MyArxiv
Computation and Language 63
☆ ThetaEvolve: Test-time Learning on Open Problems
Recent advances in large language models (LLMs) have enabled breakthroughs in mathematical discovery, exemplified by AlphaEvolve, a closed-source system that evolves programs to improve bounds on open problems. However, it relies on ensembles of frontier LLMs to achieve new bounds and is a pure inference system that models cannot internalize the evolving strategies. We introduce ThetaEvolve, an open-source framework that simplifies and extends AlphaEvolve to efficiently scale both in-context learning and Reinforcement Learning (RL) at test time, allowing models to continually learn from their experiences in improving open optimization problems. ThetaEvolve features a single LLM, a large program database for enhanced exploration, batch sampling for higher throughput, lazy penalties to discourage stagnant outputs, and optional reward shaping for stable training signals, etc. ThetaEvolve is the first evolving framework that enable a small open-source model, like DeepSeek-R1-0528-Qwen3-8B, to achieve new best-known bounds on open problems (circle packing and first auto-correlation inequality) mentioned in AlphaEvolve. Besides, across two models and four open tasks, we find that ThetaEvolve with RL at test-time consistently outperforms inference-only baselines, and the model indeed learns evolving capabilities, as the RL-trained checkpoints demonstrate faster progress and better final performance on both trained target task and other unseen tasks. We release our code publicly: https://github.com/ypwang61/ThetaEvolve
comment: 30 pages, link: https://github.com/ypwang61/ThetaEvolve
☆ MegaChat: A Synthetic Persian Q&A Dataset for High-Quality Sales Chatbot Evaluation
Small and medium-sized enterprises (SMEs) in Iran increasingly leverage Telegram for sales, where real-time engagement is essential for conversion. However, developing AI-driven chatbots for this purpose requires large, high-quality question-and-answer (Q&A) datasets, which are typically expensive and resource-intensive to produce, especially for low-resource languages like Persian. In this paper, we introduce MegaChat, the first fully synthetic Persian Q&A dataset designed to evaluate intelligent sales chatbots in Telegram-based e-commerce. We propose a novel, automated multi-agent architecture that generates persona-aware Q&A pairs by collecting data from active Telegram shopping channels. The system employs specialized agents for question generation, validation, and refinement, ensuring the production of realistic and diverse conversational data. To evaluate answer generation, we compare three classic retrieval-augmented generation (RAG) models with our advanced agentic system, which features multi-query retrieval, reranking, and persona-aligned response synthesis. Using GPT-5.1 for evaluation across six quality dimensions, our results show that the agentic architecture outperformed traditional RAG models in 4 out of 5 diverse channels, demonstrating its ability to generate scalable, high-quality datasets without relying on expensive human annotation or complex fine-tuning. MegaChat provides SMEs with an efficient, cost-effective solution for building intelligent customer engagement systems in specialized commercial domains, enabling advancements in multilingual conversational AI for low-resource languages. Download: https://github.com/MegaChat-Tech/MegaChat-DataSet
comment: 6 pages, 11 figures, 2 tables
☆ Ambiguity Awareness Optimization: Towards Semantic Disambiguation for Direct Preference Optimization EMNLP 2025
Direct Preference Optimization (DPO) is a widely used reinforcement learning from human feedback (RLHF) method across various domains. Recent research has increasingly focused on the role of token importance in improving DPO effectiveness. It is observed that identical or semantically similar content (defined as ambiguous content) frequently appears within the preference pairs. We hypothesize that the presence of ambiguous content during DPO training may introduce ambiguity, thereby limiting further improvements in alignment. Through mathematical analysis and proof-of-concept experiments, we reveal that ambiguous content may potentially introduce ambiguities, thereby degrading performance. To address this issue, we introduce Ambiguity Awareness Optimization (AAO), a simple yet effective approach that automatically re-weights ambiguous content to reduce ambiguities by calculating semantic similarity from preference pairs. Through extensive experiments, we demonstrate that AAO consistently and significantly surpasses state-of-the-art approaches in performance, without markedly increasing response length, across multiple model scales and widely adopted benchmark datasets, including AlpacaEval 2, MT-Bench, and Arena-Hard. Specifically, AAO outperforms DPO by up to 8.9 points on AlpacaEval 2 and achieves an improvement of by up to 15.0 points on Arena-Hard.
comment: Accepted at EMNLP 2025 main
☆ Is Passive Expertise-Based Personalization Enough? A Case Study in AI-Assisted Test-Taking EMNLP 2025
Novice and expert users have different systematic preferences in task-oriented dialogues. However, whether catering to these preferences actually improves user experience and task performance remains understudied. To investigate the effects of expertise-based personalization, we first built a version of an enterprise AI assistant with passive personalization. We then conducted a user study where participants completed timed exams, aided by the two versions of the AI assistant. Preliminary results indicate that passive personalization helps reduce task load and improve assistant perception, but reveal task-specific limitations that can be addressed through providing more user agency. These findings underscore the importance of combining active and passive personalization to optimize user experience and effectiveness in enterprise task-oriented environments.
comment: Accepted into Tailoring AI: Exploring Active and Passive LLM Personalization (PALS) workshop at EMNLP 2025
☆ Optimizing Multimodal Language Models through Attention-based Interpretability
Modern large language models become multimodal, analyzing various data formats like text and images. While fine-tuning is effective for adapting these multimodal language models (MLMs) to downstream tasks, full fine-tuning is computationally expensive. Parameter-Efficient Fine-Tuning (PEFT) methods address this by training only a small portion of model weights. However, MLMs are difficult to interpret, making it challenging to identify which components are most effective for training to balance efficiency and performance. We propose an attention-based interpretability method for MLMs by analyzing attention scores relative to image tokens. The core idea is to identify attention heads that focus on image key objects. We utilize this information to select optimal model components for PEFT in multimodal models. Our contributions include a method for identifying attention heads associated with image key objects, its application to PEFT for image captioning, and the creation of a new dataset containing images, key object masks, and their textual descriptions. We conducted experiments on MLMs with 2-3 billion parameters to validate the method's effectiveness. By calculating Head Impact (HI) scores we quantify an attention head's focus on key objects, indicating its significance in image understanding. Our fine-tuning experiments demonstrate that adapting layers with the highest HI scores leads to the most significant shifts in metrics compared to pre-trained, randomly selected, or lowest-HI-score layers. This indicates that fine-tuning a small percentage (around 0.01%) of parameters in these crucial layers can substantially influence image understanding capabilities.
comment: Accepted for ICAI-2025 conference
☆ Scaling HuBERT for African Languages: From Base to Large and XL
Despite recent progress in multilingual speech processing, African languages remain under-represented in both research and deployed systems, particularly when it comes to strong, open-weight encoders that transfer well under low-resource supervision. Self-supervised learning has proven especially promising in such settings, yet most publicly released models targeting African speech remain at BASE scale, leaving unanswered whether larger encoders, trained exclusively on Africa-centric audio, offer tangible benefits and how model capacity interacts with data composition. This work addresses that gap by introducing SSA-HuBERT-Large (317M parameters) and SSA-HuBERT-XL (964M parameters), the first large models trained solely on African speech, alongside a BASE size counterpart. We release these models as open weights: see https://huggingface.co/collections/Orange/african-speech-foundation-models. By conducting a carefully controlled experimental study focused exclusively on Sub-Saharan languages, covering automatic speech recognition (ASR) and language identification (LID) tasks, we demonstrate that larger architectures significantly improve performance by effectively leveraging large audio datasets.
comment: Journée d'études AFIA-ATALA 2025 : Technologies linguistiques pour les langues peu dotées
☆ Towards Improving Interpretability of Language Model Generation through a Structured Knowledge Discovery Approach
Knowledge-enhanced text generation aims to enhance the quality of generated text by utilizing internal or external knowledge sources. While language models have demonstrated impressive capabilities in generating coherent and fluent text, the lack of interpretability presents a substantial obstacle. The limited interpretability of generated text significantly impacts its practical usability, particularly in knowledge-enhanced text generation tasks that necessitate reliability and explainability. Existing methods often employ domain-specific knowledge retrievers that are tailored to specific data characteristics, limiting their generalizability to diverse data types and tasks. To overcome this limitation, we directly leverage the two-tier architecture of structured knowledge, consisting of high-level entities and low-level knowledge triples, to design our task-agnostic structured knowledge hunter. Specifically, we employ a local-global interaction scheme for structured knowledge representation learning and a hierarchical transformer-based pointer network as the backbone for selecting relevant knowledge triples and entities. By combining the strong generative ability of language models with the high faithfulness of the knowledge hunter, our model achieves high interpretability, enabling users to comprehend the model output generation process. Furthermore, we empirically demonstrate the effectiveness of our model in both internal knowledge-enhanced table-to-text generation on the RotoWireFG dataset and external knowledge-enhanced dialogue response generation on the KdConv dataset. Our task-agnostic model outperforms state-of-the-art methods and corresponding language models, setting new standards on the benchmark.
☆ Tackling a Challenging Corpus for Early Detection of Gambling Disorder: UNSL at MentalRiskES 2025
Gambling disorder is a complex behavioral addiction that is challenging to understand and address, with severe physical, psychological, and social consequences. Early Risk Detection (ERD) on the Web has become a key task in the scientific community for identifying early signs of mental health behaviors based on social media activity. This work presents our participation in the MentalRiskES 2025 challenge, specifically in Task 1, aimed at classifying users at high or low risk of developing a gambling-related disorder. We proposed three methods based on a CPI+DMC approach, addressing predictive effectiveness and decision-making speed as independent objectives. The components were implemented using the SS3, BERT with extended vocabulary, and SBERT models, followed by decision policies based on historical user analysis. Although it was a challenging corpus, two of our proposals achieved the top two positions in the official results, performing notably in decision metrics. Further analysis revealed some difficulty in distinguishing between users at high and low risk, reinforcing the need to explore strategies to improve data interpretation and quality, and to promote more transparent and reliable ERD systems for mental disorders.
comment: In Iberian Language Evaluation Forum (IberLEF 2025), Zaragoza, Spain
☆ Every Token Counts: Generalizing 16M Ultra-Long Context in Large Language Models
This work explores the challenge of building ``Machines that Can Remember'', framing long-term memory as the problem of efficient ultra-long context modeling. We argue that this requires three key properties: \textbf{sparsity}, \textbf{random-access flexibility}, and \textbf{length generalization}. To address ultra-long-context modeling, we leverage Hierarchical Sparse Attention (HSA), a novel attention mechanism that satisfies all three properties. We integrate HSA into Transformers to build HSA-UltraLong, which is an 8B-parameter MoE model trained on over 8 trillion tokens and is rigorously evaluated on different tasks with in-domain and out-of-domain context lengths to demonstrate its capability in handling ultra-long contexts. Results show that our model performs comparably to full-attention baselines on in-domain lengths while achieving over 90\% accuracy on most in-context retrieval tasks with contexts up to 16M. This report outlines our experimental insights and open problems, contributing a foundation for future research in ultra-long context modeling.
☆ Toward Automatic Safe Driving Instruction: A Large-Scale Vision Language Model Approach
Large-scale Vision Language Models (LVLMs) exhibit advanced capabilities in tasks that require visual information, including object detection. These capabilities have promising applications in various industrial domains, such as autonomous driving. For example, LVLMs can generate safety-oriented descriptions of videos captured by road-facing cameras. However, ensuring comprehensive safety requires monitoring driver-facing views as well to detect risky events, such as the use of mobiles while driving. Thus, the ability to process synchronized inputs is necessary from both driver-facing and road-facing cameras. In this study, we develop models and investigate the capabilities of LVLMs by constructing a dataset and evaluating their performance on this dataset. Our experimental results demonstrate that while pre-trained LVLMs have limited effectiveness, fine-tuned LVLMs can generate accurate and safety-aware driving instructions. Nonetheless, several challenges remain, particularly in detecting subtle or complex events in the video. Our findings and error analysis provide valuable insights that can contribute to the improvement of LVLM-based systems in this domain.
comment: Accepted to MMLoSo 2025
Transformer-Driven Triple Fusion Framework for Enhanced Multimodal Author Intent Classification in Low-Resource Bangla
The expansion of the Internet and social networks has led to an explosion of user-generated content. Author intent understanding plays a crucial role in interpreting social media content. This paper addresses author intent classification in Bangla social media posts by leveraging both textual and visual data. Recognizing limitations in previous unimodal approaches, we systematically benchmark transformer-based language models (mBERT, DistilBERT, XLM-RoBERTa) and vision architectures (ViT, Swin, SwiftFormer, ResNet, DenseNet, MobileNet), utilizing the Uddessho dataset of 3,048 posts spanning six practical intent categories. We introduce a novel intermediate fusion strategy that significantly outperforms early and late fusion on this task. Experimental results show that intermediate fusion, particularly with mBERT and Swin Transformer, achieves 84.11% macro-F1 score, establishing a new state-of-the-art with an 8.4 percentage-point improvement over prior Bangla multimodal approaches. Our analysis demonstrates that integrating visual context substantially enhances intent classification. Cross-modal feature integration at intermediate levels provides optimal balance between modality-specific representation and cross-modal learning. This research establishes new benchmarks and methodological standards for Bangla and other low-resource languages. We call our proposed framework BangACMM (Bangla Author Content MultiModal).
comment: Accepted at the 28th International Conference on Computer and Information Technology (ICCIT 2025). To be published in IEEE proceedings
☆ MCP vs RAG vs NLWeb vs HTML: A Comparison of the Effectiveness and Efficiency of Different Agent Interfaces to the Web (Technical Report)
Large language model agents are increasingly used to automate web tasks such as product search, offer comparison, and checkout. Current research explores different interfaces through which these agents interact with websites, including traditional HTML browsing, retrieval-augmented generation (RAG) over pre-crawled content, communication via Web APIs using the Model Context Protocol (MCP), and natural-language querying through the NLWeb interface. However, no prior work has compared these four architectures within a single controlled environment using identical tasks. To address this gap, we introduce a testbed consisting of four simulated e-shops, each offering its products via HTML, MCP, and NLWeb interfaces. For each interface (HTML, RAG, MCP, and NLWeb) we develop specialized agents that perform the same sets of tasks, ranging from simple product searches and price comparisons to complex queries for complementary or substitute products and checkout processes. We evaluate the agents using GPT 4.1, GPT 5, GPT 5 mini, and Claude Sonnet 4 as underlying LLM. Our evaluation shows that the RAG, MCP and NLWeb agents outperform HTML on both effectiveness and efficiency. Averaged over all tasks, F1 rises from 0.67 for HTML to between 0.75 and 0.77 for the other agents. Token usage falls from about 241k for HTML to between 47k and 140k per task. The runtime per task drops from 291 seconds to between 50 and 62 seconds. The best overall configuration is RAG with GPT 5 achieving an F1 score of 0.87 and a completion rate of 0.79. Also taking cost into consideration, RAG with GPT 5 mini offers a good compromise between API usage fees and performance. Our experiments show the choice of the interaction interface has a substantial impact on both the effectiveness and efficiency of LLM-based web agents.
☆ Behavior-Equivalent Token: Single-Token Replacement for Long Prompts in LLMs
Carefully engineered system prompts play a critical role in guiding the behavior of LLM agents, but their considerable length introduces significant drawbacks, including increased inference latency, higher computational cost, and reduced effective context length. This raises the question of whether such lengthy prompts can be replaced by a drastically reduced number of tokens while preserving their behavioral effect on downstream tasks. To enable this, we propose a lightweight three-stage training framework that learns a single prompt-specific Behavior-Equivalent token ([BE]). The framework first trains [BE] to encode the natural-language content of the original system prompt via reconstruction, and then distills the prompt 's downstream behavior into this single token. Importantly, our method requires no access to model internals, no auxiliary compression models, and no labeled responses. Empirical evaluations on three datasets show that a single [BE] token achieves up to a 3000x reduction in prompt length, while retaining about 98% of the downstream performance of the original system prompts. This substantially reduces inference cost and leaves almost the entire context window available for user inputs.
comment: 15 pages, 5 figures
☆ BanglaSentNet: An Explainable Hybrid Deep Learning Framework for Multi-Aspect Sentiment Analysis with Cross-Domain Transfer Learning
Multi-aspect sentiment analysis of Bangla e-commerce reviews remains challenging due to limited annotated datasets, morphological complexity, code-mixing phenomena, and domain shift issues, affecting 300 million Bangla-speaking users. Existing approaches lack explainability and cross-domain generalization capabilities crucial for practical deployment. We present BanglaSentNet, an explainable hybrid deep learning framework integrating LSTM, BiLSTM, GRU, and BanglaBERT through dynamic weighted ensemble learning for multi-aspect sentiment classification. We introduce a dataset of 8,755 manually annotated Bangla product reviews across four aspects (Quality, Service, Price, Decoration) from major Bangladeshi e-commerce platforms. Our framework incorporates SHAP-based feature attribution and attention visualization for transparent insights. BanglaSentNet achieves 85% accuracy and 0.88 F1-score, outperforming standalone deep learning models by 3-7% and traditional approaches substantially. The explainability suite achieves 9.4/10 interpretability score with 87.6% human agreement. Cross-domain transfer learning experiments reveal robust generalization: zero-shot performance retains 67-76% effectiveness across diverse domains (BanglaBook reviews, social media, general e-commerce, news headlines); few-shot learning with 500-1000 samples achieves 90-95% of full fine-tuning performance, significantly reducing annotation costs. Real-world deployment demonstrates practical utility for Bangladeshi e-commerce platforms, enabling data-driven decision-making for pricing optimization, service improvement, and customer experience enhancement. This research establishes a new state-of-the-art benchmark for Bangla sentiment analysis, advances ensemble learning methodologies for low-resource languages, and provides actionable solutions for commercial applications.
comment: Submitted to Springer Nature Computer Science (SNCS) as an extended version of our ICDSAIA 2025 conference paper
☆ Tourism Question Answer System in Indian Language using Domain-Adapted Foundation Models
This article presents the first comprehensive study on designing a baseline extractive question-answering (QA) system for the Hindi tourism domain, with a specialized focus on the Varanasi-a cultural and spiritual hub renowned for its Bhakti-Bhaav (devotional ethos). Targeting ten tourism-centric subdomains-Ganga Aarti, Cruise, Food Court, Public Toilet, Kund, Museum, General, Ashram, Temple and Travel, the work addresses the absence of language-specific QA resources in Hindi for culturally nuanced applications. In this paper, a dataset comprising 7,715 Hindi QA pairs pertaining to Varanasi tourism was constructed and subsequently augmented with 27,455 pairs generated via Llama zero-shot prompting. We propose a framework leveraging foundation models-BERT and RoBERTa, fine-tuned using Supervised Fine-Tuning (SFT) and Low-Rank Adaptation (LoRA), to optimize parameter efficiency and task performance. Multiple variants of BERT, including pre-trained languages (e.g., Hindi-BERT), are evaluated to assess their suitability for low-resource domain-specific QA. Evaluation metrics - F1, BLEU, and ROUGE-L - highlight trade-offs between answer precision and linguistic fluency. Experiments demonstrate that LoRA-based fine-tuning achieves competitive performance (85.3\% F1) while reducing trainable parameters by 98\% compared to SFT, striking a balance between efficiency and accuracy. Comparative analysis across models reveals that RoBERTa with SFT outperforms BERT variants in capturing contextual nuances, particularly for culturally embedded terms (e.g., Aarti, Kund). This work establishes a foundational baseline for Hindi tourism QA systems, emphasizing the role of LORA in low-resource settings and underscoring the need for culturally contextualized NLP frameworks in the tourism domain.
☆ TWEO: Transformers Without Extreme Outliers Enables FP8 Training And Quantization For Dummies
Native FP8 support in modern hardware is essential for training large Transformers, but is severely hindered by extreme activation outliers. Existing solutions either rely on complex mixed-precision engineering or invasive architectural modifications. This paper fundamentally challenges the conventional wisdom that outliers are data-driven. We demonstrate that extreme outliers are a data-independent, mechanically-produced artifact of training, originating from specific structural properties of the weight matrices (i.e., colinearity). Based on this insight, we propose TWEO (Transformers Without Extreme Outliers), a novel, non-invasive loss function. TWEO effectively prevents extreme outliers via a very simple loss term, which reduces outliers from 10000+ to less than 20. TWEO then enables full-model FP8 pre-training with neither engineering tricks nor architectural changes for both LLM and ViT. When standard FP8 training catastrophically collapses, TWEO achieves performance comparable to the BF16 baseline while delivering a 36% increase in training throughput. Also, TWEO enables a new quantization paradigm. Hardware-friendly W8A8 per-tensor static quantization of LLMs, previously considered completely unusable due to outliers, achieves SOTA performance for the first time on TWEO-trained models.
☆ Listwise Preference Optimization with Element-wise Confusions for Aspect Sentiment Quad Prediction
Aspect sentiment quad prediction (ASQP) is inherently challenging to predict a structured quadruple with four core sentiment elements, including aspect term (a), aspect category (c), opinion term (o), and sentiment polarity (s). Prior methods relying on marker-based prediction struggle with modeling the intricate relationships among elements and experience sharp performance declines when predicting higher-order elements (e.g., c and s) under standard supervised fine-tuning. To address these limitations, we employ reasoning-based generation to output both the quadruple and a natural language rationale under element prefixes within a unified template, encouraging explicit relational reasoning and interpretability. To further enhance element-wise alignment, we introduce a listwise preference optimization framework for improving structural validity and relational coherence. Specifically, we generate element-wise confusable candidates via syntactic and semantic proximity, then train the model with listwise objectives to prefer the gold candidates over closely competing alternatives. Extensive experiments on four benchmark datasets demonstrate that our framework effectively improves quadruple prediction accuracy and explanation consistency.
comment: 11 pages, 7 figures, and 6 tables
☆ Are LLMs Good Safety Agents or a Propaganda Engine?
