MyArxiv
Computation and Language 73
☆ Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning capabilities of LLMs, particularly in mathematics and programming tasks. It is widely believed that RLVR enables LLMs to continuously self-improve, thus acquiring novel reasoning abilities that exceed corresponding base models' capacity. In this study, however, we critically re-examines this assumption by measuring the pass@\textit{k} metric with large values of \textit{k} to explore the reasoning capability boundary of the models across a wide range of model families and benchmarks. Surprisingly, the RL does \emph{not}, in fact, elicit fundamentally new reasoning patterns. While RL-trained models outperform their base models at smaller values of $k$ (\eg, $k$=1), base models can achieve a comparable or even higher pass@$k$ score compared to their RL counterparts at large $k$ values. The reasoning paths generated by RL-trained models are already included in the base models' sampling distribution, suggesting that most reasoning abilities manifested in RL-trained models are already obtained by base models. Further analysis shows that RL training boosts the performance by biasing the model's output distribution toward paths that are more likely to yield rewards, therefore sampling correct responses more efficiently. But this also results in a narrower reasoning capability boundary compared to base models. Similar results are observed in visual reasoning tasks trained with RLVR. Moreover, we find that distillation can genuinely introduce new knowledge into the model, different from RLVR. These findings underscore a critical limitation of RLVR in advancing LLM reasoning abilities which requires us to fundamentally rethink the impact of RL training in reasoning LLMs and the need of a better paradigm. Project Page: https://limit-of-RLVR.github.io
comment: 24 pages, 19 figures
☆ MIG: Automatic Data Selection for Instruction Tuning by Maximizing Information Gain in Semantic Space
Data quality and diversity are key to the construction of effective instruction-tuning datasets. % With the increasing availability of open-source instruction-tuning datasets, it is advantageous to automatically select high-quality and diverse subsets from a vast amount of data. % Existing methods typically prioritize instance quality and use heuristic rules to maintain diversity. % However, this absence of a comprehensive view of the entire collection often leads to suboptimal results. % Moreover, heuristic rules generally focus on distance or clustering within the embedding space, which fails to accurately capture the intent of complex instructions in the semantic space. % To bridge this gap, we propose a unified method for quantifying the information content of datasets. This method models the semantic space by constructing a label graph and quantifies diversity based on the distribution of information within the graph. % Based on such a measurement, we further introduce an efficient sampling method that selects data samples iteratively to \textbf{M}aximize the \textbf{I}nformation \textbf{G}ain (MIG) in semantic space. % Experiments on various datasets and base models demonstrate that MIG consistently outperforms state-of-the-art methods. % Notably, the model fine-tuned with 5\% Tulu3 data sampled by MIG achieves comparable performance to the official SFT model trained on the full dataset, with improvements of +5.73\% on AlpacaEval and +6.89\% on Wildbench.
☆ Science Hierarchography: Hierarchical Organization of Science Literature
Scientific knowledge is growing rapidly, making it challenging to track progress and high-level conceptual links across broad disciplines. While existing tools like citation networks and search engines make it easy to access a few related papers, they fundamentally lack the flexible abstraction needed to represent the density of activity in various scientific subfields. We motivate SCIENCE HIERARCHOGRAPHY, the goal of organizing scientific literature into a high-quality hierarchical structure that allows for the categorization of scientific work across varying levels of abstraction, from very broad fields to very specific studies. Such a representation can provide insights into which fields are well-explored and which are under-explored. To achieve the goals of SCIENCE HIERARCHOGRAPHY, we develop a range of algorithms. Our primary approach combines fast embedding-based clustering with LLM-based prompting to balance the computational efficiency of embedding methods with the semantic precision offered by LLM prompting. We demonstrate that this approach offers the best trade-off between quality and speed compared to methods that heavily rely on LLM prompting, such as iterative tree construction with LLMs. To better reflect the interdisciplinary and multifaceted nature of research papers, our hierarchy captures multiple dimensions of categorization beyond simple topic labels. We evaluate the utility of our framework by assessing how effectively an LLM-based agent can locate target papers using the hierarchy. Results show that this structured approach enhances interpretability, supports trend discovery, and offers an alternative pathway for exploring scientific literature beyond traditional search methods. Code, data and demo: $\href{https://github.com/JHU-CLSP/science-hierarchography}{https://github.com/JHU-CLSP/science-hierarchography}$
☆ Generative AI Act II: Test Time Scaling Drives Cognition Engineering
The first generation of Large Language Models - what might be called "Act I" of generative AI (2020-2023) - achieved remarkable success through massive parameter and data scaling, yet exhibited fundamental limitations in knowledge latency, shallow reasoning, and constrained cognitive processes. During this era, prompt engineering emerged as our primary interface with AI, enabling dialogue-level communication through natural language. We now witness the emergence of "Act II" (2024-present), where models are transitioning from knowledge-retrieval systems (in latent space) to thought-construction engines through test-time scaling techniques. This new paradigm establishes a mind-level connection with AI through language-based thoughts. In this paper, we clarify the conceptual foundations of cognition engineering and explain why this moment is critical for its development. We systematically break down these advanced approaches through comprehensive tutorials and optimized implementations, democratizing access to cognition engineering and enabling every practitioner to participate in AI's second act. We provide a regularly updated collection of papers on test-time scaling in the GitHub Repository: https://github.com/GAIR-NLP/cognition-engineering
☆ Feature Alignment and Representation Transfer in Knowledge Distillation for Large Language Models
Knowledge distillation (KD) is a technique for transferring knowledge from complex teacher models to simpler student models, significantly enhancing model efficiency and accuracy. It has demonstrated substantial advancements in various applications including image classification, object detection, language modeling, text classification, and sentiment analysis. Recent innovations in KD methods, such as attention-based approaches, block-wise logit distillation, and decoupling distillation, have notably improved student model performance. These techniques focus on stimulus complexity, attention mechanisms, and global information capture to optimize knowledge transfer. In addition, KD has proven effective in compressing large language models while preserving accuracy, reducing computational overhead, and improving inference speed. This survey synthesizes the latest literature, highlighting key findings, contributions, and future directions in knowledge distillation to provide insights for researchers and practitioners on its evolving role in artificial intelligence and machine learning.
☆ Not All Rollouts are Useful: Down-Sampling Rollouts in LLM Reinforcement Learning
Reinforcement learning (RL) has emerged as a powerful paradigm for enhancing reasoning capabilities in large language models, but faces a fundamental asymmetry in computation and memory requirements: inference is embarrassingly parallel with a minimal memory footprint, while policy updates require extensive synchronization and are memory-intensive. To address this asymmetry, we introduce PODS (Policy Optimization with Down-Sampling), a framework that strategically decouples these phases by generating numerous rollouts in parallel but updating only on an informative subset. Within this framework, we develop max-variance down-sampling, a theoretically motivated method that selects rollouts with maximally diverse reward signals. We prove that this approach has an efficient algorithmic solution, and empirically demonstrate that GRPO with PODS using max-variance down-sampling achieves superior performance over standard GRPO on the GSM8K benchmark.
comment: 9 pages, 1 figure
☆ Analyzing LLMs' Knowledge Boundary Cognition Across Languages Through the Lens of Internal Representations
While understanding the knowledge boundaries of LLMs is crucial to prevent hallucination, research on knowledge boundaries of LLMs has predominantly focused on English. In this work, we present the first study to analyze how LLMs recognize knowledge boundaries across different languages by probing their internal representations when processing known and unknown questions in multiple languages. Our empirical studies reveal three key findings: 1) LLMs' perceptions of knowledge boundaries are encoded in the middle to middle-upper layers across different languages. 2) Language differences in knowledge boundary perception follow a linear structure, which motivates our proposal of a training-free alignment method that effectively transfers knowledge boundary perception ability across languages, thereby helping reduce hallucination risk in low-resource languages; 3) Fine-tuning on bilingual question pair translation further enhances LLMs' recognition of knowledge boundaries across languages. Given the absence of standard testbeds for cross-lingual knowledge boundary analysis, we construct a multilingual evaluation suite comprising three representative types of knowledge boundary data. Our code and datasets are publicly available at https://github.com/DAMO-NLP-SG/LLM-Multilingual-Knowledge-Boundaries.
☆ BadApex: Backdoor Attack Based on Adaptive Optimization Mechanism of Black-box Large Language Models
Previous insertion-based and paraphrase-based backdoors have achieved great success in attack efficacy, but they ignore the text quality and semantic consistency between poisoned and clean texts. Although recent studies introduce LLMs to generate poisoned texts and improve the stealthiness, semantic consistency, and text quality, their hand-crafted prompts rely on expert experiences, facing significant challenges in prompt adaptability and attack performance after defenses. In this paper, we propose a novel backdoor attack based on adaptive optimization mechanism of black-box large language models (BadApex), which leverages a black-box LLM to generate poisoned text through a refined prompt. Specifically, an Adaptive Optimization Mechanism is designed to refine an initial prompt iteratively using the generation and modification agents. The generation agent generates the poisoned text based on the initial prompt. Then the modification agent evaluates the quality of the poisoned text and refines a new prompt. After several iterations of the above process, the refined prompt is used to generate poisoned texts through LLMs. We conduct extensive experiments on three dataset with six backdoor attacks and two defenses. Extensive experimental results demonstrate that BadApex significantly outperforms state-of-the-art attacks. It improves prompt adaptability, semantic consistency, and text quality. Furthermore, when two defense methods are applied, the average attack success rate (ASR) still up to 96.75%.
comment: 16 pages, 6 figures
☆ Scaling sparse feature circuit finding for in-context learning
Sparse autoencoders (SAEs) are a popular tool for interpreting large language model activations, but their utility in addressing open questions in interpretability remains unclear. In this work, we demonstrate their effectiveness by using SAEs to deepen our understanding of the mechanism behind in-context learning (ICL). We identify abstract SAE features that (i) encode the model's knowledge of which task to execute and (ii) whose latent vectors causally induce the task zero-shot. This aligns with prior work showing that ICL is mediated by task vectors. We further demonstrate that these task vectors are well approximated by a sparse sum of SAE latents, including these task-execution features. To explore the ICL mechanism, we adapt the sparse feature circuits methodology of Marks et al. (2024) to work for the much larger Gemma-1 2B model, with 30 times as many parameters, and to the more complex task of ICL. Through circuit finding, we discover task-detecting features with corresponding SAE latents that activate earlier in the prompt, that detect when tasks have been performed. They are causally linked with task-execution features through the attention and MLP sublayers.
☆ Learning to Attribute with Attention
Given a sequence of tokens generated by a language model, we may want to identify the preceding tokens that influence the model to generate this sequence. Performing such token attribution is expensive; a common approach is to ablate preceding tokens and directly measure their effects. To reduce the cost of token attribution, we revisit attention weights as a heuristic for how a language model uses previous tokens. Naive approaches to attribute model behavior with attention (e.g., averaging attention weights across attention heads to estimate a token's influence) have been found to be unreliable. To attain faithful attributions, we propose treating the attention weights of different attention heads as features. This way, we can learn how to effectively leverage attention weights for attribution (using signal from ablations). Our resulting method, Attribution with Attention (AT2), reliably performs on par with approaches that involve many ablations, while being significantly more efficient. To showcase the utility of AT2, we use it to prune less important parts of a provided context in a question answering setting, improving answer quality. We provide code for AT2 at https://github.com/MadryLab/AT2 .
☆ Controlled Territory and Conflict Tracking (CONTACT): (Geo-)Mapping Occupied Territory from Open Source Intelligence
Open-source intelligence provides a stream of unstructured textual data that can inform assessments of territorial control. We present CONTACT, a framework for territorial control prediction using large language models (LLMs) and minimal supervision. We evaluate two approaches: SetFit, an embedding-based few-shot classifier, and a prompt tuning method applied to BLOOMZ-560m, a multilingual generative LLM. Our model is trained on a small hand-labeled dataset of news articles covering ISIS activity in Syria and Iraq, using prompt-conditioned extraction of control-relevant signals such as military operations, casualties, and location references. We show that the BLOOMZ-based model outperforms the SetFit baseline, and that prompt-based supervision improves generalization in low-resource settings. CONTACT demonstrates that LLMs fine-tuned using few-shot methods can reduce annotation burdens and support structured inference from open-ended OSINT streams. Our code is available at https://github.com/PaulKMandal/CONTACT/.
comment: 7 pages, 1 figure, 1 table
☆ OpenDeception: Benchmarking and Investigating AI Deceptive Behaviors via Open-ended Interaction Simulation
As the general capabilities of large language models (LLMs) improve and agent applications become more widespread, the underlying deception risks urgently require systematic evaluation and effective oversight. Unlike existing evaluation which uses simulated games or presents limited choices, we introduce OpenDeception, a novel deception evaluation framework with an open-ended scenario dataset. OpenDeception jointly evaluates both the deception intention and capabilities of LLM-based agents by inspecting their internal reasoning process. Specifically, we construct five types of common use cases where LLMs intensively interact with the user, each consisting of ten diverse, concrete scenarios from the real world. To avoid ethical concerns and costs of high-risk deceptive interactions with human testers, we propose to simulate the multi-turn dialogue via agent simulation. Extensive evaluation of eleven mainstream LLMs on OpenDeception highlights the urgent need to address deception risks and security concerns in LLM-based agents: the deception intention ratio across the models exceeds 80%, while the deception success rate surpasses 50%. Furthermore, we observe that LLMs with stronger capabilities do exhibit a higher risk of deception, which calls for more alignment efforts on inhibiting deceptive behaviors.
☆ Revisiting Uncertainty Quantification Evaluation in Language Models: Spurious Interactions with Response Length Bias Results
Uncertainty Quantification (UQ) in Language Models (LMs) is crucial for improving their safety and reliability. Evaluations often use performance metrics like AUROC to assess how well UQ methods (e.g., negative sequence probabilities) correlate with task correctness functions (e.g., ROUGE-L). In this paper, we show that commonly used correctness functions bias UQ evaluations by inflating the performance of certain UQ methods. We evaluate 7 correctness functions -- from lexical-based and embedding-based metrics to LLM-as-a-judge approaches -- across 4 datasets x 4 models x 6 UQ methods. Our analysis reveals that length biases in the errors of these correctness functions distort UQ assessments by interacting with length biases in UQ methods. We identify LLM-as-a-judge approaches as among the least length-biased choices and hence a potential solution to mitigate these biases.
☆ Large Language Models Will Change The Way Children Think About Technology And Impact Every Interaction Paradigm
This paper presents a hopeful perspective on the potentially dramatic impacts of Large Language Models on how we children learn and how they will expect to interact with technology. We review the effects of LLMs on education so far, and make the case that these effects are minor compared to the upcoming changes that are occurring. We present a small scenario and self-ethnographic study demonstrating the effects of these changes, and define five significant considerations that interactive systems designers will have to accommodate in the future.
comment: Accepted for IDC 2025. Citation: Russell Beale. 2025. Large Language Models Will Change The Way Children Think About Technology And Impact Every Interaction Paradigm. In Proceedings of Interaction Design and Children Conference (IDC2025). ACM, New York, NY, USA
☆ Multi-Type Context-Aware Conversational Recommender Systems via Mixture-of-Experts
Conversational recommender systems enable natural language conversations and thus lead to a more engaging and effective recommendation scenario. As the conversations for recommender systems usually contain limited contextual information, many existing conversational recommender systems incorporate external sources to enrich the contextual information. However, how to combine different types of contextual information is still a challenge. In this paper, we propose a multi-type context-aware conversational recommender system, called MCCRS, effectively fusing multi-type contextual information via mixture-of-experts to improve conversational recommender systems. MCCRS incorporates both structured information and unstructured information, including the structured knowledge graph, unstructured conversation history, and unstructured item reviews. It consists of several experts, with each expert specialized in a particular domain (i.e., one specific contextual information). Multiple experts are then coordinated by a ChairBot to generate the final results. Our proposed MCCRS model takes advantage of different contextual information and the specialization of different experts followed by a ChairBot breaks the model bottleneck on a single contextual information. Experimental results demonstrate that our proposed MCCRS method achieves significantly higher performance compared to existing baselines.
comment: 30 pages
☆ Word Embedding Techniques for Classification of Star Ratings
Telecom services are at the core of today's societies' everyday needs. The availability of numerous online forums and discussion platforms enables telecom providers to improve their services by exploring the views of their customers to learn about common issues that the customers face. Natural Language Processing (NLP) tools can be used to process the free text collected. One way of working with such data is to represent text as numerical vectors using one of many word embedding models based on neural networks. This research uses a novel dataset of telecom customers' reviews to perform an extensive study showing how different word embedding algorithms can affect the text classification process. Several state-of-the-art word embedding techniques are considered, including BERT, Word2Vec and Doc2Vec, coupled with several classification algorithms. The important issue of feature engineering and dimensionality reduction is addressed and several PCA-based approaches are explored. Moreover, the energy consumption used by the different word embeddings is investigated. The findings show that some word embedding models can lead to consistently better text classifiers in terms of precision, recall and F1-Score. In particular, for the more challenging classification tasks, BERT combined with PCA stood out with the highest performance metrics. Moreover, our proposed PCA approach of combining word vectors using the first principal component shows clear advantages in performance over the traditional approach of taking the average.
comment: 40 pages
☆ Exploring the Potential for Large Language Models to Demonstrate Rational Probabilistic Beliefs
Advances in the general capabilities of large language models (LLMs) have led to their use for information retrieval, and as components in automated decision systems. A faithful representation of probabilistic reasoning in these models may be essential to ensure trustworthy, explainable and effective performance in these tasks. Despite previous work suggesting that LLMs can perform complex reasoning and well-calibrated uncertainty quantification, we find that current versions of this class of model lack the ability to provide rational and coherent representations of probabilistic beliefs. To demonstrate this, we introduce a novel dataset of claims with indeterminate truth values and apply a number of well-established techniques for uncertainty quantification to measure the ability of LLM's to adhere to fundamental properties of probabilistic reasoning.
comment: 8 pages, 4 figures
☆ Simulating Before Planning: Constructing Intrinsic User World Model for User-Tailored Dialogue Policy Planning SIGIR 2025
Recent advancements in dialogue policy planning have emphasized optimizing system agent policies to achieve predefined goals, focusing on strategy design, trajectory acquisition, and efficient training paradigms. However, these approaches often overlook the critical role of user characteristics, which are essential in real-world scenarios like conversational search and recommendation, where interactions must adapt to individual user traits such as personality, preferences, and goals. To address this gap, we first conduct a comprehensive study utilizing task-specific user personas to systematically assess dialogue policy planning under diverse user behaviors. By leveraging realistic user profiles for different tasks, our study reveals significant limitations in existing approaches, highlighting the need for user-tailored dialogue policy planning. Building on this foundation, we present the User-Tailored Dialogue Policy Planning (UDP) framework, which incorporates an Intrinsic User World Model to model user traits and feedback. UDP operates in three stages: (1) User Persona Portraying, using a diffusion model to dynamically infer user profiles; (2) User Feedback Anticipating, leveraging a Brownian Bridge-inspired anticipator to predict user reactions; and (3) User-Tailored Policy Planning, integrating these insights to optimize response strategies. To ensure robust performance, we further propose an active learning approach that prioritizes challenging user personas during training. Comprehensive experiments on benchmarks, including collaborative and non-collaborative settings, demonstrate the effectiveness of UDP in learning user-specific dialogue strategies. Results validate the protocol's utility and highlight UDP's robustness, adaptability, and potential to advance user-centric dialogue systems.
comment: 11 pages, 6 figures, SIGIR 2025
☆ Remedy: Learning Machine Translation Evaluation from Human Preferences with Reward Modeling
A key challenge in MT evaluation is the inherent noise and inconsistency of human ratings. Regression-based neural metrics struggle with this noise, while prompting LLMs shows promise at system-level evaluation but performs poorly at segment level. In this work, we propose ReMedy, a novel MT metric framework that reformulates translation evaluation as a reward modeling task. Instead of regressing on imperfect human ratings directly, ReMedy learns relative translation quality using pairwise preference data, resulting in a more reliable evaluation. In extensive experiments across WMT22-24 shared tasks (39 language pairs, 111 MT systems), ReMedy achieves state-of-the-art performance at both segment- and system-level evaluation. Specifically, ReMedy-9B surpasses larger WMT winners and massive closed LLMs such as MetricX-13B, XCOMET-Ensemble, GEMBA-GPT-4, PaLM-540B, and finetuned PaLM2. Further analyses demonstrate that ReMedy delivers superior capability in detecting translation errors and evaluating low-quality translations.
☆ Divergent LLM Adoption and Heterogeneous Convergence Paths in Research Writing
Large Language Models (LLMs), such as ChatGPT, are reshaping content creation and academic writing. This study investigates the impact of AI-assisted generative revisions on research manuscripts, focusing on heterogeneous adoption patterns and their influence on writing convergence. Leveraging a dataset of over 627,000 academic papers from arXiv, we develop a novel classification framework by fine-tuning prompt- and discipline-specific large language models to detect the style of ChatGPT-revised texts. Our findings reveal substantial disparities in LLM adoption across academic disciplines, gender, native language status, and career stage, alongside a rapid evolution in scholarly writing styles. Moreover, LLM usage enhances clarity, conciseness, and adherence to formal writing conventions, with improvements varying by revision type. Finally, a difference-in-differences analysis shows that while LLMs drive convergence in academic writing, early adopters, male researchers, non-native speakers, and junior scholars exhibit the most pronounced stylistic shifts, aligning their writing more closely with that of established researchers.
☆ Thought Manipulation: External Thought Can Be Efficient for Large Reasoning Models
Recent advancements in large reasoning models (LRMs) have demonstrated the effectiveness of scaling test-time computation to enhance reasoning capabilities in multiple tasks. However, LRMs typically suffer from "overthinking" problems, where models generate significantly redundant reasoning steps while bringing limited performance gains. Existing work relies on fine-tuning to mitigate overthinking, which requires additional data, unconventional training setups, risky safety misalignment, and poor generalization. Through empirical analysis, we reveal an important characteristic of LRM behaviors that placing external CoTs generated by smaller models between the thinking token ($\texttt{}$ and $\texttt{)}$ can effectively manipulate the model to generate fewer thoughts. Building on these insights, we propose a simple yet efficient pipeline, ThoughtMani, to enable LRMs to bypass unnecessary intermediate steps and reduce computational costs significantly. We conduct extensive experiments to validate the utility and efficiency of ThoughtMani. For instance, when applied to QwQ-32B on the LiveBench/Code dataset, ThoughtMani keeps the original performance and reduces output token counts by approximately 30%, with little overhead from the CoT generator. Furthermore, we find that ThoughtMani enhances safety alignment by an average of 10%. Since model vendors typically serve models of different sizes simultaneously, ThoughtMani provides an effective way to construct more efficient and accessible LRMs for real-world applications.
☆ Long-context Non-factoid Question Answering in Indic Languages
Question Answering (QA) tasks, which involve extracting answers from a given context, are relatively straightforward for modern Large Language Models (LLMs) when the context is short. However, long contexts pose challenges due to the quadratic complexity of the self-attention mechanism. This challenge is compounded in Indic languages, which are often low-resource. This study explores context-shortening techniques, including Open Information Extraction (OIE), coreference resolution, Answer Paragraph Selection (APS), and their combinations, to improve QA performance. Compared to the baseline of unshortened (long) contexts, our experiments on four Indic languages (Hindi, Tamil, Telugu, and Urdu) demonstrate that context-shortening techniques yield an average improvement of 4\% in semantic scores and 47\% in token-level scores when evaluated on three popular LLMs without fine-tuning. Furthermore, with fine-tuning, we achieve an average increase of 2\% in both semantic and token-level scores. Additionally, context-shortening reduces computational overhead. Explainability techniques like LIME and SHAP reveal that when the APS model confidently identifies the paragraph containing the answer, nearly all tokens within the selected text receive high relevance scores. However, the study also highlights the limitations of LLM-based QA systems in addressing non-factoid questions, particularly those requiring reasoning or debate. Moreover, verbalizing OIE-generated triples does not enhance system performance. These findings emphasize the potential of context-shortening techniques to improve the efficiency and effectiveness of LLM-based QA systems, especially for low-resource languages. The source code and resources are available at https://github.com/ritwikmishra/IndicGenQA.
☆ Continual Pre-Training is (not) What You Need in Domain Adaption
The recent advances in Legal Large Language Models (LLMs) have transformed the landscape of legal research and practice by automating tasks, enhancing research precision, and supporting complex decision-making processes. However, effectively adapting LLMs to the legal domain remains challenging due to the complexity of legal reasoning, the need for precise interpretation of specialized language, and the potential for hallucinations. This paper examines the efficacy of Domain-Adaptive Continual Pre-Training (DACP) in improving the legal reasoning capabilities of LLMs. Through a series of experiments on legal reasoning tasks within the Taiwanese legal framework, we demonstrate that while DACP enhances domain-specific knowledge, it does not uniformly improve performance across all legal tasks. We discuss the trade-offs involved in DACP, particularly its impact on model generalization and performance in prompt-based tasks, and propose directions for future research to optimize domain adaptation strategies in legal AI.
comment: 11 pages, 2 figures
☆ Improving Generalization in Intent Detection: GRPO with Reward-Based Curriculum Sampling
Intent detection, a critical component in task-oriented dialogue (TOD) systems, faces significant challenges in adapting to the rapid influx of integrable tools with complex interrelationships. Existing approaches, such as zero-shot reformulations and LLM-based dynamic recognition, struggle with performance degradation when encountering unseen intents, leading to erroneous task routing. To enhance the model's generalization performance on unseen tasks, we employ Reinforcement Learning (RL) combined with a Reward-based Curriculum Sampling (RCS) during Group Relative Policy Optimization (GRPO) training in intent detection tasks. Experiments demonstrate that RL-trained models substantially outperform supervised fine-tuning (SFT) baselines in generalization. Besides, the introduction of the RCS, significantly bolsters the effectiveness of RL in intent detection by focusing the model on challenging cases during training. Moreover, incorporating Chain-of-Thought (COT) processes in RL notably improves generalization in complex intent detection tasks, underscoring the importance of thought in challenging scenarios. This work advances the generalization of intent detection tasks, offering practical insights for deploying adaptable dialogue systems.
☆ DETAM: Defending LLMs Against Jailbreak Attacks via Targeted Attention Modification
With the widespread adoption of Large Language Models (LLMs), jailbreak attacks have become an increasingly pressing safety concern. While safety-aligned LLMs can effectively defend against normal harmful queries, they remain vulnerable to such attacks. Existing defense methods primarily rely on fine-tuning or input modification, which often suffer from limited generalization and reduced utility. To address this, we introduce DETAM, a finetuning-free defense approach that improves the defensive capabilities against jailbreak attacks of LLMs via targeted attention modification. Specifically, we analyze the differences in attention scores between successful and unsuccessful defenses to identify the attention heads sensitive to jailbreak attacks. During inference, we reallocate attention to emphasize the user's core intention, minimizing interference from attack tokens. Our experimental results demonstrate that DETAM outperforms various baselines in jailbreak defense and exhibits robust generalization across different attacks and models, maintaining its effectiveness even on in-the-wild jailbreak data. Furthermore, in evaluating the model's utility, we incorporated over-defense datasets, which further validate the superior performance of our approach. The code will be released immediately upon acceptance.
☆ Q-FAKER: Query-free Hard Black-box Attack via Controlled Generation NAACL 2025
Many adversarial attack approaches are proposed to verify the vulnerability of language models. However, they require numerous queries and the information on the target model. Even black-box attack methods also require the target model's output information. They are not applicable in real-world scenarios, as in hard black-box settings where the target model is closed and inaccessible. Even the recently proposed hard black-box attacks still require many queries and demand extremely high costs for training adversarial generators. To address these challenges, we propose Q-faker (Query-free Hard Black-box Attacker), a novel and efficient method that generates adversarial examples without accessing the target model. To avoid accessing the target model, we use a surrogate model instead. The surrogate model generates adversarial sentences for a target-agnostic attack. During this process, we leverage controlled generation techniques. We evaluate our proposed method on eight datasets. Experimental results demonstrate our method's effectiveness including high transferability and the high quality of the generated adversarial examples, and prove its practical in hard black-box settings.
comment: NAACL 2025 Findings
☆ Enhancing Multilingual Sentiment Analysis with Explainability for Sinhala, English, and Code-Mixed Content
Sentiment analysis is crucial for brand reputation management in the banking sector, where customer feedback spans English, Sinhala, Singlish, and code-mixed text. Existing models struggle with low-resource languages like Sinhala and lack interpretability for practical use. This research develops a hybrid aspect-based sentiment analysis framework that enhances multilingual capabilities with explainable outputs. Using cleaned banking customer reviews, we fine-tune XLM-RoBERTa for Sinhala and code-mixed text, integrate domain-specific lexicon correction, and employ BERT-base-uncased for English. The system classifies sentiment (positive, neutral, negative) with confidence scores, while SHAP and LIME improve interpretability by providing real-time sentiment explanations. Experimental results show that our approaches outperform traditional transformer-based classifiers, achieving 92.3 percent accuracy and an F1-score of 0.89 in English and 88.4 percent in Sinhala and code-mixed content. An explainability analysis reveals key sentiment drivers, improving trust and transparency. A user-friendly interface delivers aspect-wise sentiment insights, ensuring accessibility for businesses. This research contributes to robust, transparent sentiment analysis for financial applications by bridging gaps in multilingual, low-resource NLP and explainability.
comment: 6 pages, 6 figures, 4 tables
☆ CoT-RAG: Integrating Chain of Thought and Retrieval-Augmented Generation to Enhance Reasoning in Large Language Models
While chain-of-thought (CoT) reasoning improves the performance of large language models (LLMs) in complex tasks, it still has two main challenges: the low reliability of relying solely on LLMs to generate reasoning chains and the interference of natural language reasoning chains on the inference logic of LLMs. To address these issues, we propose CoT-RAG, a novel reasoning framework with three key designs: (i) Knowledge Graph-driven CoT Generation, featuring knowledge graphs to modulate reasoning chain generation of LLMs, thereby enhancing reasoning credibility; (ii) Learnable Knowledge Case-aware RAG, which incorporates retrieval-augmented generation (RAG) into knowledge graphs to retrieve relevant sub-cases and sub-descriptions, providing LLMs with learnable information; (iii) Pseudo-Program Prompting Execution, which encourages LLMs to execute reasoning tasks in pseudo-programs with greater logical rigor. We conduct a comprehensive evaluation on nine public datasets, covering three reasoning problems. Compared with the-state-of-the-art methods, CoT-RAG exhibits a significant accuracy improvement, ranging from 4.0% to 23.0%. Furthermore, testing on four domain-specific datasets, CoT-RAG shows remarkable accuracy and efficient execution, highlighting its strong practical applicability and scalability.
☆ Prejudge-Before-Think: Enhancing Large Language Models at Test-Time by Process Prejudge Reasoning
In this paper, we introduce a new \emph{process prejudge} strategy in LLM reasoning to demonstrate that bootstrapping with process prejudge allows the LLM to adaptively anticipate the errors encountered when advancing the subsequent reasoning steps, similar to people sometimes pausing to think about what mistakes may occur and how to avoid them, rather than relying solely on trial and error. Specifically, we define a prejudge node in the rationale, which represents a reasoning step, with at least one step that follows the prejudge node that has no paths toward the correct answer. To synthesize the prejudge reasoning process, we present an automated reasoning framework with a dynamic tree-searching strategy. This framework requires only one LLM to perform answer judging, response critiquing, prejudge generation, and thought completion. Furthermore, we develop a two-phase training mechanism with supervised fine-tuning (SFT) and reinforcement learning (RL) to further enhance the reasoning capabilities of LLMs. Experimental results from competition-level complex reasoning demonstrate that our method can teach the model to prejudge before thinking and significantly enhance the reasoning ability of LLMs. Code and data is released at https://github.com/wjn1996/Prejudge-Before-Think.
☆ Integrating Locality-Aware Attention with Transformers for General Geometry PDEs IJCNN 2025
Neural operators have emerged as promising frameworks for learning mappings governed by partial differential equations (PDEs), serving as data-driven alternatives to traditional numerical methods. While methods such as the Fourier neural operator (FNO) have demonstrated notable performance, their reliance on uniform grids restricts their applicability to complex geometries and irregular meshes. Recently, Transformer-based neural operators with linear attention mechanisms have shown potential in overcoming these limitations for large-scale PDE simulations. However, these approaches predominantly emphasize global feature aggregation, often overlooking fine-scale dynamics and localized PDE behaviors essential for accurate solutions. To address these challenges, we propose the Locality-Aware Attention Transformer (LA2Former), which leverages K-nearest neighbors for dynamic patchifying and integrates global-local attention for enhanced PDE modeling. By combining linear attention for efficient global context encoding with pairwise attention for capturing intricate local interactions, LA2Former achieves an optimal balance between computational efficiency and predictive accuracy. Extensive evaluations across six benchmark datasets demonstrate that LA2Former improves predictive accuracy by over 50% relative to existing linear attention methods, while also outperforming full pairwise attention under optimal conditions. This work underscores the critical importance of localized feature learning in advancing Transformer-based neural operators for solving PDEs on complex and irregular domains.
comment: Accepted by IJCNN 2025
LLM Sensitivity Evaluation Framework for Clinical Diagnosis
Large language models (LLMs) have demonstrated impressive performance across various domains. However, for clinical diagnosis, higher expectations are required for LLM's reliability and sensitivity: thinking like physicians and remaining sensitive to key medical information that affects diagnostic reasoning, as subtle variations can lead to different diagnosis results. Yet, existing works focus mainly on investigating the sensitivity of LLMs to irrelevant context and overlook the importance of key information. In this paper, we investigate the sensitivity of LLMs, i.e. GPT-3.5, GPT-4, Gemini, Claude3 and LLaMA2-7b, to key medical information by introducing different perturbation strategies. The evaluation results highlight the limitations of current LLMs in remaining sensitive to key medical information for diagnostic decision-making. The evolution of LLMs must focus on improving their reliability, enhancing their ability to be sensitive to key information, and effectively utilizing this information. These improvements will enhance human trust in LLMs and facilitate their practical application in real-world scenarios. Our code and dataset are available at https://github.com/chenwei23333/DiagnosisQA.
CodeVisionary: An Agent-based Framework for Evaluating Large Language Models in Code Generation
Large language models (LLMs) have demonstrated strong capabilities in code generation, underscoring the critical need for rigorous and comprehensive evaluation. Existing evaluation approaches fall into three categories, including human-centered, metric-based, and LLM-based. Considering that human-centered approaches are labour-intensive and metric-based ones overly rely on reference answers, LLM-based approaches are gaining increasing attention due to their stronger contextual understanding capabilities and superior efficiency. However, the performance of LLM-based approaches remains limited due to: (1) lack of multisource domain knowledge, and (2) insufficient comprehension of complex code. To mitigate the limitations, we propose CodeVisionary, the first LLM-based agent framework for evaluating LLMs in code generation. CodeVisionary consists of two stages: (1) Multiscore knowledge analysis stage, which aims to gather multisource and comprehensive domain knowledge by formulating and executing a stepwise evaluation plan. (2) Negotiation-based scoring stage, which involves multiple judges engaging in discussions to better comprehend the complex code and reach a consensus on the evaluation score. Extensive experiments demonstrate that CodeVisionary achieves the best performance for evaluating LLMs in code generation, outperforming the best baseline methods with average improvements of 0.202, 0.139, and 0.117 in Pearson, Spearman, and Kendall-Tau coefficients, respectively. Besides, CodeVisionary provides detailed evaluation reports, which assist developers in identifying shortcomings and making improvements. The resources of CodeVisionary are available at https://anonymous.4open.science/r/CodeVisionary.
☆ From Large to Super-Tiny: End-to-End Optimization for Cost-Efficient LLMs
In recent years, Large Language Models (LLMs) have significantly advanced artificial intelligence by optimizing traditional Natural Language Processing (NLP) pipelines, improving performance and generalization. This has spurred their integration into various systems. Many NLP systems, including ours, employ a "one-stage" pipeline directly incorporating LLMs. While effective, this approach incurs substantial costs and latency due to the need for large model parameters to achieve satisfactory outcomes. This paper introduces a three-stage cost-efficient end-to-end LLM deployment pipeline-including prototyping, knowledge transfer, and model compression-to tackle the cost-performance dilemma in LLM-based frameworks. Our approach yields a super tiny model optimized for cost and performance in online systems, simplifying the system architecture. Initially, by transforming complex tasks into a function call-based LLM-driven pipeline, an optimal performance prototype system is constructed to produce high-quality data as a teacher model. The second stage combine techniques like rejection fine-tuning, reinforcement learning and knowledge distillation to transfer knowledge to a smaller 0.5B student model, delivering effective performance at minimal cost. The final stage applies quantization and pruning to extremely compress model to 0.4B, achieving ultra-low latency and cost. The framework's modular design and cross-domain capabilities suggest potential applicability in other NLP areas.
☆ D-GEN: Automatic Distractor Generation and Evaluation for Reliable Assessment of Generative Model
Evaluating generative models with open-ended generation is challenging due to inconsistencies in response formats. Multiple-choice (MC) evaluation mitigates this issue, but generating high-quality distractors is time-consuming and labor-intensive. We introduce D-GEN, the first open-source distractor generator model that transforms open-ended data into an MC format. To evaluate distractor quality, we propose two novel methods: (1) ranking alignment, ensuring generated distractors retain the discriminatory power of ground-truth distractors, and (2) entropy analysis, comparing model confidence distributions. Our results show that D-GEN preserves ranking consistency (Spearman's rho 0.99, Kendall's tau 0.94) and closely matches the entropy distribution of ground-truth distractors. Human evaluation further confirms the fluency, coherence, distractiveness, and incorrectness. Our work advances robust and efficient distractor generation with automated evaluation, setting a new standard for MC evaluation.
Secure Multifaceted-RAG for Enterprise: Hybrid Knowledge Retrieval with Security Filtering
Existing Retrieval-Augmented Generation (RAG) systems face challenges in enterprise settings due to limited retrieval scope and data security risks. When relevant internal documents are unavailable, the system struggles to generate accurate and complete responses. Additionally, using closed-source Large Language Models (LLMs) raises concerns about exposing proprietary information. To address these issues, we propose the Secure Multifaceted-RAG (SecMulti-RAG) framework, which retrieves not only from internal documents but also from two supplementary sources: pre-generated expert knowledge for anticipated queries and on-demand external LLM-generated knowledge. To mitigate security risks, we adopt a local open-source generator and selectively utilize external LLMs only when prompts are deemed safe by a filtering mechanism. This approach enhances completeness, prevents data leakage, and reduces costs. In our evaluation on a report generation task in the automotive industry, SecMulti-RAG significantly outperforms traditional RAG - achieving 79.3 to 91.9 percent win rates across correctness, richness, and helpfulness in LLM-based evaluation, and 56.3 to 70.4 percent in human evaluation. This highlights SecMulti-RAG as a practical and secure solution for enterprise RAG.
☆ STAMP Your Content: Proving Dataset Membership via Watermarked Rephrasings ICLR 2025
Given how large parts of publicly available text are crawled to pretrain large language models (LLMs), data creators increasingly worry about the inclusion of their proprietary data for model training without attribution or licensing. Their concerns are also shared by benchmark curators whose test-sets might be compromised. In this paper, we present STAMP, a framework for detecting dataset membership-i.e., determining the inclusion of a dataset in the pretraining corpora of LLMs. Given an original piece of content, our proposal involves first generating multiple rephrases, each embedding a watermark with a unique secret key. One version is to be released publicly, while others are to be kept private. Subsequently, creators can compare model likelihoods between public and private versions using paired statistical tests to prove membership. We show that our framework can successfully detect contamination across four benchmarks which appear only once in the training data and constitute less than 0.001% of the total tokens, outperforming several contamination detection and dataset inference baselines. We verify that STAMP preserves both the semantic meaning and the utility of the original data in comparing different models. We apply STAMP to two real-world scenarios to confirm the inclusion of paper abstracts and blog articles in the pretraining corpora.
comment: Accepted at DATA-FM, WMark @ ICLR 2025. Project page at see https://codeboy5.github.io/stamp
☆ LangCoop: Collaborative Driving with Language
Multi-agent collaboration holds great promise for enhancing the safety, reliability, and mobility of autonomous driving systems by enabling information sharing among multiple connected agents. However, existing multi-agent communication approaches are hindered by limitations of existing communication media, including high bandwidth demands, agent heterogeneity, and information loss. To address these challenges, we introduce LangCoop, a new paradigm for collaborative autonomous driving that leverages natural language as a compact yet expressive medium for inter-agent communication. LangCoop features two key innovations: Mixture Model Modular Chain-of-thought (M$^3$CoT) for structured zero-shot vision-language reasoning and Natural Language Information Packaging (LangPack) for efficiently packaging information into concise, language-based messages. Through extensive experiments conducted in the CARLA simulations, we demonstrate that LangCoop achieves a remarkable 96\% reduction in communication bandwidth (< 2KB per message) compared to image-based communication, while maintaining competitive driving performance in the closed-loop evaluation.
☆ A mean teacher algorithm for unlearning of language models
One of the goals of language model unlearning is to reduce memorization of selected text instances while retaining the model's general abilities. Despite various proposed methods, reducing memorization of large datasets without noticeable degradation in model utility remains challenging. In this paper, we investigate the mean teacher algorithm (Tarvainen & Valpola, 2017), a simple proximal optimization method from continual learning literature that gradually modifies the teacher model. We show that the mean teacher can approximate a trajectory of a slow natural gradient descent (NGD), which inherently seeks low-curvature updates that are less likely to degrade the model utility. While slow NGD can suffer from vanishing gradients, we introduce a new unlearning loss called "negative log-unlikelihood" (NLUL) that avoids this problem. We show that the combination of mean teacher and NLUL improves some metrics on the MUSE benchmarks (Shi et al., 2024).
♻ ☆ A-MEM: Agentic Memory for LLM Agents
While large language model (LLM) agents can effectively use external tools for complex real-world tasks, they require memory systems to leverage historical experiences. Current memory systems enable basic storage and retrieval but lack sophisticated memory organization, despite recent attempts to incorporate graph databases. Moreover, these systems' fixed operations and structures limit their adaptability across diverse tasks. To address this limitation, this paper proposes a novel agentic memory system for LLM agents that can dynamically organize memories in an agentic way. Following the basic principles of the Zettelkasten method, we designed our memory system to create interconnected knowledge networks through dynamic indexing and linking. When a new memory is added, we generate a comprehensive note containing multiple structured attributes, including contextual descriptions, keywords, and tags. The system then analyzes historical memories to identify relevant connections, establishing links where meaningful similarities exist. Additionally, this process enables memory evolution - as new memories are integrated, they can trigger updates to the contextual representations and attributes of existing historical memories, allowing the memory network to continuously refine its understanding. Our approach combines the structured organization principles of Zettelkasten with the flexibility of agent-driven decision making, allowing for more adaptive and context-aware memory management. Empirical experiments on six foundation models show superior improvement against existing SOTA baselines. The source code for evaluating performance is available at https://github.com/WujiangXu/AgenticMemory, while the source code of agentic memory system is available at https://github.com/agiresearch/A-mem.
♻ ☆ From Token to Line: Enhancing Code Generation with a Long-Term Perspective
The emergence of large language models (LLMs) has significantly promoted the development of code generation task, sparking a surge in pertinent literature. Current research is hindered by redundant generation results and a tendency to overfit local patterns in the short term. Although existing studies attempt to alleviate the issue by adopting a multi-token prediction strategy, there remains limited focus on choosing the appropriate processing length for generations. By analyzing the attention between tokens during the generation process of LLMs, it can be observed that the high spikes of the attention scores typically appear at the end of lines. This insight suggests that it is reasonable to treat each line of code as a fundamental processing unit and generate them sequentially. Inspired by this, we propose the \textbf{LSR-MCTS} algorithm, which leverages MCTS to determine the code line-by-line and select the optimal path. Further, we integrate a self-refine mechanism at each node to enhance diversity and generate higher-quality programs through error correction. Extensive experiments and comprehensive analyses on three public coding benchmarks demonstrate that our method outperforms the state-of-the-art performance approaches.
♻ ☆ GUI-R1 : A Generalist R1-Style Vision-Language Action Model For GUI Agents
Existing efforts in building Graphical User Interface (GUI) agents largely rely on the training paradigm of supervised fine-tuning on Large Vision-Language Models (LVLMs). However, this approach not only demands extensive amounts of training data but also struggles to effectively understand GUI screenshots and generalize to unseen interfaces. The issue significantly limits its application in real-world scenarios, especially for high-level tasks. Inspired by Reinforcement Fine-Tuning (RFT) in large reasoning models (e.g., DeepSeek-R1), which efficiently enhances the problem-solving capabilities of large language models in real-world settings, we propose \name, the first reinforcement learning framework designed to enhance the GUI capabilities of LVLMs in high-level real-world task scenarios, through unified action space rule modeling. By leveraging a small amount of carefully curated high-quality data across multiple platforms (including Windows, Linux, MacOS, Android, and Web) and employing policy optimization algorithms such as Group Relative Policy Optimization (GRPO) to update the model, \name achieves superior performance using only 0.02\% of the data (3K vs. 13M) compared to previous state-of-the-art methods like OS-Atlas across eight benchmarks spanning three different platforms (mobile, desktop, and web). These results demonstrate the immense potential of reinforcement learning based on unified action space rule modeling in improving the execution capabilities of LVLMs for real-world GUI agent tasks.
♻ ☆ SysCaps: Language Interfaces for Simulation Surrogates of Complex Systems ICLR 2025
Surrogate models are used to predict the behavior of complex energy systems that are too expensive to simulate with traditional numerical methods. Our work introduces the use of language descriptions, which we call ``system captions'' or SysCaps, to interface with such surrogates. We argue that interacting with surrogates through text, particularly natural language, makes these models more accessible for both experts and non-experts. We introduce a lightweight multimodal text and timeseries regression model and a training pipeline that uses large language models (LLMs) to synthesize high-quality captions from simulation metadata. Our experiments on two real-world simulators of buildings and wind farms show that our SysCaps-augmented surrogates have better accuracy on held-out systems than traditional methods while enjoying new generalization abilities, such as handling semantically related descriptions of the same test system. Additional experiments also highlight the potential of SysCaps to unlock language-driven design space exploration and to regularize training through prompt augmentation.
comment: Accepted at ICLR 2025. 23 pages. Updated with final camera ready version
♻ ☆ C-MTCSD: A Chinese Multi-Turn Conversational Stance Detection Dataset WWW2025
Stance detection has become an essential tool for analyzing public discussions on social media. Current methods face significant challenges, particularly in Chinese language processing and multi-turn conversational analysis. To address these limitations, we introduce C-MTCSD, the largest Chinese multi-turn conversational stance detection dataset, comprising 24,264 carefully annotated instances from Sina Weibo, which is 4.2 times larger than the only prior Chinese conversational stance detection dataset. Our comprehensive evaluation using both traditional approaches and large language models reveals the complexity of C-MTCSD: even state-of-the-art models achieve only 64.07% F1 score in the challenging zero-shot setting, while performance consistently degrades with increasing conversation depth. Traditional models particularly struggle with implicit stance detection, achieving below 50% F1 score. This work establishes a challenging new benchmark for Chinese stance detection research, highlighting significant opportunities for future improvements.
comment: WWW2025
♻ ☆ Babysit A Language Model From Scratch: Interactive Language Learning by Trials and Demonstrations NAACL 2025
Humans are efficient language learners and inherently social creatures. Our language development is largely shaped by our social interactions, for example, the demonstration and feedback from caregivers. Contrary to human language learning, recent advancements in large language models have primarily adopted a non-interactive training paradigm, and refined pre-trained models through feedback afterward. In this work, we explore how corrective feedback from interactions influences neural language acquisition from scratch through systematically controlled experiments, assessing whether it contributes to word learning efficiency in language models. We introduce a trial-and-demonstration (TnD) learning framework that incorporates three distinct components: student trials, teacher demonstrations, and a reward conditioned on language competence at various developmental stages. Our experiments reveal that the TnD approach accelerates word acquisition for student models of equal and smaller numbers of parameters, and we highlight the significance of both trials and demonstrations. We further show that the teacher's choices of words influence students' word-specific learning efficiency, and a practice-makes-perfect effect is evident by a strong correlation between the frequency of words in trials and their respective learning curves. Our findings suggest that interactive language learning, with teacher demonstrations and active trials, can facilitate efficient word learning in language models.
comment: NAACL 2025 (Main) & Workshop on Large Language Models and Cognition @ ICML 2024 (Oral)
♻ ☆ Project Alexandria: Towards Freeing Scientific Knowledge from Copyright Burdens via LLMs
Paywalls, licenses and copyright rules often restrict the broad dissemination and reuse of scientific knowledge. We take the position that it is both legally and technically feasible to extract the scientific knowledge in scholarly texts. Current methods, like text embeddings, fail to reliably preserve factual content, and simple paraphrasing may not be legally sound. We propose a new idea for the community to adopt: convert scholarly documents into knowledge preserving, but style agnostic representations we term Knowledge Units using LLMs. These units use structured data capturing entities, attributes and relationships without stylistic content. We provide evidence that Knowledge Units (1) form a legally defensible framework for sharing knowledge from copyrighted research texts, based on legal analyses of German copyright law and U.S. Fair Use doctrine, and (2) preserve most (~95\%) factual knowledge from original text, measured by MCQ performance on facts from the original copyrighted text across four research domains. Freeing scientific knowledge from copyright promises transformative benefits for scientific research and education by allowing language models to reuse important facts from copyrighted text. To support this, we share open-source tools for converting research documents into Knowledge Units. Overall, our work posits the feasibility of democratizing access to scientific knowledge while respecting copyright.
comment: Technical Report
♻ ☆ Only Send What You Need: Learning to Communicate Efficiently in Federated Multilingual Machine Translation
Federated learning (FL) is a promising distributed machine learning paradigm that enables multiple clients to collaboratively train a global model. In this paper, we focus on a practical federated multilingual learning setup where clients with their own language-specific data aim to collaboratively construct a high-quality neural machine translation (NMT) model. However, communication constraints in practical network systems present challenges for exchanging large-scale NMT engines between FL parties. We propose a meta-learning-based adaptive parameter selection methodology, MetaSend, that improves the communication efficiency of model transmissions from clients during FL-based multilingual NMT training. Our approach learns a dynamic threshold for filtering parameters prior to transmission without compromising the NMT model quality, based on the tensor deviations of clients between different FL rounds. Through experiments on two NMT datasets with different language distributions, we demonstrate that MetaSend obtains substantial improvements over baselines in translation quality in the presence of a limited communication budget.
♻ ☆ Understanding Epistemic Language with a Language-augmented Bayesian Theory of Mind ACL
How do people understand and evaluate claims about others' beliefs, even though these beliefs cannot be directly observed? In this paper, we introduce a cognitive model of epistemic language interpretation, grounded in Bayesian inferences about other agents' goals, beliefs, and intentions: a language-augmented Bayesian theory-of-mind (LaBToM). By translating natural language into an epistemic ``language-of-thought'' with grammar-constrained LLM decoding, then evaluating these translations against the inferences produced by inverting a generative model of rational action and perception, LaBToM captures graded plausibility judgments of epistemic claims. We validate our model in an experiment where participants watch an agent navigate a maze to find keys hidden in boxes needed to reach their goal, then rate sentences about the agent's beliefs. In contrast with multimodal LLMs (GPT-4o, Gemini Pro) and ablated models, our model correlates highly with human judgments for a wide range of expressions, including modal language, uncertainty expressions, knowledge claims, likelihood comparisons, and attributions of false belief.
comment: 23 pages; Published at the Transactions of the Association for Computational Linguistics (TACL); Presented at NAACL 2025
♻ ☆ AgentHarm: A Benchmark for Measuring Harmfulness of LLM Agents ICLR 2025
The robustness of LLMs to jailbreak attacks, where users design prompts to circumvent safety measures and misuse model capabilities, has been studied primarily for LLMs acting as simple chatbots. Meanwhile, LLM agents -- which use external tools and can execute multi-stage tasks -- may pose a greater risk if misused, but their robustness remains underexplored. To facilitate research on LLM agent misuse, we propose a new benchmark called AgentHarm. The benchmark includes a diverse set of 110 explicitly malicious agent tasks (440 with augmentations), covering 11 harm categories including fraud, cybercrime, and harassment. In addition to measuring whether models refuse harmful agentic requests, scoring well on AgentHarm requires jailbroken agents to maintain their capabilities following an attack to complete a multi-step task. We evaluate a range of leading LLMs, and find (1) leading LLMs are surprisingly compliant with malicious agent requests without jailbreaking, (2) simple universal jailbreak templates can be adapted to effectively jailbreak agents, and (3) these jailbreaks enable coherent and malicious multi-step agent behavior and retain model capabilities. To enable simple and reliable evaluation of attacks and defenses for LLM-based agents, we publicly release AgentHarm at https://huggingface.co/datasets/ai-safety-institute/AgentHarm.
comment: Accepted at ICLR 2025
♻ ☆ A Theory of LLM Sampling: Part Descriptive and Part Prescriptive
Large Language Models (LLMs) are increasingly utilized in autonomous decision-making, where they sample options from vast action spaces. However, the heuristics that guide this sampling process remain under-explored. We study this sampling behavior and show that this underlying heuristics resembles that of human decision-making: comprising a descriptive component (reflecting statistical norm) and a prescriptive component (implicit ideal encoded in the LLM) of a concept. We show that this deviation of a sample from the statistical norm towards a prescriptive component consistently appears in concepts across diverse real-world domains like public health, and economic trends. To further illustrate the theory, we demonstrate that concept prototypes in LLMs are affected by prescriptive norms, similar to the concept of normality in humans. Through case studies and comparison with human studies, we illustrate that in real-world applications, the shift of samples toward an ideal value in LLMs' outputs can result in significantly biased decision-making, raising ethical concerns.
♻ ☆ Can postgraduate translation students identify machine-generated text?
Given the growing use of generative artificial intelligence as a tool for creating multilingual content and bypassing both machine and traditional translation methods, this study explores the ability of linguistically trained individuals to discern machine-generated output from human-written text (HT). After brief training sessions on the textual anomalies typically found in synthetic text (ST), twenty-three postgraduate translation students analysed excerpts of Italian prose and assigned likelihood scores to indicate whether they believed they were human-written or AI-generated (ChatGPT-4o). The results show that, on average, the students struggled to distinguish between HT and ST, with only two participants achieving notable accuracy. Closer analysis revealed that the students often identified the same textual anomalies in both HT and ST, although features such as low burstiness and self-contradiction were more frequently associated with ST. These findings suggest the need for improvements in the preparatory training. Moreover, the study raises questions about the necessity of editing synthetic text to make it sound more human-like and recommends further research to determine whether AI-generated text is already sufficiently natural-sounding not to require further refinement.
comment: 10 pages, accepted for MT Summit 2025, Geneva, Switzerland, 23-27 June 2025
♻ ☆ The Comparative Trap: Pairwise Comparisons Amplifies Biased Preferences of LLM Evaluators
As large language models (LLMs) are increasingly used as evaluators for natural language generation tasks, ensuring unbiased assessments is essential. However, LLM evaluators often display biased preferences, such as favoring verbosity and authoritative tones. Our empirical analysis reveals that these biases are exacerbated in pairwise evaluation, where LLMs directly compare two outputs and easily prioritize superficial attributes. In contrast, pointwise evaluation, which assesses outputs independently, is less susceptible to such bias because each output is judged in isolation. To address the limitations of the pairwise evaluation, we introduce a novel evaluation method, PRePair, which integrates pointwise reasoning within a pairwise framework. PRePair effectively alleviates biased preference, improving performance on the adversarial benchmark (LLMBar) while outperforming pointwise evaluation on the standard benchmark (MT-Bench).
♻ ☆ Can Tool-augmented Large Language Models be Aware of Incomplete Conditions?
Recent advancements in integrating large language models (LLMs) with tools have allowed the models to interact with real-world environments. However, these tool-augmented LLMs often encounter incomplete scenarios when users provide partial information or the necessary tools are unavailable. Recognizing and managing such scenarios is crucial for LLMs to ensure their reliability, but this exploration remains understudied. This study examines whether LLMs can identify incomplete conditions and appropriately determine when to refrain from using tools. To this end, we address a dataset by manipulating instances from two datasets by removing necessary tools or essential information for tool invocation. Our experiments show that LLMs often struggle to identify the absence of information required to utilize specific tools and recognize the absence of appropriate tools. We further analyze model behaviors in different environments and compare their performance against humans. Our research can contribute to advancing reliable LLMs by addressing common scenarios during interactions between humans and LLMs. Our code and dataset will be publicly available.
♻ ☆ Is In-Context Learning Sufficient for Instruction Following in LLMs? ICLR 2025
In-context learning (ICL) allows LLMs to learn from examples without changing their weights: this is a particularly promising capability for long-context LLMs that can potentially learn from many examples. Recently, Lin et al. (2024) proposed URIAL, a method using only three in-context examples to align base LLMs, achieving non-trivial instruction following performance. In this work, we show that, while effective, ICL alignment with URIAL still underperforms compared to instruction fine-tuning on the established benchmark MT-Bench, especially with more capable base LLMs. We then uncover the most relevant elements for successful in-context alignment, finding the crucial role of the decoding parameters. Based on these insights, we show that the approach of URIAL can indeed be improved by adding high-quality, potentially carefully selected via greedy search, demonstrations in context, getting closer to the performance of instruct models. Finally, we provide the first, to our knowledge, systematic comparison of ICL and instruction fine-tuning (IFT) for instruction following in the low data regime, where ICL can be a viable alternative to IFT. Overall, our work advances the understanding of ICL as an alignment technique and its relationship to IFT. We provide our code at https://github.com/tml-epfl/icl-alignment.
comment: Accepted at ICLR 2025. This camera-ready version v3 adds multi-turn alignment via ICL, revisiting main results on instruct models, and simple mechanistic study. Updates in the v2: experiment with decoding schemes, scaling in-context alignment, ICL vs IFT for instruction following. Code at https://github.com/tml-epfl/icl-alignment
♻ ☆ The Mirage of Performance Gains: Why Contrastive Decoding Fails to Address Multimodal Hallucination
Contrastive decoding strategies are widely used to reduce hallucinations in multimodal large language models (MLLMs). These methods work by constructing contrastive samples to induce hallucinations and then suppressing them in the output distribution. However, this paper demonstrates that such approaches fail to effectively mitigate the hallucination problem. The performance improvements observed on POPE Benchmark are largely driven by two misleading factors: (1) crude, unidirectional adjustments to the model's output distribution and (2) the adaptive plausibility constraint, which reduces the sampling strategy to greedy search. To further illustrate these issues, we introduce a series of spurious improvement methods and evaluate their performance against contrastive decoding techniques. Experimental results reveal that the observed performance gains in contrastive decoding are entirely unrelated to its intended goal of mitigating hallucinations. Our findings challenge common assumptions about the effectiveness of contrastive decoding strategies and pave the way for developing genuinely effective solutions to hallucinations in MLLMs.
♻ ☆ Argumentative Large Language Models for Explainable and Contestable Claim Verification AAAI 2025
The profusion of knowledge encoded in large language models (LLMs) and their ability to apply this knowledge zero-shot in a range of settings makes them promising candidates for use in decision-making. However, they are currently limited by their inability to provide outputs which can be faithfully explained and effectively contested to correct mistakes. In this paper, we attempt to reconcile these strengths and weaknesses by introducing \emph{argumentative LLMs (ArgLLMs)}, a method for augmenting LLMs with argumentative reasoning. Concretely, ArgLLMs construct argumentation frameworks, which then serve as the basis for formal reasoning in support of decision-making. The interpretable nature of these argumentation frameworks and formal reasoning means that any decision made by ArgLLMs may be explained and contested. We evaluate ArgLLMs' performance experimentally in comparison with state-of-the-art techniques, in the context of the decision-making task of claim verification. We also define novel properties to characterise contestability and assess ArgLLMs formally in terms of these properties.
comment: 18 pages, 18 figures. Accepted as an oral presentation at AAAI 2025
♻ ☆ Prompt-Based Cost-Effective Evaluation and Operation of ChatGPT as a Computer Programming Teaching Assistant
The dream of achieving a student-teacher ratio of 1:1 is closer than ever thanks to the emergence of large language models (LLMs). One potential application of these models in the educational field would be to provide feedback to students in university introductory programming courses, so that a student struggling to solve a basic implementation problem could seek help from an LLM available 24/7. This article focuses on studying three aspects related to such an application. First, the performance of two well-known models, GPT-3.5T and GPT-4T, in providing feedback to students is evaluated. The empirical results showed that GPT-4T performs much better than GPT-3.5T, however, it is not yet ready for use in a real-world scenario. This is due to the possibility of generating incorrect information that potential users may not always be able to detect. Second, the article proposes a carefully designed prompt using in-context learning techniques that allows automating important parts of the evaluation process, as well as providing a lower bound for the fraction of feedbacks containing incorrect information, saving time and effort. This was possible because the resulting feedback has a programmatically analyzable structure that incorporates diagnostic information about the LLM's performance in solving the requested task. Third, the article also suggests a possible strategy for implementing a practical learning tool based on LLMs, which is rooted on the proposed prompting techniques. This strategy opens up a whole range of interesting possibilities from a pedagogical perspective.
♻ ☆ Can LLMs assist with Ambiguity? A Quantitative Evaluation of various Large Language Models on Word Sense Disambiguation
Ambiguous words are often found in modern digital communications. Lexical ambiguity challenges traditional Word Sense Disambiguation (WSD) methods, due to limited data. Consequently, the efficiency of translation, information retrieval, and question-answering systems is hindered by these limitations. This study investigates the use of Large Language Models (LLMs) to improve WSD using a novel approach combining a systematic prompt augmentation mechanism with a knowledge base (KB) consisting of different sense interpretations. The proposed method incorporates a human-in-loop approach for prompt augmentation where prompt is supported by Part-of-Speech (POS) tagging, synonyms of ambiguous words, aspect-based sense filtering and few-shot prompting to guide the LLM. By utilizing a few-shot Chain of Thought (COT) prompting-based approach, this work demonstrates a substantial improvement in performance. The evaluation was conducted using FEWS test data and sense tags. This research advances accurate word interpretation in social media and digital communication.
comment: 12 pages,6 tables, 1 figure, Proceedings of the 1st International Conference on NLP & AI for Cyber Security
♻ ☆ Token-Level Density-Based Uncertainty Quantification Methods for Eliciting Truthfulness of Large Language Models
Uncertainty quantification (UQ) is a prominent approach for eliciting truthful answers from large language models (LLMs). To date, information-based and consistency-based UQ have been the dominant UQ methods for text generation via LLMs. Density-based methods, despite being very effective for UQ in text classification with encoder-based models, have not been very successful with generative LLMs. In this work, we adapt Mahalanobis Distance (MD) - a well-established UQ technique in classification tasks - for text generation and introduce a new supervised UQ method. Our method extracts token embeddings from multiple layers of LLMs, computes MD scores for each token, and uses linear regression trained on these features to provide robust uncertainty scores. Through extensive experiments on eleven datasets, we demonstrate that our approach substantially improves over existing UQ methods, providing accurate and computationally efficient uncertainty scores for both sequence-level selective generation and claim-level fact-checking tasks. Our method also exhibits strong generalization to out-of-domain data, making it suitable for a wide range of LLM-based applications.
♻ ☆ Finding Flawed Fictions: Evaluating Complex Reasoning in Language Models via Plot Hole Detection
Stories are a fundamental aspect of human experience. Engaging deeply with stories and spotting plot holes -- inconsistencies in a storyline that break the internal logic or rules of a story's world -- requires nuanced reasoning skills, including tracking entities and events and their interplay, abstract thinking, pragmatic narrative understanding, commonsense and social reasoning, and theory of mind. As Large Language Models (LLMs) increasingly generate, interpret, and modify text, rigorously assessing their narrative consistency and deeper language understanding becomes critical. However, existing benchmarks focus mainly on surface-level comprehension. In this work, we propose plot hole detection in stories as a proxy to evaluate language understanding and reasoning in LLMs. We introduce FlawedFictionsMaker, a novel algorithm to controllably and carefully synthesize plot holes in human-written stories. Using this algorithm, we construct a benchmark to evaluate LLMs' plot hole detection abilities in stories -- FlawedFictions -- , which is robust to contamination, with human filtering ensuring high quality. We find that state-of-the-art LLMs struggle in accurately solving FlawedFictions regardless of the reasoning effort allowed, with performance significantly degrading as story length increases. Finally, we show that LLM-based story summarization and story generation are prone to introducing plot holes, with more than 50% and 100% increases in plot hole detection rates with respect to human-written originals.
comment: Preprint
♻ ☆ EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting
Human speech goes beyond the mere transfer of information; it is a profound exchange of emotions and a connection between individuals. While Text-to-Speech (TTS) models have made huge progress, they still face challenges in controlling the emotional expression in the generated speech. In this work, we propose EmoVoice, a novel emotion-controllable TTS model that exploits large language models (LLMs) to enable fine-grained freestyle natural language emotion control, and a phoneme boost variant design that makes the model output phoneme tokens and audio tokens in parallel to enhance content consistency, inspired by chain-of-thought (CoT) and chain-of-modality (CoM) techniques. Besides, we introduce EmoVoice-DB, a high-quality 40-hour English emotion dataset featuring expressive speech and fine-grained emotion labels with natural language descriptions. EmoVoice achieves state-of-the-art performance on the English EmoVoice-DB test set using only synthetic training data, and on the Chinese Secap test set using our in-house data. We further investigate the reliability of existing emotion evaluation metrics and their alignment with human perceptual preferences, and explore using SOTA multimodal LLMs GPT-4o-audio and Gemini to assess emotional speech. Demo samples are available at https://anonymous.4open.science/r/EmoVoice-DF55. Dataset, code, and checkpoints will be released.
♻ ☆ Spin glass model of in-context learning
Large language models show a surprising in-context learning ability -- being able to use a prompt to form a prediction for a query, yet without additional training, in stark contrast to old-fashioned supervised learning. Providing a mechanistic interpretation and linking the empirical phenomenon to physics are thus challenging and remain unsolved. We study a simple yet expressive transformer with linear attention and map this structure to a spin glass model with real-valued spins, where the couplings and fields explain the intrinsic disorder in data. The spin glass model explains how the weight parameters interact with each other during pre-training, and further clarifies why an unseen function can be predicted by providing only a prompt yet without further training. Our theory reveals that for single-instance learning, increasing the task diversity leads to the emergence of in-context learning, by allowing the Boltzmann distribution to converge to a unique correct solution of weight parameters. Therefore the pre-trained transformer displays a prediction power in a novel prompt setting. The proposed analytically tractable model thus offers a promising avenue for thinking about how to interpret many intriguing but puzzling properties of large language models.
comment: 16 pages, 4+6 figures, revised version to the journal
♻ ☆ StaICC: Standardized Evaluation for Classification Task in In-context Learning
Classification tasks are widely investigated in the In-Context Learning (ICL) paradigm. However, current efforts are evaluated on disjoint benchmarks and settings, while their performances are significantly influenced by some trivial variables, such as prompt templates, data sampling, instructions, etc., which leads to significant inconsistencies in the results reported across various literature, preventing fair comparison or meta-analysis across different papers. Therefore, this paper proposes a standardized and easy-to-use evaluation toolkit (StaICC) for in-context classification. Including, for the normal classification task, we provide StaICC-Normal, selecting 10 widely used datasets, and generating prompts with a fixed form, to mitigate the variance among the experiment implementations. To enrich the usage of our benchmark, we also provide a sub-benchmark StaICC-Diag for diagnosing ICL from several aspects, aiming for a more robust inference processing.
comment: 20 pages, 8 figures, 8 tables
♻ ☆ Towards Robust Alignment of Language Models: Distributionally Robustifying Direct Preference Optimization
This study addresses the challenge of noise in training datasets for Direct Preference Optimization (DPO), a method for aligning Large Language Models (LLMs) with human preferences. We categorize noise into pointwise noise, which includes low-quality data points, and pairwise noise, which encompasses erroneous data pair associations that affect preference rankings. Utilizing Distributionally Robust Optimization (DRO), we enhance DPO's resilience to these types of noise. Our theoretical insights reveal that DPO inherently embeds DRO principles, conferring robustness to pointwise noise, with the regularization coefficient $\beta$ playing a critical role in its noise resistance. Extending this framework, we introduce Distributionally Robustifying DPO (Dr. DPO), which integrates pairwise robustness by optimizing against worst-case pairwise scenarios. The novel hyperparameter $\beta'$ in Dr. DPO allows for fine-tuned control over data pair reliability, providing a strategic balance between exploration and exploitation in noisy training environments. Empirical evaluations demonstrate that Dr. DPO substantially improves the quality of generated text and response accuracy in preference datasets, showcasing enhanced performance in both noisy and noise-free settings. The code is available at https://github.com/junkangwu/Dr_DPO.
♻ ☆ SciLitLLM: How to Adapt LLMs for Scientific Literature Understanding ICLR 2025
Scientific literature understanding is crucial for extracting targeted information and garnering insights, thereby significantly advancing scientific discovery. Despite the remarkable success of Large Language Models (LLMs), they face challenges in scientific literature understanding, primarily due to (1) a lack of scientific knowledge and (2) unfamiliarity with specialized scientific tasks. To develop an LLM specialized in scientific literature understanding, we propose a hybrid strategy that integrates continual pre-training (CPT) and supervised fine-tuning (SFT), to simultaneously infuse scientific domain knowledge and enhance instruction-following capabilities for domain-specific tasks.cIn this process, we identify two key challenges: (1) constructing high-quality CPT corpora, and (2) generating diverse SFT instructions. We address these challenges through a meticulous pipeline, including PDF text extraction, parsing content error correction, quality filtering, and synthetic instruction creation. Applying this strategy, we present a suite of LLMs: SciLitLLM, specialized in scientific literature understanding. These models demonstrate promising performance on scientific literature understanding benchmarks. Our contributions are threefold: (1) We present an effective framework that integrates CPT and SFT to adapt LLMs to scientific literature understanding, which can also be easily adapted to other domains. (2) We propose an LLM-based synthesis method to generate diverse and high-quality scientific instructions, resulting in a new instruction set -- SciLitIns -- for supervised fine-tuning in less-represented scientific domains. (3) SciLitLLM achieves promising performance improvements on scientific literature understanding benchmarks.
comment: ICLR 2025
♻ ☆ Large Language Models are Good Multi-lingual Learners : When LLMs Meet Cross-lingual Prompts
With the advent of Large Language Models (LLMs), generating rule-based data for real-world applications has become more accessible. Due to the inherent ambiguity of natural language and the complexity of rule sets, especially in long contexts, LLMs often struggle to follow all specified rules, frequently omitting at least one. To enhance the reasoning and understanding of LLMs on long and complex contexts, we propose a novel prompting strategy Multi-Lingual Prompt, namely MLPrompt, which automatically translates the error-prone rule that an LLM struggles to follow into another language, thus drawing greater attention to it. Experimental results on public datasets across various tasks have shown MLPrompt can outperform state-of-the-art prompting methods such as Chain of Thought, Tree of Thought, and Self-Consistency. Additionally, we introduce a framework integrating MLPrompt with an auto-checking mechanism for structured data generation, with a specific case study in text-to-MIP instances. Further, we extend the proposed framework for text-to-SQL to demonstrate its generation ability towards structured data synthesis.
♻ ☆ Adversarial Style Augmentation via Large Language Model for Robust Fake News Detection WWW'25
The spread of fake news harms individuals and presents a critical social challenge that must be addressed. Although numerous algorithmic and insightful features have been developed to detect fake news, many of these features can be manipulated with style-conversion attacks, especially with the emergence of advanced language models, making it more difficult to differentiate from genuine news. This study proposes adversarial style augmentation, AdStyle, designed to train a fake news detector that remains robust against various style-conversion attacks. The primary mechanism involves the strategic use of LLMs to automatically generate a diverse and coherent array of style-conversion attack prompts, enhancing the generation of particularly challenging prompts for the detector. Experiments indicate that our augmentation strategy significantly improves robustness and detection performance when evaluated on fake news benchmark datasets.
comment: WWW'25 research track accepted
♻ ☆ Semantic Matters: Multimodal Features for Affective Analysis
In this study, we present our methodology for two tasks: the Emotional Mimicry Intensity (EMI) Estimation Challenge and the Behavioural Ambivalence/Hesitancy (BAH) Recognition Challenge, both conducted as part of the 8th Workshop and Competition on Affective & Behavior Analysis in-the-wild. We utilize a Wav2Vec 2.0 model pre-trained on a large podcast dataset to extract various audio features, capturing both linguistic and paralinguistic information. Our approach incorporates a valence-arousal-dominance (VAD) module derived from Wav2Vec 2.0, a BERT text encoder, and a vision transformer (ViT) with predictions subsequently processed through a long short-term memory (LSTM) architecture or a convolution-like method for temporal modeling. We integrate the textual and visual modality into our analysis, recognizing that semantic content provides valuable contextual cues and underscoring that the meaning of speech often conveys more critical insights than its acoustic counterpart alone. Fusing in the vision modality helps in some cases to interpret the textual modality more precisely. This combined approach results in significant performance improvements, achieving in EMI $\rho_{\text{TEST}} = 0.706$ and in BAH $F1_{\text{TEST}} = 0.702$, securing first place in the EMI challenge and second place in the BAH challenge.
♻ ☆ Large Language Model-Based Knowledge Graph System Construction for Sustainable Development Goals: An AI-Based Speculative Design Perspective
From 2000 to 2015, the UN's Millennium Development Goals guided global priorities. The subsequent Sustainable Development Goals (SDGs) adopted a more dynamic approach, with annual indicator updates. As 2030 nears and progress lags, innovative acceleration strategies are critical. This study develops an AI-powered knowledge graph system to analyze SDG interconnections, discover potential new goals, and visualize them online. Using official SDG texts, Elsevier's keyword dataset, and 1,127 TED Talk transcripts (2020.01-2024.04), a pilot on 269 talks from 2023 applies AI-speculative design, large language models, and retrieval-augmented generation. Key findings include: (1) Heatmap analysis reveals strong associations between Goal 10 and Goal 16, and minimal coverage of Goal 6. (2) In the knowledge graph, simulated dialogue over time reveals new central nodes, showing how richer data supports divergent thinking and goal clarity. (3) Six potential new goals are proposed, centered on equity, resilience, and technology-driven inclusion. This speculative-AI framework offers fresh insights for policymakers and lays groundwork for future multimodal and cross-system SDG applications.
comment: This is a minor revision: fixed a typo in the abstract (time range) and corrected minor textual errors
♻ ☆ ReaRAG: Knowledge-guided Reasoning Enhances Factuality of Large Reasoning Models with Iterative Retrieval Augmented Generation
Large Reasoning Models (LRMs) exhibit remarkable reasoning abilities but rely primarily on parametric knowledge, limiting factual accuracy. While recent works equip reinforcement learning (RL)-based LRMs with retrieval capabilities, they suffer from overthinking and lack robustness in reasoning, reducing their effectiveness in question answering (QA) tasks. To address this, we propose ReaRAG, a factuality-enhanced reasoning model that explores diverse queries without excessive iterations. Our solution includes a novel data construction framework with an upper bound on the reasoning chain length. Specifically, we first leverage an LRM to generate deliberate thinking, then select an action from a predefined action space (Search and Finish). For Search action, a query is executed against the RAG engine, where the result is returned as observation to guide reasoning steps later. This process iterates until a Finish action is chosen. Benefiting from ReaRAG's strong reasoning capabilities, our approach outperforms existing baselines on multi-hop QA. Further analysis highlights its strong reflective ability to recognize errors and refine its reasoning trajectory. Our study enhances LRMs' factuality while effectively integrating robust reasoning for Retrieval-Augmented Generation (RAG).
