly offset the benefits of parallelization. In this paper, we propose Vectorized Online POMDP Planner (VOPP), a novel parallel online solver that leverages a recent POMDP formulation that analytically solves part of the optimization component, leaving only the estimation of expectations for numerical computation. VOPP represents all data structures related to planning as a collection of tensors and implements all planning steps as fully vectorized computations over this representation. The result is a massively parallel solver with no dependencies and synchronization bottlenecks between parallel computations. Experimental results indicate that VOPP is at least 20X more efficient in computing near-optimal solutions compared to an existing state-of-the-art parallel online solver.
comment: 8 pages, 3 figures. Submitted to ICRA 2026
☆ Sparse Model Inversion: Efficient Inversion of Vision Transformers for Data-Free Applications
Model inversion, which aims to reconstruct the original training data from pre-trained discriminative models, is especially useful when the original training data is unavailable due to privacy, usage rights, or size constraints. However, existing dense inversion methods attempt to reconstruct the entire image area, making them extremely inefficient when inverting high-resolution images from large-scale Vision Transformers (ViTs). We further identify two underlying causes of this inefficiency: the redundant inversion of noisy backgrounds and the unintended inversion of spurious correlations--a phenomenon we term "hallucination" in model inversion. To address these limitations, we propose a novel sparse model inversion strategy, as a plug-and-play extension to speed up existing dense inversion methods with no need for modifying their original loss functions. Specifically, we selectively invert semantic foregrounds while stopping the inversion of noisy backgrounds and potential spurious correlations. Through both theoretical and empirical studies, we validate the efficacy of our approach in achieving significant inversion acceleration (up to 3.79 faster) while maintaining comparable or even enhanced downstream performance in data-free model quantization and data-free knowledge transfer. Code is available at https://github.com/Egg-Hu/SMI.
☆ Dual-level Progressive Hardness-Aware Reweighting for Cross-View Geo-Localization
Cross-view geo-localization (CVGL) between drone and satellite imagery remains challenging due to severe viewpoint gaps and the presence of hard negatives, which are visually similar but geographically mismatched samples. Existing mining or reweighting strategies often use static weighting, which is sensitive to distribution shifts and prone to overemphasizing difficult samples too early, leading to noisy gradients and unstable convergence. In this paper, we present a Dual-level Progressive Hardness-aware Reweighting (DPHR) strategy. At the sample level, a Ratio-based Difficulty-Aware (RDA) module evaluates relative difficulty and assigns fine-grained weights to negatives. At the batch level, a Progressive Adaptive Loss Weighting (PALW) mechanism exploits a training-progress signal to attenuate noisy gradients during early optimization and progressively enhance hard-negative mining as training matures. Experiments on the University-1652 and SUES-200 benchmarks demonstrate the effectiveness and robustness of the proposed DPHR, achieving consistent improvements over state-of-the-art methods.
comment: 5 pages, 3 figures
☆ Glia: A Human-Inspired AI for Automated Systems Design and Optimization
Can an AI autonomously design mechanisms for computer systems on par with the creativity and reasoning of human experts? We present Glia, an AI architecture for networked systems design that uses large language models (LLMs) in a human-inspired, multi-agent workflow. Each agent specializes in reasoning, experimentation, and analysis, collaborating through an evaluation framework that grounds abstract reasoning in empirical feedback. Unlike prior ML-for-systems methods that optimize black-box policies, Glia generates interpretable designs and exposes its reasoning process. When applied to a distributed GPU cluster for LLM inference, it produces new algorithms for request routing, scheduling, and auto-scaling that perform at human-expert levels in significantly less time, while yielding novel insights into workload behavior. Our results suggest that by combining reasoning LLMs with structured experimentation, an AI can produce creative and understandable designs for complex systems problems.
☆ FMint-SDE: A Multimodal Foundation Model for Accelerating Numerical Simulation of SDEs via Error Correction
Fast and accurate simulation of dynamical systems is a fundamental challenge across scientific and engineering domains. Traditional numerical integrators often face a trade-off between accuracy and computational efficiency, while existing neural network-based approaches typically require training a separate model for each case. To overcome these limitations, we introduce a novel multi-modal foundation model for large-scale simulations of differential equations: FMint-SDE (Foundation Model based on Initialization for stochastic differential equations). Based on a decoder-only transformer with in-context learning, FMint-SDE leverages numerical and textual modalities to learn a universal error-correction scheme. It is trained using prompted sequences of coarse solutions generated by conventional solvers, enabling broad generalization across diverse systems. We evaluate our models on a suite of challenging SDE benchmarks spanning applications in molecular dynamics, mechanical systems, finance, and biology. Experimental results show that our approach achieves a superior accuracy-efficiency tradeoff compared to classical solvers, underscoring the potential of FMint-SDE as a general-purpose simulation tool for dynamical systems.
☆ Adaptive Defense against Harmful Fine-Tuning for Large Language Models via Bayesian Data Scheduler
Harmful fine-tuning poses critical safety risks to fine-tuning-as-a-service for large language models. Existing defense strategies preemptively build robustness via attack simulation but suffer from fundamental limitations: (i) the infeasibility of extending attack simulations beyond bounded threat models due to the inherent difficulty of anticipating unknown attacks, and (ii) limited adaptability to varying attack settings, as simulation fails to capture their variability and complexity. To address these challenges, we propose Bayesian Data Scheduler (BDS), an adaptive tuning-stage defense strategy with no need for attack simulation. BDS formulates harmful fine-tuning defense as a Bayesian inference problem, learning the posterior distribution of each data point's safety attribute, conditioned on the fine-tuning and alignment datasets. The fine-tuning process is then constrained by weighting data with their safety attributes sampled from the posterior, thus mitigating the influence of harmful data. By leveraging the post hoc nature of Bayesian inference, the posterior is conditioned on the fine-tuning dataset, enabling BDS to tailor its defense to the specific dataset, thereby achieving adaptive defense. Furthermore, we introduce a neural scheduler based on amortized Bayesian learning, enabling efficient transfer to new data without retraining. Comprehensive results across diverse attack and defense settings demonstrate the state-of-the-art performance of our approach. Code is available at https://github.com/Egg-Hu/Bayesian-Data-Scheduler.
☆ H2-Cache: A Novel Hierarchical Dual-Stage Cache for High-Performance Acceleration of Generative Diffusion Models
Diffusion models have emerged as state-of-the-art in image generation, but their practical deployment is hindered by the significant computational cost of their iterative denoising process. While existing caching techniques can accelerate inference, they often create a challenging trade-off between speed and fidelity, suffering from quality degradation and high computational overhead. To address these limitations, we introduce H2-Cache, a novel hierarchical caching mechanism designed for modern generative diffusion model architectures. Our method is founded on the key insight that the denoising process can be functionally separated into a structure-defining stage and a detail-refining stage. H2-cache leverages this by employing a dual-threshold system, using independent thresholds to selectively cache each stage. To ensure the efficiency of our dual-check approach, we introduce pooled feature summarization (PFS), a lightweight technique for robust and fast similarity estimation. Extensive experiments on the Flux architecture demonstrate that H2-cache achieves significant acceleration (up to 5.08x) while maintaining image quality nearly identical to the baseline, quantitatively and qualitatively outperforming existing caching methods. Our work presents a robust and practical solution that effectively resolves the speed-quality dilemma, significantly lowering the barrier for the real-world application of high-fidelity diffusion models. Source code is available at https://github.com/Bluear7878/H2-cache-A-Hierarchical-Dual-Stage-Cache.
☆ Generating Accurate and Detailed Captions for High-Resolution Images
Vision-language models (VLMs) often struggle to generate accurate and detailed captions for high-resolution images since they are typically pre-trained on low-resolution inputs (e.g., 224x224 or 336x336 pixels). Downscaling high-resolution images to these dimensions may result in the loss of visual details and the omission of important objects. To address this limitation, we propose a novel pipeline that integrates vision-language models, large language models (LLMs), and object detection systems to enhance caption quality. Our proposed pipeline refines captions through a novel, multi-stage process. Given a high-resolution image, an initial caption is first generated using a VLM, and key objects in the image are then identified by an LLM. The LLM predicts additional objects likely to co-occur with the identified key objects, and these predictions are verified by object detection systems. Newly detected objects not mentioned in the initial caption undergo focused, region-specific captioning to ensure they are incorporated. This process enriches caption detail while reducing hallucinations by removing references to undetected objects. We evaluate the enhanced captions using pairwise comparison and quantitative scoring from large multimodal models, along with a benchmark for hallucination detection. Experiments on a curated dataset of high-resolution images demonstrate that our pipeline produces more detailed and reliable image captions while effectively minimizing hallucinations.
comment: Work conducted in 2024; released for archival purposes
☆ MARIA: A Framework for Marginal Risk Assessment without Ground Truth in AI Systems
Before deploying an AI system to replace an existing process, it must be compared with the incumbent to ensure improvement without added risk. Traditional evaluation relies on ground truth for both systems, but this is often unavailable due to delayed or unknowable outcomes, high costs, or incomplete data, especially for long-standing systems deemed safe by convention. The more practical solution is not to compute absolute risk but the difference between systems. We therefore propose a marginal risk assessment framework, that avoids dependence on ground truth or absolute risk. It emphasizes three kinds of relative evaluation methodology, including predictability, capability and interaction dominance. By shifting focus from absolute to relative evaluation, our approach equips software teams with actionable guidance: identifying where AI enhances outcomes, where it introduces new risks, and how to adopt such systems responsibly.
comment: 9 pages, 1 figure
☆ Exploring Landscapes for Better Minima along Valleys
Finding lower and better-generalizing minima is crucial for deep learning. However, most existing optimizers stop searching the parameter space once they reach a local minimum. Given the complex geometric properties of the loss landscape, it is difficult to guarantee that such a point is the lowest or provides the best generalization. To address this, we propose an adaptor "E" for gradient-based optimizers. The adapted optimizer tends to continue exploring along landscape valleys (areas with low and nearly identical losses) in order to search for potentially better local minima even after reaching a local minimum. This approach increases the likelihood of finding a lower and flatter local minimum, which is often associated with better generalization. We also provide a proof of convergence for the adapted optimizers in both convex and non-convex scenarios for completeness. Finally, we demonstrate their effectiveness in an important but notoriously difficult training scenario, large-batch training, where Lamb is the benchmark optimizer. Our testing results show that the adapted Lamb, ALTO, increases the test accuracy (generalization) of the current state-of-the-art optimizer by an average of 2.5% across a variety of large-batch training tasks. This work potentially opens a new research direction in the design of optimization algorithms.
comment: Neurips 2025 poster
☆ ZEBRA: Towards Zero-Shot Cross-Subject Generalization for Universal Brain Visual Decoding NeurIPS 2025
Recent advances in neural decoding have enabled the reconstruction of visual experiences from brain activity, positioning fMRI-to-image reconstruction as a promising bridge between neuroscience and computer vision. However, current methods predominantly rely on subject-specific models or require subject-specific fine-tuning, limiting their scalability and real-world applicability. In this work, we introduce ZEBRA, the first zero-shot brain visual decoding framework that eliminates the need for subject-specific adaptation. ZEBRA is built on the key insight that fMRI representations can be decomposed into subject-related and semantic-related components. By leveraging adversarial training, our method explicitly disentangles these components to isolate subject-invariant, semantic-specific representations. This disentanglement allows ZEBRA to generalize to unseen subjects without any additional fMRI data or retraining. Extensive experiments show that ZEBRA significantly outperforms zero-shot baselines and achieves performance comparable to fully finetuned models on several metrics. Our work represents a scalable and practical step toward universal neural decoding. Code and model weights are available at: https://github.com/xmed-lab/ZEBRA.
comment: Accepted by NeurIPS 2025
☆ AURA: A Reinforcement Learning Framework for AI-Driven Adaptive Conversational Surveys
Conventional online surveys provide limited personalization, often resulting in low engagement and superficial responses. Although AI survey chatbots improve convenience, most are still reactive: they rely on fixed dialogue trees or static prompt templates and therefore cannot adapt within a session to fit individual users, which leads to generic follow-ups and weak response quality. We address these limitations with AURA (Adaptive Understanding through Reinforcement Learning for Assessment), a reinforcement learning framework for AI-driven adaptive conversational surveys. AURA quantifies response quality using a four-dimensional LSDE metric (Length, Self-disclosure, Emotion, and Specificity) and selects follow-up question types via an epsilon-greedy policy that updates the expected quality gain within each session. Initialized with priors extracted from 96 prior campus-climate conversations (467 total chatbot-user exchanges), the system balances exploration and exploitation across 10-15 dialogue exchanges, dynamically adapting to individual participants in real time. In controlled evaluations, AURA achieved a +0.12 mean gain in response quality and a statistically significant improvement over non-adaptive baselines (p=0.044, d=0.66), driven by a 63% reduction in specification prompts and a 10x increase in validation behavior. These results demonstrate that reinforcement learning can give survey chatbots improved adaptivity, transforming static questionnaires into interactive, self-improving assessment systems.
♻ ☆ On the limitation of evaluating machine unlearning using only a single training seed
Machine unlearning (MU) aims to remove the influence of certain data points from a trained model without costly retraining. Most practical MU algorithms are only approximate and their performance can only be assessed empirically. Care must therefore be taken to make empirical comparisons as representative as possible. A common practice is to run the MU algorithm multiple times independently starting from the same trained model. In this work, we demonstrate that this practice can give highly non-representative results because -- even for the same architecture and same dataset -- some MU methods can be highly sensitive to the choice of random number seed used for model training. We therefore recommend that empirical comparisons of MU algorithms should also reflect the variability across different model training seeds.
comment: mini paper, 2 figures
♻ ☆ The End of Manual Decoding: Towards Truly End-to-End Language Models
The "end-to-end" label for LLMs is a misnomer. In practice, they depend on a non-differentiable decoding process that requires laborious, hand-tuning of hyperparameters like temperature and top-p. This paper introduces AutoDeco, a novel architecture that enables truly "end-to-end" generation by learning to control its own decoding strategy. We augment the standard transformer with lightweight heads that, at each step, dynamically predict context-specific temperature and top-p values alongside the next-token logits. This approach transforms decoding into a parametric, token-level process, allowing the model to self-regulate its sampling strategy within a single forward pass. Through extensive experiments on eight benchmarks, we demonstrate that AutoDeco not only significantly outperforms default decoding strategies but also achieves performance comparable to an oracle-tuned baseline derived from "hacking the test set"-a practical upper bound for any static method. Crucially, we uncover an emergent capability for instruction-based decoding control: the model learns to interpret natural language commands (e.g., "generate with low randomness") and adjusts its predicted temperature and top-p on a token-by-token basis, opening a new paradigm for steerable and interactive LLM decoding.
♻ ☆ A Process Mining-Based System For The Analysis and Prediction of Software Development Workflows
CodeSight is an end-to-end system designed to anticipate deadline compliance in software development workflows. It captures development and deployment data directly from GitHub, transforming it into process mining logs for detailed analysis. From these logs, the system generates metrics and dashboards that provide actionable insights into PR activity patterns and workflow efficiency. Building on this structured representation, CodeSight employs an LSTM model that predicts remaining PR resolution times based on sequential activity traces and static features, enabling early identification of potential deadline breaches. In tests, the system demonstrates high precision and F1 scores in predicting deadline compliance, illustrating the value of integrating process mining with machine learning for proactive software project management.
comment: 16 pages, 7 figures, 4 tables
♻ ☆ Data Therapist: Eliciting Domain Knowledge from Subject Matter Experts Using Large Language Models
Effective data visualization requires not only technical proficiency but also a deep understanding of the domain-specific context in which data exists. This context often includes tacit knowledge about data provenance, quality, and intended use, which is rarely explicit in the dataset itself. Motivated by growing demands to surface tacit knowledge, we present the Data Therapist, a web-based system that helps domain experts externalize such implicit knowledge through a mixed-initiative process combining iterative Q&A with interactive annotation. Powered by a large language model, the system automatically analyzes user-supplied datasets, prompts users with targeted questions, and supports annotation at varying levels of granularity. The resulting structured knowledge base can inform both human and automated visualization design. A qualitative study with expert pairs from Accounting, Political Science, and Computer Security revealed recurring patterns in how expert reason about their data and highlighted opportunities for AI support to enhance visualization design.
♻ ☆ TempoPFN: Synthetic Pre-training of Linear RNNs for Zero-shot Time Series Forecasting
Foundation models for zero-shot time series forecasting face challenges in efficient long-horizon prediction and reproducibility, with existing synthetic-only approaches underperforming on challenging benchmarks. This paper presents TempoPFN, a univariate time series foundation model based on linear Recurrent Neural Networks (RNNs) pre-trained exclusively on synthetic data. The model uses a GatedDeltaProduct architecture with state-weaving for fully parallelizable training across sequence lengths, eliminating the need for windowing or summarization techniques while maintaining robust temporal state-tracking. Our comprehensive synthetic data pipeline unifies diverse generators, including stochastic differential equations, Gaussian processes, and audio synthesis, with novel augmentations. In zero-shot evaluations on the Gift-Eval benchmark, TempoPFN achieves top-tier competitive performance, outperforming all existing synthetic-only approaches and surpassing the vast majority of models trained on real-world data, while being more efficient than existing baselines by leveraging fully parallelizable training and inference. We open-source our complete data generation pipeline and training code, providing a reproducible foundation for future research.
comment: 30 pages, 18 figures, 13 tables
♻ ☆ Non-Convex Over-the-Air Heterogeneous Federated Learning: A Bias-Variance Trade-off
Over-the-air (OTA) federated learning (FL) has been well recognized as a scalable paradigm that exploits the waveform superposition of the wireless multiple-access channel to aggregate model updates in a single use. Existing OTA-FL designs largely enforce zero-bias model updates by either assuming \emph{homogeneous} wireless conditions (equal path loss across devices) or forcing zero-bias updates to guarantee convergence. Under \emph{heterogeneous} wireless scenarios, however, such designs are constrained by the weakest device and inflate the update variance. Moreover, prior analyses of biased OTA-FL largely address convex objectives, while most modern AI models are highly non-convex. Motivated by these gaps, we study OTA-FL with stochastic gradient descent (SGD) for general smooth non-convex objectives under wireless heterogeneity. We develop novel OTA-FL SGD updates that allow a structured, time-invariant model bias while facilitating reduced variance updates. We derive a finite-time stationarity bound (expected time average squared gradient norm) that explicitly reveals a bias-variance trade-off. To optimize this trade-off, we pose a non-convex joint OTA power-control design and develop an efficient successive convex approximation (SCA) algorithm that requires only statistical CSI at the base station. Experiments on a non-convex image classification task validate the approach: the SCA-based design accelerates convergence via an optimized bias and improves generalization over prior OTA-FL baselines.
♻ ☆ UdonCare: Hierarchy Pruning for Unseen Domain Discovery in Predictive Healthcare
Healthcare providers often divide patient populations into cohorts based on shared clinical factors, such as medical history, to deliver personalized healthcare services. This idea has also been adopted in clinical prediction models, where it presents a vital challenge: capturing both global and cohort-specific patterns while enabling model generalization to unseen domains. Addressing this challenge falls under the scope of domain generalization (DG). However, conventional DG approaches often struggle in clinical settings due to the absence of explicit domain labels and the inherent gap in medical knowledge. To address this, we propose UdonCare, a hierarchy-guided method that iteratively divides patients into latent domains and decomposes domain-invariant (label) information from patient data. Our method identifies patient domains by pruning medical ontologies (e.g. ICD-9-CM hierarchy). On two public datasets, MIMIC-III and MIMIC-IV, UdonCare shows superiority over eight baselines across four clinical prediction tasks with substantial domain gaps, highlighting the untapped potential of medical knowledge in guiding clinical domain generalization problems.
♻ ☆ I-RAVEN-X: Benchmarking Generalization and Robustness of Analogical and Mathematical Reasoning in Large Language and Reasoning Models NeurIPS 2025
We introduce I-RAVEN-X, a symbolic benchmark designed to evaluate generalization and robustness in analogical and mathematical reasoning for Large Language Models (LLMs) and Large Reasoning Models (LRMs). I-RAVEN-X extends I-RAVEN by increasing operand complexity, attribute range, and introducing perceptual uncertainty. Compared to LLMs, empirical results show that LRMs achieve improved productivity and systematicity on longer reasoning relations and wider attribute ranges, respectively. However, LRMs are still significantly challenged by reasoning under uncertainty and cannot effectively explore multiple probabilistic outcomes.
comment: Accepted at the 5th Workshop on Mathematical Reasoning and AI (MATH-AI), NeurIPS 2025
♻ ☆ SparsePO: Controlling Preference Alignment of LLMs via Sparse Token Masks EMNLP 2025
Direct alignment algorithms have proven an effective step for aligning language models to human-desired behaviors. Current variants of the Direct Preference Optimization objective have focused on a strict setting where all tokens are contributing signals of KL divergence and rewards to the loss function. However, human preference is not affected equally by each word in a sequence but is often dependent on specific words or phrases, e.g. existence of toxic terms leads to non-preferred responses. Based on this observation, we argue that not all tokens should be weighted equally during PO and propose a flexible objective termed SparsePO, that aims to automatically learn to weight the KL divergence and reward corresponding to each token during PO training. We propose two different variants of weight-masks that can either be derived from the reference model itself or learned on the fly. Notably, our method induces sparsity in the learned masks, allowing the model to learn how to best balance reward and KL divergence contributions at the token level, learning an optimal level of mask sparsity. Extensive experiments illustrate the effectiveness of our approach at aligning to preference proxies, including sentiment control, helpfulness and harmlessness, and summary quality. Our method obtains +10% and +3% win rate points in summarization and dialogue scenarios, respectively, without compromising model reasoning or the relevancy and faithfulness of the summary response.
comment: 27 pages, 9 figures, 5 tables. Accepted to EMNLP 2025
♻ ☆ VRoPE: Rotary Position Embedding for Video Large Language Models EMNLP 2025
Rotary Position Embedding (RoPE) has shown strong performance in text-based Large Language Models (LLMs), but extending it to video remains a challenge due to the intricate spatiotemporal structure of video frames. Existing adaptations, such as RoPE-3D, attempt to encode spatial and temporal dimensions separately but suffer from two major limitations: positional bias in attention distribution and disruptions in video-text transitions. To overcome these issues, we propose Video Rotary Position Embedding (VRoPE), a novel positional encoding method tailored for Video-LLMs. Specifically, we introduce a more balanced encoding strategy that mitigates attention biases, ensuring a more uniform distribution of spatial focus. Additionally, our approach restructures positional indices to ensure a smooth transition between video and text tokens. Extensive experiments on different models demonstrate that VRoPE consistently outperforms previous RoPE variants, achieving significant improvements in video understanding, temporal reasoning, and retrieval tasks. Code is available at https://github.com/johncaged/VRoPE.
comment: EMNLP 2025 Main Camera Ready
♻ ☆ A Survey of AI Scientists
Artificial intelligence is undergoing a profound transition from a computational instrument to an autonomous originator of scientific knowledge. This emerging paradigm, the AI scientist, is architected to emulate the complete scientific workflow-from initial hypothesis generation to the final synthesis of publishable findings-thereby promising to fundamentally reshape the pace and scale of discovery. However, the rapid and unstructured proliferation of these systems has created a fragmented research landscape, obscuring overarching methodological principles and developmental trends. This survey provides a systematic and comprehensive synthesis of this domain by introducing a unified, six-stage methodological framework that deconstructs the end-to-end scientific process into: Literature Review, Idea Generation, Experimental Preparation, Experimental Execution, Scientific Writing, and Paper Generation. Through this analytical lens, we chart the field's evolution from early Foundational Modules (2022-2023) to integrated Closed-Loop Systems (2024), and finally to the current frontier of Scalability, Impact, and Human-AI Collaboration (2025-present). By rigorously synthesizing these developments, this survey not only clarifies the current state of autonomous science but also provides a critical roadmap for overcoming remaining challenges in robustness and governance, ultimately guiding the next generation of systems toward becoming trustworthy and indispensable partners in human scientific inquiry.
comment: 28 pages, 9 figures, 1 table
♻ ☆ A Multi-Stage Framework with Taxonomy-Guided Reasoning for Occupation Classification Using Large Language Models
Automatically annotating job data with standardized occupations from taxonomies, known as occupation classification, is crucial for labor market analysis. However, this task is often hindered by data scarcity and the challenges of manual annotations. While large language models (LLMs) hold promise due to their extensive world knowledge and in-context learning capabilities, their effectiveness depends on their knowledge of occupational taxonomies, which remains unclear. In this study, we assess the ability of LLMs to generate precise taxonomic entities from taxonomy, highlighting their limitations, especially for smaller models. To address these challenges, we propose a multi-stage framework consisting of inference, retrieval, and reranking stages, which integrates taxonomy-guided reasoning examples to enhance performance by aligning outputs with taxonomic knowledge. Evaluations on a large-scale dataset show that our framework not only enhances occupation and skill classification tasks, but also provides a cost-effective alternative to frontier models like GPT-4o, significantly reducing computational costs while maintaining strong performance. This makes it a practical and scalable solution for occupation classification and related tasks across LLMs.
comment: Accepted to ICWSM'26
♻ ☆ Generative AI and Firm Productivity: Field Experiments in Online Retail
We quantify the impact of Generative Artificial Intelligence (GenAI) on firm productivity through a series of large-scale randomized field experiments involving millions of users and products at a leading cross-border online retail platform. Over six months in 2023-2024, GenAI-based enhancements were integrated into seven consumer-facing business workflows. We find that GenAI adoption significantly increases sales, with treatment effects ranging from $0\%$ to $16.3\%$, depending on GenAI's marginal contribution relative to existing firm practices. Because inputs and prices were held constant across experimental arms, these gains map directly into total factor productivity improvements. Across the four GenAI applications with positive effects, the implied annual incremental value is approximately $\$ 5$ per consumer-an economically meaningful impact given the retailer's scale and the early stage of GenAI adoption. The primary mechanism operates through higher conversion rates, consistent with GenAI reducing frictions in the marketplace and improving consumer experience. We also document substantial heterogeneity: smaller and newer sellers, as well as less experienced consumers, exhibit disproportionately larger gains. Our findings provide novel, large-scale causal evidence on the productivity effects of GenAI in online retail, highlighting both its immediate value and broader potential.
comment: Keywords: Field Experiments, Generative AI, Productivity, Retail Platforms, Consumer Experience. JEL codes: C93, D24, L81, M31, O3
♻ ☆ PoLAR: Polar-Decomposed Low-Rank Adapter Representation
We show that low-rank adaptation of large-scale models suffers from a low stable rank that is well below the linear algebraic rank of the subspace, degrading fine-tuning performance. To mitigate the underutilization of the allocated subspace, we propose PoLAR, a parameterization inspired by the polar decomposition that factorizes the low-rank update into two direction matrices constrained to Stiefel manifolds and an unconstrained scale matrix. Our theory shows that PoLAR yields an exponentially faster convergence rate on a canonical low-rank adaptation problem. Pairing the parameterization with Riemannian optimization leads to consistent gains on three different benchmarks testing general language understanding, commonsense reasoning, and mathematical problem solving with base model sizes ranging from 350M to 27B.
♻ ☆ NaviAgent: Bilevel Planning on Tool Navigation Graph for Large-Scale Orchestration
Large language models (LLMs) have recently demonstrated the ability to act as function call agents by invoking external tools, enabling them to solve tasks beyond their static knowledge. However, existing agents typically call tools step by step at a time without a global view of task structure. As tools depend on each other, this leads to error accumulation and limited scalability, particularly when scaling to thousands of tools. To address these limitations, we propose NaviAgent, a novel bilevel architecture that decouples task planning from tool execution through graph-based modeling of the tool ecosystem. At the task-planning level, the LLM-based agent decides whether to respond directly, clarify user intent, invoke a toolchain, or execute tool outputs, ensuring broad coverage of interaction scenarios independent of inter-tool complexity. At the execution level, a continuously evolving Tool World Navigation Model (TWNM) encodes structural and behavioral relations among tools, guiding the agent to generate scalable and robust invocation sequences. By incorporating feedback from real tool interactions, NaviAgent supports closed-loop optimization of planning and execution, moving beyond tool calling toward adaptive navigation of large-scale tool ecosystems. Experiments show that NaviAgent achieves the best task success rates across models and tasks, and integrating TWMN further boosts performance by up to 17 points on complex tasks, underscoring its key role in toolchain orchestration.
♻ ☆ Emergent Cognitive Convergence via Implementation: A Structured Loop Reflecting Four Theories of Mind
We report a structural convergence among four influential theories of mind: Kahneman's dual-system theory, Friston's predictive processing, Minsky's society of mind, and Clark's extended mind, emerging unintentionally within a practical AI architecture known as Agentic Flow. Designed to address the limitations of large language models (LLMs), Agentic Flow comprises five interlocking modules: Retrieval, Cognition, Control, Memory, and Action, organized into a repeatable cognitive loop. Although originally inspired only by Minsky and Clark, subsequent analysis revealed that its structure echoes computational motifs from all four theories, suggesting that theoretical convergence can emerge naturally from implementation demands rather than deliberate synthesis. Controlled evaluations confirmed this: the structured agent achieved 95.8% task success versus 62.3% for baseline LLMs, demonstrating robust constraint adherence and reproducible reasoning. We describe this convergence under a broader descriptive meta-architecture called PEACE, highlighting recurring design patterns such as predictive modeling, associative recall, and error-sensitive control. Later formalized as the Structured Cognitive Loop (SCL), this framework generalizes the same principles as a foundation for behavioral intelligence in LLM-based agents. Rather than claiming theoretical unification, this paper proposes that intelligent architectures may evolve toward shared structural patterns shaped by practical constraints. As a position paper, it aims to frame this convergence as an interpretive reflection rather than a finalized theory, inviting further theoretical and experimental dialogue. Agentic Flow, or equivalently the Structured Cognitive Loop, thus offers a glimpse of how a unified cognitive form can arise not from abstraction, but from the necessities of real-world reasoning.
comment: This version relocates the "Position Paper" designation from the title to the abstract and adds a citation to the related follow-up study Structured Cognition for Behavioral Intelligence in Large Language Model Agents (Kim, 2025), also available on arXiv
♻ ☆ Decoding Latent Attack Surfaces in LLMs: Prompt Injection via HTML in Web Summarization
Large Language Models (LLMs) are increasingly integrated into web-based systems for content summarization, yet their susceptibility to prompt injection attacks remains a pressing concern. In this study, we explore how non-visible HTML elements such as , aria-label, and alt attributes can be exploited to embed adversarial instructions without altering the visible content of a webpage. We introduce a novel dataset comprising 280 static web pages, evenly divided between clean and adversarial injected versions, crafted using diverse HTML-based strategies. These pages are processed through a browser automation pipeline to extract both raw HTML and rendered text, closely mimicking real-world LLM deployment scenarios. We evaluate two state-of-the-art open-source models, Llama 4 Scout (Meta) and Gemma 9B IT (Google), on their ability to summarize this content. Using both lexical (ROUGE-L) and semantic (SBERT cosine similarity) metrics, along with manual annotations, we assess the impact of these covert injections. Our findings reveal that over 29% of injected samples led to noticeable changes in the Llama 4 Scout summaries, while Gemma 9B IT showed a lower, yet non-trivial, success rate of 15%. These results highlight a critical and largely overlooked vulnerability in LLM driven web pipelines, where hidden adversarial content can subtly manipulate model outputs. Our work offers a reproducible framework and benchmark for evaluating HTML-based prompt injection and underscores the urgent need for robust mitigation strategies in LLM applications involving web content.
♻ ☆ Fast Adversarial Training against Sparse Attacks Requires Loss Smoothing
This paper studies fast adversarial training against sparse adversarial perturbations bounded by $l_0$ norm. We demonstrate the challenges of employing $1$-step attacks on $l_0$ bounded perturbations for fast adversarial training, including degraded performance and the occurrence of catastrophic overfitting (CO). We highlight that CO in $l_0$ adversarial training is caused by sub-optimal perturbation locations of $1$-step attack. Theoretical and empirical analyses reveal that the loss landscape of $l_0$ adversarial training is more craggy compared to its $l_\infty$, $l_2$ and $l_1$ counterparts. Moreover, we corroborate that the craggy loss landscape can aggravate CO. To address these issues, we propose Fast-LS-$l_0$ that incorporates soft labels and the trade-off loss function to smooth the adversarial loss landscape. Extensive experiments demonstrate our method can overcome the challenge of catastrophic overfitting, achieve state-of-the-art performance, and narrow down the performance gap between $1$-step and multi-step adversarial training against sparse attacks.