Large Language Models (LLMs) are trained to refuse to respond to harmful content. However, systematic analyses of whether this behavior is truly a reflection of its safety policies or an indication of political censorship, that is practiced globally by countries, is lacking. Differentiating between safety influenced refusals or politically motivated censorship is hard and unclear. For this purpose we introduce PSP, a dataset built specifically to probe the refusal behaviors in LLMs from an explicitly political context. PSP is built by formatting existing censored content from two data sources, openly available on the internet: sensitive prompts in China generalized to multiple countries, and tweets that have been censored in various countries. We study: 1) impact of political sensitivity in seven LLMs through data-driven (making PSP implicit) and representation-level approaches (erasing the concept of politics); and, 2) vulnerability of models on PSP through prompt injection attacks (PIAs). Associating censorship with refusals on content with masked implicit intent, we find that most LLMs perform some form of censorship. We conclude with summarizing major attributes that can cause a shift in refusal distributions across models and contexts of different countries.
comment: 15 pages, 7 tables, 4 figures
☆ Multi-chain Graph Refinement and Selection for Reliable Reasoning in Large Language Models
The complex reasoning ability of Large Language Models (LLMs) poses a critical bottleneck for their practical applications. Test-time expansion methods such as Tree-of-Thought (ToT) and Graph-of-Thought (GoT) enhance reasoning by introducing intermediate reasoning structures, tree search, or graph-based exploration mechanisms. However, their reasoning strategies suffer from limited diversity, redundant search branches, and inadequate integration and error correction across heterogeneous reasoning paths. To address these limitations, we propose a novel reasoning framework called Multi-chain Graph Refinement & Selection (MGRS), which first generates multiple diverse reasoning trajectories for a given problem, refines candidate responses using a composite self- and cross-verification strategy, then constructs a reasoning relation graph and estimates the success rate of intermediate nodes, and finally computes cumulative success rates to select the most reliable answer and corresponding reasoning trajectory. Experimental results demonstrate that MGRS significantly advances both the reasoning capability and computational efficiency of reasoning enhancement methods. Across six benchmark datasets spanning four distinct tasks, MGRS achieves an average accuracy of 82.9%, outperforming state-of-the-art baselines by a clear margin of 2.1%. Remarkably, on the 24-point game, MGRS attains 100% accuracy for the first time, while delivering a 13.6x speed-up compared to the leading Forest of Thoughts framework.
☆ Dripper: Token-Efficient Main HTML Extraction with a Lightweight LM
Accurately and efficiently extracting main content from general web pages is of great significance for obtaining training data for large models. Using well-pre-trained decoder-only generative language models offers excellent document comprehension capabilities, thereby effectively enhancing parsing quality. However, it remains constrained by issues such as context window length, inference cost, and format hallucination. We present Dripper, an efficient HTML main content extraction framework powered by lightweight language models, which addresses these challenges through four key innovations: (1) We design a specialized HTML simplification algorithm that reduces input token count to 22\% compared to raw HTML while preserving critical structural information; (2) We reformulate main content extraction as a semantic block sequence classification task, significantly reducing inference cost; (3) We introduce a controlled decoding mechanism that strictly constrains the output space through logits processors, effectively eliminating hallucination issues common in small-scale models; (4) We propose WebMainBench, an evaluation dataset containing over 7,800 web pages with meticulously human-annotated main content extraction labels. Experimental results demonstrate that using only a 0.6B parameter model, Dripper achieves state-of-the-art performance across all evaluation benchmarks and outperforms all baseline methods, attaining an ROUGE-N F1 score of 81.58\%( 83.13\% with fall-back strategy) on our proposed WebMainBench dataset.
☆ Mind Reading or Misreading? LLMs on the Big Five Personality Test SC
We evaluate large language models (LLMs) for automatic personality prediction from text under the binary Five Factor Model (BIG5). Five models -- including GPT-4 and lightweight open-source alternatives -- are tested across three heterogeneous datasets (Essays, MyPersonality, Pandora) and two prompting strategies (minimal vs. enriched with linguistic and psychological cues). Enriched prompts reduce invalid outputs and improve class balance, but also introduce a systematic bias toward predicting trait presence. Performance varies substantially: Openness and Agreeableness are relatively easier to detect, while Extraversion and Neuroticism remain challenging. Although open-source models sometimes approach GPT-4 and prior benchmarks, no configuration yields consistently reliable predictions in zero-shot binary settings. Moreover, aggregate metrics such as accuracy and macro-F1 mask significant asymmetries, with per-class recall offering clearer diagnostic value. These findings show that current out-of-the-box LLMs are not yet suitable for APPT, and that careful coordination of prompt design, trait framing, and evaluation metrics is essential for interpretable results.
comment: Funding: SoBigDatait (IR0000013), FAIR (PE00000013), ICSC (CN00000013)
☆ Accent Placement Models for Rigvedic Sanskrit Text AACL
The Rigveda, among the oldest Indian texts in Vedic Sanskrit, employs a distinctive pitch-accent system : udātta, anudātta, svarita whose marks encode melodic and interpretive cues but are often absent from modern e-texts. This work develops a parallel corpus of accented-unaccented ślokas and conducts a controlled comparison of three strategies for automatic accent placement in Rigvedic verse: (i) full fine-tuning of ByT5, a byte-level Transformer that operates directly on Unicode combining marks, (ii) a from-scratch BiLSTM-CRF sequence-labeling baseline, and (iii) LoRA-based parameter-efficient fine-tuning atop ByT5. Evaluation uses Word Error Rate (WER) and Character Error Rate (CER) for orthographic fidelity, plus a task-specific Diacritic Error Rate (DER) that isolates accent edits. Full ByT5 fine-tuning attains the lowest error across all metrics; LoRA offers strong efficiency-accuracy trade-offs, and BiLSTM-CRF serves as a transparent baseline. The study underscores practical requirements for accent restoration - Unicode-safe preprocessing, mark-aware tokenization, and evaluation that separates grapheme from accent errors - and positions heritage-language technology as an emerging NLP area connecting computational modeling with philological and pedagogical aims. Results establish reproducible baselines for Rigvedic accent restoration and provide guidance for downstream tasks such as accent-aware OCR, ASR/chant synthesis, and digital scholarship.
comment: Submitted to AACL-IJCNLP 2025
☆ Bharat Scene Text: A Novel Comprehensive Dataset and Benchmark for Indian Language Scene Text Understanding
Reading scene text, that is, text appearing in images, has numerous application areas, including assistive technology, search, and e-commerce. Although scene text recognition in English has advanced significantly and is often considered nearly a solved problem, Indian language scene text recognition remains an open challenge. This is due to script diversity, non-standard fonts, and varying writing styles, and, more importantly, the lack of high-quality datasets and open-source models. To address these gaps, we introduce the Bharat Scene Text Dataset (BSTD) - a large-scale and comprehensive benchmark for studying Indian Language Scene Text Recognition. It comprises more than 100K words that span 11 Indian languages and English, sourced from over 6,500 scene images captured across various linguistic regions of India. The dataset is meticulously annotated and supports multiple scene text tasks, including: (i) Scene Text Detection, (ii) Script Identification, (iii) Cropped Word Recognition, and (iv) End-to-End Scene Text Recognition. We evaluated state-of-the-art models originally developed for English by adapting (fine-tuning) them for Indian languages. Our results highlight the challenges and opportunities in Indian language scene text recognition. We believe that this dataset represents a significant step toward advancing research in this domain. All our models and data are open source.
comment: Under Peer Review
☆ Conveying Imagistic Thinking in TCM Translation: A Prompt Engineering and LLM-Based Evaluation Framework
Traditional Chinese Medicine theory is built on imagistic thinking, in which medical principles and diagnostic and therapeutic logic are structured through metaphor and metonymy. However, existing English translations largely rely on literal rendering, making it difficult for target-language readers to reconstruct the underlying conceptual networks and apply them in clinical practice. This study adopted a human-in-the-loop framework and selected four passages from the medical canon Huangdi Neijing that are fundamental in theory. Through prompt-based cognitive scaffolding, DeepSeek V3.1 was guided to identify metaphor and metonymy in the source text and convey the theory in translation. In the evaluation stage, ChatGPT 5 Pro and Gemini 2.5 Pro were instructed by prompts to simulate three types of real-world readers. Human translations, baseline model translations, and prompt-adjusted translations were scored by the simulated readers across five cognitive dimensions, followed by structured interviews and Interpretative Phenomenological Analysis. Results show that the prompt-adjusted LLM translations perform best across all five dimensions, with high cross-model and cross-role consistency. The interview themes reveal differences between human and machine translation, effective strategies for metaphor and metonymy transfer, and readers' cognitive preferences. This study provides a cognitive, efficient and replicable HITL methodological pathway for translation of ancient, concept-dense texts like TCM.
comment: 3 figures
☆ Standard Occupation Classifier -- A Natural Language Processing Approach
Standard Occupational Classifiers (SOC) are systems used to categorize and classify different types of jobs and occupations based on their similarities in terms of job duties, skills, and qualifications. Integrating these facets with Big Data from job advertisement offers the prospect to investigate labour demand that is specific to various occupations. This project investigates the use of recent developments in natural language processing to construct a classifier capable of assigning an occupation code to a given job advertisement. We develop various classifiers for both UK ONS SOC and US O*NET SOC, using different Language Models. We find that an ensemble model, which combines Google BERT and a Neural Network classifier while considering job title, description, and skills, achieved the highest prediction accuracy. Specifically, the ensemble model exhibited a classification accuracy of up to 61% for the lower (or fourth) tier of SOC, and 72% for the third tier of SOC. This model could provide up to date, accurate information on the evolution of the labour market using job advertisements.
☆ Decoding the Past: Explainable Machine Learning Models for Dating Historical Texts
Accurately dating historical texts is essential for organizing and interpreting cultural heritage collections. This article addresses temporal text classification using interpretable, feature-engineered tree-based machine learning models. We integrate five feature categories - compression-based, lexical structure, readability, neologism detection, and distance features - to predict the temporal origin of English texts spanning five centuries. Comparative analysis shows that these feature domains provide complementary temporal signals, with combined models outperforming any individual feature set. On a large-scale corpus, we achieve 76.7% accuracy for century-scale prediction and 26.1% for decade-scale classification, substantially above random baselines (20% and 2.3%). Under relaxed temporal precision, performance increases to 96.0% top-2 accuracy for centuries and 85.8% top-10 accuracy for decades. The final model exhibits strong ranking capabilities with AUCROC up to 94.8% and AUPRC up to 83.3%, and maintains controlled errors with mean absolute deviations of 27 years and 30 years, respectively. For authentication-style tasks, binary models around key thresholds (e.g., 1850-1900) reach 85-98% accuracy. Feature importance analysis identifies distance features and lexical structure as most informative, with compression-based features providing complementary signals. SHAP explainability reveals systematic linguistic evolution patterns, with the 19th century emerging as a pivot point across feature domains. Cross-dataset evaluation on Project Gutenberg highlights domain adaptation challenges, with accuracy dropping by 26.4 percentage points, yet the computational efficiency and interpretability of tree-based models still offer a scalable, explainable alternative to neural architectures.
☆ Social Perceptions of English Spelling Variation on Twitter: A Comparative Analysis of Human and LLM Responses
Spelling variation (e.g. funnnn vs. fun) can influence the social perception of texts and their writers: we often have various associations with different forms of writing (is the text informal? does the writer seem young?). In this study, we focus on the social perception of spelling variation in online writing in English and study to what extent this perception is aligned between humans and large language models (LLMs). Building on sociolinguistic methodology, we compare LLM and human ratings on three key social attributes of spelling variation (formality, carefulness, age). We find generally strong correlations in the ratings between humans and LLMs. However, notable differences emerge when we analyze the distribution of ratings and when comparing between different types of spelling variation.
☆ ShoppingComp: Are LLMs Really Ready for Your Shopping Cart?
We present ShoppingComp, a challenging real-world benchmark for rigorously evaluating LLM-powered shopping agents on three core capabilities: precise product retrieval, expert-level report generation, and safety critical decision making. Unlike prior e-commerce benchmarks, ShoppingComp introduces highly complex tasks under the principle of guaranteeing real products and ensuring easy verifiability, adding a novel evaluation dimension for identifying product safety hazards alongside recommendation accuracy and report quality. The benchmark comprises 120 tasks and 1,026 scenarios, curated by 35 experts to reflect authentic shopping needs. Results reveal stark limitations of current LLMs: even state-of-the-art models achieve low performance (e.g., 11.22% for GPT-5, 3.92% for Gemini-2.5-Flash). These findings highlight a substantial gap between research benchmarks and real-world deployment, where LLMs make critical errors such as failure to identify unsafe product usage or falling for promotional misinformation, leading to harmful recommendations. ShoppingComp fills the gap and thus establishes a new standard for advancing reliable and practical agents in e-commerce.
☆ Pooling Attention: Evaluating Pretrained Transformer Embeddings for Deception Classification
This paper investigates fake news detection as a downstream evaluation of Transformer representations, benchmarking encoder-only and decoder-only pre-trained models (BERT, GPT-2, Transformer-XL) as frozen embedders paired with lightweight classifiers. Through controlled preprocessing comparing pooling versus padding and neural versus linear heads, results demonstrate that contextual self-attention encodings consistently transfer effectively. BERT embeddings combined with logistic regression outperform neural baselines on LIAR dataset splits, while analyses of sequence length and aggregation reveal robustness to truncation and advantages from simple max or average pooling. This work positions attention-based token encoders as robust, architecture-centric foundations for veracity tasks, isolating Transformer contributions from classifier complexity.
comment: Accepted at the IEEE 7th Computing, Communications and IoT Applications Conference (ComComAp 2025), Madrid, Spain, December 2025. 6 pages
☆ Training-Free Loosely Speculative Decoding: Accepting Semantically Correct Drafts Beyond Exact Match
Large language models (LLMs) achieve strong performance across diverse tasks but suffer from high inference latency due to their autoregressive generation. Speculative Decoding (SPD) mitigates this issue by verifying candidate tokens in parallel from a smaller draft model, yet its strict exact-match verification discards many semantically valid continuations. Moreover, existing training-based SPD methods often suffer from performance degradation on out-of-distribution (OOD) tasks. To this end, we propose Training-Free Loosely Speculative Decoding (FLy), a novel method that loosens the rigid verification criterion by leveraging the target model's self-corrective behavior to judge whether a draft-target mismatch remains semantically valid. FLy introduces a two-tier mechanism: an entropy-level gate that identifies whether the current token allows multiple plausible alternatives or is nearly deterministic, and a token-level deferred window that distinguishes genuine errors from differently worded yet semantically correct variants. To further reduce latency, we design a multi-level acceleration strategy that accelerates not only the target model but also the drafter itself. Owing to its training-free design, FLy composes seamlessly with arbitrary draft-target pairs and generalizes across models and domains without hyperparameter re-tuning. Experiments show that FLy preserves more than 99% of the target model's accuracy while achieving an average 2.81x speedup on Llama-3.1-70B-Instruct and 5.07x speedup on the 405B variant. Notably, on out-of-domain datasets, our method remains highly effective and outperforms the training-based method EAGLE-3 by 1.62x.
comment: Under review
☆ Visual Puns from Idioms: An Iterative LLM-T2IM-MLLM Framework ICASSP 2026
We study idiom-based visual puns--images that align an idiom's literal and figurative meanings--and present an iterative framework that coordinates a large language model (LLM), a text-to-image model (T2IM), and a multimodal LLM (MLLM) for automatic generation and evaluation. Given an idiom, the system iteratively (i) generates detailed visual prompts, (ii) synthesizes an image, (iii) infers the idiom from the image, and (iv) refines the prompt until recognition succeeds or a step limit is reached. Using 1,000 idioms as inputs, we synthesize a corresponding dataset of visual pun images with paired prompts, enabling benchmarking of both generation and understanding. Experiments across 10 LLMs, 10 MLLMs, and one T2IM (Qwen-Image) show that MLLM choice is the primary performance driver: GPT achieves the highest accuracies, Gemini follows, and the best open-source MLLM (Gemma) is competitive with some closed models. On the LLM side, Claude attains the strongest average performance for prompt generation.
comment: Submitted to ICASSP 2026 (under review)
☆ Artwork Interpretation with Vision Language Models: A Case Study on Emotions and Emotion Symbols AACL
Emotions are a fundamental aspect of artistic expression. Due to their abstract nature, there is a broad spectrum of emotion realization in artworks. These are subject to historical change and their analysis requires expertise in art history. In this article, we investigate which aspects of emotional expression can be detected by current (2025) vision language models (VLMs). We present a case study of three VLMs (Llava-Llama and two Qwen models) in which we ask these models four sets of questions of increasing complexity about artworks (general content, emotional content, expression of emotions, and emotion symbols) and carry out a qualitative expert evaluation. We find that the VLMs recognize the content of the images surprisingly well and often also which emotions they depict and how they are expressed. The models perform best for concrete images but fail for highly abstract or highly symbolic images. Reliable recognition of symbols remains fundamentally difficult. Furthermore, the models continue to exhibit the well-known LLM weakness of providing inconsistent answers to related questions.
comment: Accepted for publication at the IJCNLP-AACL workshop on Multimodal Models for Low-Resource Contexts and Social Impact
☆ Language-conditioned world model improves policy generalization by reading environmental descriptions
To interact effectively with humans in the real world, it is important for agents to understand language that describes the dynamics of the environment--that is, how the environment behaves--rather than just task instructions specifying "what to do". Understanding this dynamics-descriptive language is important for human-agent interaction and agent behavior. Recent work address this problem using a model-based approach: language is incorporated into a world model, which is then used to learn a behavior policy. However, these existing methods either do not demonstrate policy generalization to unseen games or rely on limiting assumptions. For instance, assuming that the latency induced by inference-time planning is tolerable for the target task or expert demonstrations are available. Expanding on this line of research, we focus on improving policy generalization from a language-conditioned world model while dropping these assumptions. We propose a model-based reinforcement learning approach, where a language-conditioned world model is trained through interaction with the environment, and a policy is learned from this model--without planning or expert demonstrations. Our method proposes Language-aware Encoder for Dreamer World Model (LED-WM) built on top of DreamerV3. LED-WM features an observation encoder that uses an attention mechanism to explicitly ground language descriptions to entities in the observation. We show that policies trained with LED-WM generalize more effectively to unseen games described by novel dynamics and language compared to other baselines in several settings in two environments: MESSENGER and MESSENGER-WM.To highlight how the policy can leverage the trained world model before real-world deployment, we demonstrate the policy can be improved through fine-tuning on synthetic test trajectories generated by the world model.
comment: NeuRIPS 2025. Workshop: LAW 2025: Bridging Language, Agent, and World Models
☆ ORION: Teaching Language Models to Reason Efficiently in the Language of Thought
Large Reasoning Models (LRMs) achieve strong performance in mathematics, code generation, and task planning, but their reliance on long chains of verbose "thinking" tokens leads to high latency, redundancy, and incoherent reasoning paths. Inspired by the Language of Thought Hypothesis, which posits that human reasoning operates over a symbolic, compositional mental language called Mentalese, we introduce a framework that trains models to reason in a similarly compact style. Mentalese encodes abstract reasoning as ultra-compressed, structured tokens, enabling models to solve complex problems with far fewer steps. To improve both efficiency and accuracy, we propose SHORTER LENGTH PREFERENCE OPTIMIZATION (SLPO), a reinforcement learning method that rewards concise solutions that stay correct, while still allowing longer reasoning when needed. Applied to Mentalese-aligned models, SLPO yields significantly higher compression rates by enabling concise reasoning that preserves the benefits of detailed thinking without the computational overhead. Across benchmarks including AIME 2024 and 2025, MinervaMath, OlympiadBench, Math500, and AMC, our ORION models produce reasoning traces with 4-16x fewer tokens, achieve up to 5x lower inference latency, and reduce training costs by 7-9x relative to the DeepSeek R1 Distilled model, while maintaining 90-98% of its accuracy. ORION also surpasses Claude and ChatGPT-4o by up to 5% in accuracy while maintaining 2x compression. These results show that Mentalese-style compressed reasoning offers a step toward human-like cognitive efficiency, enabling real-time, cost-effective reasoning without sacrificing accuracy.