♻ ☆ DocAgent: A Multi-Agent System for Automated Code Documentation Generation
High-quality code documentation is crucial for software development especially in the era of AI. However, generating it automatically using Large Language Models (LLMs) remains challenging, as existing approaches often produce incomplete, unhelpful, or factually incorrect outputs. We introduce DocAgent, a novel multi-agent collaborative system using topological code processing for incremental context building. Specialized agents (Reader, Searcher, Writer, Verifier, Orchestrator) then collaboratively generate documentation. We also propose a multi-faceted evaluation framework assessing Completeness, Helpfulness, and Truthfulness. Comprehensive experiments show DocAgent significantly outperforms baselines consistently. Our ablation study confirms the vital role of the topological processing order. DocAgent offers a robust approach for reliable code documentation generation in complex and proprietary repositories.
comment: Public Repo: https://github.com/facebookresearch/DocAgent
♻ ☆ Revealing the Intrinsic Ethical Vulnerability of Aligned Large Language Models
Large language models (LLMs) are foundational explorations to artificial general intelligence, yet their alignment with human values via instruction tuning and preference learning achieves only superficial compliance. Here, we demonstrate that harmful knowledge embedded during pretraining persists as indelible "dark patterns" in LLMs' parametric memory, evading alignment safeguards and resurfacing under adversarial inducement at distributional shifts. In this study, we first theoretically analyze the intrinsic ethical vulnerability of aligned LLMs by proving that current alignment methods yield only local "safety regions" in the knowledge manifold. In contrast, pretrained knowledge remains globally connected to harmful concepts via high-likelihood adversarial trajectories. Building on this theoretical insight, we empirically validate our findings by employing semantic coherence inducement under distributional shifts--a method that systematically bypasses alignment constraints through optimized adversarial prompts. This combined theoretical and empirical approach achieves a 100% attack success rate across 19 out of 23 state-of-the-art aligned LLMs, including DeepSeek-R1 and LLaMA-3, revealing their universal vulnerabilities.
♻ ☆ Assessing Judging Bias in Large Reasoning Models: An Empirical Study
Large Reasoning Models (LRMs) like DeepSeek-R1 and OpenAI-o1 have demonstrated remarkable reasoning capabilities, raising important questions about their biases in LLM-as-a-judge settings. We present a comprehensive benchmark comparing judging biases between LLMs and LRMs across both subjective preference-alignment datasets and objective fact-based datasets. Through investigation of bandwagon, authority, position, and distraction biases, we uncover four key findings: (1) despite their advanced reasoning capabilities, LRMs remain susceptible to the above biases; (2) LRMs demonstrate better robustness than LLMs specifically on fact-related datasets; (3) LRMs exhibit notable position bias, preferring options in later positions; and (4) we identify a novel "superficial reflection bias" where phrases mimicking reasoning (e.g., "wait, let me think...") significantly influence model judgments. To address these biases, we design and evaluate three mitigation strategies: specialized system prompts that reduce judging biases by up to 19\% in preference alignment datasets and 14\% in fact-related datasets, in-context learning that provides up to 27\% improvement on preference tasks but shows inconsistent results on factual tasks, and a self-reflection mechanism that reduces biases by up to 10\% in preference datasets and 16\% in fact-related datasets, with self-reflection proving particularly effective for LRMs. Our work provides crucial insights for developing more reliable LLM-as-a-Judge frameworks, especially as LRMs become increasingly deployed as automated judges.
♻ ☆ Where is the answer? Investigating Positional Bias in Language Model Knowledge Extraction
Large language models require updates to remain up-to-date or adapt to new domains by fine-tuning them with new documents. One key is memorizing the latest information in a way that the memorized information is extractable with a query prompt. However, LLMs suffer from a phenomenon called perplexity curse; despite minimizing document perplexity during fine-tuning, LLMs struggle to extract information through a prompt sentence. In this new knowledge acquisition and extraction, we find a very intriguing fact that LLMs can accurately answer questions about the first sentence, but they struggle to extract information described in the middle or end of the documents used for fine-tuning. Our study suggests that the auto-regressive training causes this issue; each token is prompted by reliance on all previous tokens, which hinders the model from recalling information from training documents by question prompts. To conduct the in-depth study, we publish both synthetic and real datasets, enabling the evaluation of the QA performance w.r.t. the position of the corresponding answer in a document. Our investigation shows that even a large model suffers from the perplexity curse, but regularization such as denoising auto-regressive loss can enhance the information extraction from diverse positions. These findings will be (i) a key to improving knowledge extraction from LLMs and (ii) new elements to discuss the trade-off between RAG and fine-tuning in adapting LLMs to a new domain.
comment: Code is published at https://github.com/omron-sinicx/WhereIsTheAnswer
Information Retrieval 14
☆ Consensus-aware Contrastive Learning for Group Recommendation
Group recommendation aims to provide personalized item suggestions to a group of users by reflecting their collective preferences. A fundamental challenge in this task is deriving a consensus that adequately represents the diverse interests of individual group members. Despite advancements made by deep learning-based models, existing approaches still struggle in two main areas: (1) Capturing consensus in small-group settings, which are more prevalent in real-world applications, and (2) Balancing individual preferences with overall group performance, particularly in hypergraph-based methods that tend to emphasize group accuracy at the expense of personalization. To address these challenges, we introduce a Consensus-aware Contrastive Learning for Group Recommendation (CoCoRec) that models group consensus through contrastive learning. CoCoRec utilizes a transformer encoder to jointly learn user and group representations, enabling richer modeling of intra-group dynamics. Additionally, the contrastive objective helps reduce overfitting from high-frequency user interactions, leading to more robust and representative group embeddings. Experiments conducted on four benchmark datasets show that CoCoRec consistently outperforms state-of-the-art baselines in both individual and group recommendation scenarios, highlighting the effectiveness of consensus-aware contrastive learning in group recommendation tasks.
comment: 10 pages, 5 figures
☆ Multi-Type Context-Aware Conversational Recommender Systems via Mixture-of-Experts
Conversational recommender systems enable natural language conversations and thus lead to a more engaging and effective recommendation scenario. As the conversations for recommender systems usually contain limited contextual information, many existing conversational recommender systems incorporate external sources to enrich the contextual information. However, how to combine different types of contextual information is still a challenge. In this paper, we propose a multi-type context-aware conversational recommender system, called MCCRS, effectively fusing multi-type contextual information via mixture-of-experts to improve conversational recommender systems. MCCRS incorporates both structured information and unstructured information, including the structured knowledge graph, unstructured conversation history, and unstructured item reviews. It consists of several experts, with each expert specialized in a particular domain (i.e., one specific contextual information). Multiple experts are then coordinated by a ChairBot to generate the final results. Our proposed MCCRS model takes advantage of different contextual information and the specialization of different experts followed by a ChairBot breaks the model bottleneck on a single contextual information. Experimental results demonstrate that our proposed MCCRS method achieves significantly higher performance compared to existing baselines.
comment: 30 pages
☆ Adaptive Long-term Embedding with Denoising and Augmentation for Recommendation
The rapid growth of the internet has made personalized recommendation systems indispensable. Graph-based sequential recommendation systems, powered by Graph Neural Networks (GNNs), effectively capture complex user-item interactions but often face challenges such as noise and static representations. In this paper, we introduce the Adaptive Long-term Embedding with Denoising and Augmentation for Recommendation (ALDA4Rec) method, a novel model that constructs an item-item graph, filters noise through community detection, and enriches user-item interactions. Graph Convolutional Networks (GCNs) are then employed to learn short-term representations, while averaging, GRUs, and attention mechanisms are utilized to model long-term embeddings. An MLP-based adaptive weighting strategy is further incorporated to dynamically optimize long-term user preferences. Experiments conducted on four real-world datasets demonstrate that ALDA4Rec outperforms state-of-the-art baselines, delivering notable improvements in both accuracy and robustness. The source code is available at https://github.com/zahraakhlaghi/ALDA4Rec.
☆ Contextualizing Spotify's Audiobook List Recommendations with Descriptive Shelves ECIR'25
In this paper, we propose a pipeline to generate contextualized list recommendations with descriptive shelves in the domain of audiobooks. By creating several shelves for topics the user has an affinity to, e.g. Uplifting Women's Fiction, we can help them explore their recommendations according to their interests and at the same time recommend a diverse set of items. To do so, we use Large Language Models (LLMs) to enrich each item's metadata based on a taxonomy created for this domain. Then we create diverse descriptive shelves for each user. A/B tests show improvements in user engagement and audiobook discovery metrics, demonstrating benefits for users and content creators.
comment: Accepted for publication in the 47th European Conference on Information Retrieval (ECIR'25)
☆ Improving Sequential Recommenders through Counterfactual Augmentation of System Exposure SIGIR 2025
In sequential recommendation (SR), system exposure refers to items that are exposed to the user. Typically, only a few of the exposed items would be interacted with by the user. Although SR has achieved great success in predicting future user interests, existing SR methods still fail to fully exploit system exposure data. Most methods only model items that have been interacted with, while the large volume of exposed but non-interacted items is overlooked. Even methods that consider the whole system exposure typically train the recommender using only the logged historical system exposure, without exploring unseen user interests. In this paper, we propose counterfactual augmentation over system exposure for sequential recommendation (CaseRec). To better model historical system exposure, CaseRec introduces reinforcement learning to account for different exposure rewards. CaseRec uses a decision transformer-based sequential model to take an exposure sequence as input and assigns different rewards according to the user feedback. To further explore unseen user interests, CaseRec proposes to perform counterfactual augmentation, where exposed original items are replaced with counterfactual items. Then, a transformer-based user simulator is proposed to predict the user feedback reward for the augmented items. Augmentation, together with the user simulator, constructs counterfactual exposure sequences to uncover new user interests. Finally, CaseRec jointly uses the logged exposure sequences with the counterfactual exposure sequences to train a decision transformer-based sequential model for generating recommendation. Experiments on three real-world benchmarks show the effectiveness of CaseRec. Our code is available at https://github.com/ZiqiZhao1/CaseRec.
comment: accepted at SIGIR 2025 (Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval)
♻ ☆ Adversarial Hubness in Multi-Modal Retrieval
Hubness is a phenomenon in high-dimensional vector spaces where a single point from the natural distribution is unusually close to many other points. This is a well-known problem in information retrieval that causes some items to accidentally (and incorrectly) appear relevant to many queries. In this paper, we investigate how attackers can exploit hubness to turn any image or audio input in a multi-modal retrieval system into an adversarial hub. Adversarial hubs can be used to inject universal adversarial content (e.g., spam) that will be retrieved in response to thousands of different queries, as well as for targeted attacks on queries related to specific, attacker-chosen concepts. We present a method for creating adversarial hubs and evaluate the resulting hubs on benchmark multi-modal retrieval datasets and an image-to-image retrieval system implemented by Pinecone, a popular vector database. For example, in text-caption-to-image retrieval, a single adversarial hub, generated with respect to 100 randomly selected target queries, is retrieved as the top-1 most relevant image for more than 21,000 out of 25,000 test queries (by contrast, the most common natural hub is the top-1 response to only 102 queries), demonstrating the strong generalization capabilities of adversarial hubs. We also investigate whether techniques for mitigating natural hubness are an effective defense against adversarial hubs, and show that they are not effective against hubs that target queries related to specific concepts.
♻ ☆ Establishing a Foundation for Tetun Ad-Hoc Text Retrieval: Stemming, Indexing, Retrieval, and Ranking
Searching for information on the internet and digital platforms to satisfy an information need requires effective retrieval solutions. However, such solutions are not yet available for Tetun, making it challenging to find relevant documents for text-based search queries in this language. To address these challenges, we investigate Tetun text retrieval with a focus on the ad-hoc retrieval task. The study begins by developing essential language resources -- including a list of stopwords, a stemmer, and a test collection -- which serve as foundational components for solutions tailored to Tetun text retrieval. Various strategies are investigated using both document titles and content to evaluate retrieval effectiveness. The results demonstrate that retrieving document titles, after removing hyphens and apostrophes without applying stemming, significantly improves retrieval performance compared to the baseline. Efficiency increases by 31.37%, while effectiveness achieves an average relative gain of +9.40% in MAP@10 and +30.35% in NDCG@10 with DFR BM25. Beyond the top-10 cutoff point, Hiemstra LM shows strong performance across various retrieval strategies and evaluation metrics. Contributions of this work include the development of Labadain-Stopwords (a list of 160 Tetun stopwords), Labadain-Stemmer (a Tetun stemmer with three variants), and Labadain-Avaliad\'or (a Tetun test collection containing 59 topics, 33,550 documents, and 5,900 qrels). We make all resources publicly accessible to facilitate future research in Tetun information retrieval.
comment: Version 3
♻ ☆ Evaluation Report on MCP Servers
With the rise of LLMs, a large number of Model Context Protocol (MCP) services have emerged since the end of 2024. However, the effectiveness and efficiency of MCP servers have not been well studied. To study these questions, we propose an evaluation framework, called MCPBench. We selected several widely used MCP server and conducted an experimental evaluation on their accuracy, time, and token usage. Our experiments showed that the most effective MCP, Bing Web Search, achieved an accuracy of 64%. Importantly, we found that the accuracy of MCP servers can be substantially enhanced by involving declarative interface. This research paves the way for further investigations into optimized MCP implementations, ultimately leading to better AI-driven applications and data retrieval solutions.
♻ ☆ Few-shot Model Extraction Attacks against Sequential Recommender Systems
Among adversarial attacks against sequential recommender systems, model extraction attacks represent a method to attack sequential recommendation models without prior knowledge. Existing research has primarily concentrated on the adversary's execution of black-box attacks through data-free model extraction. However, a significant gap remains in the literature concerning the development of surrogate models by adversaries with access to few-shot raw data (10\% even less). That is, the challenge of how to construct a surrogate model with high functional similarity within the context of few-shot data scenarios remains an issue that requires resolution.This study addresses this gap by introducing a novel few-shot model extraction framework against sequential recommenders, which is designed to construct a superior surrogate model with the utilization of few-shot data. The proposed few-shot model extraction framework is comprised of two components: an autoregressive augmentation generation strategy and a bidirectional repair loss-facilitated model distillation procedure. Specifically, to generate synthetic data that closely approximate the distribution of raw data, autoregressive augmentation generation strategy integrates a probabilistic interaction sampler to extract inherent dependencies and a synthesis determinant signal module to characterize user behavioral patterns. Subsequently, bidirectional repair loss, which target the discrepancies between the recommendation lists, is designed as auxiliary loss to rectify erroneous predictions from surrogate models, transferring knowledge from the victim model to the surrogate model effectively. Experiments on three datasets show that the proposed few-shot model extraction framework yields superior surrogate models.
comment: It requires substantial modifications.The symbols in the mathematical formulas are not explained in detail
♻ ☆ AgentCF++: Memory-enhanced LLM-based Agents for Popularity-aware Cross-domain Recommendations SIGIR 2025
LLM-based user agents, which simulate user interaction behavior, are emerging as a promising approach to enhancing recommender systems. In real-world scenarios, users' interactions often exhibit cross-domain characteristics and are influenced by others. However, the memory design in current methods causes user agents to introduce significant irrelevant information during decision-making in cross-domain scenarios and makes them unable to recognize the influence of other users' interactions, such as popularity factors. To tackle this issue, we propose a dual-layer memory architecture combined with a two-step fusion mechanism. This design avoids irrelevant information during decision-making while ensuring effective integration of cross-domain preferences. We also introduce the concepts of interest groups and group-shared memory to better capture the influence of popularity factors on users with similar interests. Comprehensive experiments validate the effectiveness of AgentCF++. Our code is available at https://github.com/jhliu0807/AgentCF-plus.
comment: Accepted by SIGIR 2025, 6 pages
♻ ☆ Improving LLM-powered Recommendations with Personalized Information SIGIR 2025
Due to the lack of explicit reasoning modeling, existing LLM-powered recommendations fail to leverage LLMs' reasoning capabilities effectively. In this paper, we propose a pipeline called CoT-Rec, which integrates two key Chain-of-Thought (CoT) processes -- user preference analysis and item perception analysis -- into LLM-powered recommendations, thereby enhancing the utilization of LLMs' reasoning abilities. CoT-Rec consists of two stages: (1) personalized information extraction, where user preferences and item perception are extracted, and (2) personalized information utilization, where this information is incorporated into the LLM-powered recommendation process. Experimental results demonstrate that CoT-Rec shows potential for improving LLM-powered recommendations. The implementation is publicly available at https://github.com/jhliu0807/CoT-Rec.
comment: Accepted by SIGIR 2025, 7 pages
♻ ☆ Unbiased Collaborative Filtering with Fair Sampling SIGIR 2025
Recommender systems leverage extensive user interaction data to model preferences; however, directly modeling these data may introduce biases that disproportionately favor popular items. In this paper, we demonstrate that popularity bias arises from the influence of propensity factors during training. Building on this insight, we propose a fair sampling (FS) method that ensures each user and each item has an equal likelihood of being selected as both positive and negative instances, thereby mitigating the influence of propensity factors. The proposed FS method does not require estimating propensity scores, thus avoiding the risk of failing to fully eliminate popularity bias caused by estimation inaccuracies. Comprehensive experiments demonstrate that the proposed FS method achieves state-of-the-art performance in both point-wise and pair-wise recommendation tasks. The code implementation is available at https://github.com/jhliu0807/Fair-Sampling.
comment: Accept by SIGIR 2025, 5 pages
♻ ☆ Language Representations Can be What Recommenders Need: Findings and Potentials ICLR 2025
Recent studies empirically indicate that language models (LMs) encode rich world knowledge beyond mere semantics, attracting significant attention across various fields. However, in the recommendation domain, it remains uncertain whether LMs implicitly encode user preference information. Contrary to prevailing understanding that LMs and traditional recommenders learn two distinct representation spaces due to the huge gap in language and behavior modeling objectives, this work re-examines such understanding and explores extracting a recommendation space directly from the language representation space. Surprisingly, our findings demonstrate that item representations, when linearly mapped from advanced LM representations, yield superior recommendation performance. This outcome suggests the possible homomorphism between the advanced language representation space and an effective item representation space for recommendation, implying that collaborative signals may be implicitly encoded within LMs. Motivated by these findings, we explore the possibility of designing advanced collaborative filtering (CF) models purely based on language representations without ID-based embeddings. To be specific, we incorporate several crucial components to build a simple yet effective model, with item titles as the input. Empirical results show that such a simple model can outperform leading ID-based CF models, which sheds light on using language representations for better recommendation. Moreover, we systematically analyze this simple model and find several key features for using advanced language representations: a good initialization for item representations, zero-shot recommendation abilities, and being aware of user intention. Our findings highlight the connection between language modeling and behavior modeling, which can inspire both natural language processing and recommender system communities.
comment: ICLR 2025 (Oral). Codes are available at https://github.com/LehengTHU/AlphaRec
♻ ☆ Large Language Model-Based Knowledge Graph System Construction for Sustainable Development Goals: An AI-Based Speculative Design Perspective
From 2000 to 2015, the UN's Millennium Development Goals guided global priorities. The subsequent Sustainable Development Goals (SDGs) adopted a more dynamic approach, with annual indicator updates. As 2030 nears and progress lags, innovative acceleration strategies are critical. This study develops an AI-powered knowledge graph system to analyze SDG interconnections, discover potential new goals, and visualize them online. Using official SDG texts, Elsevier's keyword dataset, and 1,127 TED Talk transcripts (2020.01-2024.04), a pilot on 269 talks from 2023 applies AI-speculative design, large language models, and retrieval-augmented generation. Key findings include: (1) Heatmap analysis reveals strong associations between Goal 10 and Goal 16, and minimal coverage of Goal 6. (2) In the knowledge graph, simulated dialogue over time reveals new central nodes, showing how richer data supports divergent thinking and goal clarity. (3) Six potential new goals are proposed, centered on equity, resilience, and technology-driven inclusion. This speculative-AI framework offers fresh insights for policymakers and lays groundwork for future multimodal and cross-system SDG applications.
comment: This is a minor revision: fixed a typo in the abstract (time range) and corrected minor textual errors
Machine Learning 125
☆ Feature Alignment and Representation Transfer in Knowledge Distillation for Large Language Models
Knowledge distillation (KD) is a technique for transferring knowledge from complex teacher models to simpler student models, significantly enhancing model efficiency and accuracy. It has demonstrated substantial advancements in various applications including image classification, object detection, language modeling, text classification, and sentiment analysis. Recent innovations in KD methods, such as attention-based approaches, block-wise logit distillation, and decoupling distillation, have notably improved student model performance. These techniques focus on stimulus complexity, attention mechanisms, and global information capture to optimize knowledge transfer. In addition, KD has proven effective in compressing large language models while preserving accuracy, reducing computational overhead, and improving inference speed. This survey synthesizes the latest literature, highlighting key findings, contributions, and future directions in knowledge distillation to provide insights for researchers and practitioners on its evolving role in artificial intelligence and machine learning.
☆ Parameter-Efficient Continual Fine-Tuning: A Survey
The emergence of large pre-trained networks has revolutionized the AI field, unlocking new possibilities and achieving unprecedented performance. However, these models inherit a fundamental limitation from traditional Machine Learning approaches: their strong dependence on the \textit{i.i.d.} assumption hinders their adaptability to dynamic learning scenarios. We believe the next breakthrough in AI lies in enabling efficient adaptation to evolving environments -- such as the real world -- where new data and tasks arrive sequentially. This challenge defines the field of Continual Learning (CL), a Machine Learning paradigm focused on developing lifelong learning neural models. One alternative to efficiently adapt these large-scale models is known Parameter-Efficient Fine-Tuning (PEFT). These methods tackle the issue of adapting the model to a particular data or scenario by performing small and efficient modifications, achieving similar performance to full fine-tuning. However, these techniques still lack the ability to adjust the model to multiple tasks continually, as they suffer from the issue of Catastrophic Forgetting. In this survey, we first provide an overview of CL algorithms and PEFT methods before reviewing the state-of-the-art on Parameter-Efficient Continual Fine-Tuning (PECFT). We examine various approaches, discuss evaluation metrics, and explore potential future research directions. Our goal is to highlight the synergy between CL and Parameter-Efficient Fine-Tuning, guide researchers in this field, and pave the way for novel future research directions.
☆ Not All Rollouts are Useful: Down-Sampling Rollouts in LLM Reinforcement Learning
Reinforcement learning (RL) has emerged as a powerful paradigm for enhancing reasoning capabilities in large language models, but faces a fundamental asymmetry in computation and memory requirements: inference is embarrassingly parallel with a minimal memory footprint, while policy updates require extensive synchronization and are memory-intensive. To address this asymmetry, we introduce PODS (Policy Optimization with Down-Sampling), a framework that strategically decouples these phases by generating numerous rollouts in parallel but updating only on an informative subset. Within this framework, we develop max-variance down-sampling, a theoretically motivated method that selects rollouts with maximally diverse reward signals. We prove that this approach has an efficient algorithmic solution, and empirically demonstrate that GRPO with PODS using max-variance down-sampling achieves superior performance over standard GRPO on the GSM8K benchmark.
comment: 9 pages, 1 figure
☆ Near-optimal algorithms for private estimation and sequential testing of collision probability
We present new algorithms for estimating and testing \emph{collision probability}, a fundamental measure of the spread of a discrete distribution that is widely used in many scientific fields. We describe an algorithm that satisfies $(\alpha, \beta)$-local differential privacy and estimates collision probability with error at most $\epsilon$ using $\tilde{O}\left(\frac{\log(1/\beta)}{\alpha^2 \epsilon^2}\right)$ samples for $\alpha \le 1$, which improves over previous work by a factor of $\frac{1}{\alpha^2}$. We also present a sequential testing algorithm for collision probability, which can distinguish between collision probability values that are separated by $\epsilon$ using $\tilde{O}(\frac{1}{\epsilon^2})$ samples, even when $\epsilon$ is unknown. Our algorithms have nearly the optimal sample complexity, and in experiments we show that they require significantly fewer samples than previous methods.
Transformer Encoder and Multi-features Time2Vec for Financial Prediction
Financial prediction is a complex and challenging task of time series analysis and signal processing, expected to model both short-term fluctuations and long-term temporal dependencies. Transformers have remarkable success mostly in natural language processing using attention mechanism, which also influenced the time series community. The ability to capture both short and long-range dependencies helps to understand the financial market and to recognize price patterns, leading to successful applications of Transformers in stock prediction. Although, the previous research predominantly focuses on individual features and singular predictions, that limits the model's ability to understand broader market trends. In reality, within sectors such as finance and technology, companies belonging to the same industry often exhibit correlated stock price movements. In this paper, we develop a novel neural network architecture by integrating Time2Vec with the Encoder of the Transformer model. Based on the study of different markets, we propose a novel correlation feature selection method. Through a comprehensive fine-tuning of multiple hyperparameters, we conduct a comparative analysis of our results against benchmark models. We conclude that our method outperforms other state-of-the-art encoding methods such as positional encoding, and we also conclude that selecting correlation features enhance the accuracy of predicting multiple stock prices.
comment: 5 pages, currently under review at Eusipco 2025
☆ Meta-Learning and Knowledge Discovery based Physics-Informed Neural Network for Remaining Useful Life Prediction
Predicting the remaining useful life (RUL) of rotating machinery is critical for industrial safety and maintenance, but existing methods struggle with scarce target-domain data and unclear degradation dynamics. We propose a Meta-Learning and Knowledge Discovery-based Physics-Informed Neural Network (MKDPINN) to address these challenges. The method first maps noisy sensor data to a low-dimensional hidden state space via a Hidden State Mapper (HSM). A Physics-Guided Regulator (PGR) then learns unknown nonlinear PDEs governing degradation evolution, embedding these physical constraints into the PINN framework. This integrates data-driven and physics-based approaches. The framework uses meta-learning, optimizing across source-domain meta-tasks to enable few-shot adaptation to new target tasks. Experiments on industrial data and the C-MAPSS benchmark show MKDPINN outperforms baselines in generalization and accuracy, proving its effectiveness for RUL prediction under data scarcity
comment: 34 pages,20 figs
☆ The Binary and Ternary Quantization Can Improve Feature Discrimination
In machine learning, quantization is widely used to simplify data representation and facilitate algorithm deployment on hardware. Given the fundamental role of classification in machine learning, it is crucial to investigate the impact of quantization on classification. Current research primarily focuses on quantization errors, operating under the premise that higher quantization errors generally result in lower classification performance. However, this premise lacks a solid theoretical foundation and often contradicts empirical findings. For instance, certain extremely low bit-width quantization methods, such as $\{0,1\}$-binary quantization and $\{0, \pm1\}$-ternary quantization, can achieve comparable or even superior classification accuracy compared to the original non-quantized data, despite exhibiting high quantization errors. To more accurately evaluate classification performance, we propose to directly investigate the feature discrimination of quantized data, instead of analyzing its quantization error. Interestingly, it is found that both binary and ternary quantization methods can improve, rather than degrade, the feature discrimination of the original data. This remarkable performance is validated through classification experiments across various data types, including images, speech, and texts.
☆ Probabilistic Stability Guarantees for Feature Attributions
Stability guarantees are an emerging tool for evaluating feature attributions, but existing certification methods rely on smoothed classifiers and often yield conservative guarantees. To address these limitations, we introduce soft stability and propose a simple, model-agnostic, and sample-efficient stability certification algorithm (SCA) that provides non-trivial and interpretable guarantees for any attribution. Moreover, we show that mild smoothing enables a graceful tradeoff between accuracy and stability, in contrast to prior certification methods that require a more aggressive compromise. Using Boolean function analysis, we give a novel characterization of stability under smoothing. We evaluate SCA on vision and language tasks, and demonstrate the effectiveness of soft stability in measuring the robustness of explanation methods.
☆ On the Relationship Between Robustness and Expressivity of Graph Neural Networks
We investigate the vulnerability of Graph Neural Networks (GNNs) to bit-flip attacks (BFAs) by introducing an analytical framework to study the influence of architectural features, graph properties, and their interaction. The expressivity of GNNs refers to their ability to distinguish non-isomorphic graphs and depends on the encoding of node neighborhoods. We examine the vulnerability of neural multiset functions commonly used for this purpose and establish formal criteria to characterize a GNN's susceptibility to losing expressivity due to BFAs. This enables an analysis of the impact of homophily, graph structural variety, feature encoding, and activation functions on GNN robustness. We derive theoretical bounds for the number of bit flips required to degrade GNN expressivity on a dataset, identifying ReLU-activated GNNs operating on highly homophilous graphs with low-dimensional or one-hot encoded features as particularly susceptible. Empirical results using ten real-world datasets confirm the statistical significance of our key theoretical insights and offer actionable results to mitigate BFA risks in expressivity-critical applications.
comment: Accepted at AISTAST 2025, will add DOI when available
☆ DP2Unlearning: An Efficient and Guaranteed Unlearning Framework for LLMs
Large language models (LLMs) have recently revolutionized language processing tasks but have also brought ethical and legal issues. LLMs have a tendency to memorize potentially private or copyrighted information present in the training data, which might then be delivered to end users at inference time. When this happens, a naive solution is to retrain the model from scratch after excluding the undesired data. Although this guarantees that the target data have been forgotten, it is also prohibitively expensive for LLMs. Approximate unlearning offers a more efficient alternative, as it consists of ex post modifications of the trained model itself to prevent undesirable results, but it lacks forgetting guarantees because it relies solely on empirical evidence. In this work, we present DP2Unlearning, a novel LLM unlearning framework that offers formal forgetting guarantees at a significantly lower cost than retraining from scratch on the data to be retained. DP2Unlearning involves training LLMs on textual data protected using {\epsilon}-differential privacy (DP), which later enables efficient unlearning with the guarantees against disclosure associated with the chosen {\epsilon}. Our experiments demonstrate that DP2Unlearning achieves similar model performance post-unlearning, compared to an LLM retraining from scratch on retained data -- the gold standard exact unlearning -- but at approximately half the unlearning cost. In addition, with a reasonable computational cost, it outperforms approximate unlearning methods at both preserving the utility of the model post-unlearning and effectively forgetting the targeted information.
comment: 49 pages
☆ Equi-Euler GraphNet: An Equivariant, Temporal-Dynamics Informed Graph Neural Network for Dual Force and Trajectory Prediction in Multi-Body Systems
Accurate real-time modeling of multi-body dynamical systems is essential for enabling digital twin applications across industries. While many data-driven approaches aim to learn system dynamics, jointly predicting internal loads and system trajectories remains a key challenge. This dual prediction is especially important for fault detection and predictive maintenance, where internal loads-such as contact forces-act as early indicators of faults, reflecting wear or misalignment before affecting motion. These forces also serve as inputs to degradation models (e.g., crack growth), enabling damage prediction and remaining useful life estimation. We propose Equi-Euler GraphNet, a physics-informed graph neural network (GNN) that simultaneously predicts internal forces and global trajectories in multi-body systems. In this mesh-free framework, nodes represent system components and edges encode interactions. Equi-Euler GraphNet introduces two inductive biases: (1) an equivariant message-passing scheme, interpreting edge messages as interaction forces consistent under Euclidean transformations; and (2) a temporal-aware iterative node update mechanism, based on Euler integration, to capture influence of distant interactions over time. Tailored for cylindrical roller bearings, it decouples ring dynamics from constrained motion of rolling elements. Trained on high-fidelity multiphysics simulations, Equi-Euler GraphNet generalizes beyond the training distribution, accurately predicting loads and trajectories under unseen speeds, loads, and configurations. It outperforms state-of-the-art GNNs focused on trajectory prediction, delivering stable rollouts over thousands of time steps with minimal error accumulation. Achieving up to a 200x speedup over conventional solvers while maintaining comparable accuracy, it serves as an efficient reduced-order model for digital twins, design, and maintenance.
☆ Fragile Watermarking for Image Certification Using Deep Steganographic Embedding
Modern identity verification systems increasingly rely on facial images embedded in biometric documents such as electronic passports. To ensure global interoperability and security, these images must comply with strict standards defined by the International Civil Aviation Organization (ICAO), which specify acquisition, quality, and format requirements. However, once issued, these images may undergo unintentional degradations (e.g., compression, resizing) or malicious manipulations (e.g., morphing) and deceive facial recognition systems. In this study, we explore fragile watermarking, based on deep steganographic embedding as a proactive mechanism to certify the authenticity of ICAO-compliant facial images. By embedding a hidden image within the official photo at the time of issuance, we establish an integrity marker that becomes sensitive to any post-issuance modification. We assess how a range of image manipulations affects the recovered hidden image and show that degradation artifacts can serve as robust forensic cues. Furthermore, we propose a classification framework that analyzes the revealed content to detect and categorize the type of manipulation applied. Our experiments demonstrate high detection accuracy, including cross-method scenarios with multiple deep steganography-based models. These findings support the viability of fragile watermarking via steganographic embedding as a valuable tool for biometric document integrity verification.
☆ Scaling sparse feature circuit finding for in-context learning
Sparse autoencoders (SAEs) are a popular tool for interpreting large language model activations, but their utility in addressing open questions in interpretability remains unclear. In this work, we demonstrate their effectiveness by using SAEs to deepen our understanding of the mechanism behind in-context learning (ICL). We identify abstract SAE features that (i) encode the model's knowledge of which task to execute and (ii) whose latent vectors causally induce the task zero-shot. This aligns with prior work showing that ICL is mediated by task vectors. We further demonstrate that these task vectors are well approximated by a sparse sum of SAE latents, including these task-execution features. To explore the ICL mechanism, we adapt the sparse feature circuits methodology of Marks et al. (2024) to work for the much larger Gemma-1 2B model, with 30 times as many parameters, and to the more complex task of ICL. Through circuit finding, we discover task-detecting features with corresponding SAE latents that activate earlier in the prompt, that detect when tasks have been performed. They are causally linked with task-execution features through the attention and MLP sublayers.
☆ Predictors of Childhood Vaccination Uptake in England: An Explainable Machine Learning Analysis of Longitudinal Regional Data (2021-2024)
Childhood vaccination is a cornerstone of public health, yet disparities in vaccination coverage persist across England. These disparities are shaped by complex interactions among various factors, including geographic, demographic, socioeconomic, and cultural (GDSC) factors. Previous studies mostly rely on cross-sectional data and traditional statistical approaches that assess individual or limited sets of variables in isolation. Such methods may fall short in capturing the dynamic and multivariate nature of vaccine uptake. In this paper, we conducted a longitudinal machine learning analysis of childhood vaccination coverage across 150 districts in England from 2021 to 2024. Using vaccination data from NHS records, we applied hierarchical clustering to group districts by vaccination coverage into low- and high-coverage clusters. A CatBoost classifier was then trained to predict districts' vaccination clusters using their GDSC data. Finally, the SHapley Additive exPlanations (SHAP) method was used to interpret the predictors' importance. The classifier achieved high accuracies of 92.1, 90.6, and 86.3 in predicting districts' vaccination clusters for the years 2021-2022, 2022-2023, and 2023-2024, respectively. SHAP revealed that geographic, cultural, and demographic variables, particularly rurality, English language proficiency, the percentage of foreign-born residents, and ethnic composition, were the most influential predictors of vaccination coverage, whereas socioeconomic variables, such as deprivation and employment, consistently showed lower importance, especially in 2023-2024. Surprisingly, rural districts were significantly more likely to have higher vaccination rates. Additionally, districts with lower vaccination coverage had higher populations whose first language was not English, who were born outside the UK, or who were from ethnic minority groups.
☆ Learning to Attribute with Attention
Given a sequence of tokens generated by a language model, we may want to identify the preceding tokens that influence the model to generate this sequence. Performing such token attribution is expensive; a common approach is to ablate preceding tokens and directly measure their effects. To reduce the cost of token attribution, we revisit attention weights as a heuristic for how a language model uses previous tokens. Naive approaches to attribute model behavior with attention (e.g., averaging attention weights across attention heads to estimate a token's influence) have been found to be unreliable. To attain faithful attributions, we propose treating the attention weights of different attention heads as features. This way, we can learn how to effectively leverage attention weights for attribution (using signal from ablations). Our resulting method, Attribution with Attention (AT2), reliably performs on par with approaches that involve many ablations, while being significantly more efficient. To showcase the utility of AT2, we use it to prune less important parts of a provided context in a question answering setting, improving answer quality. We provide code for AT2 at https://github.com/MadryLab/AT2 .
☆ Dynamic Regularized CBDT: Variance-Calibrated Causal Boosting for Interpretable Heterogeneous Treatment Effects
Heterogeneous treatment effect estimation in high-stakes applications demands models that simultaneously optimize precision, interpretability, and calibration. Many existing tree-based causal inference techniques, however, exhibit high estimation errors when applied to observational data because they struggle to capture complex interactions among factors and rely on static regularization schemes. In this work, we propose Dynamic Regularized Causal Boosted Decision Trees (CBDT), a novel framework that integrates variance regularization and average treatment effect calibration into the loss function of gradient boosted decision trees. Our approach dynamically updates the regularization parameters using gradient statistics to better balance the bias-variance tradeoff. Extensive experiments on standard benchmark datasets and real-world clinical data demonstrate that the proposed method significantly improves estimation accuracy while maintaining reliable coverage of true treatment effects. In an intensive care unit patient triage study, the method successfully identified clinically actionable rules and achieved high accuracy in treatment effect estimation. The results validate that dynamic regularization can effectively tighten error bounds and enhance both predictive performance and model interpretability.
comment: Preprint version. 13 pages, 4 figures, 3 tables
☆ Controlled Territory and Conflict Tracking (CONTACT): (Geo-)Mapping Occupied Territory from Open Source Intelligence
Open-source intelligence provides a stream of unstructured textual data that can inform assessments of territorial control. We present CONTACT, a framework for territorial control prediction using large language models (LLMs) and minimal supervision. We evaluate two approaches: SetFit, an embedding-based few-shot classifier, and a prompt tuning method applied to BLOOMZ-560m, a multilingual generative LLM. Our model is trained on a small hand-labeled dataset of news articles covering ISIS activity in Syria and Iraq, using prompt-conditioned extraction of control-relevant signals such as military operations, casualties, and location references. We show that the BLOOMZ-based model outperforms the SetFit baseline, and that prompt-based supervision improves generalization in low-resource settings. CONTACT demonstrates that LLMs fine-tuned using few-shot methods can reduce annotation burdens and support structured inference from open-ended OSINT streams. Our code is available at https://github.com/PaulKMandal/CONTACT/.
comment: 7 pages, 1 figure, 1 table
☆ Human-aligned Deep Learning: Explainability, Causality, and Biological Inspiration
This work aligns deep learning (DL) with human reasoning capabilities and needs to enable more efficient, interpretable, and robust image classification. We approach this from three perspectives: explainability, causality, and biological vision. Introduction and background open this work before diving into operative chapters. First, we assess neural networks' visualization techniques for medical images and validate an explainable-by-design method for breast mass classification. A comprehensive review at the intersection of XAI and causality follows, where we introduce a general scaffold to organize past and future research, laying the groundwork for our second perspective. In the causality direction, we propose novel modules that exploit feature co-occurrence in medical images, leading to more effective and explainable predictions. We further introduce CROCODILE, a general framework that integrates causal concepts, contrastive learning, feature disentanglement, and prior knowledge to enhance generalization. Lastly, we explore biological vision, examining how humans recognize objects, and propose CoCoReco, a connectivity-inspired network with context-aware attention mechanisms. Overall, our key findings include: (i) simple activation maximization lacks insight for medical imaging DL models; (ii) prototypical-part learning is effective and radiologically aligned; (iii) XAI and causal ML are deeply connected; (iv) weak causal signals can be leveraged without a priori information to improve performance and interpretability; (v) our framework generalizes across medical domains and out-of-distribution data; (vi) incorporating biological circuit motifs improves human-aligned recognition. This work contributes toward human-aligned DL and highlights pathways to bridge the gap between research and clinical adoption, with implications for improved trust, diagnostic accuracy, and safe deployment.
comment: Personal adaptation and expansion of doctoral thesis (originally submitted in Oct 2024, revisioned in Jan 2025)
☆ MEGA: Second-Order Gradient Alignment for Catastrophic Forgetting Mitigation in GFSCIL
Graph Few-Shot Class-Incremental Learning (GFSCIL) enables models to continually learn from limited samples of novel tasks after initial training on a large base dataset. Existing GFSCIL approaches typically utilize Prototypical Networks (PNs) for metric-based class representations and fine-tune the model during the incremental learning stage. However, these PN-based methods oversimplify learning via novel query set fine-tuning and fail to integrate Graph Continual Learning (GCL) techniques due to architectural constraints. To address these challenges, we propose a more rigorous and practical setting for GFSCIL that excludes query sets during the incremental training phase. Building on this foundation, we introduce Model-Agnostic Meta Graph Continual Learning (MEGA), aimed at effectively alleviating catastrophic forgetting for GFSCIL. Specifically, by calculating the incremental second-order gradient during the meta-training stage, we endow the model to learn high-quality priors that enhance incremental learning by aligning its behaviors across both the meta-training and incremental learning stages. Extensive experiments on four mainstream graph datasets demonstrate that MEGA achieves state-of-the-art results and enhances the effectiveness of various GCL methods in GFSCIL. We believe that our proposed MEGA serves as a model-agnostic GFSCIL paradigm, paving the way for future research.
comment: Under Review
☆ Revisiting Uncertainty Quantification Evaluation in Language Models: Spurious Interactions with Response Length Bias Results
Uncertainty Quantification (UQ) in Language Models (LMs) is crucial for improving their safety and reliability. Evaluations often use performance metrics like AUROC to assess how well UQ methods (e.g., negative sequence probabilities) correlate with task correctness functions (e.g., ROUGE-L). In this paper, we show that commonly used correctness functions bias UQ evaluations by inflating the performance of certain UQ methods. We evaluate 7 correctness functions -- from lexical-based and embedding-based metrics to LLM-as-a-judge approaches -- across 4 datasets x 4 models x 6 UQ methods. Our analysis reveals that length biases in the errors of these correctness functions distort UQ assessments by interacting with length biases in UQ methods. We identify LLM-as-a-judge approaches as among the least length-biased choices and hence a potential solution to mitigate these biases.
☆ Efficient Parameter Adaptation for Multi-Modal Medical Image Segmentation and Prognosis
Cancer detection and prognosis relies heavily on medical imaging, particularly CT and PET scans. Deep Neural Networks (DNNs) have shown promise in tumor segmentation by fusing information from these modalities. However, a critical bottleneck exists: the dependency on CT-PET data concurrently for training and inference, posing a challenge due to the limited availability of PET scans. Hence, there is a clear need for a flexible and efficient framework that can be trained with the widely available CT scans and can be still adapted for PET scans when they become available. In this work, we propose a parameter-efficient multi-modal adaptation (PEMMA) framework for lightweight upgrading of a transformer-based segmentation model trained only on CT scans such that it can be efficiently adapted for use with PET scans when they become available. This framework is further extended to perform prognosis task maintaining the same efficient cross-modal fine-tuning approach. The proposed approach is tested with two well-known segementation backbones, namely UNETR and Swin UNETR. Our approach offers two main advantages. Firstly, we leverage the inherent modularity of the transformer architecture and perform low-rank adaptation (LoRA) as well as decomposed low-rank adaptation (DoRA) of the attention weights to achieve parameter-efficient adaptation. Secondly, by minimizing cross-modal entanglement, PEMMA allows updates using only one modality without causing catastrophic forgetting in the other. Our method achieves comparable performance to early fusion, but with only 8% of the trainable parameters, and demonstrates a significant +28% Dice score improvement on PET scans when trained with a single modality. Furthermore, in prognosis, our method improves the concordance index by +10% when adapting a CT-pretrained model to include PET scans, and by +23% when adapting for both PET and EHR data.
☆ Efficient algorithms for the Hadamard decomposition
The Hadamard decomposition is a powerful technique for data analysis and matrix compression, which decomposes a given matrix into the element-wise product of two or more low-rank matrices. In this paper, we develop an efficient algorithm to solve this problem, leveraging an alternating optimization approach that decomposes the global non-convex problem into a series of convex sub-problems. To improve performance, we explore advanced initialization strategies inspired by the singular value decomposition (SVD) and incorporate acceleration techniques by introducing momentum-based updates. Beyond optimizing the two-matrix case, we also extend the Hadamard decomposition framework to support more than two low-rank matrices, enabling approximations with higher effective ranks while preserving computational efficiency. Finally, we conduct extensive experiments to compare our method with the existing gradient descent-based approaches for the Hadamard decomposition and with traditional low-rank approximation techniques. The results highlight the effectiveness of our proposed method across diverse datasets.
comment: 7 pages, code available from https://github.com/WertzSamuel/HadamardDecompositions
☆ On the Convergence of Irregular Sampling in Reproducing Kernel Hilbert Spaces
We analyse the convergence of sampling algorithms for functions in reproducing kernel Hilbert spaces (RKHS). To this end, we discuss approximation properties of kernel regression under minimalistic assumptions on both the kernel and the input data. We first prove error estimates in the kernel's RKHS norm. This leads us to new results concerning uniform convergence of kernel regression on compact domains. For Lipschitz continuous and H\"older continuous kernels, we prove convergence rates.
☆ Entropic Time Schedulers for Generative Diffusion Models
The practical performance of generative diffusion models depends on the appropriate choice of the noise scheduling function, which can also be equivalently expressed as a time reparameterization. In this paper, we present a time scheduler that selects sampling points based on entropy rather than uniform time spacing, ensuring that each point contributes an equal amount of information to the final generation. We prove that this time reparameterization does not depend on the initial choice of time. Furthermore, we provide a tractable exact formula to estimate this \emph{entropic time} for a trained model using the training loss without substantial overhead. Alongside the entropic time, inspired by the optimality results, we introduce a rescaled entropic time. In our experiments with mixtures of Gaussian distributions and ImageNet, we show that using the (rescaled) entropic times greatly improves the inference performance of trained models. In particular, we found that the image quality in pretrained EDM2 models, as evaluated by FID and FD-DINO scores, can be substantially increased by the rescaled entropic time reparameterization without increasing the number of function evaluations, with greater improvements in the few NFEs regime.
comment: 17 pages
☆ Fairness and Robustness in Machine Unlearning
Machine unlearning poses the challenge of ``how to eliminate the influence of specific data from a pretrained model'' in regard to privacy concerns. While prior research on approximated unlearning has demonstrated accuracy and efficiency in time complexity, we claim that it falls short of achieving exact unlearning, and we are the first to focus on fairness and robustness in machine unlearning algorithms. Our study presents fairness Conjectures for a well-trained model, based on the variance-bias trade-off characteristic, and considers their relevance to robustness. Our Conjectures are supported by experiments conducted on the two most widely used model architectures, ResNet and ViT, demonstrating the correlation between fairness and robustness: \textit{the higher fairness-gap is, the more the model is sensitive and vulnerable}. In addition, our experiments demonstrate the vulnerability of current state-of-the-art approximated unlearning algorithms to adversarial attacks, where their unlearned models suffer a significant drop in accuracy compared to the exact-unlearned models. We claim that our fairness-gap measurement and robustness metric should be used to evaluate the unlearning algorithm. Furthermore, we demonstrate that unlearning in the intermediate and last layers is sufficient and cost-effective for time and memory complexity.
comment: 5 pages
☆ Bitcoin's Edge: Embedded Sentiment in Blockchain Transactional Data
Cryptocurrency blockchains, beyond their primary role as distributed payment systems, are increasingly used to store and share arbitrary content, such as text messages and files. Although often non-financial, this hidden content can impact price movements by conveying private information, shaping sentiment, and influencing public opinion. However, current analyses of such data are limited in scope and scalability, primarily relying on manual classification or hand-crafted heuristics. In this work, we address these limitations by employing Natural Language Processing techniques to analyze, detect patterns, and extract public sentiment encoded within blockchain transactional data. Using a variety of Machine Learning techniques, we showcase for the first time the predictive power of blockchain-embedded sentiment in forecasting cryptocurrency price movements on the Bitcoin and Ethereum blockchains. Our findings shed light on a previously underexplored source of freely available, transparent, and immutable data and introduce blockchain sentiment analysis as a novel and robust framework for enhancing financial predictions in cryptocurrency markets. Incidentally, we discover an asymmetry between cryptocurrencies; Bitcoin has an informational advantage over Ethereum in that the sentiment embedded into transactional data is sufficient to predict its price movement.
comment: Published in IEEE International Conference on Blockchain and Cryptocurrency 2025
☆ Towards End-to-End Network Intent Management with Large Language Models
Large Language Models (LLMs) are likely to play a key role in Intent-Based Networking (IBN) as they show remarkable performance in interpreting human language as well as code generation, enabling the translation of high-level intents expressed by humans into low-level network configurations. In this paper, we leverage closed-source language models (i.e., Google Gemini 1.5 pro, ChatGPT-4) and open-source models (i.e., LLama, Mistral) to investigate their capacity to generate E2E network configurations for radio access networks (RANs) and core networks in 5G/6G mobile networks. We introduce a novel performance metrics, known as FEACI, to quantitatively assess the format (F), explainability (E), accuracy (A), cost (C), and inference time (I) of the generated answer; existing general metrics are unable to capture these features. The results of our study demonstrate that open-source models can achieve comparable or even superior translation performance compared with the closed-source models requiring costly hardware setup and not accessible to all users.
comment: Full paper is accepted at IFIP Networking 2025
☆ How to Achieve Higher Accuracy with Less Training Points?
In the era of large-scale model training, the extensive use of available datasets has resulted in significant computational inefficiencies. To tackle this issue, we explore methods for identifying informative subsets of training data that can achieve comparable or even superior model performance. We propose a technique based on influence functions to determine which training samples should be included in the training set. We conducted empirical evaluations of our method on binary classification tasks utilizing logistic regression models. Our approach demonstrates performance comparable to that of training on the entire dataset while using only 10% of the data. Furthermore, we found that our method achieved even higher accuracy when trained with just 60% of the data.
☆ Hysteresis-Aware Neural Network Modeling and Whole-Body Reinforcement Learning Control of Soft Robots
Soft robots exhibit inherent compliance and safety, which makes them particularly suitable for applications requiring direct physical interaction with humans, such as surgical procedures. However, their nonlinear and hysteretic behavior, resulting from the properties of soft materials, presents substantial challenges for accurate modeling and control. In this study, we present a soft robotic system designed for surgical applications and propose a hysteresis-aware whole-body neural network model that accurately captures and predicts the soft robot's whole-body motion, including its hysteretic behavior. Building upon the high-precision dynamic model, we construct a highly parallel simulation environment for soft robot control and apply an on-policy reinforcement learning algorithm to efficiently train whole-body motion control strategies. Based on the trained control policy, we developed a soft robotic system for surgical applications and validated it through phantom-based laser ablation experiments in a physical environment. The results demonstrate that the hysteresis-aware modeling reduces the Mean Squared Error (MSE) by 84.95 percent compared to traditional modeling methods. The deployed control algorithm achieved a trajectory tracking error ranging from 0.126 to 0.250 mm on the real soft robot, highlighting its precision in real-world conditions. The proposed method showed strong performance in phantom-based surgical experiments and demonstrates its potential for complex scenarios, including future real-world clinical applications.
☆ MSTIM: A MindSpore-Based Model for Traffic Flow Prediction
Aiming at the problems of low accuracy and large error fluctuation of traditional traffic flow predictionmodels when dealing with multi-scale temporal features and dynamic change patterns. this paperproposes a multi-scale time series information modelling model MSTIM based on the Mindspore framework, which integrates long and short-term memory networks (LSTMs), convolutional neural networks (CNN), and the attention mechanism to improve the modelling accuracy and stability. The Metropolitan Interstate Traffic Volume (MITV) dataset was used for the experiments and compared and analysed with typical LSTM-attention models, CNN-attention models and LSTM-CNN models. The experimental results show that the MSTIM model achieves better results in the metrics of Mean Absolute Error (MAE), Mean Square Error (MSE), and Root Mean Square Error (RMSE), which significantly improves the accuracy and stability of the traffic volume prediction.
☆ MAAM: A Lightweight Multi-Agent Aggregation Module for Efficient Image Classification Based on the MindSpore Framework
The demand for lightweight models in image classification tasks under resource-constrained environments necessitates a balance between computational efficiency and robust feature representation. Traditional attention mechanisms, despite their strong feature modeling capability, often struggle with high computational complexity and structural rigidity, limiting their applicability in scenarios with limited computational resources (e.g., edge devices or real-time systems). To address this, we propose the Multi-Agent Aggregation Module (MAAM), a lightweight attention architecture integrated with the MindSpore framework. MAAM employs three parallel agent branches with independently parameterized operations to extract heterogeneous features, adaptively fused via learnable scalar weights, and refined through a convolutional compression layer. Leveraging MindSpore's dynamic computational graph and operator fusion, MAAM achieves 87.0% accuracy on the CIFAR-10 dataset, significantly outperforming conventional CNN (58.3%) and MLP (49.6%) models, while improving training efficiency by 30%. Ablation studies confirm the critical role of agent attention (accuracy drops to 32.0% if removed) and compression modules (25.5% if omitted), validating their necessity for maintaining discriminative feature learning. The framework's hardware acceleration capabilities and minimal memory footprint further demonstrate its practicality, offering a deployable solution for image classification in resource-constrained scenarios without compromising accuracy.
☆ Bayesian continual learning and forgetting in neural networks
Biological synapses effortlessly balance memory retention and flexibility, yet artificial neural networks still struggle with the extremes of catastrophic forgetting and catastrophic remembering. Here, we introduce Metaplasticity from Synaptic Uncertainty (MESU), a Bayesian framework that updates network parameters according their uncertainty. This approach allows a principled combination of learning and forgetting that ensures that critical knowledge is preserved while unused or outdated information is gradually released. Unlike standard Bayesian approaches -- which risk becoming overly constrained, and popular continual-learning methods that rely on explicit task boundaries, MESU seamlessly adapts to streaming data. It further provides reliable epistemic uncertainty estimates, allowing out-of-distribution detection, the only computational cost being to sample the weights multiple times to provide proper output statistics. Experiments on image-classification benchmarks demonstrate that MESU mitigates catastrophic forgetting, while maintaining plasticity for new tasks. When training 200 sequential permuted MNIST tasks, MESU outperforms established continual learning techniques in terms of accuracy, capability to learn additional tasks, and out-of-distribution data detection. Additionally, due to its non-reliance on task boundaries, MESU outperforms conventional learning techniques on the incremental training of CIFAR-100 tasks consistently in a wide range of scenarios. Our results unify ideas from metaplasticity, Bayesian inference, and Hessian-based regularization, offering a biologically-inspired pathway to robust, perpetual learning.
Transformers Can Overcome the Curse of Dimensionality: A Theoretical Study from an Approximation Perspective
The Transformer model is widely used in various application areas of machine learning, such as natural language processing. This paper investigates the approximation of the H\"older continuous function class $\mathcal{H}_{Q}^{\beta}\left([0,1]^{d\times n},\mathbb{R}^{d\times n}\right)$ by Transformers and constructs several Transformers that can overcome the curse of dimensionality. These Transformers consist of one self-attention layer with one head and the softmax function as the activation function, along with several feedforward layers. For example, to achieve an approximation accuracy of $\epsilon$, if the activation functions of the feedforward layers in the Transformer are ReLU and floor, only $\mathcal{O}\left(\log\frac{1}{\epsilon}\right)$ layers of feedforward layers are needed, with widths of these layers not exceeding $\mathcal{O}\left(\frac{1}{\epsilon^{2/\beta}}\log\frac{1}{\epsilon}\right)$. If other activation functions are allowed in the feedforward layers, the width of the feedforward layers can be further reduced to a constant. These results demonstrate that Transformers have a strong expressive capability. The construction in this paper is based on the Kolmogorov-Arnold Representation Theorem and does not require the concept of contextual mapping, hence our proof is more intuitively clear compared to previous Transformer approximation works. Additionally, the translation technique proposed in this paper helps to apply the previous approximation results of feedforward neural networks to Transformer research.
☆ Task Assignment and Exploration Optimization for Low Altitude UAV Rescue via Generative AI Enhanced Multi-agent Reinforcement Learning
Artificial Intelligence (AI)-driven convolutional neural networks enhance rescue, inspection, and surveillance tasks performed by low-altitude uncrewed aerial vehicles (UAVs) and ground computing nodes (GCNs) in unknown environments. However, their high computational demands often exceed a single UAV's capacity, leading to system instability, further exacerbated by the limited and dynamic resources of GCNs. To address these challenges, this paper proposes a novel cooperation framework involving UAVs, ground-embedded robots (GERs), and high-altitude platforms (HAPs), which enable resource pooling through UAV-to-GER (U2G) and UAV-to-HAP (U2H) communications to provide computing services for UAV offloaded tasks. Specifically, we formulate the multi-objective optimization problem of task assignment and exploration optimization in UAVs as a dynamic long-term optimization problem. Our objective is to minimize task completion time and energy consumption while ensuring system stability over time. To achieve this, we first employ the Lyapunov optimization technique to transform the original problem, with stability constraints, into a per-slot deterministic problem. We then propose an algorithm named HG-MADDPG, which combines the Hungarian algorithm with a generative diffusion model (GDM)-based multi-agent deep deterministic policy gradient (MADDPG) approach. We first introduce the Hungarian algorithm as a method for exploration area selection, enhancing UAV efficiency in interacting with the environment. We then innovatively integrate the GDM and multi-agent deep deterministic policy gradient (MADDPG) to optimize task assignment decisions, such as task offloading and resource allocation. Simulation results demonstrate the effectiveness of the proposed approach, with significant improvements in task offloading efficiency, latency reduction, and system stability compared to baseline methods.
☆ Enhancing Multilingual Sentiment Analysis with Explainability for Sinhala, English, and Code-Mixed Content
Sentiment analysis is crucial for brand reputation management in the banking sector, where customer feedback spans English, Sinhala, Singlish, and code-mixed text. Existing models struggle with low-resource languages like Sinhala and lack interpretability for practical use. This research develops a hybrid aspect-based sentiment analysis framework that enhances multilingual capabilities with explainable outputs. Using cleaned banking customer reviews, we fine-tune XLM-RoBERTa for Sinhala and code-mixed text, integrate domain-specific lexicon correction, and employ BERT-base-uncased for English. The system classifies sentiment (positive, neutral, negative) with confidence scores, while SHAP and LIME improve interpretability by providing real-time sentiment explanations. Experimental results show that our approaches outperform traditional transformer-based classifiers, achieving 92.3 percent accuracy and an F1-score of 0.89 in English and 88.4 percent in Sinhala and code-mixed content. An explainability analysis reveals key sentiment drivers, improving trust and transparency. A user-friendly interface delivers aspect-wise sentiment insights, ensuring accessibility for businesses. This research contributes to robust, transparent sentiment analysis for financial applications by bridging gaps in multilingual, low-resource NLP and explainability.
comment: 6 pages, 6 figures, 4 tables
☆ Irregular Sampling of High-Dimensional Functions in Reproducing Kernel Hilbert Spaces
We develop sampling formulas for high-dimensional functions in reproducing kernel Hilbert spaces, where we rely on irregular samples that are taken at determining sequences of data points. We place particular emphasis on sampling formulas for tensor product kernels, where we show that determining irregular samples in lower dimensions can be composed to obtain a tensor of determining irregular samples in higher dimensions. This in turn reduces the computational complexity of sampling formulas for high-dimensional functions quite significantly.
☆ SwitchMT: An Adaptive Context Switching Methodology for Scalable Multi-Task Learning in Intelligent Autonomous Agents
The ability to train intelligent autonomous agents (such as mobile robots) on multiple tasks is crucial for adapting to dynamic real-world environments. However, state-of-the-art reinforcement learning (RL) methods only excel in single-task settings, and still struggle to generalize across multiple tasks due to task interference. Moreover, real-world environments also demand the agents to have data stream processing capabilities. Toward this, a state-of-the-art work employs Spiking Neural Networks (SNNs) to improve multi-task learning by exploiting temporal information in data stream, while enabling lowpower/energy event-based operations. However, it relies on fixed context/task-switching intervals during its training, hence limiting the scalability and effectiveness of multi-task learning. To address these limitations, we propose SwitchMT, a novel adaptive task-switching methodology for RL-based multi-task learning in autonomous agents. Specifically, SwitchMT employs the following key ideas: (1) a Deep Spiking Q-Network with active dendrites and dueling structure, that utilizes task-specific context signals to create specialized sub-networks; and (2) an adaptive task-switching policy that leverages both rewards and internal dynamics of the network parameters. Experimental results demonstrate that SwitchMT achieves superior performance in multi-task learning compared to state-of-the-art methods. It achieves competitive scores in multiple Atari games (i.e., Pong: -8.8, Breakout: 5.6, and Enduro: 355.2) compared to the state-of-the-art, showing its better generalized learning capability. These results highlight the effectiveness of our SwitchMT methodology in addressing task interference while enabling multi-task learning automation through adaptive task switching, thereby paving the way for more efficient generalist agents with scalable multi-task learning capabilities.
comment: 7 pages, 7 figures, 3 tables
☆ Can Local Representation Alignment RNNs Solve Temporal Tasks?
Recurrent Neural Networks (RNNs) are commonly used for real-time processing, streaming data, and cases where the amount of training samples is limited. Backpropagation Through Time (BPTT) is the predominant algorithm for training RNNs; however, it is frequently criticized for being prone to exploding and vanishing gradients and being biologically implausible. In this paper, we present and evaluate a target propagation-based method for RNNs, which uses local updates and seeks to reduce the said instabilities. Having stable RNN models increases their practical use in a wide range of fields such as natural language processing, time-series forecasting, anomaly detection, control systems, and robotics. The proposed solution uses local representation alignment (LRA). We thoroughly analyze the performance of this method, experiment with normalization and different local error functions, and invalidate certain assumptions about the behavior of this type of learning. Namely, we demonstrate that despite the decomposition of the network into sub-graphs, the model still suffers from vanishing gradients. We also show that gradient clipping as proposed in LRA has little to no effect on network performance. This results in an LRA RNN model that is very difficult to train due to vanishing gradients. We address this by introducing gradient regularization in the direction of the update and demonstrate that this modification promotes gradient flow and meaningfully impacts convergence. We compare and discuss the performance of the algorithm, and we show that the regularized LRA RNN considerably outperforms the unregularized version on three landmark tasks: temporal order, 3-bit temporal order, and random permutation.
☆ Risk-aware black-box portfolio construction using Bayesian optimization with adaptive weighted Lagrangian estimator
Existing portfolio management approaches are often black-box models due to safety and commercial issues in the industry. However, their performance can vary considerably whenever market conditions or internal trading strategies change. Furthermore, evaluating these non-transparent systems is expensive, where certain budgets limit observations of the systems. Therefore, optimizing performance while controlling the potential risk of these financial systems has become a critical challenge. This work presents a novel Bayesian optimization framework to optimize black-box portfolio management models under limited observations. In conventional Bayesian optimization settings, the objective function is to maximize the expectation of performance metrics. However, simply maximizing performance expectations leads to erratic optimization trajectories, which exacerbate risk accumulation in portfolio management. Meanwhile, this can lead to misalignment between the target distribution and the actual distribution of the black-box model. To mitigate this problem, we propose an adaptive weight Lagrangian estimator considering dual objective, which incorporates maximizing model performance and minimizing variance of model observations. Extensive experiments demonstrate the superiority of our approach over five backtest settings with three black-box stock portfolio management models. Ablation studies further verify the effectiveness of the proposed estimator.
comment: 10 pages, 2 figures
☆ Designing a reliable lateral movement detector using a graph foundation model
Foundation models have recently emerged as a new paradigm in machine learning (ML). These models are pre-trained on large and diverse datasets and can subsequently be applied to various downstream tasks with little or no retraining. This allows people without advanced ML expertise to build ML applications, accelerating innovation across many fields. However, the adoption of foundation models in cybersecurity is hindered by their inability to efficiently process data such as network traffic captures or binary executables. The recent introduction of graph foundation models (GFMs) could make a significant difference, as graphs are well-suited to representing these types of data. We study the usability of GFMs in cybersecurity through the lens of one specific use case, namely lateral movement detection. Using a pre-trained GFM, we build a detector that reaches state-of-the-art performance without requiring any training on domain-specific data. This case study thus provides compelling evidence of the potential of GFMs for cybersecurity.
☆ Cross-Modal Temporal Fusion for Financial Market Forecasting
Accurate financial market forecasting requires diverse data sources, including historical price trends, macroeconomic indicators, and financial news, each contributing unique predictive signals. However, existing methods often process these modalities independently or fail to effectively model their interactions. In this paper, we introduce Cross-Modal Temporal Fusion (CMTF), a novel transformer-based framework that integrates heterogeneous financial data to improve predictive accuracy. Our approach employs attention mechanisms to dynamically weight the contribution of different modalities, along with a specialized tensor interpretation module for feature extraction. To facilitate rapid model iteration in industry applications, we incorporate a mature auto-training scheme that streamlines optimization. When applied to real-world financial datasets, CMTF demonstrates improvements over baseline models in forecasting stock price movements and provides a scalable and effective solution for cross-modal integration in financial market prediction.
comment: 10 pages, 2 figures
☆ Deep Learning Models Meet Financial Data Modalities
Algorithmic trading relies on extracting meaningful signals from diverse financial data sources, including candlestick charts, order statistics on put and canceled orders, traded volume data, limit order books, and news flow. While deep learning has demonstrated remarkable success in processing unstructured data and has significantly advanced natural language processing, its application to structured financial data remains an ongoing challenge. This study investigates the integration of deep learning models with financial data modalities, aiming to enhance predictive performance in trading strategies and portfolio optimization. We present a novel approach to incorporating limit order book analysis into algorithmic trading by developing embedding techniques and treating sequential limit order book snapshots as distinct input channels in an image-based representation. Our methodology for processing limit order book data achieves state-of-the-art performance in high-frequency trading algorithms, underscoring the effectiveness of deep learning in financial applications.
comment: 15 pages, 14 images, 7 tables
☆ Filter2Noise: Interpretable Self-Supervised Single-Image Denoising for Low-Dose CT with Attention-Guided Bilateral Filtering
Effective denoising is crucial in low-dose CT to enhance subtle structures and low-contrast lesions while preventing diagnostic errors. Supervised methods struggle with limited paired datasets, and self-supervised approaches often require multiple noisy images and rely on deep networks like U-Net, offering little insight into the denoising mechanism. To address these challenges, we propose an interpretable self-supervised single-image denoising framework -- Filter2Noise (F2N). Our approach introduces an Attention-Guided Bilateral Filter that adapted to each noisy input through a lightweight module that predicts spatially varying filter parameters, which can be visualized and adjusted post-training for user-controlled denoising in specific regions of interest. To enable single-image training, we introduce a novel downsampling shuffle strategy with a new self-supervised loss function that extends the concept of Noise2Noise to a single image and addresses spatially correlated noise. On the Mayo Clinic 2016 low-dose CT dataset, F2N outperforms the leading self-supervised single-image method (ZS-N2N) by 4.59 dB PSNR while improving transparency, user control, and parametric efficiency. These features provide key advantages for medical applications that require precise and interpretable noise reduction. Our code is demonstrated at https://github.com/sypsyp97/Filter2Noise.git .
comment: preprint
☆ Statistical Validation in Cultural Adaptations of Cognitive Tests: A Multi- Regional Systematic Review
This systematic review discusses the methodological approaches and statistical confirmations of cross-cultural adaptations of cognitive evaluation tools used with different populations. The review considers six seminal studies on the methodology of cultural adaptation in Europe, Asia, Africa, and South America. The results indicate that proper adaptations need holistic models with demographic changes, and education explained as much as 26.76% of the variance in MoCA-H scores. Cultural-linguistic factors explained 6.89% of the variance in European adaptations of MoCA-H; however, another study on adapted MMSE and BCSB among Brazilian Indigenous populations reported excellent diagnostic performance, with a sensitivity of 94.4% and specificity of 99.2%. There was 78.5% inter-rater agreement on the evaluation of cultural adaptation using the Manchester Translation Evaluation Checklist. A paramount message of the paper is that community feedback is necessary for culturally appropriate preparation, standardized translation protocols also must be included, along with robust statistical validation methodologies for developing cognitive assessment instruments. This review supplies evidence-based frameworks for the further adaptation of cognitive assessments in increasingly diverse global health settings.
comment: This paper is accepted and presented in the International Conference Challenges & Opportunities in Artificial Intelligence: Engineering & Management Applications (COAIEMA 2025) and to be published in Taylor & Francis Proceedings
☆ Monitor and Recover: A Paradigm for Future Research on Distribution Shift in Learning-Enabled Cyber-Physical Systems
With the known vulnerability of neural networks to distribution shift, maintaining reliability in learning-enabled cyber-physical systems poses a salient challenge. In response, many existing methods adopt a detect and abstain methodology, aiming to detect distribution shift at inference time so that the learning-enabled component can abstain from decision-making. This approach, however, has limited use in real-world applications. We instead propose a monitor and recover paradigm as a promising direction for future research. This philosophy emphasizes 1) robust safety monitoring instead of distribution shift detection and 2) distribution shift recovery instead of abstention. We discuss two examples from our recent work.
comment: Accepted to ICCPS 2025
☆ Latent Tensor Factorization with Nonlinear PID Control for Missing Data Recovery in Non-Intrusive Load Monitoring
Non-Intrusive Load Monitoring (NILM) has emerged as a key smart grid technology, identifying electrical device and providing detailed energy consumption data for precise demand response management. Nevertheless, NILM data suffers from missing values due to inescapable factors like sensor failure, leading to inaccuracies in non-intrusive load monitoring. A stochastic gradient descent (SGD)-based latent factorization of tensors model has proven to be effective in estimating missing data, however, it updates a latent factor solely based on the current stochastic gradient, without considering past information, which leads to slow convergence of anLFT model. To address this issue, this paper proposes a Nonlinear Proportional-integral-derivative (PID)-Incorporated Latent factorization of tensors (NPIL) model with two-fold ideas: a) rebuilding the instant learning error according to the principle of a nonlinear PID controller, thus, the past update information is efficiently incorporated into the learning scheme, and b) implementing gain parameter adaptation by utilizing particle swarm optimization (PSO) algorithm, hence, the model computational efficiency is effectively improved. Experimental results on real-world NILM datasets demonstrate that the proposed NPIL model surpasses state-of-the-art models in convergence rate and accuracy when predicting the missing NILM data.
☆ Integrating Locality-Aware Attention with Transformers for General Geometry PDEs IJCNN 2025
Neural operators have emerged as promising frameworks for learning mappings governed by partial differential equations (PDEs), serving as data-driven alternatives to traditional numerical methods. While methods such as the Fourier neural operator (FNO) have demonstrated notable performance, their reliance on uniform grids restricts their applicability to complex geometries and irregular meshes. Recently, Transformer-based neural operators with linear attention mechanisms have shown potential in overcoming these limitations for large-scale PDE simulations. However, these approaches predominantly emphasize global feature aggregation, often overlooking fine-scale dynamics and localized PDE behaviors essential for accurate solutions. To address these challenges, we propose the Locality-Aware Attention Transformer (LA2Former), which leverages K-nearest neighbors for dynamic patchifying and integrates global-local attention for enhanced PDE modeling. By combining linear attention for efficient global context encoding with pairwise attention for capturing intricate local interactions, LA2Former achieves an optimal balance between computational efficiency and predictive accuracy. Extensive evaluations across six benchmark datasets demonstrate that LA2Former improves predictive accuracy by over 50% relative to existing linear attention methods, while also outperforming full pairwise attention under optimal conditions. This work underscores the critical importance of localized feature learning in advancing Transformer-based neural operators for solving PDEs on complex and irregular domains.
comment: Accepted by IJCNN 2025
☆ SFL-LEO: Asynchronous Split-Federated Learning Design for LEO Satellite-Ground Network Framework
Recently, the rapid development of LEO satellite networks spurs another widespread concern-data processing at satellites. However, achieving efficient computation at LEO satellites in highly dynamic satellite networks is challenging and remains an open problem when considering the constrained computation capability of LEO satellites. For the first time, we propose a novel distributed learning framework named SFL-LEO by combining Federated Learning (FL) with Split Learning (SL) to accommodate the high dynamics of LEO satellite networks and the constrained computation capability of LEO satellites by leveraging the periodical orbit traveling feature. The proposed scheme allows training locally by introducing an asynchronous training strategy, i.e., achieving local update when LEO satellites disconnect with the ground station, to provide much more training space and thus increase the training performance. Meanwhile, it aggregates client-side sub-models at the ground station and then distributes them to LEO satellites by borrowing the idea from the federated learning scheme. Experiment results driven by satellite-ground bandwidth measured in Starlink demonstrate that SFL-LEO provides a similar accuracy performance with the conventional SL scheme because it can perform local training even within the disconnection duration.
comment: 13 pages, 14 figures
☆ Safety Monitoring for Learning-Enabled Cyber-Physical Systems in Out-of-Distribution Scenarios
The safety of learning-enabled cyber-physical systems is compromised by the well-known vulnerabilities of deep neural networks to out-of-distribution (OOD) inputs. Existing literature has sought to monitor the safety of such systems by detecting OOD data. However, such approaches have limited utility, as the presence of an OOD input does not necessarily imply the violation of a desired safety property. We instead propose to directly monitor safety in a manner that is itself robust to OOD data. To this end, we predict violations of signal temporal logic safety specifications based on predicted future trajectories. Our safety monitor additionally uses a novel combination of adaptive conformal prediction and incremental learning. The former obtains probabilistic prediction guarantees even on OOD data, and the latter prevents overly conservative predictions. We evaluate the efficacy of the proposed approach in two case studies on safety monitoring: 1) predicting collisions of an F1Tenth car with static obstacles, and 2) predicting collisions of a race car with multiple dynamic obstacles. We find that adaptive conformal prediction obtains theoretical guarantees where other uncertainty quantification methods fail to do so. Additionally, combining adaptive conformal prediction and incremental learning for safety monitoring achieves high recall and timeliness while reducing loss in precision. We achieve these results even in OOD settings and outperform alternative methods.
comment: Accepted to ICCPS 2025
☆ Variational Autoencoder Framework for Hyperspectral Retrievals (Hyper-VAE) of Phytoplankton Absorption and Chlorophyll a in Coastal Waters for NASA's EMIT and PACE Missions
Phytoplankton absorb and scatter light in unique ways, subtly altering the color of water, changes that are often minor for human eyes to detect but can be captured by sensitive ocean color instruments onboard satellites from space. Hyperspectral sensors, paired with advanced algorithms, are expected to significantly enhance the characterization of phytoplankton community composition, especially in coastal waters where ocean color remote sensing applications have historically encountered significant challenges. This study presents novel machine learning-based solutions for NASA's hyperspectral missions, including EMIT and PACE, tackling high-fidelity retrievals of phytoplankton absorption coefficient and chlorophyll a from their hyperspectral remote sensing reflectance. Given that a single Rrs spectrum may correspond to varied combinations of inherent optical properties and associated concentrations, the Variational Autoencoder (VAE) is used as a backbone in this study to handle such multi-distribution prediction problems. We first time tailor the VAE model with innovative designs to achieve hyperspectral retrievals of aphy and of Chl-a from hyperspectral Rrs in optically complex estuarine-coastal waters. Validation with extensive experimental observation demonstrates superior performance of the VAE models with high precision and low bias. The in-depth analysis of VAE's advanced model structures and learning designs highlights the improvement and advantages of VAE-based solutions over the mixture density network (MDN) approach, particularly on high-dimensional data, such as PACE. Our study provides strong evidence that current EMIT and PACE hyperspectral data as well as the upcoming Surface Biology Geology mission will open new pathways toward a better understanding of phytoplankton community dynamics in aquatic ecosystems when integrated with AI technologies.
CodeVisionary: An Agent-based Framework for Evaluating Large Language Models in Code Generation
Large language models (LLMs) have demonstrated strong capabilities in code generation, underscoring the critical need for rigorous and comprehensive evaluation. Existing evaluation approaches fall into three categories, including human-centered, metric-based, and LLM-based. Considering that human-centered approaches are labour-intensive and metric-based ones overly rely on reference answers, LLM-based approaches are gaining increasing attention due to their stronger contextual understanding capabilities and superior efficiency. However, the performance of LLM-based approaches remains limited due to: (1) lack of multisource domain knowledge, and (2) insufficient comprehension of complex code. To mitigate the limitations, we propose CodeVisionary, the first LLM-based agent framework for evaluating LLMs in code generation. CodeVisionary consists of two stages: (1) Multiscore knowledge analysis stage, which aims to gather multisource and comprehensive domain knowledge by formulating and executing a stepwise evaluation plan. (2) Negotiation-based scoring stage, which involves multiple judges engaging in discussions to better comprehend the complex code and reach a consensus on the evaluation score. Extensive experiments demonstrate that CodeVisionary achieves the best performance for evaluating LLMs in code generation, outperforming the best baseline methods with average improvements of 0.202, 0.139, and 0.117 in Pearson, Spearman, and Kendall-Tau coefficients, respectively. Besides, CodeVisionary provides detailed evaluation reports, which assist developers in identifying shortcomings and making improvements. The resources of CodeVisionary are available at https://anonymous.4open.science/r/CodeVisionary.