♻ ☆ Beyond Pixels: Exploring DOM Downsampling for LLM-Based Web Agents
Frontier LLMs only recently enabled serviceable, autonomous web agents. At that, a model poses as an instantaneous domain model backend. Ought to suggest interaction, it is consulted with a web-based task and respective application state. The key problem lies in application state serialisation - referred to as snapshot. State-of-the-art web agents are premised on grounded GUI snapshots, i.e., screenshots enhanced with visual cues. Not least to resemble human perception, but for images representing relatively cheap means of model input. LLM vision still lag behind code interpretation capabilities. DOM snapshots, which structurally resemble HTML, impose a desired alternative. Vast model input token size, however, disables reliable implementation with web agents to date. We propose D2Snap, a first-of-its-kind DOM downsampling algorithm. Based on a GPT-4o backend, we evaluate D2Snap on tasks sampled from the Online-Mind2Web dataset. The success rate of D2Snap-downsampled DOM snapshots (67%) matches a grounded GUI snapshot baseline (65%) - within the same input token order of magnitude (1e3). Our best evaluated configurations - one token order above, but within the model's context window - outperform this baseline by 8%. Our evaluation, moreover, yields that DOM-inherent hierarchy embodies a strong UI feature for LLMs.
comment: 20 pages, LaTeX; repository URL updated, typos corrected
♻ ☆ Fair Play for Individuals, Foul Play for Groups? Auditing Anonymization's Impact on ML Fairness ECAI 2025
Machine learning (ML) algorithms are heavily based on the availability of training data, which, depending on the domain, often includes sensitive information about data providers. This raises critical privacy concerns. Anonymization techniques have emerged as a practical solution to address these issues by generalizing features or suppressing data to make it more difficult to accurately identify individuals. Although recent studies have shown that privacy-enhancing technologies can influence ML predictions across different subgroups, thus affecting fair decision-making, the specific effects of anonymization techniques, such as $k$-anonymity, $\ell$-diversity, and $t$-closeness, on ML fairness remain largely unexplored. In this work, we systematically audit the impact of anonymization techniques on ML fairness, evaluating both individual and group fairness. Our quantitative study reveals that anonymization can degrade group fairness metrics by up to fourfold. Conversely, similarity-based individual fairness metrics tend to improve under stronger anonymization, largely as a result of increased input homogeneity. By analyzing varying levels of anonymization across diverse privacy settings and data distributions, this study provides critical insights into the trade-offs between privacy, fairness, and utility, offering actionable guidelines for responsible AI development. Our code is publicly available at: https://github.com/hharcolezi/anonymity-impact-fairness.
comment: ECAI 2025
♻ ☆ GenSwarm: Scalable Multi-Robot Code-Policy Generation and Deployment via Language Models
The development of control policies for multi-robot systems traditionally follows a complex and labor-intensive process, often lacking the flexibility to adapt to dynamic tasks. This has motivated research on methods to automatically create control policies. However, these methods require iterative processes of manually crafting and refining objective functions, thereby prolonging the development cycle. This work introduces \textit{GenSwarm}, an end-to-end system that leverages large language models to automatically generate and deploy control policies for multi-robot tasks based on simple user instructions in natural language. As a multi-language-agent system, GenSwarm achieves zero-shot learning, enabling rapid adaptation to altered or unseen tasks. The white-box nature of the code policies ensures strong reproducibility and interpretability. With its scalable software and hardware architectures, GenSwarm supports efficient policy deployment on both simulated and real-world multi-robot systems, realizing an instruction-to-execution end-to-end functionality that could prove valuable for robotics specialists and non-specialists alike.The code of the proposed GenSwarm system is available online: https://github.com/WindyLab/GenSwarm.
comment: This article has been accepted for publication in npj Robotics
♻ ☆ DualOptim: Enhancing Efficacy and Stability in Machine Unlearning with Dual Optimizers
Existing machine unlearning (MU) approaches exhibit significant sensitivity to hyperparameters, requiring meticulous tuning that limits practical deployment. In this work, we first empirically demonstrate the instability and suboptimal performance of existing popular MU methods when deployed in different scenarios. To address this issue, we propose Dual Optimizer (DualOptim), which incorporates adaptive learning rate and decoupled momentum factors. Empirical and theoretical evidence demonstrates that DualOptim contributes to effective and stable unlearning. Through extensive experiments, we show that DualOptim can significantly boost MU efficacy and stability across diverse tasks, including image classification, image generation, and large language models, making it a versatile approach to empower existing MU algorithms.
♻ ☆ Reinforcement Learning vs. Distillation: Understanding Accuracy and Capability in LLM Reasoning
Recent studies have shown that reinforcement learning with verifiable rewards (RLVR) enhances overall accuracy (pass@1) but often fails to improve capability (pass@k) of LLMs in reasoning tasks, while distillation can improve both. In this paper, we investigate the mechanisms behind these phenomena. First, we demonstrate that RLVR struggles to improve capability as it focuses on improving the accuracy of the easier questions to the detriment of the accuracy of the most difficult questions. Second, we show that RLVR does not merely increase the success probability for the easier questions, but in our small model settings, produces quality responses that were absent in its original output distribution. In addition, we show these responses are neither noticeably longer nor feature more reflection-related keywords, underscoring the need for more reliable indicators of response quality. Third, from the experiment distilling teacher responses to in-distribution problems, we find that capability does not always improve with distillation. We conjecture that capability improves only when new knowledge is introduced, whereas distilling reasoning patterns only improves accuracy but not capability, sacrificing performance on the most difficult questions, similar to RLVR. Together, these findings offer a clearer understanding of how RLVR and distillation shape reasoning behavior in LLMs
comment: 25 pages
♻ ☆ DeepVideo-R1: Video Reinforcement Fine-Tuning via Difficulty-aware Regressive GRPO NeurIPS 2025
Recent works have demonstrated the effectiveness of reinforcement learning (RL)-based post-training for enhancing the reasoning capabilities of large language models (LLMs). In particular, Group Relative Policy Optimization (GRPO) has shown impressive success using a PPO-style reinforcement algorithm with group-normalized rewards. However, the effectiveness of GRPO in Video Large Language Models (VideoLLMs) has still been less studyed. In this paper, we explore GRPO and identify two problems that deteriorate the effective learning: (1) reliance on safeguards, and (2) vanishing advantage. To mitigate these challenges, we propose DeepVideo-R1, a video large language model trained with Reg-GRPO (Regressive GRPO) and difficulty-aware data augmentation. Reg-GRPO reformulates the GRPO loss function into a regression task that directly predicts the advantage in GRPO, eliminating the need for safeguards such as the clipping and min functions. It directly aligns the model with advantages, providing guidance to prefer better ones. The difficulty-aware data augmentation strategy augments input prompts/videos to locate the difficulty of samples at solvable difficulty levels, enabling diverse reward signals. Our experimental results show that our approach significantly improves video reasoning performance across multiple benchmarks.
comment: NeurIPS 2025
♻ ☆ More of the Same: Persistent Representational Harms Under Increased Representation NeurIPS
To recognize and mitigate the harms of generative AI systems, it is crucial to consider whether and how different societal groups are represented by these systems. A critical gap emerges when naively measuring or improving who is represented, as this does not consider how people are represented. In this work, we develop GAS(P), an evaluation methodology for surfacing distribution-level group representational biases in generated text, tackling the setting where groups are unprompted (i.e., groups are not specified in the input to generative systems). We apply this novel methodology to investigate gendered representations in occupations across state-of-the-art large language models. We show that, even though the gender distribution when models are prompted to generate biographies leads to a large representation of women, even representational biases persist in how different genders are represented. Our evaluation methodology reveals that there are statistically significant distribution-level differences in the word choice used to describe biographies and personas of different genders across occupations, and we show that many of these differences are associated with representational harms and stereotypes. Our empirical findings caution that naively increasing (unprompted) representation may inadvertently proliferate representational biases, and our proposed evaluation methodology enables systematic and rigorous measurement of the problem.
comment: Proceedings of the Neural Information Processing Systems (NeurIPS) 2025; 39 pages, 7 figures, 15 tables
♻ ☆ LLMs Can Covertly Sandbag on Capability Evaluations Against Chain-of-Thought Monitoring AACL 2025
Trustworthy evaluations of dangerous capabilities are increasingly crucial for determining whether an AI system is safe to deploy. One empirically demonstrated threat is sandbagging - the strategic underperformance on evaluations by AI models or their developers. A promising defense is to monitor a model's chain-of-thought (CoT) reasoning, as this could reveal its intentions and plans. In this work, we measure the ability of models to sandbag on dangerous capability evaluations against a CoT monitor by prompting them to sandbag while being either monitor-oblivious or monitor-aware. We show that both frontier models and small open-sourced models can covertly sandbag against CoT monitoring 0-shot without hints. However, they cannot yet do so reliably: they bypass the monitor 16-36% of the time when monitor-aware, conditioned on sandbagging successfully. We qualitatively analyzed the uncaught CoTs to understand why the monitor failed. We reveal a rich attack surface for CoT monitoring and contribute five covert sandbagging policies generated by models. These results inform potential failure modes of CoT monitoring and may help build more diverse sandbagging model organisms.
comment: Accepted to IJCNLP-AACL 2025 (Main Conference)
♻ ☆ Uncertainty-Based Smooth Policy Regularisation for Reinforcement Learning with Few Demonstrations
In reinforcement learning with sparse rewards, demonstrations can accelerate learning, but determining when to imitate them remains challenging. We propose Smooth Policy Regularisation from Demonstrations (SPReD), a framework that addresses the fundamental question: when should an agent imitate a demonstration versus follow its own policy? SPReD uses ensemble methods to explicitly model Q-value distributions for both demonstration and policy actions, quantifying uncertainty for comparisons. We develop two complementary uncertainty-aware methods: a probabilistic approach estimating the likelihood of demonstration superiority, and an advantage-based approach scaling imitation by statistical significance. Unlike prevailing methods (e.g. Q-filter) that make binary imitation decisions, SPReD applies continuous, uncertainty-proportional regularisation weights, reducing gradient variance during training. Despite its computational simplicity, SPReD achieves remarkable gains in experiments across eight robotics tasks, outperforming existing approaches by up to a factor of 14 in complex tasks while maintaining robustness to demonstration quality and quantity. Our code is available at https://github.com/YujieZhu7/SPReD.
♻ ☆ Towards User-Focused Research in Training Data Attribution for Human-Centered Explainable AI
Explainable AI (XAI) aims to make AI systems more transparent, yet many practices emphasise mathematical rigour over practical user needs. We propose an alternative to this model-centric approach by following a design thinking process for the emerging XAI field of training data attribution (TDA), which risks repeating solutionist patterns seen in other subfields. However, because TDA is in its early stages, there is a valuable opportunity to shape its direction through user-centred practices. We engage directly with machine learning developers via a needfinding interview study (N=6) and a scenario-based interactive user study (N=31) to ground explanations in real workflows. Our exploration of the TDA design space reveals novel tasks for data-centric explanations useful to developers, such as grouping training samples behind specific model behaviours or identifying undersampled data. We invite the TDA, XAI, and HCI communities to engage with these tasks to strengthen their research's practical relevance and human impact.
♻ ☆ SC-LoRA: Balancing Efficient Fine-tuning and Knowledge Preservation via Subspace-Constrained LoRA
Parameter-Efficient Fine-Tuning (PEFT) methods, particularly Low-Rank Adaptation (LoRA), are indispensable for efficiently customizing Large Language Models (LLMs). However, vanilla LoRA suffers from slow convergence speed and knowledge forgetting problems. Recent studies have leveraged the power of designed LoRA initialization, to enhance the fine-tuning efficiency, or to preserve knowledge in the pre-trained LLM. However, none of these works can address the two cases at the same time. To this end, we introduce Subspace-Constrained LoRA (SC-LoRA), a novel LoRA initialization framework engineered to navigate the trade-off between efficient fine-tuning and knowledge preservation. We achieve this by constraining the output of trainable LoRA adapters in a low-rank subspace, where the context information of fine-tuning data is most preserved while the context information of preserved knowledge is least retained, in a balanced way. Such constraint enables the trainable weights to primarily focus on the main features of fine-tuning data while avoiding damaging the preserved knowledge features. We provide theoretical analysis on our method, and conduct extensive experiments including safety preservation and world knowledge preservation, on various downstream tasks. In our experiments, SC-LoRA succeeds in delivering superior fine-tuning performance while markedly diminishing knowledge forgetting, surpassing contemporary LoRA initialization methods.
♻ ☆ Rethinking Metrics and Benchmarks of Video Anomaly Detection
Video Anomaly Detection (VAD), which aims to detect anomalies that deviate from expectation, has attracted increasing attention in recent years. Existing advancements in VAD primarily focus on model architectures and training strategies, while devoting insufficient attention to evaluation metrics and benchmarks. In this paper, we rethink VAD evaluation methods through comprehensive analyses, revealing three critical limitations in current practices: 1) existing metrics are significantly influenced by single annotation bias; 2) current metrics fail to reward early detection of anomalies; 3) available benchmarks lack the capability to evaluate scene overfitting of fully/weakly-supervised algorithms. To address these limitations, we propose three novel evaluation methods: first, we establish probabilistic AUC/AP (Prob-AUC/AP) metrics utlizing multi-round annotations to mitigate single annotation bias; second, we develop a Latency-aware Average Precision (LaAP) metric that rewards early and accurate anomaly detection; and finally, we introduce two hard normal benchmarks (UCF-HN, MSAD-HN) with videos specifically designed to evaluate scene overfitting. We report performance comparisons of ten state-of-the-art VAD approaches using our proposed evaluation methods, providing novel perspectives for future VAD model development. We release our data and code in https://github.com/Kamino666/RethinkingVAD.
♻ ☆ Deep Learning-based Prediction of Clinical Trial Enrollment with Uncertainty Estimates
Clinical trials are a systematic endeavor to assess the safety and efficacy of new drugs or treatments. Conducting such trials typically demands significant financial investment and meticulous planning, highlighting the need for accurate predictions of trial outcomes. Accurately predicting patient enrollment, a key factor in trial success, is one of the primary challenges during the planning phase. In this work, we propose a novel deep learning-based method to address this critical challenge. Our method, implemented as a neural network model, leverages pre-trained language models (PLMs) to capture the complexities and nuances of clinical documents, transforming them into expressive representations. These representations are then combined with encoded tabular features via an attention mechanism. To account for uncertainties in enrollment prediction, we enhance the model with a probabilistic layer based on the Gamma distribution, which enables range estimation. We apply the proposed model to predict clinical trial duration, assuming site-level enrollment follows a Poisson-Gamma process. We carry out extensive experiments on real-world clinical trial data, and show that the proposed method can effectively predict the number of patients enrolled at a number of sites for a given clinical trial, outperforming established baseline models.
♻ ☆ On the Mistaken Assumption of Interchangeable Deep Reinforcement Learning Implementations
Deep Reinforcement Learning (DRL) is a paradigm of artificial intelligence where an agent uses a neural network to learn which actions to take in a given environment. DRL has recently gained traction from being able to solve complex environments like driving simulators, 3D robotic control, and multiplayer-online-battle-arena video games. Numerous implementations of the state-of-the-art algorithms responsible for training these agents, like the Deep Q-Network (DQN) and Proximal Policy Optimization (PPO) algorithms, currently exist. However, studies make the mistake of assuming implementations of the same algorithm to be consistent and thus, interchangeable. In this paper, through a differential testing lens, we present the results of studying the extent of implementation inconsistencies, their effect on the implementations' performance, as well as their impact on the conclusions of prior studies under the assumption of interchangeable implementations. The outcomes of our differential tests showed significant discrepancies between the tested algorithm implementations, indicating that they are not interchangeable. In particular, out of the five PPO implementations tested on 56 games, three implementations achieved superhuman performance for 50% of their total trials while the other two implementations only achieved superhuman performance for less than 15% of their total trials. As part of a meticulous manual analysis of the implementations' source code, we analyzed implementation discrepancies and determined that code-level inconsistencies primarily caused these discrepancies. Lastly, we replicated a study and showed that this assumption of implementation interchangeability was sufficient to flip experiment outcomes. Therefore, this calls for a shift in how implementations are being used.
comment: Added the ACM Functional v1.1 badge, the full publication citation, and a link to the publication on IEEE Xplore
♻ ☆ Aeolus: A Multi-structural Flight Delay Dataset
We introduce Aeolus, a large-scale Multi-modal Flight Delay Dataset designed to advance research on flight delay prediction and support the development of foundation models for tabular data. Existing datasets in this domain are typically limited to flat tabular structures and fail to capture the spatiotemporal dynamics inherent in delay propagation. Aeolus addresses this limitation by providing three aligned modalities: (i) a tabular dataset with rich operational, meteorological, and airportlevel features for over 50 million flights; (ii) a flight chain module that models delay propagation along sequential flight legs, capturing upstream and downstream dependencies; and (iii) a flight network graph that encodes shared aircraft, crew, and airport resource connections, enabling cross-flight relational reasoning. The dataset is carefully constructed with temporal splits, comprehensive features, and strict leakage prevention to support realistic and reproducible machine learning evaluation. Aeolus supports a broad range of tasks, including regression, classification, temporal structure modeling, and graph learning, serving as a unified benchmark across tabular, sequential, and graph modalities. We release baseline experiments and preprocessing tools to facilitate adoption. Aeolus fills a key gap for both domain-specific modeling and general-purpose structured data research.Our source code and data can be accessed at https://github.com/Flnny/Delay-data
♻ ☆ Artificially intelligent agents in the social and behavioral sciences: A history and outlook
We review the historical development and current trends of artificially intelligent agents (agentic AI) in the social and behavioral sciences: from the first programmable computers, and social simulations soon thereafter, to today's experiments with large language models. This overview emphasizes the role of AI in the scientific process and the changes brought about, both through technological advancements and the broader evolution of science from around 1950 to the present. Some of the specific points we cover include: the challenges of presenting the first social simulation studies to a world unaware of computers, the rise of social systems science, intelligent game theoretic agents, the age of big data and the epistemic upheaval in its wake, and the current enthusiasm around applications of generative AI, and many other topics. A pervasive theme is how deeply entwined we are with the technologies we use to understand ourselves.
♻ ☆ LLM Based Long Code Translation using Identifier Replacement
In the domain of software development, LLMs have been utilized to automate tasks such as code translation, where source code from one programming language is translated to another while preserving its functionality. However, LLMs often struggle with long source codes that don't fit into the context window, which produces inaccurate translations. To address this, we propose a novel zero-shot code translation method that incorporates identifier replacement. By substituting user-given long identifiers with generalized placeholders during translation, our method allows the LLM to focus on the logical structure of the code, by reducing token count and memory usage, which improves the efficiency and cost-effectiveness of long code translation. Our empirical results demonstrate that our approach preserves syntactical and hierarchical information and produces translation results with reduced tokens.
♻ ☆ SafeAgentBench: A Benchmark for Safe Task Planning of Embodied LLM Agents
With the integration of large language models (LLMs), embodied agents have strong capabilities to understand and plan complicated natural language instructions. However, a foreseeable issue is that those embodied agents can also flawlessly execute some hazardous tasks, potentially causing damages in the real world. Existing benchmarks predominantly overlook critical safety risks, focusing solely on planning performance, while a few evaluate LLMs' safety awareness only on non-interactive image-text data. To address this gap, we present SafeAgentBench -- the first comprehensive benchmark for safety-aware task planning of embodied LLM agents in interactive simulation environments, covering both explicit and implicit hazards. SafeAgentBench includes: (1) an executable, diverse, and high-quality dataset of 750 tasks, rigorously curated to cover 10 potential hazards and 3 task types; (2) SafeAgentEnv, a universal embodied environment with a low-level controller, supporting multi-agent execution with 17 high-level actions for 9 state-of-the-art baselines; and (3) reliable evaluation methods from both execution and semantic perspectives. Experimental results show that, although agents based on different design frameworks exhibit substantial differences in task success rates, their overall safety awareness remains weak. The most safety-conscious baseline achieves only a 10% rejection rate for detailed hazardous tasks. Moreover, simply replacing the LLM driving the agent does not lead to notable improvements in safety awareness. Dataset and codes are available in https://github.com/shengyin1224/SafeAgentBench and https://huggingface.co/datasets/safeagentbench/SafeAgentBench.
comment: 28 pages, 19 tables, 15 figures
♻ ☆ LIBMoE: A Library for comprehensive benchmarking Mixture of Experts in Large Language Models
Mixture of experts (MoE) architectures have become a cornerstone for scaling up and are a key component in most large language models such as GPT-OSS, DeepSeek-V3, Llama-4, and Gemini-2.5. However, systematic research on MoE remains severely constrained by the prohibitive computational costs of training and evaluation, restricting large-scale studies accessible to most researchers. We introduce LibMoE, a unified framework for reproducible, efficient, and extensible MoE research that supports both pretraining and sparse-upcycling regimes. Beyond unified implementations, the framework provides transparent analytical tools for probing routing and expert dynamics. Leveraging this foundation, we conduct a comprehensive analysis along three dimensions: (i) routing dynamics, covering expert selection patterns, routing stability and optimality, and how routing entropy reveals task specialization and expert diversity; (ii) the effect of lightweight initialization on load balancing, demonstrating how subtle changes in router initialization shape early expert utilization; and (iii) training regime differences, revealing how sparse upcycling and full pretraining exhibit distinct routing patterns and stability profiles. By lowering the barrier to entry and standardizing evaluation, along with our comprehensive analysis, LibMoE broadens access to MoE research and establishes a reliable benchmark to guide future innovations. Project page: https://fsoft-aic.github.io/fsoft-LibMoE.github.io.
comment: 15 pages, 9 figures
♻ ☆ RepoMasterEval: Evaluating Code Completion via Real-World Repositories
With the growing reliance on automated code completion tools in software development, the need for comprehensive evaluation benchmarks has become critical. Existing benchmarks focus more on code completion in function and class level by providing text descriptions to prompt the model. By contrast, such descriptive prompt is commonly unavailable in real development and code completion can occur in wider range of situations such as in the middle of a function or a code block. These limitations makes existing evaluation benchmarks poorly align with the practical scenarios of code completion tools. In this paper, we propose RepoMasterEval, a novel benchmark for evaluating code completion models constructed from real-world repositories. Each benchmark datum is generated by masking a code snippet (ground truth) from one source code file with existing test suites. To improve test accuracy of model generated code, we employ mutation testing to measure the effectiveness of the test cases and we manually crafted new test cases for those test suites with low mutation score. Our empirical evaluation on 10 state-of-the-art models shows that test argumentation is critical in improving the accuracy of the benchmark and RepoMasterEval is able to report variance in model performance in real-world scenarios. The deployment of RepoMasterEval also revealed that the benchmark is useful to give accurate feedback during model training and the score is in high correlation with the model's performance in practice.
♻ ☆ BALR-SAM: Boundary-Aware Low-Rank Adaptation of SAM for Resource-Efficient Medical Image Segmentation
Vision foundation models like the Segment Anything Model (SAM), pretrained on large-scale natural image datasets, often struggle in medical image segmentation due to a lack of domain-specific adaptation. In clinical practice, fine-tuning such models efficiently for medical downstream tasks with minimal resource demands, while maintaining strong performance, is challenging. To address these issues, we propose BALR-SAM, a boundary-aware low-rank adaptation framework that enhances SAM for medical imaging. It combines three tailored components: (1) a Complementary Detail Enhancement Network (CDEN) using depthwise separable convolutions and multi-scale fusion to capture boundary-sensitive features essential for accurate segmentation; (2) low-rank adapters integrated into SAM's Vision Transformer blocks to optimize feature representation and attention for medical contexts, while simultaneously significantly reducing the parameter space; and (3) a low-rank tensor attention mechanism in the mask decoder, cutting memory usage by 75% and boosting inference speed. Experiments on standard medical segmentation datasets show that BALR-SAM, without requiring prompts, outperforms several state-of-the-art (SOTA) methods, including fully fine-tuned MedSAM, while updating just 1.8% (11.7M) of its parameters.
♻ ☆ A Framework for Objective-Driven Dynamical Stochastic Fields
Fields offer a versatile approach for describing complex systems composed of interacting and dynamic components. In particular, some of these dynamical and stochastic systems may exhibit goal-directed behaviors aimed at achieving specific objectives, which we refer to as $\textit{intelligent fields}$. However, due to their inherent complexity, it remains challenging to develop a formal theoretical description of such systems and to effectively translate these descriptions into practical applications. In this paper, we propose three fundamental principles to establish a theoretical framework for understanding intelligent fields: complete configuration, locality, and purposefulness. Moreover, we explore methodologies for designing such fields from the perspective of artificial intelligence applications. This initial investigation aims to lay the groundwork for future theoretical developments and practical advances in understanding and harnessing the potential of such objective-driven dynamical stochastic fields.
♻ ☆ MMEdge: Accelerating On-device Multimodal Inference via Pipelined Sensing and Encoding
Real-time multimodal inference on resource-constrained edge devices is essential for applications such as autonomous driving, human-computer interaction, and mobile health. However, prior work often overlooks the tight coupling between sensing dynamics and model execution, as well as the complex inter-modality dependencies. In this paper, we propose MMEdge, an new on-device multi-modal inference framework based on pipelined sensing and encoding. Instead of waiting for complete sensor inputs, MMEdge decomposes the entire inference process into a sequence of fine-grained sensing and encoding units, allowing computation to proceed incrementally as data arrive. MMEdge also introduces a lightweight but effective temporal aggregation module that captures rich temporal dynamics across different pipelined units to maintain accuracy performance. Such pipelined design also opens up opportunities for fine-grained cross-modal optimization and early decision-making during inference. To further enhance system performance under resource variability and input data complexity, MMEdge incorporates an adaptive multimodal configuration optimizer that dynamically selects optimal sensing and model configurations for each modality under latency constraints, and a cross-modal speculative skipping mechanism that bypasses future units of slower modalities when early predictions reach sufficient confidence. We evaluate MMEdge using two public multimodal datasets and deploy it on a real-world unmanned aerial vehicle (UAV)-based multimodal testbed. The results show that MMEdge significantly reduces end-to-end latency while maintaining high task accuracy across various system and data dynamics.
comment: Code available at: https://github.com/HKUST-MINSys-Lab/MMEdge. Accepted by SenSys 2026
♻ ☆ A Comprehensive Survey on Process-Oriented Automatic Text Summarization with Exploration of LLM-Based Methods
Automatic Text Summarization (ATS), utilizing Natural Language Processing (NLP) algorithms, aims to create concise and accurate summaries, thereby significantly reducing the human effort required in processing large volumes of text. ATS has drawn considerable interest in both academic and industrial circles. Many studies have been conducted in the past to survey ATS methods; however, they generally lack practicality for real-world implementations, as they often categorize previous methods from a theoretical standpoint. Moreover, the advent of Large Language Models (LLMs) has altered conventional ATS methods. In this survey, we aim to 1) provide a comprehensive overview of ATS from a ``Process-Oriented Schema'' perspective, which is best aligned with real-world implementations; 2) comprehensively review the latest LLM-based ATS works; and 3) deliver an up-to-date survey of ATS, bridging the two-year gap in the literature. To the best of our knowledge, this is the first survey to specifically investigate LLM-based ATS methods.
♻ ☆ Unlocking Reasoning Capabilities in LLMs via Reinforcement Learning Exploration
Reinforcement learning with verifiable rewards (RLVR) has recently enhanced the reasoning capabilities of large language models (LLMs), particularly for mathematical problem solving. However, a fundamental limitation remains: as the sampling budget increases, the advantage of RLVR-trained models over their pretrained bases often diminishes or even vanishes, revealing a strong dependence on the base model's restricted search space. We attribute this phenomenon to the widespread use of the reverse Kullback-Leibler (KL) divergence regularizer, whose mode-seeking behavior keeps the policy trapped inside the base model's support region and hampers wider exploration. To address this issue, we propose RAPO (Rewards-Aware Policy Optimization), an algorithm to promote broader yet focused exploration. Our method (i) utilizes the forward KL penalty to replace the reverse KL penalty for out-of-distribution exploration, and (ii) reweights the reference policy to facilitate adaptive in-distribution exploration. We train Qwen2.5-3B and 7B models with RAPO on the 8K SimpleRL-Zero dataset, without supervised fine-tuning, and evaluate them on AIME2024 and AIME2025. Results show that RAPO consistently improves problem-solving performance. Notably, RAPO enables models to surpass the base model's performance ceiling and solves previously intractable problems, advancing the frontier of RLVR for challenging reasoning tasks.
♻ ☆ BuildArena: A Physics-Aligned Interactive Benchmark of LLMs for Engineering Construction
Engineering construction automation aims to transform natural language specifications into physically viable structures, requiring complex integrated reasoning under strict physical constraints. While modern LLMs possess broad knowledge and strong reasoning capabilities that make them promising candidates for this domain, their construction competencies remain largely unevaluated. To address this gap, we introduce BuildArena, the first physics-aligned interactive benchmark designed for language-driven engineering construction. It contributes to the community in four aspects: (1) a highly customizable benchmarking framework for in-depth comparison and analysis of LLMs; (2) an extendable task design strategy spanning static and dynamic mechanics across multiple difficulty tiers; (3) a 3D Spatial Geometric Computation Library for supporting construction based on language instructions; (4) a baseline LLM agentic workflow that effectively evaluates diverse model capabilities. On eight frontier LLMs, BuildArena comprehensively evaluates their capabilities for language-driven and physics-grounded construction automation. The project page is at https://build-arena.github.io/.
comment: 33 pages, 10 figures
♻ ☆ Deciphering Invariant Feature Decoupling in Source-free Time Series Forecasting with Proxy Denoising
The proliferation of mobile devices generates a massive volume of time series across various domains, where effective time series forecasting enables a variety of real-world applications. This study focuses on a new problem of source-free domain adaptation for time series forecasting. It aims to adapt a pretrained model from sufficient source time series to the sparse target time series domain without access to the source data, embracing data protection regulations. To achieve this, we propose TimePD, the first source-free time series forecasting framework with proxy denoising, where large language models (LLMs) are employed to benefit from their generalization capabilities. Specifically, TimePD consists of three key components: (1) dual-branch invariant disentangled feature learning that enforces representation- and gradient-wise invariance by means of season-trend decomposition; (2) lightweight, parameter-free proxy denoising that dynamically calibrates systematic biases of LLMs; and (3) knowledge distillation that bidirectionally aligns the denoised prediction and the original target prediction. Extensive experiments on real-world datasets offer insight into the effectiveness of the proposed TimePD, outperforming SOTA baselines by 9.3% on average.
♻ ☆ Artificial Empathy: AI based Mental Health
Many people suffer from mental health problems but not everyone seeks professional help or has access to mental health care. AI chatbots have increasingly become a go-to for individuals who either have mental disorders or simply want someone to talk to. This paper presents a study on participants who have previously used chatbots and a scenario-based testing of large language model (LLM) chatbots. Our findings indicate that AI chatbots were primarily utilized as a "Five minute therapist" or as a non-judgmental companion. Participants appreciated the anonymity and lack of judgment from chatbots. However, there were concerns about privacy and the security of sensitive information. The scenario-based testing of LLM chatbots highlighted additional issues. Some chatbots were consistently reassuring, used emojis and names to add a personal touch, and were quick to suggest seeking professional help. However, there were limitations such as inconsistent tone, occasional inappropriate responses (e.g., casual or romantic), and a lack of crisis sensitivity, particularly in recognizing red flag language and escalating responses appropriately. These findings can inform both the technology and mental health care industries on how to better utilize AI chatbots to support individuals during challenging emotional periods.
♻ ☆ Normative Reasoning in Large Language Models: A Comparative Benchmark from Logical and Modal Perspectives EMNLP 2025
Normative reasoning is a type of reasoning that involves normative or deontic modality, such as obligation and permission. While large language models (LLMs) have demonstrated remarkable performance across various reasoning tasks, their ability to handle normative reasoning remains underexplored. In this paper, we systematically evaluate LLMs' reasoning capabilities in the normative domain from both logical and modal perspectives. Specifically, to assess how well LLMs reason with normative modals, we make a comparison between their reasoning with normative modals and their reasoning with epistemic modals, which share a common formal structure. To this end, we introduce a new dataset covering a wide range of formal patterns of reasoning in both normative and epistemic domains, while also incorporating non-formal cognitive factors that influence human reasoning. Our results indicate that, although LLMs generally adhere to valid reasoning patterns, they exhibit notable inconsistencies in specific types of normative reasoning and display cognitive biases similar to those observed in psychological studies of human reasoning. These findings highlight challenges in achieving logical consistency in LLMs' normative reasoning and provide insights for enhancing their reliability. All data and code are released publicly at https://github.com/kmineshima/NeuBAROCO.
comment: Accepted to the 8th BlackboxNLP Workshop at EMNLP 2025
♻ ☆ 'Studies for': A Human-AI Co-Creative Sound Artwork Using a Real-time Multi-channel Sound Generation Model NeurIPS
This paper explores the integration of AI technologies into the artistic workflow through the creation of Studies for, a generative sound installation developed in collaboration with sound artist Evala (https://www.ntticc.or.jp/en/archive/works/studies-for/). The installation employs SpecMaskGIT, a lightweight yet high-quality sound generation AI model, to generate and playback eight-channel sound in real-time, creating an immersive auditory experience over the course of a three-month exhibition. The work is grounded in the concept of a "new form of archive," which aims to preserve the artistic style of an artist while expanding beyond artists' past artworks by continued generation of new sound elements. This speculative approach to archival preservation is facilitated by training the AI model on a dataset consisting of over 200 hours of Evala's past sound artworks. By addressing key requirements in the co-creation of art using AI, this study highlights the value of the following aspects: (1) the necessity of integrating artist feedback, (2) datasets derived from an artist's past works, and (3) ensuring the inclusion of unexpected, novel outputs. In Studies for, the model was designed to reflect the artist's artistic identity while generating new, previously unheard sounds, making it a fitting realization of the concept of "a new form of archive." We propose a Human-AI co-creation framework for effectively incorporating sound generation AI models into the sound art creation process and suggest new possibilities for creating and archiving sound art that extend an artist's work beyond their physical existence. Demo page: https://sony.github.io/studies-for/
comment: Accepted at NeurIPS Creative AI Track 2025, 9 pages, 6 figures, 1 table, Demo page: https://sony.github.io/studies-for/
♻ ☆ DrivAerStar: An Industrial-Grade CFD Dataset for Vehicle Aerodynamic Optimization
Vehicle aerodynamics optimization has become critical for automotive electrification, where drag reduction directly determines electric vehicle range and energy efficiency. Traditional approaches face an intractable trade-off: computationally expensive Computational Fluid Dynamics (CFD) simulations requiring weeks per design iteration, or simplified models that sacrifice production-grade accuracy. While machine learning offers transformative potential, existing datasets exhibit fundamental limitations -- inadequate mesh resolution, missing vehicle components, and validation errors exceeding 5% -- preventing deployment in industrial workflows. We present DrivAerStar, comprising 12,000 industrial-grade automotive CFD simulations generated using STAR-CCM+${}^\unicode{xAE}$ software. The dataset systematically explores three vehicle configurations through 20 Computer Aided Design (CAD) parameters via Free Form Deformation (FFD) algorithms, including complete engine compartments and cooling systems with realistic internal airflow. DrivAerStar achieves wind tunnel validation accuracy below 1.04% -- a five-fold improvement over existing datasets -- through refined mesh strategies with strict wall $y^+$ control. Benchmarks demonstrate that models trained on this data achieve production-ready accuracy while reducing computational costs from weeks to minutes. This represents the first dataset bridging academic machine learning research and industrial CFD practice, establishing a new standard for data-driven aerodynamic optimization in automotive development. Beyond automotive applications, DrivAerStar demonstrates a paradigm for integrating high-fidelity physics simulations with Artificial Intelligence (AI) across engineering disciplines where computational constraints currently limit innovation.