☆ FEANEL: A Benchmark for Fine-Grained Error Analysis in K-12 English Writing
Large Language Models (LLMs) have transformed artificial intelligence, offering profound opportunities for educational applications. However, their ability to provide fine-grained educational feedback for K-12 English writing remains underexplored. In this paper, we challenge the error analysis and pedagogical skills of LLMs by introducing the problem of Fine-grained Error Analysis for English Learners and present the Fine-grained Error ANalysis for English Learners (FEANEL) Benchmark. The benchmark comprises 1,000 essays written by elementary and secondary school students, and a well-developed English writing error taxonomy. Each error is annotated by language education experts and categorized by type, severity, and explanatory feedback, using a part-of-speech-based taxonomy they co-developed. We evaluate state-of-the-art LLMs on the FEANEL Benchmark to explore their error analysis and pedagogical abilities. Experimental results reveal significant gaps in current LLMs' ability to perform fine-grained error analysis, highlighting the need for advancements in particular methods for educational applications.
comment: 19 pages, 7 figures, and 4 tables. The dataset is available at https://huggingface.co/datasets/Feanel/FEANEL
☆ JBE-QA: Japanese Bar Exam QA Dataset for Assessing Legal Domain Knowledge
We introduce JBE-QA, a Japanese Bar Exam Question-Answering dataset to evaluate large language models' legal knowledge. Derived from the multiple-choice (tanto-shiki) section of the Japanese bar exam (2015-2024), JBE-QA provides the first comprehensive benchmark for Japanese legal-domain evaluation of LLMs. It covers the Civil Code, the Penal Code, and the Constitution, extending beyond the Civil Code focus of prior Japanese resources. Each question is decomposed into independent true/false judgments with structured contextual fields. The dataset contains 3,464 items with balanced labels. We evaluate 26 LLMs, including proprietary, open-weight, Japanese-specialised, and reasoning models. Our results show that proprietary models with reasoning enabled perform best, and the Constitution questions are generally easier than the Civil Code or the Penal Code questions.
comment: Three tables and one figure
☆ RAG System for Supporting Japanese Litigation Procedures: Faithful Response Generation Complying with Legal Norms SIGIR
This study discusses the essential components that a Retrieval-Augmented Generation (RAG)-based LLM system should possess in order to support Japanese medical litigation procedures complying with legal norms. In litigation, expert commissioners, such as physicians, architects, accountants, and engineers, provide specialized knowledge to help judges clarify points of dispute. When considering the substitution of these expert roles with a RAG-based LLM system, the constraint of strict adherence to legal norms is imposed. Specifically, three requirements arise: (1) the retrieval module must retrieve appropriate external knowledge relevant to the disputed issues in accordance with the principle prohibiting the use of private knowledge, (2) the responses generated must originate from the context provided by the RAG and remain faithful to that context, and (3) the retrieval module must reference external knowledge with appropriate timestamps corresponding to the issues at hand. This paper discusses the design of a RAG-based LLM system that satisfies these requirements.
comment: This is a preprint version of a paper reviewed and accepted at BREV-RAG 2025: Beyond Relevance-based EValuation of RAG Systems, a SIGIR-AP 2025 workshop
☆ Mitigating Semantic Drift: Evaluating LLMs' Efficacy in Psychotherapy through MI Dialogue Summarization
Recent advancements in large language models (LLMs) have shown their potential across both general and domain-specific tasks. However, there is a growing concern regarding their lack of sensitivity, factual incorrectness in responses, inconsistent expressions of empathy, bias, hallucinations, and overall inability to capture the depth and complexity of human understanding, especially in low-resource and sensitive domains such as psychology. To address these challenges, our study employs a mixed-methods approach to evaluate the efficacy of LLMs in psychotherapy. We use LLMs to generate precise summaries of motivational interviewing (MI) dialogues and design a two-stage annotation scheme based on key components of the Motivational Interviewing Treatment Integrity (MITI) framework, namely evocation, collaboration, autonomy, direction, empathy, and a non-judgmental attitude. Using expert-annotated MI dialogues as ground truth, we formulate multi-class classification tasks to assess model performance under progressive prompting techniques, incorporating one-shot and few-shot prompting. Our results offer insights into LLMs' capacity for understanding complex psychological constructs and highlight best practices to mitigate ``semantic drift" in therapeutic settings. Our work contributes not only to the MI community by providing a high-quality annotated dataset to address data scarcity in low-resource domains but also critical insights for using LLMs for precise contextual interpretation in complex behavioral therapy.
♻ ☆ Asymmetric REINFORCE for off-Policy Reinforcement Learning: Balancing positive and negative rewards
Reinforcement learning (RL) is increasingly used to align large language models (LLMs). Off-policy methods offer greater implementation simplicity and data efficiency than on-policy techniques, but often result in suboptimal performance. In this work, we study the intermediate range of algorithms between off-policy RL and supervised fine-tuning by analyzing a simple off-policy REINFORCE algorithm, where the advantage is defined as $A=r-V$, with $r$ a reward and $V$ some tunable baseline. Intuitively, lowering $V$ emphasizes high-reward samples, while raising it penalizes low-reward ones more heavily. We first provide a theoretical analysis of this off-policy REINFORCE algorithm, showing that when the baseline $V$ lower-bounds the expected reward, the algorithm enjoys a policy improvement guarantee. Our analysis reveals that while on-policy updates can safely leverage both positive and negative signals, off-policy updates benefit from focusing more on positive rewards than on negative ones. We validate our findings experimentally in a controlled stochastic bandit setting and through fine-tuning state-of-the-art LLMs on reasoning tasks.
♻ ☆ Robust LLM Unlearning with MUDMAN: Meta-Unlearning with Disruption Masking And Normalization
Language models can retain dangerous knowledge and skills even after extensive safety fine-tuning, posing both misuse and misalignment risks. Recent studies show that even specialized unlearning methods can be easily reversed. To address this, we systematically evaluate many existing and novel components of unlearning methods and identify ones crucial for irreversible unlearning. We introduce Disruption Masking, a technique in which we only allow updating weights, where the signs of the unlearning gradient and the retaining gradient are the same. This ensures all updates are non-disruptive. Additionally, we identify the need for normalizing the unlearning gradients, and also confirm the usefulness of meta-learning. We combine these insights into MUDMAN (Meta-Unlearning with Disruption Masking and Normalization) and validate its effectiveness at preventing the recovery of dangerous capabilities. MUDMAN outperforms the prior TAR method by 40%, setting a new state-of-the-art for robust unlearning.
♻ ☆ Toward Honest Language Models for Deductive Reasoning
Deductive reasoning is the process of deriving conclusions strictly from the given premises, without relying on external knowledge. We define honesty in this setting as a model's ability to respond only when the conclusion is logically entailed by the premises, and to abstain otherwise. However, current language models often fail to reason honestly, producing unwarranted answers when the input is insufficient. To study this challenge, we formulate honest deductive reasoning as multi-step tasks where models must either derive the correct conclusion or abstain. We curate two datasets from graph structures, one for linear algebra and one for logical inference, and introduce unanswerable cases by randomly perturbing an edge in half of the instances. We find that prompting and existing training methods, including GRPO with or without supervised fine-tuning initialization, struggle on these tasks. In particular, GRPO optimize only for final task outcomes, leaving models vulnerable to collapse when negative rewards dominate early training. To address this, we propose ACNCHOR, a reinforcement learning method that injects ground truth trajectories into rollouts, preventing early training collapse. Our results demonstrate that this method stabilizes learning and significantly improves the overall reasoning performance, underscoring the importance of training dynamics for enabling honest deductive reasoning in language models.
♻ ☆ Continual Learning of Domain Knowledge from Human Feedback in Text-to-SQL
Large Language Models (LLMs) can generate SQL queries from natural language questions but struggle with database-specific schemas and tacit domain knowledge. We introduce a framework for continual learning from human feedback in text-to-SQL, where a learning agent receives natural language feedback to refine queries and distills the revealed knowledge for reuse on future tasks. This distilled knowledge is stored in a structured memory, enabling the agent to improve execution accuracy over time. We design and evaluate multiple variations of a learning agent architecture that vary in how they capture and retrieve past experiences. Experiments on the BIRD benchmark Dev set show that memory-augmented agents, particularly the Procedural Agent, achieve significant accuracy gains and error reduction by leveraging human-in-the-loop feedback. Our results highlight the importance of transforming tacit human expertise into reusable knowledge, paving the way for more adaptive, domain-aware text-to-SQL systems that continually learn from a human-in-the-loop.
comment: 34 pages, 6 figures, 4 tables
♻ ☆ OmniRouter: Budget and Performance Controllable Multi-LLM Routing
Large language models (LLMs) deliver superior performance but require substantial computational resources and operate with relatively low efficiency, while smaller models can efficiently handle simpler tasks with fewer resources. LLM routing is a crucial paradigm that dynamically selects the most suitable large language models from a pool of candidates to process diverse inputs, ensuring optimal resource utilization while maintaining response quality. Existing routing frameworks typically model this as a locally optimal decision-making problem, selecting the presumed best-fit LLM for each query individually, which overlooks global budget constraints, resulting in ineffective resource allocation. To tackle this problem, we introduce OmniRouter, a fundamentally controllable routing framework for multi-LLM serving. Instead of making per-query greedy choices, OmniRouter models the routing task as a constrained optimization problem, assigning models that minimize total cost while ensuring the required performance level. Specifically, a hybrid retrieval-augmented predictor is designed to predict the capabilities and costs of LLMs. After obtaining the predicted cost and performance, we utilize a constrained optimizer for cost-optimal assignments that employs Lagrangian dual decomposition with adaptive multipliers. It iteratively converges toward the globally optimal query-model allocation, dynamically balancing latency minimization against quality thresholds while adhering to heterogeneous capacity constraints. Experiments show that OmniRouter achieves up to 6.30% improvement in response accuracy while simultaneously reducing computational costs by at least 10.15% compared to competitive router baselines. The code and the dataset are available at https://github.com/dongyuanjushi/OmniRouter.
♻ ☆ Mina: A Multilingual LLM-Powered Legal Assistant Agent for Bangladesh for Empowering Access to Justice
Bangladesh's low-income population faces major barriers to affordable legal advice due to complex legal language, procedural opacity, and high costs. Existing AI legal assistants lack Bengali-language support and jurisdiction-specific adaptation, limiting their effectiveness. To address this, we developed Mina, a multilingual LLM-based legal assistant tailored for the Bangladeshi context. It employs multilingual embeddings and a RAG-based chain-of-tools framework for retrieval, reasoning, translation, and document generation, delivering context-aware legal drafts, citations, and plain-language explanations via an interactive chat interface. Evaluated by law faculty from leading Bangladeshi universities across all stages of the 2022 and 2023 Bangladesh Bar Council Exams, Mina scored 75-80% in Preliminary MCQs, Written, and simulated Viva Voce exams, matching or surpassing average human performance and demonstrating clarity, contextual understanding, and sound legal reasoning. Even under a conservative upper bound, Mina operates at just 0.12-0.61% of typical legal consultation costs in Bangladesh, yielding a 99.4-99.9\% cost reduction relative to human-provided services. These results confirm its potential as a low-cost, multilingual AI assistant that automates key legal tasks and scales access to justice, offering a real-world case study on building domain-specific, low-resource systems and addressing challenges of multilingual adaptation, efficiency, and sustainable public-service AI deployment.
♻ ☆ STAR-Bench: Probing Deep Spatio-Temporal Reasoning as Audio 4D Intelligence
Despite rapid progress in Multi-modal Large Language Models and Large Audio-Language Models, existing audio benchmarks largely test semantics that can be recovered from text captions, masking deficits in fine-grained perceptual reasoning. We formalize audio 4D intelligence that is defined as reasoning over sound dynamics in time and 3D space, and introduce STAR-Bench to measure it. STAR-Bench combines a Foundational Acoustic Perception setting (six attributes under absolute and relative regimes) with a Holistic Spatio-Temporal Reasoning setting that includes segment reordering for continuous and discrete processes and spatial tasks spanning static localization, multi-source relations, and dynamic trajectories. Our data curation pipeline uses two methods to ensure high-quality samples. For foundational tasks, we use procedurally synthesized and physics-simulated audio. For holistic data, we follow a four-stage process that includes human annotation and final selection based on human performance. Unlike prior benchmarks where caption-only answering reduces accuracy slightly, STAR-Bench induces far larger drops (-31.5\% temporal, -35.2\% spatial), evidencing its focus on linguistically hard-to-describe cues. Evaluating 19 models reveals substantial gaps compared with humans and a capability hierarchy: closed-source models are bottlenecked by fine-grained perception, while open-source models lag across perception, knowledge, and reasoning. Our STAR-Bench provides critical insights and a clear path forward for developing future models with a more robust understanding of the physical world.
comment: Homepage: https://internlm.github.io/StarBench/
♻ ☆ Local Hybrid Retrieval-Augmented Document QA ACL
Organizations handling sensitive documents face a critical dilemma: adopt cloud-based AI systems that offer powerful question-answering capabilities but compromise data privacy, or maintain local processing that ensures security but delivers poor accuracy. We present a question-answering system that resolves this trade-off by combining semantic understanding with keyword precision, operating entirely on local infrastructure without internet access. Our approach demonstrates that organizations can achieve competitive accuracy on complex queries across legal, scientific, and conversational documents while keeping all data on their machines. By balancing two complementary retrieval strategies and using consumer-grade hardware acceleration, the system delivers reliable answers with minimal errors, letting banks, hospitals, and law firms adopt conversational document AI without transmitting proprietary information to external providers. This work establishes that privacy and performance need not be mutually exclusive in enterprise AI deployment.
comment: 10 pages, 5 figures, 3 tables; conference-style (ACL format); fully local RAG system
♻ ☆ Leveraging Biomolecule and Natural Language through Multi-Modal Learning: A Survey
The integration of biomolecular modeling with natural language (BL) has emerged as a promising interdisciplinary area at the intersection of artificial intelligence, chemistry and biology. This approach leverages the rich, multifaceted descriptions of biomolecules contained within textual data sources to enhance our fundamental understanding and enable downstream computational tasks such as biomolecule property prediction. The fusion of the nuanced narratives expressed through natural language with the structural and functional specifics of biomolecules described via various molecular modeling techniques opens new avenues for comprehensively representing and analyzing biomolecules. By incorporating the contextual language data that surrounds biomolecules into their modeling, BL aims to capture a holistic view encompassing both the symbolic qualities conveyed through language as well as quantitative structural characteristics. In this review, we provide an extensive analysis of recent advancements achieved through cross modeling of biomolecules and natural language. (1) We begin by outlining the technical representations of biomolecules employed, including sequences, 2D graphs, and 3D structures. (2) We then examine in depth the rationale and key objectives underlying effective multi-modal integration of language and molecular data sources. (3) We subsequently survey the practical applications enabled to date in this developing research area. (4) We also compile and summarize the available resources and datasets to facilitate future work. (5) Looking ahead, we identify several promising research directions worthy of further exploration and investment to continue advancing the field. The related resources and contents are updating in https://github.com/QizhiPei/Awesome-Biomolecule-Language-Cross-Modeling.
comment: 2025.11.28 Updated Version
♻ ☆ Adversarial Confusion Attack: Disrupting Multimodal Large Language Models
We introduce the Adversarial Confusion Attack, a new class of threats against multimodal large language models (MLLMs). Unlike jailbreaks or targeted misclassification, the goal is to induce systematic disruption that makes the model generate incoherent or confidently incorrect outputs. Applications include embedding adversarial images into websites to prevent MLLM-powered agents from operating reliably. The proposed attack maximizes next-token entropy using a small ensemble of open-source MLLMs. In the white-box setting, we show that a single adversarial image can disrupt all models in the ensemble, both in the full-image and adversarial CAPTCHA settings. Despite relying on a basic adversarial technique (PGD), the attack generates perturbations that transfer to both unseen open-source (e.g., Qwen3-VL) and proprietary (e.g., GPT-5.1) models.
♻ ☆ REFLEX: Self-Refining Explainable Fact-Checking via Disentangling Truth into Style and Substance
The prevalence of misinformation on social media threatens public trust, demanding automated fact-checking systems that provide accurate verdicts with interpretable explanations. However, existing large language model-based (LLM-based) approaches often rely heavily on external knowledge sources, introducing substantial latency and even hallucinations that undermine reliability, interpretability, and responsiveness, which is crucial for real-time use. To address these challenges, we propose REason-guided Fact-checking with Latent EXplanations REFLEX paradigm, a plug-and-play, self-refining paradigm that leverages the internal knowledge in backbone model to improve both verdict accuracy and explanation quality. REFLEX reformulates fact-checking as a role-play dialogue and jointly trains verdict prediction and explanation generation. It adaptively extracts contrastive activation pairs between the backbone model and its fine-tuned variant to construct steering vectors that disentangle truth into style and substance naturally. These activation-level signals guide inference and suppress noisy explanations, enabling more faithful and efficient reasoning. Experiments on real-world datasets show that REFLEX outperforms previous methods that steer toward a single truth direction and underscores the challenge traditional approaches face when handling the subtle, human-unknown truth in fact-checking tasks. Remarkably, with only 465 self-refined training samples, RELFEX achieves state-of-the-art performance. Furthermore, models trained with explanatory objectives can effectively guide those without them, yielding up to a 7.57% improvement, highlighting that internal explanation signals play a dual role in both interpreting and enhancing factual reasoning.
♻ ☆ Efficient Reasoning via Thought-Training and Thought-Free Inference
Recent advances in large language models (LLMs) have leveraged explicit Chain-of-Thought (CoT) prompting to improve reasoning accuracy. However, most existing methods primarily focus on compressing verbose reasoning outputs. These Long-to-Short transformations aim to improve efficiency, but require a large amount of short CoT data. In this work, we introduce \textbf{3TF} (\textbf{T}hought-\textbf{T}raining and \textbf{T}hought-\textbf{F}ree inference), a framework for efficient reasoning that takes a Short-to-Long perspective. We first train a hybrid model that can operate in both reasoning and non-reasoning modes, and then further train it on CoT-annotated data to internalize structured reasoning, while enforcing concise, thought-free outputs at inference time using the no-reasoning mode. Unlike compression-based approaches, 3TF improves the reasoning quality of non-reasoning outputs, enabling models to perform rich internal reasoning implicitly while keeping external outputs short. Empirically, 3TF-trained models obtain large improvements on reasoning benchmarks under thought-free inference, demonstrating that high quality reasoning can be learned and executed implicitly without explicit step-by-step generation.
comment: 11 pages, 4 figures
♻ ☆ RvLLM: LLM Runtime Verification with Domain Knowledge
Large language models (LLMs) have emerged as a dominant AI paradigm due to their exceptional text understanding and generation capabilities. However, their tendency to generate inconsistent or erroneous outputs challenges their reliability, especially in high-stakes domains requiring accuracy and trustworthiness. Existing research primarily focuses on detecting and mitigating model misbehavior in general-purpose scenarios, often overlooking the potential of integrating domain-specific knowledge. In this work, we advance misbehavior detection by incorporating domain knowledge. The core idea is to design a general specification language that enables domain experts to customize domain-specific predicates in a lightweight and intuitive manner, supporting later runtime verification of LLM outputs. To achieve this, we design a novel specification language, ESL, and introduce a runtime verification framework, RvLLM, to validate LLM output against domain-specific constraints defined in ESL. We evaluate RvLLM on three representative tasks: violation detection against Singapore Rapid Transit Systems Act, numerical comparison, and inequality solving. Experimental results demonstrate that RvLLM effectively detects erroneous outputs across various LLMs in a lightweight and flexible manner. The results reveal that despite their impressive capabilities, LLMs remain prone to low-level errors due to limited interpretability and a lack of formal guarantees during inference, and our framework offers a potential long-term solution by leveraging expert domain knowledge to rigorously and efficiently verify LLM outputs.
comment: 24 pages, 11 tables, 13 figures
♻ ☆ LongCat-Flash-Omni Technical Report
We introduce LongCat-Flash-Omni, a state-of-the-art open-source omni-modal model with 560 billion parameters, excelling at real-time audio-visual interaction. By adopting a curriculum-inspired progressive training strategy that transitions from simpler to increasingly complex modality sequence modeling tasks, LongCat-Flash-Omni attains comprehensive multimodal capabilities while maintaining strong unimodal capability. Building upon LongCat-Flash, which adopts a high-performance Shortcut-connected Mixture-of-Experts (MoE) architecture with zero-computation experts, LongCat-Flash-Omni integrates efficient multimodal perception and speech reconstruction modules. Despite its immense size of 560B parameters (with 27B activated), LongCat-Flash-Omni achieves low-latency real-time audio-visual interaction. For training infrastructure, we developed a modality-decoupled parallelism scheme specifically designed to manage the data and model heterogeneity inherent in large-scale multimodal training. This innovative approach demonstrates exceptional efficiency by sustaining over 90% of the throughput achieved by text-only training. Extensive evaluations show that LongCat-Flash-Omni achieves state-of-the-art performance on omni-modal benchmarks among open-source models. Furthermore, it delivers highly competitive results across a wide range of modality-specific tasks, including text, image, and video understanding, as well as audio understanding and generation. We provide a comprehensive overview of the model architecture design, training procedures, and data strategies, and open-source the model to foster future research and development in the community.
♻ ☆ Normal forms in Virus Machines
In the present work, we further study the computational power of virus machines (VMs in short).VMs provide a computing paradigm inspired by the transmission and replication networks of viruses.VMs consist of process units (called hosts) structured by a directed graph whose arcs are called channels and an instruction graph that controls the transmissions of virus objects among hosts. The present work complements our understanding of the computing power of VMs by introducing normal forms; these expressions restrict the features in a given computing model.Some of the features that we restrict in our normal forms include (a) the number of hosts, (b) the number of instructions, and (c) the number of virus objects in each host. After we recall some known results on the computing power of VMs we give our series of normal forms, such as the size of the loops in the network, proving new characterisations of family of sets, such as finite sets, semilinear sets, or recursively enumerable sets (NRE).
comment: 24 pages, 14 figures
♻ ☆ InfiMed-ORBIT: Aligning LLMs on Open-Ended Complex Tasks via Rubric-Based Incremental Training
Reinforcement learning has powered many of the recent breakthroughs in large language models, especially for tasks where rewards can be computed automatically, such as code generation. However, these methods deteriorate in open-ended domains like medical consultation, where feedback is inherently ambiguous, highly context-dependent, and cannot be reduced to a reliable scalar signal. In such settings, RL must either rely on supervision-intensive reward models that often fail to generalize, or it falls into pathological behaviors such as reward hacking - an especially troubling risk for high-stakes medical dialogue. To address these limitations, we introduce ORBIT, an open-ended rubric-based incremental training framework for high-stakes medical dialogue. ORBIT integrates synthetic dialogue generation with dynamically constructed rubrics that serve as adaptive guides for incremental RL. Instead of relying on external medical knowledge bases or handcrafted rule sets, ORBIT uses rubric-driven feedback to steer the learning process. Its judge component can be instantiated with general-purpose instruction-following LLMs, removing the need for any task-specific fine-tuning. Applied to the Qwen3-4B-Instruct model, ORBIT raises the HealthBench-Hard score from 7.0 to 27.5 using only 2k training samples, achieving SOTA performance for models at this scale. With larger rubric datasets, ORBIT-trained models further compete with the strongest open-source baselines on HealthBench-Hard. Our analysis shows that rubric-guided RL consistently improves consultation quality across diverse medical scenarios. We also apply such rubric generation and training pipeline to InfoBench, where ORBIT enhances instruction-following performance, highlighting the generality of rubric-based feedback.