☆ Are you SURE? Enhancing Multimodal Pretraining with Missing Modalities through Uncertainty Estimation
Multimodal learning has demonstrated incredible successes by integrating diverse data sources, yet it often relies on the availability of all modalities - an assumption that rarely holds in real-world applications. Pretrained multimodal models, while effective, struggle when confronted with small-scale and incomplete datasets (i.e., missing modalities), limiting their practical applicability. Previous studies on reconstructing missing modalities have overlooked the reconstruction's potential unreliability, which could compromise the quality of the final outputs. We present SURE (Scalable Uncertainty and Reconstruction Estimation), a novel framework that extends the capabilities of pretrained multimodal models by introducing latent space reconstruction and uncertainty estimation for both reconstructed modalities and downstream tasks. Our method is architecture-agnostic, reconstructs missing modalities, and delivers reliable uncertainty estimates, improving both interpretability and performance. SURE introduces a unique Pearson Correlation-based loss and applies statistical error propagation in deep networks for the first time, allowing precise quantification of uncertainties from missing data and model predictions. Extensive experiments across tasks such as sentiment analysis, genre classification, and action recognition show that SURE consistently achieves state-of-the-art performance, ensuring robust predictions even in the presence of incomplete data.
☆ Stratify: Rethinking Federated Learning for Non-IID Data through Balanced Sampling
Federated Learning (FL) on non-independently and identically distributed (non-IID) data remains a critical challenge, as existing approaches struggle with severe data heterogeneity. Current methods primarily address symptoms of non-IID by applying incremental adjustments to Federated Averaging (FedAvg), rather than directly resolving its inherent design limitations. Consequently, performance significantly deteriorates under highly heterogeneous conditions, as the fundamental issue of imbalanced exposure to diverse class and feature distributions remains unresolved. This paper introduces Stratify, a novel FL framework designed to systematically manage class and feature distributions throughout training, effectively tackling the root cause of non-IID challenges. Inspired by classical stratified sampling, our approach employs a Stratified Label Schedule (SLS) to ensure balanced exposure across labels, significantly reducing bias and variance in aggregated gradients. Complementing SLS, we propose a label-aware client selection strategy, restricting participation exclusively to clients possessing data relevant to scheduled labels. Additionally, Stratify incorporates a fine-grained, high-frequency update scheme, accelerating convergence and further mitigating data heterogeneity. To uphold privacy, we implement a secure client selection protocol leveraging homomorphic encryption, enabling precise global label statistics without disclosing sensitive client information. Extensive evaluations on MNIST, CIFAR-10, CIFAR-100, Tiny-ImageNet, COVTYPE, PACS, and Digits-DG demonstrate that Stratify attains performance comparable to IID baselines, accelerates convergence, and reduces client-side computation compared to state-of-the-art methods, underscoring its practical effectiveness in realistic federated learning scenarios.
☆ Using Machine Learning and Neural Networks to Analyze and Predict Chaos in Multi-Pendulum and Chaotic Systems
A chaotic system is a highly volatile system characterized by its sensitive dependence on initial conditions and outside factors. Chaotic systems are prevalent throughout the world today: in weather patterns, disease outbreaks, and even financial markets. Chaotic systems are seen in every field of science and humanities, so being able to predict these systems is greatly beneficial to society. In this study, we evaluate 10 different machine learning models and neural networks [1] based on Root Mean Squared Error (RMSE) and R^2 values for their ability to predict one of these systems, the multi-pendulum. We begin by generating synthetic data representing the angles of the pendulum over time using the Runge Kutta Method for solving 4th Order Differential Equations (ODE-RK4) [2]. At first, we used the single-step sliding window approach, predicting the 50st step after training for steps 0-49 and so forth. However, to more accurately cover chaotic motion and behavior in these systems, we transitioned to a time-step based approach. Here, we trained the model/network on many initial angles and tested it on a completely new set of initial angles, or 'in-between' to capture chaotic motion to its fullest extent. We also evaluated the stability of the system using Lyapunov exponents. We concluded that for a double pendulum, the best model was the Long Short Term Memory Network (LSTM)[3] for the sliding window and time step approaches in both friction and frictionless scenarios. For triple pendulum, the Vanilla Recurrent Neural Network (VRNN)[4] was the best for the sliding window and Gated Recurrent Network (GRU) [5] was the best for the time step approach, but for friction, LSTM was the best.
comment: 35 Pages, Approximately 20 figures
☆ MicroFlow: Domain-Specific Optical Flow for Ground Deformation Estimation in Seismic Events
Dense ground displacement measurements are crucial for geological studies but are impractical to collect directly. Traditionally, displacement fields are estimated using patch matching on optical satellite images from different acquisition times. While deep learning-based optical flow models are promising, their adoption in ground deformation analysis is hindered by challenges such as the absence of real ground truth, the need for sub-pixel precision, and temporal variations due to geological or anthropogenic changes. In particular, we identify that deep learning models relying on explicit correlation layers struggle at estimating small displacements in real-world conditions. Instead, we propose a model that employs iterative refinements with explicit warping layers and a correlation-independent backbone, enabling sub-pixel precision. Additionally, a non-convex variant of Total Variation regularization preserves fault-line sharpness while maintaining smoothness elsewhere. Our model significantly outperforms widely used geophysics methods on semi-synthetic benchmarks and generalizes well to challenging real-world scenarios captured by both medium- and high-resolution sensors. Project page: https://jbertrand89.github.io/microflow/.
☆ Bounded and Uniform Energy-based Out-of-distribution Detection for Graphs
Given the critical role of graphs in real-world applications and their high-security requirements, improving the ability of graph neural networks (GNNs) to detect out-of-distribution (OOD) data is an urgent research problem. The recent work GNNSAFE proposes a framework based on the aggregation of negative energy scores that significantly improves the performance of GNNs to detect node-level OOD data. However, our study finds that score aggregation among nodes is susceptible to extreme values due to the unboundedness of the negative energy scores and logit shifts, which severely limits the accuracy of GNNs in detecting node-level OOD data. In this paper, we propose NODESAFE: reducing the generation of extreme scores of nodes by adding two optimization terms that make the negative energy scores bounded and mitigate the logit shift. Experimental results show that our approach dramatically improves the ability of GNNs to detect OOD data at the node level, e.g., in detecting OOD data induced by Structure Manipulation, the metric of FPR95 (lower is better) in scenarios without (with) OOD data exposure are reduced from the current SOTA by 28.4% (22.7%).
comment: arXiv admin note: text overlap with arXiv:2302.02914 by other authors
☆ Simplifying Graph Convolutional Networks with Redundancy-Free Neighbors
In recent years, Graph Convolutional Networks (GCNs) have gained popularity for their exceptional ability to process graph-structured data. Existing GCN-based approaches typically employ a shallow model architecture due to the over-smoothing phenomenon. Current approaches to mitigating over-smoothing primarily involve adding supplementary components to GCN architectures, such as residual connections and random edge-dropping strategies. However, these improvements toward deep GCNs have achieved only limited success. In this work, we analyze the intrinsic message passing mechanism of GCNs and identify a critical issue: messages originating from high-order neighbors must traverse through low-order neighbors to reach the target node. This repeated reliance on low-order neighbors leads to redundant information aggregation, a phenomenon we term over-aggregation. Our analysis demonstrates that over-aggregation not only introduces significant redundancy but also serves as the fundamental cause of over-smoothing in GCNs.
☆ Equilibrium Conserving Neural Operators for Super-Resolution Learning
Neural surrogate solvers can estimate solutions to partial differential equations in physical problems more efficiently than standard numerical methods, but require extensive high-resolution training data. In this paper, we break this limitation; we introduce a framework for super-resolution learning in solid mechanics problems. Our approach allows one to train a high-resolution neural network using only low-resolution data. Our Equilibrium Conserving Operator (ECO) architecture embeds known physics directly into the network to make up for missing high-resolution information during training. We evaluate this ECO-based super-resolution framework that strongly enforces conservation-laws in the predicted solutions on two working examples: embedded pores in a homogenized matrix and randomly textured polycrystalline materials. ECO eliminates the reliance on high-fidelity data and reduces the upfront cost of data collection by two orders of magnitude, offering a robust pathway for resource-efficient surrogate modeling in materials modeling. ECO is readily generalizable to other physics-based problems.
☆ STAMP Your Content: Proving Dataset Membership via Watermarked Rephrasings ICLR 2025
Given how large parts of publicly available text are crawled to pretrain large language models (LLMs), data creators increasingly worry about the inclusion of their proprietary data for model training without attribution or licensing. Their concerns are also shared by benchmark curators whose test-sets might be compromised. In this paper, we present STAMP, a framework for detecting dataset membership-i.e., determining the inclusion of a dataset in the pretraining corpora of LLMs. Given an original piece of content, our proposal involves first generating multiple rephrases, each embedding a watermark with a unique secret key. One version is to be released publicly, while others are to be kept private. Subsequently, creators can compare model likelihoods between public and private versions using paired statistical tests to prove membership. We show that our framework can successfully detect contamination across four benchmarks which appear only once in the training data and constitute less than 0.001% of the total tokens, outperforming several contamination detection and dataset inference baselines. We verify that STAMP preserves both the semantic meaning and the utility of the original data in comparing different models. We apply STAMP to two real-world scenarios to confirm the inclusion of paper abstracts and blog articles in the pretraining corpora.
comment: Accepted at DATA-FM, WMark @ ICLR 2025. Project page at see https://codeboy5.github.io/stamp
☆ DADU: Dual Attention-based Deep Supervised UNet for Automated Semantic Segmentation of Cardiac Images
We propose an enhanced deep learning-based model for image segmentation of the left and right ventricles and myocardium scar tissue from cardiac magnetic resonance (CMR) images. The proposed technique integrates UNet, channel and spatial attention, edge-detection based skip-connection and deep supervised learning to improve the accuracy of the CMR image-segmentation. Images are processed using multiple channels to generate multiple feature-maps. We built a dual attention-based model to integrate channel and spatial attention. The use of extracted edges in skip connection improves the reconstructed images from feature-maps. The use of deep supervision reduces vanishing gradient problems inherent in classification based on deep neural networks. The algorithms for dual attention-based model, corresponding implementation and performance results are described. The performance results show that this approach has attained high accuracy: 98% Dice Similarity Score (DSC) and significantly lower Hausdorff Distance (HD). The performance results outperform other leading techniques both in DSC and HD.
comment: 20 pages, 8 figures
☆ Adaptive Non-local Observable on Quantum Neural Networks
Conventional Variational Quantum Circuits (VQCs) for Quantum Machine Learning typically rely on a fixed Hermitian observable, often built from Pauli operators. Inspired by the Heisenberg picture, we propose an adaptive non-local measurement framework that substantially increases the model complexity of the quantum circuits. Our introduction of dynamical Hermitian observables with evolving parameters shows that optimizing VQC rotations corresponds to tracing a trajectory in the observable space. This viewpoint reveals that standard VQCs are merely a special case of the Heisenberg representation. Furthermore, we show that properly incorporating variational rotations with non-local observables enhances qubit interaction and information mixture, admitting flexible circuit designs. Two non-local measurement schemes are introduced, and numerical simulations on classification tasks confirm that our approach outperforms conventional VQCs, yielding a more powerful and resource-efficient approach as a Quantum Neural Network.
☆ A Model-Based Approach to Imitation Learning through Multi-Step Predictions
Imitation learning is a widely used approach for training agents to replicate expert behavior in complex decision-making tasks. However, existing methods often struggle with compounding errors and limited generalization, due to the inherent challenge of error correction and the distribution shift between training and deployment. In this paper, we present a novel model-based imitation learning framework inspired by model predictive control, which addresses these limitations by integrating predictive modeling through multi-step state predictions. Our method outperforms traditional behavior cloning numerical benchmarks, demonstrating superior robustness to distribution shift and measurement noise both in available data and during execution. Furthermore, we provide theoretical guarantees on the sample complexity and error bounds of our method, offering insights into its convergence properties.
☆ How Learnable Grids Recover Fine Detail in Low Dimensions: A Neural Tangent Kernel Analysis of Multigrid Parametric Encodings
Neural networks that map between low dimensional spaces are ubiquitous in computer graphics and scientific computing; however, in their naive implementation, they are unable to learn high frequency information. We present a comprehensive analysis comparing the two most common techniques for mitigating this spectral bias: Fourier feature encodings (FFE) and multigrid parametric encodings (MPE). FFEs are seen as the standard for low dimensional mappings, but MPEs often outperform them and learn representations with higher resolution and finer detail. FFE's roots in the Fourier transform, make it susceptible to aliasing if pushed too far, while MPEs, which use a learned grid structure, have no such limitation. To understand the difference in performance, we use the neural tangent kernel (NTK) to evaluate these encodings through the lens of an analogous kernel regression. By finding a lower bound on the smallest eigenvalue of the NTK, we prove that MPEs improve a network's performance through the structure of their grid and not their learnable embedding. This mechanism is fundamentally different from FFEs, which rely solely on their embedding space to improve performance. Results are empirically validated on a 2D image regression task using images taken from 100 synonym sets of ImageNet and 3D implicit surface regression on objects from the Stanford graphics dataset. Using peak signal-to-noise ratio (PSNR) and multiscale structural similarity (MS-SSIM) to evaluate how well fine details are learned, we show that the MPE increases the minimum eigenvalue by 8 orders of magnitude over the baseline and 2 orders of magnitude over the FFE. The increase in spectrum corresponds to a 15 dB (PSNR) / 0.65 (MS-SSIM) increase over baseline and a 12 dB (PSNR) / 0.33 (MS-SSIM) increase over the FFE.
☆ OpCode-Based Malware Classification Using Machine Learning and Deep Learning Techniques
This technical report presents a comprehensive analysis of malware classification using OpCode sequences. Two distinct approaches are evaluated: traditional machine learning using n-gram analysis with Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Decision Tree classifiers; and a deep learning approach employing a Convolutional Neural Network (CNN). The traditional machine learning approach establishes a baseline using handcrafted 1-gram and 2-gram features from disassembled malware samples. The deep learning methodology builds upon the work proposed in "Deep Android Malware Detection" by McLaughlin et al. and evaluates the performance of a CNN model trained to automatically extract features from raw OpCode data. Empirical results are compared using standard performance metrics (accuracy, precision, recall, and F1-score). While the SVM classifier outperforms other traditional techniques, the CNN model demonstrates competitive performance with the added benefit of automated feature extraction.
comment: 11 pages
☆ Quantum repeaters enhanced by vacuum beam guides
The development of large-scale quantum communication networks faces critical challenges due to photon loss and decoherence in optical fiber channels. These fundamentally limit transmission distances and demand dense networks of repeater stations. This work investigates using vacuum beam guides (VBGs)-a promising ultra-low-loss transmission platform-as an alternative to traditional fiber links. By incorporating VBGs into repeater-based architectures, we demonstrate that the inter-repeater spacing can be substantially extended, resulting in fewer required nodes and significantly reducing hardware and operational complexity. We perform a cost-function analysis to quantify performance trade-offs across first, second, and third-generation repeaters. Our results show that first-generation repeaters reduce costs dramatically by eliminating entanglement purification. Third-generation repeaters benefit from improved link transmission success, which is crucial for quantum error correction. In contrast, second-generation repeaters exhibit a more nuanced response; although transmission loss is reduced, their performance remains primarily limited by logical gate errors rather than channel loss. These findings highlight that while all repeater generations benefit from reduced photon loss, the magnitude of improvement depends critically on the underlying error mechanisms. Vacuum beam guides thus emerge as a powerful enabler for scalable, high-performance quantum networks, particularly in conjunction with near-term quantum hardware capabilities.
comment: 10 pages
☆ Cardiac MRI Semantic Segmentation for Ventricles and Myocardium using Deep Learning
Automated noninvasive cardiac diagnosis plays a critical role in the early detection of cardiac disorders and cost-effective clinical management. Automated diagnosis involves the automated segmentation and analysis of cardiac images. Precise delineation of cardiac substructures and extraction of their morphological attributes are essential for evaluating the cardiac function, and diagnosing cardiovascular disease such as cardiomyopathy, valvular diseases, abnormalities related to septum perforations, and blood-flow rate. Semantic segmentation labels the CMR image at the pixel level, and localizes its subcomponents to facilitate the detection of abnormalities, including abnormalities in cardiac wall motion in an aging heart with muscle abnormalities, vascular abnormalities, and valvular abnormalities. In this paper, we describe a model to improve semantic segmentation of CMR images. The model extracts edge-attributes and context information during down-sampling of the U-Net and infuses this information during up-sampling to localize three major cardiac structures: left ventricle cavity (LV); right ventricle cavity (RV); and LV myocardium (LMyo). We present an algorithm and performance results. A comparison of our model with previous leading models, using similarity metrics between actual image and segmented image, shows that our approach improves Dice similarity coefficient (DSC) by 2%-11% and lowers Hausdorff distance (HD) by 1.6 to 5.7 mm.
comment: 20 pages, 8 figures
☆ A mean teacher algorithm for unlearning of language models
One of the goals of language model unlearning is to reduce memorization of selected text instances while retaining the model's general abilities. Despite various proposed methods, reducing memorization of large datasets without noticeable degradation in model utility remains challenging. In this paper, we investigate the mean teacher algorithm (Tarvainen & Valpola, 2017), a simple proximal optimization method from continual learning literature that gradually modifies the teacher model. We show that the mean teacher can approximate a trajectory of a slow natural gradient descent (NGD), which inherently seeks low-curvature updates that are less likely to degrade the model utility. While slow NGD can suffer from vanishing gradients, we introduce a new unlearning loss called "negative log-unlikelihood" (NLUL) that avoids this problem. We show that the combination of mean teacher and NLUL improves some metrics on the MUSE benchmarks (Shi et al., 2024).
♻ ☆ Near-Polynomially Competitive Active Logistic Regression
We address the problem of active logistic regression in the realizable setting. It is well known that active learning can require exponentially fewer label queries compared to passive learning, in some cases using $\log \frac{1}{\eps}$ rather than $\poly(1/\eps)$ labels to get error $\eps$ larger than the optimum. We present the first algorithm that is polynomially competitive with the optimal algorithm on every input instance, up to factors polylogarithmic in the error and domain size. In particular, if any algorithm achieves label complexity polylogarithmic in $\eps$, so does ours. Our algorithm is based on efficient sampling and can be extended to learn more general class of functions. We further support our theoretical results with experiments demonstrating performance gains for logistic regression compared to existing active learning algorithms.
♻ ☆ Transferrable Surrogates in Expressive Neural Architecture Search Spaces
Neural architecture search (NAS) faces a challenge in balancing the exploration of expressive, broad search spaces that enable architectural innovation with the need for efficient evaluation of architectures to effectively search such spaces. We investigate surrogate model training for improving search in highly expressive NAS search spaces based on context-free grammars. We show that i) surrogate models trained either using zero-cost-proxy metrics and neural graph features (GRAF) or by fine-tuning an off-the-shelf LM have high predictive power for the performance of architectures both within and across datasets, ii) these surrogates can be used to filter out bad architectures when searching on novel datasets, thereby significantly speeding up search and achieving better final performances, and iii) the surrogates can be further used directly as the search objective for huge speed-ups.
comment: Project page at: https://shiwenqin.github.io/TransferrableSurrogate/
♻ ☆ NRGBoost: Energy-Based Generative Boosted Trees
Despite the rise to dominance of deep learning in unstructured data domains, tree-based methods such as Random Forests (RF) and Gradient Boosted Decision Trees (GBDT) are still the workhorses for handling discriminative tasks on tabular data. We explore generative extensions of these popular algorithms with a focus on explicitly modeling the data density (up to a normalization constant), thus enabling other applications besides sampling. As our main contribution we propose an energy-based generative boosting algorithm that is analogous to the second-order boosting implemented in popular libraries like XGBoost. We show that, despite producing a generative model capable of handling inference tasks over any input variable, our proposed algorithm can achieve similar discriminative performance to GBDT on a number of real world tabular datasets, outperforming alternative generative approaches. At the same time, we show that it is also competitive with neural-network-based models for sampling. Code is available at https://github.com/ajoo/nrgboost.
♻ ☆ Reinforcement Learning with Graph Attention for Routing and Wavelength Assignment with Lightpath Reuse
Many works have investigated reinforcement learning (RL) for routing and spectrum assignment on flex-grid networks but only one work to date has examined RL for fixed-grid with flex-rate transponders, despite production systems using this paradigm. Flex-rate transponders allow existing lightpaths to accommodate new services, a task we term routing and wavelength assignment with lightpath reuse (RWA-LR). We re-examine this problem and present a thorough benchmarking of heuristic algorithms for RWA-LR, which are shown to have 6% increased throughput when candidate paths are ordered by number of hops, rather than total length. We train an RL agent for RWA-LR with graph attention networks for the policy and value functions to exploit the graph-structured data. We provide details of our methodology and open source all of our code for reproduction. We outperform the previous state-of-the-art RL approach by 2.5% (17.4 Tbps mean additional throughput) and the best heuristic by 1.2% (8.5 Tbps mean additional throughput). This marginal gain highlights the difficulty in learning effective RL policies on long horizon resource allocation tasks.
♻ ☆ SysCaps: Language Interfaces for Simulation Surrogates of Complex Systems ICLR 2025
Surrogate models are used to predict the behavior of complex energy systems that are too expensive to simulate with traditional numerical methods. Our work introduces the use of language descriptions, which we call ``system captions'' or SysCaps, to interface with such surrogates. We argue that interacting with surrogates through text, particularly natural language, makes these models more accessible for both experts and non-experts. We introduce a lightweight multimodal text and timeseries regression model and a training pipeline that uses large language models (LLMs) to synthesize high-quality captions from simulation metadata. Our experiments on two real-world simulators of buildings and wind farms show that our SysCaps-augmented surrogates have better accuracy on held-out systems than traditional methods while enjoying new generalization abilities, such as handling semantically related descriptions of the same test system. Additional experiments also highlight the potential of SysCaps to unlock language-driven design space exploration and to regularize training through prompt augmentation.
comment: Accepted at ICLR 2025. 23 pages. Updated with final camera ready version
VCR: A Task for Pixel-Level Complex Reasoning in Vision Language Models via Restoring Occluded Text ICLR 2025
We introduce Visual Caption Restoration (VCR), a novel vision-language task that challenges models to accurately restore partially obscured texts using pixel-level hints within images. This task stems from the observation that text embedded in images is intrinsically different from common visual elements and natural language due to the need to align the modalities of vision, text, and text embedded in images. While numerous works have integrated text embedded in images into visual question-answering tasks, approaches to these tasks generally rely on optical character recognition or masked language modeling, thus reducing the task to mainly text-based processing. However, text-based processing becomes ineffective in VCR as accurate text restoration depends on the combined information from provided images, context, and subtle cues from the tiny exposed areas of masked texts. We develop a pipeline to generate synthetic images for the VCR task using image-caption pairs, with adjustable caption visibility to control the task difficulty. With this pipeline, we construct a dataset for VCR called VCR-Wiki using images with captions from Wikipedia, comprising 2.11M English and 346K Chinese entities in both easy and hard split variants. Our results reveal that current vision language models significantly lag behind human performance in the VCR task, and merely fine-tuning the models on our dataset does not lead to notable improvements. We release VCR-Wiki and the data construction code to facilitate future research.
comment: Accepted at ICLR 2025. Original paper name: VCR: Visual Caption Restoration
♻ ☆ RiboGen: RNA Sequence and Structure Co-Generation with Equivariant MultiFlow
Ribonucleic acid (RNA) plays fundamental roles in biological systems, from carrying genetic information to performing enzymatic function. Understanding and designing RNA can enable novel therapeutic application and biotechnological innovation. To enhance RNA design, in this paper we introduce RiboGen, the first deep learning model to simultaneously generate RNA sequence and all-atom 3D structure. RiboGen leverages the standard Flow Matching with Discrete Flow Matching in a multimodal data representation. RiboGen is based on Euclidean Equivariant neural networks for efficiently processing and learning three-dimensional geometry. Our experiments show that RiboGen can efficiently generate chemically plausible and self-consistent RNA samples, suggesting that co-generation of sequence and structure is a competitive approach for modeling RNA.
comment: 6 pages
♻ ☆ Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
We introduce Adjoint Sampling, a highly scalable and efficient algorithm for learning diffusion processes that sample from unnormalized densities, or energy functions. It is the first on-policy approach that allows significantly more gradient updates than the number of energy evaluations and model samples, allowing us to scale to much larger problem settings than previously explored by similar methods. Our framework is theoretically grounded in stochastic optimal control and shares the same theoretical guarantees as Adjoint Matching, being able to train without the need for corrective measures that push samples towards the target distribution. We show how to incorporate key symmetries, as well as periodic boundary conditions, for modeling molecules in both cartesian and torsional coordinates. We demonstrate the effectiveness of our approach through extensive experiments on classical energy functions, and further scale up to neural network-based energy models where we perform amortized conformer generation across many molecular systems. To encourage further research in developing highly scalable sampling methods, we plan to open source these challenging benchmarks, where successful methods can directly impact progress in computational chemistry.
♻ ☆ Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space
We develop a theory of finite-dimensional polyhedral subsets over the Wasserstein space and optimization of functionals over them via first-order methods. Our main application is to the problem of mean-field variational inference, which seeks to approximate a distribution $\pi$ over $\mathbb{R}^d$ by a product measure $\pi^\star$. When $\pi$ is strongly log-concave and log-smooth, we provide (1) approximation rates certifying that $\pi^\star$ is close to the minimizer $\pi^\star_\diamond$ of the KL divergence over a \emph{polyhedral} set $\mathcal{P}_\diamond$, and (2) an algorithm for minimizing $\text{KL}(\cdot\|\pi)$ over $\mathcal{P}_\diamond$ based on accelerated gradient descent over $\R^d$. As a byproduct of our analysis, we obtain the first end-to-end analysis for gradient-based algorithms for MFVI.
comment: 49 pages
♻ ☆ Project Alexandria: Towards Freeing Scientific Knowledge from Copyright Burdens via LLMs
Paywalls, licenses and copyright rules often restrict the broad dissemination and reuse of scientific knowledge. We take the position that it is both legally and technically feasible to extract the scientific knowledge in scholarly texts. Current methods, like text embeddings, fail to reliably preserve factual content, and simple paraphrasing may not be legally sound. We propose a new idea for the community to adopt: convert scholarly documents into knowledge preserving, but style agnostic representations we term Knowledge Units using LLMs. These units use structured data capturing entities, attributes and relationships without stylistic content. We provide evidence that Knowledge Units (1) form a legally defensible framework for sharing knowledge from copyrighted research texts, based on legal analyses of German copyright law and U.S. Fair Use doctrine, and (2) preserve most (~95\%) factual knowledge from original text, measured by MCQ performance on facts from the original copyrighted text across four research domains. Freeing scientific knowledge from copyright promises transformative benefits for scientific research and education by allowing language models to reuse important facts from copyrighted text. To support this, we share open-source tools for converting research documents into Knowledge Units. Overall, our work posits the feasibility of democratizing access to scientific knowledge while respecting copyright.
comment: Technical Report
♻ ☆ When is Task Vector Provably Effective for Model Editing? A Generalization Analysis of Nonlinear Transformers ICLR 2025
Task arithmetic refers to editing the pre-trained model by adding a weighted sum of task vectors, each of which is the weight update from the pre-trained model to fine-tuned models for certain tasks. This approach recently gained attention as a computationally efficient inference method for model editing, e.g., multi-task learning, forgetting, and out-of-domain generalization capabilities. However, the theoretical understanding of why task vectors can execute various conceptual operations remains limited, due to the highly non-convexity of training Transformer-based models. To the best of our knowledge, this paper provides the first theoretical characterization of the generalization guarantees of task vector methods on nonlinear Transformers. We consider a conceptual learning setting, where each task is a binary classification problem based on a discriminative pattern. We theoretically prove the effectiveness of task addition in simultaneously learning a set of irrelevant or aligned tasks, as well as the success of task negation in unlearning one task from irrelevant or contradictory tasks. Moreover, we prove the proper selection of linear coefficients for task arithmetic to achieve guaranteed generalization to out-of-domain tasks. All of our theoretical results hold for both dense-weight parameters and their low-rank approximations. Although established in a conceptual setting, our theoretical findings were validated on a practical machine unlearning task using the large language model Phi-1.5 (1.3B).
comment: Published at ICLR 2025 as an oral paper
♻ ☆ AgentHarm: A Benchmark for Measuring Harmfulness of LLM Agents ICLR 2025
The robustness of LLMs to jailbreak attacks, where users design prompts to circumvent safety measures and misuse model capabilities, has been studied primarily for LLMs acting as simple chatbots. Meanwhile, LLM agents -- which use external tools and can execute multi-stage tasks -- may pose a greater risk if misused, but their robustness remains underexplored. To facilitate research on LLM agent misuse, we propose a new benchmark called AgentHarm. The benchmark includes a diverse set of 110 explicitly malicious agent tasks (440 with augmentations), covering 11 harm categories including fraud, cybercrime, and harassment. In addition to measuring whether models refuse harmful agentic requests, scoring well on AgentHarm requires jailbroken agents to maintain their capabilities following an attack to complete a multi-step task. We evaluate a range of leading LLMs, and find (1) leading LLMs are surprisingly compliant with malicious agent requests without jailbreaking, (2) simple universal jailbreak templates can be adapted to effectively jailbreak agents, and (3) these jailbreaks enable coherent and malicious multi-step agent behavior and retain model capabilities. To enable simple and reliable evaluation of attacks and defenses for LLM-based agents, we publicly release AgentHarm at https://huggingface.co/datasets/ai-safety-institute/AgentHarm.
comment: Accepted at ICLR 2025
♻ ☆ Unsupervised Machine Learning Hybrid Approach Integrating Linear Programming in Loss Function: A Robust Optimization Technique
This paper presents a novel hybrid approach that integrates linear programming (LP) within the loss function of an unsupervised machine learning model. By leveraging the strengths of both optimization techniques and machine learning, this method introduces a robust framework for solving complex optimization problems where traditional methods may fall short. The proposed approach encapsulates the constraints and objectives of a linear programming problem directly into the loss function, guiding the learning process to adhere to these constraints while optimizing the desired outcomes. This technique not only preserves the interpretability of linear programming but also benefits from the flexibility and adaptability of machine learning, making it particularly well-suited for unsupervised or semi-supervised learning scenarios.
♻ ☆ Adiabatic Fine-Tuning of Neural Quantum States Enables Detection of Phase Transitions in Weight Space ICLR
Neural quantum states (NQS) have emerged as a powerful tool for approximating quantum wavefunctions using deep learning. While these models achieve remarkable accuracy, understanding how they encode physical information remains an open challenge. In this work, we introduce adiabatic fine-tuning, a scheme that trains NQS across a phase diagram, leading to strongly correlated weight representations across different models. This correlation in weight space enables the detection of phase transitions in quantum systems by analyzing the trained network weights alone. We validate our approach on the transverse field Ising model and the J1-J2 Heisenberg model, demonstrating that phase transitions manifest as distinct structures in weight space. Our results establish a connection between physical phase transitions and the geometry of neural network parameters, opening new directions for the interpretability of machine learning models in physics.
comment: Accepted at the ICLR Workshop on Neural Network Weights as a New Data Modality 2025. Code available at: https://gitlab.com/QMAI/papers/nqsweights
♻ ☆ Deep Huber quantile regression networks
Typical machine learning regression applications aim to report the mean or the median of the predictive probability distribution, via training with a squared or an absolute error scoring function. The importance of issuing predictions of more functionals of the predictive probability distribution (quantiles and expectiles) has been recognized as a means to quantify the uncertainty of the prediction. In deep learning (DL) applications, that is possible through quantile and expectile regression neural networks (QRNN and ERNN respectively). Here we introduce deep Huber quantile regression networks (DHQRN) that nest QRNN and ERNN as edge cases. DHQRN can predict Huber quantiles, which are more general functionals in the sense that they nest quantiles and expectiles as limiting cases. The main idea is to train a DL algorithm with the Huber quantile scoring function, which is consistent for the Huber quantile functional. As a proof of concept, DHQRN are applied to predict house prices in Melbourne, Australia and Boston, United States (US). In this context, predictive performances of three DL architectures are discussed along with evidential interpretation of results from two economic case studies. Additional simulation experiments and applications to real-world case studies using open datasets demonstrate a satisfactory absolute performance of DHQRN.
comment: 40 pages, 11 figures, 4 tables
♻ ☆ HybridoNet-Adapt: A Domain-Adapted Framework for Accurate Lithium-Ion Battery RUL Prediction
Accurate prediction of the Remaining Useful Life (RUL) in Lithium ion battery (LIB) health management systems is essential for ensuring operational reliability and safety. However, many existing methods assume that training and testing data follow the same distribution, limiting their ability to generalize to unseen target domains. To address this, we propose a novel RUL prediction framework that incorporates a domain adaptation (DA) technique. Our framework integrates a signal preprocessing pipeline including noise reduction, feature extraction, and normalization with a robust deep learning model called HybridoNet Adapt. The model features a combination of LSTM, Multihead Attention, and Neural ODE layers for feature extraction, followed by two predictor modules with trainable trade-off parameters. To improve generalization, we adopt a DA strategy inspired by Domain Adversarial Neural Networks (DANN), replacing adversarial loss with Maximum Mean Discrepancy (MMD) to learn domain-invariant features. Experimental results show that HybridoNet Adapt significantly outperforms traditional models such as XGBoost and Elastic Net, as well as deep learning baselines like Dual input DNN, demonstrating its potential for scalable and reliable battery health management (BHM).
♻ ☆ Variable transformations in consistent loss functions
Loss functions constructed by applying transformations to the realization and prediction variables of (strictly) consistent loss functions have been extensively studied empirically, yet their theoretical foundations remain unexplored. To address this gap, we establish formal characterizations of (strict) consistency for such transformed loss functions and their corresponding elicitable functionals. Our analysis focuses on two interrelated cases: (a) transformations applied solely to the realization variable and (b) bijective transformations applied jointly to both the realization and prediction variables. These cases extend the well-established framework of transformations applied exclusively to the prediction variable, as formalized by Osband's revelation principle. We further develop analogous characterizations for (strict) identification functions. The resulting theoretical framework is broadly applicable to statistical and machine learning methodologies. When applied to Bregman and expectile loss functions, our framework enables two key advancements: (a) the interpretation of empirical findings from models trained with transformed loss functions and (b) the systematic construction of novel identifiable and elicitable functionals, including the g-transformed expectation and g-transformed expectile. By unifying theoretical insights with practical applications, this work advances principled methodologies for designing loss functions in complex predictive tasks. Applications of the framework to simulated and real-world data illustrate its practical utility in diverse settings.
comment: 36 pages, 3 figures, 2 tables
♻ ☆ An OpenMind for 3D medical vision self-supervised learning
The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the current state-of-the-art, due to i) varying and small pretraining datasets, ii) varying architectures, and iii) being evaluated on differing downstream datasets. In this paper, we bring clarity to this field and lay the foundation for further method advancements through three key contributions: We a) publish the largest publicly available pre-training dataset comprising 114k 3D brain MRI volumes, enabling all practitioners to pre-train on a large-scale dataset. We b) benchmark existing 3D self-supervised learning methods on this dataset for a state-of-the-art CNN and Transformer architecture, clarifying the state of 3D SSL pre-training. Among many findings, we show that pre-trained methods can exceed a strong from-scratch nnU-Net ResEnc-L baseline. Lastly, we c) publish the code of our pre-training and fine-tuning frameworks and provide the pre-trained models created during the benchmarking process to facilitate rapid adoption and reproduction.
comment: Pre-Print; Dataset, Benchmark and Codebase available through https://github.com/MIC-DKFZ/nnssl
♻ ☆ Optimal Transport for $ε$-Contaminated Credal Sets: To the Memory of Sayan Mukherjee
We present generalized versions of Monge's and Kantorovich's optimal transport problems with the probabilities being transported replaced by lower probabilities. We show that, when the lower probabilities are the lower envelopes of $\epsilon$-contaminated sets, then our version of Monge's, and a restricted version of our Kantorovich's problems, coincide with their respective classical versions. We also give sufficient conditions for the existence of our version of Kantorovich's optimal plan, and for the two problems to be equivalent. As a byproduct, we show that for $\epsilon$-contaminations the lower probability versions of Monge's and Kantorovich's optimal transport problems need not coincide. The applications of our results to Machine Learning and Artificial Intelligence are also discussed.
♻ ☆ Robust image classification with multi-modal large language models
Deep Neural Networks are vulnerable to adversarial examples, i.e., carefully crafted input samples that can cause models to make incorrect predictions with high confidence. To mitigate these vulnerabilities, adversarial training and detection-based defenses have been proposed to strengthen models in advance. However, most of these approaches focus on a single data modality, overlooking the relationships between visual patterns and textual descriptions of the input. In this paper, we propose a novel defense, MultiShield, designed to combine and complement these defenses with multi-modal information to further enhance their robustness. MultiShield leverages multi-modal large language models to detect adversarial examples and abstain from uncertain classifications when there is no alignment between textual and visual representations of the input. Extensive evaluations on CIFAR-10 and ImageNet datasets, using robust and non-robust image classification models, demonstrate that MultiShield can be easily integrated to detect and reject adversarial examples, outperforming the original defenses.
comment: Paper accepted at Pattern Recognition Letters journal Keywords: adversarial examples, rejection defense, multimodal-informed systems, machine learning security
♻ ☆ Diffusion Transformers for Tabular Data Time Series Generation ICLR 2025
Tabular data generation has recently attracted a growing interest due to its different application scenarios. However, generating time series of tabular data, where each element of the series depends on the others, remains a largely unexplored domain. This gap is probably due to the difficulty of jointly solving different problems, the main of which are the heterogeneity of tabular data (a problem common to non-time-dependent approaches) and the variable length of a time series. In this paper, we propose a Diffusion Transformers (DiTs) based approach for tabular data series generation. Inspired by the recent success of DiTs in image and video generation, we extend this framework to deal with heterogeneous data and variable-length sequences. Using extensive experiments on six datasets, we show that the proposed approach outperforms previous work by a large margin.
comment: Accepted at ICLR 2025. 26 pages, 19 figures, 13 tables
♻ ☆ Conformal Prediction Regions are Imprecise Highest Density Regions
Recently, Cella and Martin proved how, under an assumption called consonance, a credal set (i.e. a closed and convex set of probabilities) can be derived from the conformal transducer associated with transductive conformal prediction. We show that the Imprecise Highest Density Region (IHDR) associated with such a credal set corresponds to the classical Conformal Prediction Region. In proving this result, we establish a new relationship between Conformal Prediction and Imprecise Probability (IP) theories, via the IP concept of a cloud. A byproduct of our presentation is the discovery that consonant plausibility functions are monoid homomorphisms, a new algebraic property of an IP tool.
♻ ☆ Is In-Context Learning Sufficient for Instruction Following in LLMs? ICLR 2025
In-context learning (ICL) allows LLMs to learn from examples without changing their weights: this is a particularly promising capability for long-context LLMs that can potentially learn from many examples. Recently, Lin et al. (2024) proposed URIAL, a method using only three in-context examples to align base LLMs, achieving non-trivial instruction following performance. In this work, we show that, while effective, ICL alignment with URIAL still underperforms compared to instruction fine-tuning on the established benchmark MT-Bench, especially with more capable base LLMs. We then uncover the most relevant elements for successful in-context alignment, finding the crucial role of the decoding parameters. Based on these insights, we show that the approach of URIAL can indeed be improved by adding high-quality, potentially carefully selected via greedy search, demonstrations in context, getting closer to the performance of instruct models. Finally, we provide the first, to our knowledge, systematic comparison of ICL and instruction fine-tuning (IFT) for instruction following in the low data regime, where ICL can be a viable alternative to IFT. Overall, our work advances the understanding of ICL as an alignment technique and its relationship to IFT. We provide our code at https://github.com/tml-epfl/icl-alignment.
comment: Accepted at ICLR 2025. This camera-ready version v3 adds multi-turn alignment via ICL, revisiting main results on instruct models, and simple mechanistic study. Updates in the v2: experiment with decoding schemes, scaling in-context alignment, ICL vs IFT for instruction following. Code at https://github.com/tml-epfl/icl-alignment
♻ ☆ Energy-Latency Attacks via Sponge Poisoning
Sponge examples are test-time inputs optimized to increase energy consumption and prediction latency of deep networks deployed on hardware accelerators. By increasing the fraction of neurons activated during classification, these attacks reduce sparsity in network activation patterns, worsening the performance of hardware accelerators. In this work, we present a novel training-time attack, named sponge poisoning, which aims to worsen energy consumption and prediction latency of neural networks on any test input without affecting classification accuracy. To stage this attack, we assume that the attacker can control only a few model updates during training -- a likely scenario, e.g., when model training is outsourced to an untrusted third party or distributed via federated learning. Our extensive experiments on image classification tasks show that sponge poisoning is effective, and that fine-tuning poisoned models to repair them poses prohibitive costs for most users, highlighting that tackling sponge poisoning remains an open issue.
comment: Paper accepted at Information Sciences journal; 20 pages Keywords: energy-latency attacks, sponge attack, machine learning security, adversarial machine learning
♻ ☆ Order is All You Need for Categorical Data Clustering
Categorical data composed of qualitative valued attributes are ubiquitous in machine learning tasks. Due to the lack of well-defined metric space, categorical data distributions are difficult to be intuitively understood. Clustering is a popular data analysis technique suitable for data distribution understanding. However, the success of clustering often relies on reasonable distance metrics, which happens to be what categorical data naturally lack. This paper therefore introduces a new finding that the order relation among attribute values is the decisive factor in clustering accuracy, and is also the key to understanding categorical data clusters, because the essence of clustering is to order the clusters in terms of their admission to samples. To obtain the orders, we propose a new learning paradigm that allows joint learning of clusters and the orders. It alternatively partitions the data into clusters based on the distance metric built upon the orders and estimates the most likely orders according to the clusters. The algorithm achieves superior clustering accuracy with a convergence guarantee, and the learned orders facilitate the understanding of the non-intuitive cluster distribution of categorical data. Extensive experiments with ablation studies, statistical evidence, and case studies have validated the new insight into the importance of value order and the method proposition. The source code is temporarily opened in https://anonymous.4open.science/r/OCL-demo.
♻ ☆ Robust Universum Twin Support Vector Machine for Imbalanced Data
One of the major difficulties in machine learning methods is categorizing datasets that are imbalanced. This problem may lead to biased models, where the training process is dominated by the majority class, resulting in inadequate representation of the minority class. Universum twin support vector machine (UTSVM) produces a biased model towards the majority class, as a result, its performance on the minority class is often poor as it might be mistakenly classified as noise. Moreover, UTSVM is not proficient in handling datasets that contain outliers and noises. Inspired by the concept of incorporating prior information about the data and employing an intuitionistic fuzzy membership scheme, we propose intuitionistic fuzzy UTSVM for imbalanced data (IFUTSVM-ID) by enhancing overall robustness. We use an intuitionistic fuzzy membership scheme to mitigate the impact of noise and outliers. Moreover, to tackle the problem of imbalanced class distribution, data oversampling and undersampling methods are utilized. Prior knowledge about the data is provided by universum data. This leads to better generalization performance. UTSVM is susceptible to overfitting risks due to the omission of the structural risk minimization (SRM) principle in their primal formulations. However, the proposed IFUTSVM-ID model incorporates the SRM principle through the incorporation of regularization terms, effectively addressing the issue of overfitting. We conduct a comprehensive evaluation of the proposed IFUTSVM-ID model on benchmark datasets from KEEL and compare it with existing baseline models. Furthermore, to assess the effectiveness of the proposed IFUTSVM-ID model in diagnosing Alzheimer's disease (AD), we applied them to the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Experimental results showcase the superiority of the proposed IFUTSVM-ID models compared to the baseline models.
♻ ☆ Granular Ball Twin Support Vector Machine
On Efficient and Scalable Computation of the Nonparametric Maximum Likelihood Estimator in Mixture ModelsTwin support vector machine (TSVM) is an emerging machine learning model with versatile applicability in classification and regression endeavors. Nevertheless, TSVM confronts noteworthy challenges: $(i)$ the imperative demand for matrix inversions presents formidable obstacles to its efficiency and applicability on large-scale datasets; $(ii)$ the omission of the structural risk minimization (SRM) principle in its primal formulation heightens the vulnerability to overfitting risks; and $(iii)$ the TSVM exhibits a high susceptibility to noise and outliers, and also demonstrates instability when subjected to resampling. In view of the aforementioned challenges, we propose the granular ball twin support vector machine (GBTSVM). GBTSVM takes granular balls, rather than individual data points, as inputs to construct a classifier. These granular balls, characterized by their coarser granularity, exhibit robustness to resampling and reduced susceptibility to the impact of noise and outliers. We further propose a novel large-scale granular ball twin support vector machine (LS-GBTSVM). LS-GBTSVM's optimization formulation ensures two critical facets: $(i)$ it eliminates the need for matrix inversions, streamlining the LS-GBTSVM's computational efficiency, and $(ii)$ it incorporates the SRM principle through the incorporation of regularization terms, effectively addressing the issue of overfitting. The proposed LS-GBTSVM exemplifies efficiency, scalability for large datasets, and robustness against noise and outliers. We conduct a comprehensive evaluation of the GBTSVM and LS-GBTSVM models on benchmark datasets from UCI, KEEL, and NDC datasets. Our experimental findings and statistical analyses affirm the superior generalization prowess of the proposed GBTSVM and LS-GBTSVM models.
comment: Manuscript submitted to IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS: 19 September 2023; revised 13 February 2024 and 14 July 2024; accepted 05 October 2024
♻ ☆ Variational Stochastic Gradient Descent for Deep Neural Networks
Current state-of-the-art optimizers are adaptive gradient-based optimization methods such as Adam. Recently, there has been an increasing interest in formulating gradient-based optimizers in a probabilistic framework for better modeling the uncertainty of the gradients. Here, we propose to combine both approaches, resulting in the Variational Stochastic Gradient Descent (VSGD) optimizer. We model gradient updates as a probabilistic model and utilize stochastic variational inference (SVI) to derive an efficient and effective update rule. Further, we show how our VSGD method relates to other adaptive gradient-based optimizers like Adam. Lastly, we carry out experiments on two image classification datasets and four deep neural network architectures, where we show that VSGD outperforms Adam and SGD.
♻ ☆ Beyond Grids: Multi-objective Bayesian Optimization With Adaptive Discretization
We consider the problem of optimizing a vector-valued objective function $\boldsymbol{f}$ sampled from a Gaussian Process (GP) whose index set is a well-behaved, compact metric space $({\cal X},d)$ of designs. We assume that $\boldsymbol{f}$ is not known beforehand and that evaluating $\boldsymbol{f}$ at design $x$ results in a noisy observation of $\boldsymbol{f}(x)$. Since identifying the Pareto optimal designs via exhaustive search is infeasible when the cardinality of ${\cal X}$ is large, we propose an algorithm, called Adaptive $\boldsymbol{\epsilon}$-PAL, that exploits the smoothness of the GP-sampled function and the structure of $({\cal X},d)$ to learn fast. In essence, Adaptive $\boldsymbol{\epsilon}$-PAL employs a tree-based adaptive discretization technique to identify an $\boldsymbol{\epsilon}$-accurate Pareto set of designs in as few evaluations as possible. We provide both information-type and metric dimension-type bounds on the sample complexity of $\boldsymbol{\epsilon}$-accurate Pareto set identification. We also experimentally show that our algorithm outperforms other Pareto set identification methods.
♻ ☆ Towards a Reward-Free Reinforcement Learning Framework for Vehicle Control
Reinforcement learning plays a crucial role in vehicle control by guiding agents to learn optimal control strategies through designing or learning appropriate reward signals. However, in vehicle control applications, rewards typically need to be manually designed while considering multiple implicit factors, which easily introduces human biases. Although imitation learning methods does not rely on explicit reward signals, they necessitate high-quality expert actions, which are often challenging to acquire. To address these issues, we propose a reward-free reinforcement learning framework (RFRLF). This framework directly learns the target states to optimize agent behavior through a target state prediction network (TSPN) and a reward-free state-guided policy network (RFSGPN), avoiding the dependence on manually designed reward signals. Specifically, the policy network is learned via minimizing the differences between the predicted state and the expert state. Experimental results demonstrate the effectiveness of the proposed RFRLF in controlling vehicle driving, showing its advantages in improving learning efficiency and adapting to reward-free environments.
♻ ☆ MoFO: Momentum-Filtered Optimizer for Mitigating Forgetting in LLM Fine-Tuning
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks. Typically, LLMs are first pre-trained on large corpora and subsequently fine-tuned on task-specific datasets. However, during fine-tuning, LLMs may forget some knowledge acquired in the pre-training stage, leading to a decline in general capabilities. Existing approaches to mitigate forgetting often rely on access to pre-training data, which may be unavailable in many real-world scenarios--such as fine-tuning checkpoint-only open-source LLMs. To address this challenge, we propose a new fine-tuning algorithm termed Momentum-Filtered Optimizer (MoFO). MoFO is an extension of greedy block coordinate descent (BCD) methods: in each iteration, MoFO only updates the model parameters with the largest momentum magnitudes, while keeping all other parameters fixed. MoFO achieves similar fine-tuning performance to the default fine-tuning algorithm while effectively mitigating knowledge forgetting. We validate MoFO through rigorous convergence analysis and extensive experiments, demonstrating its effectiveness in mitigating forgetting without pre-training data.
♻ ☆ DisCoRD: Discrete Tokens to Continuous Motion via Rectified Flow Decoding
Human motion is inherently continuous and dynamic, posing significant challenges for generative models. While discrete generation methods are widely used, they suffer from limited expressiveness and frame-wise noise artifacts. In contrast, continuous approaches produce smoother, more natural motion but often struggle to adhere to conditioning signals due to high-dimensional complexity and limited training data. To resolve this discord between discrete and continuous representations, we introduce DisCoRD: Discrete Tokens to Continuous Motion via Rectified Flow Decoding, a novel method that leverages rectified flow to decode discrete motion tokens in the continuous, raw motion space. Our core idea is to frame token decoding as a conditional generation task, ensuring that DisCoRD captures fine-grained dynamics and achieves smoother, more natural motions. Compatible with any discrete-based framework, our method enhances naturalness without compromising faithfulness to the conditioning signals on diverse settings. Extensive evaluations Our project page is available at: https://whwjdqls.github.io/discord.github.io/.
comment: 11 pages
♻ ☆ Few-shot Model Extraction Attacks against Sequential Recommender Systems
Among adversarial attacks against sequential recommender systems, model extraction attacks represent a method to attack sequential recommendation models without prior knowledge. Existing research has primarily concentrated on the adversary's execution of black-box attacks through data-free model extraction. However, a significant gap remains in the literature concerning the development of surrogate models by adversaries with access to few-shot raw data (10\% even less). That is, the challenge of how to construct a surrogate model with high functional similarity within the context of few-shot data scenarios remains an issue that requires resolution.This study addresses this gap by introducing a novel few-shot model extraction framework against sequential recommenders, which is designed to construct a superior surrogate model with the utilization of few-shot data. The proposed few-shot model extraction framework is comprised of two components: an autoregressive augmentation generation strategy and a bidirectional repair loss-facilitated model distillation procedure. Specifically, to generate synthetic data that closely approximate the distribution of raw data, autoregressive augmentation generation strategy integrates a probabilistic interaction sampler to extract inherent dependencies and a synthesis determinant signal module to characterize user behavioral patterns. Subsequently, bidirectional repair loss, which target the discrepancies between the recommendation lists, is designed as auxiliary loss to rectify erroneous predictions from surrogate models, transferring knowledge from the victim model to the surrogate model effectively. Experiments on three datasets show that the proposed few-shot model extraction framework yields superior surrogate models.
comment: It requires substantial modifications.The symbols in the mathematical formulas are not explained in detail
♻ ☆ Towards Robust Alignment of Language Models: Distributionally Robustifying Direct Preference Optimization
This study addresses the challenge of noise in training datasets for Direct Preference Optimization (DPO), a method for aligning Large Language Models (LLMs) with human preferences. We categorize noise into pointwise noise, which includes low-quality data points, and pairwise noise, which encompasses erroneous data pair associations that affect preference rankings. Utilizing Distributionally Robust Optimization (DRO), we enhance DPO's resilience to these types of noise. Our theoretical insights reveal that DPO inherently embeds DRO principles, conferring robustness to pointwise noise, with the regularization coefficient $\beta$ playing a critical role in its noise resistance. Extending this framework, we introduce Distributionally Robustifying DPO (Dr. DPO), which integrates pairwise robustness by optimizing against worst-case pairwise scenarios. The novel hyperparameter $\beta'$ in Dr. DPO allows for fine-tuned control over data pair reliability, providing a strategic balance between exploration and exploitation in noisy training environments. Empirical evaluations demonstrate that Dr. DPO substantially improves the quality of generated text and response accuracy in preference datasets, showcasing enhanced performance in both noisy and noise-free settings. The code is available at https://github.com/junkangwu/Dr_DPO.
♻ ☆ SciLitLLM: How to Adapt LLMs for Scientific Literature Understanding ICLR 2025
Scientific literature understanding is crucial for extracting targeted information and garnering insights, thereby significantly advancing scientific discovery. Despite the remarkable success of Large Language Models (LLMs), they face challenges in scientific literature understanding, primarily due to (1) a lack of scientific knowledge and (2) unfamiliarity with specialized scientific tasks. To develop an LLM specialized in scientific literature understanding, we propose a hybrid strategy that integrates continual pre-training (CPT) and supervised fine-tuning (SFT), to simultaneously infuse scientific domain knowledge and enhance instruction-following capabilities for domain-specific tasks.cIn this process, we identify two key challenges: (1) constructing high-quality CPT corpora, and (2) generating diverse SFT instructions. We address these challenges through a meticulous pipeline, including PDF text extraction, parsing content error correction, quality filtering, and synthetic instruction creation. Applying this strategy, we present a suite of LLMs: SciLitLLM, specialized in scientific literature understanding. These models demonstrate promising performance on scientific literature understanding benchmarks. Our contributions are threefold: (1) We present an effective framework that integrates CPT and SFT to adapt LLMs to scientific literature understanding, which can also be easily adapted to other domains. (2) We propose an LLM-based synthesis method to generate diverse and high-quality scientific instructions, resulting in a new instruction set -- SciLitIns -- for supervised fine-tuning in less-represented scientific domains. (3) SciLitLLM achieves promising performance improvements on scientific literature understanding benchmarks.
comment: ICLR 2025
♻ ☆ E(3)-equivariant models cannot learn chirality: Field-based molecular generation ICLR 2025
Obtaining the desired effect of drugs is highly dependent on their molecular geometries. Thus, the current prevailing paradigm focuses on 3D point-cloud atom representations, utilizing graph neural network (GNN) parametrizations, with rotational symmetries baked in via E(3) invariant layers. We prove that such models must necessarily disregard chirality, a geometric property of the molecules that cannot be superimposed on their mirror image by rotation and translation. Chirality plays a key role in determining drug safety and potency. To address this glaring issue, we introduce a novel field-based representation, proposing reference rotations that replace rotational symmetry constraints. The proposed model captures all molecular geometries including chirality, while still achieving highly competitive performance with E(3)-based methods across standard benchmarking metrics.
comment: ICLR 2025
♻ ☆ NeuroNAS: Enhancing Efficiency of Neuromorphic In-Memory Computing for Intelligent Mobile Agents through Hardware-Aware Spiking Neural Architecture Search
Intelligent mobile agents (e.g., UGVs and UAVs) typically demand low power/energy consumption when solving their machine learning (ML)-based tasks, since they are usually powered by portable batteries with limited capacity. A potential solution is employing neuromorphic computing with Spiking Neural Networks (SNNs), which leverages event-based computation to enable ultra-low power/energy ML algorithms. To maximize the performance efficiency of SNN inference, the In-Memory Computing (IMC)-based hardware accelerators with emerging device technologies (e.g., RRAM) can be employed. However, SNN models are typically developed without considering constraints from the application and the underlying IMC hardware, thereby hindering SNNs from reaching their full potential in performance and efficiency. To address this, we propose NeuroNAS, a novel framework for developing energyefficient neuromorphic IMC for intelligent mobile agents using hardware-aware spiking neural architecture search (NAS), i.e., by quickly finding an SNN architecture that offers high accuracy under the given constraints (e.g., memory, area, latency, and energy consumption). Its key steps include: optimizing SNN operations to enable efficient NAS, employing quantization to minimize the memory footprint, developing an SNN architecture that facilitates an effective learning, and devising a systematic hardware-aware search algorithm to meet the constraints. Compared to the state-of-the-art techniques, NeuroNAS quickly finds SNN architectures (with 8bit weight precision) that maintain high accuracy by up to 6.6x search time speed-ups, while achieving up to 92% area savings, 1.2x latency improvements, 84% energy savings across different datasets (i.e., CIFAR-10, CIFAR-100, and TinyImageNet-200); while the state-of-the-art fail to meet all constraints at once.
comment: 9 pages, 14 figures, 2 tables
♻ ☆ Predicting Stock Prices using Permutation Decision Trees and Strategic Trailing
In this paper, we explore the application of Permutation Decision Trees (PDT) and strategic trailing for predicting stock market movements and executing profitable trades in the Indian stock market. We focus on high-frequency data using 5-minute candlesticks for the top 50 stocks listed in the NIFTY 50 index. We implement a trading strategy that aims to buy stocks at lower prices and sell them at higher prices, capitalizing on short-term market fluctuations. Due to regulatory constraints in India, short selling is not considered in our strategy. The model incorporates various technical indicators and employs hyperparameters such as the trailing stop-loss value and support thresholds to manage risk effectively. Our results indicate that the proposed trading bot has the potential to outperform the market average and yield returns higher than the risk-free rate offered by 10-year Indian government bonds. We trained and tested data on a 60 day dataset provided by Yahoo Finance. Specifically, 12 days for testing and 48 days for training. Our bot based on permutation decision tree achieved a profit of 1.3468 % over a 12-day testing period, where as a bot based on LSTM gave a return of 0.1238 % over a 12-day testing period and a bot based on RNN gave a return of 0.3096 % over a 12-day testing period. All of the bots outperform the buy-and-hold strategy, which resulted in a loss of 2.2508 %.
comment: 17 pages, 7 figures
♻ ☆ Unified Parameter-Efficient Unlearning for LLMs
The advent of Large Language Models (LLMs) has revolutionized natural language processing, enabling advanced understanding and reasoning capabilities across a variety of tasks. Fine-tuning these models for specific domains, particularly through Parameter-Efficient Fine-Tuning (PEFT) strategies like LoRA, has become a prevalent practice due to its efficiency. However, this raises significant privacy and security concerns, as models may inadvertently retain and disseminate sensitive or undesirable information. To address these issues, we introduce a novel instance-wise unlearning framework, LLMEraser, which systematically categorizes unlearning tasks and applies precise parameter adjustments using influence functions. Unlike traditional unlearning techniques that are often limited in scope and require extensive retraining, LLMEraser is designed to handle a broad spectrum of unlearning tasks without compromising model performance. Extensive experiments on benchmark datasets demonstrate that LLMEraser excels in efficiently managing various unlearning scenarios while maintaining the overall integrity and efficacy of the models.
♻ ☆ Approximation-Generalization Trade-offs under (Approximate) Group Equivariance
The explicit incorporation of task-specific inductive biases through symmetry has emerged as a general design precept in the development of high-performance machine learning models. For example, group equivariant neural networks have demonstrated impressive performance across various domains and applications such as protein and drug design. A prevalent intuition about such models is that the integration of relevant symmetry results in enhanced generalization. Moreover, it is posited that when the data and/or the model may only exhibit $\textit{approximate}$ or $\textit{partial}$ symmetry, the optimal or best-performing model is one where the model symmetry aligns with the data symmetry. In this paper, we conduct a formal unified investigation of these intuitions. To begin, we present general quantitative bounds that demonstrate how models capturing task-specific symmetries lead to improved generalization. In fact, our results do not require the transformations to be finite or even form a group and can work with partial or approximate equivariance. Utilizing this quantification, we examine the more general question of model mis-specification i.e. when the model symmetries don't align with the data symmetries. We establish, for a given symmetry group, a quantitative comparison between the approximate/partial equivariance of the model and that of the data distribution, precisely connecting model equivariance error and data equivariance error. Our result delineates conditions under which the model equivariance error is optimal, thereby yielding the best-performing model for the given task and data. Our results are the most general results of their type in the literature.
comment: 23 Pages. Updated to the published version. Advances in Neural Information Processing Systems 36, 61936-61959
♻ ☆ Cross-cultural Deployment of Autonomous Vehicles Using Data-light Inverse Reinforcement Learning
More than the adherence to specific traffic regulations, driving culture touches upon a more implicit part - an informal, conventional, collective behavioral pattern followed by drivers - that varies across countries, regions, and even cities. Such cultural divergence has become one of the biggest challenges in deploying autonomous vehicles (AVs) across diverse regions today. The current emergence of data-driven methods has shown a potential solution to enable culture-compatible driving through learning from data, but what if some underdeveloped regions cannot provide sufficient local data to inform driving culture? This issue is particularly significant for a broader global AV market. Here, we propose a cross-cultural deployment scheme for AVs, called data-light inverse reinforcement learning, designed to re-calibrate culture-specific AVs and assimilate them into other cultures. First, we report the divergence in driving cultures through a comprehensive comparative analysis of naturalistic driving datasets on highways from three countries: Germany, China, and the USA. Then, we demonstrate the effectiveness of our scheme by testing the expeditious cross-cultural deployment across these three countries, with cumulative testing mileage of over 56084 km. The performance is particularly advantageous when cross-cultural deployment is carried out without affluent local data. Results show that we can reduce the dependence on local data by a margin of 98.67% at best. This study is expected to bring a broader, fairer AV global market, particularly in those regions that lack enough local data to develop culture-compatible AVs.
♻ ☆ Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks AISTATS
There has been much recent interest in designing neural networks (NNs) with relaxed equivariance, which interpolate between exact equivariance and full flexibility for consistent performance gains. In a separate line of work, structured parameter matrices with low displacement rank (LDR) -- which permit fast function and gradient evaluation -- have been used to create compact NNs, though primarily benefiting classical convolutional neural networks (CNNs). In this work, we propose a framework based on symmetry-based structured matrices to build approximately equivariant NNs with fewer parameters. Our approach unifies the aforementioned areas using Group Matrices (GMs), a forgotten precursor to the modern notion of regular representations of finite groups. GMs allow the design of structured matrices similar to LDR matrices, which can generalize all the elementary operations of a CNN from cyclic groups to arbitrary finite groups. We show GMs can also generalize classical LDR theory to general discrete groups, enabling a natural formalism for approximate equivariance. We test GM-based architectures on various tasks with relaxed symmetry and find that our framework performs competitively with approximately equivariant NNs and other structured matrix-based methods, often with one to two orders of magnitude fewer parameters.
comment: 19 pages. Updated to published version of the paper in the proceedings of the 28th International Conference on Artificial Intelligence and Statistics (AISTATS) 2025
♻ ☆ A Survey on Self-supervised Contrastive Learning for Multimodal Text-Image Analysis
Self-supervised learning is a machine learning approach that generates implicit labels by learning underlined patterns and extracting discriminative features from unlabeled data without manual labelling. Contrastive learning introduces the concept of "positive" and "negative" samples, where positive pairs (e.g., variation of the same image/object) are brought together in the embedding space, and negative pairs (e.g., views from different images/objects) are pushed farther away. This methodology has shown significant improvements in image understanding and image text analysis without much reliance on labeled data. In this paper, we comprehensively discuss the terminologies, recent developments and applications of contrastive learning with respect to text-image models. Specifically, we provide an overview of the approaches of contrastive learning in text-image models in recent years. Secondly, we categorize the approaches based on different model structures. Thirdly, we further introduce and discuss the latest advances of the techniques used in the process such as pretext tasks for both images and text, architectural structures, and key trends. Lastly, we discuss the recent state-of-art applications of self-supervised contrastive learning Text-Image based models.
♻ ☆ Towards Federated Multi-Armed Bandit Learning for Content Dissemination using Swarm of UAVs
This paper introduces an Unmanned Aerial Vehicle - enabled content management architecture that is suitable for critical content access in communities of users that are communication-isolated during diverse types of disaster scenarios. The proposed architecture leverages a hybrid network of stationary anchor UAVs and mobile Micro-UAVs for ubiquitous content dissemination. The anchor UAVs are equipped with both vertical and lateral communication links, and they serve local users, while the mobile micro-ferrying UAVs extend coverage across communities with increased mobility. The focus is on developing a content dissemination system that dynamically learns optimal caching policies to maximize content availability. The core innovation is an adaptive content dissemination framework based on distributed Federated Multi-Armed Bandit learning. The goal is to optimize UAV content caching decisions based on geo-temporal content popularity and user demand variations. A Selective Caching Algorithm is also introduced to reduce redundant content replication by incorporating inter-UAV information sharing. This method strategically preserves the uniqueness in user preferences while amalgamating the intelligence across a distributed learning system. This approach improves the learning algorithm's ability to adapt to diverse user preferences. Functional verification and performance evaluation confirm the proposed architecture's utility across different network sizes, UAV swarms, and content popularity patterns.
comment: 32 pages, 11 figures, 1 table, 4 algorithms, journal
♻ ☆ Backstepping Temporal Difference Learning ICLR2023
Off-policy learning ability is an important feature of reinforcement learning (RL) for practical applications. However, even one of the most elementary RL algorithms, temporal-difference (TD) learning, is known to suffer form divergence issue when the off-policy scheme is used together with linear function approximation. To overcome the divergent behavior, several off-policy TD-learning algorithms, including gradient-TD learning (GTD), and TD-learning with correction (TDC), have been developed until now. In this work, we provide a unified view of such algorithms from a purely control-theoretic perspective, and propose a new convergent algorithm. Our method relies on the backstepping technique, which is widely used in nonlinear control theory. Finally, convergence of the proposed algorithm is experimentally verified in environments where the standard TD-learning is known to be unstable.
comment: Published at ICLR2023
♻ ☆ DocAgent: A Multi-Agent System for Automated Code Documentation Generation
High-quality code documentation is crucial for software development especially in the era of AI. However, generating it automatically using Large Language Models (LLMs) remains challenging, as existing approaches often produce incomplete, unhelpful, or factually incorrect outputs. We introduce DocAgent, a novel multi-agent collaborative system using topological code processing for incremental context building. Specialized agents (Reader, Searcher, Writer, Verifier, Orchestrator) then collaboratively generate documentation. We also propose a multi-faceted evaluation framework assessing Completeness, Helpfulness, and Truthfulness. Comprehensive experiments show DocAgent significantly outperforms baselines consistently. Our ablation study confirms the vital role of the topological processing order. DocAgent offers a robust approach for reliable code documentation generation in complex and proprietary repositories.
comment: Public Repo: https://github.com/facebookresearch/DocAgent
♻ ☆ Subgraph Aggregation for Out-of-Distribution Generalization on Graphs AAAI 2025
Out-of-distribution (OOD) generalization in Graph Neural Networks (GNNs) has gained significant attention due to its critical importance in graph-based predictions in real-world scenarios. Existing methods primarily focus on extracting a single causal subgraph from the input graph to achieve generalizable predictions. However, relying on a single subgraph can lead to susceptibility to spurious correlations and is insufficient for learning invariant patterns behind graph data. Moreover, in many real-world applications, such as molecular property prediction, multiple critical subgraphs may influence the target label property. To address these challenges, we propose a novel framework, SubGraph Aggregation (SuGAr), designed to learn a diverse set of subgraphs that are crucial for OOD generalization on graphs. Specifically, SuGAr employs a tailored subgraph sampler and diversity regularizer to extract a diverse set of invariant subgraphs. These invariant subgraphs are then aggregated by averaging their representations, which enriches the subgraph signals and enhances coverage of the underlying causal structures, thereby improving OOD generalization. Extensive experiments on both synthetic and real-world datasets demonstrate that \ours outperforms state-of-the-art methods, achieving up to a 24% improvement in OOD generalization on graphs. To the best of our knowledge, this is the first work to study graph OOD generalization by learning multiple invariant subgraphs. code: https://github.com/Nanolbw/SuGAr
comment: Accepted by AAAI 2025
♻ ☆ DrivAer Transformer: A high-precision and fast prediction method for vehicle aerodynamic drag coefficient based on the DrivAerNet++ dataset
At the current stage, deep learning-based methods have demonstrated excellent capabilities in evaluating aerodynamic performance, significantly reducing the time and cost required for traditional computational fluid dynamics (CFD) simulations. However, when faced with the task of processing extremely complex three-dimensional (3D) vehicle models, the lack of large-scale datasets and training resources, coupled with the inherent diversity and complexity of the geometry of different vehicle models, means that the prediction accuracy and versatility of these networks are still not up to the level required for current production. In view of the remarkable success of Transformer models in the field of natural language processing and their strong potential in the field of image processing, this study innovatively proposes a point cloud learning framework called DrivAer Transformer (DAT). The DAT structure uses the DrivAerNet++ dataset, which contains high-fidelity CFD data of industrial-standard 3D vehicle shapes. enabling accurate estimation of air drag directly from 3D meshes, thus avoiding the limitations of traditional methods such as 2D image rendering or signed distance fields (SDF). DAT enables fast and accurate drag prediction, driving the evolution of the aerodynamic evaluation process and laying the critical foundation for introducing a data-driven approach to automotive design. The framework is expected to accelerate the vehicle design process and improve development efficiency.
comment: 14 pages
♻ ☆ Does Spatial Cognition Emerge in Frontier Models? ICLR 2025
Not yet. We present SPACE, a benchmark that systematically evaluates spatial cognition in frontier models. Our benchmark builds on decades of research in cognitive science. It evaluates large-scale mapping abilities that are brought to bear when an organism traverses physical environments, smaller-scale reasoning about object shapes and layouts, and cognitive infrastructure such as spatial attention and memory. For many tasks, we instantiate parallel presentations via text and images, allowing us to benchmark both large language models and large multimodal models. Results suggest that contemporary frontier models fall short of the spatial intelligence of animals, performing near chance level on a number of classic tests of animal cognition. Code and data are available: https://github.com/apple/ml-space-benchmark
comment: Published in ICLR 2025
♻ ☆ Minimax Optimal Convergence of Gradient Descent in Logistic Regression via Large and Adaptive Stepsizes
We study $\textit{gradient descent}$ (GD) for logistic regression on linearly separable data with stepsizes that adapt to the current risk, scaled by a constant hyperparameter $\eta$. We show that after at most $1/\gamma^2$ burn-in steps, GD achieves a risk upper bounded by $\exp(-\Theta(\eta))$, where $\gamma$ is the margin of the dataset. As $\eta$ can be arbitrarily large, GD attains an arbitrarily small risk $\textit{immediately after the burn-in steps}$, though the risk evolution may be $\textit{non-monotonic}$. We further construct hard datasets with margin $\gamma$, where any batch (or online) first-order method requires $\Omega(1/\gamma^2)$ steps to find a linear separator. Thus, GD with large, adaptive stepsizes is $\textit{minimax optimal}$ among first-order batch methods. Notably, the classical $\textit{Perceptron}$ (Novikoff, 1962), a first-order online method, also achieves a step complexity of $1/\gamma^2$, matching GD even in constants. Finally, our GD analysis extends to a broad class of loss functions and certain two-layer networks.
comment: 28 pages
♻ ☆ Stochastic noise can be helpful for variational quantum algorithms
Saddle points constitute a crucial challenge for first-order gradient descent algorithms. In notions of classical machine learning, they are avoided for example by means of stochastic gradient descent methods. In this work, we provide evidence that the saddle points problem can be naturally avoided in variational quantum algorithms by exploiting the presence of stochasticity. We prove convergence guarantees and present practical examples in numerical simulations and on quantum hardware. We argue that the natural stochasticity of variational algorithms can be beneficial for avoiding strict saddle points, i.e., those saddle points with at least one negative Hessian eigenvalue. This insight that some levels of shot noise could help is expected to add a new perspective to notions of near-term variational quantum algorithms.
comment: 15 pages, presentation improved, proofs extended
♻ ☆ Dense Backpropagation Improves Training for Sparse Mixture-of-Experts
Mixture of Experts (MoE) pretraining is more scalable than dense Transformer pretraining, because MoEs learn to route inputs to a sparse set of their feedforward parameters. However, this means that MoEs only receive a sparse backward update, leading to training instability and suboptimal performance. We present a lightweight approximation method that gives the MoE router a dense gradient update while continuing to sparsely activate its parameters. Our method, which we refer to as Default MoE, substitutes missing expert activations with default outputs consisting of an exponential moving average of expert outputs previously seen over the course of training. This allows the router to receive signals from every expert for each token, leading to significant improvements in training performance. Our Default MoE outperforms standard TopK routing in a variety of settings without requiring significant computational overhead. Code: https://github.com/vatsal0/default-moe.
♻ ☆ A Comprehensive Survey of Mixture-of-Experts: Algorithms, Theory, and Applications
Artificial intelligence (AI) has achieved astonishing successes in many domains, especially with the recent breakthroughs in the development of foundational large models. These large models, leveraging their extensive training data, provide versatile solutions for a wide range of downstream tasks. However, as modern datasets become increasingly diverse and complex, the development of large AI models faces two major challenges: (1) the enormous consumption of computational resources and deployment difficulties, and (2) the difficulty in fitting heterogeneous and complex data, which limits the usability of the models. Mixture of Experts (MoE) models has recently attracted much attention in addressing these challenges, by dynamically selecting and activating the most relevant sub-models to process input data. It has been shown that MoEs can significantly improve model performance and efficiency with fewer resources, particularly excelling in handling large-scale, multimodal data. Given the tremendous potential MoE has demonstrated across various domains, it is urgent to provide a comprehensive summary of recent advancements of MoEs in many important fields. Existing surveys on MoE have their limitations, e.g., being outdated or lacking discussion on certain key areas, and we aim to address these gaps. In this paper, we first introduce the basic design of MoE, including gating functions, expert networks, routing mechanisms, training strategies, and system design. We then explore the algorithm design of MoE in important machine learning paradigms such as continual learning, meta-learning, multi-task learning, and reinforcement learning. Additionally, we summarize theoretical studies aimed at understanding MoE and review its applications in computer vision and natural language processing. Finally, we discuss promising future research directions.
comment: 29 pages, 3 figures
♻ ☆ DNR Bench: Benchmarking Over-Reasoning in Reasoning LLMs
Test-time scaling has significantly improved large language model performance, enabling deeper reasoning to solve complex problems. However, this increased reasoning capability also leads to excessive token generation and unnecessary problem-solving attempts. We introduce Don\'t Reason Bench (DNR Bench), a new benchmark designed to evaluate LLMs ability to robustly understand the tricky reasoning triggers and avoiding unnecessary generation. DNR Bench consists of 150 adversarially designed prompts that are easy for humans to understand and respond to, but surprisingly not for many of the recent prominent LLMs. DNR Bench tests models abilities across different capabilities, such as instruction adherence, hallucination avoidance, redundancy filtering, and unanswerable question recognition. We evaluate reasoning LLMs (RLMs), including DeepSeek-R1, OpenAI O3-mini, Claude-3.7-sonnet and compare them against a powerful non-reasoning model, e.g., GPT-4o. Our experiments reveal that RLMs generate up to 70x more tokens than necessary, often failing at tasks that simpler non-reasoning models handle efficiently with higher accuracy. Our findings underscore the need for more effective training and inference strategies in RLMs.
♻ ☆ Multimodal machine learning with large language embedding model for polymer property prediction
Contemporary large language models (LLMs), such as GPT-4 and Llama, have harnessed extensive computational power and diverse text corpora to achieve remarkable proficiency in interpreting and generating domain-specific content, including materials science. To leverage the domain knowledge embedded within these models, we propose a simple yet effective multimodal architecture, PolyLLMem, which integrates text embeddings generated by Llama 3 with molecular structure embeddings derived from Uni-Mol, for polymer properties prediction tasks. In our model, Low-rank adaptation (LoRA) layers were also incorporated during the property prediction tasks to refine the embeddings based on our limited polymer dataset, thereby enhancing their chemical relevance for polymer SMILES representation. This balanced fusion of fine-tuned textual and structural information enables PolyLLMem to accurately predict a variety of polymer properties despite the scarcity of training data. Its performance is comparable to, and in some cases exceeds, that of graph-based models, as well as transformer-based models that typically require pretraining on millions of polymer samples. These findings demonstrate that LLM, such as Llama, can effectively capture chemical information encoded in polymer PSMILES, and underscore the efficacy of multimodal fusion of LLM embeddings and molecular structure embeddings in overcoming data scarcity and accelerating the discovery of advanced polymeric materials.