♻ ☆ R$^2$ec: Towards Large Recommender Models with Reasoning
Large recommender models have extended LLMs as powerful recommenders via encoding or item generation, and recent breakthroughs in LLM reasoning synchronously motivate the exploration of reasoning in recommendation. In this work, we propose R$^2$ec, a unified large recommender model with intrinsic reasoning capability. R$^2$ec introduces a dual-head architecture that supports both reasoning chain generation and efficient item prediction in a single model, significantly reducing inference latency. To overcome the lack of annotated reasoning data, we design RecPO, a reinforcement learning framework that optimizes reasoning and recommendation jointly with a novel fused reward mechanism. Extensive experiments on three datasets demonstrate that R$^2$ec outperforms traditional, LLM-based, and reasoning-augmented recommender baselines, while further analyses validate its competitive efficiency among conventional LLM-based recommender baselines and strong adaptability to diverse recommendation scenarios. Code and checkpoints available at https://github.com/YRYangang/RRec.
comment: Accepted by Neurips 2025
♻ ☆ Don't throw the baby out with the bathwater: How and why deep learning for ARC
The Abstraction and Reasoning Corpus (ARC-AGI) presents a formidable challenge for AI systems. Despite the typically low performance on ARC, the deep learning paradigm remains the most effective known strategy for generating skillful (state-of-the-art) neural networks (NN) across varied modalities and tasks in vision, language etc. The deep learning paradigm has proven to be able to train these skillful neural networks and learn the abstractions needed in these diverse domains. Our work doubles down on that and continues to leverage this paradigm by incorporating on-the-fly NN training at test time. We demonstrate that fully committing to deep learning's capacity to acquire novel abstractions yields state-of-the-art performance on ARC. Specifically, we treat both the neural network and the optimizer (rather than just a pre-trained network) as integral components of the inference process, fostering generalization to unseen tasks. Concretely, we propose a methodology for training on ARC, starting from pretrained LLMs, and enhancing their ARC reasoning. We also propose Test-Time Fine-Tuning (TTFT) and the Augment Inference Reverse-Augmentation and Vote (AIRV) as effective test-time techniques. We are the first to propose and show deep learning can be used effectively for ARC, showing boosts of up to 260% in accuracy with AIRV and a further 300% boost with TTFT. An early version of this approach secured first place in the 2023 ARCathon competition, while the final version achieved the current best score on the ARC private test-set (58%). Our findings highlight the key ingredients of a robust reasoning system in unfamiliar domains, underscoring the central mechanisms that improve broad perceptual reasoning.
comment: 13 pages, 6 figures
♻ ☆ Training a Generally Curious Agent ICML 2025
Efficient exploration is essential for intelligent systems interacting with their environment, but existing language models often fall short in scenarios that require strategic information gathering. In this paper, we present Paprika, a fine-tuning approach that enables language models to develop general decision-making capabilities that are not confined to particular environments. By training on synthetic interaction data from different tasks that require diverse strategies, Paprika teaches models to explore and adapt their behavior on a new task based on environment feedback in-context without more gradient updates. Experimental results show that models fine-tuned with Paprika can effectively transfer their learned decision-making capabilities to entirely unseen tasks without additional training. Unlike traditional training, our approach's primary bottleneck lies in sampling useful interaction data instead of model updates. To improve sample efficiency, we propose a curriculum learning strategy that prioritizes sampling trajectories from tasks with high learning potential. These results suggest a promising path towards AI systems that can autonomously solve novel sequential decision-making problems that require interactions with the external world.
comment: ICML 2025. Project Website: https://paprika-llm.github.io
♻ ☆ HiRA: A Hierarchical Reasoning Framework for Decoupled Planning and Execution in Deep Search
Complex information needs in real-world search scenarios demand deep reasoning and knowledge synthesis across diverse sources, which traditional retrieval-augmented generation (RAG) pipelines struggle to address effectively. Current reasoning-based approaches suffer from a fundamental limitation: they use a single model to handle both high-level planning and detailed execution, leading to inefficient reasoning and limited scalability. In this paper, we introduce HiRA, a hierarchical framework that separates strategic planning from specialized execution. Our approach decomposes complex search tasks into focused subtasks, assigns each subtask to domain-specific agents equipped with external tools and reasoning capabilities, and coordinates the results through a structured integration mechanism. This separation prevents execution details from disrupting high-level reasoning while enabling the system to leverage specialized expertise for different types of information processing. Experiments on four complex, cross-modal deep search benchmarks demonstrate that HiRA significantly outperforms state-of-the-art RAG and agent-based systems. Our results show improvements in both answer quality and system efficiency, highlighting the effectiveness of decoupled planning and execution for multi-step information seeking tasks. Our code is available at https://github.com/ignorejjj/HiRA.
comment: 9 pages
♻ ☆ E2Rank: Your Text Embedding can Also be an Effective and Efficient Listwise Reranker
Text embedding models serve as a fundamental component in real-world search applications. By mapping queries and documents into a shared embedding space, they deliver competitive retrieval performance with high efficiency. However, their ranking fidelity remains limited compared to dedicated rerankers, especially recent LLM-based listwise rerankers, which capture fine-grained query-document and document-document interactions. In this paper, we propose a simple yet effective unified framework E2Rank, means Efficient Embedding-based Ranking (also means Embedding-to-Rank), which extends a single text embedding model to perform both high-quality retrieval and listwise reranking through continued training under a listwise ranking objective, thereby achieving strong effectiveness with remarkable efficiency. By applying cosine similarity between the query and document embeddings as a unified ranking function, the listwise ranking prompt, which is constructed from the original query and its candidate documents, serves as an enhanced query enriched with signals from the top-K documents, akin to pseudo-relevance feedback (PRF) in traditional retrieval models. This design preserves the efficiency and representational quality of the base embedding model while significantly improving its reranking performance. Empirically, E2Rank achieves state-of-the-art results on the BEIR reranking benchmark and demonstrates competitive performance on the reasoning-intensive BRIGHT benchmark, with very low reranking latency. We also show that the ranking training process improves embedding performance on the MTEB benchmark. Our findings indicate that a single embedding model can effectively unify retrieval and reranking, offering both computational efficiency and competitive ranking accuracy.
comment: Code and models are avaliable at https://alibaba-nlp.github.io/E2Rank
♻ ☆ Multilingual State Space Models for Structured Question Answering in Indic Languages NAACL 2025
The diversity and complexity of Indic languages present unique challenges for natural language processing (NLP) tasks, particularly in the domain of question answering (QA).To address these challenges, this paper explores the application of State Space Models (SSMs),to build efficient and contextually aware QA systems tailored for Indic languages. SSMs are particularly suited for this task due to their ability to model long-term and short-term dependencies in sequential data, making them well-equipped to handle the rich morphology, complex syntax, and contextual intricacies characteristic of Indian languages. We evaluated multiple SSM architectures across diverse datasets representing various Indic languages and conducted a comparative analysis of their performance. Our results demonstrate that these models effectively capture linguistic subtleties, leading to significant improvements in question interpretation, context alignment, and answer generation. This work represents the first application of SSMs to question answering tasks in Indic languages, establishing a foundational benchmark for future research in this domain. We propose enhancements to existing SSM frameworks, optimizing their applicability to low-resource settings and multilingual scenarios prevalent in Indic languages.
comment: NAACL 2025 Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT)
♻ ☆ Scaling Diffusion Transformers Efficiently via $μ$P NeurIPS 2025
Diffusion Transformers have emerged as the foundation for vision generative models, but their scalability is limited by the high cost of hyperparameter (HP) tuning at large scales. Recently, Maximal Update Parametrization ($\mu$P) was proposed for vanilla Transformers, which enables stable HP transfer from small to large language models, and dramatically reduces tuning costs. However, it remains unclear whether $\mu$P of vanilla Transformers extends to diffusion Transformers, which differ architecturally and objectively. In this work, we generalize standard $\mu$P to diffusion Transformers and validate its effectiveness through large-scale experiments. First, we rigorously prove that $\mu$P of mainstream diffusion Transformers, including U-ViT, DiT, PixArt-$\alpha$, and MMDiT, aligns with that of the vanilla Transformer, enabling the direct application of existing $\mu$P methodologies. Leveraging this result, we systematically demonstrate that DiT-$\mu$P enjoys robust HP transferability. Notably, DiT-XL-2-$\mu$P with transferred learning rate achieves 2.9 times faster convergence than the original DiT-XL-2. Finally, we validate the effectiveness of $\mu$P on text-to-image generation by scaling PixArt-$\alpha$ from 0.04B to 0.61B and MMDiT from 0.18B to 18B. In both cases, models under $\mu$P outperform their respective baselines while requiring small tuning cost, only 5.5% of one training run for PixArt-$\alpha$ and 3% of consumption by human experts for MMDiT-18B. These results establish $\mu$P as a principled and efficient framework for scaling diffusion Transformers.
comment: Accepted by NeurIPS 2025, 38 pages, 10 figures, 17 tables
♻ ☆ Variational Visual Question Answering for Uncertainty-Aware Selective Prediction
Despite remarkable progress in recent years, vision language models (VLMs) remain prone to overconfidence and hallucinations on tasks such as Visual Question Answering (VQA) and Visual Reasoning. Bayesian methods can potentially improve reliability by helping models selectively predict, that is, models respond only when they are sufficiently confident. Unfortunately, Bayesian methods are often assumed to be costly and ineffective for large models, and so far there exists little evidence to show otherwise, especially for multimodal applications. Here, we show the effectiveness and competitive edge of variational Bayes for selective prediction in VQA for the first time. We build on recent advances in variational methods for deep learning and propose an extension called "Variational VQA". This method improves calibration and yields significant gains for selective prediction on VQA and Visual Reasoning, particularly when the error tolerance is low ($\leq 1\%$). Often, just one posterior sample can yield more reliable answers than those obtained by models trained with AdamW. In addition, we propose a new risk-averse selector that outperforms standard sample averaging by considering the variance of predictions. Overall, we present compelling evidence that variational learning is a viable option to make large VLMs safer and more trustworthy.
comment: under review at TMLR
♻ ☆ PartnerMAS: An LLM Hierarchical Multi-Agent Framework for Business Partner Selection on High-Dimensional Features
High-dimensional decision-making tasks, such as business partner selection, involve evaluating large candidate pools with heterogeneous numerical, categorical, and textual features. While large language models (LLMs) offer strong in-context reasoning capabilities, single-agent or debate-style systems often struggle with scalability and consistency in such settings. We propose PartnerMAS, a hierarchical multi-agent framework that decomposes evaluation into three layers: a Planner Agent that designs strategies, Specialized Agents that perform role-specific assessments, and a Supervisor Agent that integrates their outputs. To support systematic evaluation, we also introduce a curated benchmark dataset of venture capital co-investments, featuring diverse firm attributes and ground-truth syndicates. Across 140 cases, PartnerMAS consistently outperforms single-agent and debate-based multi-agent baselines, achieving up to 10--15\% higher match rates. Analysis of agent reasoning shows that planners are most responsive to domain-informed prompts, specialists produce complementary feature coverage, and supervisors play an important role in aggregation. Our findings demonstrate that structured collaboration among LLM agents can generate more robust outcomes than scaling individual models, highlighting PartnerMAS as a promising framework for high-dimensional decision-making in data-rich domains.
♻ ☆ MindSearch: Mimicking Human Minds Elicits Deep AI Searcher ICLR2025
Information seeking and integration is a complex cognitive task that consumes enormous time and effort. Inspired by the remarkable progress of Large Language Models, recent works attempt to solve this task by combining LLMs and search engines. However, these methods still obtain unsatisfying performance due to three challenges: (1) complex requests often cannot be accurately and completely retrieved by the search engine once (2) corresponding information to be integrated is spread over multiple web pages along with massive noise, and (3) a large number of web pages with long contents may quickly exceed the maximum context length of LLMs. Inspired by the cognitive process when humans solve these problems, we introduce MindSearch to mimic the human minds in web information seeking and integration, which can be instantiated by a simple yet effective LLM-based multi-agent framework. The WebPlanner models the human mind of multi-step information seeking as a dynamic graph construction process: it decomposes the user query into atomic sub-questions as nodes in the graph and progressively extends the graph based on the search result from WebSearcher. Tasked with each sub-question, WebSearcher performs hierarchical information retrieval with search engines and collects valuable information for WebPlanner. The multi-agent design of MindSearch enables the whole framework to seek and integrate information parallelly from larger-scale (e.g., more than 300) web pages in 3 minutes, which is worth 3 hours of human effort. MindSearch demonstrates significant improvement in the response quality in terms of depth and breadth, on both close-set and open-set QA problems. Besides, responses from MindSearch based on InternLM2.5-7B are preferable by humans to ChatGPT-Web and Perplexity.ai applications, which implies that MindSearch can already deliver a competitive solution to the proprietary AI search engine.
comment: ICLR2025. Project Page: https://mindsearch.netlify.app Code: https://github.com/InternLM/MindSearch
♻ ☆ SVTime: Small Time Series Forecasting Models Informed by "Physics" of Large Vision Model Forecasters
Time series AI is crucial for analyzing dynamic web content, driving a surge of pre-trained large models known for their strong knowledge encoding and transfer capabilities across diverse tasks. However, given their energy-intensive training, inference, and hardware demands, using large models as a one-fits-all solution raises serious concerns about carbon footprint and sustainability. For a specific task, a compact yet specialized, high-performing model may be more practical and affordable, especially for resource-constrained users such as small businesses. This motivates the question: Can we build cost-effective lightweight models with large-model-like performance on core tasks such as forecasting? This paper addresses this question by introducing SVTime, a novel Small model inspired by large Vision model (LVM) forecasters for long-term Time series forecasting (LTSF). Recently, LVMs have been shown as powerful tools for LTSF. We identify a set of key inductive biases of LVM forecasters -- analogous to the "physics" governing their behaviors in LTSF -- and design small models that encode these biases through meticulously crafted linear layers and constraint functions. Across 21 baselines spanning lightweight, complex, and pre-trained large models on 8 benchmark datasets, SVTime outperforms state-of-the-art (SOTA) lightweight models and rivals large models with 10^3 fewer parameters than LVMs, while enabling efficient training and inference in low-resource settings.
♻ ☆ SmartMixed: A Two-Phase Training Strategy for Adaptive Activation Function Learning in Neural Networks
The choice of activation function plays a critical role in neural networks, yet most architectures still rely on fixed, uniform activation functions across all neurons. We introduce SmartMixed, a two-phase training strategy that allows networks to learn optimal per-neuron activation functions while preserving computational efficiency at inference. In the first phase, neurons adaptively select from a pool of candidate activation functions (ReLU, Sigmoid, Tanh, Leaky ReLU, ELU, SELU) using a differentiable hard-mixture mechanism. In the second phase, each neuron's activation function is fixed according to the learned selection, resulting in a computationally efficient network that supports continued training with optimized vectorized operations. We evaluate SmartMixed on the MNIST dataset using feedforward neural networks of varying depths. The analysis shows that neurons in different layers exhibit distinct preferences for activation functions, providing insights into the functional diversity within neural architectures.
♻ ☆ SageAttention3: Microscaling FP4 Attention for Inference and An Exploration of 8-Bit Training
The efficiency of attention is important due to its quadratic time complexity. We enhance the efficiency of attention through two key contributions: First, we leverage the new FP4 Tensor Cores in Blackwell GPUs to accelerate attention computation. Our implementation achieves 1038 TOPS on RTX5090, which is a 5x speedup over the fastest FlashAttention on RTX5090. Experiments show that our FP4 attention can accelerate inference of various models in a plug-and-play way. Second, we pioneer low-bit attention to training tasks. Existing low-bit attention works like FlashAttention3 and SageAttention focus only on inference. However, the efficiency of training large models is also important. To explore whether low-bit attention can be effectively applied to training tasks, we design an accurate and efficient 8-bit attention for both forward and backward propagation. Experiments indicate that 8-bit attention achieves lossless performance in fine-tuning tasks but exhibits slower convergence in pretraining tasks. The code is available at https://github.com/thu-ml/SageAttention.
♻ ☆ Large Language Models for Combinatorial Optimization of Design Structure Matrix
In complex engineering systems, the dependencies among components or development activities are often modeled and analyzed using Design Structure Matrix (DSM). Reorganizing elements within a DSM to minimize feedback loops and enhance modularity or process efficiency constitutes a challenging combinatorial optimization (CO) problem in engineering design and operations. As problem sizes increase and dependency networks become more intricate, traditional optimization methods that rely solely on mathematical heuristics often fail to capture the contextual nuances and struggle to deliver effective solutions. In this study, we explore the potential of Large Language Models (LLMs) to address such CO problems by leveraging their capabilities for advanced reasoning and contextual understanding. We propose a novel LLM-based framework that integrates network topology with contextual domain knowledge for iterative optimization of DSM sequencing-a common CO problem. Experiments on various DSM cases demonstrate that our method consistently achieves faster convergence and superior solution quality compared to both stochastic and deterministic baselines. Notably, incorporating contextual domain knowledge significantly enhances optimization performance regardless of the chosen LLM backbone. These findings highlight the potential of LLMs to solve complex engineering CO problems by combining semantic and mathematical reasoning. This approach paves the way towards a new paradigm in LLM-based engineering design optimization.
comment: 20 pages, 6 figures
♻ ☆ On-device Computation of Single-lead ECG Parameters for Real-time Remote Cardiac Health Assessment: A Real-world Validation Study
Accurate, continuous out-of-hospital electrocardiogram (ECG) parameter measurement is vital for real-time cardiac health monitoring and telemedicine. On-device computation of single-lead ECG parameters enables timely assessment without reliance on centralized data processing, advancing personalized, ubiquitous cardiac care-yet comprehensive validation across heterogeneous real-world populations remains limited. This study validated the on-device algorithm FeatureDB (https://github.com/PKUDigitalHealth/FeatureDB) using two datasets: HeartVoice-ECG-lite (369 participants with single-lead ECGs annotated by two physicians) and PTB-XL/PTB-XL+ (21,354 patients with 12-lead ECGs and physicians' diagnostic annotations). FeatureDB computed PR, QT, and QTc intervals, with accuracy evaluated against physician annotations via mean absolute error (MAE), correlation analysis, and Bland-Altman analysis. Diagnostic performance for first-degree atrioventricular block (AVBI, PR-based) and long QT syndrome (LQT, QTc-based) was benchmarked against commercial 12-lead systems (12SL, Uni-G) and open-source algorithm Deli, using AUC, accuracy, sensitivity, and specificity. Results showed high concordance with expert annotations (Pearson correlations: 0.836-0.960), MAEs matching inter-observer variability, and minimal bias. AVBI AUC reached 0.787 (12SL: 0.859; Uni-G: 0.812; Deli: 0.501); LQT AUC was 0.684 (12SL: 0.716; Uni-G: 0.605; Deli: 0.569)-comparable to commercial tools and superior to open-source alternatives. FeatureDB delivers physician-level parameter accuracy and commercial-grade abnormality detection via single-lead devices, supporting scalable telemedicine, decentralized cardiac screening, and continuous monitoring in community and outpatient settings.
♻ ☆ Continual Vision-and-Language Navigation
Developing Vision-and-Language Navigation (VLN) agents typically assumes a \textit{train-once-deploy-once} strategy, which is unrealistic as deployed agents continually encounter novel environments. To address this, we propose the Continual Vision-and-Language Navigation (CVLN) paradigm, where agents learn and adapt incrementally across multiple \textit{scene domains}. CVLN includes two setups: Initial-instruction based CVLN for instruction-following, and Dialogue-based CVLN for dialogue-guided navigation. We also introduce two simple yet effective baselines for sequential decision-making: Perplexity Replay (PerpR), which replays difficult episodes, and Episodic Self-Replay (ESR), which stores and revisits action logits during training. Experiments show that existing continual learning methods fall short for CVLN, while PerpR and ESR achieve better performance by efficiently utilizing replay memory.
♻ ☆ Transformers in Medicine: Improving Vision-Language Alignment for Medical Image Captioning
We present a transformer-based multimodal framework for generating clinically relevant captions for MRI scans. Our system combines a DEiT-Small vision transformer as an image encoder, MediCareBERT for caption embedding, and a custom LSTM-based decoder. The architecture is designed to semantically align image and textual embeddings, using hybrid cosine-MSE loss and contrastive inference via vector similarity. We benchmark our method on the MultiCaRe dataset, comparing performance on filtered brain-only MRIs versus general MRI images against state-of-the-art medical image captioning methods including BLIP, R2GenGPT, and recent transformer-based approaches. Results show that focusing on domain-specific data improves caption accuracy and semantic alignment. Our work proposes a scalable, interpretable solution for automated medical image reporting.
comment: This work is to appear in the Proceedings of MICAD 2025, the 6th International Conference on Medical Imaging and Computer-Aided Diagnosis
Computation and Language 69
Detecting Data Contamination in LLMs via In-Context Learning
We present Contamination Detection via Context (CoDeC), a practical and accurate method to detect and quantify training data contamination in large language models. CoDeC distinguishes between data memorized during training and data outside the training distribution by measuring how in-context learning affects model performance. We find that in-context examples typically boost confidence for unseen datasets but may reduce it when the dataset was part of training, due to disrupted memorization patterns. Experiments show that CoDeC produces interpretable contamination scores that clearly separate seen and unseen datasets, and reveals strong evidence of memorization in open-weight models with undisclosed training corpora. The method is simple, automated, and both model- and dataset-agnostic, making it easy to integrate with benchmark evaluations.
LLM-Centric RAG with Multi-Granular Indexing and Confidence Constraints
This paper addresses the issues of insufficient coverage, unstable results, and limited reliability in retrieval-augmented generation under complex knowledge environments, and proposes a confidence control method that integrates multi-granularity memory indexing with uncertainty estimation. The method builds a hierarchical memory structure that divides knowledge representations into different levels of granularity, enabling dynamic indexing and retrieval from local details to global context, and thus establishing closer semantic connections between retrieval and generation. On this basis, an uncertainty estimation mechanism is introduced to explicitly constrain and filter low-confidence paths during the generation process, allowing the model to maintain information coverage while effectively suppressing noise and false content. The overall optimization objective consists of generation loss, entropy constraints, and variance regularization, forming a unified confidence control framework. In the experiments, comprehensive sensitivity tests and comparative analyses were designed, covering hyperparameters, environmental conditions, and data structures, to verify the stability and robustness of the proposed method across different scenarios. The results show that the method achieves superior performance over existing models in QA accuracy, retrieval recall, ranking quality, and factual consistency, demonstrating the effectiveness of combining multi-granularity indexing with confidence control. This study not only provides a new technical pathway for retrieval-augmented generation but also offers practical evidence for improving the reliability and controllability of large models in complex contexts.
☆ VISTA Score: Verification In Sequential Turn-based Assessment
Hallucination--defined here as generating statements unsupported or contradicted by available evidence or conversational context--remains a major obstacle to deploying conversational AI systems in settings that demand factual reliability. Existing metrics either evaluate isolated responses or treat unverifiable content as errors, limiting their use for multi-turn dialogue. We introduce VISTA (Verification In Sequential Turn-based Assessment), a framework for evaluating conversational factuality through claim-level verification and sequential consistency tracking. VISTA decomposes each assistant turn into atomic factual claims, verifies them against trusted sources and dialogue history, and categorizes unverifiable statements (subjective, contradicted, lacking evidence, or abstaining). Across eight large language models and four dialogue factuality benchmarks (AIS, BEGIN, FAITHDIAL, and FADE), VISTA substantially improves hallucination detection over FACTSCORE and LLM-as-Judge baselines. Human evaluation confirms that VISTA's decomposition improves annotator agreement and reveals inconsistencies in existing benchmarks. By modeling factuality as a dynamic property of conversation, VISTA offers a more transparent, human-aligned measure of truthfulness in dialogue systems.
☆ Recursive numeral systems are highly regular and easy to process
Previous work has argued that recursive numeral systems optimise the trade-off between lexicon size and average morphosyntatic complexity (Deni\'c and Szymanik, 2024). However, showing that only natural-language-like systems optimise this tradeoff has proven elusive, and the existing solution has relied on ad-hoc constraints to rule out unnatural systems (Yang and Regier, 2025). Here, we argue that this issue arises because the proposed trade-off has neglected regularity, a crucial aspect of complexity central to human grammars in general. Drawing on the Minimum Description Length (MDL) approach, we propose that recursive numeral systems are better viewed as efficient with regard to their regularity and processing complexity. We show that our MDL-based measures of regularity and processing complexity better capture the key differences between attested, natural systems and unattested but possible ones, including "optimal" recursive numeral systems from previous work, and that the ad-hoc constraints from previous literature naturally follow from regularity. Our approach highlights the need to incorporate regularity across sets of forms in studies that attempt to measure and explain optimality in language.
☆ Quantitative Intertextuality from the Digital Humanities Perspective: A Survey
The connection between texts is referred to as intertextuality in literary theory, which served as an important theoretical basis in many digital humanities studies. Over the past decade, advancements in natural language processing have ushered intertextuality studies into the quantitative age. Large-scale intertextuality research based on cutting-edge methods has continuously emerged. This paper provides a roadmap for quantitative intertextuality studies, summarizing their data, methods, and applications. Drawing on data from multiple languages and topics, this survey reviews methods from statistics to deep learning. It also summarizes their applications in humanities and social sciences research and the associated platform tools. Driven by advances in computer technology, more precise, diverse, and large-scale intertext studies can be anticipated. Intertextuality holds promise for broader application in interdisciplinary research bridging AI and the humanities.
Dataset Creation and Baseline Models for Sexism Detection in Hausa
Sexism reinforces gender inequality and social exclusion by perpetuating stereotypes, bias, and discriminatory norms. Noting how online platforms enable various forms of sexism to thrive, there is a growing need for effective sexism detection and mitigation strategies. While computational approaches to sexism detection are widespread in high-resource languages, progress remains limited in low-resource languages where limited linguistic resources and cultural differences affect how sexism is expressed and perceived. This study introduces the first Hausa sexism detection dataset, developed through community engagement, qualitative coding, and data augmentation. For cultural nuances and linguistic representation, we conducted a two-stage user study (n=66) involving native speakers to explore how sexism is defined and articulated in everyday discourse. We further experiment with both traditional machine learning classifiers and pre-trained multilingual language models and evaluating the effectiveness few-shot learning in detecting sexism in Hausa. Our findings highlight challenges in capturing cultural nuance, particularly with clarification-seeking and idiomatic expressions, and reveal a tendency for many false positives in such cases.
comment: 9 pages, 1 figure, 4 tables
☆ Elastic Architecture Search for Efficient Language Models ICME 2025
As large pre-trained language models become increasingly critical to natural language understanding (NLU) tasks, their substantial computational and memory requirements have raised significant economic and environmental concerns. Addressing these challenges, this paper introduces the Elastic Language Model (ELM), a novel neural architecture search (NAS) method optimized for compact language models. ELM extends existing NAS approaches by introducing a flexible search space with efficient transformer blocks and dynamic modules for dimension and head number adjustment. These innovations enhance the efficiency and flexibility of the search process, which facilitates more thorough and effective exploration of model architectures. We also introduce novel knowledge distillation losses that preserve the unique characteristics of each block, in order to improve the discrimination between architectural choices during the search process. Experiments on masked language modeling and causal language modeling tasks demonstrate that models discovered by ELM significantly outperform existing methods.
comment: ICME 2025
☆ Kad: A Framework for Proxy-based Test-time Alignment with Knapsack Approximation Deferral
Several previous works concluded that the largest part of generation capabilities of large language models (LLM) are learned (early) during pre-training. However, LLMs still require further alignment to adhere to downstream task requirements and stylistic preferences, among other desired properties. As LLMs continue to scale in terms of size, the computational cost of alignment procedures increase prohibitively. In this work, we propose a novel approach to circumvent these costs via proxy-based test-time alignment, i.e. using guidance from a small aligned model. Our approach can be described as token-specific cascading method, where the token-specific deferral rule is reduced to 0-1 knapsack problem. In this setting, we derive primal and dual approximations of the optimal deferral decision. We experimentally show the benefits of our method both in task performance and speculative decoding speed.
☆ Semantically-Aware LLM Agent to Enhance Privacy in Conversational AI Services
With the increasing use of conversational AI systems, there is growing concern over privacy leaks, especially when users share sensitive personal data in interactions with Large Language Models (LLMs). Conversations shared with these models may contain Personally Identifiable Information (PII), which, if exposed, could lead to security breaches or identity theft. To address this challenge, we present the Local Optimizations for Pseudonymization with Semantic Integrity Directed Entity Detection (LOPSIDED) framework, a semantically-aware privacy agent designed to safeguard sensitive PII data when using remote LLMs. Unlike prior work that often degrade response quality, our approach dynamically replaces sensitive PII entities in user prompts with semantically consistent pseudonyms, preserving the contextual integrity of conversations. Once the model generates its response, the pseudonyms are automatically depseudonymized, ensuring the user receives an accurate, privacy-preserving output. We evaluate our approach using real-world conversations sourced from ShareGPT, which we further augment and annotate to assess whether named entities are contextually relevant to the model's response. Our results show that LOPSIDED reduces semantic utility errors by a factor of 5 compared to baseline techniques, all while enhancing privacy.
comment: Accepted to IEEE Big Data 2025
☆ Semantic Frame Aggregation-based Transformer for Live Video Comment Generation
Live commenting on video streams has surged in popularity on platforms like Twitch, enhancing viewer engagement through dynamic interactions. However, automatically generating contextually appropriate comments remains a challenging and exciting task. Video streams can contain a vast amount of data and extraneous content. Existing approaches tend to overlook an important aspect of prioritizing video frames that are most relevant to ongoing viewer interactions. This prioritization is crucial for producing contextually appropriate comments. To address this gap, we introduce a novel Semantic Frame Aggregation-based Transformer (SFAT) model for live video comment generation. This method not only leverages CLIP's visual-text multimodal knowledge to generate comments but also assigns weights to video frames based on their semantic relevance to ongoing viewer conversation. It employs an efficient weighted sum of frames technique to emphasize informative frames while focusing less on irrelevant ones. Finally, our comment decoder with a cross-attention mechanism that attends to each modality ensures that the generated comment reflects contextual cues from both chats and video. Furthermore, to address the limitations of existing datasets, which predominantly focus on Chinese-language content with limited video categories, we have constructed a large scale, diverse, multimodal English video comments dataset. Extracted from Twitch, this dataset covers 11 video categories, totaling 438 hours and 3.2 million comments. We demonstrate the effectiveness of our SFAT model by comparing it to existing methods for generating comments from live video and ongoing dialogue contexts.
Overview of the MEDIQA-OE 2025 Shared Task on Medical Order Extraction from Doctor-Patient Consultations
Clinical documentation increasingly uses automatic speech recognition and summarization, yet converting conversations into actionable medical orders for Electronic Health Records remains unexplored. A solution to this problem can significantly reduce the documentation burden of clinicians and directly impact downstream patient care. We introduce the MEDIQA-OE 2025 shared task, the first challenge on extracting medical orders from doctor-patient conversations. Six teams participated in the shared task and experimented with a broad range of approaches, and both closed- and open-weight large language models (LLMs). In this paper, we describe the MEDIQA-OE task, dataset, final leaderboard ranking, and participants' solutions.
☆ Frame Semantic Patterns for Identifying Underreporting of Notifiable Events in Healthcare: The Case of Gender-Based Violence
We introduce a methodology for the identification of notifiable events in the domain of healthcare. The methodology harnesses semantic frames to define fine-grained patterns and search them in unstructured data, namely, open-text fields in e-medical records. We apply the methodology to the problem of underreporting of gender-based violence (GBV) in e-medical records produced during patients' visits to primary care units. A total of eight patterns are defined and searched on a corpus of 21 million sentences in Brazilian Portuguese extracted from e-SUS APS. The results are manually evaluated by linguists and the precision of each pattern measured. Our findings reveal that the methodology effectively identifies reports of violence with a precision of 0.726, confirming its robustness. Designed as a transparent, efficient, low-carbon, and language-agnostic pipeline, the approach can be easily adapted to other health surveillance contexts, contributing to the broader, ethical, and explainable use of NLP in public health systems.
☆ RepV: Safety-Separable Latent Spaces for Scalable Neurosymbolic Plan Verification
As AI systems migrate to safety-critical domains, verifying that their actions comply with well-defined rules remains a challenge. Formal methods provide provable guarantees but demand hand-crafted temporal-logic specifications, offering limited expressiveness and accessibility. Deep learning approaches enable evaluation of plans against natural-language constraints, yet their opaque decision process invites misclassifications with potentially severe consequences. We introduce RepV, a neurosymbolic verifier that unifies both views by learning a latent space where safe and unsafe plans are linearly separable. Starting from a modest seed set of plans labeled by an off-the-shelf model checker, RepV trains a lightweight projector that embeds each plan, together with a language model-generated rationale, into a low-dimensional space; a frozen linear boundary then verifies compliance for unseen natural-language rules in a single forward pass. Beyond binary classification, RepV provides a probabilistic guarantee on the likelihood of correct verification based on its position in the latent space. This guarantee enables a guarantee-driven refinement of the planner, improving rule compliance without human annotations. Empirical evaluations show that RepV improves compliance prediction accuracy by up to 15% compared to baseline methods while adding fewer than 0.2M parameters. Furthermore, our refinement framework outperforms ordinary fine-tuning baselines across various planning domains. These results show that safety-separable latent spaces offer a scalable, plug-and-play primitive for reliable neurosymbolic plan verification. Code and data are available at: https://repv-project.github.io/.
comment: Code and data are available at: https://repv-project.github.io/
☆ Understanding and Enhancing Mamba-Transformer Hybrids for Memory Recall and Language Modeling
Hybrid models that combine state space models (SSMs) with attention mechanisms have shown strong performance by leveraging the efficiency of SSMs and the high recall ability of attention. However, the architectural design choices behind these hybrid models remain insufficiently understood. In this work, we analyze hybrid architectures through the lens of memory utilization and overall performance, and propose a complementary method to further enhance their effectiveness. We first examine the distinction between sequential and parallel integration of SSM and attention layers. Our analysis reveals several interesting findings, including that sequential hybrids perform better on shorter contexts, whereas parallel hybrids are more effective for longer contexts. We also introduce a data-centric approach of continually training on datasets augmented with paraphrases, which further enhances recall while preserving other capabilities. It generalizes well across different base models and outperforms architectural modifications aimed at enhancing recall. Our findings provide a deeper understanding of hybrid SSM-attention models and offer practical guidance for designing architectures tailored to various use cases. Our findings provide a deeper understanding of hybrid SSM-attention models and offer practical guidance for designing architectures tailored to various use cases.