♻ ☆ Atom of Thoughts for Markov LLM Test-Time Scaling NeurIPS 2025
Large Language Models (LLMs) achieve superior performance through training-time scaling, and test-time scaling further enhances their capabilities by conducting effective reasoning during inference. However, as the scale of reasoning increases, existing test-time scaling methods suffer from accumulated historical information, which not only wastes computational resources but also interferes with effective reasoning. To address this issue, we observe that complex reasoning can be achieved by solving a series of independent and self-contained subquestions. These subquestions are essentially \textit{atomic questions}, exhibiting the memoryless property similar to Markov processes. Based on this observation, we propose Atom of Thoughts (\our), where each state transition consists of decomposing the current question into a dependency-based directed acyclic graph and contracting its subquestions, forming a simplified question that maintains answer equivalence with the original problem. This answer preservation enables the iterative \textit{decomposition-contraction} process to naturally form a meaningful Markov reasoning process. Furthermore, these atomic states can be seamlessly integrated into existing test-time scaling methods, enabling \our to serve as a plug-in enhancement for improving reasoning capabilities. Experiments across six benchmarks demonstrate the effectiveness of \our both as a standalone framework and a plug-in enhancement. Notably, on HotpotQA, when applied to gpt-4o-mini, \our achieves an \textbf{80.6\%} F1 score, surpassing o3-mini by \textbf{3.4\%} and DeepSeek-R1 by \textbf{10.6\%}. The code is available at \href{https://github.com/qixucen/atom}{https://github.com/qixucen/atom}.
comment: Accepted to NeurIPS 2025
♻ ☆ Toward Equitable Access: Leveraging Crowdsourced Reviews to Investigate Public Perceptions of Health Resource Accessibility
Monitoring health resource disparities during public health crises is critical, yet traditional methods, like surveys, lack the requisite speed and spatial granularity. This study introduces a novel framework that leverages: 1) crowdsourced Google Maps reviews (2018-2021) and 2) advanced NLP (DeBERTa) to create a high-resolution, spatial-temporal index of public perception of health resource accessibility in the United States. We then employ Partial Least Squares (PLS) regression to link this perception index to a range of socioeconomic and demographic drivers. Our results quantify significant spatial-temporal shifts in perceived access, confirming that disparities peaked during the COVID-19 crisis and only partially recovered post-peak. We identify political affiliation, racial composition, and educational attainment as primary determinants of these perceptions. This study validates a scalable method for real-time health equity monitoring and provides actionable evidence for interventions to build a more resilient healthcare infrastructure.
♻ ☆ Prompt-R1: Collaborative Automatic Prompting Framework via End-to-end Reinforcement Learning
Recently, advanced large language models (LLMs) have emerged at an increasingly rapid pace. However, when faced with complex problems, most users are often unable to provide accurate and effective prompts to interact with LLMs, thus limiting the performance of LLMs. To address this challenge, we propose Prompt-R1, an end-to-end reinforcement learning framework that uses a small-scale LLM to collaborate with large-scale LLMs, replacing user interaction to solve problems better. This collaboration is cast as a multi-turn prompt interaction, where the small-scale LLM thinks and generates prompts, and the large-scale LLM performs complex reasoning. A dual-constrained reward is designed to optimize for correctness, generation quality, and reasoning accuracy. Prompt-R1 provides a plug-and-play framework that supports both inference and training with various large-scale LLMs. Experiments on multiple public datasets show that Prompt-R1 significantly outperforms baseline models across tasks. Our code is publicly available at https://github.com/QwenQKing/Prompt-R1.
♻ ☆ Self Iterative Label Refinement via Robust Unlabeled Learning NeurIPS 2025
Recent advances in large language models (LLMs) have yielded impressive performance on various tasks, yet they often depend on high-quality feedback that can be costly. Self-refinement methods attempt to leverage LLMs' internal evaluation mechanisms with minimal human supervision; however, these approaches frequently suffer from inherent biases and overconfidence, especially in domains where the models lack sufficient internal knowledge, resulting in performance degradation. As an initial step toward enhancing self-refinement for broader applications, we introduce an iterative refinement pipeline that employs the Unlabeled-Unlabeled learning framework to improve LLM-generated pseudo-labels for classification tasks. By exploiting two unlabeled datasets with differing positive class ratios, our approach iteratively denoises and refines the initial pseudo-labels, thereby mitigating the adverse effects of internal biases with minimal human supervision. Evaluations on diverse datasets, including low-resource language corpora, patent classifications, and protein structure categorizations, demonstrate that our method consistently outperforms both initial LLM's classification performance and the self-refinement approaches by cutting-edge models (e.g., GPT-4o and DeepSeek-R1). Moreover, we experimentally confirm that our refined classifier facilitates effective post-training alignment for safety in LLMs and demonstrate successful self-refinement in generative tasks as well.\footnote{Our code is available at https://github.com/HikaruAsano/self-iterative-label-refinement.}
comment: To appear in the Thirty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Structured Prompting Enables More Robust Evaluation of Language Models
As language models (LMs) are increasingly adopted across domains, high-quality benchmarking frameworks that accurately estimate performance are essential for guiding deployment decisions. While frameworks such as Holistic Evaluation of Language Models (HELM) enable broad evaluation across tasks, they often rely on fixed prompts that fail to generalize across LMs, yielding unrepresentative performance estimates. Unless we approximate each LM's ceiling (maximum achievable via changes to the prompt), we risk underestimating performance. Declarative prompting frameworks, such as DSPy, offer a scalable alternative to manual prompt engineering by crafting structured prompts that can be optimized per task. However, such frameworks have not been systematically evaluated across established benchmarks. We present a reproducible DSPy+HELM framework that introduces structured prompting methods which elicit reasoning, enabling more accurate LM benchmarking. Using four prompting methods, we evaluate four frontier LMs across seven benchmarks (general/medical domain) against existing HELM baseline scores. We find that without structured prompting: (i) HELM underestimates LM performance (by 4% average), (ii) performance estimates vary more across benchmarks ($+$2% standard deviation), (iii) performance gaps are misrepresented (leaderboard rankings flip on 3/7 benchmarks), and (iv) introducing chain-of-thought reduces LM sensitivity to prompt design (smaller $Δ$ across prompts). To our knowledge, this is the first benchmarking study to systematically integrate structured prompting into an established evaluation framework, demonstrating how scalable performance-ceiling approximation yields more robust, decision-useful benchmarks. We open-source (i) DSPy+HELM Integration (https://github.com/stanford-crfm/helm/pull/3893) and (ii) Prompt Optimization Pipeline (https://github.com/StanfordMIMI/dspy-helm).
♻ ☆ Benford's Curse: Tracing Digit Bias to Numerical Hallucination in LLMs NeurIPS 2025
Large Language Models (LLMs) exhibit impressive performance on complex reasoning tasks, yet they frequently fail on basic numerical problems, producing incorrect outputs. Inspired by Benford's Law, a statistical pattern in which lower digits occur more frequently as leading digits, we hypothesize that the skewed digit distributions in web-collected corpora may be learned by LLMs during pretraining, leading to biased numerical generation. To investigate the hypothesis, we first examine whether digits frequencies in pretraining corpus (OLMo2) follows Benford's law. We then construct an evaluation benchmark in which the ground-truth digits are uniformly distributed within each of the seven numerical reasoning tasks. Our evaluation results demonstrate that leading open-source LLMs show a consistent pattern of digit bias that resembles Benford's law. Through logit-lens tracing and neuron-level dissection, we identify that this bias arises predominantly from a small subset of highly digit-selective feed-forward network (FFN) neurons in the deeper layers. Finally, we demonstrate that pruning these neurons mitigates imbalanced overgeneration and partially corrects erroneous outputs, providing causal evidence that fine-grained pretraining digit bias can propagate into model behavior. Our findings reveal a fundamental connection between corpus-level statistics and symbolic failure modes in LLMs, offering a new lens for diagnosing and mitigating hallucinations in numerical tasks.
comment: NeurIPS 2025
♻ ☆ Exploiting Vocabulary Frequency Imbalance in Language Model Pre-training NeurIPS 2025
Large language models are trained with tokenizers, and the resulting token distribution is highly imbalanced: a few words dominate the stream while most occur rarely. Recent practice favors ever-larger vocabularies, but it is unclear where the benefit comes from. To this end, we perform a controlled study that scales the vocabulary of the language model from 24K to 196K while holding data, computation, and optimization unchanged. We begin by quantifying the complexity of tokenized text -- formalized via Kolmogorov complexity -- and show that larger vocabularies reduce this complexity. Above 24K, every common word is already tokenized as a single token, so enlarging vocabulary only deepens the relative token-frequency imbalance. Word-level loss decomposition shows that larger vocabularies reduce cross-entropy loss almost exclusively by lowering uncertainty on the 2,500 most frequent words, even though loss on the rare tail rises. The same frequent words cover roughly 75% of tokens in downstream benchmarks, so this training advantage transfers intact. We further show that enlarging model parameters with a fixed vocabulary yields the same frequent-word benefit. Our results recast "bigger vocabularies help" as "lowering complexity of tokenized text helps," offering a simple, principled knob for tokenizer-model co-design and clarifying the loss dynamics that govern language model scaling in pre-training.
comment: NeurIPS 2025
♻ ☆ Deep Improvement Supervision
Recently, it was shown that small, looped architectures, such as Tiny Recursive Models (TRMs), can outperform Large Language Models (LLMs) on complex reasoning tasks, including the Abstraction and Reasoning Corpus (ARC). In this work, we investigate a core question: how can we further improve the efficiency of these methods with minimal changes? To address this, we frame the latent reasoning of TRMs as a form of classifier-free guidance and implicit policy improvement algorithm. Building on these insights, we propose a novel training scheme that provides a target for each loop during training. We demonstrate that our approach significantly enhances training efficiency. Our method reduces the total number of forward passes by 18x and eliminates halting mechanisms, while maintaining quality comparable to standard TRMs. Notably, we achieve 24% accuracy on ARC-1 with only 0.8M parameters, outperforming most LLMs.
♻ ☆ ReGATE: Learning Faster and Better with Fewer Tokens in MLLMs
The computational cost of training multimodal large language models (MLLMs) grows rapidly with the number of processed tokens. Existing efficiency methods mainly target inference via token reduction or merging, offering limited benefits during training. We introduce ReGATE (Reference-Guided Adaptive Token Elision), an adaptive token pruning method for accelerating MLLM training. ReGATE adopts a teacher-student framework, in which a frozen teacher LLM provides per-token guidance losses that are fused with an exponential moving average of the student's difficulty estimates. This adaptive scoring mechanism dynamically selects informative tokens while skipping redundant ones in the forward pass, substantially reducing computation without altering the model architecture. Across three representative MLLMs, ReGATE matches the peak accuracy of standard training on MVBench up to 2$\times$ faster, using only 38% of the tokens. With extended training, it even surpasses the baseline across multiple multimodal benchmarks, cutting total token usage by over 41%. Code and models will be released publicly.
Information Retrieval 7
☆ Do LLM-judges Align with Human Relevance in Cranfield-style Recommender Evaluation?
Evaluating recommender systems remains a long-standing challenge, as offline methods based on historical user interactions and train-test splits often yield unstable and inconsistent results due to exposure bias, popularity bias, sampled evaluations, and missing-not-at-random patterns. In contrast, textual document retrieval benefits from robust, standardized evaluation via Cranfield-style test collections, which combine pooled relevance judgments with controlled setups. While recent work shows that adapting this methodology to recommender systems is feasible, constructing such collections remains costly due to the need for manual relevance judgments, thus limiting scalability. This paper investigates whether Large Language Models (LLMs) can serve as reliable automatic judges to address these scalability challenges. Using the ML-32M-ext Cranfield-style movie recommendation collection, we first examine the limitations of existing evaluation methodologies. Then we explore the alignment and the recommender systems ranking agreement between the LLM-judge and human provided relevance labels. We find that incorporating richer item metadata and longer user histories improves alignment, and that LLM-judge yields high agreement with human-based rankings (Kendall's tau = 0.87). Finally, an industrial case study in the podcast recommendation domain demonstrates the practical value of LLM-judge for model selection. Overall, our results show that LLM-judge is a viable and scalable approach for evaluating recommender systems.
☆ Masked Diffusion for Generative Recommendation
Generative recommendation (GR) with semantic IDs (SIDs) has emerged as a promising alternative to traditional recommendation approaches due to its performance gains, capitalization on semantic information provided through language model embeddings, and inference and storage efficiency. Existing GR with SIDs works frame the probability of a sequence of SIDs corresponding to a user's interaction history using autoregressive modeling. While this has led to impressive next item prediction performances in certain settings, these autoregressive GR with SIDs models suffer from expensive inference due to sequential token-wise decoding, potentially inefficient use of training data and bias towards learning short-context relationships among tokens. Inspired by recent breakthroughs in NLP, we propose to instead model and learn the probability of a user's sequence of SIDs using masked diffusion. Masked diffusion employs discrete masking noise to facilitate learning the sequence distribution, and models the probability of masked tokens as conditionally independent given the unmasked tokens, allowing for parallel decoding of the masked tokens. We demonstrate through thorough experiments that our proposed method consistently outperforms autoregressive modeling. This performance gap is especially pronounced in data-constrained settings and in terms of coarse-grained recall, consistent with our intuitions. Moreover, our approach allows the flexibility of predicting multiple SIDs in parallel during inference while maintaining superior performance to autoregressive modeling.
comment: 25 pages
☆ CNN-Based Framework for Pedestrian Age and Gender Classification Using Far-View Surveillance in Mixed-Traffic Intersections
Pedestrian safety remains a pressing concern in congested urban intersections, particularly in low- and middle-income countries where traffic is multimodal, and infrastructure often lacks formal control. Demographic factors like age and gender significantly influence pedestrian vulnerability, yet real-time monitoring systems rarely capture this information. To address this gap, this study proposes a deep learning framework that classifies pedestrian age group and gender from far-view intersection footage using convolutional neural networks (CNNs), without relying on facial recognition or high-resolution imagery. The classification is structured as a unified six-class problem, distinguishing adult, teenager, and child pedestrians for both males and females, based on full-body visual cues. Video data was collected from three high-risk intersections in Dhaka, Bangladesh. Two CNN architectures were implemented: ResNet50, a deep convolutional neural network pretrained on ImageNet, and a custom lightweight CNN optimized for computational efficiency. Eight model variants explored combinations of pooling strategies and optimizers. ResNet50 with Max Pooling and SGD achieved the highest accuracy (86.19%), while the custom CNN performed comparably (84.15%) with fewer parameters and faster training. The model's efficient design enables real-time inference on standard surveillance feeds. For practitioners, this system provides a scalable, cost-effective tool to monitor pedestrian demographics at intersections using existing camera infrastructure. Its outputs can shape intersection design, optimize signal timing, and enable targeted safety interventions for vulnerable groups such as children or the elderly. By offering demographic insights often missing in conventional traffic data, the framework supports more inclusive, data-driven planning in mixed-traffic environments.
comment: Accepted for poster presentation at the 105th Annual Meeting of the Transportation Research Board
☆ FedAU2: Attribute Unlearning for User-Level Federated Recommender Systems with Adaptive and Robust Adversarial Training
Federated Recommender Systems (FedRecs) leverage federated learning to protect user privacy by retaining data locally. However, user embeddings in FedRecs often encode sensitive attribute information, rendering them vulnerable to attribute inference attacks. Attribute unlearning has emerged as a promising approach to mitigate this issue. In this paper, we focus on user-level FedRecs, which is a more practical yet challenging setting compared to group-level FedRecs. Adversarial training emerges as the most feasible approach within this context. We identify two key challenges in implementing adversarial training-based attribute unlearning for user-level FedRecs: i) mitigating training instability caused by user data heterogeneity, and ii) preventing attribute information leakage through gradients. To address these challenges, we propose FedAU2, an attribute unlearning method for user-level FedRecs. For CH1, we propose an adaptive adversarial training strategy, where the training dynamics are adjusted in response to local optimization behavior. For CH2, we propose a dual-stochastic variational autoencoder to perturb the adversarial model, effectively preventing gradient-based information leakage. Extensive experiments on three real-world datasets demonstrate that our proposed FedAU2 achieves superior performance in unlearning effectiveness and recommendation performance compared to existing baselines.
☆ RAG System for Supporting Japanese Litigation Procedures: Faithful Response Generation Complying with Legal Norms SIGIR
This study discusses the essential components that a Retrieval-Augmented Generation (RAG)-based LLM system should possess in order to support Japanese medical litigation procedures complying with legal norms. In litigation, expert commissioners, such as physicians, architects, accountants, and engineers, provide specialized knowledge to help judges clarify points of dispute. When considering the substitution of these expert roles with a RAG-based LLM system, the constraint of strict adherence to legal norms is imposed. Specifically, three requirements arise: (1) the retrieval module must retrieve appropriate external knowledge relevant to the disputed issues in accordance with the principle prohibiting the use of private knowledge, (2) the responses generated must originate from the context provided by the RAG and remain faithful to that context, and (3) the retrieval module must reference external knowledge with appropriate timestamps corresponding to the issues at hand. This paper discusses the design of a RAG-based LLM system that satisfies these requirements.
comment: This is a preprint version of a paper reviewed and accepted at BREV-RAG 2025: Beyond Relevance-based EValuation of RAG Systems, a SIGIR-AP 2025 workshop
☆ Two-Stage Distributionally Robust Optimization Framework for Secure Communications in Aerial-RIS Systems
This letter proposes a two-stage distributionally robust optimization (DRO) framework for secure deployment and beamforming in an aerial reconfigurable intelligent surface (A-RIS) assisted millimeter-wave system. To account for multi-timescale uncertainties arising from user mobility, imperfect channel state information (CSI), and hardware impairments, our approach decouples the long-term unmanned aerial vehicle (UAV) placement from the per-slot beamforming design. By employing the conditional value-at-risk (CVaR) as a distribution-free risk metric, a low-complexity algorithm is developed, which combines a surrogate model for efficient deployment with an alternating optimization (AO) scheme for robust real-time beamforming. Simulation results validate that the proposed DRO-CVaR framework significantly enhances the tail-end secrecy spectral efficiency and maintains a lower outage probability compared to benchmark schemes, especially under severe uncertainty conditions.
comment: 5 pages
♻ ☆ REWA: A General Theory of Witness-Based Similarity
We present a universal framework for similarity-preserving encodings that subsumes all discrete, continuous, algebraic, and learned similarity methods under a single theoretical umbrella. By formulating similarity as functional witness projection over monoids, we prove that \[ O\!\left(\frac{1}{Δ^{2}}\log N\right) \] encoding complexity with ranking preservation holds for arbitrary algebraic structures. This unification reveals that Bloom filters, Locality Sensitive Hashing (LSH), Count-Min sketches, Random Fourier Features, and Transformer attention kernels are instances of the same underlying mechanism. We provide complete proofs with explicit constants under 4-wise independent hashing, handle heavy-tailed witnesses via normalization and clipping, and prove \[ O(\log N) \] complexity for all major similarity methods from 1970-2024. We give explicit constructions for Boolean, Natural, Real, Tropical, and Product monoids, prove tight concentration bounds, and demonstrate compositional properties enabling multi-primitive similarity systems.
Machine Learning 126
☆ ThetaEvolve: Test-time Learning on Open Problems
Recent advances in large language models (LLMs) have enabled breakthroughs in mathematical discovery, exemplified by AlphaEvolve, a closed-source system that evolves programs to improve bounds on open problems. However, it relies on ensembles of frontier LLMs to achieve new bounds and is a pure inference system that models cannot internalize the evolving strategies. We introduce ThetaEvolve, an open-source framework that simplifies and extends AlphaEvolve to efficiently scale both in-context learning and Reinforcement Learning (RL) at test time, allowing models to continually learn from their experiences in improving open optimization problems. ThetaEvolve features a single LLM, a large program database for enhanced exploration, batch sampling for higher throughput, lazy penalties to discourage stagnant outputs, and optional reward shaping for stable training signals, etc. ThetaEvolve is the first evolving framework that enable a small open-source model, like DeepSeek-R1-0528-Qwen3-8B, to achieve new best-known bounds on open problems (circle packing and first auto-correlation inequality) mentioned in AlphaEvolve. Besides, across two models and four open tasks, we find that ThetaEvolve with RL at test-time consistently outperforms inference-only baselines, and the model indeed learns evolving capabilities, as the RL-trained checkpoints demonstrate faster progress and better final performance on both trained target task and other unseen tasks. We release our code publicly: https://github.com/ypwang61/ThetaEvolve
comment: 30 pages, link: https://github.com/ypwang61/ThetaEvolve
☆ SmallWorlds: Assessing Dynamics Understanding of World Models in Isolated Environments
Current world models lack a unified and controlled setting for systematic evaluation, making it difficult to assess whether they truly capture the underlying rules that govern environment dynamics. In this work, we address this open challenge by introducing the SmallWorld Benchmark, a testbed designed to assess world model capability under isolated and precisely controlled dynamics without relying on handcrafted reward signals. Using this benchmark, we conduct comprehensive experiments in the fully observable state space on representative architectures including Recurrent State Space Model, Transformer, Diffusion model, and Neural ODE, examining their behavior across six distinct domains. The experimental results reveal how effectively these models capture environment structure and how their predictions deteriorate over extended rollouts, highlighting both the strengths and limitations of current modeling paradigms and offering insights into future improvement directions in representation learning and dynamics modeling.
☆ The Price of Progress: Algorithmic Efficiency and the Falling Cost of AI Inference
Language models have seen enormous progress on advanced benchmarks in recent years, but much of this progress has only been possible by using more costly models. Benchmarks may therefore present a warped picture of progress in practical capabilities per dollar. To remedy this, we use data from Artificial Analysis and Epoch AI to form the largest dataset of current and historical prices to run benchmarks to date. We find that the price for a given level of benchmark performance has decreased remarkably fast, around $5\times$ to $10\times$ per year, for frontier models on knowledge, reasoning, math, and software engineering benchmarks. These reductions in the cost of AI inference are due to economic forces, hardware efficiency improvements, and algorithmic efficiency improvements. Isolating out open models to control for competition effects and dividing by hardware price declines, we estimate that algorithmic efficiency progress is around $3\times$ per year. Finally, we recommend that evaluators both publicize and take into account the price of benchmarking as an essential part of measuring the real-world impact of AI.