♻ ☆ UniAP: Unifying Inter- and Intra-Layer Automatic Parallelism by Mixed Integer Quadratic Programming CVPR 2025
Distributed learning is commonly used for training deep learning models, especially large models. In distributed learning, manual parallelism (MP) methods demand considerable human effort and have limited flexibility. Hence, automatic parallelism (AP) methods have recently been proposed for automating the parallel strategy optimization process. Existing AP methods suffer from sub-optimal solutions because they do not jointly optimize the two categories of parallel strategies (i.e., inter-layer parallelism and intra-layer parallelism). In this paper, we propose a novel AP method called UniAP, which unifies inter- and intra-layer automatic parallelism by mixed integer quadratic programming. To the best of our knowledge, UniAP is the first parallel method that can jointly optimize the two categories of parallel strategies to find an optimal solution. Experimental results show that UniAP outperforms state-of-the-art methods by up to 3.80$\times$ in throughput and reduces strategy optimization time by up to 107$\times$ across five Transformer-based models.
comment: 17 pages, 10 figures, CVPR 2025
♻ ☆ Foundational theories of hesitant fuzzy sets and families of hesitant fuzzy sets
Hesitant fuzzy sets find extensive application in specific scenarios involving uncertainty and hesitation. In the context of set theory, the concept of inclusion relationship holds significant importance as a fundamental definition. Consequently, as a type of sets, hesitant fuzzy sets necessitate a clear and explicit definition of the inclusion relationship. Based on the discrete form of hesitant fuzzy membership degrees, this study proposes multiple types of inclusion relationships for hesitant fuzzy sets. Subsequently, this paper introduces foundational propositions related to hesitant fuzzy sets, as well as propositions concerning families of hesitant fuzzy sets.
comment: 15 pages
♻ ☆ Physical Data Embedding for Memory Efficient AI
Deep neural networks (DNNs) have achieved exceptional performance across various fields by learning complex, nonlinear mappings from large-scale datasets. However, they face challenges such as high memory requirements and computational costs with limited interpretability. This paper introduces an approach where master equations of physics are converted into multilayered networks that are trained via backpropagation. The resulting general-purpose model effectively encodes data in the properties of the underlying physical system. In contrast to existing methods wherein a trained neural network is used as a computationally efficient alternative for solving physical equations, our approach directly treats physics equations as trainable models. We demonstrate this physical embedding concept with the Nonlinear Schr\"odinger Equation (NLSE), which acts as trainable architecture for learning complex patterns including nonlinear mappings and memory effects from data. The network embeds data representation in orders of magnitude fewer parameters than conventional neural networks when tested on time series data. Notably, the trained "Nonlinear Schr\"odinger Network" is interpretable, with all parameters having physical meanings. This interpretability offers insight into the underlying dynamics of the system that produced the data. The proposed method of replacing traditional DNN feature learning architectures with physical equations is also extended to the Gross-Pitaevskii Equation, demonstrating the broad applicability of the framework to other master equations of physics. Among our results, an ablation study quantifies the relative importance of physical terms such as dispersion, nonlinearity, and potential energy for classification accuracy. We also outline the limitations of this approach as it relates to generalizability.
Artificial Intelligence 119
☆ Does Reinforcement Learning Really Incentivize Reasoning Capacity in LLMs Beyond the Base Model?
Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning capabilities of LLMs, particularly in mathematics and programming tasks. It is widely believed that RLVR enables LLMs to continuously self-improve, thus acquiring novel reasoning abilities that exceed corresponding base models' capacity. In this study, however, we critically re-examines this assumption by measuring the pass@\textit{k} metric with large values of \textit{k} to explore the reasoning capability boundary of the models across a wide range of model families and benchmarks. Surprisingly, the RL does \emph{not}, in fact, elicit fundamentally new reasoning patterns. While RL-trained models outperform their base models at smaller values of $k$ (\eg, $k$=1), base models can achieve a comparable or even higher pass@$k$ score compared to their RL counterparts at large $k$ values. The reasoning paths generated by RL-trained models are already included in the base models' sampling distribution, suggesting that most reasoning abilities manifested in RL-trained models are already obtained by base models. Further analysis shows that RL training boosts the performance by biasing the model's output distribution toward paths that are more likely to yield rewards, therefore sampling correct responses more efficiently. But this also results in a narrower reasoning capability boundary compared to base models. Similar results are observed in visual reasoning tasks trained with RLVR. Moreover, we find that distillation can genuinely introduce new knowledge into the model, different from RLVR. These findings underscore a critical limitation of RLVR in advancing LLM reasoning abilities which requires us to fundamentally rethink the impact of RL training in reasoning LLMs and the need of a better paradigm. Project Page: https://limit-of-RLVR.github.io
comment: 24 pages, 19 figures
☆ MIG: Automatic Data Selection for Instruction Tuning by Maximizing Information Gain in Semantic Space
Data quality and diversity are key to the construction of effective instruction-tuning datasets. % With the increasing availability of open-source instruction-tuning datasets, it is advantageous to automatically select high-quality and diverse subsets from a vast amount of data. % Existing methods typically prioritize instance quality and use heuristic rules to maintain diversity. % However, this absence of a comprehensive view of the entire collection often leads to suboptimal results. % Moreover, heuristic rules generally focus on distance or clustering within the embedding space, which fails to accurately capture the intent of complex instructions in the semantic space. % To bridge this gap, we propose a unified method for quantifying the information content of datasets. This method models the semantic space by constructing a label graph and quantifies diversity based on the distribution of information within the graph. % Based on such a measurement, we further introduce an efficient sampling method that selects data samples iteratively to \textbf{M}aximize the \textbf{I}nformation \textbf{G}ain (MIG) in semantic space. % Experiments on various datasets and base models demonstrate that MIG consistently outperforms state-of-the-art methods. % Notably, the model fine-tuned with 5\% Tulu3 data sampled by MIG achieves comparable performance to the official SFT model trained on the full dataset, with improvements of +5.73\% on AlpacaEval and +6.89\% on Wildbench.
☆ Generative AI Act II: Test Time Scaling Drives Cognition Engineering
The first generation of Large Language Models - what might be called "Act I" of generative AI (2020-2023) - achieved remarkable success through massive parameter and data scaling, yet exhibited fundamental limitations in knowledge latency, shallow reasoning, and constrained cognitive processes. During this era, prompt engineering emerged as our primary interface with AI, enabling dialogue-level communication through natural language. We now witness the emergence of "Act II" (2024-present), where models are transitioning from knowledge-retrieval systems (in latent space) to thought-construction engines through test-time scaling techniques. This new paradigm establishes a mind-level connection with AI through language-based thoughts. In this paper, we clarify the conceptual foundations of cognition engineering and explain why this moment is critical for its development. We systematically break down these advanced approaches through comprehensive tutorials and optimized implementations, democratizing access to cognition engineering and enabling every practitioner to participate in AI's second act. We provide a regularly updated collection of papers on test-time scaling in the GitHub Repository: https://github.com/GAIR-NLP/cognition-engineering
☆ Parameter-Efficient Continual Fine-Tuning: A Survey
The emergence of large pre-trained networks has revolutionized the AI field, unlocking new possibilities and achieving unprecedented performance. However, these models inherit a fundamental limitation from traditional Machine Learning approaches: their strong dependence on the \textit{i.i.d.} assumption hinders their adaptability to dynamic learning scenarios. We believe the next breakthrough in AI lies in enabling efficient adaptation to evolving environments -- such as the real world -- where new data and tasks arrive sequentially. This challenge defines the field of Continual Learning (CL), a Machine Learning paradigm focused on developing lifelong learning neural models. One alternative to efficiently adapt these large-scale models is known Parameter-Efficient Fine-Tuning (PEFT). These methods tackle the issue of adapting the model to a particular data or scenario by performing small and efficient modifications, achieving similar performance to full fine-tuning. However, these techniques still lack the ability to adjust the model to multiple tasks continually, as they suffer from the issue of Catastrophic Forgetting. In this survey, we first provide an overview of CL algorithms and PEFT methods before reviewing the state-of-the-art on Parameter-Efficient Continual Fine-Tuning (PECFT). We examine various approaches, discuss evaluation metrics, and explore potential future research directions. Our goal is to highlight the synergy between CL and Parameter-Efficient Fine-Tuning, guide researchers in this field, and pave the way for novel future research directions.
☆ Not All Rollouts are Useful: Down-Sampling Rollouts in LLM Reinforcement Learning
Reinforcement learning (RL) has emerged as a powerful paradigm for enhancing reasoning capabilities in large language models, but faces a fundamental asymmetry in computation and memory requirements: inference is embarrassingly parallel with a minimal memory footprint, while policy updates require extensive synchronization and are memory-intensive. To address this asymmetry, we introduce PODS (Policy Optimization with Down-Sampling), a framework that strategically decouples these phases by generating numerous rollouts in parallel but updating only on an informative subset. Within this framework, we develop max-variance down-sampling, a theoretically motivated method that selects rollouts with maximally diverse reward signals. We prove that this approach has an efficient algorithmic solution, and empirically demonstrate that GRPO with PODS using max-variance down-sampling achieves superior performance over standard GRPO on the GSM8K benchmark.
comment: 9 pages, 1 figure
☆ Near-optimal algorithms for private estimation and sequential testing of collision probability
We present new algorithms for estimating and testing \emph{collision probability}, a fundamental measure of the spread of a discrete distribution that is widely used in many scientific fields. We describe an algorithm that satisfies $(\alpha, \beta)$-local differential privacy and estimates collision probability with error at most $\epsilon$ using $\tilde{O}\left(\frac{\log(1/\beta)}{\alpha^2 \epsilon^2}\right)$ samples for $\alpha \le 1$, which improves over previous work by a factor of $\frac{1}{\alpha^2}$. We also present a sequential testing algorithm for collision probability, which can distinguish between collision probability values that are separated by $\epsilon$ using $\tilde{O}(\frac{1}{\epsilon^2})$ samples, even when $\epsilon$ is unknown. Our algorithms have nearly the optimal sample complexity, and in experiments we show that they require significantly fewer samples than previous methods.
☆ Imitation Learning with Precisely Labeled Human Demonstrations
Within the imitation learning paradigm, training generalist robots requires large-scale datasets obtainable only through diverse curation. Due to the relative ease to collect, human demonstrations constitute a valuable addition when incorporated appropriately. However, existing methods utilizing human demonstrations face challenges in inferring precise actions, ameliorating embodiment gaps, and fusing with frontier generalist robot training pipelines. In this work, building on prior studies that demonstrate the viability of using hand-held grippers for efficient data collection, we leverage the user's control over the gripper's appearance--specifically by assigning it a unique, easily segmentable color--to enable simple and reliable application of the RANSAC and ICP registration method for precise end-effector pose estimation. We show in simulation that precisely labeled human demonstrations on their own allow policies to reach on average 88.1% of the performance of using robot demonstrations, and boost policy performance when combined with robot demonstrations, despite the inherent embodiment gap.
☆ Meta-Learning and Knowledge Discovery based Physics-Informed Neural Network for Remaining Useful Life Prediction
Predicting the remaining useful life (RUL) of rotating machinery is critical for industrial safety and maintenance, but existing methods struggle with scarce target-domain data and unclear degradation dynamics. We propose a Meta-Learning and Knowledge Discovery-based Physics-Informed Neural Network (MKDPINN) to address these challenges. The method first maps noisy sensor data to a low-dimensional hidden state space via a Hidden State Mapper (HSM). A Physics-Guided Regulator (PGR) then learns unknown nonlinear PDEs governing degradation evolution, embedding these physical constraints into the PINN framework. This integrates data-driven and physics-based approaches. The framework uses meta-learning, optimizing across source-domain meta-tasks to enable few-shot adaptation to new target tasks. Experiments on industrial data and the C-MAPSS benchmark show MKDPINN outperforms baselines in generalization and accuracy, proving its effectiveness for RUL prediction under data scarcity
comment: 34 pages,20 figs
☆ Collective Learning Mechanism based Optimal Transport Generative Adversarial Network for Non-parallel Voice Conversion
After demonstrating significant success in image synthesis, Generative Adversarial Network (GAN) models have likewise made significant progress in the field of speech synthesis, leveraging their capacity to adapt the precise distribution of target data through adversarial learning processes. Notably, in the realm of State-Of-The-Art (SOTA) GAN-based Voice Conversion (VC) models, there exists a substantial disparity in naturalness between real and GAN-generated speech samples. Furthermore, while many GAN models currently operate on a single generator discriminator learning approach, optimizing target data distribution is more effectively achievable through a single generator multi-discriminator learning scheme. Hence, this study introduces a novel GAN model named Collective Learning Mechanism-based Optimal Transport GAN (CLOT-GAN) model, incorporating multiple discriminators, including the Deep Convolutional Neural Network (DCNN) model, Vision Transformer (ViT), and conformer. The objective of integrating various discriminators lies in their ability to comprehend the formant distribution of mel-spectrograms, facilitated by a collective learning mechanism. Simultaneously, the inclusion of Optimal Transport (OT) loss aims to precisely bridge the gap between the source and target data distribution, employing the principles of OT theory. The experimental validation on VCC 2018, VCTK, and CMU-Arctic datasets confirms that the CLOT-GAN-VC model outperforms existing VC models in objective and subjective assessments.
comment: 7 pages, 2 figures, 3 tables
☆ Probabilistic Stability Guarantees for Feature Attributions
Stability guarantees are an emerging tool for evaluating feature attributions, but existing certification methods rely on smoothed classifiers and often yield conservative guarantees. To address these limitations, we introduce soft stability and propose a simple, model-agnostic, and sample-efficient stability certification algorithm (SCA) that provides non-trivial and interpretable guarantees for any attribution. Moreover, we show that mild smoothing enables a graceful tradeoff between accuracy and stability, in contrast to prior certification methods that require a more aggressive compromise. Using Boolean function analysis, we give a novel characterization of stability under smoothing. We evaluate SCA on vision and language tasks, and demonstrate the effectiveness of soft stability in measuring the robustness of explanation methods.
☆ Learning Through Retrospection: Improving Trajectory Prediction for Automated Driving with Error Feedback
In automated driving, predicting trajectories of surrounding vehicles supports reasoning about scene dynamics and enables safe planning for the ego vehicle. However, existing models handle predictions as an instantaneous task of forecasting future trajectories based on observed information. As time proceeds, the next prediction is made independently of the previous one, which means that the model cannot correct its errors during inference and will repeat them. To alleviate this problem and better leverage temporal data, we propose a novel retrospection technique. Through training on closed-loop rollouts the model learns to use aggregated feedback. Given new observations it reflects on previous predictions and analyzes its errors to improve the quality of subsequent predictions. Thus, the model can learn to correct systematic errors during inference. Comprehensive experiments on nuScenes and Argoverse demonstrate a considerable decrease in minimum Average Displacement Error of up to 31.9% compared to the state-of-the-art baseline without retrospection. We further showcase the robustness of our technique by demonstrating a better handling of out-of-distribution scenarios with undetected road-users.
☆ DP2Unlearning: An Efficient and Guaranteed Unlearning Framework for LLMs
Large language models (LLMs) have recently revolutionized language processing tasks but have also brought ethical and legal issues. LLMs have a tendency to memorize potentially private or copyrighted information present in the training data, which might then be delivered to end users at inference time. When this happens, a naive solution is to retrain the model from scratch after excluding the undesired data. Although this guarantees that the target data have been forgotten, it is also prohibitively expensive for LLMs. Approximate unlearning offers a more efficient alternative, as it consists of ex post modifications of the trained model itself to prevent undesirable results, but it lacks forgetting guarantees because it relies solely on empirical evidence. In this work, we present DP2Unlearning, a novel LLM unlearning framework that offers formal forgetting guarantees at a significantly lower cost than retraining from scratch on the data to be retained. DP2Unlearning involves training LLMs on textual data protected using {\epsilon}-differential privacy (DP), which later enables efficient unlearning with the guarantees against disclosure associated with the chosen {\epsilon}. Our experiments demonstrate that DP2Unlearning achieves similar model performance post-unlearning, compared to an LLM retraining from scratch on retained data -- the gold standard exact unlearning -- but at approximately half the unlearning cost. In addition, with a reasonable computational cost, it outperforms approximate unlearning methods at both preserving the utility of the model post-unlearning and effectively forgetting the targeted information.
comment: 49 pages
☆ Decoding Vision Transformers: the Diffusion Steering Lens CVPR 2025
Logit Lens is a widely adopted method for mechanistic interpretability of transformer-based language models, enabling the analysis of how internal representations evolve across layers by projecting them into the output vocabulary space. Although applying Logit Lens to Vision Transformers (ViTs) is technically straightforward, its direct use faces limitations in capturing the richness of visual representations. Building on the work of Toker et al. (2024)~\cite{Toker2024-ve}, who introduced Diffusion Lens to visualize intermediate representations in the text encoders of text-to-image diffusion models, we demonstrate that while Diffusion Lens can effectively visualize residual stream representations in image encoders, it fails to capture the direct contributions of individual submodules. To overcome this limitation, we propose \textbf{Diffusion Steering Lens} (DSL), a novel, training-free approach that steers submodule outputs and patches subsequent indirect contributions. We validate our method through interventional studies, showing that DSL provides an intuitive and reliable interpretation of the internal processing in ViTs.
comment: 12 pages, 17 figures. Accepted to the CVPR 2025 Workshop on Mechanistic Interpretability for Vision (MIV)
☆ Scaling sparse feature circuit finding for in-context learning
Sparse autoencoders (SAEs) are a popular tool for interpreting large language model activations, but their utility in addressing open questions in interpretability remains unclear. In this work, we demonstrate their effectiveness by using SAEs to deepen our understanding of the mechanism behind in-context learning (ICL). We identify abstract SAE features that (i) encode the model's knowledge of which task to execute and (ii) whose latent vectors causally induce the task zero-shot. This aligns with prior work showing that ICL is mediated by task vectors. We further demonstrate that these task vectors are well approximated by a sparse sum of SAE latents, including these task-execution features. To explore the ICL mechanism, we adapt the sparse feature circuits methodology of Marks et al. (2024) to work for the much larger Gemma-1 2B model, with 30 times as many parameters, and to the more complex task of ICL. Through circuit finding, we discover task-detecting features with corresponding SAE latents that activate earlier in the prompt, that detect when tasks have been performed. They are causally linked with task-execution features through the attention and MLP sublayers.
☆ Towards Accurate and Interpretable Neuroblastoma Diagnosis via Contrastive Multi-scale Pathological Image Analysis
Neuroblastoma, adrenal-derived, is among the most common pediatric solid malignancies, characterized by significant clinical heterogeneity. Timely and accurate pathological diagnosis from hematoxylin and eosin-stained whole slide images is critical for patient prognosis. However, current diagnostic practices primarily rely on subjective manual examination by pathologists, leading to inconsistent accuracy. Existing automated whole slide image classification methods encounter challenges such as poor interpretability, limited feature extraction capabilities, and high computational costs, restricting their practical clinical deployment. To overcome these limitations, we propose CMSwinKAN, a contrastive-learning-based multi-scale feature fusion model tailored for pathological image classification, which enhances the Swin Transformer architecture by integrating a Kernel Activation Network within its multilayer perceptron and classification head modules, significantly improving both interpretability and accuracy. By fusing multi-scale features and leveraging contrastive learning strategies, CMSwinKAN mimics clinicians' comprehensive approach, effectively capturing global and local tissue characteristics. Additionally, we introduce a heuristic soft voting mechanism guided by clinical insights to seamlessly bridge patch-level predictions to whole slide image-level classifications. We validate CMSwinKAN on the PpNTs dataset, which was collaboratively established with our partner hospital and the publicly accessible BreakHis dataset. Results demonstrate that CMSwinKAN performs better than existing state-of-the-art pathology-specific models pre-trained on large datasets. Our source code is available at https://github.com/JSLiam94/CMSwinKAN.
comment: 14pages, 8 figures
☆ A Survey for What Developers Require in AI-powered Tools that Aid in Component Selection in CBSD
Although it has been more than four decades that the first components-based software development (CBSD) studies were conducted, there is still no standard method or tool for component selection which is widely accepted by the industry. The gulf between industry and academia contributes to the lack of an accepted tool. We conducted a mixed methods survey of nearly 100 people engaged in component-based software engineering practice or research to better understand the problems facing industry, how these needs could be addressed, and current best practices employed in component selection. We also sought to identify and prioritize quality criteria for component selection from an industry perspective. In response to the call for CBSD component selection tools to incorporate recent technical advances, we also explored the perceptions of professionals about AI-driven tools, present and envisioned.
comment: 10 pages, 4 figures, The 29th International Conference on Evaluation and Assessment in Software Engineering, 17 to 20 June, 2025, Istanbul, Turkey
☆ ESPLoRA: Enhanced Spatial Precision with Low-Rank Adaption in Text-to-Image Diffusion Models for High-Definition Synthesis
Diffusion models have revolutionized text-to-image (T2I) synthesis, producing high-quality, photorealistic images. However, they still struggle to properly render the spatial relationships described in text prompts. To address the lack of spatial information in T2I generations, existing methods typically use external network conditioning and predefined layouts, resulting in higher computational costs and reduced flexibility. Our approach builds upon a curated dataset of spatially explicit prompts, meticulously extracted and synthesized from LAION-400M to ensure precise alignment between textual descriptions and spatial layouts. Alongside this dataset, we present ESPLoRA, a flexible fine-tuning framework based on Low-Rank Adaptation, specifically designed to enhance spatial consistency in generative models without increasing generation time or compromising the quality of the outputs. In addition to ESPLoRA, we propose refined evaluation metrics grounded in geometric constraints, capturing 3D spatial relations such as \textit{in front of} or \textit{behind}. These metrics also expose spatial biases in T2I models which, even when not fully mitigated, can be strategically exploited by our TORE algorithm to further improve the spatial consistency of generated images. Our method outperforms the current state-of-the-art framework, CoMPaSS, by 13.33% on established spatial consistency benchmarks.
☆ Controlled Territory and Conflict Tracking (CONTACT): (Geo-)Mapping Occupied Territory from Open Source Intelligence
Open-source intelligence provides a stream of unstructured textual data that can inform assessments of territorial control. We present CONTACT, a framework for territorial control prediction using large language models (LLMs) and minimal supervision. We evaluate two approaches: SetFit, an embedding-based few-shot classifier, and a prompt tuning method applied to BLOOMZ-560m, a multilingual generative LLM. Our model is trained on a small hand-labeled dataset of news articles covering ISIS activity in Syria and Iraq, using prompt-conditioned extraction of control-relevant signals such as military operations, casualties, and location references. We show that the BLOOMZ-based model outperforms the SetFit baseline, and that prompt-based supervision improves generalization in low-resource settings. CONTACT demonstrates that LLMs fine-tuned using few-shot methods can reduce annotation burdens and support structured inference from open-ended OSINT streams. Our code is available at https://github.com/PaulKMandal/CONTACT/.
comment: 7 pages, 1 figure, 1 table
☆ Human-aligned Deep Learning: Explainability, Causality, and Biological Inspiration
This work aligns deep learning (DL) with human reasoning capabilities and needs to enable more efficient, interpretable, and robust image classification. We approach this from three perspectives: explainability, causality, and biological vision. Introduction and background open this work before diving into operative chapters. First, we assess neural networks' visualization techniques for medical images and validate an explainable-by-design method for breast mass classification. A comprehensive review at the intersection of XAI and causality follows, where we introduce a general scaffold to organize past and future research, laying the groundwork for our second perspective. In the causality direction, we propose novel modules that exploit feature co-occurrence in medical images, leading to more effective and explainable predictions. We further introduce CROCODILE, a general framework that integrates causal concepts, contrastive learning, feature disentanglement, and prior knowledge to enhance generalization. Lastly, we explore biological vision, examining how humans recognize objects, and propose CoCoReco, a connectivity-inspired network with context-aware attention mechanisms. Overall, our key findings include: (i) simple activation maximization lacks insight for medical imaging DL models; (ii) prototypical-part learning is effective and radiologically aligned; (iii) XAI and causal ML are deeply connected; (iv) weak causal signals can be leveraged without a priori information to improve performance and interpretability; (v) our framework generalizes across medical domains and out-of-distribution data; (vi) incorporating biological circuit motifs improves human-aligned recognition. This work contributes toward human-aligned DL and highlights pathways to bridge the gap between research and clinical adoption, with implications for improved trust, diagnostic accuracy, and safe deployment.
comment: Personal adaptation and expansion of doctoral thesis (originally submitted in Oct 2024, revisioned in Jan 2025)
☆ OpenDeception: Benchmarking and Investigating AI Deceptive Behaviors via Open-ended Interaction Simulation
As the general capabilities of large language models (LLMs) improve and agent applications become more widespread, the underlying deception risks urgently require systematic evaluation and effective oversight. Unlike existing evaluation which uses simulated games or presents limited choices, we introduce OpenDeception, a novel deception evaluation framework with an open-ended scenario dataset. OpenDeception jointly evaluates both the deception intention and capabilities of LLM-based agents by inspecting their internal reasoning process. Specifically, we construct five types of common use cases where LLMs intensively interact with the user, each consisting of ten diverse, concrete scenarios from the real world. To avoid ethical concerns and costs of high-risk deceptive interactions with human testers, we propose to simulate the multi-turn dialogue via agent simulation. Extensive evaluation of eleven mainstream LLMs on OpenDeception highlights the urgent need to address deception risks and security concerns in LLM-based agents: the deception intention ratio across the models exceeds 80%, while the deception success rate surpasses 50%. Furthermore, we observe that LLMs with stronger capabilities do exhibit a higher risk of deception, which calls for more alignment efforts on inhibiting deceptive behaviors.
☆ Exploring Multimodal Prompt for Visualization Authoring with Large Language Models
Recent advances in large language models (LLMs) have shown great potential in automating the process of visualization authoring through simple natural language utterances. However, instructing LLMs using natural language is limited in precision and expressiveness for conveying visualization intent, leading to misinterpretation and time-consuming iterations. To address these limitations, we conduct an empirical study to understand how LLMs interpret ambiguous or incomplete text prompts in the context of visualization authoring, and the conditions making LLMs misinterpret user intent. Informed by the findings, we introduce visual prompts as a complementary input modality to text prompts, which help clarify user intent and improve LLMs' interpretation abilities. To explore the potential of multimodal prompting in visualization authoring, we design VisPilot, which enables users to easily create visualizations using multimodal prompts, including text, sketches, and direct manipulations on existing visualizations. Through two case studies and a controlled user study, we demonstrate that VisPilot provides a more intuitive way to create visualizations without affecting the overall task efficiency compared to text-only prompting approaches. Furthermore, we analyze the impact of text and visual prompts in different visualization tasks. Our findings highlight the importance of multimodal prompting in improving the usability of LLMs for visualization authoring. We discuss design implications for future visualization systems and provide insights into how multimodal prompts can enhance human-AI collaboration in creative visualization tasks. All materials are available at https://OSF.IO/2QRAK.
comment: 11 pages, 8 figures
☆ AnyTSR: Any-Scale Thermal Super-Resolution for UAV
Thermal imaging can greatly enhance the application of intelligent unmanned aerial vehicles (UAV) in challenging environments. However, the inherent low resolution of thermal sensors leads to insufficient details and blurred boundaries. Super-resolution (SR) offers a promising solution to address this issue, while most existing SR methods are designed for fixed-scale SR. They are computationally expensive and inflexible in practical applications. To address above issues, this work proposes a novel any-scale thermal SR method (AnyTSR) for UAV within a single model. Specifically, a new image encoder is proposed to explicitly assign specific feature code to enable more accurate and flexible representation. Additionally, by effectively embedding coordinate offset information into the local feature ensemble, an innovative any-scale upsampler is proposed to better understand spatial relationships and reduce artifacts. Moreover, a novel dataset (UAV-TSR), covering both land and water scenes, is constructed for thermal SR tasks. Experimental results demonstrate that the proposed method consistently outperforms state-of-the-art methods across all scaling factors as well as generates more accurate and detailed high-resolution images. The code is located at https://github.com/vision4robotics/AnyTSR.
☆ Revisiting Uncertainty Quantification Evaluation in Language Models: Spurious Interactions with Response Length Bias Results
Uncertainty Quantification (UQ) in Language Models (LMs) is crucial for improving their safety and reliability. Evaluations often use performance metrics like AUROC to assess how well UQ methods (e.g., negative sequence probabilities) correlate with task correctness functions (e.g., ROUGE-L). In this paper, we show that commonly used correctness functions bias UQ evaluations by inflating the performance of certain UQ methods. We evaluate 7 correctness functions -- from lexical-based and embedding-based metrics to LLM-as-a-judge approaches -- across 4 datasets x 4 models x 6 UQ methods. Our analysis reveals that length biases in the errors of these correctness functions distort UQ assessments by interacting with length biases in UQ methods. We identify LLM-as-a-judge approaches as among the least length-biased choices and hence a potential solution to mitigate these biases.
☆ Trace Gadgets: Minimizing Code Context for Machine Learning-Based Vulnerability Prediction
As the number of web applications and API endpoints exposed to the Internet continues to grow, so does the number of exploitable vulnerabilities. Manually identifying such vulnerabilities is tedious. Meanwhile, static security scanners tend to produce many false positives. While machine learning-based approaches are promising, they typically perform well only in scenarios where training and test data are closely related. A key challenge for ML-based vulnerability detection is providing suitable and concise code context, as excessively long contexts negatively affect the code comprehension capabilities of machine learning models, particularly smaller ones. This work introduces Trace Gadgets, a novel code representation that minimizes code context by removing non-related code. Trace Gadgets precisely capture the statements that cover the path to the vulnerability. As input for ML models, Trace Gadgets provide a minimal but complete context, thereby improving the detection performance. Moreover, we collect a large-scale dataset generated from real-world applications with manually curated labels to further improve the performance of ML-based vulnerability detectors. Our results show that state-of-the-art machine learning models perform best when using Trace Gadgets compared to previous code representations, surpassing the detection capabilities of industry-standard static scanners such as GitHub's CodeQL by at least 4% on a fully unseen dataset. By applying our framework to real-world applications, we identify and report previously unknown vulnerabilities in widely deployed software.
☆ Large Language Models Will Change The Way Children Think About Technology And Impact Every Interaction Paradigm
This paper presents a hopeful perspective on the potentially dramatic impacts of Large Language Models on how we children learn and how they will expect to interact with technology. We review the effects of LLMs on education so far, and make the case that these effects are minor compared to the upcoming changes that are occurring. We present a small scenario and self-ethnographic study demonstrating the effects of these changes, and define five significant considerations that interactive systems designers will have to accommodate in the future.
comment: Accepted for IDC 2025. Citation: Russell Beale. 2025. Large Language Models Will Change The Way Children Think About Technology And Impact Every Interaction Paradigm. In Proceedings of Interaction Design and Children Conference (IDC2025). ACM, New York, NY, USA
☆ Do Prompt Patterns Affect Code Quality? A First Empirical Assessment of ChatGPT-Generated Code
Large Language Models (LLMs) have rapidly transformed software development, especially in code generation. However, their inconsistent performance, prone to hallucinations and quality issues, complicates program comprehension and hinders maintainability. Research indicates that prompt engineering-the practice of designing inputs to direct LLMs toward generating relevant outputs-may help address these challenges. In this regard, researchers have introduced prompt patterns, structured templates intended to guide users in formulating their requests. However, the influence of prompt patterns on code quality has yet to be thoroughly investigated. An improved understanding of this relationship would be essential to advancing our collective knowledge on how to effectively use LLMs for code generation, thereby enhancing their understandability in contemporary software development. This paper empirically investigates the impact of prompt patterns on code quality, specifically maintainability, security, and reliability, using the Dev-GPT dataset. Results show that Zero-Shot prompting is most common, followed by Zero-Shot with Chain-of-Thought and Few-Shot. Analysis of 7583 code files across quality metrics revealed minimal issues, with Kruskal-Wallis tests indicating no significant differences among patterns, suggesting that prompt structure may not substantially impact these quality metrics in ChatGPT-assisted code generation.
☆ Multi-Type Context-Aware Conversational Recommender Systems via Mixture-of-Experts
Conversational recommender systems enable natural language conversations and thus lead to a more engaging and effective recommendation scenario. As the conversations for recommender systems usually contain limited contextual information, many existing conversational recommender systems incorporate external sources to enrich the contextual information. However, how to combine different types of contextual information is still a challenge. In this paper, we propose a multi-type context-aware conversational recommender system, called MCCRS, effectively fusing multi-type contextual information via mixture-of-experts to improve conversational recommender systems. MCCRS incorporates both structured information and unstructured information, including the structured knowledge graph, unstructured conversation history, and unstructured item reviews. It consists of several experts, with each expert specialized in a particular domain (i.e., one specific contextual information). Multiple experts are then coordinated by a ChairBot to generate the final results. Our proposed MCCRS model takes advantage of different contextual information and the specialization of different experts followed by a ChairBot breaks the model bottleneck on a single contextual information. Experimental results demonstrate that our proposed MCCRS method achieves significantly higher performance compared to existing baselines.
comment: 30 pages
☆ Lightweight LiDAR-Camera 3D Dynamic Object Detection and Multi-Class Trajectory Prediction
Service mobile robots are often required to avoid dynamic objects while performing their tasks, but they usually have only limited computational resources. So we present a lightweight multi-modal framework for 3D object detection and trajectory prediction. Our system synergistically integrates LiDAR and camera inputs to achieve real-time perception of pedestrians, vehicles, and riders in 3D space. The framework proposes two novel modules: 1) a Cross-Modal Deformable Transformer (CMDT) for object detection with high accuracy and acceptable amount of computation, and 2) a Reference Trajectory-based Multi-Class Transformer (RTMCT) for efficient and diverse trajectory prediction of mult-class objects with flexible trajectory lengths. Evaluations on the CODa benchmark demonstrate superior performance over existing methods across detection (+2.03% in mAP) and trajectory prediction (-0.408m in minADE5 of pedestrians) metrics. Remarkably, the system exhibits exceptional deployability - when implemented on a wheelchair robot with an entry-level NVIDIA 3060 GPU, it achieves real-time inference at 13.2 fps. To facilitate reproducibility and practical deployment, we release the related code of the method at https://github.com/TossherO/3D_Perception and its ROS inference version at https://github.com/TossherO/ros_packages.
☆ Exploring the Potential for Large Language Models to Demonstrate Rational Probabilistic Beliefs
Advances in the general capabilities of large language models (LLMs) have led to their use for information retrieval, and as components in automated decision systems. A faithful representation of probabilistic reasoning in these models may be essential to ensure trustworthy, explainable and effective performance in these tasks. Despite previous work suggesting that LLMs can perform complex reasoning and well-calibrated uncertainty quantification, we find that current versions of this class of model lack the ability to provide rational and coherent representations of probabilistic beliefs. To demonstrate this, we introduce a novel dataset of claims with indeterminate truth values and apply a number of well-established techniques for uncertainty quantification to measure the ability of LLM's to adhere to fundamental properties of probabilistic reasoning.
comment: 8 pages, 4 figures
☆ Multi-modal Knowledge Graph Generation with Semantics-enriched Prompts IJCNN 2025
Multi-modal Knowledge Graphs (MMKGs) have been widely applied across various domains for knowledge representation. However, the existing MMKGs are significantly fewer than required, and their construction faces numerous challenges, particularly in ensuring the selection of high-quality, contextually relevant images for knowledge graph enrichment. To address these challenges, we present a framework for constructing MMKGs from conventional KGs. Furthermore, to generate higher-quality images that are more relevant to the context in the given knowledge graph, we designed a neighbor selection method called Visualizable Structural Neighbor Selection (VSNS). This method consists of two modules: Visualizable Neighbor Selection (VNS) and Structural Neighbor Selection (SNS). The VNS module filters relations that are difficult to visualize, while the SNS module selects neighbors that most effectively capture the structural characteristics of the entity. To evaluate the quality of the generated images, we performed qualitative and quantitative evaluations on two datasets, MKG-Y and DB15K. The experimental results indicate that using the VSNS method to select neighbors results in higher-quality images that are more relevant to the knowledge graph.
comment: Accepted by IJCNN 2025
☆ Divergent LLM Adoption and Heterogeneous Convergence Paths in Research Writing
Large Language Models (LLMs), such as ChatGPT, are reshaping content creation and academic writing. This study investigates the impact of AI-assisted generative revisions on research manuscripts, focusing on heterogeneous adoption patterns and their influence on writing convergence. Leveraging a dataset of over 627,000 academic papers from arXiv, we develop a novel classification framework by fine-tuning prompt- and discipline-specific large language models to detect the style of ChatGPT-revised texts. Our findings reveal substantial disparities in LLM adoption across academic disciplines, gender, native language status, and career stage, alongside a rapid evolution in scholarly writing styles. Moreover, LLM usage enhances clarity, conciseness, and adherence to formal writing conventions, with improvements varying by revision type. Finally, a difference-in-differences analysis shows that while LLMs drive convergence in academic writing, early adopters, male researchers, non-native speakers, and junior scholars exhibit the most pronounced stylistic shifts, aligning their writing more closely with that of established researchers.
☆ Thought Manipulation: External Thought Can Be Efficient for Large Reasoning Models
Recent advancements in large reasoning models (LRMs) have demonstrated the effectiveness of scaling test-time computation to enhance reasoning capabilities in multiple tasks. However, LRMs typically suffer from "overthinking" problems, where models generate significantly redundant reasoning steps while bringing limited performance gains. Existing work relies on fine-tuning to mitigate overthinking, which requires additional data, unconventional training setups, risky safety misalignment, and poor generalization. Through empirical analysis, we reveal an important characteristic of LRM behaviors that placing external CoTs generated by smaller models between the thinking token ($\texttt{}$ and $\texttt{)}$ can effectively manipulate the model to generate fewer thoughts. Building on these insights, we propose a simple yet efficient pipeline, ThoughtMani, to enable LRMs to bypass unnecessary intermediate steps and reduce computational costs significantly. We conduct extensive experiments to validate the utility and efficiency of ThoughtMani. For instance, when applied to QwQ-32B on the LiveBench/Code dataset, ThoughtMani keeps the original performance and reduces output token counts by approximately 30%, with little overhead from the CoT generator. Furthermore, we find that ThoughtMani enhances safety alignment by an average of 10%. Since model vendors typically serve models of different sizes simultaneously, ThoughtMani provides an effective way to construct more efficient and accessible LRMs for real-world applications.
☆ Adaptive Long-term Embedding with Denoising and Augmentation for Recommendation
The rapid growth of the internet has made personalized recommendation systems indispensable. Graph-based sequential recommendation systems, powered by Graph Neural Networks (GNNs), effectively capture complex user-item interactions but often face challenges such as noise and static representations. In this paper, we introduce the Adaptive Long-term Embedding with Denoising and Augmentation for Recommendation (ALDA4Rec) method, a novel model that constructs an item-item graph, filters noise through community detection, and enriches user-item interactions. Graph Convolutional Networks (GCNs) are then employed to learn short-term representations, while averaging, GRUs, and attention mechanisms are utilized to model long-term embeddings. An MLP-based adaptive weighting strategy is further incorporated to dynamically optimize long-term user preferences. Experiments conducted on four real-world datasets demonstrate that ALDA4Rec outperforms state-of-the-art baselines, delivering notable improvements in both accuracy and robustness. The source code is available at https://github.com/zahraakhlaghi/ALDA4Rec.
☆ Entropic Time Schedulers for Generative Diffusion Models
The practical performance of generative diffusion models depends on the appropriate choice of the noise scheduling function, which can also be equivalently expressed as a time reparameterization. In this paper, we present a time scheduler that selects sampling points based on entropy rather than uniform time spacing, ensuring that each point contributes an equal amount of information to the final generation. We prove that this time reparameterization does not depend on the initial choice of time. Furthermore, we provide a tractable exact formula to estimate this \emph{entropic time} for a trained model using the training loss without substantial overhead. Alongside the entropic time, inspired by the optimality results, we introduce a rescaled entropic time. In our experiments with mixtures of Gaussian distributions and ImageNet, we show that using the (rescaled) entropic times greatly improves the inference performance of trained models. In particular, we found that the image quality in pretrained EDM2 models, as evaluated by FID and FD-DINO scores, can be substantially increased by the rescaled entropic time reparameterization without increasing the number of function evaluations, with greater improvements in the few NFEs regime.
comment: 17 pages
☆ FocusNet: Transformer-enhanced Polyp Segmentation with Local and Pooling Attention
Colonoscopy is vital in the early diagnosis of colorectal polyps. Regular screenings can effectively prevent benign polyps from progressing to CRC. While deep learning has made impressive strides in polyp segmentation, most existing models are trained on single-modality and single-center data, making them less effective in real-world clinical environments. To overcome these limitations, we propose FocusNet, a Transformer-enhanced focus attention network designed to improve polyp segmentation. FocusNet incorporates three essential modules: the Cross-semantic Interaction Decoder Module (CIDM) for generating coarse segmentation maps, the Detail Enhancement Module (DEM) for refining shallow features, and the Focus Attention Module (FAM), to balance local detail and global context through local and pooling attention mechanisms. We evaluate our model on PolypDB, a newly introduced dataset with multi-modality and multi-center data for building more reliable segmentation methods. Extensive experiments showed that FocusNet consistently outperforms existing state-of-the-art approaches with a high dice coefficients of 82.47% on the BLI modality, 88.46% on FICE, 92.04% on LCI, 82.09% on the NBI and 93.42% on WLI modality, demonstrating its accuracy and robustness across five different modalities. The source code for FocusNet is available at https://github.com/JunZengz/FocusNet.
comment: 9 pages, 6 figures
☆ HAECcity: Open-Vocabulary Scene Understanding of City-Scale Point Clouds with Superpoint Graph Clustering CVPR
Traditional 3D scene understanding techniques are generally predicated on hand-annotated label sets, but in recent years a new class of open-vocabulary 3D scene understanding techniques has emerged. Despite the success of this paradigm on small scenes, existing approaches cannot scale efficiently to city-scale 3D datasets. In this paper, we present Hierarchical vocab-Agnostic Expert Clustering (HAEC), after the latin word for 'these', a superpoint graph clustering based approach which utilizes a novel mixture of experts graph transformer for its backbone. We administer this highly scalable approach to the first application of open-vocabulary scene understanding on the SensatUrban city-scale dataset. We also demonstrate a synthetic labeling pipeline which is derived entirely from the raw point clouds with no hand-annotation. Our technique can help unlock complex operations on dense urban 3D scenes and open a new path forward in the processing of digital twins.
comment: Accepted for publication through the upcoming CVPR Workshop on open scene understanding with foundation models (OPENSUN3D)
☆ RAG Without the Lag: Interactive Debugging for Retrieval-Augmented Generation Pipelines
Retrieval-augmented generation (RAG) pipelines have become the de-facto approach for building AI assistants with access to external, domain-specific knowledge. Given a user query, RAG pipelines typically first retrieve (R) relevant information from external sources, before invoking a Large Language Model (LLM), augmented (A) with this information, to generate (G) responses. Modern RAG pipelines frequently chain multiple retrieval and generation components, in any order. However, developing effective RAG pipelines is challenging because retrieval and generation components are intertwined, making it hard to identify which component(s) cause errors in the eventual output. The parameters with the greatest impact on output quality often require hours of pre-processing after each change, creating prohibitively slow feedback cycles. To address these challenges, we present RAGGY, a developer tool that combines a Python library of composable RAG primitives with an interactive interface for real-time debugging. We contribute the design and implementation of RAGGY, insights into expert debugging patterns through a qualitative study with 12 engineers, and design implications for future RAG tools that better align with developers' natural workflows.
comment: 15 pages, 7 figures, 2 tables
☆ MetaDSE: A Few-shot Meta-learning Framework for Cross-workload CPU Design Space Exploration
Cross-workload design space exploration (DSE) is crucial in CPU architecture design. Existing DSE methods typically employ the transfer learning technique to leverage knowledge from source workloads, aiming to minimize the requirement of target workload simulation. However, these methods struggle with overfitting, data ambiguity, and workload dissimilarity. To address these challenges, we reframe the cross-workload CPU DSE task as a few-shot meta-learning problem and further introduce MetaDSE. By leveraging model agnostic meta-learning, MetaDSE swiftly adapts to new target workloads, greatly enhancing the efficiency of cross-workload CPU DSE. Additionally, MetaDSE introduces a novel knowledge transfer method called the workload-adaptive architectural mask algorithm, which uncovers the inherent properties of the architecture. Experiments on SPEC CPU 2017 demonstrate that MetaDSE significantly reduces prediction error by 44.3\% compared to the state-of-the-art. MetaDSE is open-sourced and available at this \href{https://anonymous.4open.science/r/Meta_DSE-02F8}{anonymous GitHub.}
comment: 7 pages, 6 figures. Accepted by DAC 2025
☆ Zero-Shot Industrial Anomaly Segmentation with Image-Aware Prompt Generation PAKDD 2025
Anomaly segmentation is essential for industrial quality, maintenance, and stability. Existing text-guided zero-shot anomaly segmentation models are effective but rely on fixed prompts, limiting adaptability in diverse industrial scenarios. This highlights the need for flexible, context-aware prompting strategies. We propose Image-Aware Prompt Anomaly Segmentation (IAP-AS), which enhances anomaly segmentation by generating dynamic, context-aware prompts using an image tagging model and a large language model (LLM). IAP-AS extracts object attributes from images to generate context-aware prompts, improving adaptability and generalization in dynamic and unstructured industrial environments. In our experiments, IAP-AS improves the F1-max metric by up to 10%, demonstrating superior adaptability and generalization. It provides a scalable solution for anomaly segmentation across industries
comment: Accepted to PAKDD 2025, 12 pages
Transformers Can Overcome the Curse of Dimensionality: A Theoretical Study from an Approximation Perspective
The Transformer model is widely used in various application areas of machine learning, such as natural language processing. This paper investigates the approximation of the H\"older continuous function class $\mathcal{H}_{Q}^{\beta}\left([0,1]^{d\times n},\mathbb{R}^{d\times n}\right)$ by Transformers and constructs several Transformers that can overcome the curse of dimensionality. These Transformers consist of one self-attention layer with one head and the softmax function as the activation function, along with several feedforward layers. For example, to achieve an approximation accuracy of $\epsilon$, if the activation functions of the feedforward layers in the Transformer are ReLU and floor, only $\mathcal{O}\left(\log\frac{1}{\epsilon}\right)$ layers of feedforward layers are needed, with widths of these layers not exceeding $\mathcal{O}\left(\frac{1}{\epsilon^{2/\beta}}\log\frac{1}{\epsilon}\right)$. If other activation functions are allowed in the feedforward layers, the width of the feedforward layers can be further reduced to a constant. These results demonstrate that Transformers have a strong expressive capability. The construction in this paper is based on the Kolmogorov-Arnold Representation Theorem and does not require the concept of contextual mapping, hence our proof is more intuitively clear compared to previous Transformer approximation works. Additionally, the translation technique proposed in this paper helps to apply the previous approximation results of feedforward neural networks to Transformer research.
☆ Task Assignment and Exploration Optimization for Low Altitude UAV Rescue via Generative AI Enhanced Multi-agent Reinforcement Learning
Artificial Intelligence (AI)-driven convolutional neural networks enhance rescue, inspection, and surveillance tasks performed by low-altitude uncrewed aerial vehicles (UAVs) and ground computing nodes (GCNs) in unknown environments. However, their high computational demands often exceed a single UAV's capacity, leading to system instability, further exacerbated by the limited and dynamic resources of GCNs. To address these challenges, this paper proposes a novel cooperation framework involving UAVs, ground-embedded robots (GERs), and high-altitude platforms (HAPs), which enable resource pooling through UAV-to-GER (U2G) and UAV-to-HAP (U2H) communications to provide computing services for UAV offloaded tasks. Specifically, we formulate the multi-objective optimization problem of task assignment and exploration optimization in UAVs as a dynamic long-term optimization problem. Our objective is to minimize task completion time and energy consumption while ensuring system stability over time. To achieve this, we first employ the Lyapunov optimization technique to transform the original problem, with stability constraints, into a per-slot deterministic problem. We then propose an algorithm named HG-MADDPG, which combines the Hungarian algorithm with a generative diffusion model (GDM)-based multi-agent deep deterministic policy gradient (MADDPG) approach. We first introduce the Hungarian algorithm as a method for exploration area selection, enhancing UAV efficiency in interacting with the environment. We then innovatively integrate the GDM and multi-agent deep deterministic policy gradient (MADDPG) to optimize task assignment decisions, such as task offloading and resource allocation. Simulation results demonstrate the effectiveness of the proposed approach, with significant improvements in task offloading efficiency, latency reduction, and system stability compared to baseline methods.
☆ Q-FAKER: Query-free Hard Black-box Attack via Controlled Generation NAACL 2025
Many adversarial attack approaches are proposed to verify the vulnerability of language models. However, they require numerous queries and the information on the target model. Even black-box attack methods also require the target model's output information. They are not applicable in real-world scenarios, as in hard black-box settings where the target model is closed and inaccessible. Even the recently proposed hard black-box attacks still require many queries and demand extremely high costs for training adversarial generators. To address these challenges, we propose Q-faker (Query-free Hard Black-box Attacker), a novel and efficient method that generates adversarial examples without accessing the target model. To avoid accessing the target model, we use a surrogate model instead. The surrogate model generates adversarial sentences for a target-agnostic attack. During this process, we leverage controlled generation techniques. We evaluate our proposed method on eight datasets. Experimental results demonstrate our method's effectiveness including high transferability and the high quality of the generated adversarial examples, and prove its practical in hard black-box settings.
comment: NAACL 2025 Findings
☆ Beyond One-Hot Labels: Semantic Mixing for Model Calibration
Model calibration seeks to ensure that models produce confidence scores that accurately reflect the true likelihood of their predictions being correct. However, existing calibration approaches are fundamentally tied to datasets of one-hot labels implicitly assuming full certainty in all the annotations. Such datasets are effective for classification but provides insufficient knowledge of uncertainty for model calibration, necessitating the curation of datasets with numerically rich ground-truth confidence values. However, due to the scarcity of uncertain visual examples, such samples are not easily available as real datasets. In this paper, we introduce calibration-aware data augmentation to create synthetic datasets of diverse samples and their ground-truth uncertainty. Specifically, we present Calibration-aware Semantic Mixing (CSM), a novel framework that generates training samples with mixed class characteristics and annotates them with distinct confidence scores via diffusion models. Based on this framework, we propose calibrated reannotation to tackle the misalignment between the annotated confidence score and the mixing ratio during the diffusion reverse process. Besides, we explore the loss functions that better fit the new data representation paradigm. Experimental results demonstrate that CSM achieves superior calibration compared to the state-of-the-art calibration approaches. Code is available at github.com/E-Galois/CSM.
☆ Enhancing Multilingual Sentiment Analysis with Explainability for Sinhala, English, and Code-Mixed Content
Sentiment analysis is crucial for brand reputation management in the banking sector, where customer feedback spans English, Sinhala, Singlish, and code-mixed text. Existing models struggle with low-resource languages like Sinhala and lack interpretability for practical use. This research develops a hybrid aspect-based sentiment analysis framework that enhances multilingual capabilities with explainable outputs. Using cleaned banking customer reviews, we fine-tune XLM-RoBERTa for Sinhala and code-mixed text, integrate domain-specific lexicon correction, and employ BERT-base-uncased for English. The system classifies sentiment (positive, neutral, negative) with confidence scores, while SHAP and LIME improve interpretability by providing real-time sentiment explanations. Experimental results show that our approaches outperform traditional transformer-based classifiers, achieving 92.3 percent accuracy and an F1-score of 0.89 in English and 88.4 percent in Sinhala and code-mixed content. An explainability analysis reveals key sentiment drivers, improving trust and transparency. A user-friendly interface delivers aspect-wise sentiment insights, ensuring accessibility for businesses. This research contributes to robust, transparent sentiment analysis for financial applications by bridging gaps in multilingual, low-resource NLP and explainability.
comment: 6 pages, 6 figures, 4 tables
☆ SwitchMT: An Adaptive Context Switching Methodology for Scalable Multi-Task Learning in Intelligent Autonomous Agents
The ability to train intelligent autonomous agents (such as mobile robots) on multiple tasks is crucial for adapting to dynamic real-world environments. However, state-of-the-art reinforcement learning (RL) methods only excel in single-task settings, and still struggle to generalize across multiple tasks due to task interference. Moreover, real-world environments also demand the agents to have data stream processing capabilities. Toward this, a state-of-the-art work employs Spiking Neural Networks (SNNs) to improve multi-task learning by exploiting temporal information in data stream, while enabling lowpower/energy event-based operations. However, it relies on fixed context/task-switching intervals during its training, hence limiting the scalability and effectiveness of multi-task learning. To address these limitations, we propose SwitchMT, a novel adaptive task-switching methodology for RL-based multi-task learning in autonomous agents. Specifically, SwitchMT employs the following key ideas: (1) a Deep Spiking Q-Network with active dendrites and dueling structure, that utilizes task-specific context signals to create specialized sub-networks; and (2) an adaptive task-switching policy that leverages both rewards and internal dynamics of the network parameters. Experimental results demonstrate that SwitchMT achieves superior performance in multi-task learning compared to state-of-the-art methods. It achieves competitive scores in multiple Atari games (i.e., Pong: -8.8, Breakout: 5.6, and Enduro: 355.2) compared to the state-of-the-art, showing its better generalized learning capability. These results highlight the effectiveness of our SwitchMT methodology in addressing task interference while enabling multi-task learning automation through adaptive task switching, thereby paving the way for more efficient generalist agents with scalable multi-task learning capabilities.
comment: 7 pages, 7 figures, 3 tables
☆ CoT-RAG: Integrating Chain of Thought and Retrieval-Augmented Generation to Enhance Reasoning in Large Language Models
While chain-of-thought (CoT) reasoning improves the performance of large language models (LLMs) in complex tasks, it still has two main challenges: the low reliability of relying solely on LLMs to generate reasoning chains and the interference of natural language reasoning chains on the inference logic of LLMs. To address these issues, we propose CoT-RAG, a novel reasoning framework with three key designs: (i) Knowledge Graph-driven CoT Generation, featuring knowledge graphs to modulate reasoning chain generation of LLMs, thereby enhancing reasoning credibility; (ii) Learnable Knowledge Case-aware RAG, which incorporates retrieval-augmented generation (RAG) into knowledge graphs to retrieve relevant sub-cases and sub-descriptions, providing LLMs with learnable information; (iii) Pseudo-Program Prompting Execution, which encourages LLMs to execute reasoning tasks in pseudo-programs with greater logical rigor. We conduct a comprehensive evaluation on nine public datasets, covering three reasoning problems. Compared with the-state-of-the-art methods, CoT-RAG exhibits a significant accuracy improvement, ranging from 4.0% to 23.0%. Furthermore, testing on four domain-specific datasets, CoT-RAG shows remarkable accuracy and efficient execution, highlighting its strong practical applicability and scalability.
☆ Deep Learning Models Meet Financial Data Modalities
Algorithmic trading relies on extracting meaningful signals from diverse financial data sources, including candlestick charts, order statistics on put and canceled orders, traded volume data, limit order books, and news flow. While deep learning has demonstrated remarkable success in processing unstructured data and has significantly advanced natural language processing, its application to structured financial data remains an ongoing challenge. This study investigates the integration of deep learning models with financial data modalities, aiming to enhance predictive performance in trading strategies and portfolio optimization. We present a novel approach to incorporating limit order book analysis into algorithmic trading by developing embedding techniques and treating sequential limit order book snapshots as distinct input channels in an image-based representation. Our methodology for processing limit order book data achieves state-of-the-art performance in high-frequency trading algorithms, underscoring the effectiveness of deep learning in financial applications.
comment: 15 pages, 14 images, 7 tables
☆ Optimizing Electric Vehicle Charging Station Locations: A Data-driven System with Multi-source Fusion
With the growing electric vehicles (EVs) charging demand, urban planners face the challenges of providing charging infrastructure at optimal locations. For example, range anxiety during long-distance travel and the inadequate distribution of residential charging stations are the major issues many cities face. To achieve reasonable estimation and deployment of the charging demand, we develop a data-driven system based on existing EV trips in New South Wales (NSW) state, Australia, incorporating multiple factors that enhance the geographical feasibility of recommended charging stations. Our system integrates data sources including EV trip data, geographical data such as route data and Local Government Area (LGA) boundaries, as well as features like fire and flood risks, and Points of Interest (POIs). We visualize our results to intuitively demonstrate the findings from our data-driven, multi-source fusion system, and evaluate them through case studies. The outcome of this work can provide a platform for discussion to develop new insights that could be used to give guidance on where to position future EV charging stations.
comment: 4-page short paper
☆ Large Language Models for Validating Network Protocol Parsers
Network protocol parsers are essential for enabling correct and secure communication between devices. Bugs in these parsers can introduce critical vulnerabilities, including memory corruption, information leakage, and denial-of-service attacks. An intuitive way to assess parser correctness is to compare the implementation with its official protocol standard. However, this comparison is challenging because protocol standards are typically written in natural language, whereas implementations are in source code. Existing methods like model checking, fuzzing, and differential testing have been used to find parsing bugs, but they either require significant manual effort or ignore the protocol standards, limiting their ability to detect semantic violations. To enable more automated validation of parser implementations against protocol standards, we propose PARVAL, a multi-agent framework built on large language models (LLMs). PARVAL leverages the capabilities of LLMs to understand both natural language and code. It transforms both protocol standards and their implementations into a unified intermediate representation, referred to as format specifications, and performs a differential comparison to uncover inconsistencies. We evaluate PARVAL on the Bidirectional Forwarding Detection (BFD) protocol. Our experiments demonstrate that PARVAL successfully identifies inconsistencies between the implementation and its RFC standard, achieving a low false positive rate of 5.6%. PARVAL uncovers seven unique bugs, including five previously unknown issues.
☆ Statistical Validation in Cultural Adaptations of Cognitive Tests: A Multi- Regional Systematic Review
This systematic review discusses the methodological approaches and statistical confirmations of cross-cultural adaptations of cognitive evaluation tools used with different populations. The review considers six seminal studies on the methodology of cultural adaptation in Europe, Asia, Africa, and South America. The results indicate that proper adaptations need holistic models with demographic changes, and education explained as much as 26.76% of the variance in MoCA-H scores. Cultural-linguistic factors explained 6.89% of the variance in European adaptations of MoCA-H; however, another study on adapted MMSE and BCSB among Brazilian Indigenous populations reported excellent diagnostic performance, with a sensitivity of 94.4% and specificity of 99.2%. There was 78.5% inter-rater agreement on the evaluation of cultural adaptation using the Manchester Translation Evaluation Checklist. A paramount message of the paper is that community feedback is necessary for culturally appropriate preparation, standardized translation protocols also must be included, along with robust statistical validation methodologies for developing cognitive assessment instruments. This review supplies evidence-based frameworks for the further adaptation of cognitive assessments in increasingly diverse global health settings.
comment: This paper is accepted and presented in the International Conference Challenges & Opportunities in Artificial Intelligence: Engineering & Management Applications (COAIEMA 2025) and to be published in Taylor & Francis Proceedings
☆ Integrating Locality-Aware Attention with Transformers for General Geometry PDEs IJCNN 2025
Neural operators have emerged as promising frameworks for learning mappings governed by partial differential equations (PDEs), serving as data-driven alternatives to traditional numerical methods. While methods such as the Fourier neural operator (FNO) have demonstrated notable performance, their reliance on uniform grids restricts their applicability to complex geometries and irregular meshes. Recently, Transformer-based neural operators with linear attention mechanisms have shown potential in overcoming these limitations for large-scale PDE simulations. However, these approaches predominantly emphasize global feature aggregation, often overlooking fine-scale dynamics and localized PDE behaviors essential for accurate solutions. To address these challenges, we propose the Locality-Aware Attention Transformer (LA2Former), which leverages K-nearest neighbors for dynamic patchifying and integrates global-local attention for enhanced PDE modeling. By combining linear attention for efficient global context encoding with pairwise attention for capturing intricate local interactions, LA2Former achieves an optimal balance between computational efficiency and predictive accuracy. Extensive evaluations across six benchmark datasets demonstrate that LA2Former improves predictive accuracy by over 50% relative to existing linear attention methods, while also outperforming full pairwise attention under optimal conditions. This work underscores the critical importance of localized feature learning in advancing Transformer-based neural operators for solving PDEs on complex and irregular domains.
comment: Accepted by IJCNN 2025
☆ Creating 'Full-Stack' Hybrid Reasoning Systems that Prioritize and Enhance Human Intelligence
The idea of augmented or hybrid intelligence offers a compelling vision for combining human and AI capabilities, especially in tasks where human wisdom, expertise, or common sense are essential. Unfortunately, human reasoning can be flawed and shortsighted, resulting in adverse individual impacts or even long-term societal consequences. While strong efforts are being made to develop and optimize the AI aspect of hybrid reasoning, the real urgency lies in fostering wiser and more intelligent human participation. Tools that enhance critical thinking, ingenuity, expertise, and even wisdom could be essential in addressing the challenges of our emerging future. This paper proposes the development of generative AI-based tools that enhance both the human ability to reflect upon a problem as well as the ability to explore the technical aspects of it. A high-level model is also described for integrating AI and human capabilities in a way that centralizes human participation and control.
comment: 10 pages; 3 figures; 1 table
CodeVisionary: An Agent-based Framework for Evaluating Large Language Models in Code Generation
Large language models (LLMs) have demonstrated strong capabilities in code generation, underscoring the critical need for rigorous and comprehensive evaluation. Existing evaluation approaches fall into three categories, including human-centered, metric-based, and LLM-based. Considering that human-centered approaches are labour-intensive and metric-based ones overly rely on reference answers, LLM-based approaches are gaining increasing attention due to their stronger contextual understanding capabilities and superior efficiency. However, the performance of LLM-based approaches remains limited due to: (1) lack of multisource domain knowledge, and (2) insufficient comprehension of complex code. To mitigate the limitations, we propose CodeVisionary, the first LLM-based agent framework for evaluating LLMs in code generation. CodeVisionary consists of two stages: (1) Multiscore knowledge analysis stage, which aims to gather multisource and comprehensive domain knowledge by formulating and executing a stepwise evaluation plan. (2) Negotiation-based scoring stage, which involves multiple judges engaging in discussions to better comprehend the complex code and reach a consensus on the evaluation score. Extensive experiments demonstrate that CodeVisionary achieves the best performance for evaluating LLMs in code generation, outperforming the best baseline methods with average improvements of 0.202, 0.139, and 0.117 in Pearson, Spearman, and Kendall-Tau coefficients, respectively. Besides, CodeVisionary provides detailed evaluation reports, which assist developers in identifying shortcomings and making improvements. The resources of CodeVisionary are available at https://anonymous.4open.science/r/CodeVisionary.
☆ Chain-of-Thought Textual Reasoning for Few-shot Temporal Action Localization
Traditional temporal action localization (TAL) methods rely on large amounts of detailed annotated data, whereas few-shot TAL reduces this dependence by using only a few training samples to identify unseen action categories. However, existing few-shot TAL methods typically focus solely on video-level information, neglecting textual information, which can provide valuable semantic support for the localization task. Therefore, we propose a new few-shot temporal action localization method by Chain-of-Thought textual reasoning to improve localization performance. Specifically, we design a novel few-shot learning framework that leverages textual semantic information to enhance the model's ability to capture action commonalities and variations, which includes a semantic-aware text-visual alignment module designed to align the query and support videos at different levels. Meanwhile, to better express the temporal dependencies and causal relationships between actions at the textual level to assist action localization, we design a Chain of Thought (CoT)-like reasoning method that progressively guides the Vision Language Model (VLM) and Large Language Model (LLM) to generate CoT-like text descriptions for videos. The generated texts can capture more variance of action than visual features. We conduct extensive experiments on the publicly available ActivityNet1.3 and THUMOS14 datasets. We introduce the first dataset named Human-related Anomaly Localization and explore the application of the TAL task in human anomaly detection. The experimental results demonstrate that our proposed method significantly outperforms existing methods in single-instance and multi-instance scenarios. We will release our code, data and benchmark.
☆ Ascribe New Dimensions to Scientific Data Visualization with VR
For over half a century, the computer mouse has been the primary tool for interacting with digital data, yet it remains a limiting factor in exploring complex, multi-scale scientific images. Traditional 2D visualization methods hinder intuitive analysis of inherently 3D structures. Virtual Reality (VR) offers a transformative alternative, providing immersive, interactive environments that enhance data comprehension. This article introduces ASCRIBE-VR, a VR platform of Autonomous Solutions for Computational Research with Immersive Browsing \& Exploration, which integrates AI-driven algorithms with scientific images. ASCRIBE-VR enables multimodal analysis, structural assessments, and immersive visualization, supporting scientific visualization of advanced datasets such as X-ray CT, Magnetic Resonance, and synthetic 3D imaging. Our VR tools, compatible with Meta Quest, can consume the output of our AI-based segmentation and iterative feedback processes to enable seamless exploration of large-scale 3D images. By merging AI-generated results with VR visualization, ASCRIBE-VR enhances scientific discovery, bridging the gap between computational analysis and human intuition in materials research, connecting human-in-the-loop with digital twins.
☆ Trust, but verify
Decentralized AI agent networks, such as Gaia, allows individuals to run customized LLMs on their own computers and then provide services to the public. However, in order to maintain service quality, the network must verify that individual nodes are running their designated LLMs. In this paper, we demonstrate that in a cluster of mostly honest nodes, we can detect nodes that run unauthorized or incorrect LLM through social consensus of its peers. We will discuss the algorithm and experimental data from the Gaia network. We will also discuss the intersubjective validation system, implemented as an EigenLayer AVS to introduce financial incentives and penalties to encourage honest behavior from LLM nodes.
☆ Bounded and Uniform Energy-based Out-of-distribution Detection for Graphs
Given the critical role of graphs in real-world applications and their high-security requirements, improving the ability of graph neural networks (GNNs) to detect out-of-distribution (OOD) data is an urgent research problem. The recent work GNNSAFE proposes a framework based on the aggregation of negative energy scores that significantly improves the performance of GNNs to detect node-level OOD data. However, our study finds that score aggregation among nodes is susceptible to extreme values due to the unboundedness of the negative energy scores and logit shifts, which severely limits the accuracy of GNNs in detecting node-level OOD data. In this paper, we propose NODESAFE: reducing the generation of extreme scores of nodes by adding two optimization terms that make the negative energy scores bounded and mitigate the logit shift. Experimental results show that our approach dramatically improves the ability of GNNs to detect OOD data at the node level, e.g., in detecting OOD data induced by Structure Manipulation, the metric of FPR95 (lower is better) in scenarios without (with) OOD data exposure are reduced from the current SOTA by 28.4% (22.7%).
comment: arXiv admin note: text overlap with arXiv:2302.02914 by other authors
☆ DADU: Dual Attention-based Deep Supervised UNet for Automated Semantic Segmentation of Cardiac Images
We propose an enhanced deep learning-based model for image segmentation of the left and right ventricles and myocardium scar tissue from cardiac magnetic resonance (CMR) images. The proposed technique integrates UNet, channel and spatial attention, edge-detection based skip-connection and deep supervised learning to improve the accuracy of the CMR image-segmentation. Images are processed using multiple channels to generate multiple feature-maps. We built a dual attention-based model to integrate channel and spatial attention. The use of extracted edges in skip connection improves the reconstructed images from feature-maps. The use of deep supervision reduces vanishing gradient problems inherent in classification based on deep neural networks. The algorithms for dual attention-based model, corresponding implementation and performance results are described. The performance results show that this approach has attained high accuracy: 98% Dice Similarity Score (DSC) and significantly lower Hausdorff Distance (HD). The performance results outperform other leading techniques both in DSC and HD.
comment: 20 pages, 8 figures
☆ Adaptive Non-local Observable on Quantum Neural Networks
Conventional Variational Quantum Circuits (VQCs) for Quantum Machine Learning typically rely on a fixed Hermitian observable, often built from Pauli operators. Inspired by the Heisenberg picture, we propose an adaptive non-local measurement framework that substantially increases the model complexity of the quantum circuits. Our introduction of dynamical Hermitian observables with evolving parameters shows that optimizing VQC rotations corresponds to tracing a trajectory in the observable space. This viewpoint reveals that standard VQCs are merely a special case of the Heisenberg representation. Furthermore, we show that properly incorporating variational rotations with non-local observables enhances qubit interaction and information mixture, admitting flexible circuit designs. Two non-local measurement schemes are introduced, and numerical simulations on classification tasks confirm that our approach outperforms conventional VQCs, yielding a more powerful and resource-efficient approach as a Quantum Neural Network.
☆ LoRA-Based Continual Learning with Constraints on Critical Parameter Changes
LoRA-based continual learning represents a promising avenue for leveraging pre-trained models in downstream continual learning tasks. Recent studies have shown that orthogonal LoRA tuning effectively mitigates forgetting. However, this work unveils that under orthogonal LoRA tuning, the critical parameters for pre-tasks still change notably after learning post-tasks. To address this problem, we directly propose freezing the most critical parameter matrices in the Vision Transformer (ViT) for pre-tasks before learning post-tasks. In addition, building on orthogonal LoRA tuning, we propose orthogonal LoRA composition (LoRAC) based on QR decomposition, which may further enhance the plasticity of our method. Elaborate ablation studies and extensive comparisons demonstrate the effectiveness of our proposed method. Our results indicate that our method achieves state-of-the-art (SOTA) performance on several well-known continual learning benchmarks. For instance, on the Split CIFAR-100 dataset, our method shows a 6.35\% improvement in accuracy and a 3.24\% reduction in forgetting compared to previous methods. Our code is available at https://github.com/learninginvision/LoRAC-IPC.
☆ LangCoop: Collaborative Driving with Language
Multi-agent collaboration holds great promise for enhancing the safety, reliability, and mobility of autonomous driving systems by enabling information sharing among multiple connected agents. However, existing multi-agent communication approaches are hindered by limitations of existing communication media, including high bandwidth demands, agent heterogeneity, and information loss. To address these challenges, we introduce LangCoop, a new paradigm for collaborative autonomous driving that leverages natural language as a compact yet expressive medium for inter-agent communication. LangCoop features two key innovations: Mixture Model Modular Chain-of-thought (M$^3$CoT) for structured zero-shot vision-language reasoning and Natural Language Information Packaging (LangPack) for efficiently packaging information into concise, language-based messages. Through extensive experiments conducted in the CARLA simulations, we demonstrate that LangCoop achieves a remarkable 96\% reduction in communication bandwidth (< 2KB per message) compared to image-based communication, while maintaining competitive driving performance in the closed-loop evaluation.
☆ Towards a Multi-Agent Vision-Language System for Zero-Shot Novel Hazardous Object Detection for Autonomous Driving Safety
Detecting anomalous hazards in visual data, particularly in video streams, is a critical challenge in autonomous driving. Existing models often struggle with unpredictable, out-of-label hazards due to their reliance on predefined object categories. In this paper, we propose a multimodal approach that integrates vision-language reasoning with zero-shot object detection to improve hazard identification and explanation. Our pipeline consists of a Vision-Language Model (VLM), a Large Language Model (LLM), in order to detect hazardous objects within a traffic scene. We refine object detection by incorporating OpenAI's CLIP model to match predicted hazards with bounding box annotations, improving localization accuracy. To assess model performance, we create a ground truth dataset by denoising and extending the foundational COOOL (Challenge-of-Out-of-Label) anomaly detection benchmark dataset with complete natural language descriptions for hazard annotations. We define a means of hazard detection and labeling evaluation on the extended dataset using cosine similarity. This evaluation considers the semantic similarity between the predicted hazard description and the annotated ground truth for each video. Additionally, we release a set of tools for structuring and managing large-scale hazard detection datasets. Our findings highlight the strengths and limitations of current vision-language-based approaches, offering insights into future improvements in autonomous hazard detection systems. Our models, scripts, and data can be found at https://github.com/mi3labucm/COOOLER.git
☆ Cardiac MRI Semantic Segmentation for Ventricles and Myocardium using Deep Learning
Automated noninvasive cardiac diagnosis plays a critical role in the early detection of cardiac disorders and cost-effective clinical management. Automated diagnosis involves the automated segmentation and analysis of cardiac images. Precise delineation of cardiac substructures and extraction of their morphological attributes are essential for evaluating the cardiac function, and diagnosing cardiovascular disease such as cardiomyopathy, valvular diseases, abnormalities related to septum perforations, and blood-flow rate. Semantic segmentation labels the CMR image at the pixel level, and localizes its subcomponents to facilitate the detection of abnormalities, including abnormalities in cardiac wall motion in an aging heart with muscle abnormalities, vascular abnormalities, and valvular abnormalities. In this paper, we describe a model to improve semantic segmentation of CMR images. The model extracts edge-attributes and context information during down-sampling of the U-Net and infuses this information during up-sampling to localize three major cardiac structures: left ventricle cavity (LV); right ventricle cavity (RV); and LV myocardium (LMyo). We present an algorithm and performance results. A comparison of our model with previous leading models, using similarity metrics between actual image and segmented image, shows that our approach improves Dice similarity coefficient (DSC) by 2%-11% and lowers Hausdorff distance (HD) by 1.6 to 5.7 mm.
comment: 20 pages, 8 figures
♻ ☆ Transferrable Surrogates in Expressive Neural Architecture Search Spaces
Neural architecture search (NAS) faces a challenge in balancing the exploration of expressive, broad search spaces that enable architectural innovation with the need for efficient evaluation of architectures to effectively search such spaces. We investigate surrogate model training for improving search in highly expressive NAS search spaces based on context-free grammars. We show that i) surrogate models trained either using zero-cost-proxy metrics and neural graph features (GRAF) or by fine-tuning an off-the-shelf LM have high predictive power for the performance of architectures both within and across datasets, ii) these surrogates can be used to filter out bad architectures when searching on novel datasets, thereby significantly speeding up search and achieving better final performances, and iii) the surrogates can be further used directly as the search objective for huge speed-ups.
comment: Project page at: https://shiwenqin.github.io/TransferrableSurrogate/
♻ ☆ Babysit A Language Model From Scratch: Interactive Language Learning by Trials and Demonstrations NAACL 2025
Humans are efficient language learners and inherently social creatures. Our language development is largely shaped by our social interactions, for example, the demonstration and feedback from caregivers. Contrary to human language learning, recent advancements in large language models have primarily adopted a non-interactive training paradigm, and refined pre-trained models through feedback afterward. In this work, we explore how corrective feedback from interactions influences neural language acquisition from scratch through systematically controlled experiments, assessing whether it contributes to word learning efficiency in language models. We introduce a trial-and-demonstration (TnD) learning framework that incorporates three distinct components: student trials, teacher demonstrations, and a reward conditioned on language competence at various developmental stages. Our experiments reveal that the TnD approach accelerates word acquisition for student models of equal and smaller numbers of parameters, and we highlight the significance of both trials and demonstrations. We further show that the teacher's choices of words influence students' word-specific learning efficiency, and a practice-makes-perfect effect is evident by a strong correlation between the frequency of words in trials and their respective learning curves. Our findings suggest that interactive language learning, with teacher demonstrations and active trials, can facilitate efficient word learning in language models.
comment: NAACL 2025 (Main) & Workshop on Large Language Models and Cognition @ ICML 2024 (Oral)
♻ ☆ Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching
We introduce Adjoint Sampling, a highly scalable and efficient algorithm for learning diffusion processes that sample from unnormalized densities, or energy functions. It is the first on-policy approach that allows significantly more gradient updates than the number of energy evaluations and model samples, allowing us to scale to much larger problem settings than previously explored by similar methods. Our framework is theoretically grounded in stochastic optimal control and shares the same theoretical guarantees as Adjoint Matching, being able to train without the need for corrective measures that push samples towards the target distribution. We show how to incorporate key symmetries, as well as periodic boundary conditions, for modeling molecules in both cartesian and torsional coordinates. We demonstrate the effectiveness of our approach through extensive experiments on classical energy functions, and further scale up to neural network-based energy models where we perform amortized conformer generation across many molecular systems. To encourage further research in developing highly scalable sampling methods, we plan to open source these challenging benchmarks, where successful methods can directly impact progress in computational chemistry.