☆ The Denario project: Deep knowledge AI agents for scientific discovery
We present Denario, an AI multi-agent system designed to serve as a scientific research assistant. Denario can perform many different tasks, such as generating ideas, checking the literature, developing research plans, writing and executing code, making plots, and drafting and reviewing a scientific paper. The system has a modular architecture, allowing it to handle specific tasks, such as generating an idea, or carrying out end-to-end scientific analysis using Cmbagent as a deep-research backend. In this work, we describe in detail Denario and its modules, and illustrate its capabilities by presenting multiple AI-generated papers generated by it in many different scientific disciplines such as astrophysics, biology, biophysics, biomedical informatics, chemistry, material science, mathematical physics, medicine, neuroscience and planetary science. Denario also excels at combining ideas from different disciplines, and we illustrate this by showing a paper that applies methods from quantum physics and machine learning to astrophysical data. We report the evaluations performed on these papers by domain experts, who provided both numerical scores and review-like feedback. We then highlight the strengths, weaknesses, and limitations of the current system. Finally, we discuss the ethical implications of AI-driven research and reflect on how such technology relates to the philosophy of science. We publicly release the code at https://github.com/AstroPilot-AI/Denario. A Denario demo can also be run directly on the web at https://huggingface.co/spaces/astropilot-ai/Denario, and the full app will be deployed on the cloud.
comment: 272 pages. Examples of 11 AI-generated paper drafts from different scientific disciplines. Code publicly available at https://github.com/AstroPilot-AI/Denario
☆ Are Video Models Ready as Zero-Shot Reasoners? An Empirical Study with the MME-CoF Benchmark
Recent video generation models can produce high-fidelity, temporally coherent videos, indicating that they may encode substantial world knowledge. Beyond realistic synthesis, they also exhibit emerging behaviors indicative of visual perception, modeling, and manipulation. Yet, an important question still remains: Are video models ready to serve as zero-shot reasoners in challenging visual reasoning scenarios? In this work, we conduct an empirical study to comprehensively investigate this question, focusing on the leading and popular Veo-3. We evaluate its reasoning behavior across 12 dimensions, including spatial, geometric, physical, temporal, and embodied logic, systematically characterizing both its strengths and failure modes. To standardize this study, we curate the evaluation data into MME-CoF, a compact benchmark that enables in-depth and thorough assessment of Chain-of-Frame (CoF) reasoning. Our findings reveal that while current video models demonstrate promising reasoning patterns on short-horizon spatial coherence, fine-grained grounding, and locally consistent dynamics, they remain limited in long-horizon causal reasoning, strict geometric constraints, and abstract logic. Overall, they are not yet reliable as standalone zero-shot reasoners, but exhibit encouraging signs as complementary visual engines alongside dedicated reasoning models. Project page: https://video-cof.github.io
comment: Project Page: https://video-cof.github.io
☆ Gistify! Codebase-Level Understanding via Runtime Execution
As coding agents are increasingly deployed in large codebases, the need to automatically design challenging, codebase-level evaluation is central. We propose Gistify, a task where a coding LLM must create a single, minimal, self-contained file that can reproduce a specific functionality of a codebase. The coding LLM is given full access to a codebase along with a specific entrypoint (e.g., a python command), and the generated file must replicate the output of the same command ran under the full codebase, while containing only the essential components necessary to execute the provided command. Success on Gistify requires both structural understanding of the codebase, accurate modeling of its execution flow as well as the ability to produce potentially large code patches. Our findings show that current state-of-the-art models struggle to reliably solve Gistify tasks, especially ones with long executions traces.
☆ Defeating the Training-Inference Mismatch via FP16
Reinforcement learning (RL) fine-tuning of large language models (LLMs) often suffers from instability due to the numerical mismatch between the training and inference policies. While prior work has attempted to mitigate this issue through algorithmic corrections or engineering alignments, we show that its root cause lies in the floating point precision itself. The widely adopted BF16, despite its large dynamic range, introduces large rounding errors that breaks the consistency between training and inference. In this work, we demonstrate that simply reverting to \textbf{FP16} effectively eliminates this mismatch. The change is simple, fully supported by modern frameworks with only a few lines of code change, and requires no modification to the model architecture or learning algorithm. Our results suggest that using FP16 uniformly yields more stable optimization, faster convergence, and stronger performance across diverse tasks, algorithms and frameworks. We hope these findings motivate a broader reconsideration of precision trade-offs in RL fine-tuning.
☆ Remote Labor Index: Measuring AI Automation of Remote Work
AIs have made rapid progress on research-oriented benchmarks of knowledge and reasoning, but it remains unclear how these gains translate into economic value and automation. To measure this, we introduce the Remote Labor Index (RLI), a broadly multi-sector benchmark comprising real-world, economically valuable projects designed to evaluate end-to-end agent performance in practical settings. AI agents perform near the floor on RLI, with the highest-performing agent achieving an automation rate of 2.5%. These results help ground discussions of AI automation in empirical evidence, setting a common basis for tracking AI impacts and enabling stakeholders to proactively navigate AI-driven labor automation.
comment: Website: https://www.remotelabor.ai
☆ AMO-Bench: Large Language Models Still Struggle in High School Math Competitions
We present AMO-Bench, an Advanced Mathematical reasoning benchmark with Olympiad level or even higher difficulty, comprising 50 human-crafted problems. Existing benchmarks have widely leveraged high school math competitions for evaluating mathematical reasoning capabilities of large language models (LLMs). However, many existing math competitions are becoming less effective for assessing top-tier LLMs due to performance saturation (e.g., AIME24/25). To address this, AMO-Bench introduces more rigorous challenges by ensuring all 50 problems are (1) cross-validated by experts to meet at least the International Mathematical Olympiad (IMO) difficulty standards, and (2) entirely original problems to prevent potential performance leakages from data memorization. Moreover, each problem in AMO-Bench requires only a final answer rather than a proof, enabling automatic and robust grading for evaluation. Experimental results across 26 LLMs on AMO-Bench show that even the best-performing model achieves only 52.4% accuracy on AMO-Bench, with most LLMs scoring below 40%. Beyond these poor performances, our further analysis reveals a promising scaling trend with increasing test-time compute on AMO-Bench. These results highlight the significant room for improving the mathematical reasoning in current LLMs. We release AMO-Bench to facilitate further research into advancing the reasoning abilities of language models. https://amo-bench.github.io/
comment: 14 pages, 9 figures
☆ Deep sequence models tend to memorize geometrically; it is unclear why
In sequence modeling, the parametric memory of atomic facts has been predominantly abstracted as a brute-force lookup of co-occurrences between entities. We contrast this associative view against a geometric view of how memory is stored. We begin by isolating a clean and analyzable instance of Transformer reasoning that is incompatible with memory as strictly a storage of the local co-occurrences specified during training. Instead, the model must have somehow synthesized its own geometry of atomic facts, encoding global relationships between all entities, including non-co-occurring ones. This in turn has simplified a hard reasoning task involving an $\ell$-fold composition into an easy-to-learn 1-step geometric task. From this phenomenon, we extract fundamental aspects of neural embedding geometries that are hard to explain. We argue that the rise of such a geometry, despite optimizing over mere local associations, cannot be straightforwardly attributed to typical architectural or optimizational pressures. Counterintuitively, an elegant geometry is learned even when it is not more succinct than a brute-force lookup of associations. Then, by analyzing a connection to Node2Vec, we demonstrate how the geometry stems from a spectral bias that -- in contrast to prevailing theories -- indeed arises naturally despite the lack of various pressures. This analysis also points to practitioners a visible headroom to make Transformer memory more strongly geometric. We hope the geometric view of parametric memory encourages revisiting the default intuitions that guide researchers in areas like knowledge acquisition, capacity, discovery and unlearning.
☆ Cross-Platform Evaluation of Reasoning Capabilities in Foundation Models
This paper presents a comprehensive cross-platform evaluation of reasoning capabilities in contemporary foundation models, establishing an infrastructure-agnostic benchmark across three computational paradigms: HPC supercomputing (MareNostrum 5), cloud platforms (Nebius AI Studio), and university clusters (a node with eight H200 GPUs). We evaluate 15 foundation models across 79 problems spanning eight academic domains (Physics, Mathematics, Chemistry, Economics, Biology, Statistics, Calculus, and Optimization) through three experimental phases: (1) Baseline establishment: Six models (Mixtral-8x7B, Phi-3, LLaMA 3.1-8B, Gemma-2-9b, Mistral-7B, OLMo-7B) evaluated on 19 problems using MareNostrum 5, establishing methodology and reference performance; (2) Infrastructure validation: The 19-problem benchmark repeated on university cluster (seven models including Falcon-Mamba state-space architecture) and Nebius AI Studio (nine state-of-the-art models: Hermes-4 70B/405B, LLaMA 3.1-405B/3.3-70B, Qwen3 30B/235B, DeepSeek-R1, GPT-OSS 20B/120B) to confirm infrastructure-agnostic reproducibility; (3) Extended evaluation: Full 79-problem assessment on both university cluster and Nebius platforms, probing generalization at scale across architectural diversity. The findings challenge conventional scaling assumptions, establish training data quality as more critical than model size, and provide actionable guidelines for model selection across educational, production, and research contexts. The tri-infrastructure methodology and 79-problem benchmark enable longitudinal tracking of reasoning capabilities as foundation models evolve.
☆ Value Drifts: Tracing Value Alignment During LLM Post-Training
As LLMs occupy an increasingly important role in society, they are more and more confronted with questions that require them not only to draw on their general knowledge but also to align with certain human value systems. Therefore, studying the alignment of LLMs with human values has become a crucial field of inquiry. Prior work, however, mostly focuses on evaluating the alignment of fully trained models, overlooking the training dynamics by which models learn to express human values. In this work, we investigate how and at which stage value alignment arises during the course of a model's post-training. Our analysis disentangles the effects of post-training algorithms and datasets, measuring both the magnitude and time of value drifts during training. Experimenting with Llama-3 and Qwen-3 models of different sizes and popular supervised fine-tuning (SFT) and preference optimization datasets and algorithms, we find that the SFT phase generally establishes a model's values, and subsequent preference optimization rarely re-aligns these values. Furthermore, using a synthetic preference dataset that enables controlled manipulation of values, we find that different preference optimization algorithms lead to different value alignment outcomes, even when preference data is held constant. Our findings provide actionable insights into how values are learned during post-training and help to inform data curation, as well as the selection of models and algorithms for preference optimization to improve model alignment to human values.
☆ Kimi Linear: An Expressive, Efficient Attention Architecture
We introduce Kimi Linear, a hybrid linear attention architecture that, for the first time, outperforms full attention under fair comparisons across various scenarios -- including short-context, long-context, and reinforcement learning (RL) scaling regimes. At its core lies Kimi Delta Attention (KDA), an expressive linear attention module that extends Gated DeltaNet with a finer-grained gating mechanism, enabling more effective use of limited finite-state RNN memory. Our bespoke chunkwise algorithm achieves high hardware efficiency through a specialized variant of the Diagonal-Plus-Low-Rank (DPLR) transition matrices, which substantially reduces computation compared to the general DPLR formulation while remaining more consistent with the classical delta rule. We pretrain a Kimi Linear model with 3B activated parameters and 48B total parameters, based on a layerwise hybrid of KDA and Multi-Head Latent Attention (MLA). Our experiments show that with an identical training recipe, Kimi Linear outperforms full MLA with a sizeable margin across all evaluated tasks, while reducing KV cache usage by up to 75% and achieving up to 6 times decoding throughput for a 1M context. These results demonstrate that Kimi Linear can be a drop-in replacement for full attention architectures with superior performance and efficiency, including tasks with longer input and output lengths. To support further research, we open-source the KDA kernel and vLLM implementations, and release the pre-trained and instruction-tuned model checkpoints.
comment: Kimi Linear tech report
☆ Evontree: Ontology Rule-Guided Self-Evolution of Large Language Models
Large language models (LLMs) have demonstrated exceptional capabilities across multiple domains by leveraging massive pre-training and curated fine-tuning data. However, in data-sensitive fields such as healthcare, the lack of high-quality, domain-specific training corpus hinders LLMs' adaptation for specialized applications. Meanwhile, domain experts have distilled domain wisdom into ontology rules, which formalize relationships among concepts and ensure the integrity of knowledge management repositories. Viewing LLMs as implicit repositories of human knowledge, we propose Evontree, a novel framework that leverages a small set of high-quality ontology rules to systematically extract, validate, and enhance domain knowledge within LLMs, without requiring extensive external datasets. Specifically, Evontree extracts domain ontology from raw models, detects inconsistencies using two core ontology rules, and reinforces the refined knowledge via self-distilled fine-tuning. Extensive experiments on medical QA benchmarks with Llama3-8B-Instruct and Med42-v2 demonstrate consistent outperformance over both unmodified models and leading supervised baselines, achieving up to a 3.7% improvement in accuracy. These results confirm the effectiveness, efficiency, and robustness of our approach for low-resource domain adaptation of LLMs.
☆ Evaluating Perspectival Biases in Cross-Modal Retrieval
Multimodal retrieval systems are expected to operate in a semantic space, agnostic to the language or cultural origin of the query. In practice, however, retrieval outcomes systematically reflect perspectival biases: deviations shaped by linguistic prevalence and cultural associations. We study two such biases. First, prevalence bias refers to the tendency to favor entries from prevalent languages over semantically faithful entries in image-to-text retrieval. Second, association bias refers to the tendency to favor images culturally associated with the query over semantically correct ones in text-to-image retrieval. Results show that explicit alignment is a more effective strategy for mitigating prevalence bias. However, association bias remains a distinct and more challenging problem. These findings suggest that achieving truly equitable multimodal systems requires targeted strategies beyond simple data scaling and that bias arising from cultural association may be treated as a more challenging problem than one arising from linguistic prevalence.
☆ The Era of Agentic Organization: Learning to Organize with Language Models
We envision a new era of AI, termed agentic organization, where agents solve complex problems by working collaboratively and concurrently, enabling outcomes beyond individual intelligence. To realize this vision, we introduce asynchronous thinking (AsyncThink) as a new paradigm of reasoning with large language models, which organizes the internal thinking process into concurrently executable structures. Specifically, we propose a thinking protocol where an organizer dynamically assigns sub-queries to workers, merges intermediate knowledge, and produces coherent solutions. More importantly, the thinking structure in this protocol can be further optimized through reinforcement learning. Experiments demonstrate that AsyncThink achieves 28% lower inference latency compared to parallel thinking while improving accuracy on mathematical reasoning. Moreover, AsyncThink generalizes its learned asynchronous thinking capabilities, effectively tackling unseen tasks without additional training.
☆ Encoder-Decoder or Decoder-Only? Revisiting Encoder-Decoder Large Language Model
Recent large language model (LLM) research has undergone an architectural shift from encoder-decoder modeling to nowadays the dominant decoder-only modeling. This rapid transition, however, comes without a rigorous comparative analysis especially \textit{from the scaling perspective}, raising concerns that the potential of encoder-decoder models may have been overlooked. To fill this gap, we revisit encoder-decoder LLM (RedLLM), enhancing it with recent recipes from decoder-only LLM (DecLLM). We conduct a comprehensive comparison between RedLLM, pretrained with prefix language modeling (LM), and DecLLM, pretrained with causal LM, at different model scales, ranging from $\sim$150M to $\sim$8B. Using RedPajama V1 (1.6T tokens) for pretraining and FLAN for instruction tuning, our experiments show that RedLLM produces compelling scaling properties and surprisingly strong performance. While DecLLM is overall more compute-optimal during pretraining, RedLLM demonstrates comparable scaling and context length extrapolation capabilities. After instruction tuning, RedLLM achieves comparable and even better results on various downstream tasks while enjoying substantially better inference efficiency. We hope our findings could inspire more efforts on re-examining RedLLM, unlocking its potential for developing powerful and efficient LLMs.
comment: The scaling study inspiring T5Gemma
☆ SlideAgent: Hierarchical Agentic Framework for Multi-Page Visual Document Understanding
Multi-page visual documents such as manuals, brochures, presentations, and posters convey key information through layout, colors, icons, and cross-slide references. While large language models (LLMs) offer opportunities in document understanding, current systems struggle with complex, multi-page visual documents, particularly in fine-grained reasoning over elements and pages. We introduce SlideAgent, a versatile agentic framework for understanding multi-modal, multi-page, and multi-layout documents, especially slide decks. SlideAgent employs specialized agents and decomposes reasoning into three specialized levels-global, page, and element-to construct a structured, query-agnostic representation that captures both overarching themes and detailed visual or textual cues. During inference, SlideAgent selectively activates specialized agents for multi-level reasoning and integrates their outputs into coherent, context-aware answers. Extensive experiments show that SlideAgent achieves significant improvement over both proprietary (+7.9 overall) and open-source models (+9.8 overall).
comment: https://slideagent.github.io/
☆ CATArena: Evaluation of LLM Agents through Iterative Tournament Competitions
Large Language Model (LLM) agents have evolved from basic text generation to autonomously completing complex tasks through interaction with external tools. However, current benchmarks mainly assess end-to-end performance in fixed scenarios, restricting evaluation to specific skills and suffering from score saturation and growing dependence on expert annotation as agent capabilities improve. In this work, we emphasize the importance of learning ability, including both self-improvement and peer-learning, as a core driver for agent evolution toward human-level intelligence. We propose an iterative, competitive peer-learning framework, which allows agents to refine and optimize their strategies through repeated interactions and feedback, thereby systematically evaluating their learning capabilities. To address the score saturation issue in current benchmarks, we introduce CATArena, a tournament-style evaluation platform featuring four diverse board and card games with open-ended scoring. By providing tasks without explicit upper score limits, CATArena enables continuous and dynamic evaluation of rapidly advancing agent capabilities. Experimental results and analyses involving both minimal and commercial code agents demonstrate that CATArena provides reliable, stable, and scalable benchmarking for core agent abilities, particularly learning ability and strategy coding.
☆ Inference-Cost-Aware Dynamic Tree Construction for Efficient Inference in Large Language Models
Large Language Models (LLMs) face significant inference latency challenges stemming from their autoregressive design and large size. To address this, speculative decoding emerges as a solution, enabling the simultaneous generation and validation of multiple tokens. While recent approaches like EAGLE-2 and EAGLE-3 improve speculative decoding using dynamic tree structures, they often neglect the impact of crucial system variables such as GPU devices and batch sizes. Therefore, we introduce a new dynamic tree decoding approach called CAST that takes into account inference costs, including factors such as GPU configurations and batch sizes, to dynamically refine the tree structure. Through comprehensive experimentation across six diverse tasks and utilizing six distinct LLMs, our methodology demonstrates remarkable results, achieving speeds up to 5.2 times faster than conventional decoding methods. Moreover, it generally outperforms existing state-of-the-art techniques from 5% to 20%.
☆ InfoFlow: Reinforcing Search Agent Via Reward Density Optimization
Reinforcement Learning with Verifiable Rewards (RLVR) is a promising approach for enhancing agentic deep search. However, its application is often hindered by low \textbf{Reward Density} in deep search scenarios, where agents expend significant exploratory costs for infrequent and often null final rewards. In this paper, we formalize this challenge as the \textbf{Reward Density Optimization} problem, which aims to improve the reward obtained per unit of exploration cost. This paper introduce \textbf{InfoFlow}, a systematic framework that tackles this problem from three aspects. 1) \textbf{Subproblem decomposition}: breaking down long-range tasks to assign process rewards, thereby providing denser learning signals. 2) \textbf{Failure-guided hints}: injecting corrective guidance into stalled trajectories to increase the probability of successful outcomes. 3) \textbf{Dual-agent refinement}: employing a dual-agent architecture to offload the cognitive burden of deep exploration. A refiner agent synthesizes the search history, which effectively compresses the researcher's perceived trajectory, thereby reducing exploration cost and increasing the overall reward density. We evaluate InfoFlow on multiple agentic search benchmarks, where it significantly outperforms strong baselines, enabling lightweight LLMs to achieve performance comparable to advanced proprietary LLMs.
☆ The Structure of Relation Decoding Linear Operators in Large Language Models NeurIPS 2025
This paper investigates the structure of linear operators introduced in Hernandez et al. [2023] that decode specific relational facts in transformer language models. We extend their single-relation findings to a collection of relations and systematically chart their organization. We show that such collections of relation decoders can be highly compressed by simple order-3 tensor networks without significant loss in decoding accuracy. To explain this surprising redundancy, we develop a cross-evaluation protocol, in which we apply each linear decoder operator to the subjects of every other relation. Our results reveal that these linear maps do not encode distinct relations, but extract recurring, coarse-grained semantic properties (e.g., country of capital city and country of food are both in the country-of-X property). This property-centric structure clarifies both the operators' compressibility and highlights why they generalize only to new relations that are semantically close. Our findings thus interpret linear relational decoding in transformer language models as primarily property-based, rather than relation-specific.
comment: NeurIPS 2025 (Spotlight)
☆ Hebrew Diacritics Restoration using Visual Representation
Diacritics restoration in Hebrew is a fundamental task for ensuring accurate word pronunciation and disambiguating textual meaning. Despite the language's high degree of ambiguity when unvocalized, recent machine learning approaches have significantly advanced performance on this task. In this work, we present DIVRIT, a novel system for Hebrew diacritization that frames the task as a zero-shot classification problem. Our approach operates at the word level, selecting the most appropriate diacritization pattern for each undiacritized word from a dynamically generated candidate set, conditioned on the surrounding textual context. A key innovation of DIVRIT is its use of a Hebrew Visual Language Model, which processes undiacritized text as an image, allowing diacritic information to be embedded directly within the input's vector representation. Through a comprehensive evaluation across various configurations, we demonstrate that the system effectively performs diacritization without relying on complex, explicit linguistic analysis. Notably, in an ``oracle'' setting where the correct diacritized form is guaranteed to be among the provided candidates, DIVRIT achieves a high level of accuracy. Furthermore, strategic architectural enhancements and optimized training methodologies yield significant improvements in the system's overall generalization capabilities. These findings highlight the promising potential of visual representations for accurate and automated Hebrew diacritization.
☆ Inside CORE-KG: Evaluating Structured Prompting and Coreference Resolution for Knowledge Graphs ICDM 2025
Human smuggling networks are increasingly adaptive and difficult to analyze. Legal case documents offer critical insights but are often unstructured, lexically dense, and filled with ambiguous or shifting references, which pose significant challenges for automated knowledge graph (KG) construction. While recent LLM-based approaches improve over static templates, they still generate noisy, fragmented graphs with duplicate nodes due to the absence of guided extraction and coreference resolution. The recently proposed CORE-KG framework addresses these limitations by integrating a type-aware coreference module and domain-guided structured prompts, significantly reducing node duplication and legal noise. In this work, we present a systematic ablation study of CORE-KG to quantify the individual contributions of its two key components. Our results show that removing coreference resolution results in a 28.32% increase in node duplication and a 4.32% increase in noisy nodes, while removing structured prompts leads to a 4.34% increase in node duplication and a 73.33% increase in noisy nodes. These findings offer empirical insights for designing robust LLM-based pipelines for extracting structured representations from complex legal texts.
comment: ICDM 2025 Workshop
☆ A Multi-agent Large Language Model Framework to Automatically Assess Performance of a Clinical AI Triage Tool
Purpose: The purpose of this study was to determine if an ensemble of multiple LLM agents could be used collectively to provide a more reliable assessment of a pixel-based AI triage tool than a single LLM. Methods: 29,766 non-contrast CT head exams from fourteen hospitals were processed by a commercial intracranial hemorrhage (ICH) AI detection tool. Radiology reports were analyzed by an ensemble of eight open-source LLM models and a HIPAA compliant internal version of GPT-4o using a single multi-shot prompt that assessed for presence of ICH. 1,726 examples were manually reviewed. Performance characteristics of the eight open-source models and consensus were compared to GPT-4o. Three ideal consensus LLM ensembles were tested for rating the performance of the triage tool. Results: The cohort consisted of 29,766 head CTs exam-report pairs. The highest AUC performance was achieved with llama3.3:70b and GPT-4o (AUC= 0.78). The average precision was highest for Llama3.3:70b and GPT-4o (AP=0.75 & 0.76). Llama3.3:70b had the highest F1 score (0.81) and recall (0.85), greater precision (0.78), specificity (0.72), and MCC (0.57). Using MCC (95% CI) the ideal combination of LLMs were: Full-9 Ensemble 0.571 (0.552-0.591), Top-3 Ensemble 0.558 (0.537-0.579), Consensus 0.556 (0.539-0.574), and GPT4o 0.522 (0.500-0.543). No statistically significant differences were observed between Top-3, Full-9, and Consensus (p > 0.05). Conclusion: An ensemble of medium to large sized open-source LLMs provides a more consistent and reliable method to derive a ground truth retrospective evaluation of a clinical AI triage tool over a single LLM alone.
comment: 29 pages, 3 figures, 4 tables
☆ Rethinking Text-to-SQL: Dynamic Multi-turn SQL Interaction for Real-world Database Exploration
Recent advances in Text-to-SQL have achieved strong results in static, single-turn tasks, where models generate SQL queries from natural language questions. However, these systems fall short in real-world interactive scenarios, where user intents evolve and queries must be refined over multiple turns. In applications such as finance and business analytics, users iteratively adjust query constraints or dimensions based on intermediate results. To evaluate such dynamic capabilities, we introduce DySQL-Bench, a benchmark assessing model performance under evolving user interactions. Unlike previous manually curated datasets, DySQL-Bench is built through an automated two-stage pipeline of task synthesis and verification. Structured tree representations derived from raw database tables guide LLM-based task generation, followed by interaction-oriented filtering and expert validation. Human evaluation confirms 100% correctness of the synthesized data. We further propose a multi-turn evaluation framework simulating realistic interactions among an LLM-simulated user, the model under test, and an executable database. The model must adapt its reasoning and SQL generation as user intents change. DySQL-Bench covers 13 domains across BIRD and Spider 2 databases, totaling 1,072 tasks. Even GPT-4o attains only 58.34% overall accuracy and 23.81% on the Pass@5 metric, underscoring the benchmark's difficulty. All code and data are released at https://github.com/Aurora-slz/Real-World-SQL-Bench .
☆ Context Engineering 2.0: The Context of Context Engineering
Karl Marx once wrote that ``the human essence is the ensemble of social relations'', suggesting that individuals are not isolated entities but are fundamentally shaped by their interactions with other entities, within which contexts play a constitutive and essential role. With the advent of computers and artificial intelligence, these contexts are no longer limited to purely human--human interactions: human--machine interactions are included as well. Then a central question emerges: How can machines better understand our situations and purposes? To address this challenge, researchers have recently introduced the concept of context engineering. Although it is often regarded as a recent innovation of the agent era, we argue that related practices can be traced back more than twenty years. Since the early 1990s, the field has evolved through distinct historical phases, each shaped by the intelligence level of machines: from early human--computer interaction frameworks built around primitive computers, to today's human--agent interaction paradigms driven by intelligent agents, and potentially to human--level or superhuman intelligence in the future. In this paper, we situate context engineering, provide a systematic definition, outline its historical and conceptual landscape, and examine key design considerations for practice. By addressing these questions, we aim to offer a conceptual foundation for context engineering and sketch its promising future. This paper is a stepping stone for a broader community effort toward systematic context engineering in AI systems.
☆ Bayesian Network Fusion of Large Language Models for Sentiment Analysis
Large language models (LLMs) continue to advance, with an increasing number of domain-specific variants tailored for specialised tasks. However, these models often lack transparency and explainability, can be costly to fine-tune, require substantial prompt engineering, yield inconsistent results across domains, and impose significant adverse environmental impact due to their high computational demands. To address these challenges, we propose the Bayesian network LLM fusion (BNLF) framework, which integrates predictions from three LLMs, including FinBERT, RoBERTa, and BERTweet, through a probabilistic mechanism for sentiment analysis. BNLF performs late fusion by modelling the sentiment predictions from multiple LLMs as probabilistic nodes within a Bayesian network. Evaluated across three human-annotated financial corpora with distinct linguistic and contextual characteristics, BNLF demonstrates consistent gains of about six percent in accuracy over the baseline LLMs, underscoring its robustness to dataset variability and the effectiveness of probabilistic fusion for interpretable sentiment classification.
☆ Counteracting Matthew Effect in Self-Improvement of LVLMs through Head-Tail Re-balancing
Self-improvement has emerged as a mainstream paradigm for advancing the reasoning capabilities of large vision-language models (LVLMs), where models explore and learn from successful trajectories iteratively. However, we identify a critical issue during this process: the model excels at generating high-quality trajectories for simple queries (i.e., head data) but struggles with more complex ones (i.e., tail data). This leads to an imbalanced optimization that drives the model to prioritize simple reasoning skills, while hindering its ability to tackle more complex reasoning tasks. Over iterations, this imbalance becomes increasingly pronounced--a dynamic we term the "Matthew effect"--which ultimately hinders further model improvement and leads to performance bottlenecks. To counteract this challenge, we introduce four efficient strategies from two perspectives: distribution-reshaping and trajectory-resampling, to achieve head-tail re-balancing during the exploration-and-learning self-improvement process. Extensive experiments on Qwen2-VL-7B-Instruct and InternVL2.5-4B models across visual reasoning tasks demonstrate that our methods consistently improve visual reasoning capabilities, outperforming vanilla self-improvement by 3.86 points on average.
comment: Preprint
♻ ☆ RADAR: Benchmarking Language Models on Imperfect Tabular Data NeurIPS 2025
Language models (LMs) are increasingly being deployed to perform autonomous data analyses. However, their data awareness -- the ability to recognize, reason over, and appropriately handle data artifacts such as missing values, outliers, and logical inconsistencies -- remains underexplored. These artifacts are especially common in real-world tabular data and, if mishandled, can significantly compromise the validity of analytical conclusions. To address this gap, we present RADAR, a benchmark for systematically evaluating data-aware reasoning on tabular data. We develop a framework to simulate data artifacts via programmatic perturbations to enable targeted evaluation of model behavior. RADAR comprises 2980 table query pairs, grounded in real-world data spanning 9 domains and 5 data artifact types. In addition to evaluating artifact handling, RADAR systematically varies table size to study how reasoning performance holds when increasing table size. Our evaluation reveals that, despite decent performance on tables without data artifacts, frontier models degrade significantly when data artifacts are introduced, exposing critical gaps in their capacity for robust, data-aware analysis. Designed to be flexible and extensible, RADAR supports diverse perturbation types and controllable table sizes, offering a valuable resource for advancing tabular reasoning.
comment: NeurIPS 2025 Dataset and Benchmark Track
♻ ☆ Representative Social Choice: From Learning Theory to AI Alignment NeurIPS 2024
Social choice theory is the study of preference aggregation across a population, used both in mechanism design for human agents and in the democratic alignment of language models. In this study, we propose the representative social choice framework for the modeling of democratic representation in collective decisions, where the number of issues and individuals are too large for mechanisms to consider all preferences directly. These scenarios are widespread in real-world decision-making processes, such as jury trials, legislation, corporate governance, and, more recently, language model alignment. In representative social choice, the population is represented by a finite sample of individual-issue pairs based on which social choice decisions are made. We show that many of the deepest questions in representative social choice can be formulated as statistical learning problems, and prove the generalization properties of social choice mechanisms using the theory of machine learning. We further formulate axioms for representative social choice, and prove Arrow-like impossibility theorems with new combinatorial tools of analysis. Our framework introduces the representative approach to social choice, opening up research directions at the intersection of social choice, learning theory, and AI alignment.
comment: Journal of Artificial Intelligence Research, in press. Best Paper at NeurIPS 2024 Pluralistic Alignment Workshop
♻ ☆ SynthWorlds: Controlled Parallel Worlds for Disentangling Reasoning and Knowledge in Language Models
Evaluating the reasoning ability of language models (LMs) is complicated by their extensive parametric world knowledge, where benchmark performance often reflects factual recall rather than genuine reasoning. Existing datasets and approaches (e.g., temporal filtering, paraphrasing, adversarial substitution) cannot cleanly separate the two. We present SynthWorlds, a framework that disentangles task reasoning complexity from factual knowledge. In SynthWorlds, we construct parallel corpora representing two worlds with identical interconnected structure: a real-mapped world, where models may exploit parametric knowledge, and a synthetic-mapped world, where such knowledge is meaningless. On top of these corpora, we design two mirrored tasks as case studies: multi-hop question answering and page navigation, which maintain equal reasoning difficulty across worlds. Experiments in parametric-only (e.g., closed-book QA) and knowledge-augmented (e.g., retrieval-augmented) LM settings reveal a persistent knowledge advantage gap, defined as the performance boost models gain from memorized parametric world knowledge. Knowledge acquisition and integration mechanisms reduce but do not eliminate this gap, highlighting opportunities for system improvements. Fully automatic and scalable, SynthWorlds provides a controlled environment for evaluating LMs in ways that were previously challenging, enabling precise and testable comparisons of reasoning and memorization.
♻ ☆ Navigating the Alignment-Calibration Trade-off: A Pareto-Superior Frontier via Model Merging
The "alignment tax" of post-training is typically framed as a drop in task accuracy. We show it also involves a severe loss of calibration, making models overconfident, less reliable, and model outputs less diverse. We show that this trade-off can be navigated effectively via a simple post-hoc intervention: interpolating between a model's weights before and after alignment. Crucially, this is not a strict trade-off. We find that the process consistently reveals Pareto-optimal interpolations - models that improve accuracy beyond both parents while substantially recovering the calibration lost during alignment. Our work demonstrates that simple model merging provides a computationally efficient method for mitigating the full scope of the alignment tax, yielding models that are more capable and more reliable.