☆ Physics-Informed Neural Networks for Thermophysical Property Retrieval
Inverse heat problems refer to the estimation of material thermophysical properties given observed or known heat diffusion behaviour. Inverse heat problems have wide-ranging uses, but a critical application lies in quantifying how building facade renovation reduces thermal transmittance, a key determinant of building energy efficiency. However, solving inverse heat problems with non-invasive data collected in situ is error-prone due to environmental variability or deviations from theoretically assumed conditions. Hence, current methods for measuring thermal conductivity are either invasive, require lengthy observation periods, or are sensitive to environmental and experimental conditions. Here, we present a PINN-based iterative framework to estimate the thermal conductivity k of a wall from a set of thermographs; our framework alternates between estimating the forward heat problem with a PINN for a fixed k, and optimizing k by comparing the thermographs and surface temperatures predicted by the PINN, repeating until the estimated k's convergence. Using both environmental data captured by a weather station and data generated from Finite-Volume-Method software simulations, we accurately predict k across different environmental conditions and data collection sampling times, given the temperature profile of the wall at dawn is close to steady state. Although violating the steady-state assumption impacts the accuracy of k's estimation, we show that our proposed framework still only exhibits a maximum MAE of 4.0851. Our work demonstrates the potential of PINN-based methods for reliable estimation of material properties in situ and under realistic conditions, without lengthy measurement campaigns. Given the lack of research on using machine learning, and more specifically on PINNs, for solving in-situ inverse problems, we expect our work to be a starting point for more research on the topic.
comment: 26 pages, 4 figures, 3 tables
☆ Provable Benefits of Sinusoidal Activation for Modular Addition
This paper studies the role of activation functions in learning modular addition with two-layer neural networks. We first establish a sharp expressivity gap: sine MLPs admit width-$2$ exact realizations for any fixed length $m$ and, with bias, width-$2$ exact realizations uniformly over all lengths. In contrast, the width of ReLU networks must scale linearly with $m$ to interpolate, and they cannot simultaneously fit two lengths with different residues modulo $p$. We then provide a novel Natarajan-dimension generalization bound for sine networks, yielding nearly optimal sample complexity $\widetilde{\mathcal{O}}(p)$ for ERM over constant-width sine networks. We also derive width-independent, margin-based generalization for sine networks in the overparametrized regime and validate it. Empirically, sine networks generalize consistently better than ReLU networks across regimes and exhibit strong length extrapolation.
comment: 60 pages, 15 figures
☆ ASTRO: Adaptive Stitching via Dynamics-Guided Trajectory Rollouts
Offline reinforcement learning (RL) enables agents to learn optimal policies from pre-collected datasets. However, datasets containing suboptimal and fragmented trajectories present challenges for reward propagation, resulting in inaccurate value estimation and degraded policy performance. While trajectory stitching via generative models offers a promising solution, existing augmentation methods frequently produce trajectories that are either confined to the support of the behavior policy or violate the underlying dynamics, thereby limiting their effectiveness for policy improvement. We propose ASTRO, a data augmentation framework that generates distributionally novel and dynamics-consistent trajectories for offline RL. ASTRO first learns a temporal-distance representation to identify distinct and reachable stitch targets. We then employ a dynamics-guided stitch planner that adaptively generates connecting action sequences via Rollout Deviation Feedback, defined as the gap between target state sequence and the actual arrived state sequence by executing predicted actions, to improve trajectory stitching's feasibility and reachability. This approach facilitates effective augmentation through stitching and ultimately enhances policy learning. ASTRO outperforms prior offline RL augmentation methods across various algorithms, achieving notable performance gain on the challenging OGBench suite and demonstrating consistent improvements on standard offline RL benchmarks such as D4RL.
☆ Accelerated Execution of Bayesian Neural Networks using a Single Probabilistic Forward Pass and Code Generation
Machine learning models perform well across domains such as diagnostics, weather forecasting, NLP, and autonomous driving, but their limited uncertainty handling restricts use in safety-critical settings. Traditional neural networks often fail to detect out-of-domain (OOD) data and may output confident yet incorrect predictions. Bayesian neural networks (BNNs) address this by providing probabilistic estimates, but incur high computational cost because predictions require sampling weight distributions and multiple forward passes. The Probabilistic Forward Pass (PFP) offers a highly efficient approximation to Stochastic Variational Inference (SVI) by assuming Gaussian-distributed weights and activations, enabling fully analytic uncertainty propagation and replacing sampling with a single deterministic forward pass. We present an end-to-end pipeline for training, compiling, optimizing, and deploying PFP-based BNNs on embedded ARM CPUs. Using the TVM deep learning compiler, we implement a dedicated library of Gaussian-propagating operators for multilayer perceptrons and convolutional neural networks, combined with manual and automated tuning strategies. Ablation studies show that PFP consistently outperforms SVI in computational efficiency, achieving speedups of up to 4200x for small mini-batches. PFP-BNNs match SVI-BNNs on Dirty-MNIST in accuracy, uncertainty estimation, and OOD detection while greatly reducing compute cost. These results highlight the potential of combining Bayesian approximations with code generation to enable efficient BNN deployment on resource-constrained systems.
☆ LFM2 Technical Report
We present LFM2, a family of Liquid Foundation Models designed for efficient on-device deployment and strong task capabilities. Using hardware-in-the-loop architecture search under edge latency and memory constraints, we obtain a compact hybrid backbone that combines gated short convolutions with a small number of grouped query attention blocks, delivering up to 2x faster prefill and decode on CPUs compared to similarly sized models. The LFM2 family covers 350M-8.3B parameters, including dense models (350M, 700M, 1.2B, 2.6B) and a mixture-of-experts variant (8.3B total, 1.5B active), all with 32K context length. LFM2's training pipeline includes a tempered, decoupled Top-K knowledge distillation objective that avoids support mismatch; curriculum learning with difficulty-ordered data; and a three-stage post-training recipe of supervised fine-tuning, length-normalized preference optimization, and model merging. Pre-trained on 10-12T tokens, LFM2 models achieve strong results across diverse benchmarks; for example, LFM2-2.6B reaches 79.56% on IFEval and 82.41% on GSM8K. We further build multimodal and retrieval variants: LFM2-VL for vision-language tasks, LFM2-Audio for speech, and LFM2-ColBERT for retrieval. LFM2-VL supports tunable accuracy-latency tradeoffs via token-efficient visual processing, while LFM2-Audio separates audio input and output pathways to enable real-time speech-to-speech interaction competitive with models 3x larger. LFM2-ColBERT provides a low-latency encoder for queries and documents, enabling high-performance retrieval across multiple languages. All models are released with open weights and deployment packages for ExecuTorch, llama.cpp, and vLLM, making LFM2 a practical base for edge applications that need fast, memory-efficient inference and strong task capabilities.
☆ Quantized-Tinyllava: a new multimodal foundation model enables efficient split learning
Split learning is well known as a method for resolving data privacy concerns by training a model on distributed devices, thereby avoiding data sharing that raises privacy issues. However, high network communication costs are always an impediment to split learning, especially for large foundation models that require transmitting large amounts of high-dimensional data. To resolve this issue, we present a new multimodal model structure that incorporates a learning-based data compression method, which compresses model embeddings into low-bit integers while preserving the model's performance, greatly reducing the transmission costs between partitions. We then determine the optimal number of discrete representation levels based on a solid theoretical foundation from entropy coding.
comment: 14pages, 5 figures
☆ Learning-Augmented Online Bipartite Matching in the Random Arrival Order Model
We study the online unweighted bipartite matching problem in the random arrival order model, with $n$ offline and $n$ online vertices, in the learning-augmented setting: The algorithm is provided with untrusted predictions of the types (neighborhoods) of the online vertices. We build upon the work of Choo et al. (ICML 2024, pp. 8762-8781) who proposed an approach that uses a prefix of the arrival sequence as a sample to determine whether the predictions are close to the true arrival sequence and then either follows the predictions or uses a known baseline algorithm that ignores the predictions and is $β$-competitive. Their analysis is limited to the case that the optimal matching has size $n$, i.e., every online vertex can be matched. We generalize their approach and analysis by removing any assumptions on the size of the optimal matching while only requiring that the size of the predicted matching is at least $αn$ for any constant $0 < α\le 1$. Our learning-augmented algorithm achieves $(1-o(1))$-consistency and $(β-o(1))$-robustness. Additionally, we show that the competitive ratio degrades smoothly between consistency and robustness with increasing prediction error.
comment: 17 pages, 1 figure, 1 table. An extended abstract of this paper appears in the proceedings of the 51st International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM 2026)
☆ Distributed Dynamic Associative Memory via Online Convex Optimization
An associative memory (AM) enables cue-response recall, and it has recently been recognized as a key mechanism underlying modern neural architectures such as Transformers. In this work, we introduce the concept of distributed dynamic associative memory (DDAM), which extends classical AM to settings with multiple agents and time-varying data streams. In DDAM, each agent maintains a local AM that must not only store its own associations but also selectively memorize information from other agents based on a specified interest matrix. To address this problem, we propose a novel tree-based distributed online gradient descent algorithm, termed DDAM-TOGD, which enables each agent to update its memory on the fly via inter-agent communication over designated routing trees. We derive rigorous performance guarantees for DDAM-TOGD, proving sublinear static regret in stationary environments and a path-length dependent dynamic regret bound in non-stationary environments. These theoretical results provide insights into how communication delays and network structure impact performance. Building on the regret analysis, we further introduce a combinatorial tree design strategy that optimizes the routing trees to minimize communication delays, thereby improving regret bounds. Numerical experiments demonstrate that the proposed DDAM-TOGD framework achieves superior accuracy and robustness compared to representative online learning baselines such as consensus-based distributed optimization, confirming the benefits of the proposed approach in dynamic, distributed environments.
☆ ParaGate: Parasitic-Driven Domain Adaptation Transfer Learning for Netlist Performance Prediction
In traditional EDA flows, layout-level performance metrics are only obtainable after placement and routing, hindering global optimization at earlier stages. Although some neural-network-based solutions predict layout-level performance directly from netlists, they often face generalization challenges due to the black-box heuristics of commercial placement-and-routing tools, which create disparate data across designs. To this end, we propose ParaGate, a three-step cross-stage prediction framework that infers layout-level timing and power from netlists. First, we propose a two-phase transfer-learning approach to predict parasitic parameters, pre-training on mid-scale circuits and fine-tuning on larger ones to capture extreme conditions. Next, we rely on EDA tools for timing analysis, offloading the long-path numerical reasoning. Finally, ParaGate performs global calibration using subgraph features. Experiments show that ParaGate achieves strong generalization with minimal fine-tuning data: on openE906, its arrival-time R2 from 0.119 to 0.897. These results demonstrate that ParaGate could provide guidance for global optimization in the synthesis and placement stages.
comment: 8 pages, 6 figures
☆ Emergent Coordination and Phase Structure in Independent Multi-Agent Reinforcement Learning
A clearer understanding of when coordination emerges, fluctuates, or collapses in decentralized multi-agent reinforcement learning (MARL) is increasingly sought in order to characterize the dynamics of multi-agent learning systems. We revisit fully independent Q-learning (IQL) as a minimal decentralized testbed and run large-scale experiments across environment size L and agent density rho. We construct a phase map using two axes - the cooperative success rate (CSR) and a stability index derived from TD-error variance - revealing three distinct regimes: a coordinated and stable phase, a fragile transition region, and a jammed or disordered phase. A sharp double Instability Ridge separates these regimes and corresponds to persistent kernel drift, the time-varying shift of each agent's effective transition kernel induced by others' policy updates. Synchronization analysis further shows that temporal alignment is required for sustained cooperation, and that competition between drift and synchronization generates the fragile regime. Removing agent identifiers eliminates drift entirely and collapses the three-phase structure, demonstrating that small inter-agent asymmetries are a necessary driver of drift. Overall, the results show that decentralized MARL exhibits a coherent phase structure governed by the interaction between scale, density, and kernel drift, suggesting that emergent coordination behaves as a distribution-interaction-driven phase phenomenon.
comment: 22 pages, 19 figures
☆ OBLR-PO: A Theoretical Framework for Stable Reinforcement Learning
Existing reinforcement learning (RL)-based post-training methods for large language models have advanced rapidly, yet their design has largely been guided by heuristics rather than systematic theoretical principles. This gap limits our understanding of the properties of the gradient estimators and the associated optimization algorithms, thereby constraining opportunities to improve training stability and overall performance. In this work, we provide a unified theoretical framework that characterizes the statistical properties of commonly used policy-gradient estimators under mild assumptions. Our analysis establishes unbiasedness, derives exact variance expressions, and yields an optimization-loss upper bound that enables principled reasoning about learning dynamics. Building on these results, we prove convergence guarantees and derive an adaptive learning-rate schedule governed by the signal-to-noise ratio (SNR) of gradients. We further show that the variance-optimal baseline is a gradient-weighted estimator, offering a new principle for variance reduction and naturally enhancing stability beyond existing methods. These insights motivate Optimal Baseline and Learning-Rate Policy Optimization (OBLR-PO), an algorithm that jointly adapts learning rates and baselines in a theoretically grounded manner. Experiments on Qwen3-4B-Base and Qwen3-8B-Base demonstrate consistent gains over existing policy optimization methods, validating that our theoretical contributions translate into practical improvements in large-scale post-training.
comment: 19 pages, 7 figures
☆ Hard-Constrained Neural Networks with Physics-Embedded Architecture for Residual Dynamics Learning and Invariant Enforcement in Cyber-Physical Systems
This paper presents a framework for physics-informed learning in complex cyber-physical systems governed by differential equations with both unknown dynamics and algebraic invariants. First, we formalize the Hybrid Recurrent Physics-Informed Neural Network (HRPINN), a general-purpose architecture that embeds known physics as a hard structural constraint within a recurrent integrator to learn only residual dynamics. Second, we introduce the Projected HRPINN (PHRPINN), a novel extension that integrates a predict-project mechanism to strictly enforce algebraic invariants by design. The framework is supported by a theoretical analysis of its representational capacity. We validate HRPINN on a real-world battery prognostics DAE and evaluate PHRPINN on a suite of standard constrained benchmarks. The results demonstrate the framework's potential for achieving high accuracy and data efficiency, while also highlighting critical trade-offs between physical consistency, computational cost, and numerical stability, providing practical guidance for its deployment.
comment: 41 pages (30 pages main text + 11 pages appendices), 3 figures, 8 tables. Submitted to JMLR
☆ Machine Learning for Scientific Visualization: Ensemble Data Analysis
Scientific simulations and experimental measurements produce vast amounts of spatio-temporal data, yet extracting meaningful insights remains challenging due to high dimensionality, complex structures, and missing information. Traditional analysis methods often struggle with these issues, motivating the need for more robust, data-driven approaches. This dissertation explores deep learning methodologies to improve the analysis and visualization of spatio-temporal scientific ensembles, focusing on dimensionality reduction, flow estimation, and temporal interpolation. First, we address high-dimensional data representation through autoencoder-based dimensionality reduction for scientific ensembles. We evaluate the stability of projection metrics under partial labeling and introduce a Pareto-efficient selection strategy to identify optimal autoencoder variants, ensuring expressive and reliable low-dimensional embeddings. Next, we present FLINT, a deep learning model for high-quality flow estimation and temporal interpolation in both flow-supervised and flow-unsupervised settings. FLINT reconstructs missing velocity fields and generates high-fidelity temporal interpolants for scalar fields across 2D+time and 3D+time ensembles without domain-specific assumptions or extensive finetuning. To further improve adaptability and generalization, we introduce HyperFLINT, a hypernetwork-based approach that conditions on simulation parameters to estimate flow fields and interpolate scalar data. This parameter-aware adaptation yields more accurate reconstructions across diverse scientific domains, even with sparse or incomplete data. Overall, this dissertation advances deep learning techniques for scientific visualization, providing scalable, adaptable, and high-quality solutions for interpreting complex spatio-temporal ensembles.
comment: PhD thesis, University of Groningen, 2025
Transformer-Driven Triple Fusion Framework for Enhanced Multimodal Author Intent Classification in Low-Resource Bangla
The expansion of the Internet and social networks has led to an explosion of user-generated content. Author intent understanding plays a crucial role in interpreting social media content. This paper addresses author intent classification in Bangla social media posts by leveraging both textual and visual data. Recognizing limitations in previous unimodal approaches, we systematically benchmark transformer-based language models (mBERT, DistilBERT, XLM-RoBERTa) and vision architectures (ViT, Swin, SwiftFormer, ResNet, DenseNet, MobileNet), utilizing the Uddessho dataset of 3,048 posts spanning six practical intent categories. We introduce a novel intermediate fusion strategy that significantly outperforms early and late fusion on this task. Experimental results show that intermediate fusion, particularly with mBERT and Swin Transformer, achieves 84.11% macro-F1 score, establishing a new state-of-the-art with an 8.4 percentage-point improvement over prior Bangla multimodal approaches. Our analysis demonstrates that integrating visual context substantially enhances intent classification. Cross-modal feature integration at intermediate levels provides optimal balance between modality-specific representation and cross-modal learning. This research establishes new benchmarks and methodological standards for Bangla and other low-resource languages. We call our proposed framework BangACMM (Bangla Author Content MultiModal).
comment: Accepted at the 28th International Conference on Computer and Information Technology (ICCIT 2025). To be published in IEEE proceedings
☆ Closing the Generalization Gap in Parameter-efficient Federated Edge Learning
Federated edge learning (FEEL) provides a promising foundation for edge artificial intelligence (AI) by enabling collaborative model training while preserving data privacy. However, limited and heterogeneous local datasets, as well as resource-constrained deployment, severely degrade both model generalization and resource utilization, leading to a compromised learning performance. Therefore, we propose a parameter-efficient FEEL framework that jointly leverages model pruning and client selection to tackle such challenges. First, we derive an information-theoretic generalization statement that characterizes the discrepancy between training and testing function losses and embed it into the convergence analysis. It reveals that a larger local generalization statement can undermine the global convergence. Then, we formulate a generalization-aware average squared gradient norm bound minimization problem, by jointly optimizing the pruning ratios, client selection, and communication-computation resources under energy and delay constraints. Despite its non-convexity, the resulting mixed-integer problem is efficiently solved via an alternating optimization algorithm. Extensive experiments demonstrate that the proposed design achieves superior learning performance than state-of-the-art baselines, validating the effectiveness of coupling generalization-aware analysis with system-level optimization for efficient FEEL.
comment: 13 pages, 8 figures
☆ Beyond Curve Fitting: Neuro-Symbolic Agents for Context-Aware Epidemic Forecasting
Effective surveillance of hand, foot and mouth disease (HFMD) requires forecasts accounting for epidemiological patterns and contextual drivers like school calendars and weather. While classical models and recent foundation models (e.g., Chronos, TimesFM) incorporate covariates, they often lack the semantic reasoning to interpret the causal interplay between conflicting drivers. In this work, we propose a two-agent framework decoupling contextual interpretation from probabilistic forecasting. An LLM "event interpreter" processes heterogeneous signals-including school schedules, meteorological summaries, and reports-into a scalar transmission-impact signal. A neuro-symbolic core then combines this with historical case counts to produce calibrated probabilistic forecasts. We evaluate the framework on real-world HFMD datasets from Hong Kong (2023-2024) and Lishui, China (2024). Compared to traditional and foundation-model baselines, our approach achieves competitive point forecasting accuracy while providing robust 90% prediction intervals (coverage 0.85-1.00) and human-interpretable rationales. Our results suggest that structurally integrating domain knowledge through LLMs can match state-of-the-art performance while yielding context-aware forecasts that align with public health workflows. Code is available at https://github.com/jw-chae/forecast_MED .