♻ ☆ Project Alexandria: Towards Freeing Scientific Knowledge from Copyright Burdens via LLMs
Paywalls, licenses and copyright rules often restrict the broad dissemination and reuse of scientific knowledge. We take the position that it is both legally and technically feasible to extract the scientific knowledge in scholarly texts. Current methods, like text embeddings, fail to reliably preserve factual content, and simple paraphrasing may not be legally sound. We propose a new idea for the community to adopt: convert scholarly documents into knowledge preserving, but style agnostic representations we term Knowledge Units using LLMs. These units use structured data capturing entities, attributes and relationships without stylistic content. We provide evidence that Knowledge Units (1) form a legally defensible framework for sharing knowledge from copyrighted research texts, based on legal analyses of German copyright law and U.S. Fair Use doctrine, and (2) preserve most (~95\%) factual knowledge from original text, measured by MCQ performance on facts from the original copyrighted text across four research domains. Freeing scientific knowledge from copyright promises transformative benefits for scientific research and education by allowing language models to reuse important facts from copyrighted text. To support this, we share open-source tools for converting research documents into Knowledge Units. Overall, our work posits the feasibility of democratizing access to scientific knowledge while respecting copyright.
comment: Technical Report
♻ ☆ Only Send What You Need: Learning to Communicate Efficiently in Federated Multilingual Machine Translation
Federated learning (FL) is a promising distributed machine learning paradigm that enables multiple clients to collaboratively train a global model. In this paper, we focus on a practical federated multilingual learning setup where clients with their own language-specific data aim to collaboratively construct a high-quality neural machine translation (NMT) model. However, communication constraints in practical network systems present challenges for exchanging large-scale NMT engines between FL parties. We propose a meta-learning-based adaptive parameter selection methodology, MetaSend, that improves the communication efficiency of model transmissions from clients during FL-based multilingual NMT training. Our approach learns a dynamic threshold for filtering parameters prior to transmission without compromising the NMT model quality, based on the tensor deviations of clients between different FL rounds. Through experiments on two NMT datasets with different language distributions, we demonstrate that MetaSend obtains substantial improvements over baselines in translation quality in the presence of a limited communication budget.
♻ ☆ Understanding Epistemic Language with a Language-augmented Bayesian Theory of Mind ACL
How do people understand and evaluate claims about others' beliefs, even though these beliefs cannot be directly observed? In this paper, we introduce a cognitive model of epistemic language interpretation, grounded in Bayesian inferences about other agents' goals, beliefs, and intentions: a language-augmented Bayesian theory-of-mind (LaBToM). By translating natural language into an epistemic ``language-of-thought'' with grammar-constrained LLM decoding, then evaluating these translations against the inferences produced by inverting a generative model of rational action and perception, LaBToM captures graded plausibility judgments of epistemic claims. We validate our model in an experiment where participants watch an agent navigate a maze to find keys hidden in boxes needed to reach their goal, then rate sentences about the agent's beliefs. In contrast with multimodal LLMs (GPT-4o, Gemini Pro) and ablated models, our model correlates highly with human judgments for a wide range of expressions, including modal language, uncertainty expressions, knowledge claims, likelihood comparisons, and attributions of false belief.
comment: 23 pages; Published at the Transactions of the Association for Computational Linguistics (TACL); Presented at NAACL 2025
♻ ☆ AgentHarm: A Benchmark for Measuring Harmfulness of LLM Agents ICLR 2025
The robustness of LLMs to jailbreak attacks, where users design prompts to circumvent safety measures and misuse model capabilities, has been studied primarily for LLMs acting as simple chatbots. Meanwhile, LLM agents -- which use external tools and can execute multi-stage tasks -- may pose a greater risk if misused, but their robustness remains underexplored. To facilitate research on LLM agent misuse, we propose a new benchmark called AgentHarm. The benchmark includes a diverse set of 110 explicitly malicious agent tasks (440 with augmentations), covering 11 harm categories including fraud, cybercrime, and harassment. In addition to measuring whether models refuse harmful agentic requests, scoring well on AgentHarm requires jailbroken agents to maintain their capabilities following an attack to complete a multi-step task. We evaluate a range of leading LLMs, and find (1) leading LLMs are surprisingly compliant with malicious agent requests without jailbreaking, (2) simple universal jailbreak templates can be adapted to effectively jailbreak agents, and (3) these jailbreaks enable coherent and malicious multi-step agent behavior and retain model capabilities. To enable simple and reliable evaluation of attacks and defenses for LLM-based agents, we publicly release AgentHarm at https://huggingface.co/datasets/ai-safety-institute/AgentHarm.
comment: Accepted at ICLR 2025
♻ ☆ Unsupervised Machine Learning Hybrid Approach Integrating Linear Programming in Loss Function: A Robust Optimization Technique
This paper presents a novel hybrid approach that integrates linear programming (LP) within the loss function of an unsupervised machine learning model. By leveraging the strengths of both optimization techniques and machine learning, this method introduces a robust framework for solving complex optimization problems where traditional methods may fall short. The proposed approach encapsulates the constraints and objectives of a linear programming problem directly into the loss function, guiding the learning process to adhere to these constraints while optimizing the desired outcomes. This technique not only preserves the interpretability of linear programming but also benefits from the flexibility and adaptability of machine learning, making it particularly well-suited for unsupervised or semi-supervised learning scenarios.
♻ ☆ A Theory of LLM Sampling: Part Descriptive and Part Prescriptive
Large Language Models (LLMs) are increasingly utilized in autonomous decision-making, where they sample options from vast action spaces. However, the heuristics that guide this sampling process remain under-explored. We study this sampling behavior and show that this underlying heuristics resembles that of human decision-making: comprising a descriptive component (reflecting statistical norm) and a prescriptive component (implicit ideal encoded in the LLM) of a concept. We show that this deviation of a sample from the statistical norm towards a prescriptive component consistently appears in concepts across diverse real-world domains like public health, and economic trends. To further illustrate the theory, we demonstrate that concept prototypes in LLMs are affected by prescriptive norms, similar to the concept of normality in humans. Through case studies and comparison with human studies, we illustrate that in real-world applications, the shift of samples toward an ideal value in LLMs' outputs can result in significantly biased decision-making, raising ethical concerns.
♻ ☆ Can postgraduate translation students identify machine-generated text?
Given the growing use of generative artificial intelligence as a tool for creating multilingual content and bypassing both machine and traditional translation methods, this study explores the ability of linguistically trained individuals to discern machine-generated output from human-written text (HT). After brief training sessions on the textual anomalies typically found in synthetic text (ST), twenty-three postgraduate translation students analysed excerpts of Italian prose and assigned likelihood scores to indicate whether they believed they were human-written or AI-generated (ChatGPT-4o). The results show that, on average, the students struggled to distinguish between HT and ST, with only two participants achieving notable accuracy. Closer analysis revealed that the students often identified the same textual anomalies in both HT and ST, although features such as low burstiness and self-contradiction were more frequently associated with ST. These findings suggest the need for improvements in the preparatory training. Moreover, the study raises questions about the necessity of editing synthetic text to make it sound more human-like and recommends further research to determine whether AI-generated text is already sufficiently natural-sounding not to require further refinement.
comment: 10 pages, accepted for MT Summit 2025, Geneva, Switzerland, 23-27 June 2025
♻ ☆ HybridoNet-Adapt: A Domain-Adapted Framework for Accurate Lithium-Ion Battery RUL Prediction
Accurate prediction of the Remaining Useful Life (RUL) in Lithium ion battery (LIB) health management systems is essential for ensuring operational reliability and safety. However, many existing methods assume that training and testing data follow the same distribution, limiting their ability to generalize to unseen target domains. To address this, we propose a novel RUL prediction framework that incorporates a domain adaptation (DA) technique. Our framework integrates a signal preprocessing pipeline including noise reduction, feature extraction, and normalization with a robust deep learning model called HybridoNet Adapt. The model features a combination of LSTM, Multihead Attention, and Neural ODE layers for feature extraction, followed by two predictor modules with trainable trade-off parameters. To improve generalization, we adopt a DA strategy inspired by Domain Adversarial Neural Networks (DANN), replacing adversarial loss with Maximum Mean Discrepancy (MMD) to learn domain-invariant features. Experimental results show that HybridoNet Adapt significantly outperforms traditional models such as XGBoost and Elastic Net, as well as deep learning baselines like Dual input DNN, demonstrating its potential for scalable and reliable battery health management (BHM).
♻ ☆ An OpenMind for 3D medical vision self-supervised learning
The field of self-supervised learning (SSL) for 3D medical images lacks consistency and standardization. While many methods have been developed, it is impossible to identify the current state-of-the-art, due to i) varying and small pretraining datasets, ii) varying architectures, and iii) being evaluated on differing downstream datasets. In this paper, we bring clarity to this field and lay the foundation for further method advancements through three key contributions: We a) publish the largest publicly available pre-training dataset comprising 114k 3D brain MRI volumes, enabling all practitioners to pre-train on a large-scale dataset. We b) benchmark existing 3D self-supervised learning methods on this dataset for a state-of-the-art CNN and Transformer architecture, clarifying the state of 3D SSL pre-training. Among many findings, we show that pre-trained methods can exceed a strong from-scratch nnU-Net ResEnc-L baseline. Lastly, we c) publish the code of our pre-training and fine-tuning frameworks and provide the pre-trained models created during the benchmarking process to facilitate rapid adoption and reproduction.
comment: Pre-Print; Dataset, Benchmark and Codebase available through https://github.com/MIC-DKFZ/nnssl
♻ ☆ Diffusion Transformers for Tabular Data Time Series Generation ICLR 2025
Tabular data generation has recently attracted a growing interest due to its different application scenarios. However, generating time series of tabular data, where each element of the series depends on the others, remains a largely unexplored domain. This gap is probably due to the difficulty of jointly solving different problems, the main of which are the heterogeneity of tabular data (a problem common to non-time-dependent approaches) and the variable length of a time series. In this paper, we propose a Diffusion Transformers (DiTs) based approach for tabular data series generation. Inspired by the recent success of DiTs in image and video generation, we extend this framework to deal with heterogeneous data and variable-length sequences. Using extensive experiments on six datasets, we show that the proposed approach outperforms previous work by a large margin.
comment: Accepted at ICLR 2025. 26 pages, 19 figures, 13 tables
♻ ☆ Is In-Context Learning Sufficient for Instruction Following in LLMs? ICLR 2025
In-context learning (ICL) allows LLMs to learn from examples without changing their weights: this is a particularly promising capability for long-context LLMs that can potentially learn from many examples. Recently, Lin et al. (2024) proposed URIAL, a method using only three in-context examples to align base LLMs, achieving non-trivial instruction following performance. In this work, we show that, while effective, ICL alignment with URIAL still underperforms compared to instruction fine-tuning on the established benchmark MT-Bench, especially with more capable base LLMs. We then uncover the most relevant elements for successful in-context alignment, finding the crucial role of the decoding parameters. Based on these insights, we show that the approach of URIAL can indeed be improved by adding high-quality, potentially carefully selected via greedy search, demonstrations in context, getting closer to the performance of instruct models. Finally, we provide the first, to our knowledge, systematic comparison of ICL and instruction fine-tuning (IFT) for instruction following in the low data regime, where ICL can be a viable alternative to IFT. Overall, our work advances the understanding of ICL as an alignment technique and its relationship to IFT. We provide our code at https://github.com/tml-epfl/icl-alignment.
comment: Accepted at ICLR 2025. This camera-ready version v3 adds multi-turn alignment via ICL, revisiting main results on instruct models, and simple mechanistic study. Updates in the v2: experiment with decoding schemes, scaling in-context alignment, ICL vs IFT for instruction following. Code at https://github.com/tml-epfl/icl-alignment
♻ ☆ Order is All You Need for Categorical Data Clustering
Categorical data composed of qualitative valued attributes are ubiquitous in machine learning tasks. Due to the lack of well-defined metric space, categorical data distributions are difficult to be intuitively understood. Clustering is a popular data analysis technique suitable for data distribution understanding. However, the success of clustering often relies on reasonable distance metrics, which happens to be what categorical data naturally lack. This paper therefore introduces a new finding that the order relation among attribute values is the decisive factor in clustering accuracy, and is also the key to understanding categorical data clusters, because the essence of clustering is to order the clusters in terms of their admission to samples. To obtain the orders, we propose a new learning paradigm that allows joint learning of clusters and the orders. It alternatively partitions the data into clusters based on the distance metric built upon the orders and estimates the most likely orders according to the clusters. The algorithm achieves superior clustering accuracy with a convergence guarantee, and the learned orders facilitate the understanding of the non-intuitive cluster distribution of categorical data. Extensive experiments with ablation studies, statistical evidence, and case studies have validated the new insight into the importance of value order and the method proposition. The source code is temporarily opened in https://anonymous.4open.science/r/OCL-demo.
♻ ☆ BRIGHT: A globally distributed multimodal building damage assessment dataset with very-high-resolution for all-weather disaster response
Disaster events occur around the world and cause significant damage to human life and property. Earth observation (EO) data enables rapid and comprehensive building damage assessment (BDA), an essential capability in the aftermath of a disaster to reduce human casualties and to inform disaster relief efforts. Recent research focuses on the development of AI models to achieve accurate mapping of unseen disaster events, mostly using optical EO data. However, solutions based on optical data are limited to clear skies and daylight hours, preventing a prompt response to disasters. Integrating multimodal (MM) EO data, particularly the combination of optical and SAR imagery, makes it possible to provide all-weather, day-and-night disaster responses. Despite this potential, the development of robust multimodal AI models has been constrained by the lack of suitable benchmark datasets. In this paper, we present a BDA dataset using veRy-hIGH-resoluTion optical and SAR imagery (BRIGHT) to support AI-based all-weather disaster response. To the best of our knowledge, BRIGHT is the first open-access, globally distributed, event-diverse MM dataset specifically curated to support AI-based disaster response. It covers five types of natural disasters and two types of man-made disasters across 14 regions worldwide, with a particular focus on developing countries where external assistance is most needed. The optical and SAR imagery in BRIGHT, with a spatial resolution between 0.3-1 meters, provides detailed representations of individual buildings, making it ideal for precise BDA. In our experiments, we have tested seven advanced AI models trained with our BRIGHT to validate the transferability and robustness. The dataset and code are available at https://github.com/ChenHongruixuan/BRIGHT. BRIGHT also serves as the official dataset for the 2025 IEEE GRSS Data Fusion Contest.
♻ ☆ The Mirage of Performance Gains: Why Contrastive Decoding Fails to Address Multimodal Hallucination
Contrastive decoding strategies are widely used to reduce hallucinations in multimodal large language models (MLLMs). These methods work by constructing contrastive samples to induce hallucinations and then suppressing them in the output distribution. However, this paper demonstrates that such approaches fail to effectively mitigate the hallucination problem. The performance improvements observed on POPE Benchmark are largely driven by two misleading factors: (1) crude, unidirectional adjustments to the model's output distribution and (2) the adaptive plausibility constraint, which reduces the sampling strategy to greedy search. To further illustrate these issues, we introduce a series of spurious improvement methods and evaluate their performance against contrastive decoding techniques. Experimental results reveal that the observed performance gains in contrastive decoding are entirely unrelated to its intended goal of mitigating hallucinations. Our findings challenge common assumptions about the effectiveness of contrastive decoding strategies and pave the way for developing genuinely effective solutions to hallucinations in MLLMs.
♻ ☆ AnomalyControl: Learning Cross-modal Semantic Features for Controllable Anomaly Synthesis
Anomaly synthesis is a crucial approach to augment abnormal data for advancing anomaly inspection. Based on the knowledge from the large-scale pre-training, existing text-to-image anomaly synthesis methods predominantly focus on textual information or coarse-aligned visual features to guide the entire generation process. However, these methods often lack sufficient descriptors to capture the complicated characteristics of realistic anomalies (e.g., the fine-grained visual pattern of anomalies), limiting the realism and generalization of the generation process. To this end, we propose a novel anomaly synthesis framework called AnomalyControl to learn cross-modal semantic features as guidance signals, which could encode the generalized anomaly cues from text-image reference prompts and improve the realism of synthesized abnormal samples. Specifically, AnomalyControl adopts a flexible and non-matching prompt pair (i.e., a text-image reference prompt and a targeted text prompt), where a Cross-modal Semantic Modeling (CSM) module is designed to extract cross-modal semantic features from the textual and visual descriptors. Then, an Anomaly-Semantic Enhanced Attention (ASEA) mechanism is formulated to allow CSM to focus on the specific visual patterns of the anomaly, thus enhancing the realism and contextual relevance of the generated anomaly features. Treating cross-modal semantic features as the prior, a Semantic Guided Adapter (SGA) is designed to encode effective guidance signals for the adequate and controllable synthesis process. Extensive experiments indicate that AnomalyControl can achieve state-of-the-art results in anomaly synthesis compared with existing methods while exhibiting superior performance for downstream tasks.
♻ ☆ Argumentative Large Language Models for Explainable and Contestable Claim Verification AAAI 2025
The profusion of knowledge encoded in large language models (LLMs) and their ability to apply this knowledge zero-shot in a range of settings makes them promising candidates for use in decision-making. However, they are currently limited by their inability to provide outputs which can be faithfully explained and effectively contested to correct mistakes. In this paper, we attempt to reconcile these strengths and weaknesses by introducing \emph{argumentative LLMs (ArgLLMs)}, a method for augmenting LLMs with argumentative reasoning. Concretely, ArgLLMs construct argumentation frameworks, which then serve as the basis for formal reasoning in support of decision-making. The interpretable nature of these argumentation frameworks and formal reasoning means that any decision made by ArgLLMs may be explained and contested. We evaluate ArgLLMs' performance experimentally in comparison with state-of-the-art techniques, in the context of the decision-making task of claim verification. We also define novel properties to characterise contestability and assess ArgLLMs formally in terms of these properties.
comment: 18 pages, 18 figures. Accepted as an oral presentation at AAAI 2025
♻ ☆ Manipulation of individual judgments in the quantitative pairwise comparisons method
Decision-making methods very often use the technique of comparing alternatives in pairs. In this approach, experts are asked to compare different options, and then a quantitative ranking is created from the results obtained. It is commonly believed that experts (decision-makers) are honest in their judgments. In our work, we consider a scenario in which experts are vulnerable to bribery. For this purpose, we define a framework that allows us to determine the intended manipulation and present three algorithms for achieving the intended goal. Analyzing these algorithms may provide clues to help defend against such attacks.
comment: 31 pages, 7 compound figures
♻ ☆ Prompt-Based Cost-Effective Evaluation and Operation of ChatGPT as a Computer Programming Teaching Assistant
The dream of achieving a student-teacher ratio of 1:1 is closer than ever thanks to the emergence of large language models (LLMs). One potential application of these models in the educational field would be to provide feedback to students in university introductory programming courses, so that a student struggling to solve a basic implementation problem could seek help from an LLM available 24/7. This article focuses on studying three aspects related to such an application. First, the performance of two well-known models, GPT-3.5T and GPT-4T, in providing feedback to students is evaluated. The empirical results showed that GPT-4T performs much better than GPT-3.5T, however, it is not yet ready for use in a real-world scenario. This is due to the possibility of generating incorrect information that potential users may not always be able to detect. Second, the article proposes a carefully designed prompt using in-context learning techniques that allows automating important parts of the evaluation process, as well as providing a lower bound for the fraction of feedbacks containing incorrect information, saving time and effort. This was possible because the resulting feedback has a programmatically analyzable structure that incorporates diagnostic information about the LLM's performance in solving the requested task. Third, the article also suggests a possible strategy for implementing a practical learning tool based on LLMs, which is rooted on the proposed prompting techniques. This strategy opens up a whole range of interesting possibilities from a pedagogical perspective.
♻ ☆ Unleashing the Power of CNN and Transformer for Balanced RGB-Event Video Recognition
Pattern recognition based on RGB-Event data is a newly arising research topic and previous works usually learn their features using CNN or Transformer. As we know, CNN captures the local features well and the cascaded self-attention mechanisms are good at extracting the long-range global relations. It is intuitive to combine them for high-performance RGB-Event based video recognition, however, existing works fail to achieve a good balance between the accuracy and model parameters, as shown in Fig.~\ref{firstimage}. In this work, we propose a novel RGB-Event based recognition framework termed TSCFormer, which is a relatively lightweight CNN-Transformer model. Specifically, we mainly adopt the CNN as the backbone network to first encode both RGB and Event data. Meanwhile, we initialize global tokens as the input and fuse them with RGB and Event features using the BridgeFormer module. It captures the global long-range relations well between both modalities and maintains the simplicity of the whole model architecture at the same time. The enhanced features will be projected and fused into the RGB and Event CNN blocks, respectively, in an interactive manner using F2E and F2V modules. Similar operations are conducted for other CNN blocks to achieve adaptive fusion and local-global feature enhancement under different resolutions. Finally, we concatenate these three features and feed them into the classification head for pattern recognition. Extensive experiments on two large-scale RGB-Event benchmark datasets (PokerEvent and HARDVS) fully validated the effectiveness of our proposed TSCFormer. The source code and pre-trained models will be released at https://github.com/Event-AHU/TSCFormer.
comment: Accepted by Machine Intelligence Research, DOI: 10.1007/s11633-025-1555-3
♻ ☆ Towards Cardiac MRI Foundation Models: Comprehensive Visual-Tabular Representations for Whole-Heart Assessment and Beyond
Cardiac magnetic resonance imaging is the gold standard for non-invasive cardiac assessment, offering rich spatio-temporal views of the cardiac anatomy and physiology. Patient-level health factors, such as demographics, metabolic, and lifestyle, are known to substantially influence cardiovascular health and disease risk, yet remain uncaptured by CMR alone. To holistically understand cardiac health and to enable the best possible interpretation of an individual's disease risk, CMR and patient-level factors must be jointly exploited within an integrated framework. Recent multi-modal approaches have begun to bridge this gap, yet they often rely on limited spatio-temporal data and focus on isolated clinical tasks, thereby hindering the development of a comprehensive representation for cardiac health evaluation. To overcome these limitations, we introduce ViTa, a step toward foundation models that delivers a comprehensive representation of the heart and a precise interpretation of individual disease risk. Leveraging data from 42,000 UK Biobank participants, ViTa integrates 3D+T cine stacks from short-axis and long-axis views, enabling a complete capture of the cardiac cycle. These imaging data are then fused with detailed tabular patient-level factors, enabling context-aware insights. This multi-modal paradigm supports a wide spectrum of downstream tasks, including cardiac phenotype and physiological feature prediction, segmentation, and classification of cardiac and metabolic diseases within a single unified framework. By learning a shared latent representation that bridges rich imaging features and patient context, ViTa moves beyond traditional, task-specific models toward a universal, patient-specific understanding of cardiac health, highlighting its potential to advance clinical utility and scalability in cardiac analysis.
♻ ☆ MoFO: Momentum-Filtered Optimizer for Mitigating Forgetting in LLM Fine-Tuning
Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks. Typically, LLMs are first pre-trained on large corpora and subsequently fine-tuned on task-specific datasets. However, during fine-tuning, LLMs may forget some knowledge acquired in the pre-training stage, leading to a decline in general capabilities. Existing approaches to mitigate forgetting often rely on access to pre-training data, which may be unavailable in many real-world scenarios--such as fine-tuning checkpoint-only open-source LLMs. To address this challenge, we propose a new fine-tuning algorithm termed Momentum-Filtered Optimizer (MoFO). MoFO is an extension of greedy block coordinate descent (BCD) methods: in each iteration, MoFO only updates the model parameters with the largest momentum magnitudes, while keeping all other parameters fixed. MoFO achieves similar fine-tuning performance to the default fine-tuning algorithm while effectively mitigating knowledge forgetting. We validate MoFO through rigorous convergence analysis and extensive experiments, demonstrating its effectiveness in mitigating forgetting without pre-training data.
♻ ☆ DisCoRD: Discrete Tokens to Continuous Motion via Rectified Flow Decoding
Human motion is inherently continuous and dynamic, posing significant challenges for generative models. While discrete generation methods are widely used, they suffer from limited expressiveness and frame-wise noise artifacts. In contrast, continuous approaches produce smoother, more natural motion but often struggle to adhere to conditioning signals due to high-dimensional complexity and limited training data. To resolve this discord between discrete and continuous representations, we introduce DisCoRD: Discrete Tokens to Continuous Motion via Rectified Flow Decoding, a novel method that leverages rectified flow to decode discrete motion tokens in the continuous, raw motion space. Our core idea is to frame token decoding as a conditional generation task, ensuring that DisCoRD captures fine-grained dynamics and achieves smoother, more natural motions. Compatible with any discrete-based framework, our method enhances naturalness without compromising faithfulness to the conditioning signals on diverse settings. Extensive evaluations Our project page is available at: https://whwjdqls.github.io/discord.github.io/.
comment: 11 pages
♻ ☆ On the Shift Invariance of Max Pooling Feature Maps in Convolutional Neural Networks
This paper focuses on improving the mathematical interpretability of convolutional neural networks (CNNs) in the context of image classification. Specifically, we tackle the instability issue arising in their first layer, which tends to learn parameters that closely resemble oriented band-pass filters when trained on datasets like ImageNet. Subsampled convolutions with such Gabor-like filters are prone to aliasing, causing sensitivity to small input shifts. In this context, we establish conditions under which the max pooling operator approximates a complex modulus, which is nearly shift invariant. We then derive a measure of shift invariance for subsampled convolutions followed by max pooling. In particular, we highlight the crucial role played by the filter's frequency and orientation in achieving stability. We experimentally validate our theory by considering a deterministic feature extractor based on the dual-tree complex wavelet packet transform, a particular case of discrete Gabor-like decomposition.
♻ ☆ EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting
Human speech goes beyond the mere transfer of information; it is a profound exchange of emotions and a connection between individuals. While Text-to-Speech (TTS) models have made huge progress, they still face challenges in controlling the emotional expression in the generated speech. In this work, we propose EmoVoice, a novel emotion-controllable TTS model that exploits large language models (LLMs) to enable fine-grained freestyle natural language emotion control, and a phoneme boost variant design that makes the model output phoneme tokens and audio tokens in parallel to enhance content consistency, inspired by chain-of-thought (CoT) and chain-of-modality (CoM) techniques. Besides, we introduce EmoVoice-DB, a high-quality 40-hour English emotion dataset featuring expressive speech and fine-grained emotion labels with natural language descriptions. EmoVoice achieves state-of-the-art performance on the English EmoVoice-DB test set using only synthetic training data, and on the Chinese Secap test set using our in-house data. We further investigate the reliability of existing emotion evaluation metrics and their alignment with human perceptual preferences, and explore using SOTA multimodal LLMs GPT-4o-audio and Gemini to assess emotional speech. Demo samples are available at https://anonymous.4open.science/r/EmoVoice-DF55. Dataset, code, and checkpoints will be released.
♻ ☆ Spin glass model of in-context learning
Large language models show a surprising in-context learning ability -- being able to use a prompt to form a prediction for a query, yet without additional training, in stark contrast to old-fashioned supervised learning. Providing a mechanistic interpretation and linking the empirical phenomenon to physics are thus challenging and remain unsolved. We study a simple yet expressive transformer with linear attention and map this structure to a spin glass model with real-valued spins, where the couplings and fields explain the intrinsic disorder in data. The spin glass model explains how the weight parameters interact with each other during pre-training, and further clarifies why an unseen function can be predicted by providing only a prompt yet without further training. Our theory reveals that for single-instance learning, increasing the task diversity leads to the emergence of in-context learning, by allowing the Boltzmann distribution to converge to a unique correct solution of weight parameters. Therefore the pre-trained transformer displays a prediction power in a novel prompt setting. The proposed analytically tractable model thus offers a promising avenue for thinking about how to interpret many intriguing but puzzling properties of large language models.
comment: 16 pages, 4+6 figures, revised version to the journal
♻ ☆ StaICC: Standardized Evaluation for Classification Task in In-context Learning
Classification tasks are widely investigated in the In-Context Learning (ICL) paradigm. However, current efforts are evaluated on disjoint benchmarks and settings, while their performances are significantly influenced by some trivial variables, such as prompt templates, data sampling, instructions, etc., which leads to significant inconsistencies in the results reported across various literature, preventing fair comparison or meta-analysis across different papers. Therefore, this paper proposes a standardized and easy-to-use evaluation toolkit (StaICC) for in-context classification. Including, for the normal classification task, we provide StaICC-Normal, selecting 10 widely used datasets, and generating prompts with a fixed form, to mitigate the variance among the experiment implementations. To enrich the usage of our benchmark, we also provide a sub-benchmark StaICC-Diag for diagnosing ICL from several aspects, aiming for a more robust inference processing.
comment: 20 pages, 8 figures, 8 tables
♻ ☆ Towards Robust Alignment of Language Models: Distributionally Robustifying Direct Preference Optimization
This study addresses the challenge of noise in training datasets for Direct Preference Optimization (DPO), a method for aligning Large Language Models (LLMs) with human preferences. We categorize noise into pointwise noise, which includes low-quality data points, and pairwise noise, which encompasses erroneous data pair associations that affect preference rankings. Utilizing Distributionally Robust Optimization (DRO), we enhance DPO's resilience to these types of noise. Our theoretical insights reveal that DPO inherently embeds DRO principles, conferring robustness to pointwise noise, with the regularization coefficient $\beta$ playing a critical role in its noise resistance. Extending this framework, we introduce Distributionally Robustifying DPO (Dr. DPO), which integrates pairwise robustness by optimizing against worst-case pairwise scenarios. The novel hyperparameter $\beta'$ in Dr. DPO allows for fine-tuned control over data pair reliability, providing a strategic balance between exploration and exploitation in noisy training environments. Empirical evaluations demonstrate that Dr. DPO substantially improves the quality of generated text and response accuracy in preference datasets, showcasing enhanced performance in both noisy and noise-free settings. The code is available at https://github.com/junkangwu/Dr_DPO.
♻ ☆ AgentCF++: Memory-enhanced LLM-based Agents for Popularity-aware Cross-domain Recommendations SIGIR 2025
LLM-based user agents, which simulate user interaction behavior, are emerging as a promising approach to enhancing recommender systems. In real-world scenarios, users' interactions often exhibit cross-domain characteristics and are influenced by others. However, the memory design in current methods causes user agents to introduce significant irrelevant information during decision-making in cross-domain scenarios and makes them unable to recognize the influence of other users' interactions, such as popularity factors. To tackle this issue, we propose a dual-layer memory architecture combined with a two-step fusion mechanism. This design avoids irrelevant information during decision-making while ensuring effective integration of cross-domain preferences. We also introduce the concepts of interest groups and group-shared memory to better capture the influence of popularity factors on users with similar interests. Comprehensive experiments validate the effectiveness of AgentCF++. Our code is available at https://github.com/jhliu0807/AgentCF-plus.
comment: Accepted by SIGIR 2025, 6 pages
♻ ☆ PennyLang: Pioneering LLM-Based Quantum Code Generation with a Novel PennyLane-Centric Dataset
Large Language Models (LLMs) offer remarkable capabilities in code generation, natural language processing, and domain-specific reasoning. However, their application in quantum software development remains underexplored, particularly for PennyLane-a leading framework for hybrid quantum-classical computing. To address this gap, we introduce a novel, high-quality dataset comprising 3,347 PennyLane-specific quantum code samples and contextual descriptions, specifically curated to support LLM training and fine-tuning for quantum code assistance. Our contributions are threefold: (1) the automatic construction and open-source release of a comprehensive PennyLane dataset derived from textbooks, official documentation, and open-source repositories; (2) a structured methodology for data curation, annotation, and formatting to enhance LLM usability and relevance; and (3) a rigorous evaluation of code generation capabilities using both baseline Retrieval-Augmented Generation (RAG) and a GraphRAG-enhanced pipeline. Using the PennyLang framework, we demonstrate that GraphRAG, when applied to a GPT-4o Mini model, substantially outperforms standard prompting and baseline RAG. Accuracy improves from 20.5% (without RAG) to 58.2% with GraphRAG, showcasing its effectiveness in reducing hallucinations and improving code correctness in quantum programming tasks. Compared to prior efforts focused largely on Qiskit, our work expands LLM-based assistance to the PennyLane ecosystem, contributing practical tools and reproducible methodologies for advancing AI-assisted quantum software development.
comment: 10 pages, 7 figures, 7 tables, submitted for review under QCE 2025
♻ ☆ Improving LLM-powered Recommendations with Personalized Information SIGIR 2025
Due to the lack of explicit reasoning modeling, existing LLM-powered recommendations fail to leverage LLMs' reasoning capabilities effectively. In this paper, we propose a pipeline called CoT-Rec, which integrates two key Chain-of-Thought (CoT) processes -- user preference analysis and item perception analysis -- into LLM-powered recommendations, thereby enhancing the utilization of LLMs' reasoning abilities. CoT-Rec consists of two stages: (1) personalized information extraction, where user preferences and item perception are extracted, and (2) personalized information utilization, where this information is incorporated into the LLM-powered recommendation process. Experimental results demonstrate that CoT-Rec shows potential for improving LLM-powered recommendations. The implementation is publicly available at https://github.com/jhliu0807/CoT-Rec.
comment: Accepted by SIGIR 2025, 7 pages
♻ ☆ Unbiased Collaborative Filtering with Fair Sampling SIGIR 2025
Recommender systems leverage extensive user interaction data to model preferences; however, directly modeling these data may introduce biases that disproportionately favor popular items. In this paper, we demonstrate that popularity bias arises from the influence of propensity factors during training. Building on this insight, we propose a fair sampling (FS) method that ensures each user and each item has an equal likelihood of being selected as both positive and negative instances, thereby mitigating the influence of propensity factors. The proposed FS method does not require estimating propensity scores, thus avoiding the risk of failing to fully eliminate popularity bias caused by estimation inaccuracies. Comprehensive experiments demonstrate that the proposed FS method achieves state-of-the-art performance in both point-wise and pair-wise recommendation tasks. The code implementation is available at https://github.com/jhliu0807/Fair-Sampling.
comment: Accept by SIGIR 2025, 5 pages
♻ ☆ Adversarial Style Augmentation via Large Language Model for Robust Fake News Detection WWW'25
The spread of fake news harms individuals and presents a critical social challenge that must be addressed. Although numerous algorithmic and insightful features have been developed to detect fake news, many of these features can be manipulated with style-conversion attacks, especially with the emergence of advanced language models, making it more difficult to differentiate from genuine news. This study proposes adversarial style augmentation, AdStyle, designed to train a fake news detector that remains robust against various style-conversion attacks. The primary mechanism involves the strategic use of LLMs to automatically generate a diverse and coherent array of style-conversion attack prompts, enhancing the generation of particularly challenging prompts for the detector. Experiments indicate that our augmentation strategy significantly improves robustness and detection performance when evaluated on fake news benchmark datasets.
comment: WWW'25 research track accepted
♻ ☆ NeuroNAS: Enhancing Efficiency of Neuromorphic In-Memory Computing for Intelligent Mobile Agents through Hardware-Aware Spiking Neural Architecture Search
Intelligent mobile agents (e.g., UGVs and UAVs) typically demand low power/energy consumption when solving their machine learning (ML)-based tasks, since they are usually powered by portable batteries with limited capacity. A potential solution is employing neuromorphic computing with Spiking Neural Networks (SNNs), which leverages event-based computation to enable ultra-low power/energy ML algorithms. To maximize the performance efficiency of SNN inference, the In-Memory Computing (IMC)-based hardware accelerators with emerging device technologies (e.g., RRAM) can be employed. However, SNN models are typically developed without considering constraints from the application and the underlying IMC hardware, thereby hindering SNNs from reaching their full potential in performance and efficiency. To address this, we propose NeuroNAS, a novel framework for developing energyefficient neuromorphic IMC for intelligent mobile agents using hardware-aware spiking neural architecture search (NAS), i.e., by quickly finding an SNN architecture that offers high accuracy under the given constraints (e.g., memory, area, latency, and energy consumption). Its key steps include: optimizing SNN operations to enable efficient NAS, employing quantization to minimize the memory footprint, developing an SNN architecture that facilitates an effective learning, and devising a systematic hardware-aware search algorithm to meet the constraints. Compared to the state-of-the-art techniques, NeuroNAS quickly finds SNN architectures (with 8bit weight precision) that maintain high accuracy by up to 6.6x search time speed-ups, while achieving up to 92% area savings, 1.2x latency improvements, 84% energy savings across different datasets (i.e., CIFAR-10, CIFAR-100, and TinyImageNet-200); while the state-of-the-art fail to meet all constraints at once.
comment: 9 pages, 14 figures, 2 tables
♻ ☆ Unified Parameter-Efficient Unlearning for LLMs
The advent of Large Language Models (LLMs) has revolutionized natural language processing, enabling advanced understanding and reasoning capabilities across a variety of tasks. Fine-tuning these models for specific domains, particularly through Parameter-Efficient Fine-Tuning (PEFT) strategies like LoRA, has become a prevalent practice due to its efficiency. However, this raises significant privacy and security concerns, as models may inadvertently retain and disseminate sensitive or undesirable information. To address these issues, we introduce a novel instance-wise unlearning framework, LLMEraser, which systematically categorizes unlearning tasks and applies precise parameter adjustments using influence functions. Unlike traditional unlearning techniques that are often limited in scope and require extensive retraining, LLMEraser is designed to handle a broad spectrum of unlearning tasks without compromising model performance. Extensive experiments on benchmark datasets demonstrate that LLMEraser excels in efficiently managing various unlearning scenarios while maintaining the overall integrity and efficacy of the models.
♻ ☆ Semantic Matters: Multimodal Features for Affective Analysis
In this study, we present our methodology for two tasks: the Emotional Mimicry Intensity (EMI) Estimation Challenge and the Behavioural Ambivalence/Hesitancy (BAH) Recognition Challenge, both conducted as part of the 8th Workshop and Competition on Affective & Behavior Analysis in-the-wild. We utilize a Wav2Vec 2.0 model pre-trained on a large podcast dataset to extract various audio features, capturing both linguistic and paralinguistic information. Our approach incorporates a valence-arousal-dominance (VAD) module derived from Wav2Vec 2.0, a BERT text encoder, and a vision transformer (ViT) with predictions subsequently processed through a long short-term memory (LSTM) architecture or a convolution-like method for temporal modeling. We integrate the textual and visual modality into our analysis, recognizing that semantic content provides valuable contextual cues and underscoring that the meaning of speech often conveys more critical insights than its acoustic counterpart alone. Fusing in the vision modality helps in some cases to interpret the textual modality more precisely. This combined approach results in significant performance improvements, achieving in EMI $\rho_{\text{TEST}} = 0.706$ and in BAH $F1_{\text{TEST}} = 0.702$, securing first place in the EMI challenge and second place in the BAH challenge.
♻ ☆ Language Representations Can be What Recommenders Need: Findings and Potentials ICLR 2025
Recent studies empirically indicate that language models (LMs) encode rich world knowledge beyond mere semantics, attracting significant attention across various fields. However, in the recommendation domain, it remains uncertain whether LMs implicitly encode user preference information. Contrary to prevailing understanding that LMs and traditional recommenders learn two distinct representation spaces due to the huge gap in language and behavior modeling objectives, this work re-examines such understanding and explores extracting a recommendation space directly from the language representation space. Surprisingly, our findings demonstrate that item representations, when linearly mapped from advanced LM representations, yield superior recommendation performance. This outcome suggests the possible homomorphism between the advanced language representation space and an effective item representation space for recommendation, implying that collaborative signals may be implicitly encoded within LMs. Motivated by these findings, we explore the possibility of designing advanced collaborative filtering (CF) models purely based on language representations without ID-based embeddings. To be specific, we incorporate several crucial components to build a simple yet effective model, with item titles as the input. Empirical results show that such a simple model can outperform leading ID-based CF models, which sheds light on using language representations for better recommendation. Moreover, we systematically analyze this simple model and find several key features for using advanced language representations: a good initialization for item representations, zero-shot recommendation abilities, and being aware of user intention. Our findings highlight the connection between language modeling and behavior modeling, which can inspire both natural language processing and recommender system communities.
comment: ICLR 2025 (Oral). Codes are available at https://github.com/LehengTHU/AlphaRec
♻ ☆ Large Language Model-Based Knowledge Graph System Construction for Sustainable Development Goals: An AI-Based Speculative Design Perspective
From 2000 to 2015, the UN's Millennium Development Goals guided global priorities. The subsequent Sustainable Development Goals (SDGs) adopted a more dynamic approach, with annual indicator updates. As 2030 nears and progress lags, innovative acceleration strategies are critical. This study develops an AI-powered knowledge graph system to analyze SDG interconnections, discover potential new goals, and visualize them online. Using official SDG texts, Elsevier's keyword dataset, and 1,127 TED Talk transcripts (2020.01-2024.04), a pilot on 269 talks from 2023 applies AI-speculative design, large language models, and retrieval-augmented generation. Key findings include: (1) Heatmap analysis reveals strong associations between Goal 10 and Goal 16, and minimal coverage of Goal 6. (2) In the knowledge graph, simulated dialogue over time reveals new central nodes, showing how richer data supports divergent thinking and goal clarity. (3) Six potential new goals are proposed, centered on equity, resilience, and technology-driven inclusion. This speculative-AI framework offers fresh insights for policymakers and lays groundwork for future multimodal and cross-system SDG applications.
comment: This is a minor revision: fixed a typo in the abstract (time range) and corrected minor textual errors
♻ ☆ Backstepping Temporal Difference Learning ICLR2023
Off-policy learning ability is an important feature of reinforcement learning (RL) for practical applications. However, even one of the most elementary RL algorithms, temporal-difference (TD) learning, is known to suffer form divergence issue when the off-policy scheme is used together with linear function approximation. To overcome the divergent behavior, several off-policy TD-learning algorithms, including gradient-TD learning (GTD), and TD-learning with correction (TDC), have been developed until now. In this work, we provide a unified view of such algorithms from a purely control-theoretic perspective, and propose a new convergent algorithm. Our method relies on the backstepping technique, which is widely used in nonlinear control theory. Finally, convergence of the proposed algorithm is experimentally verified in environments where the standard TD-learning is known to be unstable.
comment: Published at ICLR2023
♻ ☆ ReaRAG: Knowledge-guided Reasoning Enhances Factuality of Large Reasoning Models with Iterative Retrieval Augmented Generation
Large Reasoning Models (LRMs) exhibit remarkable reasoning abilities but rely primarily on parametric knowledge, limiting factual accuracy. While recent works equip reinforcement learning (RL)-based LRMs with retrieval capabilities, they suffer from overthinking and lack robustness in reasoning, reducing their effectiveness in question answering (QA) tasks. To address this, we propose ReaRAG, a factuality-enhanced reasoning model that explores diverse queries without excessive iterations. Our solution includes a novel data construction framework with an upper bound on the reasoning chain length. Specifically, we first leverage an LRM to generate deliberate thinking, then select an action from a predefined action space (Search and Finish). For Search action, a query is executed against the RAG engine, where the result is returned as observation to guide reasoning steps later. This process iterates until a Finish action is chosen. Benefiting from ReaRAG's strong reasoning capabilities, our approach outperforms existing baselines on multi-hop QA. Further analysis highlights its strong reflective ability to recognize errors and refine its reasoning trajectory. Our study enhances LRMs' factuality while effectively integrating robust reasoning for Retrieval-Augmented Generation (RAG).
♻ ☆ DocAgent: A Multi-Agent System for Automated Code Documentation Generation
High-quality code documentation is crucial for software development especially in the era of AI. However, generating it automatically using Large Language Models (LLMs) remains challenging, as existing approaches often produce incomplete, unhelpful, or factually incorrect outputs. We introduce DocAgent, a novel multi-agent collaborative system using topological code processing for incremental context building. Specialized agents (Reader, Searcher, Writer, Verifier, Orchestrator) then collaboratively generate documentation. We also propose a multi-faceted evaluation framework assessing Completeness, Helpfulness, and Truthfulness. Comprehensive experiments show DocAgent significantly outperforms baselines consistently. Our ablation study confirms the vital role of the topological processing order. DocAgent offers a robust approach for reliable code documentation generation in complex and proprietary repositories.
comment: Public Repo: https://github.com/facebookresearch/DocAgent
♻ ☆ SurFhead: Affine Rig Blending for Geometrically Accurate 2D Gaussian Surfel Head Avatars ICLR 2025
Recent advancements in head avatar rendering using Gaussian primitives have achieved significantly high-fidelity results. Although precise head geometry is crucial for applications like mesh reconstruction and relighting, current methods struggle to capture intricate geometric details and render unseen poses due to their reliance on similarity transformations, which cannot handle stretch and shear transforms essential for detailed deformations of geometry. To address this, we propose SurFhead, a novel method that reconstructs riggable head geometry from RGB videos using 2D Gaussian surfels, which offer well-defined geometric properties, such as precise depth from fixed ray intersections and normals derived from their surface orientation, making them advantageous over 3D counterparts. SurFhead ensures high-fidelity rendering of both normals and images, even in extreme poses, by leveraging classical mesh-based deformation transfer and affine transformation interpolation. SurFhead introduces precise geometric deformation and blends surfels through polar decomposition of transformations, including those affecting normals. Our key contribution lies in bridging classical graphics techniques, such as mesh-based deformation, with modern Gaussian primitives, achieving state-of-the-art geometry reconstruction and rendering quality. Unlike previous avatar rendering approaches, SurFhead enables efficient reconstruction driven by Gaussian primitives while preserving high-fidelity geometry.
comment: ICLR 2025, Project page with videos: https://summertight.github.io/SurFhead/
♻ ☆ NeurLZ: An Online Neural Learning-Based Method to Enhance Scientific Lossy Compression
Large-scale scientific simulations generate massive datasets, posing challenges for storage and I/O. Traditional lossy compression struggles to advance more in balancing compression ratio, data quality, and adaptability to diverse scientific data features. While deep learning-based solutions have been explored, their common practice of relying on large models and offline training limits adaptability to dynamic data characteristics and computational efficiency. To address these challenges, we propose NeurLZ, a neural method designed to enhance lossy compression by integrating online learning, cross-field learning, and robust error regulation. Key innovations of NeurLZ include: (1) compression-time online neural learning with lightweight skipping DNN models, adapting to residual errors without costly offline pertaining, (2) the error-mitigating capability, recovering fine details from compression errors overlooked by conventional compressors, (3) $1\times$ and $2\times$ error-regulation modes, ensuring strict adherence to $1\times$ user-input error bounds strictly or relaxed 2$\times$ bounds for better overall quality, and (4) cross-field learning leveraging inter-field correlations in scientific data to improve conventional methods. Comprehensive evaluations on representative HPC datasets, e.g., Nyx, Miranda, Hurricane, against state-of-the-art compressors show NeurLZ's effectiveness. During the first five learning epochs, NeurLZ achieves an 89% bit rate reduction, with further optimization yielding up to around 94% reduction at equivalent distortion, significantly outperforming existing methods, demonstrating NeurLZ's superior performance in enhancing scientific lossy compression as a scalable and efficient solution.
comment: ICS 2025
♻ ☆ Does Spatial Cognition Emerge in Frontier Models? ICLR 2025
Not yet. We present SPACE, a benchmark that systematically evaluates spatial cognition in frontier models. Our benchmark builds on decades of research in cognitive science. It evaluates large-scale mapping abilities that are brought to bear when an organism traverses physical environments, smaller-scale reasoning about object shapes and layouts, and cognitive infrastructure such as spatial attention and memory. For many tasks, we instantiate parallel presentations via text and images, allowing us to benchmark both large language models and large multimodal models. Results suggest that contemporary frontier models fall short of the spatial intelligence of animals, performing near chance level on a number of classic tests of animal cognition. Code and data are available: https://github.com/apple/ml-space-benchmark
comment: Published in ICLR 2025
♻ ☆ JL1-CD: A New Benchmark for Remote Sensing Change Detection and a Robust Multi-Teacher Knowledge Distillation Framework
Deep learning has achieved significant success in the field of remote sensing image change detection (CD), yet two major challenges remain: the scarcity of sub-meter, comprehensive open-source CD datasets, and the difficulty of achieving consistent and satisfactory detection results across images with varying change areas. To address these issues, we introduce the JL1-CD dataset, which consists of 5,000 pairs of 512 x 512 pixel images with a resolution of 0.5 to 0.75 meters. This all-inclusive dataset covers a wide range of human-induced and natural changes, including buildings, roads, hardened surfaces, woodlands, grasslands, croplands, water bodies, and photovoltaic panels, among others. Additionally, we propose a novel multi-teacher knowledge distillation (MTKD) framework that leverages the Origin-Partition (O-P) strategy to enhance CD performance. In the O-P strategy, we partition the training data based on the Change Area Ratio (CAR) to train separate models for small, medium, and large CAR values, alleviating the learning burden on each model and improving their performance within their respective partitions. Building upon this, our MTKD framework distills knowledge from multiple teacher models trained on different CAR partitions into a single student model,enabling the student model to achieve superior detection results across diverse CAR scenarios without incurring additional computational or time overhead during the inference phase. Experimental results on the JL1-CD and SYSU-CD datasets demonstrate that the MTKD framework significantly improves the performance of CD models with various network architectures and parameter sizes, achieving new state-of-the-art results. The JL1-CD dataset and code are available at https://github.com/circleLZY/MTKD-CD.
comment: 16 pages, 9 figures
♻ ☆ Dense Backpropagation Improves Training for Sparse Mixture-of-Experts
Mixture of Experts (MoE) pretraining is more scalable than dense Transformer pretraining, because MoEs learn to route inputs to a sparse set of their feedforward parameters. However, this means that MoEs only receive a sparse backward update, leading to training instability and suboptimal performance. We present a lightweight approximation method that gives the MoE router a dense gradient update while continuing to sparsely activate its parameters. Our method, which we refer to as Default MoE, substitutes missing expert activations with default outputs consisting of an exponential moving average of expert outputs previously seen over the course of training. This allows the router to receive signals from every expert for each token, leading to significant improvements in training performance. Our Default MoE outperforms standard TopK routing in a variety of settings without requiring significant computational overhead. Code: https://github.com/vatsal0/default-moe.
♻ ☆ A Comprehensive Survey of Mixture-of-Experts: Algorithms, Theory, and Applications
Artificial intelligence (AI) has achieved astonishing successes in many domains, especially with the recent breakthroughs in the development of foundational large models. These large models, leveraging their extensive training data, provide versatile solutions for a wide range of downstream tasks. However, as modern datasets become increasingly diverse and complex, the development of large AI models faces two major challenges: (1) the enormous consumption of computational resources and deployment difficulties, and (2) the difficulty in fitting heterogeneous and complex data, which limits the usability of the models. Mixture of Experts (MoE) models has recently attracted much attention in addressing these challenges, by dynamically selecting and activating the most relevant sub-models to process input data. It has been shown that MoEs can significantly improve model performance and efficiency with fewer resources, particularly excelling in handling large-scale, multimodal data. Given the tremendous potential MoE has demonstrated across various domains, it is urgent to provide a comprehensive summary of recent advancements of MoEs in many important fields. Existing surveys on MoE have their limitations, e.g., being outdated or lacking discussion on certain key areas, and we aim to address these gaps. In this paper, we first introduce the basic design of MoE, including gating functions, expert networks, routing mechanisms, training strategies, and system design. We then explore the algorithm design of MoE in important machine learning paradigms such as continual learning, meta-learning, multi-task learning, and reinforcement learning. Additionally, we summarize theoretical studies aimed at understanding MoE and review its applications in computer vision and natural language processing. Finally, we discuss promising future research directions.
comment: 29 pages, 3 figures
♻ ☆ Event-Enhanced Blurry Video Super-Resolution AAAI 2025
In this paper, we tackle the task of blurry video super-resolution (BVSR), aiming to generate high-resolution (HR) videos from low-resolution (LR) and blurry inputs. Current BVSR methods often fail to restore sharp details at high resolutions, resulting in noticeable artifacts and jitter due to insufficient motion information for deconvolution and the lack of high-frequency details in LR frames. To address these challenges, we introduce event signals into BVSR and propose a novel event-enhanced network, Ev-DeblurVSR. To effectively fuse information from frames and events for feature deblurring, we introduce a reciprocal feature deblurring module that leverages motion information from intra-frame events to deblur frame features while reciprocally using global scene context from the frames to enhance event features. Furthermore, to enhance temporal consistency, we propose a hybrid deformable alignment module that fully exploits the complementary motion information from inter-frame events and optical flow to improve motion estimation in the deformable alignment process. Extensive evaluations demonstrate that Ev-DeblurVSR establishes a new state-of-the-art performance on both synthetic and real-world datasets. Notably, on real data, our method is +2.59 dB more accurate and 7.28$\times$ faster than the recent best BVSR baseline FMA-Net. Code: https://github.com/DachunKai/Ev-DeblurVSR.
comment: AAAI 2025. Project page: https://dachunkai.github.io/ev-deblurvsr.github.io/
♻ ☆ The Athenian Academy: A Seven-Layer Architecture Model for Multi-Agent Systems
This paper proposes the "Academy of Athens" multi-agent seven-layer framework, aimed at systematically addressing challenges in multi-agent systems (MAS) within artificial intelligence (AI) art creation, such as collaboration efficiency, role allocation, environmental adaptation, and task parallelism. The framework divides MAS into seven layers: multi-agent collaboration, single-agent multi-role playing, single-agent multi-scene traversal, single-agent multi-capability incarnation, different single agents using the same large model to achieve the same target agent, single-agent using different large models to achieve the same target agent, and multi-agent synthesis of the same target agent. Through experimental validation in art creation, the framework demonstrates its unique advantages in task collaboration, cross-scene adaptation, and model fusion. This paper further discusses current challenges such as collaboration mechanism optimization, model stability, and system security, proposing future exploration through technologies like meta-learning and federated learning. The framework provides a structured methodology for multi-agent collaboration in AI art creation and promotes innovative applications in the art field.
♻ ☆ WaterFlow: Learning Fast & Robust Watermarks using Stable Diffusion
The ability to embed watermarks in images is a fundamental problem of interest for computer vision, and is exacerbated by the rapid rise of generated imagery in recent times. Current state-of-the-art techniques suffer from computational and statistical challenges such as the slow execution speed for practical deployments. In addition, other works trade off fast watermarking speeds but suffer greatly in their robustness or perceptual quality. In this work, we propose WaterFlow (WF), a fast and extremely robust approach for high fidelity visual watermarking based on a learned latent-dependent watermark. Our approach utilizes a pretrained latent diffusion model to encode an arbitrary image into a latent space and produces a learned watermark that is then planted into the Fourier Domain of the latent. The transformation is specified via invertible flow layers that enhance the expressivity of the latent space of the pre-trained model to better preserve image quality while permitting robust and tractable detection. Most notably, WaterFlow demonstrates state-of-the-art performance on general robustness and is the first method capable of effectively defending against difficult combination attacks. We validate our findings on three widely used real and generated datasets: MS-COCO, DiffusionDB, and WikiArt.
♻ ☆ Revealing the Intrinsic Ethical Vulnerability of Aligned Large Language Models
Large language models (LLMs) are foundational explorations to artificial general intelligence, yet their alignment with human values via instruction tuning and preference learning achieves only superficial compliance. Here, we demonstrate that harmful knowledge embedded during pretraining persists as indelible "dark patterns" in LLMs' parametric memory, evading alignment safeguards and resurfacing under adversarial inducement at distributional shifts. In this study, we first theoretically analyze the intrinsic ethical vulnerability of aligned LLMs by proving that current alignment methods yield only local "safety regions" in the knowledge manifold. In contrast, pretrained knowledge remains globally connected to harmful concepts via high-likelihood adversarial trajectories. Building on this theoretical insight, we empirically validate our findings by employing semantic coherence inducement under distributional shifts--a method that systematically bypasses alignment constraints through optimized adversarial prompts. This combined theoretical and empirical approach achieves a 100% attack success rate across 19 out of 23 state-of-the-art aligned LLMs, including DeepSeek-R1 and LLaMA-3, revealing their universal vulnerabilities.
♻ ☆ Beneath the Surface: The Role of Underwater Image Enhancement in Object Detection
Underwater imagery often suffers from severe degradation resulting in low visual quality and reduced object detection performance. This work aims to evaluate state-of-the-art image enhancement models, investigate their effects on underwater object detection, and explore their potential to improve detection performance. To this end, we apply nine recent underwater image enhancement models, covering physical, non-physical and learning-based categories, to two recent underwater image datasets. Following this, we conduct joint qualitative and quantitative analyses on the original and enhanced images, revealing the discrepancy between the two analyses, and analyzing changes in the quality distribution of the images after enhancement. We then train three recent object detection models on the original datasets, selecting the best-performing detector for further analysis. This detector is subsequently re-trained on the enhanced datasets to evaluate changes in detection performance, highlighting the adverse effect of enhancement on detection performance at the dataset level. Next, we perform a correlation study to examine the relationship between various enhancement metrics and the mean Average Precision (mAP). Finally, we conduct an image-level analysis that reveals images of improved detection performance after enhancement. The findings of this study demonstrate the potential of image enhancement to improve detection performance and provide valuable insights for researchers to further explore the effects of enhancement on detection at the individual image level, rather than at the dataset level. This could enable the selective application of enhancement for improved detection. The data generated, code developed, and supplementary materials are publicly available at: https://github.com/RSSL-MTU/Enhancement-Detection-Analysis.
♻ ☆ Foundational theories of hesitant fuzzy sets and families of hesitant fuzzy sets
Hesitant fuzzy sets find extensive application in specific scenarios involving uncertainty and hesitation. In the context of set theory, the concept of inclusion relationship holds significant importance as a fundamental definition. Consequently, as a type of sets, hesitant fuzzy sets necessitate a clear and explicit definition of the inclusion relationship. Based on the discrete form of hesitant fuzzy membership degrees, this study proposes multiple types of inclusion relationships for hesitant fuzzy sets. Subsequently, this paper introduces foundational propositions related to hesitant fuzzy sets, as well as propositions concerning families of hesitant fuzzy sets.
comment: 15 pages
♻ ☆ Where is the answer? Investigating Positional Bias in Language Model Knowledge Extraction
Large language models require updates to remain up-to-date or adapt to new domains by fine-tuning them with new documents. One key is memorizing the latest information in a way that the memorized information is extractable with a query prompt. However, LLMs suffer from a phenomenon called perplexity curse; despite minimizing document perplexity during fine-tuning, LLMs struggle to extract information through a prompt sentence. In this new knowledge acquisition and extraction, we find a very intriguing fact that LLMs can accurately answer questions about the first sentence, but they struggle to extract information described in the middle or end of the documents used for fine-tuning. Our study suggests that the auto-regressive training causes this issue; each token is prompted by reliance on all previous tokens, which hinders the model from recalling information from training documents by question prompts. To conduct the in-depth study, we publish both synthetic and real datasets, enabling the evaluation of the QA performance w.r.t. the position of the corresponding answer in a document. Our investigation shows that even a large model suffers from the perplexity curse, but regularization such as denoising auto-regressive loss can enhance the information extraction from diverse positions. These findings will be (i) a key to improving knowledge extraction from LLMs and (ii) new elements to discuss the trade-off between RAG and fine-tuning in adapting LLMs to a new domain.
comment: Code is published at https://github.com/omron-sinicx/WhereIsTheAnswer
Computation and Language 77
☆ THOUGHTTERMINATOR: Benchmarking, Calibrating, and Mitigating Overthinking in Reasoning Models
Reasoning models have demonstrated impressive performance on difficult tasks that traditional language models struggle at. However, many are plagued with the problem of overthinking--generating large amounts of unnecessary tokens which don't improve accuracy on a question. We introduce approximate measures of problem-level difficulty and demonstrate that a clear relationship between problem difficulty and optimal token spend exists, and evaluate how well calibrated a variety of reasoning models are in terms of efficiently allocating the optimal token count. We find that in general, reasoning models are poorly calibrated, particularly on easy problems. To evaluate calibration on easy questions we introduce DUMB500, a dataset of extremely easy math, reasoning, code, and task problems, and jointly evaluate reasoning model on these simple examples and extremely difficult examples from existing frontier benchmarks on the same task domain. Finally, we introduce THOUGHTTERMINATOR, a training-free black box decoding technique that significantly improves reasoning model calibration.
☆ Cost-of-Pass: An Economic Framework for Evaluating Language Models
The widespread adoption of AI systems in the economy hinges on their ability to generate economic value that outweighs their inference costs. Evaluating this tradeoff requires metrics that account for both performance and costs. We propose a framework grounded in production theory for evaluating language models by combining accuracy and inference cost. We introduce "cost-of-pass", the expected monetary cost of generating a correct solution. We then define the "frontier cost-of-pass" as the minimum cost-of-pass achievable across available models or the "human-expert, using the approximate cost of hiring an expert. Our analysis reveals distinct economic insights. First, lightweight models are most cost-effective for basic quantitative tasks, large models for knowledge-intensive ones, and reasoning models for complex quantitative problems, despite higher per-token costs. Second, tracking this frontier cost-of-pass over the past year reveals significant progress, particularly for complex quantitative tasks where the cost has roughly halved every few months. Third, to trace key innovations driving this progress, we examine counterfactual frontiers: estimates of cost-efficiency without specific model classes. We find that innovations in lightweight, large, and reasoning models have been essential for pushing the frontier in basic quantitative, knowledge-intensive, and complex quantitative tasks, respectively. Finally, we assess the cost-reductions afforded by common inference-time techniques like majority voting and self-refinement, finding that their marginal accuracy gains rarely justify their costs. Our findings underscore that complementary model-level innovations are the primary drivers of cost-efficiency, and our economic framework provides a principled tool for measuring this progress and guiding deployment.
comment: Code is available at: https://github.com/mhamzaerol/Cost-of-Pass
☆ Acoustic to Articulatory Inversion of Speech; Data Driven Approaches, Challenges, Applications, and Future Scope
This review is focused on the data-driven approaches applied in different applications of Acoustic-to-Articulatory Inversion (AAI) of speech. This review paper considered the relevant works published in the last ten years (2011-2021). The selection criteria includes (a) type of AAI - Speaker Dependent and Speaker Independent AAI, (b) objectives of the work - Articulatory approximation, Articulatory Feature space selection and Automatic Speech Recognition (ASR), explore the correlation between acoustic and articulatory features, and framework for Computer-assisted language training, (c) Corpus - Simultaneously recorded speech (wav) and medical imaging models such as ElectroMagnetic Articulography (EMA), Electropalatography (EPG), Laryngography, Electroglottography (EGG), X-ray Cineradiography, Ultrasound, and real-time Magnetic Resonance Imaging (rtMRI), (d) Methods or models - recent works are considered, and therefore all the works are based on machine learning, (e) Evaluation - as AAI is a non-linear regression problem, the performance evaluation is mostly done by Correlation Coefficient (CC), Root Mean Square Error (RMSE), and also considered Mean Square Error (MSE), and Mean Format Error (MFE). The practical application of the AAI model can provide a better and user-friendly interpretable image feedback system of articulatory positions, especially tongue movement. Such trajectory feedback system can be used to provide phonetic, language, and speech therapy for pathological subjects.
comment: This is a review paper about Acoustic to Articulatory inversion of speech, presented in an international conference. This paper has 8 pages and 2 figures
☆ Sentiment Analysis on the young people's perception about the mobile Internet costs in Senegal
Internet penetration rates in Africa are rising steadily, and mobile Internet is getting an even bigger boost with the availability of smartphones. Young people are increasingly using the Internet, especially social networks, and Senegal is no exception to this revolution. Social networks have become the main means of expression for young people. Despite this evolution in Internet access, there are few operators on the market, which limits the alternatives available in terms of value for money. In this paper, we will look at how young people feel about the price of mobile Internet in Senegal, in relation to the perceived quality of the service, through their comments on social networks. We scanned a set of Twitter and Facebook comments related to the subject and applied a sentiment analysis model to gather their general feelings.
comment: 19 pages, 14 figures, 10th International Congress on Information and Communication Technology (ICICT 2025)
☆ Interpersonal Theory of Suicide as a Lens to Examine Suicidal Ideation in Online Spaces
Suicide is a critical global public health issue, with millions experiencing suicidal ideation (SI) each year. Online spaces enable individuals to express SI and seek peer support. While prior research has revealed the potential of detecting SI using machine learning and natural language analysis, a key limitation is the lack of a theoretical framework to understand the underlying factors affecting high-risk suicidal intent. To bridge this gap, we adopted the Interpersonal Theory of Suicide (IPTS) as an analytic lens to analyze 59,607 posts from Reddit's r/SuicideWatch, categorizing them into SI dimensions (Loneliness, Lack of Reciprocal Love, Self Hate, and Liability) and risk factors (Thwarted Belongingness, Perceived Burdensomeness, and Acquired Capability of Suicide). We found that high-risk SI posts express planning and attempts, methods and tools, and weaknesses and pain. In addition, we also examined the language of supportive responses through psycholinguistic and content analyses to find that individuals respond differently to different stages of Suicidal Ideation (SI) posts. Finally, we explored the role of AI chatbots in providing effective supportive responses to suicidal ideation posts. We found that although AI improved structural coherence, expert evaluations highlight persistent shortcomings in providing dynamic, personalized, and deeply empathetic support. These findings underscore the need for careful reflection and deeper understanding in both the development and consideration of AI-driven interventions for effective mental health support.
☆ CPG-EVAL: A Multi-Tiered Benchmark for Evaluating the Chinese Pedagogical Grammar Competence of Large Language Models
Purpose: The rapid emergence of large language models (LLMs) such as ChatGPT has significantly impacted foreign language education, yet their pedagogical grammar competence remains under-assessed. This paper introduces CPG-EVAL, the first dedicated benchmark specifically designed to evaluate LLMs' knowledge of pedagogical grammar within the context of foreign language instruction. Methodology: The benchmark comprises five tasks designed to assess grammar recognition, fine-grained grammatical distinction, categorical discrimination, and resistance to linguistic interference. Findings: Smaller-scale models can succeed in single language instance tasks, but struggle with multiple instance tasks and interference from confusing instances. Larger-scale models show better resistance to interference but still have significant room for accuracy improvement. The evaluation indicates the need for better instructional alignment and more rigorous benchmarks, to effectively guide the deployment of LLMs in educational contexts. Value: This study offers the first specialized, theory-driven, multi-tiered benchmark framework for systematically evaluating LLMs' pedagogical grammar competence in Chinese language teaching contexts. CPG-EVAL not only provides empirical insights for educators, policymakers, and model developers to better gauge AI's current abilities in educational settings, but also lays the groundwork for future research on improving model alignment, enhancing educational suitability, and ensuring informed decision-making concerning LLM integration in foreign language instruction.
comment: 12 pages, 1 figure, 3 tables
☆ SemCORE: A Semantic-Enhanced Generative Cross-Modal Retrieval Framework with MLLMs
Cross-modal retrieval (CMR) is a fundamental task in multimedia research, focused on retrieving semantically relevant targets across different modalities. While traditional CMR methods match text and image via embedding-based similarity calculations, recent advancements in pre-trained generative models have established generative retrieval as a promising alternative. This paradigm assigns each target a unique identifier and leverages a generative model to directly predict identifiers corresponding to input queries without explicit indexing. Despite its great potential, current generative CMR approaches still face semantic information insufficiency in both identifier construction and generation processes. To address these limitations, we propose a novel unified Semantic-enhanced generative Cross-mOdal REtrieval framework (SemCORE), designed to unleash the semantic understanding capabilities in generative cross-modal retrieval task. Specifically, we first construct a Structured natural language IDentifier (SID) that effectively aligns target identifiers with generative models optimized for natural language comprehension and generation. Furthermore, we introduce a Generative Semantic Verification (GSV) strategy enabling fine-grained target discrimination. Additionally, to the best of our knowledge, SemCORE is the first framework to simultaneously consider both text-to-image and image-to-text retrieval tasks within generative cross-modal retrieval. Extensive experiments demonstrate that our framework outperforms state-of-the-art generative cross-modal retrieval methods. Notably, SemCORE achieves substantial improvements across benchmark datasets, with an average increase of 8.65 points in Recall@1 for text-to-image retrieval.
☆ Sleep-time Compute: Beyond Inference Scaling at Test-time
Scaling test-time compute has emerged as a key ingredient for enabling large language models (LLMs) to solve difficult problems, but comes with high latency and inference cost. We introduce sleep-time compute, which allows models to "think" offline about contexts before queries are presented: by anticipating what queries users might ask and pre-computing useful quantities, we can significantly reduce the compute requirements at test-time. To demonstrate the efficacy of our method, we create modified versions of two reasoning tasks - Stateful GSM-Symbolic and Stateful AIME. We find that sleep-time compute can reduce the amount of test-time compute needed to achieve the same accuracy by ~ 5x on Stateful GSM-Symbolic and Stateful AIME and that by scaling sleep-time compute we can further increase accuracy by up to 13% on Stateful GSM-Symbolic and 18% on Stateful AIME. Furthermore, we introduce Multi-Query GSM-Symbolic, which extends GSM-Symbolic by including multiple related queries per context. By amortizing sleep-time compute across related queries about the same context using Multi-Query GSM-Symbolic, we can decrease the average cost per query by 2.5x. We then conduct additional analysis to understand when sleep-time compute is most effective, finding the predictability of the user query to be well correlated with the efficacy of sleep-time compute. Finally, we conduct a case-study of applying sleep-time compute to a realistic agentic SWE task.
comment: Code and data released at: https://github.com/letta-ai/sleep-time-compute
☆ CLIMB: CLustering-based Iterative Data Mixture Bootstrapping for Language Model Pre-training
Pre-training datasets are typically collected from web content and lack inherent domain divisions. For instance, widely used datasets like Common Crawl do not include explicit domain labels, while manually curating labeled datasets such as The Pile is labor-intensive. Consequently, identifying an optimal pre-training data mixture remains a challenging problem, despite its significant benefits for pre-training performance. To address these challenges, we propose CLustering-based Iterative Data Mixture Bootstrapping (CLIMB), an automated framework that discovers, evaluates, and refines data mixtures in a pre-training setting. Specifically, CLIMB embeds and clusters large-scale datasets in a semantic space and then iteratively searches for optimal mixtures using a smaller proxy model and a predictor. When continuously trained on 400B tokens with this mixture, our 1B model exceeds the state-of-the-art Llama-3.2-1B by 2.0%. Moreover, we observe that optimizing for a specific domain (e.g., Social Sciences) yields a 5% improvement over random sampling. Finally, we introduce ClimbLab, a filtered 1.2-trillion-token corpus with 20 clusters as a research playground, and ClimbMix, a compact yet powerful 400-billion-token dataset designed for efficient pre-training that delivers superior performance under an equal token budget. We analyze the final data mixture, elucidating the characteristics of an optimal data mixture. Our data is available at: https://research.nvidia.com/labs/lpr/climb/
comment: 20 pages, 9 figures
☆ MIB: A Mechanistic Interpretability Benchmark
How can we know whether new mechanistic interpretability methods achieve real improvements? In pursuit of meaningful and lasting evaluation standards, we propose MIB, a benchmark with two tracks spanning four tasks and five models. MIB favors methods that precisely and concisely recover relevant causal pathways or specific causal variables in neural language models. The circuit localization track compares methods that locate the model components - and connections between them - most important for performing a task (e.g., attribution patching or information flow routes). The causal variable localization track compares methods that featurize a hidden vector, e.g., sparse autoencoders (SAEs) or distributed alignment search (DAS), and locate model features for a causal variable relevant to the task. Using MIB, we find that attribution and mask optimization methods perform best on circuit localization. For causal variable localization, we find that the supervised DAS method performs best, while SAE features are not better than neurons, i.e., standard dimensions of hidden vectors. These findings illustrate that MIB enables meaningful comparisons of methods, and increases our confidence that there has been real progress in the field.
☆ Antidistillation Sampling
Frontier models that generate extended reasoning traces inadvertently produce rich token sequences that can facilitate model distillation. Recognizing this vulnerability, model owners may seek sampling strategies that limit the effectiveness of distillation without compromising model performance. \emph{Antidistillation sampling} provides exactly this capability. By strategically modifying a model's next-token probability distribution, antidistillation sampling poisons reasoning traces, rendering them significantly less effective for distillation while preserving the model's practical utility. For further details, see https://antidistillation.com.
☆ Syntactic and Semantic Control of Large Language Models via Sequential Monte Carlo
A wide range of LM applications require generating text that conforms to syntactic or semantic constraints. Imposing such constraints can be naturally framed as probabilistic conditioning, but exact generation from the resulting distribution -- which can differ substantially from the LM's base distribution -- is generally intractable. In this work, we develop an architecture for controlled LM generation based on sequential Monte Carlo (SMC). Our SMC framework allows us to flexibly incorporate domain- and problem-specific constraints at inference time, and efficiently reallocate computational resources in light of new information during the course of generation. By comparing to a number of alternatives and ablations on four challenging domains -- Python code generation for data science, text-to-SQL, goal inference, and molecule synthesis -- we demonstrate that, with little overhead, our approach allows small open-source language models to outperform models over 8x larger, as well as closed-source, fine-tuned ones. In support of the probabilistic perspective, we show that these performance improvements are driven by better approximation to the posterior distribution. Our system builds on the framework of Lew et al. (2023) and integrates with its language model probabilistic programming language, giving users a simple, programmable way to apply SMC to a broad variety of controlled generation problems.
comment: 34 pages, 4 figures
☆ Energy-Based Reward Models for Robust Language Model Alignment
Reward models (RMs) are essential for aligning Large Language Models (LLMs) with human preferences. However, they often struggle with capturing complex human preferences and generalizing to unseen data. To address these challenges, we introduce Energy-Based Reward Model (EBRM), a lightweight post-hoc refinement framework that enhances RM robustness and generalization. EBRM models the reward distribution explicitly, capturing uncertainty in human preferences and mitigating the impact of noisy or misaligned annotations. It achieves this through conflict-aware data filtering, label-noise-aware contrastive training, and hybrid initialization. Notably, EBRM enhances RMs without retraining, making it computationally efficient and adaptable across different models and tasks. Empirical evaluations on RM benchmarks demonstrate significant improvements in both robustness and generalization, achieving up to a 5.97% improvement in safety-critical alignment tasks compared to standard RMs. Furthermore, reinforcement learning experiments confirm that our refined rewards enhance alignment quality, effectively delaying reward hacking. These results demonstrate our approach as a scalable and effective enhancement for existing RMs and alignment pipelines. The code is available at EBRM.
☆ FreshStack: Building Realistic Benchmarks for Evaluating Retrieval on Technical Documents
We introduce FreshStack, a reusable framework for automatically building information retrieval (IR) evaluation benchmarks from community-asked questions and answers. FreshStack conducts the following steps: (1) automatic corpus collection from code and technical documentation, (2) nugget generation from community-asked questions and answers, and (3) nugget-level support, retrieving documents using a fusion of retrieval techniques and hybrid architectures. We use FreshStack to build five datasets on fast-growing, recent, and niche topics to ensure the tasks are sufficiently challenging. On FreshStack, existing retrieval models, when applied out-of-the-box, significantly underperform oracle approaches on all five topics, denoting plenty of headroom to improve IR quality. In addition, we identify cases where rerankers do not clearly improve first-stage retrieval accuracy (two out of five topics). We hope that FreshStack will facilitate future work toward constructing realistic, scalable, and uncontaminated IR and RAG evaluation benchmarks. FreshStack datasets are available at: https://fresh-stack.github.io.
LLMs Meet Finance: Fine-Tuning Foundation Models for the Open FinLLM Leaderboard
This paper investigates the application of large language models (LLMs) to financial tasks. We fine-tuned foundation models using the Open FinLLM Leaderboard as a benchmark. Building on Qwen2.5 and Deepseek-R1, we employed techniques including supervised fine-tuning (SFT), direct preference optimization (DPO), and reinforcement learning (RL) to enhance their financial capabilities. The fine-tuned models demonstrated substantial performance gains across a wide range of financial tasks. Moreover, we measured the data scaling law in the financial domain. Our work demonstrates the potential of large language models (LLMs) in financial applications.