♻ ☆ VeriFastScore: Speeding up long-form factuality evaluation
Metrics like FactScore and VeriScore that evaluate long-form factuality operate by decomposing an input response into atomic claims and then individually verifying each claim. While effective and interpretable, these methods incur numerous LLM calls and can take upwards of 100 seconds to evaluate a single response, limiting their practicality in large-scale evaluation and training scenarios. To address this, we propose VeriFastScore, which leverages synthetic data to fine-tune Llama3.1 8B for simultaneously extracting and verifying all verifiable claims within a given text based on evidence from Google Search. We show that this task cannot be solved via few-shot prompting with closed LLMs due to its complexity: the model receives ~4K tokens of evidence on average and needs to concurrently decompose claims, judge their verifiability, and verify them against noisy evidence. However, our fine-tuned VeriFastScore model demonstrates strong correlation with the original VeriScore pipeline at both the example level (r=0.80) and system level (r=0.94) while achieving an overall speedup of 6.6x (9.9x excluding evidence retrieval) over VeriScore. To facilitate future factuality research, we publicly release our VeriFastScore model and synthetic datasets.
♻ ☆ Accelerating Diffusion LLMs via Adaptive Parallel Decoding
The generation speed of LLMs are bottlenecked by autoregressive decoding, where tokens are predicted sequentially one by one. Alternatively, diffusion large language models (dLLMs) theoretically allow for parallel token generation, but in practice struggle to achieve the speed of autoregressive models without significantly sacrificing quality. We therefore introduce adaptive parallel decoding (APD), a novel method that dynamically adjusts the number of tokens sampled in parallel. We achieve this by defining a multiplicative mixture between the dLLM marginal probabilities and the joint probability of sequences under a small auxiliary autoregressive model. This inverts the standard setup of speculative decoding, where the goal is to sample from a large autoregressive verifier by drafting from a smaller model. We further optimize APD by enabling KV caching and limiting the size of the masked input. Altogether, our method puts forward three tunable parameters to flexibly tradeoff throughput and quality. We show that APD provides markedly higher throughput with minimal quality degradations on downstream benchmarks.
comment: 10 pages, 5 figures
♻ ☆ Scalable Best-of-N Selection for Large Language Models via Self-Certainty NeurIPS 2025
Best-of-N selection is a key technique for improving the reasoning performance of Large Language Models (LLMs) through increased test-time computation. Current state-of-the-art methods often employ computationally intensive reward models for response evaluation and selection. Reward-free alternatives, like self-consistency and universal self-consistency, are limited in their ability to handle open-ended generation tasks or scale effectively. To address these limitations, we propose self-certainty, a novel and efficient metric that leverages the inherent probability distribution of LLM outputs to estimate response quality without requiring external reward models. We hypothesize that higher distributional self-certainty, aggregated across multiple samples, correlates with improved response accuracy, as it reflects greater confidence in the generated output. Through extensive experiments on various reasoning tasks, we demonstrate that self-certainty (1) scales effectively with increasing sample size N, akin to reward models but without the computational overhead; (2) complements chain-of-thought, improving reasoning performance beyond greedy decoding; and (3) generalizes to open-ended tasks where traditional self-consistency methods fall short. Our findings establish self-certainty as a practical and efficient way for improving LLM reasoning capabilities. The code is available at https://github.com/backprop07/Self-Certainty
comment: NeurIPS 2025
♻ ☆ Cancer-Myth: Evaluating Large Language Models on Patient Questions with False Presuppositions
Cancer patients are increasingly turning to large language models (LLMs) for medical information, making it critical to assess how well these models handle complex, personalized questions. However, current medical benchmarks focus on medical exams or consumer-searched questions and do not evaluate LLMs on real patient questions with patient details. In this paper, we first have three hematology-oncology physicians evaluate cancer-related questions drawn from real patients. While LLM responses are generally accurate, the models frequently fail to recognize or address false presuppositions in the questions, posing risks to safe medical decision-making. To study this limitation systematically, we introduce Cancer-Myth, an expert-verified adversarial dataset of 585 cancer-related questions with false presuppositions. On this benchmark, no frontier LLM -- including GPT-5, Gemini-2.5-Pro, and Claude-4-Sonnet -- corrects these false presuppositions more than $43\%$ of the time. To study mitigation strategies, we further construct a 150-question Cancer-Myth-NFP set, in which physicians confirm the absence of false presuppositions. We find typical mitigation strategies, such as adding precautionary prompts with GEPA optimization, can raise accuracy on Cancer-Myth to $80\%$, but at the cost of misidentifying presuppositions in $41\%$ of Cancer-Myth-NFP questions and causing a $10\%$ relative performance drop on other medical benchmarks. These findings highlight a critical gap in the reliability of LLMs, show that prompting alone is not a reliable remedy for false presuppositions, and underscore the need for more robust safeguards in medical AI systems.
♻ ☆ (How) Do Language Models Track State?
Transformer language models (LMs) exhibit behaviors -- from storytelling to code generation -- that seem to require tracking the unobserved state of an evolving world. How do they do this? We study state tracking in LMs trained or fine-tuned to compose permutations (i.e., to compute the order of a set of objects after a sequence of swaps). Despite the simple algebraic structure of this problem, many other tasks (e.g., simulation of finite automata and evaluation of boolean expressions) can be reduced to permutation composition, making it a natural model for state tracking in general. We show that LMs consistently learn one of two state tracking mechanisms for this task. The first closely resembles the "associative scan" construction used in recent theoretical work by Liu et al. (2023) and Merrill et al. (2024). The second uses an easy-to-compute feature (permutation parity) to partially prune the space of outputs, and then refines this with an associative scan. LMs that learn the former algorithm tend to generalize better and converge faster, and we show how to steer LMs toward one or the other with intermediate training tasks that encourage or suppress the heuristics. Our results demonstrate that transformer LMs, whether pre-trained or fine-tuned, can learn to implement efficient and interpretable state-tracking mechanisms, and the emergence of these mechanisms can be predicted and controlled.
comment: 21 pages, 17 figures, 1 table. Code: http://github.com/belindal/state-tracking
♻ ☆ DiffAdapt: Difficulty-Adaptive Reasoning for Token-Efficient LLM Inference
Recent reasoning Large Language Models (LLMs) demonstrate remarkable problem-solving abilities but often generate long thinking traces whose utility is unclear. Our work aims to improve their efficiency, enabling them to reach high performance without overthinking. First, we analyze the entropy of token probabilities in reasoning traces. Across three models, we observe a consistent U-shaped entropy pattern: high entropy on easy problems despite high accuracy, low entropy on problems with medium difficulty, and high entropy on hard problems reflecting uncertainty. Specifically, we notice 22--25\% entropy reduction from easy to medium difficulty regions, suggesting an {overthinking} phenomenon on easy instances. Building on these insights, we introduce \textbf{DiffAdapt}, a lightweight framework that selects Easy/Normal/Hard inference strategies per question based on their difficulty and reasoning trace entropy. Each inference strategy consists of a fixed prompt, temperature and maximum token length. In contrast to existing efficiency optimization methods, our approach does not fine-tune base LLM but a small probe that classifies LLM's final hidden state, allowing inexpensive adaptation. We comprehensively evaluate our method on five models and eight benchmarks. Our method achieves comparable or improved accuracy while reducing token usage by up to 22.4\%, establishing a practical path toward compute-efficient reasoning.
♻ ☆ TinyTim: A Family of Language Models for Divergent Generation NeurIPS
In the search for artificial general intelligence, model development and training has focused primarily on vast datasets of known problems and their accepted solutions. This process necessarily produces convergent systems which are fundamentally incapable of the conceptual reframing that is required for genuine creative breakthroughs. Inspired by the divergent cognitive processes that allow humans to make such creative leaps, our work introduces a family of language models, TinyTim, to serve as sources of divergent generation within broader systems. These models have been created by fine-tuning on the anti-parsimonious text of James Joyce's `Finnegans Wake'. Quantitative analysis of both an unsupervised fine-tuned model (TinyTim-V1) and a new instruction-tuned variant (TinyTim-V2) demonstrates a profound capacity for lexical invention; the foundational V1 model exhibits a Yule's K score for lexical richness over twenty times greater than that of convergent baselines. This trait is a stable property of the family, as the instruction-tuned V2 maintains a statistically distinct profile and resists factual convergence, sacrificing benchmark performance to preserve its core generative style. This work establishes a methodology for engineering specialized divergent models that, when paired with convergent systems, can reframe problems and force breakthroughs beyond the reach of statistical optimization alone.
comment: 7 pages, 3 figures, accepted to NeurIPS Creative AI track, models available at https://hf.co/npc-worldwide/
♻ ☆ Completion $\neq$ Collaboration: Scaling Collaborative Effort with Agents
Current evaluations of agents remain centered around one-shot task completion, failing to account for the inherently iterative and collaborative nature of many real-world problems, where human goals are often underspecified and evolve. We argue for a shift from building and assessing task completion agents to developing collaborative agents, assessed not only by the quality of their final outputs but by how well they engage with and enhance human effort throughout the problem-solving process. To support this shift, we introduce collaborative effort scaling, a framework that captures how an agent's utility grows with increasing user involvement. Through case studies and simulated evaluations, we show that state-of-the-art agents often underperform in multi-turn, real-world scenarios, revealing a missing ingredient in agent design: the ability to sustain engagement and scaffold user understanding. Collaborative effort scaling offers a lens for diagnosing agent behavior and guiding development toward more effective interactions.
comment: 22 pages, 5 figures, 3 tables
♻ ☆ Comparing human and LLM politeness strategies in free production EMNLP 2025
Polite speech poses a fundamental alignment challenge for large language models (LLMs). Humans deploy a rich repertoire of linguistic strategies to balance informational and social goals -- from positive approaches that build rapport (compliments, expressions of interest) to negative strategies that minimize imposition (hedging, indirectness). We investigate whether LLMs employ a similarly context-sensitive repertoire by comparing human and LLM responses in both constrained and open-ended production tasks. We find that larger models ($\ge$70B parameters) successfully replicate key preferences from the computational pragmatics literature, and human evaluators surprisingly prefer LLM-generated responses in open-ended contexts. However, further linguistic analyses reveal that models disproportionately rely on negative politeness strategies even in positive contexts, potentially leading to misinterpretations. While modern LLMs demonstrate an impressive handle on politeness strategies, these subtle differences raise important questions about pragmatic alignment in AI systems.
comment: 25 pages, 5 figures | EMNLP 2025 camera-ready version
♻ ☆ Quality Over Quantity? LLM-Based Curation for a Data-Efficient Audio-Video Foundation Model
Integrating audio and visual data for training multimodal foundational models remains a challenge. The Audio-Video Vector Alignment (AVVA) framework addresses this by considering AV scene alignment beyond mere temporal synchronization, and leveraging Large Language Models (LLMs) for data curation. AVVA implements a scoring mechanism for selecting aligned training data segments. It integrates Whisper, a speech-based foundation model, for audio and DINOv2 for video analysis in a dual-encoder structure with contrastive learning on AV pairs. Evaluations on AudioCaps, VALOR, and VGGSound demonstrate the effectiveness of the proposed model architecture and data curation approach. AVVA achieves a significant improvement in top-k accuracies for video-to-audio retrieval on all datasets compared to DenseAV, while using only 192 hrs of curated training data. Furthermore, an ablation study indicates that the data curation process effectively trades data quality for data quantity, yielding increases in top-k retrieval accuracies on AudioCaps, VALOR, and VGGSound, compared to training on the full spectrum of uncurated data.
comment: 5 pages, 5 figures, 2 tables. Accepted at EUSIPCO 2025
♻ ☆ Massive Supervised Fine-tuning Experiments Reveal How Data, Layer, and Training Factors Shape LLM Alignment Quality EMNLP 2025
Supervised fine-tuning (SFT) is a critical step in aligning large language models (LLMs) with human instructions and values, yet many aspects of SFT remain poorly understood. We trained a wide range of base models on a variety of datasets including code generation, mathematical reasoning, and general-domain tasks, resulting in 1,000+ SFT models under controlled conditions. We then identified the dataset properties that matter most and examined the layer-wise modifications introduced by SFT. Our findings reveal that some training-task synergies persist across all models while others vary substantially, emphasizing the importance of model-specific strategies. Moreover, we demonstrate that perplexity consistently predicts SFT effectiveness, often surpassing superficial similarity between the training data and the benchmark, and that mid-layer weight changes correlate most strongly with performance gains. We release these 1,000+ SFT models and benchmark results to accelerate further research. All resources are available at https://github.com/llm-jp/massive-sft.
comment: Accepted to EMNLP 2025 (Main Conference). Models and evaluation results available at: https://github.com/llm-jp/massive-sft
♻ ☆ Enhancing Reasoning Skills in Small Persian Medical Language Models Can Outperform Large-Scale Data Training
Enhancing reasoning capabilities in small language models is critical for specialized applications such as medical question answering, particularly in underrepresented languages like Persian. In this study, we employ Reinforcement Learning with AI Feedback (RLAIF) and Direct preference optimization (DPO) to improve the reasoning skills of a general-purpose Persian language model. To achieve this, we translated a multiple-choice medical question-answering dataset into Persian and used RLAIF to generate rejected-preferred answer pairs, which are essential for DPO training. By prompting both teacher and student models to produce Chain-of-Thought (CoT) reasoning responses, we compiled a dataset containing correct and incorrect reasoning trajectories. This dataset, comprising 2 million tokens in preferred answers and 2.5 million tokens in rejected ones, was used to train a baseline model, significantly enhancing its medical reasoning capabilities in Persian. Remarkably, the resulting model outperformed its predecessor, gaokerena-V, which was trained on approximately 57 million tokens, despite leveraging a much smaller dataset. These results highlight the efficiency and effectiveness of reasoning-focused training approaches in developing domain-specific language models with limited data availability.
comment: 7 pages, 5 figures
♻ ☆ Controlling Thinking Speed in Reasoning Models NeurIPS 2025
Human cognition is theorized to operate in two modes: fast, intuitive System 1 thinking and slow, deliberate System 2 thinking. While current Large Reasoning Models (LRMs) excel at System 2 thinking, their inability to perform fast thinking leads to high computational overhead and latency. In this work, we enable LRMs to approximate human intelligence through dynamic thinking speed adjustment, optimizing accuracy-efficiency trade-offs. Our approach addresses two key questions: (1) how to control thinking speed in LRMs, and (2) when to adjust it for optimal performance. For the first question, we identify the steering vector that governs slow-fast thinking transitions in LRMs' representation space. Using this vector, we achieve the first representation editing-based test-time scaling effect, outperforming existing prompt-based scaling methods. For the second question, we apply real-time difficulty estimation to signal reasoning segments of varying complexity. Combining these techniques, we propose the first reasoning strategy that enables fast processing of easy steps and deeper analysis for complex reasoning. Without any training or additional cost, our plug-in module delivers an average +1.3% accuracy with -8.6% token usage across leading LRMs and advanced reasoning benchmarks. All of our algorithms are implemented based on vLLM and are expected to support broader applications and inspire future research.
comment: NeurIPS 2025 Spotlight
♻ ☆ RLBFF: Binary Flexible Feedback to bridge between Human Feedback & Verifiable Rewards
Reinforcement Learning with Human Feedback (RLHF) and Reinforcement Learning with Verifiable Rewards (RLVR) are the main RL paradigms used in LLM post-training, each offering distinct advantages. However, RLHF struggles with interpretability and reward hacking because it relies on human judgments that usually lack explicit criteria, whereas RLVR is limited in scope by its focus on correctness-based verifiers. We propose Reinforcement Learning with Binary Flexible Feedback (RLBFF), which combines the versatility of human-driven preferences with the precision of rule-based verification, enabling reward models to capture nuanced aspects of response quality beyond mere correctness. RLBFF extracts principles that can be answered in a binary fashion (e.g. accuracy of information: yes, or code readability: no) from natural language feedback. Such principles can then be used to ground Reward Model training as an entailment task (response satisfies or does not satisfy an arbitrary principle). We show that Reward Models trained in this manner can outperform Bradley-Terry models when matched for data and achieve top performance on RM-Bench (86.2%) and JudgeBench (81.4%, #1 on leaderboard as of September 24, 2025). Additionally, users can specify principles of interest at inference time to customize the focus of our reward models, in contrast to Bradley-Terry models. Finally, we present a fully open source recipe (including data) to align Qwen3-32B using RLBFF and our Reward Model, to match or exceed the performance of o3-mini and DeepSeek R1 on general alignment benchmarks of MT-Bench, WildBench, and Arena Hard v2 (at <5% of the inference cost). Models: https://huggingface.co/collections/nvidia/reward-models-10-2025
comment: Added link to access models: https://huggingface.co/collections/nvidia/reward-models-10-2025
♻ ☆ CompoST: A Benchmark for Analyzing the Ability of LLMs To Compositionally Interpret Questions in a QALD Setting ISWC 2025
Language interpretation is a compositional process, in which the meaning of more complex linguistic structures is inferred from the meaning of their parts. Large language models possess remarkable language interpretation capabilities and have been successfully applied to interpret questions by mapping them to SPARQL queries. An open question is how systematic this interpretation process is. Toward this question, in this paper, we propose a benchmark for investigating to what extent the abilities of LLMs to interpret questions are actually compositional. For this, we generate three datasets of varying difficulty based on graph patterns in DBpedia, relying on Lemon lexica for verbalization. Our datasets are created in a very controlled fashion in order to test the ability of LLMs to interpret structurally complex questions, given that they have seen the atomic building blocks. This allows us to evaluate to what degree LLMs are able to interpret complex questions for which they "understand" the atomic parts. We conduct experiments with models of different sizes using both various prompt and few-shot optimization techniques as well as fine-tuning. Our results show that performance in terms of macro $F_1$ degrades from $0.45$ over $0.26$ down to $0.09$ with increasing deviation from the samples optimized on. Even when all necessary information was provided to the model in the input, the $F_1$ scores do not exceed $0.57$ for the dataset of lowest complexity. We thus conclude that LLMs struggle to systematically and compositionally interpret questions and map them into SPARQL queries.
comment: Research Track, 24th International Semantic Web Conference (ISWC 2025), November 2-6, 2025, Nara, Japan
♻ ☆ Unveiling Unicode's Unseen Underpinnings in Undermining Authorship Attribution
When using a public communication channel -- whether formal or informal, such as commenting or posting on social media -- end users have no expectation of privacy: they compose a message and broadcast it for the world to see. Even if an end user takes utmost precautions to anonymize their online presence -- using an alias or pseudonym; masking their IP address; spoofing their geolocation; concealing their operating system and user agent; deploying encryption; registering with a disposable phone number or email; disabling non-essential settings; revoking permissions; and blocking cookies and fingerprinting -- one obvious element still lingers: the message itself. Assuming they avoid lapses in judgment or accidental self-exposure, there should be little evidence to validate their actual identity, right? Wrong. The content of their message -- necessarily open for public consumption -- exposes an attack vector: stylometric analysis, or author profiling. In this paper, we dissect the technique of stylometry, discuss an antithetical counter-strategy in adversarial stylometry, and devise enhancements through Unicode steganography.
comment: 33 pages, 7 figures, 3 tables
♻ ☆ Detecting Early and Implicit Suicidal Ideation via Longitudinal and Information Environment Signals on Social Media
On social media, many individuals experiencing suicidal ideation (SI) do not disclose their distress explicitly. Instead, signs may surface indirectly through everyday posts or peer interactions. Detecting such implicit signals early is critical but remains challenging. We frame early and implicit SI as a forward-looking prediction task and develop a computational framework that models a user's information environment, consisting of both their longitudinal posting histories as well as the discourse of their socially proximal peers. We adopted a composite network centrality measure to identify top neighbors of a user, and temporally aligned the user's and neighbors' interactions -- integrating the multi-layered signals in a fine-tuned DeBERTa-v3 model. In a Reddit study of 1,000 (500 Case and 500 Control) users, our approach improves early and implicit SI detection by 15% over individual-only baselines. These findings highlight that peer interactions offer valuable predictive signals and carry broader implications for designing early detection systems that capture indirect as well as masked expressions of risk in online environments.
♻ ☆ LatentBreak: Jailbreaking Large Language Models through Latent Space Feedback
Jailbreaks are adversarial attacks designed to bypass the built-in safety mechanisms of large language models. Automated jailbreaks typically optimize an adversarial suffix or adapt long prompt templates by forcing the model to generate the initial part of a restricted or harmful response. In this work, we show that existing jailbreak attacks that leverage such mechanisms to unlock the model response can be detected by a straightforward perplexity-based filtering on the input prompt. To overcome this issue, we propose LatentBreak, a white-box jailbreak attack that generates natural adversarial prompts with low perplexity capable of evading such defenses. LatentBreak substitutes words in the input prompt with semantically-equivalent ones, preserving the initial intent of the prompt, instead of adding high-perplexity adversarial suffixes or long templates. These words are chosen by minimizing the distance in the latent space between the representation of the adversarial prompt and that of harmless requests. Our extensive evaluation shows that LatentBreak leads to shorter and low-perplexity prompts, thus outperforming competing jailbreak algorithms against perplexity-based filters on multiple safety-aligned models.
♻ ☆ Are You There God? Lightweight Narrative Annotation of Christian Fiction with LMs
In addition to its more widely studied cultural movements, American Evangelicalism has a well-developed but less externally visible literary side. Christian Fiction, however, has been little studied, and what scholarly attention there is has focused on the explosively popular Left Behind series. In this work, we use computational tools to provide both a broad topical overview of Christian Fiction as a genre and a more directed exploration of how its authors depict divine acts. Working with human annotators, we first developed a codebook for identifying "acts of God." We then adapted the codebook for use by a recent, lightweight LM with the assistance of a much larger model. The laptop-scale LM is largely capable of matching human annotations, even when the task is subtle and challenging. Using these annotations, we show that significant and meaningful differences exist between divine acts depicted by the Left Behind books and Christian Fiction more broadly.
comment: Accepted to CHR 2025
♻ ☆ Unstructured Evidence Attribution for Long Context Query Focused Summarization EMNLP 2025
Large language models (LLMs) are capable of generating coherent summaries from very long contexts given a user query, and extracting and citing evidence spans helps improve the trustworthiness of these summaries. Whereas previous work has focused on evidence citation with fixed levels of granularity (e.g. sentence, paragraph, document, etc.), we propose to extract unstructured (i.e., spans of any length) evidence in order to acquire more relevant and consistent evidence than in the fixed granularity case. We show how existing systems struggle to copy and properly cite unstructured evidence, which also tends to be "lost-in-the-middle". To help models perform this task, we create the Summaries with Unstructured Evidence Text dataset (SUnsET), a synthetic dataset generated using a novel pipeline, which can be used as training supervision for unstructured evidence summarization. We demonstrate across 5 LLMs and 4 datasets spanning human written, synthetic, single, and multi-document settings that LLMs adapted with SUnsET generate more relevant and factually consistent evidence with their summaries, extract evidence from more diverse locations in their context, and can generate more relevant and consistent summaries than baselines with no fine-tuning and fixed granularity evidence. We release SUnsET and our generation code to the public.
comment: EMNLP 2025 Main; 29 pages; 24 figures; 8 tables
♻ ☆ Epistemic Diversity and Knowledge Collapse in Large Language Models
Large language models (LLMs) tend to generate lexically, semantically, and stylistically homogenous texts. This poses a risk of knowledge collapse, where homogenous LLMs mediate a shrinking in the range of accessible information over time. Existing works on homogenization are limited by a focus on closed-ended multiple-choice setups or fuzzy semantic features, and do not look at trends across time and cultural contexts. To overcome this, we present a new methodology to measure epistemic diversity, i.e., variation in real-world claims in LLM outputs, which we use to perform a broad empirical study of LLM knowledge collapse. We test 27 LLMs, 155 topics covering 12 countries, and 200 prompt variations sourced from real user chats. For the topics in our study, we show that while newer models tend to generate more diverse claims, nearly all models are less epistemically diverse than a basic web search. We find that model size has a negative impact on epistemic diversity, while retrieval-augmented generation (RAG) has a positive impact, though the improvement from RAG varies by the cultural context. Finally, compared to a traditional knowledge source (Wikipedia), we find that country-specific claims reflect the English language more than the local one, highlighting a gap in epistemic representation
comment: 16 pages; 8 figures, 4 tables; v2 changelog: Fixed the modeling for table 3, random effect is the model version; v3 changelog: Fixed minor formatting issues in tables 2 and 3; v4 changelog: Fixed some typos and model description
♻ ☆ Dependency Structure Augmented Contextual Scoping Framework for Multimodal Aspect-Based Sentiment Analysis
Multimodal Aspect-Based Sentiment Analysis (MABSA) seeks to extract fine-grained information from image-text pairs to identify aspect terms and determine their sentiment polarity. However, existing approaches often fall short in simultaneously addressing three core challenges: Sentiment Cue Perception (SCP), Multimodal Information Misalignment (MIM), and Semantic Noise Elimination (SNE). To overcome these limitations, we propose DASCO (\textbf{D}ependency Structure \textbf{A}ugmented \textbf{Sco}ping Framework), a fine-grained scope-oriented framework that enhances aspect-level sentiment reasoning by leveraging dependency parsing trees. First, we designed a multi-task pretraining strategy for MABSA on our base model, combining aspect-oriented enhancement, image-text matching, and aspect-level sentiment-sensitive cognition. This improved the model's perception of aspect terms and sentiment cues while achieving effective image-text alignment, addressing key challenges like SCP and MIM. Furthermore, we incorporate dependency trees as syntactic branch combining with semantic branch, guiding the model to selectively attend to critical contextual elements within a target-specific scope while effectively filtering out irrelevant noise for addressing SNE problem. Extensive experiments on two benchmark datasets across three subtasks demonstrate that DASCO achieves state-of-the-art performance in MABSA, with notable gains in JMASA (+2.3\% F1 and +3.5\% precision on Twitter2015). The source code is available at https://github.com/LHaoooo/DASCO .
♻ ☆ PairUni: Pairwise Training for Unified Multimodal Language Models
Unified vision-language models (UVLMs) must perform both understanding and generation within a single architecture, but these tasks rely on heterogeneous data and supervision, making it difficult to balance them during reinforcement learning (RL). We propose PairUni, a unified framework that reorganizes data into understanding-generation (UG) pairs and aligns optimization accordingly. We first use GPT-o3 to augment single-task data, generating captions for understanding samples and question-answer (QA) pairs for generation samples, forming aligned pairs from the same instance. Additionally, for each generation sample, we retrieve a semantically related understanding example to form a retrieved pair, linking different but related data points. These paired structures expose cross-task semantic correspondences and support consistent policy learning. To leverage this structure, we present Pair-GPRO, a pair-aware variant based on Group Relative Policy Optimization. It assigns a similarity score to each pair to modulate the advantage, strengthening learning from well-aligned examples and reducing task interference. We curate a high-quality dataset of 16K UG pairs named PairUG for RL fine-tuning and evaluate PairUni on the powerful Janus-Pro UVLMs. Our approach achieves balanced improvements on various UVLMs, outperforming strong UVLM RL baselines. Codes are available at https://github.com/Haochen-Wang409/PairUni.
comment: 21 pages, 11 figures, and 8 tables
♻ ☆ Evaluating the Role of Verifiers in Test-Time Scaling for Legal Reasoning Tasks EMNLP
Test-time scaling (TTS) techniques can improve the performance of large language models (LLMs) at the expense of additional computation and latency. While TTS has proven effective in formal domains such as mathematics and programming, its value in argumentative domains such as law remains underexplored. We present an empirical study of verifier-based TTS methods for legal multiple-choice QA (MCQA) across five benchmarks. Using a family of 7 reward models, we evaluate both outcome-level (Best-of-$N$) and process-level (tree search) verification under realistic low-$N$ budgets. Our analysis systematically investigates how verifier utility is affected by key properties such as domain specialization, model size, and supervision type (process-supervised PRMs vs. outcome-only ORMs), even when applied across different roles.
comment: Accepted to EMNLP - NLLP Workshop
♻ ☆ MedAgentBoard: Benchmarking Multi-Agent Collaboration with Conventional Methods for Diverse Medical Tasks NeurIPS 2025
The rapid advancement of Large Language Models (LLMs) has stimulated interest in multi-agent collaboration for addressing complex medical tasks. However, the practical advantages of multi-agent collaboration approaches remain insufficiently understood. Existing evaluations often lack generalizability, failing to cover diverse tasks reflective of real-world clinical practice, and frequently omit rigorous comparisons against both single-LLM-based and established conventional methods. To address this critical gap, we introduce MedAgentBoard, a comprehensive benchmark for the systematic evaluation of multi-agent collaboration, single-LLM, and conventional approaches. MedAgentBoard encompasses four diverse medical task categories: (1) medical (visual) question answering, (2) lay summary generation, (3) structured Electronic Health Record (EHR) predictive modeling, and (4) clinical workflow automation, across text, medical images, and structured EHR data. Our extensive experiments reveal a nuanced landscape: while multi-agent collaboration demonstrates benefits in specific scenarios, such as enhancing task completeness in clinical workflow automation, it does not consistently outperform advanced single LLMs (e.g., in textual medical QA) or, critically, specialized conventional methods that generally maintain better performance in tasks like medical VQA and EHR-based prediction. MedAgentBoard offers a vital resource and actionable insights, emphasizing the necessity of a task-specific, evidence-based approach to selecting and developing AI solutions in medicine. It underscores that the inherent complexity and overhead of multi-agent collaboration must be carefully weighed against tangible performance gains. All code, datasets, detailed prompts, and experimental results are open-sourced at https://medagentboard.netlify.app/.
comment: Accepted by NeurIPS 2025 Datasets & Benchmarks Track
Information Retrieval 27
☆ ProfOlaf: Semi-Automated Tool for Systematic Literature Reviews
Systematic reviews and mapping studies are critical for synthesizing research, identifying gaps, and guiding future work, but they are often labor-intensive and time-consuming. Existing tools provide partial support for specific steps, leaving much of the process manual and error-prone. We present ProfOlaf, a semi-automated tool designed to streamline systematic reviews while maintaining methodological rigor. ProfOlaf supports iterative snowballing for article collection with human-in-the-loop filtering and uses large language models to assist in analyzing articles, extracting key topics, and answering queries about the content of papers. By combining automation with guided manual effort, ProfOlaf enhances the efficiency, quality, and reproducibility of systematic reviews across research fields. A video describing and demonstrating ProfOlaf is available at: https://youtu.be/4noUXfcmxsE
comment: 4 pages, 1 Figure, 2 tables
☆ Evaluating Perspectival Biases in Cross-Modal Retrieval
Multimodal retrieval systems are expected to operate in a semantic space, agnostic to the language or cultural origin of the query. In practice, however, retrieval outcomes systematically reflect perspectival biases: deviations shaped by linguistic prevalence and cultural associations. We study two such biases. First, prevalence bias refers to the tendency to favor entries from prevalent languages over semantically faithful entries in image-to-text retrieval. Second, association bias refers to the tendency to favor images culturally associated with the query over semantically correct ones in text-to-image retrieval. Results show that explicit alignment is a more effective strategy for mitigating prevalence bias. However, association bias remains a distinct and more challenging problem. These findings suggest that achieving truly equitable multimodal systems requires targeted strategies beyond simple data scaling and that bias arising from cultural association may be treated as a more challenging problem than one arising from linguistic prevalence.
☆ AdSum: Two-stream Audio-visual Summarization for Automated Video Advertisement Clipping
Advertisers commonly need multiple versions of the same advertisement (ad) at varying durations for a single campaign. The traditional approach involves manually selecting and re-editing shots from longer video ads to create shorter versions, which is labor-intensive and time-consuming. In this paper, we introduce a framework for automated video ad clipping using video summarization techniques. We are the first to frame video clipping as a shot selection problem, tailored specifically for advertising. Unlike existing general video summarization methods that primarily focus on visual content, our approach emphasizes the critical role of audio in advertising. To achieve this, we develop a two-stream audio-visual fusion model that predicts the importance of video frames, where importance is defined as the likelihood of a frame being selected in the firm-produced short ad. To address the lack of ad-specific datasets, we present AdSum204, a novel dataset comprising 102 pairs of 30-second and 15-second ads from real advertising campaigns. Extensive experiments demonstrate that our model outperforms state-of-the-art methods across various metrics, including Average Precision, Area Under Curve, Spearman, and Kendall.
comment: Accepted at 32nd International Conference on MultiMedia Modeling
☆ WeaveRec: An LLM-Based Cross-Domain Sequential Recommendation Framework with Model Merging
Cross-Domain Sequential Recommendation (CDSR) seeks to improve user preference modeling by transferring knowledge from multiple domains. Despite the progress made in CDSR, most existing methods rely on overlapping users or items to establish cross-domain correlations-a requirement that rarely holds in real-world settings. The advent of large language models (LLM) and model-merging techniques appears to overcome this limitation by unifying multi-domain data without explicit overlaps. Yet, our empirical study shows that naively training an LLM on combined domains-or simply merging several domain-specific LLMs-often degrades performance relative to a model trained solely on the target domain. To address these challenges, we first experimentally investigate the cause of suboptimal performance in LLM-based cross-domain recommendation and model merging. Building on these insights, we introduce WeaveRec, which cross-trains multiple LoRA modules with source and target domain data in a weaving fashion, and fuses them via model merging. WeaveRec can be extended to multi-source domain scenarios and notably does not introduce additional inference-time cost in terms of latency or memory. Furthermore, we provide a theoretical guarantee that WeaveRec can reduce the upper bound of the expected error in the target domain. Extensive experiments on single-source, multi-source, and cross-platform cross-domain recommendation scenarios validate that WeaveRec effectively mitigates performance degradation and consistently outperforms baseline approaches in real-world recommendation tasks.