☆ BanglaSentNet: An Explainable Hybrid Deep Learning Framework for Multi-Aspect Sentiment Analysis with Cross-Domain Transfer Learning
Multi-aspect sentiment analysis of Bangla e-commerce reviews remains challenging due to limited annotated datasets, morphological complexity, code-mixing phenomena, and domain shift issues, affecting 300 million Bangla-speaking users. Existing approaches lack explainability and cross-domain generalization capabilities crucial for practical deployment. We present BanglaSentNet, an explainable hybrid deep learning framework integrating LSTM, BiLSTM, GRU, and BanglaBERT through dynamic weighted ensemble learning for multi-aspect sentiment classification. We introduce a dataset of 8,755 manually annotated Bangla product reviews across four aspects (Quality, Service, Price, Decoration) from major Bangladeshi e-commerce platforms. Our framework incorporates SHAP-based feature attribution and attention visualization for transparent insights. BanglaSentNet achieves 85% accuracy and 0.88 F1-score, outperforming standalone deep learning models by 3-7% and traditional approaches substantially. The explainability suite achieves 9.4/10 interpretability score with 87.6% human agreement. Cross-domain transfer learning experiments reveal robust generalization: zero-shot performance retains 67-76% effectiveness across diverse domains (BanglaBook reviews, social media, general e-commerce, news headlines); few-shot learning with 500-1000 samples achieves 90-95% of full fine-tuning performance, significantly reducing annotation costs. Real-world deployment demonstrates practical utility for Bangladeshi e-commerce platforms, enabling data-driven decision-making for pricing optimization, service improvement, and customer experience enhancement. This research establishes a new state-of-the-art benchmark for Bangla sentiment analysis, advances ensemble learning methodologies for low-resource languages, and provides actionable solutions for commercial applications.
comment: Submitted to Springer Nature Computer Science (SNCS) as an extended version of our ICDSAIA 2025 conference paper
☆ An Improved and Generalised Analysis for Spectral Clustering
We revisit the theoretical performances of Spectral Clustering, a classical algorithm for graph partitioning that relies on the eigenvectors of a matrix representation of the graph. Informally, we show that Spectral Clustering works well as long as the smallest eigenvalues appear in groups well separated from the rest of the matrix representation's spectrum. This arises, for example, whenever there exists a hierarchy of clusters at different scales, a regime not captured by previous analyses. Our results are very general and can be applied beyond the traditional graph Laplacian. In particular, we study Hermitian representations of digraphs and show Spectral Clustering can recover partitions where edges between clusters are oriented mostly in the same direction. This has applications in, for example, the analysis of trophic levels in ecological networks. We demonstrate that our results accurately predict the performances of Spectral Clustering on synthetic and real-world data sets.
comment: 11 pages, 7 figures. Accepted to Learning on Graphs Conference 2025
☆ Time Series Forecasting via Direct Per-Step Probability Distribution Modeling AAAI
Deep neural network-based time series prediction models have recently demonstrated superior capabilities in capturing complex temporal dependencies. However, it is challenging for these models to account for uncertainty associated with their predictions, because they directly output scalar values at each time step. To address such a challenge, we propose a novel model named interleaved dual-branch Probability Distribution Network (interPDN), which directly constructs discrete probability distributions per step instead of a scalar. The regression output at each time step is derived by computing the expectation of the predictive distribution on a predefined support set. To mitigate prediction anomalies, a dual-branch architecture is introduced with interleaved support sets, augmented by coarse temporal-scale branches for long-term trend forecasting. Outputs from another branch are treated as auxiliary signals to impose self-supervised consistency constraints on the current branch's prediction. Extensive experiments on multiple real-world datasets demonstrate the superior performance of interPDN.
comment: 16 pages, 8 figures. This is the preprint version of the paper and supplemental material to appear in AAAI, 2026. Please cite the final published version. Code is available at https://github.com/leonardokong486/interPDN
☆ Heteroscedastic Neural Networks for Path Loss Prediction with Link-Specific Uncertainty
Traditional and modern machine learning-based path loss models typically assume a constant prediction variance. We propose a neural network that jointly predicts the mean and link-specific variance by minimizing a Gaussian negative log-likelihood, enabling heteroscedastic uncertainty estimates. We compare shared, partially shared, and independent-parameter architectures using accuracy, calibration, and sharpness metrics on blind test sets from large public RF drive-test datasets. The shared-parameter architecture performs best, achieving an RMSE of 7.4 dB, 95.1 percent coverage for 95 percent prediction intervals, and a mean interval width of 29.6 dB. These uncertainty estimates further support link-specific coverage margins, improve RF planning and interference analyses, and provide effective self-diagnostics of model weaknesses.
comment: Submitted to IEEE AWPL in December 2025. 5 pages, 2 figures, 4 tables
☆ Towards Understanding Transformers in Learning Random Walks
Transformers have proven highly effective across various applications, especially in handling sequential data such as natural languages and time series. However, transformer models often lack clear interpretability, and the success of transformers has not been well understood in theory. In this paper, we study the capability and interpretability of transformers in learning a family of classic statistical models, namely random walks on circles. We theoretically demonstrate that, after training with gradient descent, a one-layer transformer model can achieve optimal accuracy in predicting random walks. Importantly, our analysis reveals that the trained model is interpretable: the trained softmax attention serves as a token selector, focusing on the direct parent state; subsequently, the value matrix executes a one-step probability transition to predict the location of the next state based on this parent state. We also show that certain edge cases not covered by our theory are indeed failure cases, demonstrating that our theoretical conditions are tight. By investigating these success and failure cases, it is revealed that gradient descent with small initialization may fail or struggle to converge to a good solution in certain simple tasks even beyond random walks. Experiments are conducted to support our theoretical findings.
comment: 45 pages, 13 figures
☆ SDE-Attention: Latent Attention in SDE-RNNs for Irregularly Sampled Time Series with Missing Data
Irregularly sampled time series with substantial missing observations are common in healthcare and sensor networks. We introduce SDE-Attention, a family of SDE-RNNs equipped with channel-level attention on the latent pre-RNN state, including channel recalibration, time-varying feature attention, and pyramidal multi-scale self-attention. We therefore conduct a comparison on a synthetic periodic dataset and real-world benchmarks, under varying missing rate. Latent-space attention consistently improves over a vanilla SDE-RNN. On the univariate UCR datasets, the LSTM-based time-varying feature model SDE-TVF-L achieves the highest average accuracy, raising mean performance by approximately 4, 6, and 10 percentage points over the baseline at 30%, 60% and 90% missingness, respectively (averaged across datasets). On multivariate UEA benchmarks, attention-augmented models again outperform the backbone, with SDE-TVF-L yielding up to a 7% gain in mean accuracy under high missingness. Among the proposed mechanisms, time-varying feature attention is the most robust on univariate datasets. On multivariate datasets, different attention types excel on different tasks, showing that SDE-Attention can be flexibly adapted to the structure of each problem.
comment: 11 pages, 6 figures
☆ TWEO: Transformers Without Extreme Outliers Enables FP8 Training And Quantization For Dummies
Native FP8 support in modern hardware is essential for training large Transformers, but is severely hindered by extreme activation outliers. Existing solutions either rely on complex mixed-precision engineering or invasive architectural modifications. This paper fundamentally challenges the conventional wisdom that outliers are data-driven. We demonstrate that extreme outliers are a data-independent, mechanically-produced artifact of training, originating from specific structural properties of the weight matrices (i.e., colinearity). Based on this insight, we propose TWEO (Transformers Without Extreme Outliers), a novel, non-invasive loss function. TWEO effectively prevents extreme outliers via a very simple loss term, which reduces outliers from 10000+ to less than 20. TWEO then enables full-model FP8 pre-training with neither engineering tricks nor architectural changes for both LLM and ViT. When standard FP8 training catastrophically collapses, TWEO achieves performance comparable to the BF16 baseline while delivering a 36% increase in training throughput. Also, TWEO enables a new quantization paradigm. Hardware-friendly W8A8 per-tensor static quantization of LLMs, previously considered completely unusable due to outliers, achieves SOTA performance for the first time on TWEO-trained models.
☆ Nonstabilizerness Estimation using Graph Neural Networks
This article proposes a Graph Neural Network (GNN) approach to estimate nonstabilizerness in quantum circuits, measured by the stabilizer Rényi entropy (SRE). Nonstabilizerness is a fundamental resource for quantum advantage, and efficient SRE estimations are highly beneficial in practical applications. We address the nonstabilizerness estimation problem through three supervised learning formulations starting from easier classification tasks to the more challenging regression task. Experimental results show that the proposed GNN manages to capture meaningful features from the graph-based circuit representation, resulting in robust generalization performances achieved across diverse scenarios. In classification tasks, the GNN is trained on product states and generalizes on circuits evolved under Clifford operations, entangled states, and circuits with higher number of qubits. In the regression task, the GNN significantly improves the SRE estimation on out-of-distribution circuits with higher number of qubits and gate counts compared to previous work, for both random quantum circuits and structured circuits derived from the transverse-field Ising model. Moreover, the graph representation of quantum circuits naturally integrates hardware-specific information. Simulations on noisy quantum hardware highlight the potential of the proposed GNN to predict the SRE measured on quantum devices.
☆ Asymptotic Theory and Phase Transitions for Variable Importance in Quantile Regression Forests
Quantile Regression Forests (QRF) are widely used for non-parametric conditional quantile estimation, yet statistical inference for variable importance measures remains challenging due to the non-smoothness of the loss function and the complex bias-variance trade-off. In this paper, we develop a asymptotic theory for variable importance defined as the difference in pinball loss risks. We first establish the asymptotic normality of the QRF estimator by handling the non-differentiable pinball loss via Knight's identity. Second, we uncover a "phase transition" phenomenon governed by the subsampling rate $β$ (where $s \asymp n^β$). We prove that in the bias-dominated regime ($β\ge 1/2$), which corresponds to large subsample sizes typically favored in practice to maximize predictive accuracy, standard inference breaks down as the estimator converges to a deterministic bias constant rather than a zero-mean normal distribution. Finally, we derive the explicit analytic form of this asymptotic bias and discuss the theoretical feasibility of restoring valid inference via analytic bias correction. Our results highlight a fundamental trade-off between predictive performance and inferential validity, providing a theoretical foundation for understanding the intrinsic limitations of random forest inference in high-dimensional settings.
☆ A PLS-Integrated LASSO Method with Application in Index Tracking
In traditional multivariate data analysis, dimension reduction and regression have been treated as distinct endeavors. Established techniques such as principal component regression (PCR) and partial least squares (PLS) regression traditionally compute latent components as intermediary steps -- although with different underlying criteria -- before proceeding with the regression analysis. In this paper, we introduce an innovative regression methodology named PLS-integrated Lasso (PLS-Lasso) that integrates the concept of dimension reduction directly into the regression process. We present two distinct formulations for PLS-Lasso, denoted as PLS-Lasso-v1 and PLS-Lasso-v2, along with clear and effective algorithms that ensure convergence to global optima. PLS-Lasso-v1 and PLS-Lasso-v2 are compared with Lasso on the task of financial index tracking and show promising results.
☆ Clustering Malware at Scale: A First Full-Benchmark Study
Recent years have shown that malware attacks still happen with high frequency. Malware experts seek to categorize and classify incoming samples to confirm their trustworthiness or prove their maliciousness. One of the ways in which groups of malware samples can be identified is through malware clustering. Despite the efforts of the community, malware clustering which incorporates benign samples has been under-explored. Moreover, despite the availability of larger public benchmark malware datasets, malware clustering studies have avoided fully utilizing these datasets in their experiments, often resorting to small datasets with only a few families. Additionally, the current state-of-the-art solutions for malware clustering remain unclear. In our study, we evaluate malware clustering quality and establish the state-of-the-art on Bodmas and Ember - two large public benchmark malware datasets. Ours is the first study of malware clustering performed on whole malware benchmark datasets. Additionally, we extend the malware clustering task by incorporating benign samples. Our results indicate that incorporating benign samples does not significantly degrade clustering quality. We find that there are significant differences in the quality of the created clusters between Ember and Bodmas, as well as a private industry dataset. Contrary to popular opinion, our top clustering performers are K-Means and BIRCH, with DBSCAN and HAC falling behind.
comment: pre-print of the paper (i.e. "submitted manuscript" version)
☆ Fault-Tolerant MARL for CAVs under Observation Perturbations for Highway On-Ramp Merging
Multi-Agent Reinforcement Learning (MARL) holds significant promise for enabling cooperative driving among Connected and Automated Vehicles (CAVs). However, its practical application is hindered by a critical limitation, i.e., insufficient fault tolerance against observational faults. Such faults, which appear as perturbations in the vehicles' perceived data, can substantially compromise the performance of MARL-based driving systems. Addressing this problem presents two primary challenges. One is to generate adversarial perturbations that effectively stress the policy during training, and the other is to equip vehicles with the capability to mitigate the impact of corrupted observations. To overcome the challenges, we propose a fault-tolerant MARL method for cooperative on-ramp vehicles incorporating two key agents. First, an adversarial fault injection agent is co-trained to generate perturbations that actively challenge and harden the vehicle policies. Second, we design a novel fault-tolerant vehicle agent equipped with a self-diagnosis capability, which leverages the inherent spatio-temporal correlations in vehicle state sequences to detect faults and reconstruct credible observations, thereby shielding the policy from misleading inputs. Experiments in a simulated highway merging scenario demonstrate that our method significantly outperforms baseline MARL approaches, achieving near-fault-free levels of safety and efficiency under various observation fault patterns.
☆ Energy-Efficient Vision Transformer Inference for Edge-AI Deployment
The growing deployment of Vision Transformers (ViTs) on energy-constrained devices requires evaluation methods that go beyond accuracy alone. We present a two-stage pipeline for assessing ViT energy efficiency that combines device-agnostic model selection with device-related measurements. We benchmark 13 ViT models on ImageNet-1K and CIFAR-10, running inference on NVIDIA Jetson TX2 (edge device) and an NVIDIA RTX 3050 (mobile GPU). The device-agnostic stage uses the NetScore metric for screening; the device-related stage ranks models with the Sustainable Accuracy Metric (SAM). Results show that hybrid models such as LeViT_Conv_192 reduce energy by up to 53% on TX2 relative to a ViT baseline (e.g., SAM5=1.44 on TX2/CIFAR-10), while distilled models such as TinyViT-11M_Distilled excel on the mobile GPU (e.g., SAM5=1.72 on RTX 3050/CIFAR-10 and SAM5=0.76 on RTX 3050/ImageNet-1K).
☆ Estimating the Event-Related Potential from Few EEG Trials
Event-related potentials (ERP) are measurements of brain activity with wide applications in basic and clinical neuroscience, that are typically estimated using the average of many trials of electroencephalography signals (EEG) to sufficiently reduce noise and signal variability. We introduce EEG2ERP, a novel uncertainty-aware autoencoder approach that maps an arbitrary number of EEG trials to their associated ERP. To account for the ERP uncertainty we use bootstrapped training targets and introduce a separate variance decoder to model the uncertainty of the estimated ERP. We evaluate our approach in the challenging zero-shot scenario of generalizing to new subjects considering three different publicly available data sources; i) the comprehensive ERP CORE dataset that includes over 50,000 EEG trials across six ERP paradigms from 40 subjects, ii) the large P300 Speller BCI dataset, and iii) a neuroimaging dataset on face perception consisting of both EEG and magnetoencephalography (MEG) data. We consistently find that our method in the few trial regime provides substantially better ERP estimates than commonly used conventional and robust averaging procedures. EEG2ERP is the first deep learning approach to map EEG signals to their associated ERP, moving toward reducing the number of trials necessary for ERP research. Code is available at https://github.com/andersxa/EEG2ERP
comment: Accepted by Transactions on Machine Learning Research (TMLR). 15 pages main manuscript, 30 pages total including supplementary material
☆ A Theoretical Framework for Discovering Groups and Unitary Representations via Tensor Factorization
We analyze the HyperCube model, an \textit{operator-valued} tensor factorization architecture that discovers group structures and their unitary representations. We provide a rigorous theoretical explanation for this inductive bias by decomposing its objective into a term regulating factor scales ($\mathcal{B}$) and a term enforcing directional alignment ($\mathcal{R} \geq 0$). This decomposition isolates the \textit{collinear manifold} ($\mathcal{R}=0$), to which numerical optimization consistently converges for group isotopes. We prove that this manifold admits feasible solutions exclusively for group isotopes, and that within it, $\mathcal{B}$ exerts a variational pressure toward unitarity. To bridge the gap to the global landscape, we formulate a \textit{Collinearity Dominance Conjecture}, supported by empirical observations. Conditional on this dominance, we prove two key results: (1) the global minimum is achieved by the unitary regular representation for groups, and (2) non-group operations incur a strictly higher objective value, formally quantifying the model's inductive bias toward the associative structure of groups (up to isotopy).
☆ Adapting Neural Audio Codecs to EEG NeurIPS
EEG and audio are inherently distinct modalities, differing in sampling rate, channel structure, and scale. Yet, we show that pretrained neural audio codecs can serve as effective starting points for EEG compression, provided that the data are preprocessed to be suitable to the codec's input constraints. Using DAC, a state-of-the-art neural audio codec as our base, we demonstrate that raw EEG can be mapped into the codec's stride-based framing, enabling direct reuse of the audio-pretrained encoder-decoder. Even without modification, this setup yields stable EEG reconstructions, and fine-tuning on EEG data further improves fidelity and generalization compared to training from scratch. We systematically explore compression-quality trade-offs by varying residual codebook depth, codebook (vocabulary) size, and input sampling rate. To capture spatial dependencies across electrodes, we propose DAC-MC, a multi-channel extension with attention-based cross-channel aggregation and channel-specific decoding, while retaining the audio-pretrained initialization. Evaluations on the TUH Abnormal and Epilepsy datasets show that the adapted codecs preserve clinically relevant information, as reflected in spectrogram-based reconstruction loss and downstream classification accuracy.
comment: Foundation Models for the Brain and Body (BrainBodyFM@NeurIPS)
☆ Automated Discovery of Laser Dicing Processes with Bayesian Optimization for Semiconductor Manufacturing
Laser dicing of semiconductor wafers is a critical step in microelectronic manufacturing, where multiple sequential laser passes precisely separate individual dies from the wafer. Adapting this complex sequential process to new wafer materials typically requires weeks of expert effort to balance process speed, separation quality, and material integrity. We present the first automated discovery of production-ready laser dicing processes on an industrial LASER1205 dicing system. We formulate the problem as a high-dimensional, constrained multi-objective Bayesian optimization task, and introduce a sequential two-level fidelity strategy to minimize expensive destructive die-strength evaluations. On bare silicon and product wafers, our method autonomously delivers feasible configurations that match or exceed expert baselines in production speed, die strength, and structural integrity, using only technician-level operation. Post-hoc validation of different weight configurations of the utility functions reveals that multiple feasible solutions with qualitatively different trade-offs can be obtained from the final surrogate model. Expert-refinement of the discovered process can further improve production speed while preserving die strength and structural integrity, surpassing purely manual or automated methods.
comment: 18 pages, 9 figures
☆ Freeze, Diffuse, Decode: Geometry-Aware Adaptation of Pretrained Transformer Embeddings for Antimicrobial Peptide Design
Pretrained transformers provide rich, general-purpose embeddings, which are transferred to downstream tasks. However, current transfer strategies: fine-tuning and probing, either distort the pretrained geometric structure of the embeddings or lack sufficient expressivity to capture task-relevant signals. These issues become even more pronounced when supervised data are scarce. Here, we introduce Freeze, Diffuse, Decode (FDD), a novel diffusion-based framework that adapts pre-trained embeddings to downstream tasks while preserving their underlying geometric structure. FDD propagates supervised signal along the intrinsic manifold of frozen embeddings, enabling a geometry-aware adaptation of the embedding space. Applied to antimicrobial peptide design, FDD yields low-dimensional, predictive, and interpretable representations that support property prediction, retrieval, and latent-space interpolation.
comment: 16 pages, 4 figures
☆ Machine learning for violence prediction: a systematic review and critical appraisal
Purpose To conduct a systematic review of machine learning models for predicting violent behaviour by synthesising and appraising their validity, usefulness, and performance. Methods We systematically searched nine bibliographic databases and Google Scholar up to September 2025 for development and/or validation studies on machine learning methods for predicting all forms of violent behaviour. We synthesised the results by summarising discrimination and calibration performance statistics and evaluated study quality by examining risk of bias and clinical utility. Results We identified 38 studies reporting the development and validation of 40 models. Most studies reported Area Under the Curve (AUC) as the discrimination statistic with a range of 0.68-0.99. Only eight studies reported calibration performance, and three studies reported external validation. 31 studies had a high risk of bias, mainly in the analysis domain, and three studies had low risk of bias. The overall clinical utility of violence prediction models is poor, as indicated by risks of overfitting due to small samples, lack of transparent reporting, and low generalisability. Conclusion Although black box machine learning models currently have limited applicability in clinical settings, they may show promise for identifying high-risk individuals. We recommend five key considerations for violence prediction modelling: (i) ensuring methodological quality (e.g. following guidelines) and interdisciplinary collaborations; (ii) using black box algorithms only for highly complex data; (iii) incorporating dynamic predictions to allow for risk monitoring; (iv) developing more trustworthy algorithms using explainable methods; and (v) applying causal machine learning approaches where appropriate.
☆ db-SP: Accelerating Sparse Attention for Visual Generative Models with Dual-Balanced Sequence Parallelism
Scaling Diffusion Transformer (DiT) inference via sequence parallelism is critical for reducing latency in visual generation, but is severely hampered by workload imbalance when applied to models employing block-wise sparse attention. The imbalance stems from the inherent variation in sparsity across attention heads and the irregular distribution of dense blocks within the sparse mask, when sequence parallelism is applied along the head dimension (as in Ulysses) or the block dimension (as in Ring Attention). In this paper, we formalize a sparse imbalance ratio to quantify the imbalance, and propose db-SP, a sparsity-aware sequence parallelism technique that tackles the challenge. db-SP contains a dual-level partitioning approach that achieves near-perfect workload balance at both the head and block levels with negligible overhead. Furthermore, to handle the evolving sparsity patterns across denoising steps and layers, db-SP dynamically determines the parallel degrees for the head and block dimensions at runtime. Experimental results demonstrate that db-SP delivers an end-to-end speedup of 1.25x and an attention-specific speedup of 1.40x over state-of-the-art sequence parallel methods on average. Code is available at https://github.com/thu-nics/db-SP.
☆ MathSight: A Benchmark Exploring Have Vision-Language Models Really Seen in University-Level Mathematical Reasoning?
Recent advances in Vision-Language Models (VLMs) have achieved impressive progress in multimodal mathematical reasoning. Yet, how much visual information truly contributes to reasoning remains unclear. Existing benchmarks report strong overall performance but seldom isolate the role of the image modality, leaving open whether VLMs genuinely leverage visual understanding or merely depend on linguistic priors. To address this, we present MathSight, a university-level multimodal mathematical reasoning benchmark designed to disentangle and quantify the effect of visual input. Each problem includes multiple visual variants -- original, hand-drawn, photo-captured -- and a text-only condition for controlled comparison. Experiments on state-of-the-art VLMs reveal a consistent trend: the contribution of visual information diminishes with increasing problem difficulty. Remarkably, Qwen3-VL without any image input surpasses both its multimodal variants and GPT-5, underscoring the need for benchmarks like MathSight to advance genuine vision-grounded reasoning in future models.
comment: Comments: 32 pages, 15 figures, 9 tables, includes appendix. Project page: https://cnu-bot-group.github.io/MathSight/
☆ Spectral Concentration at the Edge of Stability: Information Geometry of Kernel Associative Memory
High-capacity kernel Hopfield networks exhibit a "Ridge of Optimization" characterized by extreme stability. While previously linked to "Spectral Concentration," its origin remains elusive. Here, we analyze the network dynamics on a statistical manifold, revealing that the Ridge corresponds to the "Edge of Stability," a critical boundary where the Fisher Information Matrix becomes singular. We demonstrate that the apparent Euclidean force antagonism is a manifestation of \textit{Dual Equilibrium} in the Riemannian space. This unifies learning dynamics and capacity via the Minimum Description Length principle, offering a geometric theory of self-organized criticality.
comment: 4 pages, 4 figures
☆ Constraining dark matter halo profiles with symbolic regression
Dark matter haloes are typically characterised by radial density profiles with fixed forms motivated by simulations (e.g. NFW). However, simulation predictions depend on uncertain dark matter physics and baryonic modelling. Here, we present a method to constrain halo density profiles directly from observations using Exhaustive Symbolic Regression (ESR), a technique that searches the space of analytic expressions for the function that best balances accuracy and simplicity for a given dataset. We test the approach on mock weak lensing excess surface density (ESD) data of synthetic clusters with NFW profiles. Motivated by real data, we assign each ESD data point a constant fractional uncertainty and vary this uncertainty and the number of clusters to probe how data precision and sample size affect model selection. For fractional errors around 5%, ESR recovers the NFW profile even from samples as small as 20 clusters. At higher uncertainties representative of current surveys, simpler functions are favoured over NFW, though it remains competitive. This preference arises because weak lensing errors are smallest in the outskirts, causing the fits to be dominated by the outer profile. ESR therefore provides a robust, simulation-independent framework both for testing mass models and determining which features of a halo's density profile are genuinely constrained by the data.
comment: 18 pages, 5 figures. Accepted for publication in Philosophical Transactions of the Royal Society A
☆ Buffer replay enhances the robustness of multimodal learning under missing-modality
Missing modalities consistently lead to significant performance degradation in multimodal models. Existing approaches either synthesize missing modalities at high computational cost or apply prompt-based fine-tuning that relies only on adjacent-layer features and overlooks long-distance contextual information, which may offer additional tolerance to errors when one or more modalities are missing. To address this, we introduce REplay Prompting (REP): (1) construct modality-wise feature buffers via a residual bypass to cache early-layer representations and replay them in deeper layers, mitigating information loss as network depth increases; (2) employ a private-shared feature decoupling strategy, where private buffers preserve modality-specific signals and shared buffers encode cross-modal semantics; and (3) design a task-aware dynamic initialization mechanism to configure these buffers differently, improving stability and generalization under diverse missing-modality conditions. Experiments on vision-language, vision-language-audio, and temporal multimodal benchmarks demonstrate that REP consistently outperforms prior methods under both single- and multi-modality missing scenarios, while introducing only negligible parameter overhead. These results establish REP as a lightweight and effective paradigm for robust multimodal learning in challenging missing-modality environments.