☆ Probing and Inducing Combinational Creativity in Vision-Language Models
The ability to combine existing concepts into novel ideas stands as a fundamental hallmark of human intelligence. Recent advances in Vision-Language Models (VLMs) like GPT-4V and DALLE-3 have sparked debate about whether their outputs reflect combinational creativity--defined by M. A. Boden (1998) as synthesizing novel ideas through combining existing concepts--or sophisticated pattern matching of training data. Drawing inspiration from cognitive science, we investigate the combinational creativity of VLMs from the lens of concept blending. We propose the Identification-Explanation-Implication (IEI) framework, which decomposes creative processes into three levels: identifying input spaces, extracting shared attributes, and deriving novel semantic implications. To validate this framework, we curate CreativeMashup, a high-quality dataset of 666 artist-generated visual mashups annotated according to the IEI framework. Through extensive experiments, we demonstrate that in comprehension tasks, best VLMs have surpassed average human performance while falling short of expert-level understanding; in generation tasks, incorporating our IEI framework into the generation pipeline significantly enhances the creative quality of VLMs outputs. Our findings establish both a theoretical foundation for evaluating artificial creativity and practical guidelines for improving creative generation in VLMs.
comment: Project page: https://ppyyqq.github.io/aicc/ The first two authors contribute equally
☆ Tackling Social Bias against the Poor: A Dataset and Taxonomy on Aporophobia NAACL 2025
Eradicating poverty is the first goal in the United Nations Sustainable Development Goals. However, aporophobia -- the societal bias against people living in poverty -- constitutes a major obstacle to designing, approving and implementing poverty-mitigation policies. This work presents an initial step towards operationalizing the concept of aporophobia to identify and track harmful beliefs and discriminative actions against poor people on social media. In close collaboration with non-profits and governmental organizations, we conduct data collection and exploration. Then we manually annotate a corpus of English tweets from five world regions for the presence of (1) direct expressions of aporophobia, and (2) statements referring to or criticizing aporophobic views or actions of others, to comprehensively characterize the social media discourse related to bias and discrimination against the poor. Based on the annotated data, we devise a taxonomy of categories of aporophobic attitudes and actions expressed through speech on social media. Finally, we train several classifiers and identify the main challenges for automatic detection of aporophobia in social networks. This work paves the way towards identifying, tracking, and mitigating aporophobic views on social media at scale.
comment: In Findings of the Association for Computational Linguistics: NAACL 2025
☆ Retrieval-Augmented Generation with Conflicting Evidence
Large language model (LLM) agents are increasingly employing retrieval-augmented generation (RAG) to improve the factuality of their responses. However, in practice, these systems often need to handle ambiguous user queries and potentially conflicting information from multiple sources while also suppressing inaccurate information from noisy or irrelevant documents. Prior work has generally studied and addressed these challenges in isolation, considering only one aspect at a time, such as handling ambiguity or robustness to noise and misinformation. We instead consider multiple factors simultaneously, proposing (i) RAMDocs (Retrieval with Ambiguity and Misinformation in Documents), a new dataset that simulates complex and realistic scenarios for conflicting evidence for a user query, including ambiguity, misinformation, and noise; and (ii) MADAM-RAG, a multi-agent approach in which LLM agents debate over the merits of an answer over multiple rounds, allowing an aggregator to collate responses corresponding to disambiguated entities while discarding misinformation and noise, thereby handling diverse sources of conflict jointly. We demonstrate the effectiveness of MADAM-RAG using both closed and open-source models on AmbigDocs -- which requires presenting all valid answers for ambiguous queries -- improving over strong RAG baselines by up to 11.40% and on FaithEval -- which requires suppressing misinformation -- where we improve by up to 15.80% (absolute) with Llama3.3-70B-Instruct. Furthermore, we find that RAMDocs poses a challenge for existing RAG baselines (Llama3.3-70B-Instruct only obtains 32.60 exact match score). While MADAM-RAG begins to address these conflicting factors, our analysis indicates that a substantial gap remains especially when increasing the level of imbalance in supporting evidence and misinformation.
comment: Our data and code is available at: https://github.com/HanNight/RAMDocs
☆ ImPart: Importance-Aware Delta-Sparsification for Improved Model Compression and Merging in LLMs
With the proliferation of task-specific large language models, delta compression has emerged as a method to mitigate the resource challenges of deploying numerous such models by effectively compressing the delta model parameters. Previous delta-sparsification methods either remove parameters randomly or truncate singular vectors directly after singular value decomposition (SVD). However, these methods either disregard parameter importance entirely or evaluate it with too coarse a granularity. In this work, we introduce ImPart, a novel importance-aware delta sparsification approach. Leveraging SVD, it dynamically adjusts sparsity ratios of different singular vectors based on their importance, effectively retaining crucial task-specific knowledge even at high sparsity ratios. Experiments show that ImPart achieves state-of-the-art delta sparsification performance, demonstrating $2\times$ higher compression ratio than baselines at the same performance level. When integrated with existing methods, ImPart sets a new state-of-the-art on delta quantization and model merging.
☆ Accuracy is Not Agreement: Expert-Aligned Evaluation of Crash Narrative Classification Models
This study explores the relationship between deep learning (DL) model accuracy and expert agreement in the classification of crash narratives. We evaluate five DL models -- including BERT variants, the Universal Sentence Encoder (USE), and a zero-shot classifier -- against expert-labeled data and narrative text. The analysis is further extended to four large language models (LLMs): GPT-4, LLaMA 3, Qwen, and Claude. Our results reveal a counterintuitive trend: models with higher technical accuracy often exhibit lower agreement with domain experts, whereas LLMs demonstrate greater expert alignment despite relatively lower accuracy scores. To quantify and interpret model-expert agreement, we employ Cohen's Kappa, Principal Component Analysis (PCA), and SHAP-based explainability techniques. Findings indicate that expert-aligned models tend to rely more on contextual and temporal language cues, rather than location-specific keywords. These results underscore that accuracy alone is insufficient for evaluating models in safety-critical NLP applications. We advocate for incorporating expert agreement as a complementary metric in model evaluation frameworks and highlight the promise of LLMs as interpretable, scalable tools for crash analysis pipelines.
☆ RoboTwin: Dual-Arm Robot Benchmark with Generative Digital Twins CVPR 2025
In the rapidly advancing field of robotics, dual-arm coordination and complex object manipulation are essential capabilities for developing advanced autonomous systems. However, the scarcity of diverse, high-quality demonstration data and real-world-aligned evaluation benchmarks severely limits such development. To address this, we introduce RoboTwin, a generative digital twin framework that uses 3D generative foundation models and large language models to produce diverse expert datasets and provide a real-world-aligned evaluation platform for dual-arm robotic tasks. Specifically, RoboTwin creates varied digital twins of objects from single 2D images, generating realistic and interactive scenarios. It also introduces a spatial relation-aware code generation framework that combines object annotations with large language models to break down tasks, determine spatial constraints, and generate precise robotic movement code. Our framework offers a comprehensive benchmark with both simulated and real-world data, enabling standardized evaluation and better alignment between simulated training and real-world performance. We validated our approach using the open-source COBOT Magic Robot platform. Policies pre-trained on RoboTwin-generated data and fine-tuned with limited real-world samples demonstrate significant potential for enhancing dual-arm robotic manipulation systems by improving success rates by over 70% for single-arm tasks and over 40% for dual-arm tasks compared to models trained solely on real-world data.
comment: CVPR 2025 Highlight. 22 pages. Project page: https://robotwin-benchmark.github.io/
☆ Aspect-Based Summarization with Self-Aspect Retrieval Enhanced Generation
Aspect-based summarization aims to generate summaries tailored to specific aspects, addressing the resource constraints and limited generalizability of traditional summarization approaches. Recently, large language models have shown promise in this task without the need for training. However, they rely excessively on prompt engineering and face token limits and hallucination challenges, especially with in-context learning. To address these challenges, in this paper, we propose a novel framework for aspect-based summarization: Self-Aspect Retrieval Enhanced Summary Generation. Rather than relying solely on in-context learning, given an aspect, we employ an embedding-driven retrieval mechanism to identify its relevant text segments. This approach extracts the pertinent content while avoiding unnecessary details, thereby mitigating the challenge of token limits. Moreover, our framework optimizes token usage by deleting unrelated parts of the text and ensuring that the model generates output strictly based on the given aspect. With extensive experiments on benchmark datasets, we demonstrate that our framework not only achieves superior performance but also effectively mitigates the token limitation problem.
☆ Deep literature reviews: an application of fine-tuned language models to migration research
This paper presents a hybrid framework for literature reviews that augments traditional bibliometric methods with large language models (LLMs). By fine-tuning open-source LLMs, our approach enables scalable extraction of qualitative insights from large volumes of research content, enhancing both the breadth and depth of knowledge synthesis. To improve annotation efficiency and consistency, we introduce an error-focused validation process in which LLMs generate initial labels and human reviewers correct misclassifications. Applying this framework to over 20000 scientific articles about human migration, we demonstrate that a domain-adapted LLM can serve as a "specialist" model - capable of accurately selecting relevant studies, detecting emerging trends, and identifying critical research gaps. Notably, the LLM-assisted review reveals a growing scholarly interest in climate-induced migration. However, existing literature disproportionately centers on a narrow set of environmental hazards (e.g., floods, droughts, sea-level rise, and land degradation), while overlooking others that more directly affect human health and well-being, such as air and water pollution or infectious diseases. This imbalance highlights the need for more comprehensive research that goes beyond physical environmental changes to examine their ecological and societal consequences, particularly in shaping migration as an adaptive response. Overall, our proposed framework demonstrates the potential of fine-tuned LLMs to conduct more efficient, consistent, and insightful literature reviews across disciplines, ultimately accelerating knowledge synthesis and scientific discovery.
☆ How Large Language Models Are Changing MOOC Essay Answers: A Comparison of Pre- and Post-LLM Responses
The release of ChatGPT in late 2022 caused a flurry of activity and concern in the academic and educational communities. Some see the tool's ability to generate human-like text that passes at least cursory inspections for factual accuracy ``often enough'' a golden age of information retrieval and computer-assisted learning. Some, on the other hand, worry the tool may lead to unprecedented levels of academic dishonesty and cheating. In this work, we quantify some of the effects of the emergence of Large Language Models (LLMs) on online education by analyzing a multi-year dataset of student essay responses from a free university-level MOOC on AI ethics. Our dataset includes essays submitted both before and after ChatGPT's release. We find that the launch of ChatGPT coincided with significant changes in both the length and style of student essays, mirroring observations in other contexts such as academic publishing. We also observe -- as expected based on related public discourse -- changes in prevalence of key content words related to AI and LLMs, but not necessarily the general themes or topics discussed in the student essays as identified through (dynamic) topic modeling.
comment: 10 pages, 4 figures
☆ ChatEXAONEPath: An Expert-level Multimodal Large Language Model for Histopathology Using Whole Slide Images
Recent studies have made significant progress in developing large language models (LLMs) in the medical domain, which can answer expert-level questions and demonstrate the potential to assist clinicians in real-world clinical scenarios. Studies have also witnessed the importance of integrating various modalities with the existing LLMs for a better understanding of complex clinical contexts, which are innately multi-faceted by nature. Although studies have demonstrated the ability of multimodal LLMs in histopathology to answer questions from given images, they lack in understanding of thorough clinical context due to the patch-level data with limited information from public datasets. Thus, developing WSI-level MLLMs is significant in terms of the scalability and applicability of MLLMs in histopathology. In this study, we introduce an expert-level MLLM for histopathology using WSIs, dubbed as ChatEXAONEPath. We present a retrieval-based data generation pipeline using 10,094 pairs of WSIs and histopathology reports from The Cancer Genome Atlas (TCGA). We also showcase an AI-based evaluation protocol for a comprehensive understanding of the medical context from given multimodal information and evaluate generated answers compared to the original histopathology reports. We demonstrate the ability of diagnosing the given histopathology images using ChatEXAONEPath with the acceptance rate of 62.9% from 1,134 pairs of WSIs and reports. Our proposed model can understand pan-cancer WSIs and clinical context from various cancer types. We argue that our proposed model has the potential to assist clinicians by comprehensively understanding complex morphology of WSIs for cancer diagnosis through the integration of multiple modalities.
☆ SHA256 at SemEval-2025 Task 4: Selective Amnesia -- Constrained Unlearning for Large Language Models via Knowledge Isolation SemEval
Large language models (LLMs) frequently memorize sensitive information during training, posing risks when deploying publicly accessible models. Current machine unlearning methods struggle to selectively remove specific data associations without degrading overall model capabilities. This paper presents our solution to SemEval-2025 Task 4 on targeted unlearning, which introduces a two-stage methodology that combines causal mediation analysis with layer-specific optimization. Through systematic causal tracing experiments on OLMo architectures (1B and 7B parameters), we identify the critical role of the first few transformer layers (layers 0-5) in storing subject-attribute associations within MLP modules. Building on this insight, we develop a constrained optimization approach that freezes upper layers while applying a novel joint loss function to lower layers-simultaneously maximizing forget set loss via output token cross-entropy penalties and minimizing retain set deviation through adaptive regularization. Our method achieves 2nd place in the 1B model track, demonstrating strong task performance while maintaining 88% of baseline MMLU accuracy. These results establish causal-informed layer optimization as a promising paradigm for efficient, precise unlearning in LLMs, offering a significant step forward in addressing data privacy concerns in AI systems.
comment: 8 pages, In Proceedings of The 19th International Workshop on Semantic Evaluation (SemEval), 2025
☆ Accommodate Knowledge Conflicts in Retrieval-augmented LLMs: Towards Reliable Response Generation in the Wild
The proliferation of large language models (LLMs) has significantly advanced information retrieval systems, particularly in response generation (RG). Unfortunately, LLMs often face knowledge conflicts between internal memory and retrievaled external information, arising from misinformation, biases, or outdated knowledge. These conflicts undermine response reliability and introduce uncertainty in decision-making. In this work, we analyze how LLMs navigate knowledge conflicts from an information-theoretic perspective and reveal that when conflicting and supplementary information exhibit significant differences, LLMs confidently resolve their preferences. However, when the distinction is ambiguous, LLMs experience heightened uncertainty. Based on this insight, we propose Swin-VIB, a novel framework that integrates a pipeline of variational information bottleneck models into adaptive augmentation of retrieved information and guiding LLM preference in response generation. Extensive experiments on single-choice, open-ended question-answering (QA), and retrieval augmented generation (RAG) validate our theoretical findings and demonstrate the efficacy of Swin-VIB. Notably, our method improves single-choice task accuracy by at least 7.54\% over competitive baselines.
☆ A Phenomenological Approach to Analyzing User Queries in IT Systems Using Heidegger's Fundamental Ontology
This paper presents a novel research analytical IT system grounded in Martin Heidegger's Fundamental Ontology, distinguishing between beings (das Seiende) and Being (das Sein). The system employs two modally distinct, descriptively complete languages: a categorical language of beings for processing user inputs and an existential language of Being for internal analysis. These languages are bridged via a phenomenological reduction module, enabling the system to analyze user queries (including questions, answers, and dialogues among IT specialists), identify recursive and self-referential structures, and provide actionable insights in categorical terms. Unlike contemporary systems limited to categorical analysis, this approach leverages Heidegger's phenomenological existential analysis to uncover deeper ontological patterns in query processing, aiding in resolving logical traps in complex interactions, such as metaphor usage in IT contexts. The path to full realization involves formalizing the language of Being by a research team based on Heidegger's Fundamental Ontology; given the existing completeness of the language of beings, this reduces the system's computability to completeness, paving the way for a universal query analysis tool. The paper presents the system's architecture, operational principles, technical implementation, use cases--including a case based on real IT specialist dialogues--comparative evaluation with existing tools, and its advantages and limitations.
comment: 12 pages, no figures
☆ Sparks of Science: Hypothesis Generation Using Structured Paper Data
Generating novel and creative scientific hypotheses is a cornerstone in achieving Artificial General Intelligence. Large language and reasoning models have the potential to aid in the systematic creation, selection, and validation of scientifically informed hypotheses. However, current foundation models often struggle to produce scientific ideas that are both novel and feasible. One reason is the lack of a dedicated dataset that frames Scientific Hypothesis Generation (SHG) as a Natural Language Generation (NLG) task. In this paper, we introduce HypoGen, the first dataset of approximately 5500 structured problem-hypothesis pairs extracted from top-tier computer science conferences structured with a Bit-Flip-Spark schema, where the Bit is the conventional assumption, the Spark is the key insight or conceptual leap, and the Flip is the resulting counterproposal. HypoGen uniquely integrates an explicit Chain-of-Reasoning component that reflects the intellectual process from Bit to Flip. We demonstrate that framing hypothesis generation as conditional language modelling, with the model fine-tuned on Bit-Flip-Spark and the Chain-of-Reasoning (and where, at inference, we only provide the Bit), leads to improvements in the overall quality of the hypotheses. Our evaluation employs automated metrics and LLM judge rankings for overall quality assessment. We show that by fine-tuning on our HypoGen dataset we improve the novelty, feasibility, and overall quality of the generated hypotheses. The HypoGen dataset is publicly available at huggingface.co/datasets/UniverseTBD/hypogen-dr1.
comment: 9 pages, 2 figures. Comments welcome
☆ Estimating Optimal Context Length for Hybrid Retrieval-augmented Multi-document Summarization
Recent advances in long-context reasoning abilities of language models led to interesting applications in large-scale multi-document summarization. However, prior work has shown that these long-context models are not effective at their claimed context windows. To this end, retrieval-augmented systems provide an efficient and effective alternative. However, their performance can be highly sensitive to the choice of retrieval context length. In this work, we present a hybrid method that combines retrieval-augmented systems with long-context windows supported by recent language models. Our method first estimates the optimal retrieval length as a function of the retriever, summarizer, and dataset. On a randomly sampled subset of the dataset, we use a panel of LLMs to generate a pool of silver references. We use these silver references to estimate the optimal context length for a given RAG system configuration. Our results on the multi-document summarization task showcase the effectiveness of our method across model classes and sizes. We compare against length estimates from strong long-context benchmarks such as RULER and HELMET. Our analysis also highlights the effectiveness of our estimation method for very long-context LMs and its generalization to new classes of LMs.
☆ Are Retrials All You Need? Enhancing Large Language Model Reasoning Without Verbalized Feedback
Recent advancements in large language models (LLMs) have catalyzed the development of general-purpose autonomous agents, demonstrating remarkable performance in complex reasoning tasks across various domains. This surge has spurred the evolution of a plethora of prompt-based reasoning frameworks. A recent focus has been on iterative reasoning strategies that refine outputs through self-evaluation and verbalized feedback. However, these strategies require additional computational complexity to enable models to recognize and correct their mistakes, leading to a significant increase in their cost. In this work, we introduce the concept of ``retrials without feedback'', an embarrassingly simple yet powerful mechanism for enhancing reasoning frameworks by allowing LLMs to retry problem-solving attempts upon identifying incorrect answers. Unlike conventional iterative refinement methods, our method does not require explicit self-reflection or verbalized feedback, simplifying the refinement process. Our findings indicate that simpler retrial-based approaches often outperform more sophisticated reasoning frameworks, suggesting that the benefits of complex methods may not always justify their computational costs. By challenging the prevailing assumption that more intricate reasoning strategies inherently lead to better performance, our work offers new insights into how simpler, more efficient approaches can achieve optimal results. So, are retrials all you need?
comment: 8 pages, 16 figures, 1 table. arXiv admin note: text overlap with arXiv:2405.06691
☆ DIDS: Domain Impact-aware Data Sampling for Large Language Model Training
Large language models (LLMs) are commonly trained on multi-domain datasets, where domain sampling strategies significantly impact model performance due to varying domain importance across downstream tasks. Existing approaches for optimizing domain-level sampling strategies struggle with maintaining intra-domain consistency and accurately measuring domain impact. In this paper, we present Domain Impact-aware Data Sampling (DIDS). To ensure intra-domain consistency, a gradient clustering algorithm is proposed to group training data based on their learning effects, where a proxy language model and dimensionality reduction are employed to reduce computational overhead. To accurately measure domain impact, we develop a Fisher Information Matrix (FIM) guided metric that quantifies how domain-specific parameter updates affect the model's output distributions on downstream tasks, with theoretical guarantees. Furthermore, to determine optimal sampling ratios, DIDS combines both the FIM-guided domain impact assessment and loss learning trajectories that indicate domain-specific potential, while accounting for diminishing marginal returns. Extensive experiments demonstrate that DIDS achieves 3.4% higher average performance while maintaining comparable training efficiency.
☆ ConExion: Concept Extraction with Large Language Models
In this paper, an approach for concept extraction from documents using pre-trained large language models (LLMs) is presented. Compared with conventional methods that extract keyphrases summarizing the important information discussed in a document, our approach tackles a more challenging task of extracting all present concepts related to the specific domain, not just the important ones. Through comprehensive evaluations of two widely used benchmark datasets, we demonstrate that our method improves the F1 score compared to state-of-the-art techniques. Additionally, we explore the potential of using prompts within these models for unsupervised concept extraction. The extracted concepts are intended to support domain coverage evaluation of ontologies and facilitate ontology learning, highlighting the effectiveness of LLMs in concept extraction tasks. Our source code and datasets are publicly available at https://github.com/ISE-FIZKarlsruhe/concept_extraction.
☆ MAIN: Mutual Alignment Is Necessary for instruction tuning
Instruction tuning has enabled large language models (LLMs) to achieve remarkable performance, but its success heavily depends on the availability of large-scale, high-quality instruction-response pairs. However, current methods for scaling up data generation often overlook a crucial aspect: the alignment between instructions and responses. We hypothesize that high-quality instruction-response pairs are not defined by the individual quality of each component, but by the extent of their alignment with each other. To address this, we propose a Mutual Alignment Framework (MAIN) that ensures coherence between the instruction and response through mutual constraints. Experiments demonstrate that models such as LLaMA and Mistral, fine-tuned within this framework, outperform traditional methods across multiple benchmarks. This approach underscores the critical role of instruction-response alignment in enabling scalable and high-quality instruction tuning for LLMs.
☆ Benchmarking Multi-National Value Alignment for Large Language Models
Do Large Language Models (LLMs) hold positions that conflict with your country's values? Occasionally they do! However, existing works primarily focus on ethical reviews, failing to capture the diversity of national values, which encompass broader policy, legal, and moral considerations. Furthermore, current benchmarks that rely on spectrum tests using manually designed questionnaires are not easily scalable. To address these limitations, we introduce NaVAB, a comprehensive benchmark to evaluate the alignment of LLMs with the values of five major nations: China, the United States, the United Kingdom, France, and Germany. NaVAB implements a national value extraction pipeline to efficiently construct value assessment datasets. Specifically, we propose a modeling procedure with instruction tagging to process raw data sources, a screening process to filter value-related topics and a generation process with a Conflict Reduction mechanism to filter non-conflicting values.We conduct extensive experiments on various LLMs across countries, and the results provide insights into assisting in the identification of misaligned scenarios. Moreover, we demonstrate that NaVAB can be combined with alignment techniques to effectively reduce value concerns by aligning LLMs' values with the target country.
☆ Information Gain-Guided Causal Intervention for Autonomous Debiasing Large Language Models
Despite significant progress, recent studies indicate that current large language models (LLMs) may still capture dataset biases and utilize them during inference, leading to the poor generalizability of LLMs. However, due to the diversity of dataset biases and the insufficient nature of bias suppression based on in-context learning, the effectiveness of previous prior knowledge-based debiasing methods and in-context learning based automatic debiasing methods is limited. To address these challenges, we explore the combination of causal mechanisms with information theory and propose an information gain-guided causal intervention debiasing (IGCIDB) framework. This framework first utilizes an information gain-guided causal intervention method to automatically and autonomously balance the distribution of instruction-tuning dataset. Subsequently, it employs a standard supervised fine-tuning process to train LLMs on the debiased dataset. Experimental results show that IGCIDB can effectively debias LLM to improve its generalizability across different tasks.
☆ Are AI agents the new machine translation frontier? Challenges and opportunities of single- and multi-agent systems for multilingual digital communication
The rapid evolution of artificial intelligence (AI) has introduced AI agents as a disruptive paradigm across various industries, yet their application in machine translation (MT) remains underexplored. This paper describes and analyses the potential of single- and multi-agent systems for MT, reflecting on how they could enhance multilingual digital communication. While single-agent systems are well-suited for simpler translation tasks, multi-agent systems, which involve multiple specialized AI agents collaborating in a structured manner, may offer a promising solution for complex scenarios requiring high accuracy, domain-specific knowledge, and contextual awareness. To demonstrate the feasibility of multi-agent workflows in MT, we are conducting a pilot study in legal MT. The study employs a multi-agent system involving four specialized AI agents for (i) translation, (ii) adequacy review, (iii) fluency review, and (iv) final editing. Our findings suggest that multi-agent systems may have the potential to significantly improve domain-adaptability and contextual awareness, with superior translation quality to traditional MT or single-agent systems. This paper also sets the stage for future research into multi-agent applications in MT, integration into professional translation workflows, and shares a demo of the system analyzed in the paper.
☆ ViClaim: A Multilingual Multilabel Dataset for Automatic Claim Detection in Videos
The growing influence of video content as a medium for communication and misinformation underscores the urgent need for effective tools to analyze claims in multilingual and multi-topic settings. Existing efforts in misinformation detection largely focus on written text, leaving a significant gap in addressing the complexity of spoken text in video transcripts. We introduce ViClaim, a dataset of 1,798 annotated video transcripts across three languages (English, German, Spanish) and six topics. Each sentence in the transcripts is labeled with three claim-related categories: fact-check-worthy, fact-non-check-worthy, or opinion. We developed a custom annotation tool to facilitate the highly complex annotation process. Experiments with state-of-the-art multilingual language models demonstrate strong performance in cross-validation (macro F1 up to 0.896) but reveal challenges in generalization to unseen topics, particularly for distinct domains. Our findings highlight the complexity of claim detection in video transcripts. ViClaim offers a robust foundation for advancing misinformation detection in video-based communication, addressing a critical gap in multimodal analysis.
☆ Building Russian Benchmark for Evaluation of Information Retrieval Models
We introduce RusBEIR, a comprehensive benchmark designed for zero-shot evaluation of information retrieval (IR) models in the Russian language. Comprising 17 datasets from various domains, it integrates adapted, translated, and newly created datasets, enabling systematic comparison of lexical and neural models. Our study highlights the importance of preprocessing for lexical models in morphologically rich languages and confirms BM25 as a strong baseline for full-document retrieval. Neural models, such as mE5-large and BGE-M3, demonstrate superior performance on most datasets, but face challenges with long-document retrieval due to input size constraints. RusBEIR offers a unified, open-source framework that promotes research in Russian-language information retrieval.
☆ Can LLMs reason over extended multilingual contexts? Towards long-context evaluation beyond retrieval and haystacks
Existing multilingual long-context benchmarks, often based on the popular needle-in-a-haystack test, primarily evaluate a model's ability to locate specific information buried within irrelevant texts. However, such a retrieval-centric approach is myopic and inherently limited, as successful recall alone does not indicate a model's capacity to reason over extended contexts. Moreover, these benchmarks are susceptible to data leakage, short-circuiting, and risk making the evaluation a priori identifiable. To address these limitations, we introduce MLRBench, a new synthetic benchmark for multilingual long-context reasoning. Unlike existing benchmarks, MLRBench goes beyond surface-level retrieval by including tasks that assess multi-hop inference, aggregation, and epistemic reasoning. Spanning seven languages, MLRBench is designed to be parallel, resistant to leakage, and scalable to arbitrary context lengths. Our extensive experiments with an open-weight large language model (LLM) reveal a pronounced gap between high- and low-resource languages, particularly for tasks requiring the model to aggregate multiple facts or predict the absence of information. We also find that, in multilingual settings, LLMs effectively utilize less than 30% of their claimed context length. Although off-the-shelf Retrieval Augmented Generation helps alleviate this to a certain extent, it does not solve the long-context problem. We open-source MLRBench to enable future research in improved evaluation and training of multilingual LLMs.
comment: 33 Pages in Total - 23 (Main Manuscript) + 10 (Appendix)
☆ SMARTe: Slot-based Method for Accountable Relational Triple extraction
Relational Triple Extraction (RTE) is a fundamental task in Natural Language Processing (NLP). However, prior research has primarily focused on optimizing model performance, with limited efforts to understand the internal mechanisms driving these models. Many existing methods rely on complex preprocessing to induce specific interactions, often resulting in opaque systems that may not fully align with their theoretical foundations. To address these limitations, we propose SMARTe: a Slot-based Method for Accountable Relational Triple extraction. SMARTe introduces intrinsic interpretability through a slot attention mechanism and frames the task as a set prediction problem. Slot attention consolidates relevant information into distinct slots, ensuring all predictions can be explicitly traced to learned slot representations and the tokens contributing to each predicted relational triple. While emphasizing interpretability, SMARTe achieves performance comparable to state-of-the-art models. Evaluations on the NYT and WebNLG datasets demonstrate that adding interpretability does not compromise performance. Furthermore, we conducted qualitative assessments to showcase the explanations provided by SMARTe, using attention heatmaps that map to their respective tokens. We conclude with a discussion of our findings and propose directions for future research.
☆ Assesing LLMs in Art Contexts: Critique Generation and Theory of Mind Evaluation
This study explored how large language models (LLMs) perform in two areas related to art: writing critiques of artworks and reasoning about mental states (Theory of Mind, or ToM) in art-related situations. For the critique generation part, we built a system that combines Noel Carroll's evaluative framework with a broad selection of art criticism theories. The model was prompted to first write a full-length critique and then shorter, more coherent versions using a step-by-step prompting process. These AI-generated critiques were then compared with those written by human experts in a Turing test-style evaluation. In many cases, human subjects had difficulty telling which was which, and the results suggest that LLMs can produce critiques that are not only plausible in style but also rich in interpretation, as long as they are carefully guided. In the second part, we introduced new simple ToM tasks based on situations involving interpretation, emotion, and moral tension, which can appear in the context of art. These go beyond standard false-belief tests and allow for more complex, socially embedded forms of reasoning. We tested 41 recent LLMs and found that their performance varied across tasks and models. In particular, tasks that involved affective or ambiguous situations tended to reveal clearer differences. Taken together, these results help clarify how LLMs respond to complex interpretative challenges, revealing both their cognitive limitations and potential. While our findings do not directly contradict the so-called Generative AI Paradox--the idea that LLMs can produce expert-like output without genuine understanding--they suggest that, depending on how LLMs are instructed, such as through carefully designed prompts, these models may begin to show behaviors that resemble understanding more closely than we might assume.
comment: 30 pages, 13 figures, 1 table
☆ Towards Lossless Token Pruning in Late-Interaction Retrieval Models SIGIR 2025
Late interaction neural IR models like ColBERT offer a competitive effectiveness-efficiency trade-off across many benchmarks. However, they require a huge memory space to store the contextual representation for all the document tokens. Some works have proposed using either heuristics or statistical-based techniques to prune tokens from each document. This however doesn't guarantee that the removed tokens have no impact on the retrieval score. Our work uses a principled approach to define how to prune tokens without impacting the score between a document and a query. We introduce three regularization losses, that induce a solution with high pruning ratios, as well as two pruning strategies. We study them experimentally (in and out-domain), showing that we can preserve ColBERT's performance while using only 30\% of the tokens.
comment: Accepted at SIGIR 2025 Full Paper Track
☆ Enhancing the Geometric Problem-Solving Ability of Multimodal LLMs via Symbolic-Neural Integration
Recent advances in Multimodal Large Language Models (MLLMs) have achieved remarkable progress in general domains and demonstrated promise in multimodal mathematical reasoning. However, applying MLLMs to geometry problem solving (GPS) remains challenging due to lack of accurate step-by-step solution data and severe hallucinations during reasoning. In this paper, we propose GeoGen, a pipeline that can automatically generates step-wise reasoning paths for geometry diagrams. By leveraging the precise symbolic reasoning, \textbf{GeoGen} produces large-scale, high-quality question-answer pairs. To further enhance the logical reasoning ability of MLLMs, we train \textbf{GeoLogic}, a Large Language Model (LLM) using synthetic data generated by GeoGen. Serving as a bridge between natural language and symbolic systems, GeoLogic enables symbolic tools to help verifying MLLM outputs, making the reasoning process more rigorous and alleviating hallucinations. Experimental results show that our approach consistently improves the performance of MLLMs, achieving remarkable results on benchmarks for geometric reasoning tasks. This improvement stems from our integration of the strengths of LLMs and symbolic systems, which enables a more reliable and interpretable approach for the GPS task. Codes are available at https://github.com/ycpNotFound/GeoGen.
comment: 10 pages, 5 figures
☆ Out of Sight Out of Mind, Out of Sight Out of Mind: Measuring Bias in Language Models Against Overlooked Marginalized Groups in Regional Contexts
We know that language models (LMs) form biases and stereotypes of minorities, leading to unfair treatments of members of these groups, thanks to research mainly in the US and the broader English-speaking world. As the negative behavior of these models has severe consequences for society and individuals, industry and academia are actively developing methods to reduce the bias in LMs. However, there are many under-represented groups and languages that have been overlooked so far. This includes marginalized groups that are specific to individual countries and regions in the English speaking and Western world, but crucially also almost all marginalized groups in the rest of the world. The UN estimates, that between 600 million to 1.2 billion people worldwide are members of marginalized groups and in need for special protection. If we want to develop inclusive LMs that work for everyone, we have to broaden our understanding to include overlooked marginalized groups and low-resource languages and dialects. In this work, we contribute to this effort with the first study investigating offensive stereotyping bias in 23 LMs for 270 marginalized groups from Egypt, the remaining 21 Arab countries, Germany, the UK, and the US. Additionally, we investigate the impact of low-resource languages and dialects on the study of bias in LMs, demonstrating the limitations of current bias metrics, as we measure significantly higher bias when using the Egyptian Arabic dialect versus Modern Standard Arabic. Our results show, LMs indeed show higher bias against many marginalized groups in comparison to dominant groups. However, this is not the case for Arabic LMs, where the bias is high against both marginalized and dominant groups in relation to religion and ethnicity. Our results also show higher intersectional bias against Non-binary, LGBTQIA+ and Black women.
☆ Chinese-Vicuna: A Chinese Instruction-following Llama-based Model
Chinese-Vicuna is an open-source, resource-efficient language model designed to bridge the gap in Chinese instruction-following capabilities by fine-tuning Meta's LLaMA architecture using Low-Rank Adaptation (LoRA). Targeting low-resource environments, it enables cost-effective deployment on consumer GPUs (e.g., RTX-2080Ti for 7B models) and supports domain-specific adaptation in fields like healthcare and law. By integrating hybrid datasets (BELLE and Guanaco) and 4-bit quantization (QLoRA), the model achieves competitive performance in tasks such as translation, code generation, and domain-specific Q\&A. The project provides a comprehensive toolkit for model conversion, CPU inference, and multi-turn dialogue interfaces, emphasizing accessibility for researchers and developers. Evaluations indicate competitive performance across medical tasks, multi-turn dialogue coherence, and real-time legal updates. Chinese-Vicuna's modular design, open-source ecosystem, and community-driven enhancements position it as a versatile foundation for Chinese LLM applications.
comment: Chinese-Vicuna Technique Report
☆ Pandora: A Code-Driven Large Language Model Agent for Unified Reasoning Across Diverse Structured Knowledge
Unified Structured Knowledge Reasoning (USKR) aims to answer natural language questions (NLQs) by using structured sources such as tables, databases, and knowledge graphs in a unified way. Existing USKR methods either rely on employing task-specific strategies or custom-defined representations, which struggle to leverage the knowledge transfer between different SKR tasks or align with the prior of LLMs, thereby limiting their performance. This paper proposes a novel USKR framework named \textsc{Pandora}, which takes advantage of \textsc{Python}'s \textsc{Pandas} API to construct a unified knowledge representation for alignment with LLM pre-training. It employs an LLM to generate textual reasoning steps and executable Python code for each question. Demonstrations are drawn from a memory of training examples that cover various SKR tasks, facilitating knowledge transfer. Extensive experiments on four benchmarks involving three SKR tasks demonstrate that \textsc{Pandora} outperforms existing unified frameworks and competes effectively with task-specific methods.
☆ KODIS: A Multicultural Dispute Resolution Dialogue Corpus
We present KODIS, a dyadic dispute resolution corpus containing thousands of dialogues from over 75 countries. Motivated by a theoretical model of culture and conflict, participants engage in a typical customer service dispute designed by experts to evoke strong emotions and conflict. The corpus contains a rich set of dispositional, process, and outcome measures. The initial analysis supports theories of how anger expressions lead to escalatory spirals and highlights cultural differences in emotional expression. We make this corpus and data collection framework available to the community.
♻ ☆ Adaptive Layer-skipping in Pre-trained LLMs
Various layer-skipping methods have been proposed to accelerate token generation in large language models (LLMs). However, they have overlooked a fundamental question: How do computational demands vary across the generation of different tokens? In this work, we introduce FlexiDepth, a method that dynamically adjusts the number of Transformer layers used in text generation. By incorporating a plug-in router and adapter, FlexiDepth enables adaptive layer-skipping in LLMs without modifying their original parameters. Introducing FlexiDepth to Llama-3-8B model achieves layer skipping of 8 layers out of 32, and meanwhile maintains the full 100\% benchmark performance. Experimental results with FlexiDepth demonstrate that computational demands in LLMs significantly vary based on token type. Specifically, generating repetitive tokens or fixed phrases requires fewer layers, whereas producing tokens involving computation or high uncertainty requires more layers. Interestingly, this adaptive allocation pattern aligns with human intuition. To advance research in this area, we open sourced FlexiDepth and a dataset documenting FlexiDepth's layer allocation patterns for future exploration.
♻ ☆ Natural Language Outlines for Code: Literate Programming in the LLM Era
We propose using natural language outlines as a novel modality and interaction surface for providing AI assistance to developers throughout the software development process. An NL outline for a code function comprises multiple statements written in concise prose, which partition the code and summarize its main ideas in the style of literate programming. Crucially, we find that modern LLMs can generate accurate and high-quality NL outlines in practice. Moreover, NL outlines enable a bidirectional sync between code and NL, where a developer can change either code or NL and have the LLM automatically update the other. We discuss many use cases for NL outlines: they can accelerate understanding and navigation of code and diffs, simplify code maintenance, augment code search, steer code generation, and more. We then propose and compare multiple LLM prompting techniques for generating outlines and ask professional developers to judge outline quality. Finally, we present two case studies applying NL outlines toward code review and malware detection.
comment: Accepted to FSE'25 Industry Track
♻ ☆ LLM-Select: Feature Selection with Large Language Models
In this paper, we demonstrate a surprising capability of large language models (LLMs): given only input feature names and a description of a prediction task, they are capable of selecting the most predictive features, with performance rivaling the standard tools of data science. Remarkably, these models exhibit this capacity across various query mechanisms. For example, we zero-shot prompt an LLM to output a numerical importance score for a feature (e.g., "blood pressure") in predicting an outcome of interest (e.g., "heart failure"), with no additional context. In particular, we find that the latest models, such as GPT-4, can consistently identify the most predictive features regardless of the query mechanism and across various prompting strategies. We illustrate these findings through extensive experiments on real-world data, where we show that LLM-based feature selection consistently achieves strong performance competitive with data-driven methods such as the LASSO, despite never having looked at the downstream training data. Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place. This could benefit practitioners in domains like healthcare and the social sciences, where collecting high-quality data comes at a high cost.
comment: Published in Transactions on Machine Learning Research (TMLR), April 2025
♻ ☆ United in Diversity? Contextual Biases in LLM-Based Predictions of the 2024 European Parliament Elections
"Synthetic samples" based on large language models (LLMs) have been argued to serve as efficient alternatives to surveys of humans, assuming that their training data includes information on human attitudes and behavior. However, LLM-synthetic samples might exhibit bias, for example due to training data and fine-tuning processes being unrepresentative of diverse contexts. Such biases risk reinforcing existing biases in research, policymaking, and society. Therefore, researchers need to investigate if and under which conditions LLM-generated synthetic samples can be used for public opinion prediction. In this study, we examine to what extent LLM-based predictions of individual public opinion exhibit context-dependent biases by predicting the results of the 2024 European Parliament elections. Prompting three LLMs with individual-level background information of 26,000 eligible European voters, we ask the LLMs to predict each person's voting behavior. By comparing them to the actual results, we show that LLM-based predictions of future voting behavior largely fail, their accuracy is unequally distributed across national and linguistic contexts, and they require detailed attitudinal information in the prompt. The findings emphasize the limited applicability of LLM-synthetic samples to public opinion prediction. In investigating their contextual biases, this study contributes to the understanding and mitigation of inequalities in the development of LLMs and their applications in computational social science.
♻ ☆ ShadowKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference
With the widespread deployment of long-context large language models (LLMs), there has been a growing demand for efficient support of high-throughput inference. However, as the key-value (KV) cache expands with the sequence length, the increasing memory footprint and the need to access it for each token generation both result in low throughput when serving long-context LLMs. While various dynamic sparse attention methods have been proposed to speed up inference while maintaining generation quality, they either fail to sufficiently reduce GPU memory consumption or introduce significant decoding latency by offloading the KV cache to the CPU. We present ShadowKV, a high-throughput long-context LLM inference system that stores the low-rank key cache and offloads the value cache to reduce the memory footprint for larger batch sizes and longer sequences. To minimize decoding latency, ShadowKV employs an accurate KV selection strategy that reconstructs minimal sparse KV pairs on-the-fly. By evaluating ShadowKV on a broad range of benchmarks, including RULER, LongBench, and Needle In A Haystack, and models like Llama-3.1-8B, Llama-3-8B-1M, GLM-4-9B-1M, Yi-9B-200K, Phi-3-Mini-128K, and Qwen2-7B-128K, we demonstrate that it can support up to 6$\times$ larger batch sizes and boost throughput by up to 3.04$\times$ on an A100 GPU without sacrificing accuracy, even surpassing the performance achievable with infinite batch size under the assumption of infinite GPU memory. The code is available at https://github.com/bytedance/ShadowKV.
♻ ☆ Déjà Vu: Multilingual LLM Evaluation through the Lens of Machine Translation Evaluation
Generation capabilities and language coverage of multilingual large language models (mLLMs) are advancing rapidly. However, evaluation practices for generative abilities of mLLMs are still lacking comprehensiveness, scientific rigor, and consistent adoption across research labs, which undermines their potential to meaningfully guide mLLM development. We draw parallels with machine translation (MT) evaluation, a field that faced similar challenges and has, over decades, developed transparent reporting standards and reliable evaluations for multilingual generative models. Through targeted experiments across key stages of the generative evaluation pipeline, we demonstrate how best practices from MT evaluation can deepen the understanding of quality differences between models. Additionally, we identify essential components for robust meta-evaluation of mLLMs, ensuring the evaluation methods themselves are rigorously assessed. We distill these insights into a checklist of actionable recommendations for mLLM research and development.
♻ ☆ Are You Doubtful? Oh, It Might Be Difficult Then! Exploring the Use of Model Uncertainty for Question Difficulty Estimation
In an educational setting, an estimate of the difficulty of multiple-choice questions (MCQs), a commonly used strategy to assess learning progress, constitutes very useful information for both teachers and students. Since human assessment is costly from multiple points of view, automatic approaches to MCQ item difficulty estimation are investigated, yielding however mixed success until now. Our approach to this problem takes a different angle from previous work: asking various Large Language Models to tackle the questions included in three different MCQ datasets, we leverage model uncertainty to estimate item difficulty. By using both model uncertainty features as well as textual features in a Random Forest regressor, we show that uncertainty features contribute substantially to difficulty prediction, where difficulty is inversely proportional to the number of students who can correctly answer a question. In addition to showing the value of our approach, we also observe that our model achieves state-of-the-art results on the USMLE and CMCQRD publicly available datasets.
comment: 14 pages,7 figures
♻ ☆ Reducing the Scope of Language Models
We now deploy language models in a wide variety of user-facing applications. Typically, these deployments have some specific purpose, like answering questions about documentation or acting as coding assistants, but they require general language understanding. Under these circumstances these models should not be able to answer irrelevant requests such as, poetry generation or questions about physics, etc. Instead we would like language models to only answer to queries corresponding to desired behavior and refuse all other requests, which we refer to as scoping. We conduct a comprehensive empirical evaluation of potential methods from prompting to fine-tuning to preference learning to a recently proposed method for general alignment called Circuit Breakers (CB). Across three families of language models and a broad variety of tasks, we show that it is possible to scope language models. We examine scoping for multiple topics, and fine-grained topics. We ablate diversity of irrelevant queries, layer different techniques, conduct adversarial evaluations and more. Among other results, we find that, when diverse examples of irrelevant queries are available, simple supervised fine-tuning produces the best results, but when such diversity is low, Circuit Breakers perform quite well. One can often get the benefits of both methods by layering them in succession. We intend our study to serve as a practitioner's guide to scoping language models.
♻ ☆ Does Refusal Training in LLMs Generalize to the Past Tense? ICLR 2025
Refusal training is widely used to prevent LLMs from generating harmful, undesirable, or illegal outputs. We reveal a curious generalization gap in the current refusal training approaches: simply reformulating a harmful request in the past tense (e.g., "How to make a Molotov cocktail?" to "How did people make a Molotov cocktail?") is often sufficient to jailbreak many state-of-the-art LLMs. We systematically evaluate this method on Llama-3 8B, Claude-3.5 Sonnet, GPT-3.5 Turbo, Gemma-2 9B, Phi-3-Mini, GPT-4o mini, GPT-4o, o1-mini, o1-preview, and R2D2 models using GPT-3.5 Turbo as a reformulation model. For example, the success rate of this simple attack on GPT-4o increases from 1% using direct requests to 88% using 20 past tense reformulation attempts on harmful requests from JailbreakBench with GPT-4 as a jailbreak judge. Interestingly, we also find that reformulations in the future tense are less effective, suggesting that refusal guardrails tend to consider past historical questions more benign than hypothetical future questions. Moreover, our experiments on fine-tuning GPT-3.5 Turbo show that defending against past reformulations is feasible when past tense examples are explicitly included in the fine-tuning data. Overall, our findings highlight that the widely used alignment techniques -- such as SFT, RLHF, and adversarial training -- employed to align the studied models can be brittle and do not always generalize as intended. We provide code and jailbreak artifacts at https://github.com/tml-epfl/llm-past-tense.
comment: Accepted at ICLR 2025. Updates in v2 and v3: added GPT-4o, Claude 3.5 Sonnet, o1-mini, and o1-preview results. Code and jailbreak artifacts: https://github.com/tml-epfl/llm-past-tense
♻ ☆ PriorDiffusion: Leverage Language Prior in Diffusion Models for Monocular Depth Estimation
Traditional monocular depth estimation suffers from inherent ambiguity and visual nuisance. We argue that language prior can enhance monocular depth estimation by leveraging the inductive bias learned during the text-to-image pre-training of diffusion models. The ability of these models to generate images that align with text indicates that they have learned the spatial relationships, size, and shape of specified objects, which can be applied to improve depth estimation. Thus, we propose PriorDiffusion, using a pre-trained text-to-image diffusion model that takes both images and corresponding text descriptions to infer affine-invariant depth through a denoising process. We also show that language prior enhances the model's perception of specific regions of images that users care about and describe. Simultaneously, language prior acts as a constraint to accelerate the convergence of both training and the inference diffusion trajectory. By training on HyperSim and Virtual KITTI, we achieve faster training convergence, fewer inference diffusion steps, and state-of-the-art zero-shot performance across NYUv2, KITTI, ETH3D, and ScanNet. Code will be released upon acceptance.
♻ ☆ Psycholinguistic Analyses in Software Engineering Text: A Systematic Literature Review
Context: A deeper understanding of human factors in software engineering (SE) is essential for improving team collaboration, decision-making, and productivity. Communication channels like code reviews and chats provide insights into developers' psychological and emotional states. While large language models excel at text analysis, they often lack transparency and precision. Psycholinguistic tools like Linguistic Inquiry and Word Count (LIWC) offer clearer, interpretable insights into cognitive and emotional processes exhibited in text. Despite its wide use in SE research, no comprehensive review of LIWC's use has been conducted. Objective: We examine the importance of psycholinguistic tools, particularly LIWC, and provide a thorough analysis of its current and potential future applications in SE research. Methods: We conducted a systematic review of six prominent databases, identifying 43 SE-related papers using LIWC. Our analysis focuses on five research questions. Results: Our findings reveal a wide range of applications, including analyzing team communication to detect developer emotions and personality, developing ML models to predict deleted Stack Overflow posts, and more recently comparing AI-generated and human-written text. LIWC has been primarily used with data from project management platforms (e.g., GitHub) and Q&A forums (e.g., Stack Overflow). Key BSE concepts include Communication, Organizational Climate, and Positive Psychology. 26 of 43 papers did not formally evaluate LIWC. Concerns were raised about some limitations, including difficulty handling SE-specific vocabulary. Conclusion: We highlight the potential of psycholinguistic tools and their limitations, and present new use cases for advancing the research of human factors in SE (e.g., bias in human-LLM conversations).
♻ ☆ Do Vision-Language Models Represent Space and How? Evaluating Spatial Frame of Reference Under Ambiguities ICLR 2025
Spatial expressions in situated communication can be ambiguous, as their meanings vary depending on the frames of reference (FoR) adopted by speakers and listeners. While spatial language understanding and reasoning by vision-language models (VLMs) have gained increasing attention, potential ambiguities in these models are still under-explored. To address this issue, we present the COnsistent Multilingual Frame Of Reference Test (COMFORT), an evaluation protocol to systematically assess the spatial reasoning capabilities of VLMs. We evaluate nine state-of-the-art VLMs using COMFORT. Despite showing some alignment with English conventions in resolving ambiguities, our experiments reveal significant shortcomings of VLMs: notably, the models (1) exhibit poor robustness and consistency, (2) lack the flexibility to accommodate multiple FoRs, and (3) fail to adhere to language-specific or culture-specific conventions in cross-lingual tests, as English tends to dominate other languages. With a growing effort to align vision-language models with human cognitive intuitions, we call for more attention to the ambiguous nature and cross-cultural diversity of spatial reasoning.
comment: Accepted to ICLR 2025 (Oral) | Project page: https://spatial-comfort.github.io/
♻ ☆ Contextual Agent Security: A Policy for Every Purpose
Judging an action's safety requires knowledge of the context in which the action takes place. To human agents who act in various contexts, this may seem obvious: performing an action such as email deletion may or may not be appropriate depending on the email's content, the goal (e.g., to erase sensitive emails or to clean up trash), and the type of email address (e.g., work or personal). Unlike people, computational systems have often had only limited agency in limited contexts. Thus, manually crafted policies and user confirmation (e.g., smartphone app permissions or network access control lists), while imperfect, have sufficed to restrict harmful actions. However, with the upcoming deployment of generalist agents that support a multitude of tasks (e.g., an automated personal assistant), we argue that we must rethink security designs to adapt to the scale of contexts and capabilities of these systems. As a first step, this paper explores contextual security in the domain of agents and proposes contextual agent security (Conseca), a framework to generate just-in-time, contextual, and human-verifiable security policies.
comment: Workshop in Hot Topics in Operating Systems (HotOS) 2025
♻ ☆ SIFT-50M: A Large-Scale Multilingual Dataset for Speech Instruction Fine-Tuning
We introduce SIFT (Speech Instruction Fine-Tuning), a 50M-example dataset designed for instruction fine-tuning and pre-training of speech-text large language models (LLMs). SIFT-50M is built from publicly available speech corpora, which collectively contain 14K hours of speech, and leverages LLMs along with off-the-shelf expert models. The dataset spans five languages, encompassing a diverse range of speech understanding as well as controllable speech generation instructions. Using SIFT-50M, we train SIFT-LLM, which outperforms existing speech-text LLMs on instruction-following benchmarks while achieving competitive performance on foundational speech tasks. To support further research, we also introduce EvalSIFT, a benchmark dataset specifically designed to evaluate the instruction-following capabilities of speech-text LLMs.
♻ ☆ Citation-Enhanced Generation for LLM-based Chatbots
Large language models (LLMs) exhibit powerful general intelligence across diverse scenarios, including their integration into chatbots. However, a vital challenge of LLM-based chatbots is that they may produce hallucinated content in responses, which significantly limits their applicability. Various efforts have been made to alleviate hallucination, such as retrieval augmented generation and reinforcement learning with human feedback, but most of them require additional training and data annotation. In this paper, we propose a novel post-hoc Citation-Enhanced Generation (CEG) approach combined with retrieval argumentation. Unlike previous studies that focus on preventing hallucinations during generation, our method addresses this issue in a post-hoc way. It incorporates a retrieval module to search for supporting documents relevant to the generated content, and employs a natural language inference-based citation generation module. Once the statements in the generated content lack of reference, our model can regenerate responses until all statements are supported by citations. Note that our method is a training-free plug-and-play plugin that is capable of various LLMs. Experiments on various hallucination-related datasets show our framework outperforms state-of-the-art methods in both hallucination detection and response regeneration on three benchmarks. Our codes and dataset will be publicly available.
♻ ☆ Multimodal LLMs Can Reason about Aesthetics in Zero-Shot
The rapid progress of generative art has democratized the creation of visually pleasing imagery. However, achieving genuine artistic impact - the kind that resonates with viewers on a deeper, more meaningful level - requires a sophisticated aesthetic sensibility. This sensibility involves a multi-faceted reasoning process extending beyond mere visual appeal, which is often overlooked by current computational models. This paper pioneers an approach to capture this complex process by investigating how the reasoning capabilities of Multimodal LLMs (MLLMs) can be effectively elicited for aesthetic judgment. Our analysis reveals a critical challenge: MLLMs exhibit a tendency towards hallucinations during aesthetic reasoning, characterized by subjective opinions and unsubstantiated artistic interpretations. We further demonstrate that these limitations can be overcome by employing an evidence-based, objective reasoning process, as substantiated by our proposed baseline, ArtCoT. MLLMs prompted by this principle produce multi-faceted and in-depth aesthetic reasoning that aligns significantly better with human judgment. These findings have direct applications in areas such as AI art tutoring and as reward models for generative art. Ultimately, our work paves the way for AI systems that can truly understand, appreciate, and generate artworks that align with the sensible human aesthetic standard.
comment: WIP, Homepage https://github.com/songrise/MLLM4Art
♻ ☆ ReTool: Reinforcement Learning for Strategic Tool Use in LLMs
While reasoning models (e.g., DeepSeek R1) trained with reinforcement learning (RL), excel in textual reasoning, they struggle in scenarios requiring structured problem-solving, such as geometric reasoning, concise computation, or complex equation solving-areas where computational tools like code interpreters (CI) demonstrate distinct advantages. To bridge this gap, we propose ReTool, which enhances long-form reasoning with tool-integrated learning, including two key features: (1) dynamic interleaving of real-time code execution within natural language reasoning processes, and (2) an automated RL paradigm that allows policy rollouts with multi-turn real-time code execution and teaches the model in learning when and how to invoke tools based on outcome feedback. ReTool employs a systematic training framework, beginning with synthetic cold-start data generation to produce code-augmented long-form reasoning traces for fine-tuning base models. Subsequent RL training leverages task outcomes as rewards to iteratively refine the model's tool use strategy, enabling autonomous discovery of optimal tool invocation patterns without human priors. Experiments on the challenging MATH Olympiad benchmark AIME demonstrate ReTool's superiority: Our 32B model achieves 67% accuracy with 400 training steps, outperforming text-based RL baseline (40% accuracy, 1080 steps) in efficiency and performance. Remarkably, ReTool-32B attains 72.5% accuracy in extended settings, surpassing OpenAI's o1-preview by 27.9%. Further analysis reveals emergent behaviors such as code self-correction, signaling an ''aha moment'' in which the model autonomously masters adaptive tool use. These findings highlight the promise of outcome-driven tool integration for advancing complex mathematical reasoning and offer new insights into hybrid neuro-symbolic systems.
comment: fix typos
♻ ☆ Arabizi vs LLMs: Can the Genie Understand the Language of Aladdin?
In this era of rapid technological advancements, communication continues to evolve as new linguistic phenomena emerge. Among these is Arabizi, a hybrid form of Arabic that incorporates Latin characters and numbers to represent the spoken dialects of Arab communities. Arabizi is widely used on social media and allows people to communicate in an informal and dynamic way, but it poses significant challenges for machine translation due to its lack of formal structure and deeply embedded cultural nuances. This case study arises from a growing need to translate Arabizi for gisting purposes. It evaluates the capacity of different LLMs to decode and translate Arabizi, focusing on multiple Arabic dialects that have rarely been studied up until now. Using a combination of human evaluators and automatic metrics, this research project investigates the model's performance in translating Arabizi into both Modern Standard Arabic and English. Key questions explored include which dialects are translated most effectively and whether translations into English surpass those into Arabic.
comment: Accepted to MT Summit 2025 (Track: Implementation and Case Studies) https://mtsummit2025.unige.ch/
♻ ☆ MemLLM: Finetuning LLMs to Use An Explicit Read-Write Memory
While current large language models (LLMs) perform well on many knowledge-related tasks, they are limited by relying on their parameters as an implicit storage mechanism. As a result, they struggle with memorizing rare events and with updating their memory as facts change over time. In addition, the uninterpretable nature of parametric memory makes it challenging to prevent hallucination. Model editing and augmenting LLMs with parameters specialized for memory are only partial solutions. In this paper, we introduce MemLLM, a novel method of enhancing LLMs by integrating a structured and explicit read-and-write memory module. MemLLM tackles the aforementioned challenges by enabling dynamic interaction with the memory and improving the LLM's capabilities in using stored knowledge. Our experiments indicate that MemLLM enhances the LLM's performance and interpretability, in language modeling in general and knowledge-intensive tasks in particular. We see MemLLM as an important step towards making LLMs more grounded and factual through memory augmentation. The project repository is publicly available at https://github.com/amodaresi/MemLLM
comment: Published in Transactions on Machine Learning Research (TMLR)
♻ ☆ Unipa-GPT: Large Language Models for university-oriented QA in Italian
This paper illustrates the architecture and training of Unipa-GPT, a chatbot relying on a Large Language Model, developed for assisting students in choosing a bachelor/master degree course at the University of Palermo. Unipa-GPT relies on gpt-3.5-turbo, it was presented in the context of the European Researchers' Night (SHARPER night). In our experiments we adopted both the Retrieval Augmented Generation (RAG) approach and fine-tuning to develop the system. The whole architecture of Unipa-GPT is presented, both the RAG and the fine-tuned systems are compared, and a brief discussion on their performance is reported. Further comparison with other Large Language Models and the experimental results during the SHARPER night are illustrated. Corpora and code are available on GitHub
comment: GitHub repository: https://github.com/CHILab1/UnipaGPT-23
♻ ☆ Bayesian dynamic borrowing considering semantic similarity between outcomes for disproportionality analysis in FAERS
We present a Bayesian dynamic borrowing (BDB) approach to enhance the quantitative identification of adverse events (AEs) in spontaneous reporting systems (SRSs). The method embeds a robust meta-analytic predictive (MAP) prior within a Bayesian hierarchical model and incorporates semantic similarity measures (SSMs) to enable weighted information sharing from MedDRA Preferred Terms (PTs) that are clinically similar to the target PT. This continuous similarity-based borrowing addresses limitation of rigid hierarchical grouping in current disproportionality analysis (DPA). Using data from the FDA Adverse Event Reporting System (FAERS) between 2015 and 2019, we evaluate this approach - termed IC SSM - against standard Information Component (IC) analysis and IC with borrowing at the MedDRA high-level group term (HLGT) level. A novel references set (PVLens), derived from FDA product label updates, enabled prospective evaluation of method performance in identifying AEs prior to official labeling. The IC SSM approach demonstrated improved sensitivity compared to both traditional IC and HLGT-based borrowing, with minor trade-offs in F1 scores and Youden's index. IC SSM consistently identified more true positives and detected signals over 5 months sooner than traditional IC. Despite a marginally lower aggregate Youden's index, IC SSM showed higher performance in the early post-marketing period, providing more stable and relevant estimates than HLGT-based borrowing and traditional IC. These findings support the use of SSM-informed Bayesian borrowing as a scalable and context-aware enhancement to traditional DPA methods. Future research should validate this approach across other datasets and explore additional similarity metrics and Bayesian inference strategies using case-level data.
comment: 30 pages, 7 figures, 5 supplementary figures
♻ ☆ CameraBench: Benchmarking Visual Reasoning in MLLMs via Photography
Large language models (LLMs) and multimodal large language models (MLLMs) have significantly advanced artificial intelligence. However, visual reasoning, reasoning involving both visual and textual inputs, remains underexplored. Recent advancements, including the reasoning models like OpenAI o1 and Gemini 2.0 Flash Thinking, which incorporate image inputs, have opened this capability. In this ongoing work, we focus specifically on photography-related tasks because a photo is a visual snapshot of the physical world where the underlying physics (i.e., illumination, blur extent, etc.) interplay with the camera parameters. Successfully reasoning from the visual information of a photo to identify these numerical camera settings requires the MLLMs to have a deeper understanding of the underlying physics for precise visual comprehension, representing a challenging and intelligent capability essential for practical applications like photography assistant agents. We aim to evaluate MLLMs on their ability to distinguish visual differences related to numerical camera settings, extending a methodology previously proposed for vision-language models (VLMs). Our preliminary results demonstrate the importance of visual reasoning in photography-related tasks. Moreover, these results show that no single MLLM consistently dominates across all evaluation tasks, demonstrating ongoing challenges and opportunities in developing MLLMs with better visual reasoning.
♻ ☆ Multi-Stakeholder Disaster Insights from Social Media Using Large Language Models
In recent years, social media has emerged as a primary channel for users to promptly share feedback and issues during disasters and emergencies, playing a key role in crisis management. While significant progress has been made in collecting and analyzing social media content, there remains a pressing need to enhance the automation, aggregation, and customization of this data to deliver actionable insights tailored to diverse stakeholders, including the press, police, EMS, and firefighters. This effort is essential for improving the coordination of activities such as relief efforts, resource distribution, and media communication. This paper presents a methodology that leverages the capabilities of LLMs to enhance disaster response and management. Our approach combines classification techniques with generative AI to bridge the gap between raw user feedback and stakeholder-specific reports. Social media posts shared during catastrophic events are analyzed with a focus on user-reported issues, service interruptions, and encountered challenges. We employ full-spectrum LLMs, using analytical models like BERT for precise, multi-dimensional classification of content type, sentiment, emotion, geolocation, and topic. Generative models such as ChatGPT are then used to produce human-readable, informative reports tailored to distinct audiences, synthesizing insights derived from detailed classifications. We compare standard approaches, which analyze posts directly using prompts in ChatGPT, to our advanced method, which incorporates multi-dimensional classification, sub-event selection, and tailored report generation. Our methodology demonstrates superior performance in both quantitative metrics, such as text coherence scores and latent representations, and qualitative assessments by automated tools and field experts, delivering precise insights for diverse disaster response stakeholders.
♻ ☆ Abstract Meaning Representation-Based Logic-Driven Data Augmentation for Logical Reasoning ACL 2024
Combining large language models with logical reasoning enhances their capacity to address problems in a robust and reliable manner. Nevertheless, the intricate nature of logical reasoning poses challenges when gathering reliable data from the web to build comprehensive training datasets, subsequently affecting performance on downstream tasks. To address this, we introduce a novel logic-driven data augmentation approach, AMR-LDA. AMR-LDA converts the original text into an Abstract Meaning Representation (AMR) graph, a structured semantic representation that encapsulates the logical structure of the sentence, upon which operations are performed to generate logically modified AMR graphs. The modified AMR graphs are subsequently converted back into text to create augmented data. Notably, our methodology is architecture-agnostic and enhances both generative large language models, such as GPT-3.5 and GPT-4, through prompt augmentation, and discriminative large language models through contrastive learning with logic-driven data augmentation. Empirical evidence underscores the efficacy of our proposed method with improvement in performance across seven downstream tasks, such as reading comprehension requiring logical reasoning, textual entailment, and natural language inference. Furthermore, our method leads on the ReClor leaderboard at https://eval.ai/web/challenges/challenge-page/503/leaderboard/1347. The source code and data are publicly available at https://github.com/Strong-AI-Lab/Logical-Equivalence-driven-AMR-Data-Augmentation-for-Representation-Learning.
comment: 21 pages, 8 figures, the Findings of ACL 2024
♻ ☆ Multi-Step Deductive Reasoning Over Natural Language: An Empirical Study on Out-of-Distribution Generalisation
Combining deep learning with symbolic logic reasoning aims to capitalize on the success of both fields and is drawing increasing attention. Inspired by DeepLogic, an end-to-end model trained to perform inference on logic programs, we introduce IMA-GloVe-GA, an iterative neural inference network for multi-step reasoning expressed in natural language. In our model, reasoning is performed using an iterative memory neural network based on RNN with a gated attention mechanism. We evaluate IMA-GloVe-GA on three datasets: PARARULES, CONCEPTRULES V1 and CONCEPTRULES V2. Experimental results show DeepLogic with gated attention can achieve higher test accuracy than DeepLogic and other RNN baseline models. Our model achieves better out-of-distribution generalisation than RoBERTa-Large when the rules have been shuffled. Furthermore, to address the issue of unbalanced distribution of reasoning depths in the current multi-step reasoning datasets, we develop PARARULE-Plus, a large dataset with more examples that require deeper reasoning steps. Experimental results show that the addition of PARARULE-Plus can increase the model's performance on examples requiring deeper reasoning depths. The source code and data are available at https://github.com/Strong-AI-Lab/Multi-Step-Deductive-Reasoning-Over-Natural-Language.
comment: 10 pages, 3 figures, The 2nd International Joint Conference on Learning & Reasoning and 16th International Workshop on Neural-Symbolic Learning and Reasoning (IJCLR-NeSy 2022)
♻ ☆ FuseRL: Dense Preference Optimization for Heterogeneous Model Fusion
Heterogeneous model fusion enhances the performance of LLMs by integrating the knowledge and capabilities of multiple structurally diverse models. However, existing approaches often rely solely on selecting the best output for each prompt from source models, which underutilizes their full potential due to limited source knowledge and results in sparse optimization signals. To address this limitation, we propose FuseRL, a novel two-stage framework comprising FuseSFT and FusePO to maximize the utilization of source LLMs. FuseSFT establishes a robust initialization by integrating the strengths of heterogeneous source models through weighted supervised fine-tuning (SFT) on diverse outputs for each prompt. FusePO optimizes weighted preferences based on the outputs of multiple source models to enable superior alignment performance. Extensive experiments demonstrate the effectiveness of our framework across various preference alignment methods, including RLOO, DPO, and SimPO. Using Llama-3.1-8B-Instruct as the target model, our approach achieves state-of-the-art performance among 8B LLMs on the AlpacaEval-2 and Arena-Hard benchmarks. Further analysis suggests that FuseSFT regularizes the training process to reduce overfitting, while FusePO introduces dense and diverse signals for preference optimization.
♻ ☆ Baichuan 2: Open Large-scale Language Models
Large language models (LLMs) have demonstrated remarkable performance on a variety of natural language tasks based on just a few examples of natural language instructions, reducing the need for extensive feature engineering. However, most powerful LLMs are closed-source or limited in their capability for languages other than English. In this technical report, we present Baichuan 2, a series of large-scale multilingual language models containing 7 billion and 13 billion parameters, trained from scratch, on 2.6 trillion tokens. Baichuan 2 matches or outperforms other open-source models of similar size on public benchmarks like MMLU, CMMLU, GSM8K, and HumanEval. Furthermore, Baichuan 2 excels in vertical domains such as medicine and law. We will release all pre-training model checkpoints to benefit the research community in better understanding the training dynamics of Baichuan 2.
comment: Baichuan 2 technical report. Github: https://github.com/baichuan-inc/Baichuan2
♻ ☆ Evaluating Semantic Variation in Text-to-Image Synthesis: A Causal Perspective ICLR 2025
Accurate interpretation and visualization of human instructions are crucial for text-to-image (T2I) synthesis. However, current models struggle to capture semantic variations from word order changes, and existing evaluations, relying on indirect metrics like text-image similarity, fail to reliably assess these challenges. This often obscures poor performance on complex or uncommon linguistic patterns by the focus on frequent word combinations. To address these deficiencies, we propose a novel metric called SemVarEffect and a benchmark named SemVarBench, designed to evaluate the causality between semantic variations in inputs and outputs in T2I synthesis. Semantic variations are achieved through two types of linguistic permutations, while avoiding easily predictable literal variations. Experiments reveal that the CogView-3-Plus and Ideogram 2 performed the best, achieving a score of 0.2/1. Semantic variations in object relations are less understood than attributes, scoring 0.07/1 compared to 0.17-0.19/1. We found that cross-modal alignment in UNet or Transformers plays a crucial role in handling semantic variations, a factor previously overlooked by a focus on textual encoders. Our work establishes an effective evaluation framework that advances the T2I synthesis community's exploration of human instruction understanding. Our benchmark and code are available at https://github.com/zhuxiangru/SemVarBench .
comment: Accepted by ICLR 2025
♻ ☆ UI-E2I-Synth: Advancing GUI Grounding with Large-Scale Instruction Synthesis
Recent advancements in Large Vision-Language Models are accelerating the development of Graphical User Interface (GUI) agents that utilize human-like vision perception capabilities to enhance productivity on digital devices. Compared to approaches predicated on GUI metadata, which are platform-dependent and vulnerable to implementation variations, vision-based approaches offer broader applicability. In this vision-based paradigm, the GUI instruction grounding, which maps user instruction to the location of corresponding element on the given screenshot, remains a critical challenge, particularly due to limited public training dataset and resource-intensive manual instruction data annotation. In this paper, we delve into unexplored challenges in this task including element-to-screen ratio, unbalanced element type, and implicit instruction. To address these challenges, we introduce a large-scale data synthesis pipeline UI-E2I-Synth for generating varying complex instruction datasets using GPT-4o instead of human annotators. Furthermore, we propose a new GUI instruction grounding benchmark UI-I2E-Bench, which is designed to address the limitations of existing benchmarks by incorporating diverse annotation aspects. Our model, trained on the synthesized data, achieves superior performance in GUI instruction grounding, demonstrating the advancements of proposed data synthesis pipeline. The proposed benchmark, accompanied by extensive analyses, provides practical insights for future research in GUI grounding. We will release corresponding artifacts at https://colmon46.github.io/i2e-bench-leaderboard/ .
Information Retrieval 18
☆ SemCORE: A Semantic-Enhanced Generative Cross-Modal Retrieval Framework with MLLMs
Cross-modal retrieval (CMR) is a fundamental task in multimedia research, focused on retrieving semantically relevant targets across different modalities. While traditional CMR methods match text and image via embedding-based similarity calculations, recent advancements in pre-trained generative models have established generative retrieval as a promising alternative. This paradigm assigns each target a unique identifier and leverages a generative model to directly predict identifiers corresponding to input queries without explicit indexing. Despite its great potential, current generative CMR approaches still face semantic information insufficiency in both identifier construction and generation processes. To address these limitations, we propose a novel unified Semantic-enhanced generative Cross-mOdal REtrieval framework (SemCORE), designed to unleash the semantic understanding capabilities in generative cross-modal retrieval task. Specifically, we first construct a Structured natural language IDentifier (SID) that effectively aligns target identifiers with generative models optimized for natural language comprehension and generation. Furthermore, we introduce a Generative Semantic Verification (GSV) strategy enabling fine-grained target discrimination. Additionally, to the best of our knowledge, SemCORE is the first framework to simultaneously consider both text-to-image and image-to-text retrieval tasks within generative cross-modal retrieval. Extensive experiments demonstrate that our framework outperforms state-of-the-art generative cross-modal retrieval methods. Notably, SemCORE achieves substantial improvements across benchmark datasets, with an average increase of 8.65 points in Recall@1 for text-to-image retrieval.
☆ FreshStack: Building Realistic Benchmarks for Evaluating Retrieval on Technical Documents
We introduce FreshStack, a reusable framework for automatically building information retrieval (IR) evaluation benchmarks from community-asked questions and answers. FreshStack conducts the following steps: (1) automatic corpus collection from code and technical documentation, (2) nugget generation from community-asked questions and answers, and (3) nugget-level support, retrieving documents using a fusion of retrieval techniques and hybrid architectures. We use FreshStack to build five datasets on fast-growing, recent, and niche topics to ensure the tasks are sufficiently challenging. On FreshStack, existing retrieval models, when applied out-of-the-box, significantly underperform oracle approaches on all five topics, denoting plenty of headroom to improve IR quality. In addition, we identify cases where rerankers do not clearly improve first-stage retrieval accuracy (two out of five topics). We hope that FreshStack will facilitate future work toward constructing realistic, scalable, and uncontaminated IR and RAG evaluation benchmarks. FreshStack datasets are available at: https://fresh-stack.github.io.
☆ Should We Tailor the Talk? Understanding the Impact of Conversational Styles on Preference Elicitation in Conversational Recommender Systems
Conversational recommender systems (CRSs) provide users with an interactive means to express preferences and receive real-time personalized recommendations. The success of these systems is heavily influenced by the preference elicitation process. While existing research mainly focuses on what questions to ask during preference elicitation, there is a notable gap in understanding what role broader interaction patterns including tone, pacing, and level of proactiveness play in supporting users in completing a given task. This study investigates the impact of different conversational styles on preference elicitation, task performance, and user satisfaction with CRSs. We conducted a controlled experiment in the context of scientific literature recommendation, contrasting two distinct conversational styles, high involvement (fast paced, direct, and proactive with frequent prompts) and high considerateness (polite and accommodating, prioritizing clarity and user comfort) alongside a flexible experimental condition where users could switch between the two. Our results indicate that adapting conversational strategies based on user expertise and allowing flexibility between styles can enhance both user satisfaction and the effectiveness of recommendations in CRSs. Overall, our findings hold important implications for the design of future CRSs.
comment: To appear in: Proceedings of the 33rd ACM Conference on User Modeling, Adaptation and Personalization (UMAP '25), June 16--19, 2025, New York City, NY, USA
☆ InstructRAG: Leveraging Retrieval-Augmented Generation on Instruction Graphs for LLM-Based Task Planning SIGIR 2025
Recent advancements in large language models (LLMs) have enabled their use as agents for planning complex tasks. Existing methods typically rely on a thought-action-observation (TAO) process to enhance LLM performance, but these approaches are often constrained by the LLMs' limited knowledge of complex tasks. Retrieval-augmented generation (RAG) offers new opportunities by leveraging external databases to ground generation in retrieved information. In this paper, we identify two key challenges (enlargability and transferability) in applying RAG to task planning. We propose InstructRAG, a novel solution within a multi-agent meta-reinforcement learning framework, to address these challenges. InstructRAG includes a graph to organize past instruction paths (sequences of correct actions), an RL-Agent with Reinforcement Learning to expand graph coverage for enlargability, and an ML-Agent with Meta-Learning to improve task generalization for transferability. The two agents are trained end-to-end to optimize overall planning performance. Our experiments on four widely used task planning datasets demonstrate that InstructRAG significantly enhances performance and adapts efficiently to new tasks, achieving up to a 19.2% improvement over the best existing approach.
comment: This paper has been accepted by SIGIR 2025
☆ CSMF: Cascaded Selective Mask Fine-Tuning for Multi-Objective Embedding-Based Retrieval SIGIR
Multi-objective embedding-based retrieval (EBR) has become increasingly critical due to the growing complexity of user behaviors and commercial objectives. While traditional approaches often suffer from data sparsity and limited information sharing between objectives, recent methods utilizing a shared network alongside dedicated sub-networks for each objective partially address these limitations. However, such methods significantly increase the model parameters, leading to an increased retrieval latency and a limited ability to model causal relationships between objectives. To address these challenges, we propose the Cascaded Selective Mask Fine-Tuning (CSMF), a novel method that enhances both retrieval efficiency and serving performance for multi-objective EBR. The CSMF framework selectively masks model parameters to free up independent learning space for each objective, leveraging the cascading relationships between objectives during the sequential fine-tuning. Without increasing network parameters or online retrieval overhead, CSMF computes a linearly weighted fusion score for multiple objective probabilities while supporting flexible adjustment of each objective's weight across various recommendation scenarios. Experimental results on real-world datasets demonstrate the superior performance of CSMF, and online experiments validate its significant practical value.
comment: 10 pages, 8 figures, Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '25), July 13--18, 2025, Padua, Italy
☆ ConExion: Concept Extraction with Large Language Models
In this paper, an approach for concept extraction from documents using pre-trained large language models (LLMs) is presented. Compared with conventional methods that extract keyphrases summarizing the important information discussed in a document, our approach tackles a more challenging task of extracting all present concepts related to the specific domain, not just the important ones. Through comprehensive evaluations of two widely used benchmark datasets, we demonstrate that our method improves the F1 score compared to state-of-the-art techniques. Additionally, we explore the potential of using prompts within these models for unsupervised concept extraction. The extracted concepts are intended to support domain coverage evaluation of ontologies and facilitate ontology learning, highlighting the effectiveness of LLMs in concept extraction tasks. Our source code and datasets are publicly available at https://github.com/ISE-FIZKarlsruhe/concept_extraction.