☆ Inside CORE-KG: Evaluating Structured Prompting and Coreference Resolution for Knowledge Graphs ICDM 2025
Human smuggling networks are increasingly adaptive and difficult to analyze. Legal case documents offer critical insights but are often unstructured, lexically dense, and filled with ambiguous or shifting references, which pose significant challenges for automated knowledge graph (KG) construction. While recent LLM-based approaches improve over static templates, they still generate noisy, fragmented graphs with duplicate nodes due to the absence of guided extraction and coreference resolution. The recently proposed CORE-KG framework addresses these limitations by integrating a type-aware coreference module and domain-guided structured prompts, significantly reducing node duplication and legal noise. In this work, we present a systematic ablation study of CORE-KG to quantify the individual contributions of its two key components. Our results show that removing coreference resolution results in a 28.32% increase in node duplication and a 4.32% increase in noisy nodes, while removing structured prompts leads to a 4.34% increase in node duplication and a 73.33% increase in noisy nodes. These findings offer empirical insights for designing robust LLM-based pipelines for extracting structured representations from complex legal texts.
comment: ICDM 2025 Workshop
☆ LINK-KG: LLM-Driven Coreference-Resolved Knowledge Graphs for Human Smuggling Networks
Human smuggling networks are complex and constantly evolving, making them difficult to analyze comprehensively. Legal case documents offer rich factual and procedural insights into these networks but are often long, unstructured, and filled with ambiguous or shifting references, posing significant challenges for automated knowledge graph (KG) construction. Existing methods either overlook coreference resolution or fail to scale beyond short text spans, leading to fragmented graphs and inconsistent entity linking. We propose LINK-KG, a modular framework that integrates a three-stage, LLM-guided coreference resolution pipeline with downstream KG extraction. At the core of our approach is a type-specific Prompt Cache, which consistently tracks and resolves references across document chunks, enabling clean and disambiguated narratives for structured knowledge graph construction from both short and long legal texts. LINK-KG reduces average node duplication by 45.21% and noisy nodes by 32.22% compared to baseline methods, resulting in cleaner and more coherent graph structures. These improvements establish LINK-KG as a strong foundation for analyzing complex criminal networks.
comment: Accepted in ICKG 2025 Conference, 8 Pages, 2 Figures
☆ Vectorized Context-Aware Embeddings for GAT-Based Collaborative Filtering
Recommender systems often struggle with data sparsity and cold-start scenarios, limiting their ability to provide accurate suggestions for new or infrequent users. This paper presents a Graph Attention Network (GAT) based Collaborative Filtering (CF) framework enhanced with Large Language Model (LLM) driven context aware embeddings. Specifically, we generate concise textual user profiles and unify item metadata (titles, genres, overviews) into rich textual embeddings, injecting these as initial node features in a bipartite user item graph. To further optimize ranking performance, we introduce a hybrid loss function that combines Bayesian Personalized Ranking (BPR) with a cosine similarity term and robust negative sampling, ensuring explicit negative feedback is distinguished from unobserved data. Experiments on the MovieLens 100k and 1M datasets show consistent improvements over state-of-the-art baselines in Precision, NDCG, and MAP while demonstrating robustness for users with limited interaction history. Ablation studies confirm the critical role of LLM-augmented embeddings and the cosine similarity term in capturing nuanced semantic relationships. Our approach effectively mitigates sparsity and cold-start limitations by integrating LLM-derived contextual understanding into graph-based architectures. Future directions include balancing recommendation accuracy with coverage and diversity, and introducing fairness-aware constraints and interpretability features to enhance system performance further.
☆ Barlow Twins for Sequential Recommendation
Sequential recommendation models must navigate sparse interaction data popularity bias and conflicting objectives like accuracy versus diversity While recent contrastive selfsupervised learning SSL methods offer improved accuracy they come with tradeoffs large batch requirements reliance on handcrafted augmentations and negative sampling that can reinforce popularity bias In this paper we introduce BT-SR a novel noncontrastive SSL framework that integrates the Barlow Twins redundancyreduction principle into a Transformerbased nextitem recommender BTSR learns embeddings that align users with similar shortterm behaviors while preserving longterm distinctionswithout requiring negative sampling or artificial perturbations This structuresensitive alignment allows BT-SR to more effectively recognize emerging user intent and mitigate the influence of noisy historical context Our experiments on five public benchmarks demonstrate that BTSR consistently improves nextitem prediction accuracy and significantly enhances longtail item coverage and recommendation calibration Crucially we show that a single hyperparameter can control the accuracydiversity tradeoff enabling practitioners to adapt recommendations to specific application needs
☆ GraphCompliance: Aligning Policy and Context Graphs for LLM-Based Regulatory Compliance
Compliance at web scale poses practical challenges: each request may require a regulatory assessment. Regulatory texts (e.g., the General Data Protection Regulation, GDPR) are cross-referential and normative, while runtime contexts are expressed in unstructured natural language. This setting motivates us to align semantic information in unstructured text with the structured, normative elements of regulations. To this end, we introduce GraphCompliance, a framework that represents regulatory texts as a Policy Graph and runtime contexts as a Context Graph, and aligns them. In this formulation, the policy graph encodes normative structure and cross-references, whereas the context graph formalizes events as subject-action-object (SAO) and entity-relation triples. This alignment anchors the reasoning of a judge large language model (LLM) in structured information and helps reduce the burden of regulatory interpretation and event parsing, enabling a focus on the core reasoning step. In experiments on 300 GDPR-derived real-world scenarios spanning five evaluation tasks, GraphCompliance yields 4.1-7.2 percentage points (pp) higher micro-F1 than LLM-only and RAG baselines, with fewer under- and over-predictions, resulting in higher recall and lower false positive rates. Ablation studies indicate contributions from each graph component, suggesting that structured representations and a judge LLM are complementary for normative reasoning.
comment: Under review at The Web Conference 2026 (Semantics & Knowledge track). Code will be released upon acceptance. This arXiv v1 contains no repository links to preserve double-blind review
☆ DiSE: A diffusion probabilistic model for automatic structure elucidation of organic compounds
Automatic structure elucidation is essential for self-driving laboratories as it enables the system to achieve truly autonomous. This capability closes the experimental feedback loop, ensuring that machine learning models receive reliable structure information for real-time decision-making and optimization. Herein, we present DiSE, an end-to-end diffusion-based generative model that integrates multiple spectroscopic modalities, including MS, 13C and 1H chemical shifts, HSQC, and COSY, to achieve automated yet accurate structure elucidation of organic compounds. By learning inherent correlations among spectra through data-driven approaches, DiSE achieves superior accuracy, strong generalization across chemically diverse datasets, and robustness to experimental data despite being trained on calculated spectra. DiSE thus represents a significant advance toward fully automated structure elucidation, with broad potential in natural product research, drug discovery, and self-driving laboratories.
☆ ReaKase-8B: Legal Case Retrieval via Knowledge and Reasoning Representations with LLMs
Legal case retrieval (LCR) is a cornerstone of real-world legal decision making, as it enables practitioners to identify precedents for a given query case. Existing approaches mainly rely on traditional lexical models and pretrained language models to encode the texts of legal cases. Yet there are rich information in the relations among different legal entities as well as the crucial reasoning process that uncovers how legal facts and legal issues can lead to judicial decisions. Such relational reasoning process reflects the distinctive characteristics of each case that can distinguish one from another, mirroring the real-world judicial process. Naturally, incorporating such information into the precise case embedding could further enhance the accuracy of case retrieval. In this paper, a novel ReaKase-8B framework is proposed to leverage extracted legal facts, legal issues, legal relation triplets and legal reasoning for effective legal case retrieval. ReaKase-8B designs an in-context legal case representation learning paradigm with a fine-tuned large language model. Extensive experiments on two benchmark datasets from COLIEE 2022 and COLIEE 2023 demonstrate that our knowledge and reasoning augmented embeddings substantially improve retrieval performance over baseline models, highlighting the potential of integrating legal reasoning into legal case retrieval systems. The code has been released on https://github.com/yanran-tang/ReaKase-8B.
☆ OneTrans: Unified Feature Interaction and Sequence Modeling with One Transformer in Industrial Recommender
In recommendation systems, scaling up feature-interaction modules (e.g., Wukong, RankMixer) or user-behavior sequence modules (e.g., LONGER) has achieved notable success. However, these efforts typically proceed on separate tracks, which not only hinders bidirectional information exchange but also prevents unified optimization and scaling. In this paper, we propose OneTrans, a unified Transformer backbone that simultaneously performs user-behavior sequence modeling and feature interaction. OneTrans employs a unified tokenizer to convert both sequential and non-sequential attributes into a single token sequence. The stacked OneTrans blocks share parameters across similar sequential tokens while assigning token-specific parameters to non-sequential tokens. Through causal attention and cross-request KV caching, OneTrans enables precomputation and caching of intermediate representations, significantly reducing computational costs during both training and inference. Experimental results on industrial-scale datasets demonstrate that OneTrans scales efficiently with increasing parameters, consistently outperforms strong baselines, and yields a 5.68% lift in per-user GMV in online A/B tests.
☆ ORBIT -- Open Recommendation Benchmark for Reproducible Research with Hidden Tests NeurIPS 2025
Recommender systems are among the most impactful AI applications, interacting with billions of users every day, guiding them to relevant products, services, or information tailored to their preferences. However, the research and development of recommender systems are hindered by existing datasets that fail to capture realistic user behaviors and inconsistent evaluation settings that lead to ambiguous conclusions. This paper introduces the Open Recommendation Benchmark for Reproducible Research with HIdden Tests (ORBIT), a unified benchmark for consistent and realistic evaluation of recommendation models. ORBIT offers a standardized evaluation framework of public datasets with reproducible splits and transparent settings for its public leaderboard. Additionally, ORBIT introduces a new webpage recommendation task, ClueWeb-Reco, featuring web browsing sequences from 87 million public, high-quality webpages. ClueWeb-Reco is a synthetic dataset derived from real, user-consented, and privacy-guaranteed browsing data. It aligns with modern recommendation scenarios and is reserved as the hidden test part of our leaderboard to challenge recommendation models' generalization ability. ORBIT measures 12 representative recommendation models on its public benchmark and introduces a prompted LLM baseline on the ClueWeb-Reco hidden test. Our benchmark results reflect general improvements of recommender systems on the public datasets, with variable individual performances. The results on the hidden test reveal the limitations of existing approaches in large-scale webpage recommendation and highlight the potential for improvements with LLM integrations. ORBIT benchmark, leaderboard, and codebase are available at https://www.open-reco-bench.ai.
comment: Accepted to NeurIPS 2025 Datasets & Benchmarks track
♻ ☆ OpenZL: A Graph-Based Model for Compression
Research techniques in the last decade have improved lossless compression ratios by significantly increasing processing time. These techniques have remained obscure because production systems require high throughput and low resource utilization. In practice, application-specific compression algorithms that leverage knowledge of the data structure and semantics are more popular. Application-specific compressor systems outperform even the best generic compressors, but these techniques have some drawbacks. Application-specific compressors are inherently limited in applicability, have high development costs, and are difficult to maintain and deploy. In this work, we show that these challenges can be overcome with a new compression strategy. We propose the "graph model" of compression, a new theoretical framework for representing compression as a directed acyclic graph of modular codecs. OpenZL compresses data into a self-describing wire format, any configuration of which can be decompressed by a universal decoder. OpenZL's design enables rapid development of tailored compressors with minimal code; its universal decoder eliminates deployment lag; and its investment in a well-vetted standard component library minimizes security risks. Experimental results demonstrate that OpenZL achieves superior compression ratios and speeds compared to state-of-the-art general-purpose compressors on a variety of real-world datasets. Internal deployments at Meta have also shown consistent improvements in size and/or speed, with development timelines reduced from months to days. OpenZL thus represents a significant advance in practical, scalable, and maintainable data compression for modern data-intensive applications.
♻ ☆ Quality Over Quantity? LLM-Based Curation for a Data-Efficient Audio-Video Foundation Model
Integrating audio and visual data for training multimodal foundational models remains a challenge. The Audio-Video Vector Alignment (AVVA) framework addresses this by considering AV scene alignment beyond mere temporal synchronization, and leveraging Large Language Models (LLMs) for data curation. AVVA implements a scoring mechanism for selecting aligned training data segments. It integrates Whisper, a speech-based foundation model, for audio and DINOv2 for video analysis in a dual-encoder structure with contrastive learning on AV pairs. Evaluations on AudioCaps, VALOR, and VGGSound demonstrate the effectiveness of the proposed model architecture and data curation approach. AVVA achieves a significant improvement in top-k accuracies for video-to-audio retrieval on all datasets compared to DenseAV, while using only 192 hrs of curated training data. Furthermore, an ablation study indicates that the data curation process effectively trades data quality for data quantity, yielding increases in top-k retrieval accuracies on AudioCaps, VALOR, and VGGSound, compared to training on the full spectrum of uncurated data.
comment: 5 pages, 5 figures, 2 tables. Accepted at EUSIPCO 2025
♻ ☆ Unveiling Unicode's Unseen Underpinnings in Undermining Authorship Attribution
When using a public communication channel -- whether formal or informal, such as commenting or posting on social media -- end users have no expectation of privacy: they compose a message and broadcast it for the world to see. Even if an end user takes utmost precautions to anonymize their online presence -- using an alias or pseudonym; masking their IP address; spoofing their geolocation; concealing their operating system and user agent; deploying encryption; registering with a disposable phone number or email; disabling non-essential settings; revoking permissions; and blocking cookies and fingerprinting -- one obvious element still lingers: the message itself. Assuming they avoid lapses in judgment or accidental self-exposure, there should be little evidence to validate their actual identity, right? Wrong. The content of their message -- necessarily open for public consumption -- exposes an attack vector: stylometric analysis, or author profiling. In this paper, we dissect the technique of stylometry, discuss an antithetical counter-strategy in adversarial stylometry, and devise enhancements through Unicode steganography.
comment: 33 pages, 7 figures, 3 tables
♻ ☆ Unstructured Evidence Attribution for Long Context Query Focused Summarization EMNLP 2025
Large language models (LLMs) are capable of generating coherent summaries from very long contexts given a user query, and extracting and citing evidence spans helps improve the trustworthiness of these summaries. Whereas previous work has focused on evidence citation with fixed levels of granularity (e.g. sentence, paragraph, document, etc.), we propose to extract unstructured (i.e., spans of any length) evidence in order to acquire more relevant and consistent evidence than in the fixed granularity case. We show how existing systems struggle to copy and properly cite unstructured evidence, which also tends to be "lost-in-the-middle". To help models perform this task, we create the Summaries with Unstructured Evidence Text dataset (SUnsET), a synthetic dataset generated using a novel pipeline, which can be used as training supervision for unstructured evidence summarization. We demonstrate across 5 LLMs and 4 datasets spanning human written, synthetic, single, and multi-document settings that LLMs adapted with SUnsET generate more relevant and factually consistent evidence with their summaries, extract evidence from more diverse locations in their context, and can generate more relevant and consistent summaries than baselines with no fine-tuning and fixed granularity evidence. We release SUnsET and our generation code to the public.
comment: EMNLP 2025 Main; 29 pages; 24 figures; 8 tables
♻ ☆ Epistemic Diversity and Knowledge Collapse in Large Language Models
Large language models (LLMs) tend to generate lexically, semantically, and stylistically homogenous texts. This poses a risk of knowledge collapse, where homogenous LLMs mediate a shrinking in the range of accessible information over time. Existing works on homogenization are limited by a focus on closed-ended multiple-choice setups or fuzzy semantic features, and do not look at trends across time and cultural contexts. To overcome this, we present a new methodology to measure epistemic diversity, i.e., variation in real-world claims in LLM outputs, which we use to perform a broad empirical study of LLM knowledge collapse. We test 27 LLMs, 155 topics covering 12 countries, and 200 prompt variations sourced from real user chats. For the topics in our study, we show that while newer models tend to generate more diverse claims, nearly all models are less epistemically diverse than a basic web search. We find that model size has a negative impact on epistemic diversity, while retrieval-augmented generation (RAG) has a positive impact, though the improvement from RAG varies by the cultural context. Finally, compared to a traditional knowledge source (Wikipedia), we find that country-specific claims reflect the English language more than the local one, highlighting a gap in epistemic representation
comment: 16 pages; 8 figures, 4 tables; v2 changelog: Fixed the modeling for table 3, random effect is the model version; v3 changelog: Fixed minor formatting issues in tables 2 and 3; v4 changelog: Fixed some typos and model description
♻ ☆ RecCocktail: A Generalizable and Efficient Framework for LLM-Based Recommendation
Large Language Models (LLMs) have achieved remarkable success in recent years, owing to their impressive generalization capabilities and rich world knowledge. To capitalize on the potential of using LLMs as recommender systems, mainstream approaches typically focus on two paradigms. The first paradigm designs multi-domain or multi-task instruction data for generalizable recommendation, so as to align LLMs with general recommendation areas and deal with cold-start recommendation. The second paradigm focuses on enhancing domain-specific recommendation tasks, improving performance in warm recommendation scenarios. While most previous works treat these two paradigms separately, we argue that they have complementary advantages, and combining them can yield better results. In this paper, we propose a generalizable and efficient LLM-based recommendation framework RecCocktail. Our approach begins with fine-tuning a "base spirit" LoRA module using domain-general recommendation instruction data to align LLM with recommendation knowledge. Next, given users' behavior of a specific domain, we construct a domain-specific "ingredient" LoRA module. We then provide an entropy-guided adaptive merging method to mix the "base spirit" and the "ingredient" in the weight space. Please note that, RecCocktail combines the advantages of the existing two paradigms without introducing additional time or space overhead during the inference phase. Moreover, RecCocktail is efficient with plug and play, as the "base spirit" LoRA is trained only once, and any domain-specific "ingredient" can be efficiently mixed with only domain-specific fine-tuning. Extensive experiments on multiple datasets under both warm and cold-start recommendation scenarios validate the effectiveness and generality of the proposed RecCocktail.
♻ ☆ On-the-Fly OVD Adaptation with FLAME: Few-shot Localization via Active Marginal-Samples Exploration
Open-vocabulary object detection (OVD) models offer remarkable flexibility by detecting objects from arbitrary text queries. However, their zero-shot performance in specialized domains like Remote Sensing (RS) is often compromised by the inherent ambiguity of natural language, limiting critical downstream applications. For instance, an OVD model may struggle to distinguish between fine-grained classes such as "fishing boat" and "yacht" since their embeddings are similar and often inseparable. This can hamper specific user goals, such as monitoring illegal fishing, by producing irrelevant detections. To address this, we propose a cascaded approach that couples the broad generalization of a large pre-trained OVD model with a lightweight few-shot classifier. Our method first employs the zero-shot model to generate high-recall object proposals. These proposals are then refined for high precision by a compact classifier trained in real-time on only a handful of user-annotated examples - drastically reducing the high costs of RS imagery annotation.The core of our framework is FLAME, a one-step active learning strategy that selects the most informative samples for training. FLAME identifies, on the fly, uncertain marginal candidates near the decision boundary using density estimation, followed by clustering to ensure sample diversity. This efficient sampling technique achieves high accuracy without costly full-model fine-tuning and enables instant adaptation, within less then a minute, which is significantly faster than state-of-the-art alternatives.Our method consistently surpasses state-of-the-art performance on RS benchmarks, establishing a practical and resource-efficient framework for adapting foundation models to specific user needs.
♻ ☆ Model-Document Protocol for AI Search
AI search depends on linking large language models (LLMs) with vast external knowledge sources. Yet web pages, PDF files, and other raw documents are not inherently LLM-ready: they are long, noisy, and unstructured. Conventional retrieval methods treat these documents as verbatim text and return raw passages, leaving the burden of fragment assembly and contextual reasoning to the LLM. This gap underscores the need for a new retrieval paradigm that redefines how models interact with documents. We introduce the Model-Document Protocol (MDP), a general framework that formalizes how raw text is bridged to LLMs through consumable knowledge representations. Rather than treating retrieval as passage fetching, MDP defines multiple pathways that transform unstructured documents into task-specific, LLM-ready inputs. These include agentic reasoning, which curates raw evidence into coherent context; memory grounding, which accumulates reusable notes to enrich reasoning; and structured leveraging, which encodes documents into formal representations such as graphs or key-value caches. All three pathways share the same goal: ensuring that what reaches the LLM is not raw fragments but compact, structured knowledge directly consumable for reasoning. As an instantiation, we present MDP-Agent, which realizes the protocol through an agentic process: constructing document-level gist memories for global coverage, performing diffusion-based exploration with vertical exploitation to uncover layered dependencies, and applying map-reduce style synthesis to integrate large-scale evidence into compact yet sufficient context. Experiments on information-seeking benchmarks demonstrate that MDP-Agent outperforms baselines, validating both the soundness of the MDP framework and the effectiveness of its agentic instantiation.
comment: 10 pages
♻ ☆ The RAG Paradox: A Black-Box Attack Exploiting Unintentional Vulnerabilities in Retrieval-Augmented Generation Systems
With the growing adoption of retrieval-augmented generation (RAG) systems, various attack methods have been proposed to degrade their performance. However, most existing approaches rely on unrealistic assumptions in which external attackers have access to internal components such as the retriever. To address this issue, we introduce a realistic black-box attack based on the RAG paradox, a structural vulnerability arising from the system's effort to enhance trust by revealing both the retrieved documents and their sources to users. This transparency enables attackers to observe which sources are used and how information is phrased, allowing them to craft poisoned documents that are more likely to be retrieved and upload them to the identified sources. Moreover, as RAG systems directly provide retrieved content to users, these documents must not only be retrievable but also appear natural and credible to maintain user confidence in the search results. Unlike prior work that focuses solely on improving document retrievability, our attack method explicitly considers both retrievability and user trust in the retrieved content. Both offline and online experiments demonstrate that our method significantly degrades system performance without internal access, while generating natural-looking poisoned documents.
♻ ☆ Shilling Recommender Systems by Generating Side-feature-aware Fake User Profiles
Recommender systems (RS) greatly influence users' consumption decisions, making them attractive targets for malicious shilling attacks that inject fake user profiles to manipulate recommendations. Existing shilling methods can generate effective and stealthy fake profiles when training data only contain rating matrix, but they lack comprehensive solutions for scenarios where side features are present and utilized by the recommender. To address this gap, we extend the Leg-UP framework by enhancing the generator architecture to incorporate side features, enabling the generation of side-feature-aware fake user profiles. Experiments on benchmarks show that our method achieves strong attack performance while maintaining stealthiness.
♻ ☆ MMQ-v2: Align, Denoise, and Amplify: Adaptive Behavior Mining for Semantic IDs Learning in Recommendation
Industrial recommender systems rely on unique Item Identifiers (ItemIDs). However, this method struggles with scalability and generalization in large, dynamic datasets that have sparse long-tail data. Content-based Semantic IDs (SIDs) address this by sharing knowledge through content quantization. However, by ignoring dynamic behavioral properties, purely content-based SIDs have limited expressive power. Existing methods attempt to incorporate behavioral information but overlook a critical distinction: unlike relatively uniform content features, user-item interactions are highly skewed and diverse, creating a vast information gap in quality and quantity between popular and long-tail items. This oversight leads to two critical limitations: (1) Noise Corruption: Indiscriminate behavior-content alignment allows collaborative noise from long-tail items to corrupt their content representations, leading to the loss of critical multimodal information. (2)Signal Obscurity: The equal-weighting scheme for SIDs fails to reflect the varying importance of different behavioral signals, making it difficult for downstream tasks to distinguish important SIDs from uninformative ones. To tackle these issues, we propose a mixture-of-quantization framework, MMQ-v2, to adaptively Align, Denoise, and Amplify multimodal information from content and behavior modalities for semantic IDs learning. The semantic IDs generated by this framework named ADA-SID. It introduces two innovations: an adaptive behavior-content alignment that is aware of information richness to shield representations from noise, and a dynamic behavioral router to amplify critical signals by applying different weights to SIDs. Extensive experiments on public and large-scale industrial datasets demonstrate ADA-SID's significant superiority in both generative and discriminative recommendation tasks.
♻ ☆ Towards Automated Quality Assurance of Patent Specifications: A Multi-Dimensional LLM Framework
Although AI drafting tools have gained prominence in patent writing, the systematic evaluation of AI-generated patent content quality represents a significant research gap. To address this gap, We propose to evaluate patents using regulatory compliance, technical coherence, and figure-reference consistency detection modules, and then generate improvement suggestions via an integration module. The framework is validated on a comprehensive dataset comprising 80 human-authored and 80 AI-generated patents from two patent drafting tools. Evaluation is performed on 10,841 total sentences, 8,924 non-template sentences, and 554 patent figures for the three detection modules respectively, achieving balanced accuracies of 99.74%, 82.12%, and 91.2% against expert annotations. Additional analysis was conducted to examine defect distributions across patent sections, technical domains, and authoring sources. Section-based analysis indicates that figure-text consistency and technical detail precision require particular attention. Mechanical Engineering and Construction show more claim-specification inconsistencies due to complex technical documentation requirements. AI-generated patents show a significant gap compared to human-authored ones. While human-authored patents primarily contain surface-level errors like typos, AI-generated patents exhibit more structural defects in figure-text alignment and cross-references.
♻ ☆ Decoupled Multimodal Fusion for User Interest Modeling in Click-Through Rate Prediction
Modern industrial recommendation systems improve recommendation performance by integrating multimodal representations from pre-trained models into ID-based Click-Through Rate (CTR) prediction frameworks. However, existing approaches typically adopt modality-centric modeling strategies that process ID-based and multimodal embeddings independently, failing to capture fine-grained interactions between content semantics and behavioral signals. In this paper, we propose Decoupled Multimodal Fusion (DMF), which introduces a modality-enriched modeling strategy to enable fine-grained interactions between ID-based collaborative representations and multimodal representations for user interest modeling. Specifically, we construct target-aware features to bridge the semantic gap across different embedding spaces and leverage them as side information to enhance the effectiveness of user interest modeling. Furthermore, we design an inference-optimized attention mechanism that decouples the computation of target-aware features and ID-based embeddings before the attention layer, thereby alleviating the computational bottleneck introduced by incorporating target-aware features. To achieve comprehensive multimodal integration, DMF combines user interest representations learned under the modality-centric and modality-enriched modeling strategies. Offline experiments on public and industrial datasets demonstrate the effectiveness of DMF. Moreover, DMF has been deployed on the product recommendation system of the international e-commerce platform Lazada, achieving relative improvements of 5.30% in CTCVR and 7.43% in GMV with negligible computational overhead.
♻ ☆ A Task-Centric Perspective on Recommendation Systems
Many studies in recommender systems (RecSys) adopt a general problem definition, i.e., to recommend preferred items to users based on past interactions. Such abstraction often lacks the domain-specific nuances necessary for practical deployment. However, models are frequently evaluated using datasets collected from online recommender platforms, which inherently reflect domain or task specificities. In this paper, we analyze RecSys task formulations, emphasizing key components such as input-output structures, temporal dynamics, and candidate item selection. All these factors directly impact offline evaluation. We further examine the complexities of user-item interactions, including decision-making costs, multi-step engagements, and unobservable interactions, which may influence model design. Additionally, we explore the balance between task specificity and model generalizability, highlighting how well-defined task formulations serve as the foundation for robust evaluation and effective solution development. By clarifying task definitions and their implications, this work provides a structured perspective on RecSys research. The goal is to help researchers better navigate the field, particularly in understanding specificities of the RecSys tasks and ensuring fair and meaningful evaluations.
Information Retrieval 17
☆ The Quest for Reliable Metrics of Responsible AI
The development of Artificial Intelligence (AI), including AI in Science (AIS), should be done following the principles of responsible AI. Progress in responsible AI is often quantified through evaluation metrics, yet there has been less work on assessing the robustness and reliability of the metrics themselves. We reflect on prior work that examines the robustness of fairness metrics for recommender systems as a type of AI application and summarise their key takeaways into a set of non-exhaustive guidelines for developing reliable metrics of responsible AI. Our guidelines apply to a broad spectrum of AI applications, including AIS.
comment: Accepted for presentation at the AI in Science Summit 2025
☆ Retrieval-Augmented Search for Large-Scale Map Collections with ColPali
Multimodal approaches have shown great promise for searching and navigating digital collections held by libraries, archives, and museums. In this paper, we introduce map-RAS: a retrieval-augmented search system for historic maps. In addition to introducing our framework, we detail our publicly-hosted demo for searching 101,233 map images held by the Library of Congress. With our system, users can multimodally query the map collection via ColPali, summarize search results using Llama 3.2, and upload their own collections to perform inter-collection search. We articulate potential use cases for archivists, curators, and end-users, as well as future work with our system in both machine learning and the digital humanities. Our demo can be viewed at: http://www.mapras.com.
comment: 5 pages, 5 figures
☆ FARSIQA: Faithful and Advanced RAG System for Islamic Question Answering
The advent of Large Language Models (LLMs) has revolutionized Natural Language Processing, yet their application in high-stakes, specialized domains like religious question answering is hindered by challenges like hallucination and unfaithfulness to authoritative sources. This issue is particularly critical for the Persian-speaking Muslim community, where accuracy and trustworthiness are paramount. Existing Retrieval-Augmented Generation (RAG) systems, relying on simplistic single-pass pipelines, fall short on complex, multi-hop queries requiring multi-step reasoning and evidence aggregation. To address this gap, we introduce FARSIQA, a novel, end-to-end system for Faithful Advanced Question Answering in the Persian Islamic domain. FARSIQA is built upon our innovative FAIR-RAG architecture: a Faithful, Adaptive, Iterative Refinement framework for RAG. FAIR-RAG employs a dynamic, self-correcting process: it adaptively decomposes complex queries, assesses evidence sufficiency, and enters an iterative loop to generate sub-queries, progressively filling information gaps. Operating on a curated knowledge base of over one million authoritative Islamic documents, FARSIQA demonstrates superior performance. Rigorous evaluation on the challenging IslamicPCQA benchmark shows state-of-the-art performance: the system achieves a remarkable 97.0% in Negative Rejection - a 40-point improvement over baselines - and a high Answer Correctness score of 74.3%. Our work establishes a new standard for Persian Islamic QA and validates that our iterative, adaptive architecture is crucial for building faithful, reliable AI systems in sensitive domains.
comment: 37 pages, 5 figures, 10 tables. Keywords: Retrieval-Augmented Generation (RAG), Question Answering (QA), Islamic Knowledge Base, Faithful AI, Persian NLP, Multi-hop Reasoning, Large Language Models (LLMs)
☆ Generalized Pseudo-Relevance Feedback
Query rewriting is a fundamental technique in information retrieval (IR). It typically employs the retrieval result as relevance feedback to refine the query and thereby addresses the vocabulary mismatch between user queries and relevant documents. Traditional pseudo-relevance feedback (PRF) and its vector-based extension (VPRF) improve retrieval performance by leveraging top-retrieved documents as relevance feedback. However, they are constructed based on two major hypotheses: the relevance assumption (top documents are relevant) and the model assumption (rewriting methods need to be designed specifically for particular model architectures). While recent large language models (LLMs)-based generative relevance feedback (GRF) enables model-free query reformulation, it either suffers from severe LLM hallucination or, again, relies on the relevance assumption to guarantee the effectiveness of rewriting quality. To overcome these limitations, we introduce an assumption-relaxed framework: \textit{Generalized Pseudo Relevance Feedback} (GPRF), which performs model-free, natural language rewriting based on retrieved documents, not only eliminating the model assumption but also reducing dependence on the relevance assumption. Specifically, we design a utility-oriented training pipeline with reinforcement learning to ensure robustness against noisy feedback. Extensive experiments across multiple benchmarks and retrievers demonstrate that GPRF consistently outperforms strong baselines, establishing it as an effective and generalizable framework for query rewriting.
☆ Alibaba International E-commerce Product Search Competition DcuRAGONs Team Technical Report CIKM 2025
This report details our methodology and results developed for the Multilingual E-commerce Search Competition. The problem aims to recognize relevance between user queries versus product items in a multilingual context and improve recommendation performance on e-commerce platforms. Utilizing Large Language Models (LLMs) and their capabilities in other tasks, our data-centric method achieved the highest score compared to other solutions during the competition. Final leaderboard is publised at https://alibaba-international-cikm2025.github.io. The source code for our project is published at https://github.com/nhtlongcs/e-commerce-product-search.
comment: Alibaba International E-commerce Product Search Competition @ CIKM 2025
☆ DGAI: Decoupled On-Disk Graph-Based ANN Index for Efficient Updates and Queries
On-disk graph-based indexes are widely used in approximate nearest neighbor (ANN) search systems for large-scale, high-dimensional vectors. However, traditional coupled storage methods, which store vectors within the index, are inefficient for index updates. Coupled storage incurs excessive redundant vector reads and writes when updating the graph topology, leading to significant invalid I/O. To address this issue, we propose a decoupled storage architecture. While a decoupled architecture reduces query performance. To overcome this limitation, we design two tailored strategies: (i) a three-stage query mechanism that leverages multiple PQ compressed vectors to filter invalid I/O and computations, and (ii) an incremental page-level topological reordering strategy that incrementally inserts new nodes into pages containing their most similar neighbors to mitigate read amplification. Together, these techniques substantially reduce both I/O and computational overhead during ANN search. Experimental results show that the decoupled architecture improves update speed by 10.05x for insertions and 6.89x for deletions, while the three-stage query and incremental reordering enhance query efficiency by 2.66x compared to the traditional coupled architecture.
comment: 12 pages
☆ Revisiting scalable sequential recommendation with Multi-Embedding Approach and Mixture-of-Experts
In recommendation systems, how to effectively scale up recommendation models has been an essential research topic. While significant progress has been made in developing advanced and scalable architectures for sequential recommendation(SR) models, there are still challenges due to items' multi-faceted characteristics and dynamic item relevance in the user context. To address these issues, we propose Fuxi-MME, a framework that integrates a multi-embedding strategy with a Mixture-of-Experts (MoE) architecture. Specifically, to efficiently capture diverse item characteristics in a decoupled manner, we decompose the conventional single embedding matrix into several lower-dimensional embedding matrices. Additionally, by substituting relevant parameters in the Fuxi Block with an MoE layer, our model achieves adaptive and specialized transformation of the enriched representations. Empirical results on public datasets show that our proposed framework outperforms several competitive baselines.