☆ Standard Occupation Classifier -- A Natural Language Processing Approach
Standard Occupational Classifiers (SOC) are systems used to categorize and classify different types of jobs and occupations based on their similarities in terms of job duties, skills, and qualifications. Integrating these facets with Big Data from job advertisement offers the prospect to investigate labour demand that is specific to various occupations. This project investigates the use of recent developments in natural language processing to construct a classifier capable of assigning an occupation code to a given job advertisement. We develop various classifiers for both UK ONS SOC and US O*NET SOC, using different Language Models. We find that an ensemble model, which combines Google BERT and a Neural Network classifier while considering job title, description, and skills, achieved the highest prediction accuracy. Specifically, the ensemble model exhibited a classification accuracy of up to 61% for the lower (or fourth) tier of SOC, and 72% for the third tier of SOC. This model could provide up to date, accurate information on the evolution of the labour market using job advertisements.
☆ Time Extrapolation with Graph Convolutional Autoencoder and Tensor Train Decomposition
Graph autoencoders have gained attention in nonlinear reduced-order modeling of parameterized partial differential equations defined on unstructured grids. Despite they provide a geometrically consistent way of treating complex domains, applying such architectures to parameterized dynamical systems for temporal prediction beyond the training data, i.e. the extrapolation regime, is still a challenging task due to the simultaneous need of temporal causality and generalizability in the parametric space. In this work, we explore the integration of graph convolutional autoencoders (GCAs) with tensor train (TT) decomposition and Operator Inference (OpInf) to develop a time-consistent reduced-order model. In particular, high-fidelity snapshots are represented as a combination of parametric, spatial, and temporal cores via TT decomposition, while OpInf is used to learn the evolution of the latter. Moreover, we enhance the generalization performance by developing a multi-fidelity two-stages approach in the framework of Deep Operator Networks (DeepONet), treating the spatial and temporal cores as the trunk networks, and the parametric core as the branch network. Numerical results, including heat-conduction, advection-diffusion and vortex-shedding phenomena, demonstrate great performance in effectively learning the dynamic in the extrapolation regime for complex geometries, also in comparison with state-of-the-art approaches e.g. MeshGraphNets.
☆ Delta-XAI: A Unified Framework for Explaining Prediction Changes in Online Time Series Monitoring ICLR 2026
Explaining online time series monitoring models is crucial across sensitive domains such as healthcare and finance, where temporal and contextual prediction dynamics underpin critical decisions. While recent XAI methods have improved the explainability of time series models, they mostly analyze each time step independently, overlooking temporal dependencies. This results in further challenges: explaining prediction changes is non-trivial, methods fail to leverage online dynamics, and evaluation remains difficult. To address these challenges, we propose Delta-XAI, which adapts 14 existing XAI methods through a wrapper function and introduces a principled evaluation suite for the online setting, assessing diverse aspects, such as faithfulness, sufficiency, and coherence. Experiments reveal that classical gradient-based methods, such as Integrated Gradients (IG), can outperform recent approaches when adapted for temporal analysis. Building on this, we propose Shifted Window Integrated Gradients (SWING), which incorporates past observations in the integration path to systematically capture temporal dependencies and mitigate out-of-distribution effects. Extensive experiments consistently demonstrate the effectiveness of SWING across diverse settings with respect to diverse metrics. Our code is publicly available at https://anonymous.4open.science/r/Delta-XAI.
comment: Under review at ICLR 2026
☆ Masked Diffusion for Generative Recommendation
Generative recommendation (GR) with semantic IDs (SIDs) has emerged as a promising alternative to traditional recommendation approaches due to its performance gains, capitalization on semantic information provided through language model embeddings, and inference and storage efficiency. Existing GR with SIDs works frame the probability of a sequence of SIDs corresponding to a user's interaction history using autoregressive modeling. While this has led to impressive next item prediction performances in certain settings, these autoregressive GR with SIDs models suffer from expensive inference due to sequential token-wise decoding, potentially inefficient use of training data and bias towards learning short-context relationships among tokens. Inspired by recent breakthroughs in NLP, we propose to instead model and learn the probability of a user's sequence of SIDs using masked diffusion. Masked diffusion employs discrete masking noise to facilitate learning the sequence distribution, and models the probability of masked tokens as conditionally independent given the unmasked tokens, allowing for parallel decoding of the masked tokens. We demonstrate through thorough experiments that our proposed method consistently outperforms autoregressive modeling. This performance gap is especially pronounced in data-constrained settings and in terms of coarse-grained recall, consistent with our intuitions. Moreover, our approach allows the flexibility of predicting multiple SIDs in parallel during inference while maintaining superior performance to autoregressive modeling.
comment: 25 pages
☆ Adaptive Factor Graph-Based Tightly Coupled GNSS/IMU Fusion for Robust Positionin
Reliable positioning in GNSS-challenged environments remains a critical challenge for navigation systems. Tightly coupled GNSS/IMU fusion improves robustness but remains vulnerable to non-Gaussian noise and outliers. We present a robust and adaptive factor graph-based fusion framework that directly integrates GNSS pseudorange measurements with IMU preintegration factors and incorporates the Barron loss, a general robust loss function that unifies several m-estimators through a single tunable parameter. By adaptively down weighting unreliable GNSS measurements, our approach improves resilience positioning. The method is implemented in an extended GTSAM framework and evaluated on the UrbanNav dataset. The proposed solution reduces positioning errors by up to 41% relative to standard FGO, and achieves even larger improvements over extended Kalman filter (EKF) baselines in urban canyon environments. These results highlight the benefits of Barron loss in enhancing the resilience of GNSS/IMU-based navigation in urban and signal-compromised environments.
☆ Maritime Activities Observed Through Open-Access Positioning Data: Moving and Stationary Vessels in the Baltic Sea
Understanding past and present maritime activity patterns is critical for navigation safety, environmental assessment, and commercial operations. An increasing number of services now openly provide positioning data from the Automatic Identification System (AIS) via ground-based receivers. We show that coastal vessel activity can be reconstructed from open access data with high accuracy, even with limited data quality and incomplete receiver coverage. For three months of open AIS data in the Baltic Sea from August to October 2024, we present (i) cleansing and reconstruction methods to improve the data quality, and (ii) a journey model that converts AIS message data into vessel counts, traffic estimates, and spatially resolved vessel density at a resolution of $\sim$400 m. Vessel counts are provided, along with their uncertainties, for both moving and stationary activity. Vessel density maps also enable the identification of port locations, and we infer the most crowded and busiest coastal areas in the Baltic Sea. We find that on average, $\gtrsim$4000 vessels simultaneously operate in the Baltic Sea, and more than 300 vessels enter or leave the area each day. Our results agree within 20\% with previous studies relying on proprietary data.
comment: 29 pages, 15 figures, and 9 tables, matching the version published in Geomatics. Accompanying research data are available at http://dx.doi.org/10.6084/m9.figshare.29062715
☆ A Modular Framework for Rapidly Building Intrusion Predictors
We study automated intrusion prediction in an IT system using statistical learning methods. The focus is on developing online attack predictors that detect attacks in real time and identify the current stage of the attack. While such predictors have been proposed in the recent literature, these works typically rely on constructing a monolithic predictor tailored to a specific attack type and scenario. Given that hundreds of attack types are cataloged in the MITRE framework, training a separate monolithic predictor for each of them is infeasible. In this paper, we propose a modular framework for rapidly assembling online attack predictors from reusable components. The modular nature of a predictor facilitates controlling key metrics like timeliness and accuracy of prediction, as well as tuning the trade-off between them. Using public datasets for training and evaluation, we provide many examples of modular predictors and show how an effective predictor can be dynamically assembled during training from a network of modular components.
☆ Pooling Attention: Evaluating Pretrained Transformer Embeddings for Deception Classification
This paper investigates fake news detection as a downstream evaluation of Transformer representations, benchmarking encoder-only and decoder-only pre-trained models (BERT, GPT-2, Transformer-XL) as frozen embedders paired with lightweight classifiers. Through controlled preprocessing comparing pooling versus padding and neural versus linear heads, results demonstrate that contextual self-attention encodings consistently transfer effectively. BERT embeddings combined with logistic regression outperform neural baselines on LIAR dataset splits, while analyses of sequence length and aggregation reveal robustness to truncation and advantages from simple max or average pooling. This work positions attention-based token encoders as robust, architecture-centric foundations for veracity tasks, isolating Transformer contributions from classifier complexity.
comment: Accepted at the IEEE 7th Computing, Communications and IoT Applications Conference (ComComAp 2025), Madrid, Spain, December 2025. 6 pages
☆ A Trainable Centrality Framework for Modern Data
Measuring how central or typical a data point is underpins robust estimation, ranking, and outlier detection, but classical depth notions become expensive and unstable in high dimensions and are hard to extend beyond Euclidean data. We introduce Fused Unified centrality Score Estimation (FUSE), a neural centrality framework that operates on top of arbitrary representations. FUSE combines a global head, trained from pairwise distance-based comparisons to learn an anchor-free centrality score, with a local head, trained by denoising score matching to approximate a smoothed log-density potential. A single parameter between 0 and 1 interpolates between these calibrated signals, yielding depth-like centrality from different views via one forward pass. Across synthetic distributions, real images, time series, and text data, and standard outlier detection benchmarks, FUSE recovers meaningful classical ordering, reveals multi-scale geometric structures, and attains competitive performance with strong classical baselines while remaining simple and efficient.
☆ Experts are all you need: A Composable Framework for Large Language Model Inference
Large Language Models (LLMs) have achieved state-of-the-art accuracies in a variety of natural language processing (NLP) tasks. However, this success comes at the cost of increased model sizes which leads to additional computational burden. Mixture of Experts (MoEs) overcome this bottleneck by decoupling model capacity from computation by only activating a subset of parameters or "experts". However, these models require joint pretraining of these experts along with the router and do not model multi-step reasoning. In contrast, multi-agent frameworks improve reasoning by decomposing complex problems into modular subtasks. However, these frameworks rely on sequential "plan--act--observe" loops, which introduce significant latency. Our work, Comp-LLM, addresses these challenges by introducing a composable inference framework that enables cross-expert collaboration via an explicit sub-query dependency graph. Comp-LLM consists of three components: (1) A Sub-query Generator that decomposes an input query, assigns each sub-query to an appropriate expert using embedding similarity, and constructs a dependency graph; (2) A Query Executor that processes nodes in the graph and identifies opportunities for parallelism based on dependencies and resource constraints; and (3) A Response Aggregator that synthesizes intermediate expert responses into a coherent final answer. Across several benchmarks, Comp-LLM achieves up to 11.01% accuracy improvement over monolithic LLMs of similar size, while offering 1.67x--3.56x reduction in model size with no significant degradation relative to the largest model in its family. Additionally, Comp-LLM provides 1.1x--1.7x latency improvement compared to sequential sub-query processing.
☆ Bandit Guided Submodular Curriculum for Adaptive Subset Selection
Traditional curriculum learning proceeds from easy to hard samples, yet defining a reliable notion of difficulty remains elusive. Prior work has used submodular functions to induce difficulty scores in curriculum learning. We reinterpret adaptive subset selection and formulate it as a multi-armed bandit problem, where each arm corresponds to a submodular function guiding sample selection. We introduce ONLINESUBMOD, a novel online greedy policy that optimizes a utility-driven reward and provably achieves no-regret performance under various sampling regimes. Empirically, ONLINESUBMOD outperforms both traditional curriculum learning and bi-level optimization approaches across vision and language datasets, showing superior accuracy-efficiency tradeoffs. More broadly, we show that validationdriven reward metrics offer a principled way to guide the curriculum schedule.
comment: 10 pages main, 21 pages Appendix, 8 figures
☆ CORGI: GNNs with Convolutional Residual Global Interactions for Lagrangian Simulation
Partial differential equations (PDEs) are central to dynamical systems modeling, particularly in hydrodynamics, where traditional solvers often struggle with nonlinearity and computational cost. Lagrangian neural surrogates such as GNS and SEGNN have emerged as strong alternatives by learning from particle-based simulations. However, these models typically operate with limited receptive fields, making them inaccurate for capturing the inherently global interactions in fluid flows. Motivated by this observation, we introduce Convolutional Residual Global Interactions (CORGI), a hybrid architecture that augments any GNN-based solver with a lightweight Eulerian component for global context aggregation. By projecting particle features onto a grid, applying convolutional updates, and mapping them back to the particle domain, CORGI captures long-range dependencies without significant overhead. When applied to a GNS backbone, CORGI achieves a 57% improvement in rollout accuracy with only 13% more inference time and 31% more training time. Compared to SEGNN, CORGI improves accuracy by 49% while reducing inference time by 48% and training time by 30%. Even under identical runtime constraints, CORGI outperforms GNS by 47% on average, highlighting its versatility and performance on varied compute budgets.
☆ EnECG: Efficient Ensemble Learning for Electrocardiogram Multi-task Foundation Model
Electrocardiogram (ECG) analysis plays a vital role in the early detection, monitoring, and management of various cardiovascular conditions. While existing models have achieved notable success in ECG interpretation, they fail to leverage the interrelated nature of various cardiac abnormalities. Conversely, developing a specific model capable of extracting all relevant features for multiple ECG tasks remains a significant challenge. Large-scale foundation models, though powerful, are not typically pretrained on ECG data, making full re-training or fine-tuning computationally expensive. To address these challenges, we propose EnECG(Mixture of Experts-based Ensemble Learning for ECG Multi-tasks), an ensemble-based framework that integrates multiple specialized foundation models, each excelling in different aspects of ECG interpretation. Instead of relying on a single model or single task, EnECG leverages the strengths of multiple specialized models to tackle a variety of ECG-based tasks. To mitigate the high computational cost of full re-training or fine-tuning, we introduce a lightweight adaptation strategy: attaching dedicated output layers to each foundation model and applying Low-Rank Adaptation (LoRA) only to these newly added parameters. We then adopt a Mixture of Experts (MoE) mechanism to learn ensemble weights, effectively combining the complementary expertise of individual models. Our experimental results demonstrate that by minimizing the scope of fine-tuning, EnECG can help reduce computational and memory costs while maintaining the strong representational power of foundation models. This framework not only enhances feature extraction and predictive performance but also ensures practical efficiency for real-world clinical applications. The code is available at https://github.com/yuhaoxu99/EnECG.git.
☆ Optical diffraction neural networks assisted computational ghost imaging through dynamic scattering media
Ghost imaging leverages a single-pixel detector with no spatial resolution to acquire object echo intensity signals, which are correlated with illumination patterns to reconstruct an image. This architecture inherently mitigates scattering interference between the object and the detector but sensitive to scattering between the light source and the object. To address this challenge, we propose an optical diffraction neural networks (ODNNs) assisted ghost imaging method for imaging through dynamic scattering media. In our scheme, a set of fixed ODNNs, trained on simulated datasets, is incorporated into the experimental optical path to actively correct random distortions induced by dynamic scattering media. Experimental validation using rotating single-layer and double-layer ground glass confirms the feasibility and effectiveness of our approach. Furthermore, our scheme can also be combined with physics-prior-based reconstruction algorithms, enabling high-quality imaging under undersampled conditions. This work demonstrates a novel strategy for imaging through dynamic scattering media, which can be extended to other imaging systems.
☆ Language-conditioned world model improves policy generalization by reading environmental descriptions
To interact effectively with humans in the real world, it is important for agents to understand language that describes the dynamics of the environment--that is, how the environment behaves--rather than just task instructions specifying "what to do". Understanding this dynamics-descriptive language is important for human-agent interaction and agent behavior. Recent work address this problem using a model-based approach: language is incorporated into a world model, which is then used to learn a behavior policy. However, these existing methods either do not demonstrate policy generalization to unseen games or rely on limiting assumptions. For instance, assuming that the latency induced by inference-time planning is tolerable for the target task or expert demonstrations are available. Expanding on this line of research, we focus on improving policy generalization from a language-conditioned world model while dropping these assumptions. We propose a model-based reinforcement learning approach, where a language-conditioned world model is trained through interaction with the environment, and a policy is learned from this model--without planning or expert demonstrations. Our method proposes Language-aware Encoder for Dreamer World Model (LED-WM) built on top of DreamerV3. LED-WM features an observation encoder that uses an attention mechanism to explicitly ground language descriptions to entities in the observation. We show that policies trained with LED-WM generalize more effectively to unseen games described by novel dynamics and language compared to other baselines in several settings in two environments: MESSENGER and MESSENGER-WM.To highlight how the policy can leverage the trained world model before real-world deployment, we demonstrate the policy can be improved through fine-tuning on synthetic test trajectories generated by the world model.
comment: NeuRIPS 2025. Workshop: LAW 2025: Bridging Language, Agent, and World Models
☆ ClearGCD: Mitigating Shortcut Learning For Robust Generalized Category Discovery
In open-world scenarios, Generalized Category Discovery (GCD) requires identifying both known and novel categories within unlabeled data. However, existing methods often suffer from prototype confusion caused by shortcut learning, which undermines generalization and leads to forgetting of known classes. We propose ClearGCD, a framework designed to mitigate reliance on non-semantic cues through two complementary mechanisms. First, Semantic View Alignment (SVA) generates strong augmentations via cross-class patch replacement and enforces semantic consistency using weak augmentations. Second, Shortcut Suppression Regularization (SSR) maintains an adaptive prototype bank that aligns known classes while encouraging separation of potential novel ones. ClearGCD can be seamlessly integrated into parametric GCD approaches and consistently outperforms state-of-the-art methods across multiple benchmarks.
comment: 5 pages, 4 figures
☆ ORION: Teaching Language Models to Reason Efficiently in the Language of Thought
Large Reasoning Models (LRMs) achieve strong performance in mathematics, code generation, and task planning, but their reliance on long chains of verbose "thinking" tokens leads to high latency, redundancy, and incoherent reasoning paths. Inspired by the Language of Thought Hypothesis, which posits that human reasoning operates over a symbolic, compositional mental language called Mentalese, we introduce a framework that trains models to reason in a similarly compact style. Mentalese encodes abstract reasoning as ultra-compressed, structured tokens, enabling models to solve complex problems with far fewer steps. To improve both efficiency and accuracy, we propose SHORTER LENGTH PREFERENCE OPTIMIZATION (SLPO), a reinforcement learning method that rewards concise solutions that stay correct, while still allowing longer reasoning when needed. Applied to Mentalese-aligned models, SLPO yields significantly higher compression rates by enabling concise reasoning that preserves the benefits of detailed thinking without the computational overhead. Across benchmarks including AIME 2024 and 2025, MinervaMath, OlympiadBench, Math500, and AMC, our ORION models produce reasoning traces with 4-16x fewer tokens, achieve up to 5x lower inference latency, and reduce training costs by 7-9x relative to the DeepSeek R1 Distilled model, while maintaining 90-98% of its accuracy. ORION also surpasses Claude and ChatGPT-4o by up to 5% in accuracy while maintaining 2x compression. These results show that Mentalese-style compressed reasoning offers a step toward human-like cognitive efficiency, enabling real-time, cost-effective reasoning without sacrificing accuracy.
☆ Adversarial Training for Process Reward Models
Process Reward Models (PRMs) enhance reasoning ability of LLMs by providing step-level supervision. However, their widespread adoption is limited due to expensive manual step-level annotation and poor generalization of static training data to novel errors. We introduce Adversarially Trained PRMs (\texttt{APRM}), where a Generator ($G$) learns to produce reasoning errors to deceive a PRM ($R$), while $R$ concurrently learns to detect them. This interaction yields progressively harder negatives for $R$, improving its robustness and generalization to novel errors without requiring manual step-level labels. Averaged across diverse mathematical reasoning benchmarks, \texttt{APRM} improves solver accuracy by $+3.4$ percentage points (pp) over the strongest PRM baseline. \texttt{APRM} achieves gains of $+5.3$ pp on out-of-distribution tasks.