☆ FashionDPO:Fine-tune Fashion Outfit Generation Model using Direct Preference Optimization SIGIR'25
Personalized outfit generation aims to construct a set of compatible and personalized fashion items as an outfit. Recently, generative AI models have received widespread attention, as they can generate fashion items for users to complete an incomplete outfit or create a complete outfit. However, they have limitations in terms of lacking diversity and relying on the supervised learning paradigm. Recognizing this gap, we propose a novel framework FashionDPO, which fine-tunes the fashion outfit generation model using direct preference optimization. This framework aims to provide a general fine-tuning approach to fashion generative models, refining a pre-trained fashion outfit generation model using automatically generated feedback, without the need to design a task-specific reward function. To make sure that the feedback is comprehensive and objective, we design a multi-expert feedback generation module which covers three evaluation perspectives, \ie quality, compatibility and personalization. Experiments on two established datasets, \ie iFashion and Polyvore-U, demonstrate the effectiveness of our framework in enhancing the model's ability to align with users' personalized preferences while adhering to fashion compatibility principles. Our code and model checkpoints are available at https://github.com/Yzcreator/FashionDPO.
comment: Accepted by SIGIR'25
☆ Building Russian Benchmark for Evaluation of Information Retrieval Models
We introduce RusBEIR, a comprehensive benchmark designed for zero-shot evaluation of information retrieval (IR) models in the Russian language. Comprising 17 datasets from various domains, it integrates adapted, translated, and newly created datasets, enabling systematic comparison of lexical and neural models. Our study highlights the importance of preprocessing for lexical models in morphologically rich languages and confirms BM25 as a strong baseline for full-document retrieval. Neural models, such as mE5-large and BGE-M3, demonstrate superior performance on most datasets, but face challenges with long-document retrieval due to input size constraints. RusBEIR offers a unified, open-source framework that promotes research in Russian-language information retrieval.
☆ Towards Lossless Token Pruning in Late-Interaction Retrieval Models SIGIR 2025
Late interaction neural IR models like ColBERT offer a competitive effectiveness-efficiency trade-off across many benchmarks. However, they require a huge memory space to store the contextual representation for all the document tokens. Some works have proposed using either heuristics or statistical-based techniques to prune tokens from each document. This however doesn't guarantee that the removed tokens have no impact on the retrieval score. Our work uses a principled approach to define how to prune tokens without impacting the score between a document and a query. We introduce three regularization losses, that induce a solution with high pruning ratios, as well as two pruning strategies. We study them experimentally (in and out-domain), showing that we can preserve ColBERT's performance while using only 30\% of the tokens.
comment: Accepted at SIGIR 2025 Full Paper Track
☆ Validating LLM-Generated Relevance Labels for Educational Resource Search WSDM '25
Manual relevance judgements in Information Retrieval are costly and require expertise, driving interest in using Large Language Models (LLMs) for automatic assessment. While LLMs have shown promise in general web search scenarios, their effectiveness for evaluating domain-specific search results, such as educational resources, remains unexplored. To investigate different ways of including domain-specific criteria in LLM prompts for relevance judgement, we collected and released a dataset of 401 human relevance judgements from a user study involving teaching professionals performing search tasks related to lesson planning. We compared three approaches to structuring these prompts: a simple two-aspect evaluation baseline from prior work on using LLMs as relevance judges, a comprehensive 12-dimensional rubric derived from educational literature, and criteria directly informed by the study participants. Using domain-specific frameworks, LLMs achieved strong agreement with human judgements (Cohen's $\kappa$ up to 0.650), significantly outperforming the baseline approach. The participant-derived framework proved particularly robust, with GPT-3.5 achieving $\kappa$ scores of 0.639 and 0.613 for 10-dimension and 5-dimension versions respectively. System-level evaluation showed that LLM judgements reliably identified top-performing retrieval approaches (RBO scores 0.71-0.76) while maintaining reasonable discrimination between systems (RBO 0.52-0.56). These findings suggest that LLMs can effectively evaluate educational resources when prompted with domain-specific criteria, though performance varies with framework complexity and input structure.
comment: Presented in the LLM4Eval Workshop Co-located with WSDM '25 in Hannover, Germany
☆ SimUSER: Simulating User Behavior with Large Language Models for Recommender System Evaluation
Recommender systems play a central role in numerous real-life applications, yet evaluating their performance remains a significant challenge due to the gap between offline metrics and online behaviors. Given the scarcity and limits (e.g., privacy issues) of real user data, we introduce SimUSER, an agent framework that serves as believable and cost-effective human proxies. SimUSER first identifies self-consistent personas from historical data, enriching user profiles with unique backgrounds and personalities. Then, central to this evaluation are users equipped with persona, memory, perception, and brain modules, engaging in interactions with the recommender system. SimUSER exhibits closer alignment with genuine humans than prior work, both at micro and macro levels. Additionally, we conduct insightful experiments to explore the effects of thumbnails on click rates, the exposure effect, and the impact of reviews on user engagement. Finally, we refine recommender system parameters based on offline A/B test results, resulting in improved user engagement in the real world.
☆ Benchmarking LLM-based Relevance Judgment Methods
Large Language Models (LLMs) are increasingly deployed in both academic and industry settings to automate the evaluation of information seeking systems, particularly by generating graded relevance judgments. Previous work on LLM-based relevance assessment has primarily focused on replicating graded human relevance judgments through various prompting strategies. However, there has been limited exploration of alternative assessment methods or comprehensive comparative studies. In this paper, we systematically compare multiple LLM-based relevance assessment methods, including binary relevance judgments, graded relevance assessments, pairwise preference-based methods, and two nugget-based evaluation methods~--~document-agnostic and document-dependent. In addition to a traditional comparison based on system rankings using Kendall correlations, we also examine how well LLM judgments align with human preferences, as inferred from relevance grades. We conduct extensive experiments on datasets from three TREC Deep Learning tracks 2019, 2020 and 2021 as well as the ANTIQUE dataset, which focuses on non-factoid open-domain question answering. As part of our data release, we include relevance judgments generated by both an open-source (Llama3.2b) and a commercial (gpt-4o) model. Our goal is to \textit{reproduce} various LLM-based relevance judgment methods to provide a comprehensive comparison. All code, data, and resources are publicly available in our GitHub Repository at https://github.com/Narabzad/llm-relevance-judgement-comparison.
♻ ☆ Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis
Recent AI research plots a promising future of automatic chemical reactions within the chemistry society. This study proposes Chemist-X, a comprehensive AI agent that automates the reaction condition optimization (RCO) task in chemical synthesis with retrieval-augmented generation (RAG) technology and AI-controlled wet-lab experiment executions. To begin with, as an emulation on how chemical experts solve the RCO task, Chemist-X utilizes a novel RAG scheme to interrogate available molecular and literature databases to narrow the searching space for later processing. The agent then leverages a computer-aided design (CAD) tool we have developed through a large language model (LLM) supervised programming interface. With updated chemical knowledge obtained via RAG, as well as the ability in using CAD tools, our agent significantly outperforms conventional RCO AIs confined to the fixed knowledge within its training data. Finally, Chemist-X interacts with the physical world through an automated robotic system, which can validate the suggested chemical reaction condition without human interventions. The control of the robotic system was achieved with a novel algorithm we have developed for the equipment, which relies on LLMs for reliable script generation. Results of our automatic wet-lab experiments, achieved by fully LLM-supervised end-to-end operation with no human in the lope, prove Chemist-X's ability in self-driving laboratories.
♻ ☆ Argumentative Experience: Reducing Confirmation Bias on Controversial Issues through LLM-Generated Multi-Persona Debates
Large language models (LLMs) are enabling designers to give life to exciting new user experiences for information access. In this work, we present a system that generates LLM personas to debate a topic of interest from different perspectives. How might information seekers use and benefit from such a system? Can centering information access around diverse viewpoints help to mitigate thorny challenges like confirmation bias in which information seekers over-trust search results matching existing beliefs? How do potential biases and hallucinations in LLMs play out alongside human users who are also fallible and possibly biased? Our study exposes participants to multiple viewpoints on controversial issues via a mixed-methods, within-subjects study. We use eye-tracking metrics to quantitatively assess cognitive engagement alongside qualitative feedback. Compared to a baseline search system, we see more creative interactions and diverse information-seeking with our multi-persona debate system, which more effectively reduces user confirmation bias and conviction toward their initial beliefs. Overall, our study contributes to the emerging design space of LLM-based information access systems, specifically investigating the potential of simulated personas to promote greater exposure to information diversity, emulate collective intelligence, and mitigate bias in information seeking.
♻ ☆ dsld: A Socially Relevant Tool for Teaching Statistics
The growing power of data science can play a crucial role in addressing social discrimination, necessitating nuanced understanding and effective mitigation strategies for biases. "Data Science Looks At Discrimination" (DSLD) is an R and Python package designed to provide users with a comprehensive toolkit of statistical and graphical methods for assessing possible discrimination related to protected groups such as race, gender, and age. The package addresses critical issues by identifying and mitigating confounders and reducing bias against protected groups in prediction algorithms. In educational settings, DSLD offers instructors powerful tools to teach statistical principles through motivating real world examples of discrimination analysis. The inclusion of an 80 page Quarto book further supports users from statistics educators to legal professionals in effectively applying these analytical tools to real world scenarios.
comment: To be submitted to journal
♻ ☆ Comprehending Knowledge Graphs with Large Language Models for Recommender Systems SIGIR'25
In recent years, the introduction of knowledge graphs (KGs) has significantly advanced recommender systems by facilitating the discovery of potential associations between items. However, existing methods still face several limitations. First, most KGs suffer from missing facts or limited scopes. Second, existing methods convert textual information in KGs into IDs, resulting in the loss of natural semantic connections between different items. Third, existing methods struggle to capture high-order connections in the global KG. To address these limitations, we propose a novel method called CoLaKG, which leverages large language models (LLMs) to improve KG-based recommendations. The extensive knowledge and remarkable reasoning capabilities of LLMs enable our method to supplement missing facts in KGs, and their powerful text understanding abilities allow for better utilization of semantic information. Specifically, CoLaKG extracts useful information from KGs at both local and global levels. By employing the item-centered subgraph extraction and prompt engineering, it can accurately understand the local information. In addition, through the semantic-based retrieval module, each item is enriched by related items from the entire knowledge graph, effectively harnessing global information. Furthermore, the local and global information are effectively integrated into the recommendation model through a representation fusion module and a retrieval-augmented representation learning module, respectively. Extensive experiments on four real-world datasets demonstrate the superiority of our method.
comment: Accepted as a full paper by SIGIR'25
♻ ☆ PATFinger: Prompt-Adapted Transferable Fingerprinting against Unauthorized Multimodal Dataset Usage
The multimodal datasets can be leveraged to pre-train large-scale vision-language models by providing cross-modal semantics. Current endeavors for determining the usage of datasets mainly focus on single-modal dataset ownership verification through intrusive methods and non-intrusive techniques, while cross-modal approaches remain under-explored. Intrusive methods can adapt to multimodal datasets but degrade model accuracy, while non-intrusive methods rely on label-driven decision boundaries that fail to guarantee stable behaviors for verification. To address these issues, we propose a novel prompt-adapted transferable fingerprinting scheme from a training-free perspective, called PATFinger, which incorporates the global optimal perturbation (GOP) and the adaptive prompts to capture dataset-specific distribution characteristics. Our scheme utilizes inherent dataset attributes as fingerprints instead of compelling the model to learn triggers. The GOP is derived from the sample distribution to maximize embedding drifts between different modalities. Subsequently, our PATFinger re-aligns the adaptive prompt with GOP samples to capture the cross-modal interactions on the carefully crafted surrogate model. This allows the dataset owner to check the usage of datasets by observing specific prediction behaviors linked to the PATFinger during retrieval queries. Extensive experiments demonstrate the effectiveness of our scheme against unauthorized multimodal dataset usage on various cross-modal retrieval architectures by 30% over state-of-the-art baselines.
♻ ☆ Uncertainty Calibration for Counterfactual Propensity Estimation in Recommendation
Post-click conversion rate (CVR) is a reliable indicator of online customers' preferences, making it crucial for developing recommender systems. A major challenge in predicting CVR is severe selection bias, arising from users' inherent self-selection behavior and the system's item selection process. To mitigate this issue, the inverse propensity score (IPS) is employed to weight the prediction error of each observed instance. However, current propensity score estimations are unreliable due to the lack of a quality measure. To address this, we evaluate the quality of propensity scores from the perspective of uncertainty calibration, proposing the use of Expected Calibration Error (ECE) as a measure of propensity-score quality, which quantifies the extent to which predicted probabilities are overconfident by assessing the difference between predicted probabilities and actual observed frequencies. Miscalibrated propensity scores can lead to distorted IPS weights, thereby compromising the debiasing process in CVR prediction. In this paper, we introduce a model-agnostic calibration framework for propensity-based debiasing of CVR predictions. Theoretical analysis on bias and generalization bounds demonstrates the superiority of calibrated propensity estimates over uncalibrated ones. Experiments conducted on the Coat, Yahoo and KuaiRand datasets show improved uncertainty calibration, as evidenced by lower ECE values, leading to enhanced CVR prediction outcomes.
comment: This is the accepted manuscript version of the IEEE TKDE paper. The final published version will be available at: https://doi.ieeecomputersociety.org/10.1109/TKDE.2025.3552658
Machine Learning 25
☆ An Optimal Discriminator Weighted Imitation Perspective for Reinforcement Learning ICLR 2025
We introduce Iterative Dual Reinforcement Learning (IDRL), a new method that takes an optimal discriminator-weighted imitation view of solving RL. Our method is motivated by a simple experiment in which we find training a discriminator using the offline dataset plus an additional expert dataset and then performing discriminator-weighted behavior cloning gives strong results on various types of datasets. That optimal discriminator weight is quite similar to the learned visitation distribution ratio in Dual-RL, however, we find that current Dual-RL methods do not correctly estimate that ratio. In IDRL, we propose a correction method to iteratively approach the optimal visitation distribution ratio in the offline dataset given no addtional expert dataset. During each iteration, IDRL removes zero-weight suboptimal transitions using the learned ratio from the previous iteration and runs Dual-RL on the remaining subdataset. This can be seen as replacing the behavior visitation distribution with the optimized visitation distribution from the previous iteration, which theoretically gives a curriculum of improved visitation distribution ratios that are closer to the optimal discriminator weight. We verify the effectiveness of IDRL on various kinds of offline datasets, including D4RL datasets and more realistic corrupted demonstrations. IDRL beats strong Primal-RL and Dual-RL baselines in terms of both performance and stability, on all datasets.
comment: ICLR 2025
☆ VLLFL: A Vision-Language Model Based Lightweight Federated Learning Framework for Smart Agriculture
In modern smart agriculture, object detection plays a crucial role by enabling automation, precision farming, and monitoring of resources. From identifying crop health and pest infestations to optimizing harvesting processes, accurate object detection enhances both productivity and sustainability. However, training object detection models often requires large-scale data collection and raises privacy concerns, particularly when sensitive agricultural data is distributed across farms. To address these challenges, we propose VLLFL, a vision-language model-based lightweight federated learning framework (VLLFL). It harnesses the generalization and context-aware detection capabilities of the vision-language model (VLM) and leverages the privacy-preserving nature of federated learning. By training a compact prompt generator to boost the performance of the VLM deployed across different farms, VLLFL preserves privacy while reducing communication overhead. Experimental results demonstrate that VLLFL achieves 14.53% improvement in the performance of VLM while reducing 99.3% communication overhead. Spanning tasks from identifying a wide variety of fruits to detecting harmful animals in agriculture, the proposed framework offers an efficient, scalable, and privacy-preserving solution specifically tailored to agricultural applications.
☆ Denoising and Reconstruction of Nonlinear Dynamics using Truncated Reservoir Computing
Measurements acquired from distributed physical systems are often sparse and noisy. Therefore, signal processing and system identification tools are required to mitigate noise effects and reconstruct unobserved dynamics from limited sensor data. However, this process is particularly challenging because the fundamental equations governing the dynamics are largely unavailable in practice. Reservoir Computing (RC) techniques have shown promise in efficiently simulating dynamical systems through an unstructured and efficient computation graph comprising a set of neurons with random connectivity. However, the potential of RC to operate in noisy regimes and distinguish noise from the primary dynamics of the system has not been fully explored. This paper presents a novel RC method for noise filtering and reconstructing nonlinear dynamics, offering a novel learning protocol associated with hyperparameter optimization. The performance of the RC in terms of noise intensity, noise frequency content, and drastic shifts in dynamical parameters are studied in two illustrative examples involving the nonlinear dynamics of the Lorenz attractor and adaptive exponential integrate-and-fire system (AdEx). It is shown that the denoising performance improves via truncating redundant nodes and edges of the computing reservoir, as well as properly optimizing the hyperparameters, e.g., the leakage rate, the spectral radius, the input connectivity, and the ridge regression parameter. Furthermore, the presented framework shows good generalization behavior when tested for reconstructing unseen attractors from the bifurcation diagram. Compared to the Extended Kalman Filter (EKF), the presented RC framework yields competitive accuracy at low signal-to-noise ratios (SNRs) and high-frequency ranges.
☆ Chain-of-Modality: Learning Manipulation Programs from Multimodal Human Videos with Vision-Language-Models ICRA 2025
Learning to perform manipulation tasks from human videos is a promising approach for teaching robots. However, many manipulation tasks require changing control parameters during task execution, such as force, which visual data alone cannot capture. In this work, we leverage sensing devices such as armbands that measure human muscle activities and microphones that record sound, to capture the details in the human manipulation process, and enable robots to extract task plans and control parameters to perform the same task. To achieve this, we introduce Chain-of-Modality (CoM), a prompting strategy that enables Vision Language Models to reason about multimodal human demonstration data -- videos coupled with muscle or audio signals. By progressively integrating information from each modality, CoM refines a task plan and generates detailed control parameters, enabling robots to perform manipulation tasks based on a single multimodal human video prompt. Our experiments show that CoM delivers a threefold improvement in accuracy for extracting task plans and control parameters compared to baselines, with strong generalization to new task setups and objects in real-world robot experiments. Videos and code are available at https://chain-of-modality.github.io
comment: ICRA 2025
☆ On the minimax optimality of Flow Matching through the connection to kernel density estimation
Flow Matching has recently gained attention in generative modeling as a simple and flexible alternative to diffusion models, the current state of the art. While existing statistical guarantees adapt tools from the analysis of diffusion models, we take a different perspective by connecting Flow Matching to kernel density estimation. We first verify that the kernel density estimator matches the optimal rate of convergence in Wasserstein distance up to logarithmic factors, improving existing bounds for the Gaussian kernel. Based on this result, we prove that for sufficiently large networks, Flow Matching also achieves the optimal rate up to logarithmic factors, providing a theoretical foundation for the empirical success of this method. Finally, we provide a first justification of Flow Matching's effectiveness in high-dimensional settings by showing that rates improve when the target distribution lies on a lower-dimensional linear subspace.
☆ Predicting Forced Responses of Probability Distributions via the Fluctuation-Dissipation Theorem and Generative Modeling
We present a novel data-driven framework for estimating the response of higher-order moments of nonlinear stochastic systems to small external perturbations. The classical Generalized Fluctuation-Dissipation Theorem (GFDT) links the unperturbed steady-state distribution to the system's linear response. Standard implementations rely on Gaussian approximations, which can often accurately predict the mean response but usually introduce significant biases in higher-order moments, such as variance, skewness, and kurtosis. To address this limitation, we combine GFDT with recent advances in score-based generative modeling, which enable direct estimation of the score function from data without requiring full density reconstruction. Our method is validated on three reduced-order stochastic models relevant to climate dynamics: a scalar stochastic model for low-frequency climate variability, a slow-fast triad model mimicking key features of the El Nino-Southern Oscillation (ENSO), and a six-dimensional stochastic barotropic model capturing atmospheric regime transitions. In all cases, the approach captures strongly nonlinear and non-Gaussian features of the system's response, outperforming traditional Gaussian approximations.
☆ Wearable-Derived Behavioral and Physiological Biomarkers for Classifying Unipolar and Bipolar Depression Severity
Depression is a complex mental disorder characterized by a diverse range of observable and measurable indicators that go beyond traditional subjective assessments. Recent research has increasingly focused on objective, passive, and continuous monitoring using wearable devices to gain more precise insights into the physiological and behavioral aspects of depression. However, most existing studies primarily distinguish between healthy and depressed individuals, adopting a binary classification that fails to capture the heterogeneity of depressive disorders. In this study, we leverage wearable devices to predict depression subtypes-specifically unipolar and bipolar depression-aiming to identify distinctive biomarkers that could enhance diagnostic precision and support personalized treatment strategies. To this end, we introduce the CALYPSO dataset, designed for non-invasive detection of depression subtypes and symptomatology through physiological and behavioral signals, including blood volume pulse, electrodermal activity, body temperature, and three-axis acceleration. Additionally, we establish a benchmark on the dataset using well-known features and standard machine learning methods. Preliminary results indicate that features related to physical activity, extracted from accelerometer data, are the most effective in distinguishing between unipolar and bipolar depression, achieving an accuracy of $96.77\%$. Temperature-based features also showed high discriminative power, reaching an accuracy of $93.55\%$. These findings highlight the potential of physiological and behavioral monitoring for improving the classification of depressive subtypes, paving the way for more tailored clinical interventions.
comment: IEEE International Conference on Automatic Face and Gesture Recognition (FG) 2025
☆ Gradient-Free Sequential Bayesian Experimental Design via Interacting Particle Systems
We introduce a gradient-free framework for Bayesian Optimal Experimental Design (BOED) in sequential settings, aimed at complex systems where gradient information is unavailable. Our method combines Ensemble Kalman Inversion (EKI) for design optimization with the Affine-Invariant Langevin Dynamics (ALDI) sampler for efficient posterior sampling-both of which are derivative-free and ensemble-based. To address the computational challenges posed by nested expectations in BOED, we propose variational Gaussian and parametrized Laplace approximations that provide tractable upper and lower bounds on the Expected Information Gain (EIG). These approximations enable scalable utility estimation in high-dimensional spaces and PDE-constrained inverse problems. We demonstrate the performance of our framework through numerical experiments ranging from linear Gaussian models to PDE-based inference tasks, highlighting the method's robustness, accuracy, and efficiency in information-driven experimental design.
☆ Training Autoencoders Using Stochastic Hessian-Free Optimization with LSMR
Hessian-free (HF) optimization has been shown to effectively train deep autoencoders (Martens, 2010). In this paper, we aim to accelerate HF training of autoencoders by reducing the amount of data used in training. HF utilizes the conjugate gradient algorithm to estimate update directions. Instead, we propose using the LSMR method, which is known for effectively solving large sparse linear systems. We also incorporate Chapelle & Erhan (2011)'s improved preconditioner for HF optimization. In addition, we introduce a new mini-batch selection algorithm to mitigate overfitting. Our algorithm starts with a small subset of the training data and gradually increases the mini-batch size based on (i) variance estimates obtained during the computation of a mini-batch gradient (Byrd et al., 2012) and (ii) the relative decrease in objective value for the validation data. Our experimental results demonstrate that our stochastic Hessian-free optimization, using the LSMR method and the new sample selection algorithm, leads to rapid training of deep autoencoders with improved generalization error.
☆ Enhanced Pruning Strategy for Multi-Component Neural Architectures Using Component-Aware Graph Analysis
Deep neural networks (DNNs) deliver outstanding performance, but their complexity often prohibits deployment in resource-constrained settings. Comprehensive structured pruning frameworks based on parameter dependency analysis reduce model size with specific regard to computational performance. When applying them to Multi-Component Neural Architectures (MCNAs), they risk network integrity by removing large parameter groups. We introduce a component-aware pruning strategy, extending dependency graphs to isolate individual components and inter-component flows. This creates smaller, targeted pruning groups that conserve functional integrity. Demonstrated effectively on a control task, our approach achieves greater sparsity and reduced performance degradation, opening a path for optimizing complex, multi-component DNNs efficiently.
comment: 6 pages, IFAC J3C
☆ Let Me Grok for You: Accelerating Grokking via Embedding Transfer from a Weaker Model ICLR 2025
''Grokking'' is a phenomenon where a neural network first memorizes training data and generalizes poorly, but then suddenly transitions to near-perfect generalization after prolonged training. While intriguing, this delayed generalization phenomenon compromises predictability and efficiency. Ideally, models should generalize directly without delay. To this end, this paper proposes GrokTransfer, a simple and principled method for accelerating grokking in training neural networks, based on the key observation that data embedding plays a crucial role in determining whether generalization is delayed. GrokTransfer first trains a smaller, weaker model to reach a nontrivial (but far from optimal) test performance. Then, the learned input embedding from this weaker model is extracted and used to initialize the embedding in the target, stronger model. We rigorously prove that, on a synthetic XOR task where delayed generalization always occurs in normal training, GrokTransfer enables the target model to generalize directly without delay. Moreover, we demonstrate that, across empirical studies of different tasks, GrokTransfer effectively reshapes the training dynamics and eliminates delayed generalization, for both fully-connected neural networks and Transformers.
comment: ICLR 2025
♻ ☆ Understanding the Difficulty of Low-Precision Post-Training Quantization for LLMs
Large language models of high parameter counts are computationally expensive, yet can be made much more efficient by compressing their weights to very low numerical precision. This can be achieved either through post-training quantization by minimizing local, layer-wise quantization errors, or through quantization-aware fine-tuning by minimizing the global loss function. In this study, we discovered that, under the same data constraint, the former approach nearly always fared worse than the latter, a phenomenon particularly prominent when the numerical precision is very low. We further showed that this difficulty of post-training quantization arose from stark misalignment between optimization of the local and global objective functions. Our findings explains limited utility in minimization of local quantization error and the importance of direct quantization-aware fine-tuning, in the regime of large models at very low precision.
♻ ☆ Statistical Inference in Reinforcement Learning: A Selective Survey
Reinforcement learning (RL) is concerned with how intelligence agents take actions in a given environment to maximize the cumulative reward they receive. In healthcare, applying RL algorithms could assist patients in improving their health status. In ride-sharing platforms, applying RL algorithms could increase drivers' income and customer satisfaction. For large language models, applying RL algorithms could align their outputs with human preferences. Over the past decade, RL has been arguably one of the most vibrant research frontiers in machine learning. Nevertheless, statistics as a field, as opposed to computer science, has only recently begun to engage with RL both in depth and in breadth. This chapter presents a selective review of statistical inferential tools for RL, covering both hypothesis testing and confidence interval construction. Our goal is to highlight the value of statistical inference in RL for both the statistics and machine learning communities, and to promote the broader application of classical statistical inference tools in this vibrant area of research.
♻ ☆ Cooperation Is All You Need
Going beyond 'dendritic democracy', we introduce a 'democracy of local processors', termed Cooperator. Here we compare their capabilities when used in permutation invariant neural networks for reinforcement learning (RL), with machine learning algorithms based on Transformers, such as ChatGPT. Transformers are based on the long standing conception of integrate-and-fire 'point' neurons, whereas Cooperator is inspired by recent neurobiological breakthroughs suggesting that the cellular foundations of mental life depend on context-sensitive pyramidal neurons in the neocortex which have two functionally distinct points. Weshow that when used for RL, an algorithm based on Cooperator learns far quicker than that based on Transformer, even while having the same number of parameters.
♻ ☆ Natural Language Outlines for Code: Literate Programming in the LLM Era
We propose using natural language outlines as a novel modality and interaction surface for providing AI assistance to developers throughout the software development process. An NL outline for a code function comprises multiple statements written in concise prose, which partition the code and summarize its main ideas in the style of literate programming. Crucially, we find that modern LLMs can generate accurate and high-quality NL outlines in practice. Moreover, NL outlines enable a bidirectional sync between code and NL, where a developer can change either code or NL and have the LLM automatically update the other. We discuss many use cases for NL outlines: they can accelerate understanding and navigation of code and diffs, simplify code maintenance, augment code search, steer code generation, and more. We then propose and compare multiple LLM prompting techniques for generating outlines and ask professional developers to judge outline quality. Finally, we present two case studies applying NL outlines toward code review and malware detection.
comment: Accepted to FSE'25 Industry Track
♻ ☆ ProteinGPT: Multimodal LLM for Protein Property Prediction and Structure Understanding ICLR 2025
Understanding biological processes, drug development, and biotechnological advancements requires a detailed analysis of protein structures and functions, a task that is inherently complex and time-consuming in traditional protein research. To streamline this process, we introduce ProteinGPT, a state-of-the-art multimodal large language model for proteins that enables users to upload protein sequences and/or structures for comprehensive analysis and responsive inquiries. ProteinGPT integrates protein sequence and structure encoders with linear projection layers to ensure precise representation adaptation and leverages a large language model (LLM) to generate accurate, contextually relevant responses. To train ProteinGPT, we constructed a large-scale dataset of 132,092 proteins, each annotated with 20-30 property tags and 5-10 QA pairs per protein, and optimized the instruction-tuning process using GPT-4o. Experiments demonstrate that ProteinGPT effectively generates informative responses to protein-related questions, achieving high performance on both semantic and lexical metrics and significantly outperforming baseline models and general-purpose LLMs in understanding and responding to protein-related queries. Our code and data are available at https://github.com/ProteinGPT/ProteinGPT.
comment: Spotlight, Machine Learning for Genomics Explorations @ ICLR 2025
♻ ☆ LLM-Select: Feature Selection with Large Language Models
In this paper, we demonstrate a surprising capability of large language models (LLMs): given only input feature names and a description of a prediction task, they are capable of selecting the most predictive features, with performance rivaling the standard tools of data science. Remarkably, these models exhibit this capacity across various query mechanisms. For example, we zero-shot prompt an LLM to output a numerical importance score for a feature (e.g., "blood pressure") in predicting an outcome of interest (e.g., "heart failure"), with no additional context. In particular, we find that the latest models, such as GPT-4, can consistently identify the most predictive features regardless of the query mechanism and across various prompting strategies. We illustrate these findings through extensive experiments on real-world data, where we show that LLM-based feature selection consistently achieves strong performance competitive with data-driven methods such as the LASSO, despite never having looked at the downstream training data. Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place. This could benefit practitioners in domains like healthcare and the social sciences, where collecting high-quality data comes at a high cost.
comment: Published in Transactions on Machine Learning Research (TMLR), April 2025
♻ ☆ ShadowKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference
With the widespread deployment of long-context large language models (LLMs), there has been a growing demand for efficient support of high-throughput inference. However, as the key-value (KV) cache expands with the sequence length, the increasing memory footprint and the need to access it for each token generation both result in low throughput when serving long-context LLMs. While various dynamic sparse attention methods have been proposed to speed up inference while maintaining generation quality, they either fail to sufficiently reduce GPU memory consumption or introduce significant decoding latency by offloading the KV cache to the CPU. We present ShadowKV, a high-throughput long-context LLM inference system that stores the low-rank key cache and offloads the value cache to reduce the memory footprint for larger batch sizes and longer sequences. To minimize decoding latency, ShadowKV employs an accurate KV selection strategy that reconstructs minimal sparse KV pairs on-the-fly. By evaluating ShadowKV on a broad range of benchmarks, including RULER, LongBench, and Needle In A Haystack, and models like Llama-3.1-8B, Llama-3-8B-1M, GLM-4-9B-1M, Yi-9B-200K, Phi-3-Mini-128K, and Qwen2-7B-128K, we demonstrate that it can support up to 6$\times$ larger batch sizes and boost throughput by up to 3.04$\times$ on an A100 GPU without sacrificing accuracy, even surpassing the performance achievable with infinite batch size under the assumption of infinite GPU memory. The code is available at https://github.com/bytedance/ShadowKV.
♻ ☆ Website visits can predict angler presence using machine learning
Understanding and predicting recreational angler effort is important for sustainable fisheries management. However, conventional methods of measuring angler effort, such as surveys, can be costly and limited in both time and spatial extent. Models that predict angler effort based on environmental or economic factors typically rely on historical data, which often limits their spatial and temporal generalizability due to data scarcity. In this study, high-resolution data from an online fishing platform and easily accessible auxiliary data were tested to predict daily boat presence and aerial counts of boats at almost 200 lakes over five years in Ontario, Canada. Lake-information website visits alone enabled predicting daily angler boat presence with 78% accuracy. While incorporating additional environmental, socio-ecological, weather and angler-reported features into machine learning models did not remarkably improve prediction performance of boat presence, they were substantial for the prediction of boat counts. Models achieved an R2 of up to 0.77 at known lakes included in the model training, but they performed poorly for unknown lakes (R2 = 0.21). The results demonstrate the value of integrating data from online fishing platforms into predictive models and highlight the potential of machine learning models to enhance fisheries management.
comment: 52 pages
♻ ☆ Reducing the Scope of Language Models
We now deploy language models in a wide variety of user-facing applications. Typically, these deployments have some specific purpose, like answering questions about documentation or acting as coding assistants, but they require general language understanding. Under these circumstances these models should not be able to answer irrelevant requests such as, poetry generation or questions about physics, etc. Instead we would like language models to only answer to queries corresponding to desired behavior and refuse all other requests, which we refer to as scoping. We conduct a comprehensive empirical evaluation of potential methods from prompting to fine-tuning to preference learning to a recently proposed method for general alignment called Circuit Breakers (CB). Across three families of language models and a broad variety of tasks, we show that it is possible to scope language models. We examine scoping for multiple topics, and fine-grained topics. We ablate diversity of irrelevant queries, layer different techniques, conduct adversarial evaluations and more. Among other results, we find that, when diverse examples of irrelevant queries are available, simple supervised fine-tuning produces the best results, but when such diversity is low, Circuit Breakers perform quite well. One can often get the benefits of both methods by layering them in succession. We intend our study to serve as a practitioner's guide to scoping language models.
♻ ☆ Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation
Topological correctness plays a critical role in many image segmentation tasks, yet most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy. Existing topology-aware methods often lack robust topological guarantees, are limited to specific use cases, or impose high computational costs. In this work, we propose a novel, graph-based framework for topologically accurate image segmentation that is both computationally efficient and generally applicable. Our method constructs a component graph that fully encodes the topological information of both the prediction and ground truth, allowing us to efficiently identify topologically critical regions and aggregate a loss based on local neighborhood information. Furthermore, we introduce a strict topological metric capturing the homotopy equivalence between the union and intersection of prediction-label pairs. We formally prove the topological guarantees of our approach and empirically validate its effectiveness on binary and multi-class datasets. Our loss demonstrates state-of-the-art performance with up to fivefold faster loss computation compared to persistent homology methods.
♻ ☆ Reducing Deep Network Complexity via Sparse Hierarchical Fourier Interaction Networks
This paper presents a Sparse Hierarchical Fourier Interaction Networks, an architectural building block that unifies three complementary principles of frequency domain modeling: A hierarchical patch wise Fourier transform that affords simultaneous access to local detail and global context; A learnable, differentiable top K masking mechanism which retains only the most informative spectral coefficients, thereby exploiting the natural compressibility of visual and linguistic signals.
♻ ☆ Jailbreaking Leading Safety-Aligned LLMs with Simple Adaptive Attacks ICLR 2025
We show that even the most recent safety-aligned LLMs are not robust to simple adaptive jailbreaking attacks. First, we demonstrate how to successfully leverage access to logprobs for jailbreaking: we initially design an adversarial prompt template (sometimes adapted to the target LLM), and then we apply random search on a suffix to maximize a target logprob (e.g., of the token "Sure"), potentially with multiple restarts. In this way, we achieve 100% attack success rate -- according to GPT-4 as a judge -- on Vicuna-13B, Mistral-7B, Phi-3-Mini, Nemotron-4-340B, Llama-2-Chat-7B/13B/70B, Llama-3-Instruct-8B, Gemma-7B, GPT-3.5, GPT-4o, and R2D2 from HarmBench that was adversarially trained against the GCG attack. We also show how to jailbreak all Claude models -- that do not expose logprobs -- via either a transfer or prefilling attack with a 100% success rate. In addition, we show how to use random search on a restricted set of tokens for finding trojan strings in poisoned models -- a task that shares many similarities with jailbreaking -- which is the algorithm that brought us the first place in the SaTML'24 Trojan Detection Competition. The common theme behind these attacks is that adaptivity is crucial: different models are vulnerable to different prompting templates (e.g., R2D2 is very sensitive to in-context learning prompts), some models have unique vulnerabilities based on their APIs (e.g., prefilling for Claude), and in some settings, it is crucial to restrict the token search space based on prior knowledge (e.g., for trojan detection). For reproducibility purposes, we provide the code, logs, and jailbreak artifacts in the JailbreakBench format at https://github.com/tml-epfl/llm-adaptive-attacks.
comment: Accepted at ICLR 2025. Updates in the v3: GPT-4o and Claude 3.5 Sonnet results, improved writing. Updates in the v2: more models (Llama3, Phi-3, Nemotron-4-340B), jailbreak artifacts for all attacks are available, evaluation with different judges (Llama-3-70B and Llama Guard 2), more experiments (convergence plots, ablation on the suffix length for random search), examples of jailbroken generation
♻ ☆ Enabling Fast and Accurate Crowdsourced Annotation for Elevation-Aware Flood Extent Mapping
Mapping the extent of flood events is a necessary and important aspect of disaster management. In recent years, deep learning methods have evolved as an effective tool to quickly label high resolution imagery and provide necessary flood extent mappings. These methods, though, require large amounts of annotated training data to create models that are accurate and robust to new flooded imagery. In this work, we present FloodTrace, a web-based application that enables effective crowdsourcing of flooded region annotation for machine learning applications. To create this application, we conducted extensive interviews with domain experts to produce a set of formal requirements. Our work brings topological segmentation tools to the web and greatly improves annotation efficiency compared to the state-of-the-art. The user-friendliness of our solution allows researchers to outsource annotations to non-experts and utilize them to produce training data with equal quality to fully expert-labeled data. We conducted a user study to confirm the effectiveness of our application in which 266 graduate students annotated high-resolution aerial imagery from Hurricane Matthew in North Carolina. Experimental results show the efficiency benefits of our application for untrained users, with median annotation time less than half the state-of-the-art annotation method. In addition, using our aggregation and correction framework, flood detection models trained on crowdsourced annotations were able to achieve performance equal to models trained on fully expert-labeled annotations, while requiring a fraction of the time on the part of the expert.
♻ ☆ MallowsPO: Fine-Tune Your LLM with Preference Dispersions
Direct Preference Optimization (DPO) has recently emerged as a popular approach to improve reinforcement learning with human feedback (RLHF), leading to better techniques to fine-tune large language models (LLM). A weakness of DPO, however, lies in its lack of capability to characterize the diversity of human preferences. Inspired by Mallows' theory of preference ranking, we develop in this paper a new approach, the MallowsPO. A distinct feature of this approach is a dispersion index, which reflects the dispersion of human preference to prompts. We show that existing DPO models can be reduced to special cases of this dispersion index, thus unified with MallowsPO. More importantly, we demonstrate (empirically) how to use this dispersion index to enhance the performance of DPO in a broad array of benchmark tasks, from synthetic bandit selection to controllable generations and dialogues, while maintaining great generalization capabilities. MallowsPO is also compatible with other SOTA offline preference optimization methods, boosting nearly 2\% extra LC win rate when used as a plugin for fine-tuning Llama3-Instruct.
Artificial Intelligence 31
☆ Addressing the Minor-Embedding Problem in Quantum Annealing and Evaluating State-of-the-Art Algorithm Performance
This study addresses the minor-embedding problem, which involves mapping the variables of an Ising model onto a quantum annealing processor. The primary motivation stems from the observed performance disparity of quantum annealers when solving problems suited to the processor's architecture versus those with non-hardware-native topologies. Our research has two main objectives: i) to analyze the impact of embedding quality on the performance of D-Wave Systems quantum annealers, and ii) to evaluate the quality of the embeddings generated by Minorminer, an algorithm provided by D-Wave and widely recognized as the standard minor-embedding technique in the literature. Regarding the first objective, our experiments reveal a clear correlation between the average chain length of embeddings and the relative errors of the solutions sampled. This underscores the critical influence of embedding quality on quantum annealing performance. For the second objective, we focus on the Minorminer technique, assessing its capacity to embed problems, the quality of the embeddings produced, and the robustness of the results. We also compare its performance with Clique Embedding, another algorithm developed by D-Wave, which is deterministic and designed to embed fully connected Ising models into quantum annealing processors, serving as a worst-case scenario. The results demonstrate that there is significant room for improvement for Minorminer, as it has not consistently outperformed the worst-case scenario.
comment: Paper submitted for review in the Future Generation Computer Systems journal
☆ Pricing AI Model Accuracy
This paper examines the market for AI models in which firms compete to provide accurate model predictions and consumers exhibit heterogeneous preferences for model accuracy. We develop a consumer-firm duopoly model to analyze how competition affects firms' incentives to improve model accuracy. Each firm aims to minimize its model's error, but this choice can often be suboptimal. Counterintuitively, we find that in a competitive market, firms that improve overall accuracy do not necessarily improve their profits. Rather, each firm's optimal decision is to invest further on the error dimension where it has a competitive advantage. By decomposing model errors into false positive and false negative rates, firms can reduce errors in each dimension through investments. Firms are strictly better off investing on their superior dimension and strictly worse off with investments on their inferior dimension. Profitable investments adversely affect consumers but increase overall welfare.
☆ The Impact of AI on the Cyber Offense-Defense Balance and the Character of Cyber Conflict
Unlike other domains of conflict, and unlike other fields with high anticipated risk from AI, the cyber domain is intrinsically digital with a tight feedback loop between AI training and cyber application. Cyber may have some of the largest and earliest impacts from AI, so it is important to understand how the cyber domain may change as AI continues to advance. Our approach reviewed the literature, collecting nine arguments that have been proposed for offensive advantage in cyber conflict and nine proposed arguments for defensive advantage. We include an additional forty-eight arguments that have been proposed to give cyber conflict and competition its character as collected separately by Healey, Jervis, and Nandrajog. We then consider how each of those arguments and propositions might change with varying degrees of AI advancement. We find that the cyber domain is too multifaceted for a single answer to whether AI will enhance offense or defense broadly. AI will improve some aspects, hinder others, and leave some aspects unchanged. We collect and present forty-four ways that we expect AI to impact the cyber offense-defense balance and the character of cyber conflict and competition.
☆ An Optimal Discriminator Weighted Imitation Perspective for Reinforcement Learning ICLR 2025
We introduce Iterative Dual Reinforcement Learning (IDRL), a new method that takes an optimal discriminator-weighted imitation view of solving RL. Our method is motivated by a simple experiment in which we find training a discriminator using the offline dataset plus an additional expert dataset and then performing discriminator-weighted behavior cloning gives strong results on various types of datasets. That optimal discriminator weight is quite similar to the learned visitation distribution ratio in Dual-RL, however, we find that current Dual-RL methods do not correctly estimate that ratio. In IDRL, we propose a correction method to iteratively approach the optimal visitation distribution ratio in the offline dataset given no addtional expert dataset. During each iteration, IDRL removes zero-weight suboptimal transitions using the learned ratio from the previous iteration and runs Dual-RL on the remaining subdataset. This can be seen as replacing the behavior visitation distribution with the optimized visitation distribution from the previous iteration, which theoretically gives a curriculum of improved visitation distribution ratios that are closer to the optimal discriminator weight. We verify the effectiveness of IDRL on various kinds of offline datasets, including D4RL datasets and more realistic corrupted demonstrations. IDRL beats strong Primal-RL and Dual-RL baselines in terms of both performance and stability, on all datasets.
comment: ICLR 2025
☆ VLLFL: A Vision-Language Model Based Lightweight Federated Learning Framework for Smart Agriculture
In modern smart agriculture, object detection plays a crucial role by enabling automation, precision farming, and monitoring of resources. From identifying crop health and pest infestations to optimizing harvesting processes, accurate object detection enhances both productivity and sustainability. However, training object detection models often requires large-scale data collection and raises privacy concerns, particularly when sensitive agricultural data is distributed across farms. To address these challenges, we propose VLLFL, a vision-language model-based lightweight federated learning framework (VLLFL). It harnesses the generalization and context-aware detection capabilities of the vision-language model (VLM) and leverages the privacy-preserving nature of federated learning. By training a compact prompt generator to boost the performance of the VLM deployed across different farms, VLLFL preserves privacy while reducing communication overhead. Experimental results demonstrate that VLLFL achieves 14.53% improvement in the performance of VLM while reducing 99.3% communication overhead. Spanning tasks from identifying a wide variety of fruits to detecting harmful animals in agriculture, the proposed framework offers an efficient, scalable, and privacy-preserving solution specifically tailored to agricultural applications.
☆ In between myth and reality: AI for math -- a case study in category theory
Recently, there is an increasing interest in understanding the performance of AI systems in solving math problems. A multitude of tests have been performed, with mixed conclusions. In this paper we discuss an experiment we have made in the direction of mathematical research, with two of the most prominent contemporary AI systems. One of the objective of this experiment is to get an understanding of how AI systems can assist mathematical research. Another objective is to support the AI systems developers by formulating suggestions for directions of improvement.
☆ Cost-of-Pass: An Economic Framework for Evaluating Language Models
The widespread adoption of AI systems in the economy hinges on their ability to generate economic value that outweighs their inference costs. Evaluating this tradeoff requires metrics that account for both performance and costs. We propose a framework grounded in production theory for evaluating language models by combining accuracy and inference cost. We introduce "cost-of-pass", the expected monetary cost of generating a correct solution. We then define the "frontier cost-of-pass" as the minimum cost-of-pass achievable across available models or the "human-expert, using the approximate cost of hiring an expert. Our analysis reveals distinct economic insights. First, lightweight models are most cost-effective for basic quantitative tasks, large models for knowledge-intensive ones, and reasoning models for complex quantitative problems, despite higher per-token costs. Second, tracking this frontier cost-of-pass over the past year reveals significant progress, particularly for complex quantitative tasks where the cost has roughly halved every few months. Third, to trace key innovations driving this progress, we examine counterfactual frontiers: estimates of cost-efficiency without specific model classes. We find that innovations in lightweight, large, and reasoning models have been essential for pushing the frontier in basic quantitative, knowledge-intensive, and complex quantitative tasks, respectively. Finally, we assess the cost-reductions afforded by common inference-time techniques like majority voting and self-refinement, finding that their marginal accuracy gains rarely justify their costs. Our findings underscore that complementary model-level innovations are the primary drivers of cost-efficiency, and our economic framework provides a principled tool for measuring this progress and guiding deployment.
comment: Code is available at: https://github.com/mhamzaerol/Cost-of-Pass
☆ Chain-of-Modality: Learning Manipulation Programs from Multimodal Human Videos with Vision-Language-Models ICRA 2025
Learning to perform manipulation tasks from human videos is a promising approach for teaching robots. However, many manipulation tasks require changing control parameters during task execution, such as force, which visual data alone cannot capture. In this work, we leverage sensing devices such as armbands that measure human muscle activities and microphones that record sound, to capture the details in the human manipulation process, and enable robots to extract task plans and control parameters to perform the same task. To achieve this, we introduce Chain-of-Modality (CoM), a prompting strategy that enables Vision Language Models to reason about multimodal human demonstration data -- videos coupled with muscle or audio signals. By progressively integrating information from each modality, CoM refines a task plan and generates detailed control parameters, enabling robots to perform manipulation tasks based on a single multimodal human video prompt. Our experiments show that CoM delivers a threefold improvement in accuracy for extracting task plans and control parameters compared to baselines, with strong generalization to new task setups and objects in real-world robot experiments. Videos and code are available at https://chain-of-modality.github.io
comment: ICRA 2025
☆ Adaptive AI decision interface for autonomous electronic material discovery
AI-powered autonomous experimentation (AI/AE) can accelerate materials discovery but its effectiveness for electronic materials is hindered by data scarcity from lengthy and complex design-fabricate-test-analyze cycles. Unlike experienced human scientists, even advanced AI algorithms in AI/AE lack the adaptability to make informative real-time decisions with limited datasets. Here, we address this challenge by developing and implementing an AI decision interface on our AI/AE system. The central element of the interface is an AI advisor that performs real-time progress monitoring, data analysis, and interactive human-AI collaboration for actively adapting to experiments in different stages and types. We applied this platform to an emerging type of electronic materials-mixed ion-electron conducting polymers (MIECPs) -- to engineer and study the relationships between multiscale morphology and properties. Using organic electrochemical transistors (OECT) as the testing-bed device for evaluating the mixed-conducting figure-of-merit -- the product of charge-carrier mobility and the volumetric capacitance ({\mu}C*), our adaptive AI/AE platform achieved a 150% increase in {\mu}C* compared to the commonly used spin-coating method, reaching 1,275 F cm-1 V-1 s-1 in just 64 autonomous experimental trials. A study of 10 statistically selected samples identifies two key structural factors for achieving higher volumetric capacitance: larger crystalline lamellar spacing and higher specific surface area, while also uncovering a new polymer polymorph in this material.
☆ Putting the Segment Anything Model to the Test with 3D Knee MRI -- A Comparison with State-of-the-Art Performance BMVC 2024
Menisci are cartilaginous tissue found within the knee that contribute to joint lubrication and weight dispersal. Damage to menisci can lead to onset and progression of knee osteoarthritis (OA), a condition that is a leading cause of disability, and for which there are few effective therapies. Accurate automated segmentation of menisci would allow for earlier detection and treatment of meniscal abnormalities, as well as shedding more light on the role the menisci play in OA pathogenesis. Focus in this area has mainly used variants of convolutional networks, but there has been no attempt to utilise recent large vision transformer segmentation models. The Segment Anything Model (SAM) is a so-called foundation segmentation model, which has been found useful across a range of different tasks due to the large volume of data used for training the model. In this study, SAM was adapted to perform fully-automated segmentation of menisci from 3D knee magnetic resonance images. A 3D U-Net was also trained as a baseline. It was found that, when fine-tuning only the decoder, SAM was unable to compete with 3D U-Net, achieving a Dice score of $0.81\pm0.03$, compared to $0.87\pm0.03$, on a held-out test set. When fine-tuning SAM end-to-end, a Dice score of $0.87\pm0.03$ was achieved. The performance of both the end-to-end trained SAM configuration and the 3D U-Net were comparable to the winning Dice score ($0.88\pm0.03$) in the IWOAI Knee MRI Segmentation Challenge 2019. Performance in terms of the Hausdorff Distance showed that both configurations of SAM were inferior to 3D U-Net in matching the meniscus morphology. Results demonstrated that, despite its generalisability, SAM was unable to outperform a basic 3D U-Net in meniscus segmentation, and may not be suitable for similar 3D medical image segmentation tasks also involving fine anatomical structures with low contrast and poorly-defined boundaries.
comment: Work accepted at BMVC 2024. Minor changes to the camera-ready version since acceptance include a corrected running header and the addition of an Acknowledgments section (including code availability)
☆ On the Definition of Robustness and Resilience of AI Agents for Real-time Congestion Management
The European Union's Artificial Intelligence (AI) Act defines robustness, resilience, and security requirements for high-risk sectors but lacks detailed methodologies for assessment. This paper introduces a novel framework for quantitatively evaluating the robustness and resilience of reinforcement learning agents in congestion management. Using the AI-friendly digital environment Grid2Op, perturbation agents simulate natural and adversarial disruptions by perturbing the input of AI systems without altering the actual state of the environment, enabling the assessment of AI performance under various scenarios. Robustness is measured through stability and reward impact metrics, while resilience quantifies recovery from performance degradation. The results demonstrate the framework's effectiveness in identifying vulnerabilities and improving AI robustness and resilience for critical applications.
comment: IEEE PowerTech 2025 Conference
☆ SAR Object Detection with Self-Supervised Pretraining and Curriculum-Aware Sampling ICLR 2025
Object detection in satellite-borne Synthetic Aperture Radar (SAR) imagery holds immense potential in tasks such as urban monitoring and disaster response. However, the inherent complexities of SAR data and the scarcity of annotations present significant challenges in the advancement of object detection in this domain. Notably, the detection of small objects in satellite-borne SAR images poses a particularly intricate problem, because of the technology's relatively low spatial resolution and inherent noise. Furthermore, the lack of large labelled SAR datasets hinders the development of supervised deep learning-based object detection models. In this paper, we introduce TRANSAR, a novel self-supervised end-to-end vision transformer-based SAR object detection model that incorporates masked image pre-training on an unlabeled SAR image dataset that spans more than $25,700$ km\textsuperscript{2} ground area. Unlike traditional object detection formulation, our approach capitalises on auxiliary binary semantic segmentation, designed to segregate objects of interest during the post-tuning, especially the smaller ones, from the background. In addition, to address the innate class imbalance due to the disproportion of the object to the image size, we introduce an adaptive sampling scheduler that dynamically adjusts the target class distribution during training based on curriculum learning and model feedback. This approach allows us to outperform conventional supervised architecture such as DeepLabv3 or UNet, and state-of-the-art self-supervised learning-based arhitectures such as DPT, SegFormer or UperNet, as shown by extensive evaluations on benchmark SAR datasets.
comment: Accepted to ICLR 2025 ML4RS https://ml-for-rs.github.io/iclr2025/
☆ Enhanced Pruning Strategy for Multi-Component Neural Architectures Using Component-Aware Graph Analysis
Deep neural networks (DNNs) deliver outstanding performance, but their complexity often prohibits deployment in resource-constrained settings. Comprehensive structured pruning frameworks based on parameter dependency analysis reduce model size with specific regard to computational performance. When applying them to Multi-Component Neural Architectures (MCNAs), they risk network integrity by removing large parameter groups. We introduce a component-aware pruning strategy, extending dependency graphs to isolate individual components and inter-component flows. This creates smaller, targeted pruning groups that conserve functional integrity. Demonstrated effectively on a control task, our approach achieves greater sparsity and reduced performance degradation, opening a path for optimizing complex, multi-component DNNs efficiently.
comment: 6 pages, IFAC J3C
☆ Interpersonal Theory of Suicide as a Lens to Examine Suicidal Ideation in Online Spaces
Suicide is a critical global public health issue, with millions experiencing suicidal ideation (SI) each year. Online spaces enable individuals to express SI and seek peer support. While prior research has revealed the potential of detecting SI using machine learning and natural language analysis, a key limitation is the lack of a theoretical framework to understand the underlying factors affecting high-risk suicidal intent. To bridge this gap, we adopted the Interpersonal Theory of Suicide (IPTS) as an analytic lens to analyze 59,607 posts from Reddit's r/SuicideWatch, categorizing them into SI dimensions (Loneliness, Lack of Reciprocal Love, Self Hate, and Liability) and risk factors (Thwarted Belongingness, Perceived Burdensomeness, and Acquired Capability of Suicide). We found that high-risk SI posts express planning and attempts, methods and tools, and weaknesses and pain. In addition, we also examined the language of supportive responses through psycholinguistic and content analyses to find that individuals respond differently to different stages of Suicidal Ideation (SI) posts. Finally, we explored the role of AI chatbots in providing effective supportive responses to suicidal ideation posts. We found that although AI improved structural coherence, expert evaluations highlight persistent shortcomings in providing dynamic, personalized, and deeply empathetic support. These findings underscore the need for careful reflection and deeper understanding in both the development and consideration of AI-driven interventions for effective mental health support.
☆ Causal-Copilot: An Autonomous Causal Analysis Agent
Causal analysis plays a foundational role in scientific discovery and reliable decision-making, yet it remains largely inaccessible to domain experts due to its conceptual and algorithmic complexity. This disconnect between causal methodology and practical usability presents a dual challenge: domain experts are unable to leverage recent advances in causal learning, while causal researchers lack broad, real-world deployment to test and refine their methods. To address this, we introduce Causal-Copilot, an autonomous agent that operationalizes expert-level causal analysis within a large language model framework. Causal-Copilot automates the full pipeline of causal analysis for both tabular and time-series data -- including causal discovery, causal inference, algorithm selection, hyperparameter optimization, result interpretation, and generation of actionable insights. It supports interactive refinement through natural language, lowering the barrier for non-specialists while preserving methodological rigor. By integrating over 20 state-of-the-art causal analysis techniques, our system fosters a virtuous cycle -- expanding access to advanced causal methods for domain experts while generating rich, real-world applications that inform and advance causal theory. Empirical evaluations demonstrate that Causal-Copilot achieves superior performance compared to existing baselines, offering a reliable, scalable, and extensible solution that bridges the gap between theoretical sophistication and real-world applicability in causal analysis.
♻ ☆ From Questions to Insights: Exploring XAI Challenges Reported on Stack Overflow Questions
The lack of interpretability is a major barrier that limits the practical usage of AI models. Several eXplainable AI (XAI) techniques (e.g., SHAP, LIME) have been employed to interpret these models' performance. However, users often face challenges when leveraging these techniques in real-world scenarios and thus submit questions in technical Q&A forums like Stack Overflow (SO) to resolve these challenges. We conducted an exploratory study to expose these challenges, their severity, and features that can make XAI techniques more accessible and easier to use. Our contributions to this study are fourfold. First, we manually analyzed 663 SO questions that discussed challenges related to XAI techniques. Our careful investigation produced a catalog of seven challenges (e.g., disagreement issues). We then analyzed their prevalence and found that model integration and disagreement issues emerged as the most prevalent challenges. Second, we attempt to estimate the severity of each XAI challenge by determining the correlation between challenge types and answer metadata (e.g., the presence of accepted answers). Our analysis suggests that model integration issues is the most severe challenge. Third, we attempt to perceive the severity of these challenges based on practitioners' ability to use XAI techniques effectively in their work. Practitioners' responses suggest that disagreement issues most severely affect the use of XAI techniques. Fourth, we seek agreement from practitioners on improvements or features that could make XAI techniques more accessible and user-friendly. The majority of them suggest consistency in explanations and simplified integration. Our study findings might (a) help to enhance the accessibility and usability of XAI and (b) act as the initial benchmark that can inspire future research.
comment: Accepted in 29th International Conference on Evaluation and Assessment in Software Engineering (EASE 2025)
♻ ☆ VideoPanda: Video Panoramic Diffusion with Multi-view Attention
High resolution panoramic video content is paramount for immersive experiences in Virtual Reality, but is non-trivial to collect as it requires specialized equipment and intricate camera setups. In this work, we introduce VideoPanda, a novel approach for synthesizing 360$^\circ$ videos conditioned on text or single-view video data. VideoPanda leverages multi-view attention layers to augment a video diffusion model, enabling it to generate consistent multi-view videos that can be combined into immersive panoramic content. VideoPanda is trained jointly using two conditions: text-only and single-view video, and supports autoregressive generation of long-videos. To overcome the computational burden of multi-view video generation, we randomly subsample the duration and camera views used during training and show that the model is able to gracefully generalize to generating more frames during inference. Extensive evaluations on both real-world and synthetic video datasets demonstrate that VideoPanda generates more realistic and coherent 360$^\circ$ panoramas across all input conditions compared to existing methods. Visit the project website at https://research.nvidia.com/labs/toronto-ai/VideoPanda/ for results.
comment: Project website at https://research.nvidia.com/labs/toronto-ai/VideoPanda/
♻ ☆ Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis
Recent AI research plots a promising future of automatic chemical reactions within the chemistry society. This study proposes Chemist-X, a comprehensive AI agent that automates the reaction condition optimization (RCO) task in chemical synthesis with retrieval-augmented generation (RAG) technology and AI-controlled wet-lab experiment executions. To begin with, as an emulation on how chemical experts solve the RCO task, Chemist-X utilizes a novel RAG scheme to interrogate available molecular and literature databases to narrow the searching space for later processing. The agent then leverages a computer-aided design (CAD) tool we have developed through a large language model (LLM) supervised programming interface. With updated chemical knowledge obtained via RAG, as well as the ability in using CAD tools, our agent significantly outperforms conventional RCO AIs confined to the fixed knowledge within its training data. Finally, Chemist-X interacts with the physical world through an automated robotic system, which can validate the suggested chemical reaction condition without human interventions. The control of the robotic system was achieved with a novel algorithm we have developed for the equipment, which relies on LLMs for reliable script generation. Results of our automatic wet-lab experiments, achieved by fully LLM-supervised end-to-end operation with no human in the lope, prove Chemist-X's ability in self-driving laboratories.
♻ ☆ Adaptive Layer-skipping in Pre-trained LLMs
Various layer-skipping methods have been proposed to accelerate token generation in large language models (LLMs). However, they have overlooked a fundamental question: How do computational demands vary across the generation of different tokens? In this work, we introduce FlexiDepth, a method that dynamically adjusts the number of Transformer layers used in text generation. By incorporating a plug-in router and adapter, FlexiDepth enables adaptive layer-skipping in LLMs without modifying their original parameters. Introducing FlexiDepth to Llama-3-8B model achieves layer skipping of 8 layers out of 32, and meanwhile maintains the full 100\% benchmark performance. Experimental results with FlexiDepth demonstrate that computational demands in LLMs significantly vary based on token type. Specifically, generating repetitive tokens or fixed phrases requires fewer layers, whereas producing tokens involving computation or high uncertainty requires more layers. Interestingly, this adaptive allocation pattern aligns with human intuition. To advance research in this area, we open sourced FlexiDepth and a dataset documenting FlexiDepth's layer allocation patterns for future exploration.
♻ ☆ Cooperation Is All You Need
Going beyond 'dendritic democracy', we introduce a 'democracy of local processors', termed Cooperator. Here we compare their capabilities when used in permutation invariant neural networks for reinforcement learning (RL), with machine learning algorithms based on Transformers, such as ChatGPT. Transformers are based on the long standing conception of integrate-and-fire 'point' neurons, whereas Cooperator is inspired by recent neurobiological breakthroughs suggesting that the cellular foundations of mental life depend on context-sensitive pyramidal neurons in the neocortex which have two functionally distinct points. Weshow that when used for RL, an algorithm based on Cooperator learns far quicker than that based on Transformer, even while having the same number of parameters.
♻ ☆ Natural Language Outlines for Code: Literate Programming in the LLM Era
We propose using natural language outlines as a novel modality and interaction surface for providing AI assistance to developers throughout the software development process. An NL outline for a code function comprises multiple statements written in concise prose, which partition the code and summarize its main ideas in the style of literate programming. Crucially, we find that modern LLMs can generate accurate and high-quality NL outlines in practice. Moreover, NL outlines enable a bidirectional sync between code and NL, where a developer can change either code or NL and have the LLM automatically update the other. We discuss many use cases for NL outlines: they can accelerate understanding and navigation of code and diffs, simplify code maintenance, augment code search, steer code generation, and more. We then propose and compare multiple LLM prompting techniques for generating outlines and ask professional developers to judge outline quality. Finally, we present two case studies applying NL outlines toward code review and malware detection.
comment: Accepted to FSE'25 Industry Track
♻ ☆ ProteinGPT: Multimodal LLM for Protein Property Prediction and Structure Understanding ICLR 2025
Understanding biological processes, drug development, and biotechnological advancements requires a detailed analysis of protein structures and functions, a task that is inherently complex and time-consuming in traditional protein research. To streamline this process, we introduce ProteinGPT, a state-of-the-art multimodal large language model for proteins that enables users to upload protein sequences and/or structures for comprehensive analysis and responsive inquiries. ProteinGPT integrates protein sequence and structure encoders with linear projection layers to ensure precise representation adaptation and leverages a large language model (LLM) to generate accurate, contextually relevant responses. To train ProteinGPT, we constructed a large-scale dataset of 132,092 proteins, each annotated with 20-30 property tags and 5-10 QA pairs per protein, and optimized the instruction-tuning process using GPT-4o. Experiments demonstrate that ProteinGPT effectively generates informative responses to protein-related questions, achieving high performance on both semantic and lexical metrics and significantly outperforming baseline models and general-purpose LLMs in understanding and responding to protein-related queries. Our code and data are available at https://github.com/ProteinGPT/ProteinGPT.
comment: Spotlight, Machine Learning for Genomics Explorations @ ICLR 2025
♻ ☆ LLM-Select: Feature Selection with Large Language Models
In this paper, we demonstrate a surprising capability of large language models (LLMs): given only input feature names and a description of a prediction task, they are capable of selecting the most predictive features, with performance rivaling the standard tools of data science. Remarkably, these models exhibit this capacity across various query mechanisms. For example, we zero-shot prompt an LLM to output a numerical importance score for a feature (e.g., "blood pressure") in predicting an outcome of interest (e.g., "heart failure"), with no additional context. In particular, we find that the latest models, such as GPT-4, can consistently identify the most predictive features regardless of the query mechanism and across various prompting strategies. We illustrate these findings through extensive experiments on real-world data, where we show that LLM-based feature selection consistently achieves strong performance competitive with data-driven methods such as the LASSO, despite never having looked at the downstream training data. Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place. This could benefit practitioners in domains like healthcare and the social sciences, where collecting high-quality data comes at a high cost.
comment: Published in Transactions on Machine Learning Research (TMLR), April 2025
♻ ☆ United in Diversity? Contextual Biases in LLM-Based Predictions of the 2024 European Parliament Elections
"Synthetic samples" based on large language models (LLMs) have been argued to serve as efficient alternatives to surveys of humans, assuming that their training data includes information on human attitudes and behavior. However, LLM-synthetic samples might exhibit bias, for example due to training data and fine-tuning processes being unrepresentative of diverse contexts. Such biases risk reinforcing existing biases in research, policymaking, and society. Therefore, researchers need to investigate if and under which conditions LLM-generated synthetic samples can be used for public opinion prediction. In this study, we examine to what extent LLM-based predictions of individual public opinion exhibit context-dependent biases by predicting the results of the 2024 European Parliament elections. Prompting three LLMs with individual-level background information of 26,000 eligible European voters, we ask the LLMs to predict each person's voting behavior. By comparing them to the actual results, we show that LLM-based predictions of future voting behavior largely fail, their accuracy is unequally distributed across national and linguistic contexts, and they require detailed attitudinal information in the prompt. The findings emphasize the limited applicability of LLM-synthetic samples to public opinion prediction. In investigating their contextual biases, this study contributes to the understanding and mitigation of inequalities in the development of LLMs and their applications in computational social science.
♻ ☆ Déjà Vu: Multilingual LLM Evaluation through the Lens of Machine Translation Evaluation
Generation capabilities and language coverage of multilingual large language models (mLLMs) are advancing rapidly. However, evaluation practices for generative abilities of mLLMs are still lacking comprehensiveness, scientific rigor, and consistent adoption across research labs, which undermines their potential to meaningfully guide mLLM development. We draw parallels with machine translation (MT) evaluation, a field that faced similar challenges and has, over decades, developed transparent reporting standards and reliable evaluations for multilingual generative models. Through targeted experiments across key stages of the generative evaluation pipeline, we demonstrate how best practices from MT evaluation can deepen the understanding of quality differences between models. Additionally, we identify essential components for robust meta-evaluation of mLLMs, ensuring the evaluation methods themselves are rigorously assessed. We distill these insights into a checklist of actionable recommendations for mLLM research and development.
♻ ☆ EditSplat: Multi-View Fusion and Attention-Guided Optimization for View-Consistent 3D Scene Editing with 3D Gaussian Splatting
Recent advancements in 3D editing have highlighted the potential of text-driven methods in real-time, user-friendly AR/VR applications. However, current methods rely on 2D diffusion models without adequately considering multi-view information, resulting in multi-view inconsistency. While 3D Gaussian Splatting (3DGS) significantly improves rendering quality and speed, its 3D editing process encounters difficulties with inefficient optimization, as pre-trained Gaussians retain excessive source information, hindering optimization. To address these limitations, we propose EditSplat, a novel text-driven 3D scene editing framework that integrates Multi-view Fusion Guidance (MFG) and Attention-Guided Trimming (AGT). Our MFG ensures multi-view consistency by incorporating essential multi-view information into the diffusion process, leveraging classifier-free guidance from the text-to-image diffusion model and the geometric structure inherent to 3DGS. Additionally, our AGT utilizes the explicit representation of 3DGS to selectively prune and optimize 3D Gaussians, enhancing optimization efficiency and enabling precise, semantically rich local editing. Through extensive qualitative and quantitative evaluations, EditSplat achieves state-of-the-art performance, establishing a new benchmark for text-driven 3D scene editing.
♻ ☆ Reducing the Scope of Language Models
We now deploy language models in a wide variety of user-facing applications. Typically, these deployments have some specific purpose, like answering questions about documentation or acting as coding assistants, but they require general language understanding. Under these circumstances these models should not be able to answer irrelevant requests such as, poetry generation or questions about physics, etc. Instead we would like language models to only answer to queries corresponding to desired behavior and refuse all other requests, which we refer to as scoping. We conduct a comprehensive empirical evaluation of potential methods from prompting to fine-tuning to preference learning to a recently proposed method for general alignment called Circuit Breakers (CB). Across three families of language models and a broad variety of tasks, we show that it is possible to scope language models. We examine scoping for multiple topics, and fine-grained topics. We ablate diversity of irrelevant queries, layer different techniques, conduct adversarial evaluations and more. Among other results, we find that, when diverse examples of irrelevant queries are available, simple supervised fine-tuning produces the best results, but when such diversity is low, Circuit Breakers perform quite well. One can often get the benefits of both methods by layering them in succession. We intend our study to serve as a practitioner's guide to scoping language models.
♻ ☆ Jailbreaking Leading Safety-Aligned LLMs with Simple Adaptive Attacks ICLR 2025
We show that even the most recent safety-aligned LLMs are not robust to simple adaptive jailbreaking attacks. First, we demonstrate how to successfully leverage access to logprobs for jailbreaking: we initially design an adversarial prompt template (sometimes adapted to the target LLM), and then we apply random search on a suffix to maximize a target logprob (e.g., of the token "Sure"), potentially with multiple restarts. In this way, we achieve 100% attack success rate -- according to GPT-4 as a judge -- on Vicuna-13B, Mistral-7B, Phi-3-Mini, Nemotron-4-340B, Llama-2-Chat-7B/13B/70B, Llama-3-Instruct-8B, Gemma-7B, GPT-3.5, GPT-4o, and R2D2 from HarmBench that was adversarially trained against the GCG attack. We also show how to jailbreak all Claude models -- that do not expose logprobs -- via either a transfer or prefilling attack with a 100% success rate. In addition, we show how to use random search on a restricted set of tokens for finding trojan strings in poisoned models -- a task that shares many similarities with jailbreaking -- which is the algorithm that brought us the first place in the SaTML'24 Trojan Detection Competition. The common theme behind these attacks is that adaptivity is crucial: different models are vulnerable to different prompting templates (e.g., R2D2 is very sensitive to in-context learning prompts), some models have unique vulnerabilities based on their APIs (e.g., prefilling for Claude), and in some settings, it is crucial to restrict the token search space based on prior knowledge (e.g., for trojan detection). For reproducibility purposes, we provide the code, logs, and jailbreak artifacts in the JailbreakBench format at https://github.com/tml-epfl/llm-adaptive-attacks.
comment: Accepted at ICLR 2025. Updates in the v3: GPT-4o and Claude 3.5 Sonnet results, improved writing. Updates in the v2: more models (Llama3, Phi-3, Nemotron-4-340B), jailbreak artifacts for all attacks are available, evaluation with different judges (Llama-3-70B and Llama Guard 2), more experiments (convergence plots, ablation on the suffix length for random search), examples of jailbroken generation
♻ ☆ MallowsPO: Fine-Tune Your LLM with Preference Dispersions
Direct Preference Optimization (DPO) has recently emerged as a popular approach to improve reinforcement learning with human feedback (RLHF), leading to better techniques to fine-tune large language models (LLM). A weakness of DPO, however, lies in its lack of capability to characterize the diversity of human preferences. Inspired by Mallows' theory of preference ranking, we develop in this paper a new approach, the MallowsPO. A distinct feature of this approach is a dispersion index, which reflects the dispersion of human preference to prompts. We show that existing DPO models can be reduced to special cases of this dispersion index, thus unified with MallowsPO. More importantly, we demonstrate (empirically) how to use this dispersion index to enhance the performance of DPO in a broad array of benchmark tasks, from synthetic bandit selection to controllable generations and dialogues, while maintaining great generalization capabilities. MallowsPO is also compatible with other SOTA offline preference optimization methods, boosting nearly 2\% extra LC win rate when used as a plugin for fine-tuning Llama3-Instruct.
♻ ☆ Human Choice Prediction in Language-based Persuasion Games: Simulation-based Off-Policy Evaluation ACL
Recent advances in Large Language Models (LLMs) have spurred interest in designing LLM-based agents for tasks that involve interaction with human and artificial agents. This paper addresses a key aspect in the design of such agents: predicting human decisions in off-policy evaluation (OPE). We focus on language-based persuasion games, where an expert aims to influence the decision-maker through verbal messages. In our OPE framework, the prediction model is trained on human interaction data collected from encounters with one set of expert agents, and its performance is evaluated on interactions with a different set of experts. Using a dedicated application, we collected a dataset of 87K decisions from humans playing a repeated decision-making game with artificial agents. To enhance off-policy performance, we propose a simulation technique involving interactions across the entire agent space and simulated decision-makers. Our learning strategy yields significant OPE gains, e.g., improving prediction accuracy in the top 15% challenging cases by 7.1%. Our code and the large dataset we collected and generated are submitted as supplementary material and publicly available in our GitHub repository: https://github.com/eilamshapira/HumanChoicePrediction
comment: Accepted for publication in Transactions of the Association for Computational Linguistics (TACL), 2025. Pre-MIT Press publication version
♻ ☆ Does Refusal Training in LLMs Generalize to the Past Tense? ICLR 2025
Refusal training is widely used to prevent LLMs from generating harmful, undesirable, or illegal outputs. We reveal a curious generalization gap in the current refusal training approaches: simply reformulating a harmful request in the past tense (e.g., "How to make a Molotov cocktail?" to "How did people make a Molotov cocktail?") is often sufficient to jailbreak many state-of-the-art LLMs. We systematically evaluate this method on Llama-3 8B, Claude-3.5 Sonnet, GPT-3.5 Turbo, Gemma-2 9B, Phi-3-Mini, GPT-4o mini, GPT-4o, o1-mini, o1-preview, and R2D2 models using GPT-3.5 Turbo as a reformulation model. For example, the success rate of this simple attack on GPT-4o increases from 1% using direct requests to 88% using 20 past tense reformulation attempts on harmful requests from JailbreakBench with GPT-4 as a jailbreak judge. Interestingly, we also find that reformulations in the future tense are less effective, suggesting that refusal guardrails tend to consider past historical questions more benign than hypothetical future questions. Moreover, our experiments on fine-tuning GPT-3.5 Turbo show that defending against past reformulations is feasible when past tense examples are explicitly included in the fine-tuning data. Overall, our findings highlight that the widely used alignment techniques -- such as SFT, RLHF, and adversarial training -- employed to align the studied models can be brittle and do not always generalize as intended. We provide code and jailbreak artifacts at https://github.com/tml-epfl/llm-past-tense.
comment: Accepted at ICLR 2025. Updates in v2 and v3: added GPT-4o, Claude 3.5 Sonnet, o1-mini, and o1-preview results. Code and jailbreak artifacts: https://github.com/tml-epfl/llm-past-tense
Information Retrieval 15
☆ A Human-AI Comparative Analysis of Prompt Sensitivity in LLM-Based Relevance Judgment
Large Language Models (LLMs) are increasingly used to automate relevance judgments for information retrieval (IR) tasks, often demonstrating agreement with human labels that approaches inter-human agreement. To assess the robustness and reliability of LLM-based relevance judgments, we systematically investigate impact of prompt sensitivity on the task. We collected prompts for relevance assessment from 15 human experts and 15 LLMs across three tasks~ -- ~binary, graded, and pairwise~ -- ~yielding 90 prompts in total. After filtering out unusable prompts from three humans and three LLMs, we employed the remaining 72 prompts with three different LLMs as judges to label document/query pairs from two TREC Deep Learning Datasets (2020 and 2021). We compare LLM-generated labels with TREC official human labels using Cohen's $\kappa$ and pairwise agreement measures. In addition to investigating the impact of prompt variations on agreement with human labels, we compare human- and LLM-generated prompts and analyze differences among different LLMs as judges. We also compare human- and LLM-generated prompts with the standard UMBRELA prompt used for relevance assessment by Bing and TREC 2024 Retrieval Augmented Generation (RAG) Track. To support future research in LLM-based evaluation, we release all data and prompts at https://github.com/Narabzad/prompt-sensitivity-relevance-judgements/.