☆ Measuring the Research Output and Performance of the University of Ibadan from 2014 to 2023: A Scientometric Analysis
This study employs scientometric methods to assess the research output and performance of the University of Ibadan from 2014 to 2023. By analyzing publication trends, citation patterns, and collaboration networks, the research aims to comprehensively evaluate the university's research productivity, impact, and disciplinary focus. This article's endeavors are characterized by innovation, interdisciplinary collaboration, and commitment to excellence, making the University of Ibadan a significant hub for cutting-edge research in Nigeria and beyond. The goal of the current study is to ascertain the influence of the university's research output and publication patterns between 2014 and 2023. The study focuses on the departments at the University of Ibadan that contribute the most, the best journals for publishing, the nations that collaborate, the impact of citations both locally and globally, well-known authors and their total production, and the research output broken down by year. According to the university's ten-year publication data, 7159 papers with an h-index of 75 were published between 2014 and 2023, garnering 218572 citations. Furthermore, the VOSviewer software mapping approach is used to illustrate the stenographical mapping of data through graphs. The findings of this study will contribute to understanding the university's research strengths, weaknesses, and potential areas for improvement. Additionally, the results will inform evidence-based decision-making for enhancing research strategies and policies at the University of Ibadan.
comment: 16 pages, 5 figures, Research Paper
☆ TV-Rec: Time-Variant Convolutional Filter for Sequential Recommendation NeurIPS 2025
Recently, convolutional filters have been increasingly adopted in sequential recommendation for their ability to capture local sequential patterns. However, most of these models complement convolutional filters with self-attention. This is because convolutional filters alone, generally fixed filters, struggle to capture global interactions necessary for accurate recommendation. We propose Time-Variant Convolutional Filters for Sequential Recommendation (TV-Rec), a model inspired by graph signal processing, where time-variant graph filters capture position-dependent temporal variations in user sequences. By replacing both fixed kernels and self-attention with time-variant filters, TV-Rec achieves higher expressive power and better captures complex interaction patterns in user behavior. This design not only eliminates the need for self-attention but also reduces computation while accelerating inference. Extensive experiments on six public benchmarks show that TV-Rec outperforms state-of-the-art baselines by an average of 7.49%.
comment: The 39th Conference on Neural Information Processing Systems (NeurIPS 2025)
☆ GReF: A Unified Generative Framework for Efficient Reranking via Ordered Multi-token Prediction CIKM 2025
In a multi-stage recommendation system, reranking plays a crucial role in modeling intra-list correlations among items. A key challenge lies in exploring optimal sequences within the combinatorial space of permutations. Recent research follows a two-stage (generator-evaluator) paradigm, where a generator produces multiple feasible sequences, and an evaluator selects the best one. In practice, the generator is typically implemented as an autoregressive model. However, these two-stage methods face two main challenges. First, the separation of the generator and evaluator hinders end-to-end training. Second, autoregressive generators suffer from inference efficiency. In this work, we propose a Unified Generative Efficient Reranking Framework (GReF) to address the two primary challenges. Specifically, we introduce Gen-Reranker, an autoregressive generator featuring a bidirectional encoder and a dynamic autoregressive decoder to generate causal reranking sequences. Subsequently, we pre-train Gen-Reranker on the item exposure order for high-quality parameter initialization. To eliminate the need for the evaluator while integrating sequence-level evaluation during training for end-to-end optimization, we propose post-training the model through Rerank-DPO. Moreover, for efficient autoregressive inference, we introduce ordered multi-token prediction (OMTP), which trains Gen-Reranker to simultaneously generate multiple future items while preserving their order, ensuring practical deployment in real-time recommender systems. Extensive offline experiments demonstrate that GReF outperforms state-of-the-art reranking methods while achieving latency that is nearly comparable to non-autoregressive models. Additionally, GReF has also been deployed in a real-world video app Kuaishou with over 300 million daily active users, significantly improving online recommendation quality.
comment: Accepted by CIKM 2025
☆ Continual Low-Rank Adapters for LLM-based Generative Recommender Systems
While large language models (LLMs) achieve strong performance in recommendation, they face challenges in continual learning as users, items, and user preferences evolve over time. Existing LoRA-based continual methods primarily focus on preserving performance on previous tasks, but this overlooks the unique nature of recommendation: the goal is not to predict past preferences, and outdated preferences can even harm performance when current interests shift significantly. To address this, we propose PESO (Proximally rEgularized Single evolving lOra, a continual adaptation method for LoRA in recommendation. PESO introduces a proximal regularizer that anchors the current adapter to its most recent frozen state, enabling the model to flexibly balance adaptation and preservation, and to better capture recent user behaviors. Theoretically, we show that this proximal design provides data-aware, direction-wise guidance in the LoRA subspace. Empirically, PESO consistently outperforms existing LoRA-based continual learning methods.
♻ ☆ HyMiRec: A Hybrid Multi-interest Learning Framework for LLM-based Sequential Recommendation
Large language models (LLMs) have recently demonstrated strong potential for sequential recommendation. However, current LLM-based approaches face critical limitations in modeling users' long-term and diverse interests. First, due to inference latency and feature fetching bandwidth constraints, existing methods typically truncate user behavior sequences to include only the most recent interactions, resulting in the loss of valuable long-range preference signals. Second, most current methods rely on next-item prediction with a single predicted embedding, overlooking the multifaceted nature of user interests and limiting recommendation diversity. To address these challenges, we propose HyMiRec, a hybrid multi-interest sequential recommendation framework, which leverages a lightweight recommender to extracts coarse interest embeddings from long user sequences and an LLM-based recommender to captures refined interest embeddings. To alleviate the overhead of fetching features, we introduce a residual codebook based on cosine similarity, enabling efficient compression and reuse of user history embeddings. To model the diverse preferences of users, we design a disentangled multi-interest learning module, which leverages multiple interest queries to learn disentangles multiple interest signals adaptively, allowing the model to capture different facets of user intent. Extensive experiments are conducted on both benchmark datasets and a collected industrial dataset, demonstrating our effectiveness over existing state-of-the-art methods. Furthermore, online A/B testing shows that HyMiRec brings consistent improvements in real-world recommendation systems. Code is available at https://github.com/FireRedTeam/FireRedSeqRec.
♻ ☆ Large Language Models for Few-Shot Named Entity Recognition
Named entity recognition (NER) is a fundamental task in numerous downstream applications. Recently, researchers have employed pre-trained language models (PLMs) and large language models (LLMs) to address this task. However, fully leveraging the capabilities of PLMs and LLMs with minimal human effort remains challenging. In this paper, we propose GPT4NER, a method that prompts LLMs to resolve the few-shot NER task. GPT4NER constructs effective prompts using three key components: entity definition, few-shot examples, and chain-of-thought. By prompting LLMs with these effective prompts, GPT4NER transforms few-shot NER, which is traditionally considered as a sequence-labeling problem, into a sequence-generation problem. We conduct experiments on two benchmark datasets, CoNLL2003 and OntoNotes5.0, and compare the performance of GPT4NER to representative state-of-the-art models in both few-shot and fully supervised settings. Experimental results demonstrate that GPT4NER achieves the $F_1$ of 83.15\% on CoNLL2003 and 70.37\% on OntoNotes5.0, significantly outperforming few-shot baselines by an average margin of 7 points. Compared to fully-supervised baselines, GPT4NER achieves 87.9\% of their best performance on CoNLL2003 and 76.4\% of their best performance on OntoNotes5.0. We also utilize a relaxed-match metric for evaluation and report performance in the sub-task of named entity extraction (NEE), and experiments demonstrate their usefulness to help better understand model behaviors in the NER task.
comment: 17 pages, 2 figures. Accepted by AI, Computer Science and Robotics Technology (ACRT)
♻ ☆ Who You Are Matters: Bridging Topics and Social Roles via LLM-Enhanced Logical Recommendation NeurIPS 2025
Recommender systems filter contents/items valuable to users by inferring preferences from user features and historical behaviors. Mainstream approaches follow the learning-to-rank paradigm, which focus on discovering and modeling item topics (e.g., categories), and capturing user preferences on these topics based on historical interactions. However, this paradigm often neglects the modeling of user characteristics and their social roles, which are logical confounders influencing the correlated interest and user preference transition. To bridge this gap, we introduce the user role identification task and the behavioral logic modeling task that aim to explicitly model user roles and learn the logical relations between item topics and user social roles. We show that it is possible to explicitly solve these tasks through an efficient integration framework of Large Language Model (LLM) and recommendation systems, for which we propose TagCF. On the one hand, TagCF exploits the (Multi-modal) LLM's world knowledge and logic inference ability to extract realistic tag-based virtual logic graphs that reveal dynamic and expressive knowledge of users, refining our understanding of user behaviors. On the other hand, TagCF presents empirically effective integration modules that take advantage of the extracted tag-logic information, augmenting the recommendation performance. We conduct both online experiments and offline experiments with industrial and public datasets as verification of TagCF's effectiveness, and we empirically show that the user role modeling strategy is potentially a better choice than the modeling of item topics. Additionally, we provide evidence that the extracted logic graphs are empirically a general and transferable knowledge that can benefit a wide range of recommendation tasks. Our code is available in https://github.com/Code2Q/TagCF.
comment: to be published in NeurIPS 2025
♻ ☆ Can LLMs Outshine Conventional Recommenders? A Comparative Evaluation NeurIPS 2025
In recent years, integrating large language models (LLMs) into recommender systems has created new opportunities for improving recommendation quality. However, a comprehensive benchmark is needed to thoroughly evaluate and compare the recommendation capabilities of LLMs with traditional recommender systems. In this paper, we introduce RecBench, which systematically investigates various item representation forms (including unique identifier, text, semantic embedding, and semantic identifier) and evaluates two primary recommendation tasks, i.e., click-through rate prediction (CTR) and sequential recommendation (SeqRec). Our extensive experiments cover up to 17 large models and are conducted across five diverse datasets from fashion, news, video, books, and music domains. Our findings indicate that LLM-based recommenders outperform conventional recommenders, achieving up to a 5% AUC improvement in the CTR scenario and up to a 170% NDCG@10 improvement in the SeqRec scenario. However, these substantial performance gains come at the expense of significantly reduced inference efficiency, rendering the LLM-as-RS paradigm impractical for real-time recommendation environments. We aim for our findings to inspire future research, including recommendation-specific model acceleration methods. We will release our code, data, configurations, and platform to enable other researchers to reproduce and build upon our experimental results.
comment: NeurIPS 2025 DB Track Accepted Paper
♻ ☆ Capturing User Interests from Data Streams for Continual Sequential Recommendation WSDM'26
Transformer-based sequential recommendation (SR) models excel at modeling long-range dependencies in user behavior via self-attention. However, updating them with continuously arriving behavior sequences incurs high computational costs or leads to catastrophic forgetting. Although continual learning, a standard approach for non-stationary data streams, has recently been applied to recommendation, existing methods gradually forget long-term user preferences and remain underexplored in SR. In this paper, we introduce Continual Sequential Transformer for Recommendation (CSTRec). CSTRec is designed to effectively adapt to current interests by leveraging well-preserved historical ones, thus capturing the trajectory of user interests over time. The core of CSTRec is Continual Sequential Attention (CSA), a linear attention tailored for continual SR, which enables CSTRec to partially retain historical knowledge without direct access to prior data. CSA has two key components: (1) Cauchy-Schwarz Normalization that stabilizes learning over time under uneven user interaction frequencies; (2) Collaborative Interest Enrichment that alleviates forgetting through shared, learnable interest pools. In addition, we introduce a new technique to facilitate the adaptation of new users by transferring historical knowledge from existing users with similar interests. Extensive experiments on three real-world datasets show that CSTRec outperforms state-of-the-art models in both knowledge retention and acquisition.
comment: WSDM'26
♻ ☆ Can We Hide Machines in the Crowd? Quantifying Equivalence in LLM-in-the-loop Annotation Tasks SIGIR
Many evaluations of large language models (LLMs) in text annotation focus primarily on the correctness of the output, typically comparing model-generated labels to human-annotated ``ground truth'' using standard performance metrics. In contrast, our study moves beyond effectiveness alone. We aim to explore how labeling decisions -- by both humans and LLMs -- can be statistically evaluated across individuals. Rather than treating LLMs purely as annotation systems, we approach LLMs as an alternative annotation mechanism that may be capable of mimicking the subjective judgments made by humans. To assess this, we develop a statistical evaluation method based on Krippendorff's $\alpha$, paired bootstrapping, and the Two One-Sided t-Tests (TOST) equivalence test procedure. This evaluation method tests whether an LLM can blend into a group of human annotators without being distinguishable. We apply this approach to two datasets -- MovieLens 100K and PolitiFact -- and find that the LLM is statistically indistinguishable from a human annotator in the former ($p = 0.004$), but not in the latter ($p = 0.155$), highlighting task-dependent differences. It also enables early evaluation on a small sample of human data to inform whether LLMs are suitable for large-scale annotation in a given application.
comment: Accepted at SIGIR-AP 2025
Information Retrieval 17
Secure Retrieval-Augmented Generation against Poisoning Attacks
Large language models (LLMs) have transformed natural language processing (NLP), enabling applications from content generation to decision support. Retrieval-Augmented Generation (RAG) improves LLMs by incorporating external knowledge but also introduces security risks, particularly from data poisoning, where the attacker injects poisoned texts into the knowledge database to manipulate system outputs. While various defenses have been proposed, they often struggle against advanced attacks. To address this, we introduce RAGuard, a detection framework designed to identify poisoned texts. RAGuard first expands the retrieval scope to increase the proportion of clean texts, reducing the likelihood of retrieving poisoned content. It then applies chunk-wise perplexity filtering to detect abnormal variations and text similarity filtering to flag highly similar texts. This non-parametric approach enhances RAG security, and experiments on large-scale datasets demonstrate its effectiveness in detecting and mitigating poisoning attacks, including strong adaptive attacks.
comment: To appear in IEEE BigData 2025
☆ Seeing Through the MiRAGE: Evaluating Multimodal Retrieval Augmented Generation
We introduce MiRAGE, an evaluation framework for retrieval-augmented generation (RAG) from multimodal sources. As audiovisual media becomes a prevalent source of information online, it is essential for RAG systems to integrate information from these sources into generation. However, existing evaluations for RAG are text-centric, limiting their applicability to multimodal, reasoning intensive settings because they don't verify information against sources. MiRAGE is a claim-centric approach to multimodal RAG evaluation, consisting of InfoF1, evaluating factuality and information coverage, and CiteF1, measuring citation support and completeness. We show that MiRAGE, when applied by humans, strongly aligns with extrinsic quality judgments. We additionally introduce automatic variants of MiRAGE and three prominent TextRAG metrics -- ACLE, ARGUE, and RAGAS -- demonstrating the limitations of text-centric work and laying the groundwork for automatic evaluation. We release open-source implementations and outline how to assess multimodal RAG.
comment: https://github.com/alexmartin1722/mirage
☆ LeMat-Synth: a multi-modal toolbox to curate broad synthesis procedure databases from scientific literature
The development of synthesis procedures remains a fundamental challenge in materials discovery, with procedural knowledge scattered across decades of scientific literature in unstructured formats that are challenging for systematic analysis. In this paper, we propose a multi-modal toolbox that employs large language models (LLMs) and vision language models (VLMs) to automatically extract and organize synthesis procedures and performance data from materials science publications, covering text and figures. We curated 81k open-access papers, yielding LeMat-Synth (v 1.0): a dataset containing synthesis procedures spanning 35 synthesis methods and 16 material classes, structured according to an ontology specific to materials science. The extraction quality is rigorously evaluated on a subset of 2.5k synthesis procedures through a combination of expert annotations and a scalable LLM-as-a-judge framework. Beyond the dataset, we release a modular, open-source software library designed to support community-driven extension to new corpora and synthesis domains. Altogether, this work provides an extensible infrastructure to transform unstructured literature into machine-readable information. This lays the groundwork for predictive modeling of synthesis procedures as well as modeling synthesis--structure--property relationships.
comment: 29 pages, 13 figures, 6 tables
☆ Tongyi DeepResearch Technical Report
We present Tongyi DeepResearch, an agentic large language model, which is specifically designed for long-horizon, deep information-seeking research tasks. To incentivize autonomous deep research agency, Tongyi DeepResearch is developed through an end-to-end training framework that combines agentic mid-training and agentic post-training, enabling scalable reasoning and information seeking across complex tasks. We design a highly scalable data synthesis pipeline that is fully automatic, without relying on costly human annotation, and empowers all training stages. By constructing customized environments for each stage, our system enables stable and consistent interactions throughout. Tongyi DeepResearch, featuring 30.5 billion total parameters, with only 3.3 billion activated per token, achieves state-of-the-art performance across a range of agentic deep research benchmarks, including Humanity's Last Exam, BrowseComp, BrowseComp-ZH, WebWalkerQA, xbench-DeepSearch, FRAMES and xbench-DeepSearch-2510. We open-source the model, framework, and complete solutions to empower the community.
comment: https://tongyi-agent.github.io/blog
☆ Optimizing Retrieval for RAG via Reinforced Contrastive Learning
As retrieval-augmented generation (RAG) becomes increasingly widespread, the role of information retrieval (IR) is shifting from retrieving information for human users to retrieving contextual knowledge for artificial intelligence (AI) systems, where relevance becomes difficult to define or annotate beforehand. To address this challenge, we propose R3, a Retrieval framework optimized for RAG through trialand-feedback Reinforced contrastive learning. Unlike prior approaches that rely on annotated or synthetic data for supervised fine-tuning, R3 enables the retriever to dynamically explore and optimize relevance within the RAG environment. During training, the retrieved results interact with the environment to produce contrastive signals that automatically guide the retriever's self-improvement. Extensive experiments across diverse tasks demonstrate that R3 improves RAG performance by 5.2% over the original retriever and surpasses state-of-the-art retrievers by 4.9%, while achieving comparable results to LLM-augmented retrieval and RAG systems built on post-trained or instruction-tuned LLMs. It is both efficient and practical, requiring only 4 GPUs and completing training within a single day.
☆ Iterative Critique-Refine Framework for Enhancing LLM Personalization
Personalized text generation requires models not only to produce coherent text but also to align with a target user's style, tone, and topical focus. Existing retrieval-augmented approaches such as LaMP and PGraphRAG enrich profiles with user and neighbor histories, but they stop at generation and often yield outputs that drift in tone, topic, or style. We present PerFine, a unified, training-free critique-refine framework that enhances personalization through iterative, profile-grounded feedback. In each iteration, an LLM generator produces a draft conditioned on the retrieved profile, and a critic LLM - also conditioned on the same profile - provides structured feedback on tone, vocabulary, sentence structure, and topicality. The generator then revises, while a novel knockout strategy retains the stronger draft across iterations. We further study additional inference-time strategies such as Best-of-N and Topic Extraction to balance quality and efficiency. Across Yelp, Goodreads, and Amazon datasets, PerFine consistently improves personalization over PGraphRAG, with GEval gains of +7-13%, steady improvements over 3-5 refinement iterations, and scalability with increasing critic size. These results highlight that post-hoc, profile-aware feedback offers a powerful paradigm for personalized LLM generation that is both training-free and model-agnostic.
☆ MiniOneRec: An Open-Source Framework for Scaling Generative Recommendation
The recent success of large language models (LLMs) has renewed interest in whether recommender systems can achieve similar scaling benefits. Conventional recommenders, dominated by massive embedding tables, tend to plateau as embedding dimensions grow. In contrast, the emerging generative paradigm replaces embeddings with compact Semantic ID (SID) sequences produced by autoregressive Transformers. Yet most industrial deployments remain proprietary, leaving two fundamental questions open: (1) Do the expected scaling laws hold on public benchmarks? (2) What is the minimal post-training recipe that enables competitive performance? We present MiniOneRec, to the best of our knowledge, the first fully open-source generative recommendation framework, which provides an end-to-end workflow spanning SID construction, supervised fine-tuning, and recommendation-oriented reinforcement learning. We generate SIDs via a Residual Quantized VAE and post-train Qwen backbones ranging from 0.5B to 7B parameters on the Amazon Review dataset. Our experiments reveal a consistent downward trend in both training and evaluation losses with increasing model size, validating the parameter efficiency of the generative approach. To further enhance performance, we propose a lightweight yet effective post-training pipeline that (1) enforces full-process SID alignment and (2) applies reinforcement learning with constrained decoding and hybrid rewards. Together, these techniques yield significant improvements in both ranking accuracy and candidate diversity.
comment: Technical Report
☆ From Time and Place to Preference: LLM-Driven Geo-Temporal Context in Recommendations
Most recommender systems treat timestamps as numeric or cyclical values, overlooking real-world context such as holidays, events, and seasonal patterns. We propose a scalable framework that uses large language models (LLMs) to generate geo-temporal embeddings from only a timestamp and coarse location, capturing holidays, seasonal trends, and local/global events. We then introduce a geo-temporal embedding informativeness test as a lightweight diagnostic, demonstrating on MovieLens, LastFM, and a production dataset that these embeddings provide predictive signal consistent with the outcomes of full model integrations. Geo-temporal embeddings are incorporated into sequential models through (1) direct feature fusion with metadata embeddings or (2) an auxiliary loss that enforces semantic and geo-temporal alignment. Our findings highlight the need for adaptive or hybrid recommendation strategies, and we release a context-enriched MovieLens dataset to support future research.
☆ Metadata-Driven Retrieval-Augmented Generation for Financial Question Answering
Retrieval-Augmented Generation (RAG) struggles on long, structured financial filings where relevant evidence is sparse and cross-referenced. This paper presents a systematic investigation of advanced metadata-driven Retrieval-Augmented Generation (RAG) techniques, proposing and evaluating a novel, multi-stage RAG architecture that leverages LLM-generated metadata. We introduce a sophisticated indexing pipeline to create contextually rich document chunks and benchmark a spectrum of enhancements, including pre-retrieval filtering, post-retrieval reranking, and enriched embeddings, benchmarked on the FinanceBench dataset. Our results reveal that while a powerful reranker is essential for precision, the most significant performance gains come from embedding chunk metadata directly with text ("contextual chunks"). Our proposed optimal architecture combines LLM-driven pre-retrieval optimizations with these contextual embeddings to achieve superior performance. Additionally, we present a custom metadata reranker that offers a compelling, cost-effective alternative to commercial solutions, highlighting a practical trade-off between peak performance and operational efficiency. This study provides a blueprint for building robust, metadata-aware RAG systems for financial document analysis.
comment: Preprint version submitted to the International Journal of Accounting Information Systems; currently under major revision. 20 pages, 1 figure, 1 table
☆ DUET: Dual Model Co-Training for Entire Space CTR Prediction
The pre-ranking stage plays a pivotal role in large-scale recommender systems but faces an intrinsic trade-off between model expressiveness and computational efficiency. Owing to the massive candidate pool and strict latency constraints, industry systems often rely on lightweight two-tower architectures, which are computationally efficient yet limited in estimation capability. As a result, they struggle to capture the complex synergistic and suppressive relationships among candidate items, which are essential for producing contextually coherent and diverse recommendation lists. Moreover, this simplicity further amplifies the Sample Selection Bias (SSB) problem, as coarse-grained models trained on biased exposure data must generalize to a much larger candidate space with distinct distributions. To address these issues, we propose \textbf{DUET} (\textbf{DU}al Model Co-Training for \textbf{E}ntire Space C\textbf{T}R Prediction), a set-wise pre-ranking framework that achieves expressive modeling under tight computational budgets. Instead of scoring items independently, DUET performs set-level prediction over the entire candidate subset in a single forward pass, enabling information-aware interactions among candidates while amortizing the computational cost across the set. Moreover, a dual model co-training mechanism extends supervision to unexposed items via mutual pseudo-label refinement, effectively mitigating SSB. Validated through extensive offline experiments and online A/B testing, DUET consistently outperforms state-of-the-art baselines and achieves improvements across multiple core business metrics. At present, DUET has been fully deployed in Kuaishou and Kuaishou Lite Apps, serving the main traffic for hundreds of millions of users.
☆ Resource-Efficient LLM Application for Structured Transformation of Unstructured Financial Contracts
The transformation of unstructured legal contracts into standardized, machine-readable formats is essential for automating financial workflows. The Common Domain Model (CDM) provides a standardized framework for this purpose, but converting complex legal documents like Credit Support Annexes (CSAs) into CDM representations remains a significant challenge. In this paper, we present an extension of the CDMizer framework, a template-driven solution that ensures syntactic correctness and adherence to the CDM schema during contract-to-CDM conversion. We apply this extended framework to a real-world task, comparing its performance with a benchmark developed by the International Swaps and Derivatives Association (ISDA) for CSA clause extraction. Our results show that CDMizer, when integrated with a significantly smaller, open-source Large Language Model (LLM), achieves competitive performance in terms of accuracy and efficiency against larger, proprietary models. This work underscores the potential of resource-efficient solutions to automate legal contract transformation, offering a cost-effective and scalable approach that can meet the needs of financial institutions with constrained resources or strict data privacy requirements.
comment: 5 pages, 1 figure, 2 tables
♻ ☆ Comparing Retrieval Strategies to Capture Interdisciplinary Scientific Research: A Bibliometric Evaluation of the Integration of Neuroscience and Computer Science
Interdisciplinary scientific research is increasingly important in knowledge production, funding policies, and academic discussions on scholarly communication. While many studies focus on interdisciplinary corpora defined a priori -- usually through keyword-based searches within assumed interdisciplinary domains -- few explore interdisciplinarity as an emergent intersection between two distinct fields. Thus, methodological proposals for building databases at the intersection of two fields of knowledge are scarce. The goal of this article is to develop and compare different strategies for defining an interdisciplinary corpus between two bodies of knowledge. As a case study, we focus on the intersection between neuroscience and computer science. To this end, we develop and compare four retrieval strategies, two of them based on keywords and two based on citation and reference patterns. Our results show that the reference-based strategy provides better retrieval, pseudorecall, and F1. While we focus on comparing strategies for the study of the intersection between the fields of neuroscience and computer science, this methodological reflection is applicable to a wide range of interdisciplinary domains.
♻ ☆ CustomIR: Unsupervised Fine-Tuning of Dense Embeddings for Known Document Corpora
Dense embedding models have become critical for modern information retrieval, particularly in RAG pipelines, but their performance often degrades when applied to specialized corpora outside their pre-training distribution. To address thi we introduce CustomIR, a framework for unsupervised adaptation of pre-trained language embedding models to domain-specific corpora using synthetically generated query-document pairs. CustomIR leverages large language models (LLMs) to create diverse queries grounded in a known target corpus, paired with LLM-verified hard negatives, eliminating the need for costly human annotation. Experiments on enterprise email and messaging datasets show that CustomIR consistently improves retrieval effectiveness with small models gaining up to 2.3 points in Recall@10. This performance increase allows these small models to rival the performance of much larger alternatives, allowing for cheaper RAG deployments. These results highlight that targeted synthetic fine-tuning offers a scalable and cost-efficient strategy for increasing domain-specific performance.
♻ ☆ Cross-Scenario Unified Modeling of User Interests at Billion Scale
User interests on content platforms are inherently diverse, manifesting through complex behavioral patterns across heterogeneous scenarios such as search, feed browsing, and content discovery. Traditional recommendation systems typically prioritize business metric optimization within isolated specific scenarios, neglecting cross-scenario behavioral signals and struggling to integrate advanced techniques like LLMs at billion-scale deployments, which finally limits their ability to capture holistic user interests across platform touchpoints. We propose RED-Rec, an LLM-enhanced hierarchical Recommender Engine for Diversified scenarios, tailored for industry-level content recommendation systems. RED-Rec unifies user interest representations across multiple behavioral contexts by aggregating and synthesizing actions from varied scenarios, resulting in comprehensive item and user modeling. At its core, a two-tower LLM-powered framework enables nuanced, multifaceted representations with deployment efficiency, and a scenario-aware dense mixing and querying policy effectively fuses diverse behavioral signals to capture cross-scenario user intent patterns and express fine-grained, context-specific intents during serving. We validate RED-Rec through online A/B testing on hundreds of millions of users in RedNote through online A/B testing, showing substantial performance gains in both content recommendation and advertisement targeting tasks. We further introduce a million-scale sequential recommendation dataset, RED-MMU, for comprehensive offline training and evaluation. Our work advances unified user modeling, unlocking deeper personalization and fostering more meaningful user engagement in large-scale UGC platforms.
comment: https://github.com/ariesssxu/RedSeqRec
♻ ☆ OneRec-V2 Technical Report
Recent breakthroughs in generative AI have transformed recommender systems through end-to-end generation. OneRec reformulates recommendation as an autoregressive generation task, achieving high Model FLOPs Utilization. While OneRec-V1 has shown significant empirical success in real-world deployment, two critical challenges hinder its scalability and performance: (1) inefficient computational allocation where 97.66% of resources are consumed by sequence encoding rather than generation, and (2) limitations in reinforcement learning relying solely on reward models. To address these challenges, we propose OneRec-V2, featuring: (1) Lazy Decoder-Only Architecture: Eliminates encoder bottlenecks, reducing total computation by 94% and training resources by 90%, enabling successful scaling to 8B parameters. (2) Preference Alignment with Real-World User Interactions: Incorporates Duration-Aware Reward Shaping and Adaptive Ratio Clipping to better align with user preferences using real-world feedback. Extensive A/B tests on Kuaishou demonstrate OneRec-V2's effectiveness, improving App Stay Time by 0.467%/0.741% while balancing multi-objective recommendations. This work advances generative recommendation scalability and alignment with real-world feedback, representing a step forward in the development of end-to-end recommender systems.
♻ ☆ MemoryBench: A Benchmark for Memory and Continual Learning in LLM Systems
Scaling up data, parameters, and test-time computation has been the mainstream methods to improve LLM systems (LLMsys), but their upper bounds are almost reached due to the gradual depletion of high-quality data and marginal gains obtained from larger computational resource consumption. Inspired by the abilities of human and traditional AI systems in learning from practice, constructing memory and continual learning frameworks for LLMsys has become an important and popular research direction in recent literature. Yet, existing benchmarks for LLM memory often focus on evaluating the system on homogeneous reading comprehension tasks with long-form inputs rather than testing their abilities to learn from accumulated user feedback in service time. Therefore, we propose a user feedback simulation framework and a comprehensive benchmark covering multiple domains, languages, and types of tasks to evaluate the continual learning abilities of LLMsys. Experiments show that the effectiveness and efficiency of state-of-the-art baselines are far from satisfying, and we hope this benchmark could pave the way for future studies on LLM memory and optimization algorithms.
♻ ☆ Your Dense Retriever is Secretly an Expeditious Reasoner
Dense retrievers enhance retrieval by encoding queries and documents into continuous vectors, but they often struggle with reasoning-intensive queries. Although Large Language Models (LLMs) can reformulate queries to capture complex reasoning, applying them universally incurs significant computational cost. In this work, we propose Adaptive Query Reasoning (AdaQR), a hybrid query rewriting framework. Within this framework, a Reasoner Router dynamically directs each query to either fast dense reasoning or deep LLM reasoning. The dense reasoning is achieved by the Dense Reasoner, which performs LLM-style reasoning directly in the embedding space, enabling a controllable trade-off between efficiency and accuracy. Experiments on large-scale retrieval benchmarks BRIGHT show that AdaQR reduces reasoning cost by 28% while preserving-or even improving-retrieval performance by 7%.
comment: 16 pages, 11 figures
Information Retrieval 19
☆ LimRank: Less is More for Reasoning-Intensive Information Reranking EMNLP 2025
Existing approaches typically rely on large-scale fine-tuning to adapt LLMs for information reranking tasks, which is computationally expensive. In this work, we demonstrate that modern LLMs can be effectively adapted using only minimal, high-quality supervision. To enable this, we design LIMRANK-SYNTHESIZER, a reusable and open-source pipeline for generating diverse, challenging, and realistic reranking examples. Using this synthetic data, we fine-tune our reranker model, LIMRANK. We evaluate LIMRANK on two challenging benchmarks, i.e., BRIGHT for reasoning-intensive retrieval and FollowIR for instruction-following retrieval. Our experiments demonstrate that LIMRANK achieves competitive performance, while being trained on less than 5% of the data typically used in prior work. Further ablation studies demonstrate the effectiveness of LIMRANK-SYNTHESIZER and the strong generalization capabilities of LIMRANK across downstream tasks, including scientific literature search and retrieval-augmented generation for knowledge-intensive problem solving.
comment: EMNLP 2025 Main (Short)
☆ Accurate and Scalable Multimodal Pathology Retrieval via Attentive Vision-Language Alignment
The rapid digitization of histopathology slides has opened up new possibilities for computational tools in clinical and research workflows. Among these, content-based slide retrieval stands out, enabling pathologists to identify morphologically and semantically similar cases, thereby supporting precise diagnoses, enhancing consistency across observers, and assisting example-based education. However, effective retrieval of whole slide images (WSIs) remains challenging due to their gigapixel scale and the difficulty of capturing subtle semantic differences amid abundant irrelevant content. To overcome these challenges, we present PathSearch, a retrieval framework that unifies fine-grained attentive mosaic representations with global-wise slide embeddings aligned through vision-language contrastive learning. Trained on a corpus of 6,926 slide-report pairs, PathSearch captures both fine-grained morphological cues and high-level semantic patterns to enable accurate and flexible retrieval. The framework supports two key functionalities: (1) mosaic-based image-to-image retrieval, ensuring accurate and efficient slide research; and (2) multi-modal retrieval, where text queries can directly retrieve relevant slides. PathSearch was rigorously evaluated on four public pathology datasets and three in-house cohorts, covering tasks including anatomical site retrieval, tumor subtyping, tumor vs. non-tumor discrimination, and grading across diverse organs such as breast, lung, kidney, liver, and stomach. External results show that PathSearch outperforms traditional image-to-image retrieval frameworks. A multi-center reader study further demonstrates that PathSearch improves diagnostic accuracy, boosts confidence, and enhances inter-observer agreement among pathologists in real clinical scenarios. These results establish PathSearch as a scalable and generalizable retrieval solution for digital pathology.
☆ Leveraging Hierarchical Organization for Medical Multi-document Summarization
Medical multi-document summarization (MDS) is a complex task that requires effectively managing cross-document relationships. This paper investigates whether incorporating hierarchical structures in the inputs of MDS can improve a model's ability to organize and contextualize information across documents compared to traditional flat summarization methods. We investigate two ways of incorporating hierarchical organization across three large language models (LLMs), and conduct comprehensive evaluations of the resulting summaries using automated metrics, model-based metrics, and domain expert evaluation of preference, understandability, clarity, complexity, relevance, coverage, factuality, and coherence. Our results show that human experts prefer model-generated summaries over human-written summaries. Hierarchical approaches generally preserve factuality, coverage, and coherence of information, while also increasing human preference for summaries. Additionally, we examine whether simulated judgments from GPT-4 align with human judgments, finding higher agreement along more objective evaluation facets. Our findings demonstrate that hierarchical structures can improve the clarity of medical summaries generated by models while maintaining content coverage, providing a practical way to improve human preference for generated summaries.
☆ Think before Recommendation: Autonomous Reasoning-enhanced Recommender NeurIPS 2025
The core task of recommender systems is to learn user preferences from historical user-item interactions. With the rapid development of large language models (LLMs), recent research has explored leveraging the reasoning capabilities of LLMs to enhance rating prediction tasks. However, existing distillation-based methods suffer from limitations such as the teacher model's insufficient recommendation capability, costly and static supervision, and superficial transfer of reasoning ability. To address these issues, this paper proposes RecZero, a reinforcement learning (RL)-based recommendation paradigm that abandons the traditional multi-model and multi-stage distillation approach. Instead, RecZero trains a single LLM through pure RL to autonomously develop reasoning capabilities for rating prediction. RecZero consists of two key components: (1) "Think-before-Recommendation" prompt construction, which employs a structured reasoning template to guide the model in step-wise analysis of user interests, item features, and user-item compatibility; and (2) rule-based reward modeling, which adopts group relative policy optimization (GRPO) to compute rewards for reasoning trajectories and optimize the LLM. Additionally, the paper explores a hybrid paradigm, RecOne, which combines supervised fine-tuning with RL, initializing the model with cold-start reasoning samples and further optimizing it with RL. Experimental results demonstrate that RecZero and RecOne significantly outperform existing baseline methods on multiple benchmark datasets, validating the superiority of the RL paradigm in achieving autonomous reasoning-enhanced recommender systems.
comment: NeurIPS 2025 poster
☆ Multi-Stage Field Extraction of Financial Documents with OCR and Compact Vision-Language Models
Financial documents are essential sources of information for regulators, auditors, and financial institutions, particularly for assessing the wealth and compliance of Small and Medium-sized Businesses. However, SMB documents are often difficult to parse. They are rarely born digital and instead are distributed as scanned images that are none machine readable. The scans themselves are low in resolution, affected by skew or rotation, and often contain noisy backgrounds. These documents also tend to be heterogeneous, mixing narratives, tables, figures, and multilingual content within the same report. Such characteristics pose major challenges for automated information extraction, especially when relying on end to end large Vision Language Models, which are computationally expensive, sensitive to noise, and slow when applied to files with hundreds of pages. We propose a multistage pipeline that leverages traditional image processing models and OCR extraction, together with compact VLMs for structured field extraction of large-scale financial documents. Our approach begins with image pre-processing, including segmentation, orientation detection, and size normalization. Multilingual OCR is then applied to recover page-level text. Upon analyzing the text information, pages are retrieved for coherent sections. Finally, compact VLMs are operated within these narrowed-down scopes to extract structured financial indicators. Our approach is evaluated using an internal corpus of multi-lingual, scanned financial documents. The results demonstrate that compact VLMs, together with a multistage pipeline, achieves 8.8 times higher field level accuracy relative to directly feeding the whole document into large VLMs, only at 0.7 percent of the GPU cost and 92.6 percent less end-to-end service latency.
☆ Tagging-Augmented Generation: Assisting Language Models in Finding Intricate Knowledge In Long Contexts EMNLP 2025
Recent investigations into effective context lengths of modern flagship large language models (LLMs) have revealed major limitations in effective question answering (QA) and reasoning over long and complex contexts for even the largest and most impressive cadre of models. While approaches like retrieval-augmented generation (RAG) and chunk-based re-ranking attempt to mitigate this issue, they are sensitive to chunking, embedding and retrieval strategies and models, and furthermore, rely on extensive pre-processing, knowledge acquisition and indexing steps. In this paper, we propose Tagging-Augmented Generation (TAG), a lightweight data augmentation strategy that boosts LLM performance in long-context scenarios, without degrading and altering the integrity and composition of retrieved documents. We validate our hypothesis by augmenting two challenging and directly relevant question-answering benchmarks -- NoLima and NovelQA -- and show that tagging the context or even just adding tag definitions into QA prompts leads to consistent performance gains over the baseline -- up to 17% for 32K token contexts, and 2.9% in complex reasoning question-answering for multi-hop queries requiring knowledge across a wide span of text. Additional details are available at https://sites.google.com/view/tag-emnlp.
comment: Paper accepted at EMNLP 2025
☆ GTR-Mamba: Geometry-to-Tangent Routing for Hyperbolic POI Recommendation ICDE 2026
Next Point-of-Interest (POI) recommendation is a critical task in modern Location-Based Social Networks (LBSNs), aiming to model the complex decision-making process of human mobility to provide personalized recommendations for a user's next check-in location. Existing POI recommendation models, predominantly based on Graph Neural Networks and sequential models, have been extensively studied. However, these models face a fundamental limitation: they struggle to simultaneously capture the inherent hierarchical structure of spatial choices and the dynamics and irregular shifts of user-specific temporal contexts. To overcome this limitation, we propose GTR-Mamba, a novel framework for cross-manifold conditioning and routing. GTR-Mamba leverages the distinct advantages of different mathematical spaces for different tasks: it models the static, tree-like preference hierarchies in hyperbolic geometry, while routing the dynamic sequence updates to a novel Mamba layer in the computationally stable and efficient Euclidean tangent space. This process is coordinated by a cross-manifold channel that fuses spatio-temporal information to explicitly steer the State Space Model (SSM), enabling flexible adaptation to contextual changes. Extensive experiments on three real-world datasets demonstrate that GTR-Mamba consistently outperforms state-of-the-art baseline models in next POI recommendation.
comment: 14 pages, 8 figures, 4 tables, submitted to ICDE 2026
☆ MGFRec: Towards Reinforced Reasoning Recommendation with Multiple Groundings and Feedback
The powerful reasoning and generative capabilities of large language models (LLMs) have inspired researchers to apply them to reasoning-based recommendation tasks, which require in-depth reasoning about user interests and the generation of recommended items. However, previous reasoning-based recommendation methods have typically performed inference within the language space alone, without incorporating the actual item space. This has led to over-interpreting user interests and deviating from real items. Towards this research gap, we propose performing multiple rounds of grounding during inference to help the LLM better understand the actual item space, which could ensure that its reasoning remains aligned with real items. Furthermore, we introduce a user agent that provides feedback during each grounding step, enabling the LLM to better recognize and adapt to user interests. Comprehensive experiments conducted on three Amazon review datasets demonstrate the effectiveness of incorporating multiple groundings and feedback. These findings underscore the critical importance of reasoning within the actual item space, rather than being confined to the language space, for recommendation tasks.
♻ ☆ LIME: Link-based user-item Interaction Modeling with decoupled xor attention for Efficient test time scaling
Scaling large recommendation systems requires advancing three major frontiers: processing longer user histories, expanding candidate sets, and increasing model capacity. While promising, transformers' computational cost scales quadratically with the user sequence length and linearly with the number of candidates. This trade-off makes it prohibitively expensive to expand candidate sets or increase sequence length at inference, despite the significant performance improvements. We introduce \textbf{LIME}, a novel architecture that resolves this trade-off. Through two key innovations, LIME fundamentally reduces computational complexity. First, low-rank ``link embeddings" enable pre-computation of attention weights by decoupling user and candidate interactions, making the inference cost nearly independent of candidate set size. Second, a linear attention mechanism, \textbf{LIME-XOR}, reduces the complexity with respect to user sequence length from quadratic ($O(N^2)$) to linear ($O(N)$). Experiments on public and industrial datasets show LIME achieves near-parity with state-of-the-art transformers but with a 10$\times$ inference speedup on large candidate sets or long sequence lengths. When tested on a major recommendation platform, LIME improved user engagement while maintaining minimal inference costs with respect to candidate set size and user history length, establishing a new paradigm for efficient and expressive recommendation systems.
comment: 16 pages
♻ ☆ Computational-Assisted Systematic Review and Meta-Analysis (CASMA): Effect of a Subclass of GnRH-a on Endometriosis Recurrence
Background: Evidence synthesis facilitates evidence-based medicine. This task becomes increasingly difficult to accomplished with applying computational solutions, since the medical literature grows at astonishing rates. Objective: This study evaluates an information retrieval-driven workflow, CASMA, to enhance the efficiency, transparency, and reproducibility of systematic reviews. Endometriosis recurrence serves as the ideal case due to its complex and ambiguous literature. Methods: The hybrid approach integrates PRISMA guidelines with fuzzy matching and regular expression (regex) to facilitate semi-automated deduplication and filtered records before manual screening. The workflow synthesised evidence from randomised controlled trials on the efficacy of a subclass of gonadotropin-releasing hormone agonists (GnRH-a). A modified splitting method addressed unit-of-analysis errors in multi-arm trials. Results: The workflow sharply reduced the screening workload, taking only 11 days to fetch and filter 33,444 records. Seven eligible RCTs were synthesized (841 patients). The pooled random-effects model yielded a Risk Ratio (RR) of $0.64$ ($95\%$ CI $0.48$ to $0.86$), demonstrating a $36\%$ reduction in recurrence, with non-significant heterogeneity ($I^2=0.00\%$, $\tau^2=0.00$). The findings were robust and stable, as they were backed by sensitivity analyses. Conclusion: This study demonstrates an application of an information-retrieval-driven workflow for medical evidence synthesis. The approach yields valuable clinical results and a generalisable framework to scale up the evidence synthesis, bridging the gap between clinical research and computer science.
comment: 15 pages, 12 figures and 4 tables. This work describes an information retrieval-driven workflow for medical evidence synthesis, with an application to endometriosis recurrence. The method can be generalized to other systematic reviews. The preregistered protocol is available: https://doi.org/10.17605/OSF.IO/R2DFA
♻ ☆ An Ecosystem for Ontology Interoperability
Ontology interoperability is one of the complicated issues that restricts the use of ontologies in knowledge graphs (KGs). Different ontologies with conflicting and overlapping concepts make it difficult to design, develop, and deploy an interoperable ontology for downstream tasks. We propose an ecosystem for ontology interoperability. The ecosystem employs three state-of-the-art semantic techniques in different phases of the ontology engineering life cycle: ontology design patterns (ODPs) in the design phase, ontology matching and versioning (OM\&OV) in the develop phase, and ontology-compliant knowledge graphs (OCKGs) in the deploy phase, to achieve better ontology interoperability and data integration in real-world applications. A case study of sensor observation in the building domain validates the usefulness of the proposed ecosystem.
comment: 5 pages, 8 figures
♻ ☆ The Atlas of In-Context Learning: How Attention Heads Shape In-Context Retrieval Augmentation NeurIPS 2025
Large language models are able to exploit in-context learning to access external knowledge beyond their training data through retrieval-augmentation. While promising, its inner workings remain unclear. In this work, we shed light on the mechanism of in-context retrieval augmentation for question answering by viewing a prompt as a composition of informational components. We propose an attribution-based method to identify specialized attention heads, revealing in-context heads that comprehend instructions and retrieve relevant contextual information, and parametric heads that store entities' relational knowledge. To better understand their roles, we extract function vectors and modify their attention weights to show how they can influence the answer generation process. Finally, we leverage the gained insights to trace the sources of knowledge used during inference, paving the way towards more safe and transparent language models.
comment: Accepted at NeurIPS 2025
♻ ☆ TaoSR1: The Thinking Model for E-commerce Relevance Search
Query-product relevance prediction is a core task in e-commerce search. BERT-based models excel at semantic matching but lack complex reasoning capabilities. While Large Language Models (LLMs) are explored, most still use discriminative fine-tuning or distill to smaller models for deployment. We propose a framework to directly deploy LLMs for this task, addressing key challenges: Chain-of-Thought (CoT) error accumulation, discriminative hallucination, and deployment feasibility. Our framework, TaoSR1, involves three stages: (1) Supervised Fine-Tuning (SFT) with CoT to instill reasoning; (2) Offline sampling with a pass@N strategy and Direct Preference Optimization (DPO) to improve generation quality; and (3) Difficulty-based dynamic sampling with Group Relative Policy Optimization (GRPO) to mitigate discriminative hallucination. Additionally, post-CoT processing and a cumulative probability-based partitioning method enable efficient online deployment. TaoSR1 significantly outperforms baselines on offline datasets and achieves substantial gains in online side-by-side human evaluations, introducing a novel paradigm for applying CoT reasoning to relevance classification.
♻ ☆ SBAN: A Framework & Multi-Dimensional Dataset for Large Language Model Pre-Training and Software Code Mining
This paper introduces SBAN (Source code, Binary, Assembly, and Natural Language Description), a large-scale, multi-dimensional dataset designed to advance the pre-training and evaluation of large language models (LLMs) for software code analysis. SBAN comprises more than 3 million samples, including 2.9 million benign and 672,000 malware respectively, each represented across four complementary layers: binary code, assembly instructions, natural language descriptions, and source code. This unique multimodal structure enables research on cross-representation learning, semantic understanding of software, and automated malware detection. Beyond security applications, SBAN supports broader tasks such as code translation, code explanation, and other software mining tasks involving heterogeneous data. It is particularly suited for scalable training of deep models, including transformers and other LLM architectures. By bridging low-level machine representations and high-level human semantics, SBAN provides a robust foundation for building intelligent systems that reason about code. We believe that this dataset opens new opportunities for mining software behavior, improving security analytics, and enhancing LLM capabilities in pre-training and fine-tuning tasks for software code mining.
♻ ☆ Understanding Embedding Scaling in Collaborative Filtering
Scaling recommendation models into large recommendation models has become one of the most widely discussed topics. Recent efforts focus on components beyond the scaling embedding dimension, as it is believed that scaling embedding may lead to performance degradation. Although there have been some initial observations on embedding, the root cause of their non-scalability remains unclear. Moreover, whether performance degradation occurs across different types of models and datasets is still an unexplored area. Regarding the effect of embedding dimensions on performance, we conduct large-scale experiments across 10 datasets with varying sparsity levels and scales, using 4 representative classical architectures. We surprisingly observe two novel phenomena: double-peak and logarithmic. For the former, as the embedding dimension increases, performance first improves, then declines, rises again, and eventually drops. For the latter, it exhibits a perfect logarithmic curve. Our contributions are threefold. First, we discover two novel phenomena when scaling collaborative filtering models. Second, we gain an understanding of the underlying causes of the double-peak phenomenon. Lastly, we theoretically analyze the noise robustness of collaborative filtering models, with results matching empirical observations.
♻ ☆ The Cross-Lingual Cost: Retrieval Biases in RAG over Arabic-English Corpora
Cross-lingual retrieval-augmented generation (RAG) is a critical capability for retrieving and generating answers across languages. Prior work in this context has mostly focused on generation and relied on benchmarks derived from open-domain sources, most notably Wikipedia. In such settings, retrieval challenges often remain hidden due to language imbalances, overlap with pretraining data, and memorized content. To address this gap, we study Arabic-English RAG in a domain-specific setting using benchmarks derived from real-world corporate datasets. Our benchmarks include all combinations of languages for the user query and the supporting document, drawn independently and uniformly at random. This enables a systematic study of multilingual retrieval behavior. Our findings reveal that retrieval is a critical bottleneck in cross-lingual domain-specific scenarios, with substantial performance drops occurring when the user query and supporting document languages differ. A key insight is that these failures stem primarily from the retriever's difficulty in ranking documents across languages. Finally, we propose two simple retrieval strategies that address this source of failure by enforcing equal retrieval from both languages or by translating the query, resulting in substantial improvements in cross-lingual and overall performance. These results highlight meaningful opportunities for improving multilingual retrieval, particularly in practical, real-world RAG applications.
comment: Accepted to ArabicNLP 2025
♻ ☆ CMIE: Combining MLLM Insights with External Evidence for Explainable Out-of-Context Misinformation Detection
Multimodal large language models (MLLMs) have demonstrated impressive capabilities in visual reasoning and text generation. While previous studies have explored the application of MLLM for detecting out-of-context (OOC) misinformation, our empirical analysis reveals two persisting challenges of this paradigm. Evaluating the representative GPT-4o model on direct reasoning and evidence augmented reasoning, results indicate that MLLM struggle to capture the deeper relationships-specifically, cases in which the image and text are not directly connected but are associated through underlying semantic links. Moreover, noise in the evidence further impairs detection accuracy. To address these challenges, we propose CMIE, a novel OOC misinformation detection framework that incorporates a Coexistence Relationship Generation (CRG) strategy and an Association Scoring (AS) mechanism. CMIE identifies the underlying coexistence relationships between images and text, and selectively utilizes relevant evidence to enhance misinformation detection. Experimental results demonstrate that our approach outperforms existing methods.
♻ ☆ Membership Inference Attacks on Recommender System: A Survey
Recommender systems (RecSys) have been widely applied to various applications, including E-commerce, finance, healthcare, social media and have become increasingly influential in shaping user behavior and decision-making, highlighting their growing impact in various domains. However, recent studies have shown that RecSys are vulnerable to membership inference attacks (MIAs), which aim to infer whether user interaction record was used to train a target model or not. MIAs on RecSys models can directly lead to a privacy breach. For example, via identifying the fact that a purchase record that has been used to train a RecSys associated with a specific user, an attacker can infer that user's special quirks. In recent years, MIAs have been shown to be effective on other ML tasks, e.g., classification models and natural language processing. However, traditional MIAs are ill-suited for RecSys due to the unseen posterior probability. Although MIAs on RecSys form a newly emerging and rapidly growing research area, there has been no systematic survey on this topic yet. In this article, we conduct the first comprehensive survey on RecSys MIAs. This survey offers a comprehensive review of the latest advancements in RecSys MIAs, exploring the design principles, challenges, attack and defense associated with this emerging field. We provide a unified taxonomy that categorizes different RecSys MIAs based on their characterizations and discuss their pros and cons. Based on the limitations and gaps identified in this survey, we point out several promising future research directions to inspire the researchers who wish to follow this area. This survey not only serves as a reference for the research community but also provides a clear description for researchers outside this research domain.
comment: under review
♻ ☆ From ID-based to ID-free: Rethinking ID Effectiveness in Multimodal Collaborative Filtering Recommendation
Most existing multimodal collaborative filtering recommendation (MCFRec) methods rely heavily on ID features and multimodal content to enhance recommendation performance. However, this paper reveals that ID features are effective but have limited benefits in multimodal collaborative filtering recommendation. Therefore, this paper systematically deconstruct the pros and cons of ID features: (i) they provide initial embedding but lack semantic richness, (ii) they provide a unique identifier for each user and item but hinder generalization to untrained data, and (iii) they assist in aligning and fusing multimodal features but may lead to representation shift. Based on these insights, this paper proposes IDFREE, an ID-free multimodal collaborative Filtering REcommEndation baseline. IDFREE replaces ID features with multimodal features and positional encodings to generate semantically meaningful ID-free embeddings. For ID-free multimodal collaborative filtering, it further proposes an adaptive similarity graph module to construct dynamic user-user and item-item graphs based on multimodal features. Then, an augmented user-item graph encoder is proposed to construct more effective user and item encoding. Finally, IDFREE achieves inter-multimodal alignment based on the contrastive learning and uses Softmax loss as recommendation loss. Basic experiments on three public datasets demonstrate that IDFREE outperforms existing ID-based MCFRec methods, achieving an average performance gain of 72.24% across standard metrics (Recall@5, 10, 20, 50 and NDCG@5, 10, 20, 50). Exploratory and extended experiments further validate our findings on the limitations of ID features in MCFRec. The code is released at https://github.com/G-H-Li/IDFREE.
comment: We identified that our current approach achieves its reported performance only under specific data conditions, and its robustness is weaker than we initially expected
Information Retrieval 12
☆ Civic Ground Truth in News Recommenders: A Method for Public Value Scoring RecSys 2025
Research in news recommendation systems (NRS) continues to explore the best ways to integrate normative goals such as editorial objectives and public service values into existing systems. Prior efforts have incorporated expert input or audience feedback to quantify these values, laying the groundwork for more civic-minded recommender systems. This paper contributes to that trajectory, introducing a method for embedding civic values into NRS through large-scale, structured audience evaluations. The proposed civic ground truth approach aims to generate value-based labels through a nationally representative survey that are generalisable across a wider news corpus, using automated metadata enrichment.
comment: Presented at NORMalize 2025: The Third Workshop on the Normative Design and Evaluation of Recommender Systems, co-located with the ACM Conference on Recommender Systems 2025 (RecSys 2025), Prague
☆ REVISION:Reflective Intent Mining and Online Reasoning Auxiliary for E-commerce Visual Search System Optimization
In Taobao e-commerce visual search, user behavior analysis reveals a large proportion of no-click requests, suggesting diverse and implicit user intents. These intents are expressed in various forms and are difficult to mine and discover, thereby leading to the limited adaptability and lag in platform strategies. This greatly restricts users' ability to express diverse intents and hinders the scalability of the visual search system. This mismatch between user implicit intent expression and system response defines the User-SearchSys Intent Discrepancy. To alleviate the issue, we propose a novel framework REVISION. This framework integrates offline reasoning mining with online decision-making and execution, enabling adaptive strategies to solve implicit user demands. In the offline stage, we construct a periodic pipeline to mine discrepancies from historical no-click requests. Leveraging large models, we analyze implicit intent factors and infer optimal suggestions by jointly reasoning over query and product metadata. These inferred suggestions serve as actionable insights for refining platform strategies. In the online stage, REVISION-R1-3B, trained on the curated offline data, performs holistic analysis over query images and associated historical products to generate optimization plans and adaptively schedule strategies across the search pipeline. Our framework offers a streamlined paradigm for integrating large models with traditional search systems, enabling end-to-end intelligent optimization across information aggregation and user interaction. Experimental results demonstrate that our approach improves the efficiency of implicit intent mining from large-scale search logs and significantly reduces the no-click rate.
☆ ATLAS: Actor-Critic Task-Completion with Look-ahead Action Simulation NeurIPS 2025
We observe that current state-of-the-art web-agents are unable to effectively adapt to new environments without neural network fine-tuning, without which they produce inefficient execution plans due to a lack of awareness of the structure and dynamics of the new environment. To address this limitation, we introduce ATLAS (Actor-Critic Task-completion with Look-ahead Action Simulation), a memory-augmented agent that is able to make plans grounded in a model of the environment by simulating the consequences of those actions in cognitive space. Our agent starts by building a "cognitive map" by performing a lightweight curiosity driven exploration of the environment. The planner proposes candidate actions; the simulator predicts their consequences in cognitive space; a critic analyzes the options to select the best roll-out and update the original plan; and a browser executor performs the chosen action. On the WebArena-Lite Benchmark, we achieve a 63% success rate compared to 53.9% success rate for the previously published state-of-the-art. Unlike previous systems, our modular architecture requires no website-specific LLM fine-tuning. Ablations show sizable drops without the world-model, hierarchical planner, and look-ahead-based replanner confirming their complementary roles within the design of our system
comment: 9 pages, NeurIPS 2025 Workshop on Language Agents and World Models
☆ Windsock is Dancing: Adaptive Multimodal Retrieval-Augmented Generation NeurIPS 2025
Multimodal Retrieval-Augmented Generation (MRAG) has emerged as a promising method to generate factual and up-to-date responses of Multimodal Large Language Models (MLLMs) by incorporating non-parametric knowledge from external knowledge bases. However, existing MRAG approaches suffer from static retrieval strategies, inflexible modality selection, and suboptimal utilization of retrieved information, leading to three critical challenges: determining when to retrieve, what modality to incorporate, and how to utilize retrieved information effectively. To address these challenges, we introduce Windsock, a query-dependent module making decisions on retrieval necessity and modality selection, effectively reducing computational overhead and improving response quality. Additionally, we propose Dynamic Noise-Resistance (DANCE) Instruction Tuning, an adaptive training strategy that enhances MLLMs' ability to utilize retrieved information while maintaining robustness against noise. Moreover, we adopt a self-assessment approach leveraging knowledge within MLLMs to convert question-answering datasets to MRAG training datasets. Extensive experiments demonstrate that our proposed method significantly improves the generation quality by 17.07% while reducing 8.95% retrieval times.
comment: Accepted at NeurIPS 2025 UniReps Workshop
☆ Diversification as Risk Minimization WSDM 2026
Users tend to remember failures of a search session more than its many successes. This observation has led to work on search robustness, where systems are penalized if they perform very poorly on some queries. However, this principle of robustness has been overlooked within a single query. An ambiguous or underspecified query (e.g., ``jaguar'') can have several user intents, where popular intents often dominate the ranking, leaving users with minority intents unsatisfied. Although the diversification literature has long recognized this issue, existing metrics only model the average relevance across intents and provide no robustness guarantees. More surprisingly, we show theoretically and empirically that many well-known diversification algorithms are no more robust than a naive, non-diversified algorithm. To address this critical gap, we propose to frame diversification as a risk-minimization problem. We introduce VRisk, which measures the expected risk faced by the least-served fraction of intents in a query. Optimizing VRisk produces a robust ranking, reducing the likelihood of poor user experiences. We then propose VRisker, a fast greedy re-ranker with provable approximation guarantees. Finally, experiments on NTCIR INTENT-2, TREC Web 2012, and MovieLens show the vulnerability of existing methods. VRisker reduces worst-case intent failures by up to 33% with a minimal 2% drop in average performance.
comment: Preprint, accepted at WSDM 2026 (Full Paper). 16 pages, 8 figures
☆ Tools are under-documented: Simple Document Expansion Boosts Tool Retrieval
Large Language Models (LLMs) have recently demonstrated strong capabilities in tool use, yet progress in tool retrieval remains hindered by incomplete and heterogeneous tool documentation. To address this challenge, we introduce Tool-DE, a new benchmark and framework that systematically enriches tool documentation with structured fields to enable more effective tool retrieval, together with two dedicated models, Tool-Embed and Tool-Rank. We design a scalable document expansion pipeline that leverages both open- and closed-source LLMs to generate, validate, and refine enriched tool profiles at low cost, producing large-scale corpora with 50k instances for embedding-based retrievers and 200k for rerankers. On top of this data, we develop two models specifically tailored for tool retrieval: Tool-Embed, a dense retriever, and Tool-Rank, an LLM-based reranker. Extensive experiments on ToolRet and Tool-DE demonstrate that document expansion substantially improves retrieval performance, with Tool-Embed and Tool-Rank achieving new state-of-the-art results on both benchmarks. We further analyze the contribution of individual fields to retrieval effectiveness, as well as the broader impact of document expansion on both training and evaluation. Overall, our findings highlight both the promise and limitations of LLM-driven document expansion, positioning Tool-DE, along with the proposed Tool-Embed and Tool-Rank, as a foundation for future research in tool retrieval.
☆ ATOM: AdapTive and OptiMized dynamic temporal knowledge graph construction using LLMs
In today's rapidly expanding data landscape, knowledge extraction from unstructured text is vital for real-time analytics, temporal inference, and dynamic memory frameworks. However, traditional static knowledge graph (KG) construction often overlooks the dynamic and time-sensitive nature of real-world data, limiting adaptability to continuous changes. Moreover, recent zero- or few-shot approaches that avoid domain-specific fine-tuning or reliance on prebuilt ontologies often suffer from instability across multiple runs, as well as incomplete coverage of key facts. To address these challenges, we introduce ATOM (AdapTive and OptiMized), a few-shot and scalable approach that builds and continuously updates Temporal Knowledge Graphs (TKGs) from unstructured texts. ATOM splits input documents into minimal, self-contained "atomic" facts, improving extraction exhaustivity and stability. Then, it constructs atomic TKGs from these facts while employing a dual-time modeling that distinguishes when information is observed from when it is valid. The resulting atomic TKGs are subsequently merged in parallel. Empirical evaluations demonstrate that ATOM achieves ~18% higher exhaustivity, ~17% better stability, and over 90% latency reduction compared to baseline methods, demonstrating a strong scalability potential for dynamic TKG construction.
☆ Open Multimodal Retrieval-Augmented Factual Image Generation
Large Multimodal Models (LMMs) have achieved remarkable progress in generating photorealistic and prompt-aligned images, but they often produce outputs that contradict verifiable knowledge, especially when prompts involve fine-grained attributes or time-sensitive events. Conventional retrieval-augmented approaches attempt to address this issue by introducing external information, yet they are fundamentally incapable of grounding generation in accurate and evolving knowledge due to their reliance on static sources and shallow evidence integration. To bridge this gap, we introduce ORIG, an agentic open multimodal retrieval-augmented framework for Factual Image Generation (FIG), a new task that requires both visual realism and factual grounding. ORIG iteratively retrieves and filters multimodal evidence from the web and incrementally integrates the refined knowledge into enriched prompts to guide generation. To support systematic evaluation, we build FIG-Eval, a benchmark spanning ten categories across perceptual, compositional, and temporal dimensions. Experiments demonstrate that ORIG substantially improves factual consistency and overall image quality over strong baselines, highlighting the potential of open multimodal retrieval for factual image generation.
comment: Preprint
♻ ☆ Scaling Down, Serving Fast: Compressing and Deploying Efficient LLMs for Recommendation Systems EMNLP 2025
Large language models (LLMs) have demonstrated remarkable performance across a wide range of industrial applications, from search and recommendation systems to generative tasks. Although scaling laws indicate that larger models generally yield better generalization and performance, their substantial computational requirements often render them impractical for many real-world scenarios at scale. In this paper, we present a comprehensive set of insights for training and deploying small language models (SLMs) that deliver high performance for a variety of industry use cases. We focus on two key techniques: (1) knowledge distillation and (2) model compression via structured pruning and quantization. These approaches enable SLMs to retain much of the quality of their larger counterparts while significantly reducing training/serving costs and latency. We detail the impact of these techniques on a variety of use cases in a large professional social network platform and share deployment lessons, including hardware optimization strategies that improve speed and throughput for both predictive and reasoning-based applications in Recommendation Systems.
comment: Accepted to EMNLP 2025 Industry Track - Oral Presentation
♻ ☆ A Simple but Effective Elaborative Query Reformulation Approach for Natural Language Recommendation
Natural Language (NL) recommender systems aim to retrieve relevant items from free-form user queries and item descriptions. Existing systems often rely on dense retrieval (DR), which struggles to interpret challenging queries that express broad (e.g., "cities for youth friendly activities") or indirect (e.g., "cities for a high school graduation trip") user intents. While query reformulation (QR) has been widely adopted to improve such systems, existing QR methods tend to focus only on expanding the range of query subtopics (breadth) or elaborating on the potential meaning of a query (depth), but not both. In this paper, we propose EQR (Elaborative Subtopic Query Reformulation), a large language model-based QR method that combines both breadth and depth by generating potential query subtopics with information-rich elaborations. We also introduce three new natural language recommendation benchmarks in travel, hotel, and restaurant domains to establish evaluation of NL recommendation with challenging queries. Experiments show EQR substantially outperforms state-of-the-art QR methods in various evaluation metrics, highlighting that a simple yet effective QR approach can significantly improve NL recommender systems for queries with broad and indirect user intents.
comment: 11 pages, 5 figures
♻ ☆ Worse than Zero-shot? A Fact-Checking Dataset for Evaluating the Robustness of RAG Against Misleading Retrievals NeurIPS 2025
Retrieval-augmented generation (RAG) has shown impressive capabilities in mitigating hallucinations in large language models (LLMs). However, LLMs struggle to maintain consistent reasoning when exposed to misleading or conflicting evidence, especially in real-world domains such as politics, where information is polarized or selectively framed. Mainstream RAG benchmarks evaluate models under clean retrieval settings, where systems generate answers from gold-standard documents, or under synthetically perturbed settings, where documents are artificially injected with noise. These assumptions fail to reflect real-world conditions, often leading to an overestimation of RAG system performance. To address this gap, we introduce RAGuard, the first benchmark to evaluate the robustness of RAG systems against misleading retrievals. Unlike prior benchmarks that rely on synthetic noise, our fact-checking dataset captures naturally occurring misinformation by constructing its retrieval corpus from Reddit discussions. It categorizes retrieved evidence into three types: supporting, misleading, and unrelated, providing a realistic and challenging testbed for assessing how well RAG systems navigate different types of evidence. Our experiments reveal that, when exposed to potentially misleading retrievals, all tested LLM-powered RAG systems perform worse than their zero-shot baselines (i.e., no retrieval at all), while human annotators consistently perform better, highlighting LLMs' susceptibility to noisy environments. To our knowledge, RAGuard is the first benchmark to systematically assess the robustness of the RAG against misleading evidence. We expect this benchmark to drive future research toward improving RAG systems beyond idealized datasets, making them more reliable for real-world applications. The dataset is available at https://huggingface.co/datasets/UCSC-IRKM/RAGuard.
comment: Advances in Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ CPRet: A Dataset, Benchmark, and Model for Retrieval in Competitive Programming NeurIPS 2025
Competitive programming benchmarks are widely used in scenarios such as programming contests and large language model assessments. However, the growing presence of duplicate or highly similar problems raises concerns not only about competition fairness, but also about the validity of competitive programming as a benchmark for model evaluation. In this paper, we propose a new problem, similar question retrieval, to tackle this issue. Due to the lack of both data and models, solving this problem is challenging. To this end, we introduce CPRet, a retrieval-oriented benchmark suite for competitive programming, covering four retrieval tasks: two code-centric (i.e., Text-to-Code, Code-to-Code) and two newly proposed problem-centric tasks (i.e., Problem-to-Duplicate, Simplified-to-Full) built from a combination of automatically crawled problem-solution data and manually curated annotations. Our contribution includes both high-quality training data and temporally separated test sets for reliable evaluation. Besides, we further develop two task-specialized retrievers based on this dataset: CPRetriever-Code, trained with a novel Group-InfoNCE loss for problem-code alignment, and CPRetriever-Prob, fine-tuned for identifying problem-level similarity. Both models achieve strong results and are open-sourced for local use. Finally, we analyze LiveCodeBench and find that high-similarity problems inflate model pass rates and reduce differentiation, underscoring the need for similarity-aware evaluation in future benchmarks. Github: https://github.com/coldchair/CPRet Online Demo: https://www.cpret.online/
comment: Accepted by NeurIPS 2025 Dataset and Benchmark Track