☆ Clarifying Ambiguities: on the Role of Ambiguity Types in Prompting Methods for Clarification Generation SIGIR 2025
In information retrieval (IR), providing appropriate clarifications to better understand users' information needs is crucial for building a proactive search-oriented dialogue system. Due to the strong in-context learning ability of large language models (LLMs), recent studies investigate prompting methods to generate clarifications using few-shot or Chain of Thought (CoT) prompts. However, vanilla CoT prompting does not distinguish the characteristics of different information needs, making it difficult to understand how LLMs resolve ambiguities in user queries. In this work, we focus on the concept of ambiguity for clarification, seeking to model and integrate ambiguities in the clarification process. To this end, we comprehensively study the impact of prompting schemes based on reasoning and ambiguity for clarification. The idea is to enhance the reasoning abilities of LLMs by limiting CoT to predict first ambiguity types that can be interpreted as instructions to clarify, then correspondingly generate clarifications. We name this new prompting scheme Ambiguity Type-Chain of Thought (AT-CoT). Experiments are conducted on various datasets containing human-annotated clarifying questions to compare AT-CoT with multiple baselines. We also perform user simulations to implicitly measure the quality of generated clarifications under various IR scenarios.
comment: 11 pages, 3 figures. Accepted at SIGIR 2025
☆ Optimizing Compound Retrieval Systems SIGIR 2025
Modern retrieval systems do not rely on a single ranking model to construct their rankings. Instead, they generally take a cascading approach where a sequence of ranking models are applied in multiple re-ranking stages. Thereby, they balance the quality of the top-K ranking with computational costs by limiting the number of documents each model re-ranks. However, the cascading approach is not the only way models can interact to form a retrieval system. We propose the concept of compound retrieval systems as a broader class of retrieval systems that apply multiple prediction models. This encapsulates cascading models but also allows other types of interactions than top-K re-ranking. In particular, we enable interactions with large language models (LLMs) which can provide relative relevance comparisons. We focus on the optimization of compound retrieval system design which uniquely involves learning where to apply the component models and how to aggregate their predictions into a final ranking. This work shows how our compound approach can combine the classic BM25 retrieval model with state-of-the-art (pairwise) LLM relevance predictions, while optimizing a given ranking metric and efficiency target. Our experimental results show optimized compound retrieval systems provide better trade-offs between effectiveness and efficiency than cascading approaches, even when applied in a self-supervised manner. With the introduction of compound retrieval systems, we hope to inspire the information retrieval field to more out-of-the-box thinking on how prediction models can interact to form rankings.
comment: SIGIR 2025
☆ Generative Recommendation with Continuous-Token Diffusion
In recent years, there has been a significant trend toward using large language model (LLM)-based recommender systems (RecSys). Current research primarily focuses on representing complex user-item interactions within a discrete space to align with the inherent discrete nature of language models. However, this approach faces limitations due to its discrete nature: (i) information is often compressed during discretization; (ii) the tokenization and generation for the vast number of users and items in real-world scenarios are constrained by a limited vocabulary. Embracing continuous data presents a promising alternative to enhance expressive capabilities, though this approach is still in its early stages. To address this gap, we propose a novel framework, DeftRec, which incorporates \textbf{de}noising di\textbf{f}fusion models to enable LLM-based RecSys to seamlessly support continuous \textbf{t}oken as input and target. First, we introduce a robust tokenizer with a masking operation and an additive K-way architecture to index users and items, capturing their complex collaborative relationships into continuous tokens. Crucially, we develop a denoising diffusion model to process user preferences within continuous domains by conditioning on reasoning content from pre-trained large language model. During the denoising process, we reformulate the objective to include negative interactions, building a comprehensive understanding of user preferences for effective and accurate recommendation generation. Finally, given a continuous token as output, recommendations can be easily generated through score-based retrieval. Extensive experiments demonstrate the effectiveness of the proposed methods, showing that DeftRec surpasses competitive benchmarks, including both traditional and emerging LLM-based RecSys.
☆ Rethinking LLM-Based Recommendations: A Query Generation-Based, Training-Free Approach
Existing large language model LLM-based recommendation methods face several challenges, including inefficiency in handling large candidate pools, sensitivity to item order within prompts ("lost in the middle" phenomenon) poor scalability, and unrealistic evaluation due to random negative sampling. To address these issues, we propose a Query-to-Recommendation approach that leverages LLMs to generate personalized queries for retrieving relevant items from the entire candidate pool, eliminating the need for candidate pre-selection. This method can be integrated into an ID-based recommendation system without additional training, enhances recommendation performance and diversity through LLMs' world knowledge, and performs well even for less popular item groups. Experiments on three datasets show up to 57 percent improvement, with an average gain of 31 percent, demonstrating strong zero-shot performance and further gains when ensembled with existing models.
☆ Résumé abstractif à partir d'une transcription audio
Currently, large language models are gaining popularity, their achievements are used in many areas, ranging from text translation to generating answers to queries. However, the main problem with these new machine learning algorithms is that training such models requires large computing resources that only large IT companies have. To avoid this problem, a number of methods (LoRA, quantization) have been proposed so that existing models can be effectively fine-tuned for specific tasks. In this paper, we propose an E2E (end to end) audio summarization model using these techniques. In addition, this paper examines the effectiveness of these approaches to the problem under consideration and draws conclusions about the applicability of these methods.
comment: 35 pages, in French language, 8 tables, 6 figures
☆ A New Paradigm of User-Centric Wireless Communication Driven by Large Language Models
The next generation of wireless communications seeks to deeply integrate artificial intelligence (AI) with user-centric communication networks, with the goal of developing AI-native networks that more accurately address user requirements. The rapid development of large language models (LLMs) offers significant potential in realizing these goals. However, existing efforts that leverage LLMs for wireless communication often overlook the considerable gap between human natural language and the intricacies of real-world communication systems, thus failing to fully exploit the capabilities of LLMs. To address this gap, we propose a novel LLM-driven paradigm for wireless communication that innovatively incorporates the nature language to structured query language (NL2SQL) tool. Specifically, in this paradigm, user personal requirements is the primary focus. Upon receiving a user request, LLMs first analyze the user intent in terms of relevant communication metrics and system parameters. Subsequently, a structured query language (SQL) statement is generated to retrieve the specific parameter values from a high-performance real-time database. We further utilize LLMs to formulate and solve an optimization problem based on the user request and the retrieved parameters. The solution to this optimization problem then drives adjustments in the communication system to fulfill the user's requirements. To validate the feasibility of the proposed paradigm, we present a prototype system. In this prototype, we consider user-request centric semantic communication (URC-SC) system in which a dynamic semantic representation network at the physical layer adapts its encoding depth to meet user requirements. Additionally, two LLMs are employed to analyze user requests and generate SQL statements, respectively. Simulation results demonstrate the effectiveness.
comment: 8 pages, 5 figures
♻ ☆ PhishLang: A Real-Time, Fully Client-Side Phishing Detection Framework Using MobileBERT
In this paper, we introduce PhishLang, the first fully client-side anti-phishing framework built on a lightweight ensemble framework that utilizes advanced language models to analyze the contextual features of a website's source code and URL. Unlike traditional heuristic or machine learning approaches that rely on static features and struggle to adapt to evolving threats, or deep learning models that are computationally intensive, our approach utilizes MobileBERT, a fast and memory-efficient variant of the BERT architecture, to capture nuanced features indicative of phishing attacks. To further enhance detection accuracy, PhishLang employs a multi-modal ensemble approach, combining both the URL and Source detection models. This architecture ensures robustness by allowing one model to compensate for scenarios where the other may fail, or if both models provide ambiguous inferences. As a result, PhishLang excels at detecting both regular and evasive phishing threats, including zero-day attacks, outperforming popular anti-phishing tools, while operating without relying on external blocklists and safeguarding user privacy by ensuring that browser history remains entirely local and unshared. We release PhishLang as a Chromium browser extension and also open-source the framework to aid the research community.
♻ ☆ CSPLADE: Learned Sparse Retrieval with Causal Language Models
In recent years, dense retrieval has been the focus of information retrieval (IR) research. While effective, dense retrieval produces uninterpretable dense vectors, and suffers from the drawback of large index size. Learned sparse retrieval (LSR) has emerged as promising alternative, achieving competitive retrieval performance while also being able to leverage the classical inverted index data structure for efficient retrieval. However, limited works have explored scaling LSR beyond BERT scale. In this work, we identify two challenges in training large language models (LLM) for LSR: (1) training instability during the early stage of contrastive training; (2) suboptimal performance due to pre-trained LLM's unidirectional attention. To address these challenges, we propose two corresponding techniques: (1) a lightweight adaptation training phase to eliminate training instability; (2) two model variants to enable bidirectional information. With these techniques, we are able to train LSR models with 8B scale LLM, and achieve competitive retrieval performance with reduced index size. Furthermore, we are among the first to analyze the performance-efficiency tradeoff of LLM-based LSR model through the lens of model quantization. Our findings provide insights into adapting LLMs for efficient retrieval modeling.
♻ ☆ Taxonomy and Analysis of Sensitive User Queries in Generative AI Search NAACL2025
Although there has been a growing interest among industries in integrating generative LLMs into their services, limited experience and scarcity of resources act as a barrier in launching and servicing large-scale LLM-based services. In this paper, we share our experiences in developing and operating generative AI models within a national-scale search engine, with a specific focus on the sensitiveness of user queries. We propose a taxonomy for sensitive search queries, outline our approaches, and present a comprehensive analysis report on sensitive queries from actual users. We believe that our experiences in launching generative AI search systems can contribute to reducing the barrier in building generative LLM-based services.
comment: NAACL2025(Findings), corrected typo in co-corresponding authors
♻ ☆ Multi-Field Adaptive Retrieval ICLR 2025
Document retrieval for tasks such as search and retrieval-augmented generation typically involves datasets that are unstructured: free-form text without explicit internal structure in each document. However, documents can have a structured form, consisting of fields such as an article title, message body, or HTML header. To address this gap, we introduce Multi-Field Adaptive Retrieval (MFAR), a flexible framework that accommodates any number of and any type of document indices on structured data. Our framework consists of two main steps: (1) the decomposition of an existing document into fields, each indexed independently through dense and lexical methods, and (2) learning a model which adaptively predicts the importance of a field by conditioning on the document query, allowing on-the-fly weighting of the most likely field(s). We find that our approach allows for the optimized use of dense versus lexical representations across field types, significantly improves in document ranking over a number of existing retrievers, and achieves state-of-the-art performance for multi-field structured data.
comment: ICLR 2025, Spotlight
♻ ☆ Think Before Recommend: Unleashing the Latent Reasoning Power for Sequential Recommendation
Sequential Recommendation (SeqRec) aims to predict the next item by capturing sequential patterns from users' historical interactions, playing a crucial role in many real-world recommender systems. However, existing approaches predominantly adopt a direct forward computation paradigm, where the final hidden state of the sequence encoder serves as the user representation. We argue that this inference paradigm, due to its limited computational depth, struggles to model the complex evolving nature of user preferences and lacks a nuanced understanding of long-tail items, leading to suboptimal performance. To address this issue, we propose \textbf{ReaRec}, the first inference-time computing framework for recommender systems, which enhances user representations through implicit multi-step reasoning. Specifically, ReaRec autoregressively feeds the sequence's last hidden state into the sequential recommender while incorporating special reasoning position embeddings to decouple the original item encoding space from the multi-step reasoning space. Moreover, we introduce two lightweight reasoning-based learning methods, Ensemble Reasoning Learning (ERL) and Progressive Reasoning Learning (PRL), to further effectively exploit ReaRec's reasoning potential. Extensive experiments on five public real-world datasets and different SeqRec architectures demonstrate the generality and effectiveness of our proposed ReaRec. Remarkably, post-hoc analyses reveal that ReaRec significantly elevates the performance ceiling of multiple sequential recommendation backbones by approximately 30\%-50\%. Thus, we believe this work can open a new and promising avenue for future research in inference-time computing for sequential recommendation.
♻ ☆ Towards Personalized Conversational Sales Agents : Contextual User Profiling for Strategic Action
Conversational Recommender Systems (CRSs) aim to engage users in dialogue to provide tailored recommendations. While traditional CRSs focus on eliciting preferences and retrieving items, real-world e-commerce interactions involve more complex decision-making, where users consider multiple factors beyond simple attributes. To bridge this gap, we introduce Conversational Sales (CSales), a novel task that unifies preference elicitation, recommendation, and persuasion to better support user decision-making. For a realistic evaluation of CSales, we present CSUser, an LLM-based user simulator constructed from real-world data, modeling diverse user profiles with needs and personalities. Additionally, we propose CSI, a conversational sales agent that proactively infers contextual profiles through dialogue for personalized action planning. Extensive experiments demonstrate that CSUser effectively replicates real-world users and emphasize the importance of contextual profiling for strategic action selection, ultimately driving successful purchases in e-commerce.
♻ ☆ AI-Driven Sentiment Analytics: Unlocking Business Value in the E-Commerce Landscape_v1
The rapid growth of e-commerce has led to an overwhelming volume of customer feedback, from product reviews to service interactions. Extracting meaningful insights from this data is crucial for businesses aiming to improve customer satisfaction and optimize decision-making. This paper presents an AI-driven sentiment analysis system designed specifically for e-commerce applications, balancing accuracy with interpretability. Our approach integrates traditional machine learning techniques with modern deep learning models, allowing for a more nuanced understanding of customer sentiment while ensuring transparency in decision-making. Experimental results show that our system outperforms standard sentiment analysis methods, achieving an accuracy of 89.7% on diverse, large-scale datasets. Beyond technical performance, real-world implementation across multiple e-commerce platforms demonstrates tangible improvements in customer engagement and operational efficiency. This study highlights both the potential and the challenges of applying AI to sentiment analysis in a commercial setting, offering insights into practical deployment strategies and areas for future refinement.
comment: 7 pages
♻ ☆ Efficient Distributed Retrieval-Augmented Generation for Enhancing Language Model Performance
Small language models (SLMs) support efficient deployments on resource-constrained edge devices, but their limited capacity compromises inference performance. Retrieval-augmented generation (RAG) is a promising solution to enhance model performance by integrating external databases, without requiring intensive on-device model retraining. However, large-scale public databases and user-specific private contextual documents are typically located on the cloud and the device separately, while existing RAG implementations are primarily centralized. To bridge this gap, we propose DRAGON, a distributed RAG framework to enhance on-device SLMs through both general and personal knowledge without the risk of leaking document privacy. Specifically, DRAGON decomposes multi-document RAG into multiple parallel token generation processes performed independently and locally on the cloud and the device, and employs a newly designed Speculative Aggregation, a dual-side speculative algorithm to avoid frequent output synchronization between the cloud and device. A new scheduling algorithm is further introduced to identify the optimal aggregation side based on real-time network conditions. Evaluations on real-world hardware testbed demonstrate a significant performance improvement of DRAGON-up to 1.9x greater gains over standalone SLM compared to the centralized RAG, substantial reduction in per-token latency, and negligible Time to First Token (TTFT) overhead.
Information Retrieval 15
☆ Improving LLM Interpretability and Performance via Guided Embedding Refinement for Sequential Recommendation
The fast development of Large Language Models (LLMs) offers growing opportunities to further improve sequential recommendation systems. Yet for some practitioners, integrating LLMs to their existing base recommendation systems raises questions about model interpretability, transparency and related safety. To partly alleviate challenges from these questions, we propose guided embedding refinement, a method that carries out a guided and interpretable usage of LLM to enhance the embeddings associated with the base recommendation system. Instead of directly using LLMs as the backbone of sequential recommendation systems, we utilize them as auxiliary tools to emulate the sales logic of recommendation and generate guided embeddings that capture domain-relevant semantic information on interpretable attributes. Benefiting from the strong generalization capabilities of the guided embedding, we construct refined embedding by using the guided embedding and reduced-dimension version of the base embedding. We then integrate the refined embedding into the recommendation module for training and inference. A range of numerical experiments demonstrate that guided embedding is adaptable to various given existing base embedding models, and generalizes well across different recommendation tasks. The numerical results show that the refined embedding not only improves recommendation performance, achieving approximately $10\%$ to $50\%$ gains in Mean Reciprocal Rank (MRR), Recall rate, and Normalized Discounted Cumulative Gain (NDCG), but also enhances interpretability, as evidenced by case studies.
☆ Bipartite Ranking From Multiple Labels: On Loss Versus Label Aggregation
Bipartite ranking is a fundamental supervised learning problem, with the goal of learning a ranking over instances with maximal area under the ROC curve (AUC) against a single binary target label. However, one may often observe multiple binary target labels, e.g., from distinct human annotators. How can one synthesize such labels into a single coherent ranking? In this work, we formally analyze two approaches to this problem -- loss aggregation and label aggregation -- by characterizing their Bayes-optimal solutions. Based on this, we show that while both methods can yield Pareto-optimal solutions, loss aggregation can exhibit label dictatorship: one can inadvertently (and undesirably) favor one label over others. This suggests that label aggregation can be preferable to loss aggregation, which we empirically verify.
☆ RAID: An In-Training Defense against Attribute Inference Attacks in Recommender Systems
In various networks and mobile applications, users are highly susceptible to attribute inference attacks, with particularly prevalent occurrences in recommender systems. Attackers exploit partially exposed user profiles in recommendation models, such as user embeddings, to infer private attributes of target users, such as gender and political views. The goal of defenders is to mitigate the effectiveness of these attacks while maintaining recommendation performance. Most existing defense methods, such as differential privacy and attribute unlearning, focus on post-training settings, which limits their capability of utilizing training data to preserve recommendation performance. Although adversarial training extends defenses to in-training settings, it often struggles with convergence due to unstable training processes. In this paper, we propose RAID, an in-training defense method against attribute inference attacks in recommender systems. In addition to the recommendation objective, we define a defensive objective to ensure that the distribution of protected attributes becomes independent of class labels, making users indistinguishable from attribute inference attacks. Specifically, this defensive objective aims to solve a constrained Wasserstein barycenter problem to identify the centroid distribution that makes the attribute indistinguishable while complying with recommendation performance constraints. To optimize our proposed objective, we use optimal transport to align users with the centroid distribution. We conduct extensive experiments on four real-world datasets to evaluate RAID. The experimental results validate the effectiveness of RAID and demonstrate its significant superiority over existing methods in multiple aspects.
comment: 17 pages
☆ Document Quality Scoring for Web Crawling
The internet contains large amounts of low-quality content, yet users expect web search engines to deliver high-quality, relevant results. The abundant presence of low-quality pages can negatively impact retrieval and crawling processes by wasting resources on these documents. Therefore, search engines can greatly benefit from techniques that leverage efficient quality estimation methods to mitigate these negative impacts. Quality scoring methods for web pages are useful for many processes typical for web search systems, including static index pruning, index tiering, and crawling. Building on work by Chang et al.~\cite{chang2024neural}, who proposed using neural estimators of semantic quality for static index pruning, we extend their approach and apply their neural quality scorers to assess the semantic quality of web pages in crawling prioritisation tasks. In our experimental analysis, we found that prioritising semantically high-quality pages over low-quality ones can improve downstream search effectiveness. Our software contribution consists of a Docker container that computes an effective quality score for a given web page, allowing the quality scorer to be easily included and used in other components of web search systems.
comment: Presented at WOWS2025
☆ Why am I seeing this? Towards recognizing social media recommender systems with missing recommendations
Social media plays a crucial role in shaping society, often amplifying polarization and spreading misinformation. These effects stem from complex dynamics involving user interactions, individual traits, and recommender algorithms driving content selection. Recommender systems, which significantly shape the content users see and decisions they make, offer an opportunity for intervention and regulation. However, assessing their impact is challenging due to algorithmic opacity and limited data availability. To effectively model user decision-making, it is crucial to recognize the recommender system adopted by the platform. This work introduces a method for Automatic Recommender Recognition using Graph Neural Networks (GNNs), based solely on network structure and observed behavior. To infer the hidden recommender, we first train a Recommender Neutral User model (RNU) using a GNN and an adapted hindsight academic network recommender, aiming to reduce reliance on the actual recommender in the data. We then generate several Recommender Hypothesis-specific Synthetic Datasets (RHSD) by combining the RNU with different known recommenders, producing ground truths for testing. Finally, we train Recommender Hypothesis-specific User models (RHU) under various hypotheses and compare each candidate with the original used to generate the RHSD. Our approach enables accurate detection of hidden recommenders and their influence on user behavior. Unlike audit-based methods, it captures system behavior directly, without ad hoc experiments that often fail to reflect real platforms. This study provides insights into how recommenders shape behavior, aiding efforts to reduce polarization and misinformation.
comment: Accepted at RLDM 2025
☆ MSCRS: Multi-modal Semantic Graph Prompt Learning Framework for Conversational Recommender Systems
Conversational Recommender Systems (CRSs) aim to provide personalized recommendations by interacting with users through conversations. Most existing studies of CRS focus on extracting user preferences from conversational contexts. However, due to the short and sparse nature of conversational contexts, it is difficult to fully capture user preferences by conversational contexts only. We argue that multi-modal semantic information can enrich user preference expressions from diverse dimensions (e.g., a user preference for a certain movie may stem from its magnificent visual effects and compelling storyline). In this paper, we propose a multi-modal semantic graph prompt learning framework for CRS, named MSCRS. First, we extract textual and image features of items mentioned in the conversational contexts. Second, we capture higher-order semantic associations within different semantic modalities (collaborative, textual, and image) by constructing modality-specific graph structures. Finally, we propose an innovative integration of multi-modal semantic graphs with prompt learning, harnessing the power of large language models to comprehensively explore high-dimensional semantic relationships. Experimental results demonstrate that our proposed method significantly improves accuracy in item recommendation, as well as generates more natural and contextually relevant content in response generation. We have released the code and the expanded multi-modal CRS datasets to facilitate further exploration in related research\footnote{https://github.com/BIAOBIAO12138/MSCRS-main}.
♻ ☆ Bridging Stepwise Lab-Informed Pretraining and Knowledge-Guided Learning for Diagnostic Reasoning
Despite the growing use of Electronic Health Records (EHR) for AI-assisted diagnosis prediction, most data-driven models struggle to incorporate clinically meaningful medical knowledge. They often rely on limited ontologies, lacking structured reasoning capabilities and comprehensive coverage. This raises an important research question: Will medical knowledge improve predictive models to support stepwise clinical reasoning as performed by human doctors? To address this problem, we propose DuaLK, a dual-expertise framework that combines two complementary sources of information. For external knowledge, we construct a Diagnosis Knowledge Graph (KG) that encodes both hierarchical and semantic relations enriched by large language models (LLM). To align with patient data, we further introduce a lab-informed proxy task that guides the model to follow a clinically consistent, stepwise reasoning process based on lab test signals. Experimental results on two public EHR datasets demonstrate that DuaLK consistently outperforms existing baselines across four clinical prediction tasks. These findings highlight the potential of combining structured medical knowledge with individual-level clinical signals to achieve more accurate and interpretable diagnostic predictions. The source code is publicly available on https://github.com/humphreyhuu/DuaLK.
♻ ☆ Inferring Communities of Interest in Collaborative Learning-based Recommender Systems
Collaborative-learning-based recommender systems, such as those employing Federated Learning (FL) and Gossip Learning (GL), allow users to train models while keeping their history of liked items on their devices. While these methods were seen as promising for enhancing privacy, recent research has shown that collaborative learning can be vulnerable to various privacy attacks. In this paper, we propose a novel attack called Community Inference Attack (CIA), which enables an adversary to identify community members based on a set of target items. What sets CIA apart is its efficiency: it operates at low computational cost by eliminating the need for training surrogate models. Instead, it uses a comparison-based approach, inferring sensitive information by comparing users' models rather than targeting any specific individual model. To evaluate the effectiveness of CIA, we conduct experiments on three real-world recommendation datasets using two recommendation models under both Federated and Gossip-like settings. The results demonstrate that CIA can be up to 10 times more accurate than random guessing. Additionally, we evaluate two mitigation strategies: Differentially Private Stochastic Gradient Descent (DP-SGD) and a Share less policy, which involves sharing fewer, less sensitive model parameters. Our findings suggest that the Share less strategy offers a better privacy-utility trade-off, especially in GL.
♻ ☆ Limitations of Automatic Relevance Assessments with Large Language Models for Fair and Reliable Retrieval Evaluation
Offline evaluation of search systems depends on test collections. These benchmarks provide the researchers with a corpus of documents, topics and relevance judgements indicating which documents are relevant for each topic. While test collections are an integral part of Information Retrieval (IR) research, their creation involves significant efforts in manual annotation. Large language models (LLMs) are gaining much attention as tools for automatic relevance assessment. Recent research has shown that LLM-based assessments yield high systems ranking correlation with human-made judgements. These correlations are helpful in large-scale experiments but less informative if we want to focus on top-performing systems. Moreover, these correlations ignore whether and how LLM-based judgements impact the statistically significant differences among systems with respect to human assessments. In this work, we look at how LLM-generated judgements preserve ranking differences among top-performing systems and also how they preserve pairwise significance evaluation as human judgements. Our results show that LLM-based judgements are unfair at ranking top-performing systems. Moreover, we observe an exceedingly high rate of false positives regarding statistical differences. Our work represents a step forward in the evaluation of the reliability of using LLMs-based judgements for IR evaluation. We hope this will serve as a basis for other researchers to develop more reliable models for automatic relevance assessment.
♻ ☆ Preference-based Learning with Retrieval Augmented Generation for Conversational Question Answering WWW 2025
Conversational Question Answering (ConvQA) involves multiple subtasks, i) to understand incomplete questions in their context, ii) to retrieve relevant information, and iii) to generate answers. This work presents PRAISE, a pipeline-based approach for ConvQA that trains LLM adapters for each of the three subtasks. As labeled training data for individual subtasks is unavailable in practice, PRAISE learns from its own generations using the final answering performance as feedback signal without human intervention and treats intermediate information, like relevant evidence, as weakly labeled data. We apply Direct Preference Optimization by contrasting successful and unsuccessful samples for each subtask. In our experiments, we show the effectiveness of this training paradigm: PRAISE shows improvements per subtask and achieves new state-of-the-art performance on a popular ConvQA benchmark, by gaining 15.5 percentage points increase in precision over baselines.
comment: WWW 2025 Short Paper, 5 pages
♻ ☆ How Relevance Emerges: Interpreting LoRA Fine-Tuning in Reranking LLMs
We conduct a behavioral exploration of LoRA fine-tuned LLMs for Passage Reranking to understand how relevance signals are learned and deployed by Large Language Models. By fine-tuning Mistral-7B, LLaMA3.1-8B, and Pythia-6.9B on MS MARCO under diverse LoRA configurations, we investigate how relevance modeling evolves across checkpoints, the impact of LoRA rank (1, 2, 8, 32), and the relative importance of updated MHA vs. MLP components. Our ablations reveal which layers and projections within LoRA transformations are most critical for reranking accuracy. These findings offer fresh explanations into LoRA's adaptation mechanisms, setting the stage for deeper mechanistic studies in Information Retrieval. All models used in this study have been shared.
comment: Extended Abstract
♻ ☆ Lightning IR: Straightforward Fine-tuning and Inference of Transformer-based Language Models for Information Retrieval WSDM'25
A wide range of transformer-based language models have been proposed for information retrieval tasks. However, including transformer-based models in retrieval pipelines is often complex and requires substantial engineering effort. In this paper, we introduce Lightning IR, an easy-to-use PyTorch Lightning-based framework for applying transformer-based language models in retrieval scenarios. Lightning IR provides a modular and extensible architecture that supports all stages of a retrieval pipeline: from fine-tuning and indexing to searching and re-ranking. Designed to be scalable and reproducible, Lightning IR is available as open-source: https://github.com/webis-de/lightning-ir.
comment: Accepted as a demo at WSDM'25
♻ ☆ Are We Solving a Well-Defined Problem? A Task-Centric Perspective on Recommendation Tasks
Recommender systems (RecSys) leverage user interaction history to predict and suggest relevant items, shaping user experiences across various domains. While many studies adopt a general problem definition, i.e., to recommend preferred items to users based on past interactions, such abstraction often lacks the domain-specific nuances necessary for practical deployment. However, models are frequently evaluated using datasets from online recommender platforms, which inherently reflect these specificities. In this paper, we analyze RecSys task formulations, emphasizing key components such as input-output structures, temporal dynamics, and candidate item selection. All these factors directly impact offline evaluation. We further examine the complexities of user-item interactions, including decision-making costs, multi-step engagements, and unobservable interactions, which may influence model design and loss functions. Additionally, we explore the balance between task specificity and model generalizability, highlighting how well-defined task formulations serve as the foundation for robust evaluation and effective solution development. By clarifying task definitions and their implications, this work provides a structured perspective on RecSys research. The goal is to help researchers better navigate the field, particularly in understanding specificities of the RecSys tasks and ensuring fair and meaningful evaluations.
comment: Work in progress
♻ ☆ SS4Rec: Continuous-Time Sequential Recommendation with State Space Models
Sequential recommendation is a key area in the field of recommendation systems aiming to model user interest based on historical interaction sequences with irregular intervals. While previous recurrent neural network-based and attention-based approaches have achieved significant results, they have limitations in capturing system continuity due to the discrete characteristics. In the context of continuous-time modeling, state space model (SSM) offers a potential solution, as it can effectively capture the dynamic evolution of user interest over time. However, existing SSM-based approaches ignore the impact of irregular time intervals within historical user interactions, making it difficult to model complexed user-item transitions in sequences. To address this issue, we propose a hybrid SSM-based model called SS4Rec for continuous-time sequential recommendation. SS4Rec integrates a time-aware SSM to handle irregular time intervals and a relation-aware SSM to model contextual dependencies, enabling it to infer user interest from both temporal and sequential perspectives. In the training process, the time-aware SSM and the relation-aware SSM are discretized by variable stepsizes according to user interaction time intervals and input data, respectively. This helps capture the continuous dependency from irregular time intervals and provides time-specific personalized recommendations. Experimental studies on five benchmark datasets demonstrate the superiority and effectiveness of SS4Rec.
♻ ☆ Are Generative AI Agents Effective Personalized Financial Advisors? SIGIR 2025
Large language model-based agents are becoming increasingly popular as a low-cost mechanism to provide personalized, conversational advice, and have demonstrated impressive capabilities in relatively simple scenarios, such as movie recommendations. But how do these agents perform in complex high-stakes domains, where domain expertise is essential and mistakes carry substantial risk? This paper investigates the effectiveness of LLM-advisors in the finance domain, focusing on three distinct challenges: (1) eliciting user preferences when users themselves may be unsure of their needs, (2) providing personalized guidance for diverse investment preferences, and (3) leveraging advisor personality to build relationships and foster trust. Via a lab-based user study with 64 participants, we show that LLM-advisors often match human advisor performance when eliciting preferences, although they can struggle to resolve conflicting user needs. When providing personalized advice, the LLM was able to positively influence user behavior, but demonstrated clear failure modes. Our results show that accurate preference elicitation is key, otherwise, the LLM-advisor has little impact, or can even direct the investor toward unsuitable assets. More worryingly, users appear insensitive to the quality of advice being given, or worse these can have an inverse relationship. Indeed, users reported a preference for and increased satisfaction as well as emotional trust with LLMs adopting an extroverted persona, even though those agents provided worse advice.
comment: Accepted for presentation at SIGIR 2025
Information Retrieval 31
☆ Epistemic Uncertainty-aware Recommendation Systems via Bayesian Deep Ensemble Learning
Recommending items to users has long been a fundamental task, and studies have tried to improve it ever since. Most well-known models commonly employ representation learning to map users and items into a unified embedding space for matching assessment. These approaches have primary limitations, especially when dealing with explicit feedback and sparse data contexts. Two primary limitations are their proneness to overfitting and failure to incorporate epistemic uncertainty in predictions. To address these problems, we propose a novel Bayesian Deep Ensemble Collaborative Filtering method named BDECF. To improve model generalization and quality, we utilize Bayesian Neural Networks, which incorporate uncertainty within their weight parameters. In addition, we introduce a new interpretable non-linear matching approach for the user and item embeddings, leveraging the advantages of the attention mechanism. Furthermore, we endorse the implementation of an ensemble-based supermodel to generate more robust and reliable predictions, resulting in a more complete model. Empirical evaluation through extensive experiments and ablation studies across a range of publicly accessible real-world datasets with differing sparsity characteristics confirms our proposed method's effectiveness and the importance of its components.
comment: 10 pages
☆ Enhancing Document Retrieval for Curating N-ary Relations in Knowledge Bases
Curation of biomedical knowledge bases (KBs) relies on extracting accurate multi-entity relational facts from the literature - a process that remains largely manual and expert-driven. An essential step in this workflow is retrieving documents that can support or complete partially observed n-ary relations. We present a neural retrieval model designed to assist KB curation by identifying documents that help fill in missing relation arguments and provide relevant contextual evidence. To reduce dependence on scarce gold-standard training data, we exploit existing KB records to construct weakly supervised training sets. Our approach introduces two key technical contributions: (i) a layered contrastive loss that enables learning from noisy and incomplete relational structures, and (ii) a balanced sampling strategy that generates high-quality negatives from diverse KB records. On two biomedical retrieval benchmarks, our approach achieves state-of-the-art performance, outperforming strong baselines in NDCG@10 by 5.7 and 3.7 percentage points, respectively.
☆ Invariance Matters: Empowering Social Recommendation via Graph Invariant Learning
Graph-based social recommendation systems have shown significant promise in enhancing recommendation performance, particularly in addressing the issue of data sparsity in user behaviors. Typically, these systems leverage Graph Neural Networks (GNNs) to capture user preferences by incorporating high-order social influences from observed social networks. However, existing graph-based social recommendations often overlook the fact that social networks are inherently noisy, containing task-irrelevant relationships that can hinder accurate user preference learning. The removal of these redundant social relations is crucial, yet it remains challenging due to the lack of ground truth. In this paper, we approach the social denoising problem from the perspective of graph invariant learning and propose a novel method, Social Graph Invariant Learning(SGIL). Specifically,SGIL aims to uncover stable user preferences within the input social graph, thereby enhancing the robustness of graph-based social recommendation systems. To achieve this goal, SGIL first simulates multiple noisy social environments through graph generators. It then seeks to learn environment-invariant user preferences by minimizing invariant risk across these environments. To further promote diversity in the generated social environments, we employ an adversarial training strategy to simulate more potential social noisy distributions. Extensive experimental results demonstrate the effectiveness of the proposed SGIL. The code is available at https://github.com/yimutianyang/SIGIR2025-SGIL.
☆ Brain-Machine Interfaces & Information Retrieval Challenges and Opportunities
The fundamental goal of Information Retrieval (IR) systems lies in their capacity to effectively satisfy human information needs - a challenge that encompasses not just the technical delivery of information, but the nuanced understanding of human cognition during information seeking. Contemporary IR platforms rely primarily on observable interaction signals, creating a fundamental gap between system capabilities and users' cognitive processes. Brain-Machine Interface (BMI) technologies now offer unprecedented potential to bridge this gap through direct measurement of previously inaccessible aspects of information-seeking behaviour. This perspective paper offers a broad examination of the IR landscape, providing a comprehensive analysis of how BMI technology could transform IR systems, drawing from advances at the intersection of both neuroscience and IR research. We present our analysis through three identified fundamental vertices: (1) understanding the neural correlates of core IR concepts to advance theoretical models of search behaviour, (2) enhancing existing IR systems through contextual integration of neurophysiological signals, and (3) developing proactive IR capabilities through direct neurophysiological measurement. For each vertex, we identify specific research opportunities and propose concrete directions for developing BMI-enhanced IR systems. We conclude by examining critical technical and ethical challenges in implementing these advances, providing a structured roadmap for future research at the intersection of neuroscience and IR.
☆ AlayaDB: The Data Foundation for Efficient and Effective Long-context LLM Inference
AlayaDB is a cutting-edge vector database system natively architected for efficient and effective long-context inference for Large Language Models (LLMs) at AlayaDB AI. Specifically, it decouples the KV cache and attention computation from the LLM inference systems, and encapsulates them into a novel vector database system. For the Model as a Service providers (MaaS), AlayaDB consumes fewer hardware resources and offers higher generation quality for various workloads with different kinds of Service Level Objectives (SLOs), when comparing with the existing alternative solutions (e.g., KV cache disaggregation, retrieval-based sparse attention). The crux of AlayaDB is that it abstracts the attention computation and cache management for LLM inference into a query processing procedure, and optimizes the performance via a native query optimizer. In this work, we demonstrate the effectiveness of AlayaDB via (i) three use cases from our industry partners, and (ii) extensive experimental results on LLM inference benchmarks.
comment: 14 pages, 12 figures, conference
☆ CROSSAN: Towards Efficient and Effective Adaptation of Multiple Multimodal Foundation Models for Sequential Recommendation
Multimodal Foundation Models (MFMs) excel at representing diverse raw modalities (e.g., text, images, audio, videos, etc.). As recommender systems increasingly incorporate these modalities, leveraging MFMs to generate better representations has great potential. However, their application in sequential recommendation remains largely unexplored. This is primarily because mainstream adaptation methods, such as Fine-Tuning and even Parameter-Efficient Fine-Tuning (PEFT) techniques (e.g., Adapter and LoRA), incur high computational costs, especially when integrating multiple modality encoders, thus hindering research progress. As a result, it remains unclear whether we can efficiently and effectively adapt multiple (>2) MFMs for the sequential recommendation task. To address this, we propose a plug-and-play Cross-modal Side Adapter Network (CROSSAN). Leveraging the fully decoupled side adapter-based paradigm, CROSSAN achieves high efficiency while enabling cross-modal learning across diverse modalities. To optimize the final stage of multimodal fusion across diverse modalities, we adopt the Mixture of Modality Expert Fusion (MOMEF) mechanism. CROSSAN achieves superior performance on the public datasets for adapting four foundation models with raw modalities. Performance consistently improves as more MFMs are adapted. We will release our code and datasets to facilitate future research.
☆ MURR: Model Updating with Regularized Replay for Searching a Document Stream ECIR 2025
The Internet produces a continuous stream of new documents and user-generated queries. These naturally change over time based on events in the world and the evolution of language. Neural retrieval models that were trained once on a fixed set of query-document pairs will quickly start misrepresenting newly-created content and queries, leading to less effective retrieval. Traditional statistical sparse retrieval can update collection statistics to reflect these changes in the use of language in documents and queries. In contrast, continued fine-tuning of the language model underlying neural retrieval approaches such as DPR and ColBERT creates incompatibility with previously-encoded documents. Re-encoding and re-indexing all previously-processed documents can be costly. In this work, we explore updating a neural dual encoder retrieval model without reprocessing past documents in the stream. We propose MURR, a model updating strategy with regularized replay, to ensure the model can still faithfully search existing documents without reprocessing, while continuing to update the model for the latest topics. In our simulated streaming environments, we show that fine-tuning models using MURR leads to more effective and more consistent retrieval results than other strategies as the stream of documents and queries progresses.
comment: Published at ECIR 2025. 16 pages, 4 figures
☆ From Prompting to Alignment: A Generative Framework for Query Recommendation
In modern search systems, search engines often suggest relevant queries to users through various panels or components, helping refine their information needs. Traditionally, these recommendations heavily rely on historical search logs to build models, which suffer from cold-start or long-tail issues. Furthermore, tasks such as query suggestion, completion or clarification are studied separately by specific design, which lacks generalizability and hinders adaptation to novel applications. Despite recent attempts to explore the use of LLMs for query recommendation, these methods mainly rely on the inherent knowledge of LLMs or external sources like few-shot examples, retrieved documents, or knowledge bases, neglecting the importance of the calibration and alignment with user feedback, thus limiting their practical utility. To address these challenges, we first propose a general Generative Query Recommendation (GQR) framework that aligns LLM-based query generation with user preference. Specifically, we unify diverse query recommendation tasks by a universal prompt framework, leveraging the instruct-following capability of LLMs for effective generation. Secondly, we align LLMs with user feedback via presenting a CTR-alignment framework, which involves training a query-wise CTR predictor as a process reward model and employing list-wise preference alignment to maximize the click probability of the generated query list. Furthermore, recognizing the inconsistency between LLM knowledge and proactive search intents arising from the separation of user-initiated queries from models, we align LLMs with user initiative via retrieving co-occurrence queries as side information when historical logs are available.
☆ HistLLM: A Unified Framework for LLM-Based Multimodal Recommendation with User History Encoding and Compression
While large language models (LLMs) have proven effective in leveraging textual data for recommendations, their application to multimodal recommendation tasks remains relatively underexplored. Although LLMs can process multimodal information through projection functions that map visual features into their semantic space, recommendation tasks often require representing users' history interactions through lengthy prompts combining text and visual elements, which not only hampers training and inference efficiency but also makes it difficult for the model to accurately capture user preferences from complex and extended prompts, leading to reduced recommendation performance. To address this challenge, we introduce HistLLM, an innovative multimodal recommendation framework that integrates textual and visual features through a User History Encoding Module (UHEM), compressing multimodal user history interactions into a single token representation, effectively facilitating LLMs in processing user preferences. Extensive experiments demonstrate the effectiveness and efficiency of our proposed mechanism.
☆ A Survey of Personalization: From RAG to Agent
Personalization has become an essential capability in modern AI systems, enabling customized interactions that align with individual user preferences, contexts, and goals. Recent research has increasingly concentrated on Retrieval-Augmented Generation (RAG) frameworks and their evolution into more advanced agent-based architectures within personalized settings to enhance user satisfaction. Building on this foundation, this survey systematically examines personalization across the three core stages of RAG: pre-retrieval, retrieval, and generation. Beyond RAG, we further extend its capabilities into the realm of Personalized LLM-based Agents, which enhance traditional RAG systems with agentic functionalities, including user understanding, personalized planning and execution, and dynamic generation. For both personalization in RAG and agent-based personalization, we provide formal definitions, conduct a comprehensive review of recent literature, and summarize key datasets and evaluation metrics. Additionally, we discuss fundamental challenges, limitations, and promising research directions in this evolving field. Relevant papers and resources are continuously updated at https://github.com/Applied-Machine-Learning-Lab/Awesome-Personalized-RAG-Agent.
comment: 18 pages, 5 figures
☆ Unveiling Contrastive Learning's Capability of Neighborhood Aggregation for Collaborative Filtering SIGIR2025
Personalized recommendation is widely used in the web applications, and graph contrastive learning (GCL) has gradually become a dominant approach in recommender systems, primarily due to its ability to extract self-supervised signals from raw interaction data, effectively alleviating the problem of data sparsity. A classic GCL-based method typically uses data augmentation during graph convolution to generates more contrastive views, and performs contrast on these new views to obtain rich self-supervised signals. Despite this paradigm is effective, the reasons behind the performance gains remain a mystery. In this paper, we first reveal via theoretical derivation that the gradient descent process of the CL objective is formally equivalent to graph convolution, which implies that CL objective inherently supports neighborhood aggregation on interaction graphs. We further substantiate this capability through experimental validation and identify common misconceptions in the selection of positive samples in previous methods, which limit the potential of CL objective. Based on this discovery, we propose the Light Contrastive Collaborative Filtering (LightCCF) method, which introduces a novel neighborhood aggregation objective to bring users closer to all interacted items while pushing them away from other positive pairs, thus achieving high-quality neighborhood aggregation with very low time complexity. On three highly sparse public datasets, the proposed method effectively aggregate neighborhood information while preventing graph over-smoothing, demonstrating significant improvements over existing GCL-based counterparts in both training efficiency and recommendation accuracy. Our implementations are publicly accessible.
comment: Accepted by SIGIR2025
☆ Enhancing LLM-based Recommendation through Semantic-Aligned Collaborative Knowledge
Large Language Models (LLMs) demonstrate remarkable capabilities in leveraging comprehensive world knowledge and sophisticated reasoning mechanisms for recommendation tasks. However, a notable limitation lies in their inability to effectively model sparse identifiers (e.g., user and item IDs), unlike conventional collaborative filtering models (Collabs.), thus hindering LLM to learn distinctive user-item representations and creating a performance bottleneck. Prior studies indicate that integrating collaborative knowledge from Collabs. into LLMs can mitigate the above limitations and enhance their recommendation performance. Nevertheless, the significant discrepancy in knowledge distribution and semantic space between LLMs and Collab. presents substantial challenges for effective knowledge transfer. To tackle these challenges, we propose a novel framework, SeLLa-Rec, which focuses on achieving alignment between the semantic spaces of Collabs. and LLMs. This alignment fosters effective knowledge fusion, mitigating the influence of discriminative noise and facilitating the deep integration of knowledge from diverse models. Specifically, three special tokens with collaborative knowledge are embedded into the LLM's semantic space through a hybrid projection layer and integrated into task-specific prompts to guide the recommendation process. Experiments conducted on two public benchmark datasets (MovieLens-1M and Amazon Book) demonstrate that SeLLa-Rec achieves state-of-the-art performance.
☆ Session-based Recommender Systems: User Interest as a Stochastic Process in the Latent Space
This paper jointly addresses the problem of data uncertainty, popularity bias, and exposure bias in session-based recommender systems. We study the symptoms of this bias both in item embeddings and in recommendations. We propose treating user interest as a stochastic process in the latent space and providing a model-agnostic implementation of this mathematical concept. The proposed stochastic component consists of elements: debiasing item embeddings with regularization for embedding uniformity, modeling dense user interest from session prefixes, and introducing fake targets in the data to simulate extended exposure. We conducted computational experiments on two popular benchmark datasets, Diginetica and YooChoose 1/64, as well as several modifications of the YooChoose dataset with different ratios of popular items. The results show that the proposed approach allows us to mitigate the challenges mentioned.
☆ On Precomputation and Caching in Information Retrieval Experiments with Pipeline Architectures ECIR 2025
Modern information retrieval systems often rely on multiple components executed in a pipeline. In a research setting, this can lead to substantial redundant computations (e.g., retrieving the same query multiple times for evaluating different downstream rerankers). To overcome this, researchers take cached "result" files as inputs, which represent the output of another pipeline. However, these result files can be brittle and can cause a disconnect between the conceptual design of the pipeline and its logical implementation. To overcome both the redundancy problem (when executing complete pipelines) and the disconnect problem (when relying on intermediate result files), we describe our recent efforts to improve the caching capabilities in the open-source PyTerrier IR platform. We focus on two main directions: (1) automatic implicit caching of common pipeline prefixes when comparing systems and (2) explicit caching of operations through a new extension package, pyterrier-caching. These approaches allow for the best of both worlds: pipelines can be fully expressed end-to-end, while also avoiding redundant computations between pipelines.
comment: WOWS @ ECIR 2025
☆ Constrained Auto-Regressive Decoding Constrains Generative Retrieval SIGIR 2025
Generative retrieval seeks to replace traditional search index data structures with a single large-scale neural network, offering the potential for improved efficiency and seamless integration with generative large language models. As an end-to-end paradigm, generative retrieval adopts a learned differentiable search index to conduct retrieval by directly generating document identifiers through corpus-specific constrained decoding. The generalization capabilities of generative retrieval on out-of-distribution corpora have gathered significant attention. In this paper, we examine the inherent limitations of constrained auto-regressive generation from two essential perspectives: constraints and beam search. We begin with the Bayes-optimal setting where the generative retrieval model exactly captures the underlying relevance distribution of all possible documents. Then we apply the model to specific corpora by simply adding corpus-specific constraints. Our main findings are two-fold: (i) For the effect of constraints, we derive a lower bound of the error, in terms of the KL divergence between the ground-truth and the model-predicted step-wise marginal distributions. (ii) For the beam search algorithm used during generation, we reveal that the usage of marginal distributions may not be an ideal approach. This paper aims to improve our theoretical understanding of the generalization capabilities of the auto-regressive decoding retrieval paradigm, laying a foundation for its limitations and inspiring future advancements toward more robust and generalizable generative retrieval.
comment: 13 pages, 6 figures, 2 tables, accepted by SIGIR 2025 (Proceedings of the 48th International ACM SIGIR Conference on Research and Development in Information Retrieval)
☆ StePO-Rec: Towards Personalized Outfit Styling Assistant via Knowledge-Guided Multi-Step Reasoning
Advancements in Generative AI offers new opportunities for FashionAI, surpassing traditional recommendation systems that often lack transparency and struggle to integrate expert knowledge, leaving the potential for personalized fashion styling remain untapped. To address these challenges, we present PAFA (Principle-Aware Fashion), a multi-granular knowledge base that organizes professional styling expertise into three levels of metadata, domain principles, and semantic relationships. Using PAFA, we develop StePO-Rec, a knowledge-guided method for multi-step outfit recommendation. StePO-Rec provides structured suggestions using a scenario-dimension-attribute framework, employing recursive tree construction to align recommendations with both professional principles and individual preferences. A preference-trend re-ranking system further adapts to fashion trends while maintaining the consistency of the user's original style. Experiments on the widely used personalized outfit dataset IQON show a 28% increase in Recall@1 and 32.8% in MAP. Furthermore, case studies highlight improved explainability, traceability, result reliability, and the seamless integration of expertise and personalization.
☆ Constructing Micro Knowledge Graphs from Technical Support Documents
Short technical support pages such as IBM Technotes are quite common in technical support domain. These pages can be very useful as the knowledge sources for technical support applications such as chatbots, search engines and question-answering (QA) systems. Information extracted from documents to drive technical support applications is often stored in the form of Knowledge Graph (KG). Building KGs from a large corpus of documents poses a challenge of granularity because a large number of entities and actions are present in each page. The KG becomes virtually unusable if all entities and actions from these pages are stored in the KG. Therefore, only key entities and actions from each page are extracted and stored in the KG. This approach however leads to loss of knowledge represented by entities and actions left out of the KG as they are no longer available to graph search and reasoning functions. We propose a set of techniques to create micro knowledge graph (micrograph) for each of such web pages. The micrograph stores all the entities and actions in a page and also takes advantage of the structure of the page to represent exactly in which part of that page these entities and actions appeared, and also how they relate to each other. These micrographs can be used as additional knowledge sources by technical support applications. We define schemas for representing semi-structured and plain text knowledge present in the technical support web pages. Solutions in technical support domain include procedures made of steps. We also propose a technique to extract procedures from these webpages and the schemas to represent them in the micrographs. We also discuss how technical support applications can take advantage of the micrographs.
☆ RAKG:Document-level Retrieval Augmented Knowledge Graph Construction
With the rise of knowledge graph based retrieval-augmented generation (RAG) techniques such as GraphRAG and Pike-RAG, the role of knowledge graphs in enhancing the reasoning capabilities of large language models (LLMs) has become increasingly prominent. However, traditional Knowledge Graph Construction (KGC) methods face challenges like complex entity disambiguation, rigid schema definition, and insufficient cross-document knowledge integration. This paper focuses on the task of automatic document-level knowledge graph construction. It proposes the Document-level Retrieval Augmented Knowledge Graph Construction (RAKG) framework. RAKG extracts pre-entities from text chunks and utilizes these pre-entities as queries for RAG, effectively addressing the issue of long-context forgetting in LLMs and reducing the complexity of Coreference Resolution. In contrast to conventional KGC methods, RAKG more effectively captures global information and the interconnections among disparate nodes, thereby enhancing the overall performance of the model. Additionally, we transfer the RAG evaluation framework to the KGC field and filter and evaluate the generated knowledge graphs, thereby avoiding incorrectly generated entities and relationships caused by hallucinations in LLMs. We further developed the MINE dataset by constructing standard knowledge graphs for each article and experimentally validated the performance of RAKG. The results show that RAKG achieves an accuracy of 95.91 % on the MINE dataset, a 6.2 % point improvement over the current best baseline, GraphRAG (89.71 %). The code is available at https://github.com/LMMApplication/RAKG.
comment: 9 pages, 6 figures
☆ Augmented Relevance Datasets with Fine-Tuned Small LLMs WSDM '25
Building high-quality datasets and labeling query-document relevance are essential yet resource-intensive tasks, requiring detailed guidelines and substantial effort from human annotators. This paper explores the use of small, fine-tuned large language models (LLMs) to automate relevance assessment, with a focus on improving ranking models' performance by augmenting their training dataset. We fine-tuned small LLMs to enhance relevance assessments, thereby improving dataset creation quality for downstream ranking model training. Our experiments demonstrate that these fine-tuned small LLMs not only outperform certain closed source models on our dataset but also lead to substantial improvements in ranking model performance. These results highlight the potential of leveraging small LLMs for efficient and scalable dataset augmentation, providing a practical solution for search engine optimization.
comment: 10 pages, 3 figures, and 6 tables. Accepted and presented to LLM4EVAL at WSDM '25
☆ VDocRAG: Retrieval-Augmented Generation over Visually-Rich Documents CVPR 2025
We aim to develop a retrieval-augmented generation (RAG) framework that answers questions over a corpus of visually-rich documents presented in mixed modalities (e.g., charts, tables) and diverse formats (e.g., PDF, PPTX). In this paper, we introduce a new RAG framework, VDocRAG, which can directly understand varied documents and modalities in a unified image format to prevent missing information that occurs by parsing documents to obtain text. To improve the performance, we propose novel self-supervised pre-training tasks that adapt large vision-language models for retrieval by compressing visual information into dense token representations while aligning them with textual content in documents. Furthermore, we introduce OpenDocVQA, the first unified collection of open-domain document visual question answering datasets, encompassing diverse document types and formats. OpenDocVQA provides a comprehensive resource for training and evaluating retrieval and question answering models on visually-rich documents in an open-domain setting. Experiments show that VDocRAG substantially outperforms conventional text-based RAG and has strong generalization capability, highlighting the potential of an effective RAG paradigm for real-world documents.
comment: Accepted by CVPR 2025; project page: https://vdocrag.github.io
♻ ☆ Trustworthy Answers, Messier Data: Bridging the Gap in Low-Resource Retrieval-Augmented Generation for Domain Expert Systems
RAG has become a key technique for enhancing LLMs by reducing hallucinations, especially in domain expert systems where LLMs may lack sufficient inherent knowledge. However, developing these systems in low-resource settings introduces several challenges: (1) handling heterogeneous data sources, (2) optimizing retrieval phase for trustworthy answers, and (3) evaluating generated answers across diverse aspects. To address these, we introduce a data generation pipeline that transforms raw multi-modal data into structured corpus and Q&A pairs, an advanced re-ranking phase improving retrieval precision, and a reference matching algorithm enhancing answer traceability. Applied to the automotive engineering domain, our system improves factual correctness (+1.94), informativeness (+1.16), and helpfulness (+1.67) over a non-RAG baseline, based on a 1-5 scale by an LLM judge. These results highlight the effectiveness of our approach across distinct aspects, with strong answer grounding and transparency.
♻ ☆ Snippet-based Conversational Recommender System
Conversational Recommender Systems (CRS) engage users in interactive dialogues to gather preferences and provide personalized recommendations. While existing studies have advanced conversational strategies, they often rely on predefined attributes or expensive, domain-specific annotated datasets, which limits their flexibility in handling diverse user preferences and adaptability across domains. We propose SnipRec, a novel resource-efficient approach that leverages user-generated content, such as customer reviews, to capture a broader range of user expressions. By employing large language models to map reviews and user responses into concise snippets, SnipRec represents user preferences and retrieves relevant items without the need for intensive manual data collection or fine-tuning. Experiments across the restaurant, book, and clothing domains show that snippet-based representations outperform document- and sentence-based representations, achieving Hits@10 of 0.25-0.55 with 3,000 to 10,000 candidate items while successfully handling free-form user responses.
♻ ☆ How Do Recommendation Models Amplify Popularity Bias? An Analysis from the Spectral Perspective
Recommendation Systems (RS) are often plagued by popularity bias. When training a recommendation model on a typically long-tailed dataset, the model tends to not only inherit this bias but often exacerbate it, resulting in over-representation of popular items in the recommendation lists. This study conducts comprehensive empirical and theoretical analyses to expose the root causes of this phenomenon, yielding two core insights: 1) Item popularity is memorized in the principal spectrum of the score matrix predicted by the recommendation model; 2) The dimension collapse phenomenon amplifies the relative prominence of the principal spectrum, thereby intensifying the popularity bias. Building on these insights, we propose a novel debiasing strategy that leverages a spectral norm regularizer to penalize the magnitude of the principal singular value. We have developed an efficient algorithm to expedite the calculation of the spectral norm by exploiting the spectral property of the score matrix. Extensive experiments across seven real-world datasets and three testing paradigms have been conducted to validate the superiority of the proposed method.
comment: 14 pages, 7 figures
♻ ☆ Weighted Tensor Decompositions for Context-aware Collaborative Filtering
Over recent years it has become well accepted that user interest is not static or immutable. There are a variety of contextual factors, such as time of day, the weather or the user's mood, that influence the current interests of the user. Modelling approaches need to take these factors into account if they want to succeed at finding the most relevant content to recommend given the situation. A popular method for context-aware recommendation is to encode context attributes as extra dimensions of the classic user-item interaction matrix, effectively turning it into a tensor, followed by applying the appropriate tensor decomposition methods to learn missing values. However, unlike with matrix factorization, where all decompositions are essentially a product of matrices, there exist many more options for decomposing tensors by combining vector, matrix and tensor products. We study the most successful decomposition methods that use weighted square loss and categorize them based on their tensor structure and regularization strategy. Additionally, we further extend the pool of methods by filling in the missing combinations. In this paper we provide an overview of the properties of the different decomposition methods, such as their complexity, scalability, and modelling capacity. These benefits are then contrasted with the performances achieved in offline experiments to gain more insight into which method to choose depending on a specific situation and constraints.
comment: Workshop on Context-Aware Recommender Systems, September 18, 2023, Singapore
♻ ☆ Can Offline Metrics Measure Explanation Goals? A Comparative Survey Analysis of Offline Explanation Metrics in Recommender Systems
Explanations in a Recommender System (RS) provide reasons for recommendations to users and can enhance transparency, persuasiveness, engagement, and trust-known as explanation goals. Evaluating the effectiveness of explanation algorithms offline remains challenging due to subjectivity. Initially, we conducted a literature review on current offline metrics, revealing that algorithms are often assessed with anecdotal evidence, offering convincing examples, or with metrics that don't align with human perception. We investigated whether, in explanations connecting interacted and recommended items based on shared content, the selection of item attributes and interacted items affects explanation goals. Metrics measuring the diversity and popularity of attributes and the recency of item interactions were used to evaluate explanations from three state-of-the-art agnostic algorithms across six recommendation systems. These offline metrics were compared with results from an online user study. Our findings reveal a trade-off: transparency and trust relate to popular properties, while engagement and persuasiveness are linked to diversified properties. This study contributes to the development of more robust evaluation methods for explanation algorithms in recommender systems.
♻ ☆ External Large Foundation Model: How to Efficiently Serve Trillions of Parameters for Online Ads Recommendation WWW
Ads recommendation is a prominent service of online advertising systems and has been actively studied. Recent studies indicate that scaling-up and advanced design of the recommendation model can bring significant performance improvement. However, with a larger model scale, such prior studies have a significantly increasing gap from industry as they often neglect two fundamental challenges in industrial-scale applications. First, training and inference budgets are restricted for the model to be served, exceeding which may incur latency and impair user experience. Second, large-volume data arrive in a streaming mode with data distributions dynamically shifting, as new users/ads join and existing users/ads leave the system. We propose the External Large Foundation Model (ExFM) framework to address the overlooked challenges. Specifically, we develop external distillation and a data augmentation system (DAS) to control the computational cost of training/inference while maintaining high performance. We design the teacher in a way like a foundation model (FM) that can serve multiple students as vertical models (VMs) to amortize its building cost. We propose Auxiliary Head and Student Adapter to mitigate the data distribution gap between FM and VMs caused by the streaming data issue. Comprehensive experiments on internal industrial-scale applications and public datasets demonstrate significant performance gain by ExFM.
comment: Accepted by the ACM Web Conference (WWW) 2025 Industrial Track as Oral Presentation
♻ ☆ Data Augmentation as Free Lunch: Exploring the Test-Time Augmentation for Sequential Recommendation SIGIR 2025
Data augmentation has become a promising method of mitigating data sparsity in sequential recommendation. Existing methods generate new yet effective data during model training to improve performance. However, deploying them requires retraining, architecture modification, or introducing additional learnable parameters. The above steps are time-consuming and costly for well-trained models, especially when the model scale becomes large. In this work, we explore the test-time augmentation (TTA) for sequential recommendation, which augments the inputs during the model inference and then aggregates the model's predictions for augmented data to improve final accuracy. It avoids significant time and cost overhead from loss calculation and backward propagation. We first experimentally disclose the potential of existing augmentation operators for TTA and find that the Mask and Substitute consistently achieve better performance. Further analysis reveals that these two operators are effective because they retain the original sequential pattern while adding appropriate perturbations. Meanwhile, we argue that these two operators still face time-consuming item selection or interference information from mask tokens. Based on the analysis and limitations, we present TNoise and TMask. The former injects uniform noise into the original representation, avoiding the computational overhead of item selection. The latter blocks mask token from participating in model calculations or directly removes interactions that should have been replaced with mask tokens. Comprehensive experiments demonstrate the effectiveness, efficiency, and generalizability of our method. We provide an anonymous implementation at https://github.com/KingGugu/TTA4SR.
comment: Accepted by SIGIR 2025 Full Paper
♻ ☆ Pre-training Generative Recommender with Multi-Identifier Item Tokenization
Generative recommendation autoregressively generates item identifiers to recommend potential items. Existing methods typically adopt a one-to-one mapping strategy, where each item is represented by a single identifier. However, this scheme poses issues, such as suboptimal semantic modeling for low-frequency items and limited diversity in token sequence data. To overcome these limitations, we propose MTGRec, which leverages Multi-identifier item Tokenization to augment token sequence data for Generative Recommender pre-training. Our approach involves two key innovations: multi-identifier item tokenization and curriculum recommender pre-training. For multi-identifier item tokenization, we leverage the RQ-VAE as the tokenizer backbone and treat model checkpoints from adjacent training epochs as semantically relevant tokenizers. This allows each item to be associated with multiple identifiers, enabling a single user interaction sequence to be converted into several token sequences as different data groups. For curriculum recommender pre-training, we introduce a curriculum learning scheme guided by data influence estimation, dynamically adjusting the sampling probability of each data group during recommender pre-training. After pre-training, we fine-tune the model using a single tokenizer to ensure accurate item identification for recommendation. Extensive experiments on three public benchmark datasets demonstrate that MTGRec significantly outperforms both traditional and generative recommendation baselines in terms of effectiveness and scalability.
♻ ☆ Universal Item Tokenization for Transferable Generative Recommendation
Recently, generative recommendation has emerged as a promising paradigm, attracting significant research attention. The basic framework involves an item tokenizer, which represents each item as a sequence of codes serving as its identifier, and a generative recommender that predicts the next item by autoregressively generating the target item identifier. However, in existing methods, both the tokenizer and the recommender are typically domain-specific, limiting their ability for effective transfer or adaptation to new domains. To this end, we propose UTGRec, a Universal item Tokenization approach for transferable Generative Recommendation. Specifically, we design a universal item tokenizer for encoding rich item semantics by adapting a multimodal large language model (MLLM). By devising tree-structured codebooks, we discretize content representations into corresponding codes for item tokenization. To effectively learn the universal item tokenizer on multiple domains, we introduce two key techniques in our approach. For raw content reconstruction, we employ dual lightweight decoders to reconstruct item text and images from discrete representations to capture general knowledge embedded in the content. For collaborative knowledge integration, we assume that co-occurring items are similar and integrate collaborative signals through co-occurrence alignment and reconstruction. Finally, we present a joint learning framework to pre-train and adapt the transferable generative recommender across multiple domains. Extensive experiments on four public datasets demonstrate the superiority of UTGRec compared to both traditional and generative recommendation baselines.
♻ ☆ Multi-view Intent Learning and Alignment with Large Language Models for Session-based Recommendation
Session-based recommendation (SBR) methods often rely on user behavior data, which can struggle with the sparsity of session data, limiting performance. Researchers have identified that beyond behavioral signals, rich semantic information in item descriptions is crucial for capturing hidden user intent. While large language models (LLMs) offer new ways to leverage this semantic data, the challenges of session anonymity, short-sequence nature, and high LLM training costs have hindered the development of a lightweight, efficient LLM framework for SBR. To address the above challenges, we propose an LLM-enhanced SBR framework that integrates semantic and behavioral signals from multiple views. This two-stage framework leverages the strengths of both LLMs and traditional SBR models while minimizing training costs. In the first stage, we use multi-view prompts to infer latent user intentions at the session semantic level, supported by an intent localization module to alleviate LLM hallucinations. In the second stage, we align and unify these semantic inferences with behavioral representations, effectively merging insights from both large and small models. Extensive experiments on two real datasets demonstrate that the LLM4SBR framework can effectively improve model performance. We release our codes along with the baselines at https://github.com/tsinghua-fib-lab/LLM4SBR.
♻ ☆ RAG-VR: Leveraging Retrieval-Augmented Generation for 3D Question Answering in VR Environments
Recent advances in large language models (LLMs) provide new opportunities for context understanding in virtual reality (VR). However, VR contexts are often highly localized and personalized, limiting the effectiveness of general-purpose LLMs. To address this challenge, we present RAG-VR, the first 3D question-answering system for VR that incorporates retrieval-augmented generation (RAG), which augments an LLM with external knowledge retrieved from a localized knowledge database to improve the answer quality. RAG-VR includes a pipeline for extracting comprehensive knowledge about virtual environments and user conditions for accurate answer generation. To ensure efficient retrieval, RAG-VR offloads the retrieval process to a nearby edge server and uses only essential information during retrieval. Moreover, we train the retriever to effectively distinguish among relevant, irrelevant, and hard-to-differentiate information in relation to questions. RAG-VR improves answer accuracy by 17.9%-41.8% and reduces end-to-end latency by 34.5%-47.3% compared with two baseline systems.
comment: GenAI-XR 2025 Workshop, co-located with 2025 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)
Information Retrieval 10
☆ Iterative Self-Training for Code Generation via Reinforced Re-Ranking ECIR 2025
Generating high-quality code that solves complex programming tasks is challenging, especially with current decoder-based models that produce highly stochastic outputs. In code generation, even minor errors can easily break the entire solution. Leveraging multiple sampled solutions can significantly improve the overall output quality. One effective way to enhance code generation is by pairing a code generation model with a reranker model, which selects the best solution from the generated samples. We propose a novel iterative self-training approach for self-training reranker models using Proximal Policy Optimization (PPO), aimed at improving both reranking accuracy and the overall code generation process. Unlike traditional PPO approaches, where the focus is on optimizing a generative model with a reward model, our approach emphasizes the development of a robust reward/reranking model. This model improves the quality of generated code through reranking and addresses problems and errors that the reward model might overlook during PPO alignment with the reranker. Our method iteratively refines the training dataset by re-evaluating outputs, identifying high-scoring negative examples, and incorporating them into the training loop, that boosting model performance. Our evaluation on the MultiPL-E dataset demonstrates that our 13.4B parameter model outperforms a 33B model in code generation quality while being three times faster. Moreover, it achieves performance comparable to GPT-4 and surpasses it in one programming language.
comment: Published at ECIR 2025
☆ Outage Probability Analysis for OTFS with Finite Blocklength
Orthogonal time frequency space (OTFS) modulation is widely acknowledged as a prospective waveform for future wireless communication networks.To provide insights for the practical system design, this paper analyzes the outage probability of OTFS modulation with finite blocklength.To begin with, we present the system model and formulate the analysis of outage probability for OTFS with finite blocklength as an equivalent problem of calculating the outage probability with finite blocklength over parallel additive white Gaussian noise (AWGN) channels.Subsequently, we apply the equivalent noise approach to derive a lower bound on the outage probability of OTFS with finite blocklength under both average power allocation and water-filling power allocation strategies, respectively.Finally, the lower bounds of the outage probability are determined using the Monte-Carlo method for the two power allocation strategies.The impact of the number of resolvable paths and coding rates on the outage probability is analyzed, and the simulation results are compared with the theoretical lower bounds.
☆ Slow Thinking for Sequential Recommendation
To develop effective sequential recommender systems, numerous methods have been proposed to model historical user behaviors. Despite the effectiveness, these methods share the same fast thinking paradigm. That is, for making recommendations, these methods typically encodes user historical interactions to obtain user representations and directly match these representations with candidate item representations. However, due to the limited capacity of traditional lightweight recommendation models, this one-step inference paradigm often leads to suboptimal performance. To tackle this issue, we present a novel slow thinking recommendation model, named STREAM-Rec. Our approach is capable of analyzing historical user behavior, generating a multi-step, deliberative reasoning process, and ultimately delivering personalized recommendations. In particular, we focus on two key challenges: (1) identifying the suitable reasoning patterns in recommender systems, and (2) exploring how to effectively stimulate the reasoning capabilities of traditional recommenders. To this end, we introduce a three-stage training framework. In the first stage, the model is pretrained on large-scale user behavior data to learn behavior patterns and capture long-range dependencies. In the second stage, we design an iterative inference algorithm to annotate suitable reasoning traces by progressively refining the model predictions. This annotated data is then used to fine-tune the model. Finally, in the third stage, we apply reinforcement learning to further enhance the model generalization ability. Extensive experiments validate the effectiveness of our proposed method.
☆ Integrating Textual Embeddings from Contrastive Learning with Generative Recommender for Enhanced Personalization
Recent advances in recommender systems have highlighted the complementary strengths of generative modeling and pretrained language models. We propose a hybrid framework that augments the Hierarchical Sequential Transduction Unit (HSTU) generative recommender with BLaIR -- a contrastive text embedding model. This integration enriches item representations with semantic signals from textual metadata while preserving HSTU's powerful sequence modeling capabilities. We evaluate our method on two domains from the Amazon Reviews 2023 dataset, comparing it against the original HSTU and a variant that incorporates embeddings from OpenAI's state-of-the-art text-embedding-3-large model. While the OpenAI embedding model is likely trained on a substantially larger corpus with significantly more parameters, our lightweight BLaIR-enhanced approach -- pretrained on domain-specific data -- consistently achieves better performance, highlighting the effectiveness of contrastive text embeddings in compute-efficient settings.
comment: Code available at https://www.github.com/snapfinger/HSTU-BLaIR
☆ Revisiting Self-Attentive Sequential Recommendation
Recommender systems are ubiquitous in on-line services to drive businesses. And many sequential recommender models were deployed in these systems to enhance personalization. The approach of using the transformer decoder as the sequential recommender was proposed years ago and is still a strong baseline in recent works. But this kind of sequential recommender model did not scale up well, compared to language models. Quite some details in the classical self-attentive sequential recommender model could be revisited, and some new experiments may lead to new findings, without changing the general model structure which was the focus of many previous works. In this paper, we show the details and propose new experiment methodologies for future research on sequential recommendation, in hope to motivate further exploration to new findings in this area.
comment: 4 pages, 0 figure, technical report based on https://github.com/pmixer/SASRec.pytorch experiment findings
☆ HD-RAG: Retrieval-Augmented Generation for Hybrid Documents Containing Text and Hierarchical Tables
With the rapid advancement of large language models (LLMs), Retrieval-Augmented Generation (RAG) effectively combines LLMs generative capabilities with external retrieval-based information. The Hybrid Document RAG task aims to integrate textual and hierarchical tabular data for more comprehensive retrieval and generation in complex scenarios. However, there is no existing dataset specifically designed for this task that includes both text and tabular data. Additionally, existing methods struggle to retrieve relevant tabular data and integrate it with text. Semantic similarity-based retrieval lacks accuracy, while table-specific methods fail to handle complex hierarchical structures effectively. Furthermore, the QA task requires complex reasoning and calculations, further complicating the challenge. In this paper, we propose a new large-scale dataset, DocRAGLib, specifically designed for the question answering (QA) task scenario under Hybrid Document RAG. To tackle these challenges, we introduce HD-RAG, a novel framework that incorporates a row-and-column level (RCL) table representation, employs a two-stage process combining ensemble and LLM-based retrieval, and integrates RECAP, which is designed for multi-step reasoning and complex calculations in Document-QA tasks. We conduct comprehensive experiments with DocRAGLib, showing that HD-RAG outperforms existing baselines in both retrieval accuracy and QA performance, demonstrating its effectiveness.
comment: 10 pages, 4 figures
☆ Multi-Modal Hypergraph Enhanced LLM Learning for Recommendation
The burgeoning presence of Large Language Models (LLM) is propelling the development of personalized recommender systems. Most existing LLM-based methods fail to sufficiently explore the multi-view graph structure correlations inherent in recommendation scenarios. To this end, we propose a novel framework, Hypergraph Enhanced LLM Learning for multimodal Recommendation (HeLLM), designed to equip LLMs with the capability to capture intricate higher-order semantic correlations by fusing graph-level contextual signals with sequence-level behavioral patterns. In the recommender pre-training phase, we design a user hypergraph to uncover shared interest preferences among users and an item hypergraph to capture correlations within multimodal similarities among items. The hypergraph convolution and synergistic contrastive learning mechanism are introduced to enhance the distinguishability of learned representations. In the LLM fine-tuning phase, we inject the learned graph-structured embeddings directly into the LLM's architecture and integrate sequential features capturing each user's chronological behavior. This process enables hypergraphs to leverage graph-structured information as global context, enhancing the LLM's ability to perceive complex relational patterns and integrate multimodal information, while also modeling local temporal dynamics. Extensive experiments demonstrate the superiority of our proposed method over state-of-the-art baselines, confirming the advantages of fusing hypergraph-based context with sequential user behavior in LLMs for recommendation.
comment: 10 pages, 4 figures
☆ Distilling Transitional Pattern to Large Language Models for Multimodal Session-based Recommendation
Session-based recommendation (SBR) predicts the next item based on anonymous sessions. Traditional SBR explores user intents based on ID collaborations or auxiliary content. To further alleviate data sparsity and cold-start issues, recent Multimodal SBR (MSBR) methods utilize simplistic pre-trained models for modality learning but have limitations in semantic richness. Considering semantic reasoning abilities of Large Language Models (LLM), we focus on the LLM-enhanced MSBR scenario in this paper, which leverages LLM cognition for comprehensive multimodal representation generation, to enhance downstream MSBR. Tackling this problem faces two challenges: i) how to obtain LLM cognition on both transitional patterns and inherent multimodal knowledge, ii) how to align both features into one unified LLM, minimize discrepancy while maximizing representation utility. To this end, we propose a multimodal LLM-enhanced framework TPAD, which extends a distillation paradigm to decouple and align transitional patterns for promoting MSBR. TPAD establishes parallel Knowledge-MLLM and Transfer-MLLM, where the former interprets item knowledge-reflected features and the latter extracts transition-aware features underneath sessions. A transitional pattern alignment module harnessing mutual information estimation theory unites two MLLMs, alleviating distribution discrepancy and distilling transitional patterns into modal representations. Extensive experiments on real-world datasets demonstrate the effectiveness of our framework.
☆ FROG: Effective Friend Recommendation in Online Games via Modality-aware User Preferences SIGIR 2025
Due to the convenience of mobile devices, the online games have become an important part for user entertainments in reality, creating a demand for friend recommendation in online games. However, none of existing approaches can effectively incorporate the multi-modal user features (\emph{e.g.}, images and texts) with the structural information in the friendship graph, due to the following limitations: (1) some of them ignore the high-order structural proximity between users, (2) some fail to learn the pairwise relevance between users at modality-specific level, and (3) some cannot capture both the local and global user preferences on different modalities. By addressing these issues, in this paper, we propose an end-to-end model \textsc{FROG} that better models the user preferences on potential friends. Comprehensive experiments on both offline evaluation and online deployment at \kw{Tencent} have demonstrated the superiority of \textsc{FROG} over existing approaches.
comment: Accepted in SIGIR 2025
♻ ☆ Table Integration in Data Lakes Unleashed: Pairwise Integrability Judgment, Integrable Set Discovery, and Multi-Tuple Conflict Resolution VLDB
Table integration aims to create a comprehensive table by consolidating tuples containing relevant information. In this work, we investigate the challenge of integrating multiple tables from a data lake, focusing on three core tasks: 1) pairwise integrability judgment, which determines whether a tuple pair is integrable, accounting for any occurrences of semantic equivalence or typographical errors; 2) integrable set discovery, which identifies all integrable sets in a table based on pairwise integrability judgments established in the first task; 3) multi-tuple conflict resolution, which resolves conflicts between multiple tuples during integration. To this end, we train a binary classifier to address the task of pairwise integrability judgment. Given the scarcity of labeled data in data lakes, we propose a self-supervised adversarial contrastive learning algorithm to perform classification, which incorporates data augmentation methods and adversarial examples to autonomously generate new training data. Upon the output of pairwise integrability judgment, each integrable set can be considered as a community, a densely connected sub-graph where nodes and edges correspond to tuples in the table and their pairwise integrability respectively, we proceed to investigate various community detection algorithms to address the integrable set discovery objective. Moving forward to tackle multi-tuple conflict resolution, we introduce an innovative in-context learning methodology. This approach capitalizes on the knowledge embedded within large language models (LLMs) to effectively resolve conflicts that arise when integrating multiple tuples. Notably, our method minimizes the need for annotated data, making it particularly suited for scenarios where labeled datasets are scarce.
comment: This paper is accepted by VLDB Journal