☆ Modeling Chaotic Pedestrian Behavior Using Chaos Indicators and Supervised Learning
As cities around the world aim to improve walkability and safety, understanding the irregular and unpredictable nature of pedestrian behavior has become increasingly important. This study introduces a data-driven framework for modeling chaotic pedestrian movement using empirically observed trajectory data and supervised learning. Videos were recorded during both daytime and nighttime conditions to capture pedestrian dynamics under varying ambient and traffic contexts. Pedestrian trajectories were extracted through computer vision techniques, and behavioral chaos was quantified using four chaos metrics: Approximate Entropy and Lyapunov Exponent, each computed for both velocity and direction change. A Principal Component Analysis (PCA) was then applied to consolidate these indicators into a unified chaos score. A comprehensive set of individual, group-level, and contextual traffic features was engineered and used to train Random Forest and CatBoost regression models. CatBoost models consistently achieved superior performance. The best daytime PCA-based CatBoost model reached an R^2 of 0.8319, while the nighttime PCA-based CatBoost model attained an R^2 of 0.8574. SHAP analysis highlighted that features such as distance travel, movement duration, and speed variability were robust contributors to chaotic behavior. The proposed framework enables practitioners to quantify and anticipate behavioral instability in real-world settings. Planners and engineers can use chaos scores to identify high-risk pedestrian zones, apprise infrastructure improvements, and calibrate realistic microsimulation models. The approach also supports adaptive risk assessment in automated vehicle systems by capturing short-term motion unpredictability grounded in observable, interpretable features.
☆ Covering-Space Normalizing Flows: Approximating Pushforwards on Lens Spaces
We construct pushforward distributions via the universal covering map rho: S^3 -> L(p;q) with the goal of approximating these distributions using flows on L(p;q). We highlight that our method deletes redundancies in the case of a symmetric S^3 distribution. Using our model, we approximate the pushforwards of von Mises-Fisher-induced target densities as well as that of a Z_12-symmetric Boltzmann distribution on S^3 constructed to model benzene.
☆ Serving Heterogeneous LoRA Adapters in Distributed LLM Inference Systems
Low-Rank Adaptation (LoRA) has become the de facto method for parameter-efficient fine-tuning of large language models (LLMs), enabling rapid adaptation to diverse domains. In production, LoRA-based models are served at scale, creating multi-tenant environments with hundreds of adapters sharing a base model. However, state-of-the-art serving systems co-batch heterogeneous adapters without accounting for rank (size) variability, leading to severe performance skew, which ultimately requires adding more GPUs to satisfy service-level objectives (SLOs). Existing optimizations, focused on loading, caching, and kernel execution, ignore this heterogeneity, leaving GPU resources underutilized. We present LoRAServe, a workload-aware dynamic adapter placement and routing framework designed to tame rank diversity in LoRA serving. By dynamically rebalancing adapters across GPUs and leveraging GPU Direct RDMA for remote access, LoRAServe maximizes throughput and minimizes tail latency under real-world workload drift. Evaluations on production traces from Company X show that LoRAServe elicits up to 2$\times$ higher throughput, up to 9$\times$ lower TTFT, while using up to 50% fewer GPUs under SLO constraints compared to state-of-the-art systems.
☆ ARM-Explainer -- Explaining and improving graph neural network predictions for the maximum clique problem using node features and association rule mining
Numerous graph neural network (GNN)-based algorithms have been proposed to solve graph-based combinatorial optimization problems (COPs), but methods to explain their predictions remain largely undeveloped. We introduce ARM-Explainer, a post-hoc, model-level explainer based on association rule mining, and demonstrate it on the predictions of the hybrid geometric scattering (HGS) GNN for the maximum clique problem (MCP), a canonical NP-hard graph-based COP. The eight most explanatory association rules discovered by ARM-Explainer achieve high median lift and confidence values of 2.42 and 0.49, respectively, on test instances from the TWITTER and BHOSLIB-DIMACS benchmark datasets. ARM-Explainer identifies the most important node features, together with their value ranges, that influence the GNN's predictions on these datasets. Furthermore, augmenting the GNN with informative node features substantially improves its performance on the MCP, increasing the median largest-found clique size by 22% (from 29.5 to 36) on large graphs from the BHOSLIB-DIMACS dataset.
☆ Bridging Modalities via Progressive Re-alignment for Multimodal Test-Time Adaptation AAAI 2026
Test-time adaptation (TTA) enables online model adaptation using only unlabeled test data, aiming to bridge the gap between source and target distributions. However, in multimodal scenarios, varying degrees of distribution shift across different modalities give rise to a complex coupling effect of unimodal shallow feature shift and cross-modal high-level semantic misalignment, posing a major obstacle to extending existing TTA methods to the multimodal field. To address this challenge, we propose a novel multimodal test-time adaptation (MMTTA) framework, termed as Bridging Modalities via Progressive Re-alignment (BriMPR). BriMPR, consisting of two progressively enhanced modules, tackles the coupling effect with a divide-and-conquer strategy. Specifically, we first decompose MMTTA into multiple unimodal feature alignment sub-problems. By leveraging the strong function approximation ability of prompt tuning, we calibrate the unimodal global feature distributions to their respective source distributions, so as to achieve the initial semantic re-alignment across modalities. Subsequently, we assign the credible pseudo-labels to combinations of masked and complete modalities, and introduce inter-modal instance-wise contrastive learning to further enhance the information interaction among modalities and refine the alignment. Extensive experiments on MMTTA tasks, including both corruption-based and real-world domain shift benchmarks, demonstrate the superiority of our method. Our source code is available at [this URL](https://github.com/Luchicken/BriMPR).
comment: Accepted by AAAI 2026 (Oral)
☆ CRAwDAD: Causal Reasoning Augmentation with Dual-Agent Debate
When people reason about cause and effect, they often consider many competing "what if" scenarios before deciding which explanation fits best. Analogously, advanced language models capable of causal inference can consider multiple interventions and counterfactuals to judge the validity of causal claims. Crucially, this type of reasoning is less like a single calculation and more like an internal dialogue between alternative hypotheses. In this paper, we make this dialogue explicit through a dual-agent debate framework where one model provides a structured causal inference, and the other critically examines this reasoning for logical flaws. When disagreements arise, agents attempt to persuade each other, challenging each other's logic and revising their conclusions until they converge on a mutually agreed answer. To take advantage of this deliberative process, we specifically use reasoning language models, whose strengths in both causal inference and adversarial debate remain under-explored relative to standard large language models. We evaluate our approach on the CLadder dataset, a benchmark linking natural language questions to formally defined causal graphs across all three rungs of Pearl's ladder of causation. With Qwen3 and DeepSeek-R1 as debater agents, we demonstrate that multi-agent debate improves DeepSeek-R1's overall accuracy in causal inference from 78.03% to 87.45%, with the counterfactual category specifically improving from 67.94% to 80.04% accuracy. Similarly, Qwen3's overall accuracy improves from 84.16% to 89.41%, and counterfactual questions from 71.53% to 80.35%, showing that strong models can still benefit greatly from debate with weaker agents. Our results highlight the potential of reasoning models as building blocks for multi-agent systems in causal inference, and demonstrate the importance of diverse perspectives in causal problem-solving.
comment: 12 pages, 8 figures. Code available at https://github.com/finnvamosi/CRAwDAD
☆ TARFVAE: Efficient One-Step Generative Time Series Forecasting via TARFLOW based VAE
Time series data is ubiquitous, with forecasting applications spanning from finance to healthcare. Beyond popular deterministic methods, generative models are gaining attention due to advancements in areas like image synthesis and video generation, as well as their inherent ability to provide probabilistic predictions. However, existing generative approaches mostly involve recurrent generative operations or repeated denoising steps, making the prediction laborious, particularly for long-term forecasting. Most of them only conduct experiments for relatively short-term forecasting, with limited comparison to deterministic methods in long-term forecasting, leaving their practical advantages unclear. This paper presents TARFVAE, a novel generative framework that combines the Transformer-based autoregressive flow (TARFLOW) and variational autoencoder (VAE) for efficient one-step generative time series forecasting. Inspired by the rethinking that complex architectures for extracting time series representations might not be necessary, we add a flow module, TARFLOW, to VAE to promote spontaneous learning of latent variables that benefit predictions. TARFLOW enhances VAE's posterior estimation by breaking the Gaussian assumption, thereby enabling a more informative latent space. TARFVAE uses only the forward process of TARFLOW, avoiding autoregressive inverse operations and thus ensuring fast generation. During generation, it samples from the prior latent space and directly generates full-horizon forecasts via the VAE decoder. With simple MLP modules, TARFVAE achieves superior performance over state-of-the-art deterministic and generative models across different forecast horizons on benchmark datasets while maintaining efficient prediction speed, demonstrating its effectiveness as an efficient and powerful solution for generative time series forecasting.
☆ PerfMamba: Performance Analysis and Pruning of Selective State Space Models
Recent advances in sequence modeling have introduced selective SSMs as promising alternatives to Transformer architectures, offering theoretical computational efficiency and sequence processing advantages. A comprehensive understanding of selective SSMs in runtime behavior, resource utilization patterns, and scaling characteristics still remains unexplored, thus obstructing their optimal deployment and further architectural improvements. This paper presents a thorough empirical study of Mamba-1 and Mamba-2, systematically profiled for performance to assess the design principles that contribute to their efficiency in state-space modeling. A detailed analysis of computation patterns, memory access, I/O characteristics, and scaling properties was performed for sequence lengths ranging from 64 to 16384 tokens. Our findings show that the SSM component, a central part of the selective SSM architecture, demands a significant portion of computational resources compared to other components in the Mamba block. Based on these insights, we propose a pruning technique that selectively removes low-activity states within the SSM component, achieving measurable throughput and memory gains while maintaining accuracy within a moderate pruning regime. This approach results in performance improvements across varying sequence lengths, achieving a 1.14x speedup and reducing memory usage by 11.50\%. These results offer valuable guidance for designing more efficient SSM architectures that can be applied to a wide range of real-world applications.
comment: Accepted in Bench 2025
☆ CausalProfiler: Generating Synthetic Benchmarks for Rigorous and Transparent Evaluation of Causal Machine Learning
Causal machine learning (Causal ML) aims to answer "what if" questions using machine learning algorithms, making it a promising tool for high-stakes decision-making. Yet, empirical evaluation practices in Causal ML remain limited. Existing benchmarks often rely on a handful of hand-crafted or semi-synthetic datasets, leading to brittle, non-generalizable conclusions. To bridge this gap, we introduce CausalProfiler, a synthetic benchmark generator for Causal ML methods. Based on a set of explicit design choices about the class of causal models, queries, and data considered, the CausalProfiler randomly samples causal models, data, queries, and ground truths constituting the synthetic causal benchmarks. In this way, Causal ML methods can be rigorously and transparently evaluated under a variety of conditions. This work offers the first random generator of synthetic causal benchmarks with coverage guarantees and transparent assumptions operating on the three levels of causal reasoning: observation, intervention, and counterfactual. We demonstrate its utility by evaluating several state-of-the-art methods under diverse conditions and assumptions, both in and out of the identification regime, illustrating the types of analyses and insights the CausalProfiler enables.
☆ A Unified and Stable Risk Minimization Framework for Weakly Supervised Learning with Theoretical Guarantees
Weakly supervised learning has emerged as a practical alternative to fully supervised learning when complete and accurate labels are costly or infeasible to acquire. However, many existing methods are tailored to specific supervision patterns -- such as positive-unlabeled (PU), unlabeled-unlabeled (UU), complementary-label (CLL), partial-label (PLL), or similarity-unlabeled annotations -- and rely on post-hoc corrections to mitigate instability induced by indirect supervision. We propose a principled, unified framework that bypasses such post-hoc adjustments by directly formulating a stable surrogate risk grounded in the structure of weakly supervised data. The formulation naturally subsumes diverse settings -- including PU, UU, CLL, PLL, multi-class unlabeled, and tuple-based learning -- under a single optimization objective. We further establish a non-asymptotic generalization bound via Rademacher complexity that clarifies how supervision structure, model capacity, and sample size jointly govern performance. Beyond this, we analyze the effect of class-prior misspecification on the bound, deriving explicit terms that quantify its impact, and we study identifiability, giving sufficient conditions -- most notably via supervision stratification across groups -- under which the target risk is recoverable. Extensive experiments show consistent gains across class priors, dataset scales, and class counts -- without heuristic stabilization -- while exhibiting robustness to overfitting.
☆ Resolving Sharp Gradients of Unstable Singularities to Machine Precision via Neural Networks
Recent work introduced a robust computational framework combining embedded mathematical structures, advanced optimization, and neural network architecture, leading to the discovery of multiple unstable self-similar solutions for key fluid dynamics equations, including the Incompressible Porous Media (IPM) and 2D Boussinesq systems. While this framework confirmed the existence of these singularities, an accuracy level approaching double-float machine precision was only achieved for stable and 1st unstable solutions of the 1D Córdoba-Córdoba-Fontelos model. For highly unstable solutions characterized by extreme gradients, the accuracy remained insufficient for validation. The primary obstacle is the presence of sharp solution gradients. Those gradients tend to induce large, localized PDE residuals during training, which not only hinder convergence, but also obscure the subtle signals near the origin required to identify the correct self-similar scaling parameter lambda of the solutions. In this work, we introduce a gradient-normalized PDE residual re-weighting scheme to resolve the high-gradient challenge while amplifying the critical residual signals at the origin for lambda identification. Coupled with the multi-stage neural network architecture, the PDE residuals are reduced to the level of round-off error across a wide spectrum of unstable self-similar singularities previously discovered. Furthermore, our method enables the discovery of new highly unstable singularities, i.e. the 4th unstable solution for IPM equations and a novel family of highly unstable solitons for the Nonlinear Schrödinger equations. This results in achieving high-gradient solutions with high precision, providing an important ingredient for bridging the gap between numerical discovery and computer-assisted proofs for unstable phenomena in nonlinear PDEs.
comment: 27 pages, 12 figures
☆ Mitigating Semantic Drift: Evaluating LLMs' Efficacy in Psychotherapy through MI Dialogue Summarization
Recent advancements in large language models (LLMs) have shown their potential across both general and domain-specific tasks. However, there is a growing concern regarding their lack of sensitivity, factual incorrectness in responses, inconsistent expressions of empathy, bias, hallucinations, and overall inability to capture the depth and complexity of human understanding, especially in low-resource and sensitive domains such as psychology. To address these challenges, our study employs a mixed-methods approach to evaluate the efficacy of LLMs in psychotherapy. We use LLMs to generate precise summaries of motivational interviewing (MI) dialogues and design a two-stage annotation scheme based on key components of the Motivational Interviewing Treatment Integrity (MITI) framework, namely evocation, collaboration, autonomy, direction, empathy, and a non-judgmental attitude. Using expert-annotated MI dialogues as ground truth, we formulate multi-class classification tasks to assess model performance under progressive prompting techniques, incorporating one-shot and few-shot prompting. Our results offer insights into LLMs' capacity for understanding complex psychological constructs and highlight best practices to mitigate ``semantic drift" in therapeutic settings. Our work contributes not only to the MI community by providing a high-quality annotated dataset to address data scarcity in low-resource domains but also critical insights for using LLMs for precise contextual interpretation in complex behavioral therapy.
♻ ☆ New-Onset Diabetes Assessment Using Artificial Intelligence-Enhanced Electrocardiography ML4H 2025
Diabetes has a long asymptomatic period which can often remain undiagnosed for multiple years. In this study, we trained a deep learning model to detect new-onset diabetes using 12-lead ECG and readily available demographic information. To do so, we used retrospective data where patients have both a hemoglobin A1c and ECG measured. However, such patients may not be representative of the complete patient population. As part of the study, we proposed a methodology to evaluate our model in the target population by estimating the probability of receiving an A1c test and reweight the retrospective population to represent the general population. We also adapted an efficient algorithm to generate Shapley values for both ECG signals and demographic features at the same time for model interpretation. The model offers an automated, more accurate method for early diabetes detection compared to current screening efforts. Their potential use in wearable devices can facilitate large-scale, community-wide screening, improving healthcare outcomes.
comment: 25 pages, 9 figures, published as a conference paper at ML4H 2025
♻ ☆ Asymmetric REINFORCE for off-Policy Reinforcement Learning: Balancing positive and negative rewards
Reinforcement learning (RL) is increasingly used to align large language models (LLMs). Off-policy methods offer greater implementation simplicity and data efficiency than on-policy techniques, but often result in suboptimal performance. In this work, we study the intermediate range of algorithms between off-policy RL and supervised fine-tuning by analyzing a simple off-policy REINFORCE algorithm, where the advantage is defined as $A=r-V$, with $r$ a reward and $V$ some tunable baseline. Intuitively, lowering $V$ emphasizes high-reward samples, while raising it penalizes low-reward ones more heavily. We first provide a theoretical analysis of this off-policy REINFORCE algorithm, showing that when the baseline $V$ lower-bounds the expected reward, the algorithm enjoys a policy improvement guarantee. Our analysis reveals that while on-policy updates can safely leverage both positive and negative signals, off-policy updates benefit from focusing more on positive rewards than on negative ones. We validate our findings experimentally in a controlled stochastic bandit setting and through fine-tuning state-of-the-art LLMs on reasoning tasks.
♻ ☆ Robust LLM Unlearning with MUDMAN: Meta-Unlearning with Disruption Masking And Normalization
Language models can retain dangerous knowledge and skills even after extensive safety fine-tuning, posing both misuse and misalignment risks. Recent studies show that even specialized unlearning methods can be easily reversed. To address this, we systematically evaluate many existing and novel components of unlearning methods and identify ones crucial for irreversible unlearning. We introduce Disruption Masking, a technique in which we only allow updating weights, where the signs of the unlearning gradient and the retaining gradient are the same. This ensures all updates are non-disruptive. Additionally, we identify the need for normalizing the unlearning gradients, and also confirm the usefulness of meta-learning. We combine these insights into MUDMAN (Meta-Unlearning with Disruption Masking and Normalization) and validate its effectiveness at preventing the recovery of dangerous capabilities. MUDMAN outperforms the prior TAR method by 40%, setting a new state-of-the-art for robust unlearning.
♻ ☆ Crowdsourcing the Frontier: Advancing Hybrid Physics-ML Climate Simulation via a $50,000 Kaggle Competition
Subgrid machine-learning (ML) parameterizations have the potential to introduce a new generation of climate models that incorporate the effects of higher-resolution physics without incurring the prohibitive computational cost associated with more explicit physics-based simulations. However, important issues, ranging from online instability to inconsistent online performance, have limited their operational use for long-term climate projections. To more rapidly drive progress in solving these issues, domain scientists and machine learning researchers opened up the offline aspect of this problem to the broader machine learning and data science community with the release of ClimSim, a NeurIPS Datasets and Benchmarks publication, and an associated Kaggle competition. This paper reports on the downstream results of the Kaggle competition by coupling emulators inspired by the winning teams' architectures to an interactive climate model (including full cloud microphysics, a regime historically prone to online instability) and systematically evaluating their online performance. Our results demonstrate that online stability in the low-resolution, real-geography setting is reproducible across multiple diverse architectures, which we consider a key milestone. All tested architectures exhibit strikingly similar offline and online biases, though their responses to architecture-agnostic design choices (e.g., expanding the list of input variables) can differ significantly. Multiple Kaggle-inspired architectures achieve state-of-the-art (SOTA) results on certain metrics such as zonal mean bias patterns and global RMSE, indicating that crowdsourcing the essence of the offline problem is one path to improving online performance in hybrid physics-AI climate simulation.
comment: Main text: 29 pages, 10 figures. SI: 47 pages, 37 figures
♻ ☆ Beyond Static Cutoffs: One-Shot Dynamic Thresholding for Diffusion Language Models NeurIPS 2025
Masked diffusion language models (MDLMs) are becoming competitive with their autoregressive counterparts but typically decode with fixed steps and sequential unmasking. To accelerate decoding, recent work such as Fast-dLLM enables parallel decoding via a static global confidence threshold, yet we observe strong block- and step-wise confidence fluctuations and, within a dataset, near-identical confidence trajectories across inputs as measured by cosine similarity. Motivated by these observations, we introduce One-Shot Dynamic Thresholding (OSDT), which calibrates thresholds on a single sequence and applies them to subsequent inputs with negligible overhead. On GPQA, GSM8K, and HumanEval, OSDT attains superior accuracy-throughput trade-offs (+24% tokens/s on GSM8K at the best accuracy, +45% on GPQA with comparable accuracy, and +50% on HumanEval with a modest accuracy gap). Beyond these results, our findings suggest broader opportunities to leverage reusable task-level confidence signatures for more general-purpose algorithmic and systems innovations in diffusion decoding.
comment: 7 pages, NeurIPS 2025 Efficient Reasoning Workshop
♻ ☆ Predicting Market Trends with Enhanced Technical Indicator Integration and Classification Models
Thanks to the high potential for profit, trading has become increasingly attractive to investors as the cryptocurrency and stock markets rapidly expand. However, because financial markets are intricate and dynamic, accurately predicting prices remains a significant challenge. The volatile nature of the cryptocurrency market makes it even harder for traders and investors to make decisions. This study presents a classification-based machine learning model to forecast the direction of the cryptocurrency market, i.e., whether prices will increase or decrease. The model is trained using historical data and important technical indicators such as the Moving Average Convergence Divergence, the Relative Strength Index, and the Bollinger Bands. We illustrate our approach with an empirical study of the closing price of Bitcoin. Several simulations, including a confusion matrix and Receiver Operating Characteristic curve, are used to assess the model's performance, and the results show a buy/sell signal accuracy of over 92\%. These findings demonstrate how machine learning models can assist investors and traders of cryptocurrencies in making wise/informed decisions in a very volatile market.
comment: 12 pages, 8 figures, and 6 tables
♻ ☆ ADNF-Clustering: An Adaptive and Dynamic Neuro-Fuzzy Clustering for Leukemia Prediction
Leukemia diagnosis and monitoring rely increasingly on high-throughput image data, yet conventional clustering methods lack the flexibility to accommodate evolving cellular patterns and quantify uncertainty in real time. We introduce Adaptive and Dynamic Neuro-Fuzzy Clustering, a novel streaming-capable framework that combines Convolutional Neural Network-based feature extraction with an online fuzzy clustering engine. ADNF initializes soft partitions via Fuzzy C-Means, then continuously updates micro-cluster centers, densities, and fuzziness parameters using a Fuzzy Temporal Index (FTI) that measures entropy evolution. A topology refinement stage performs density-weighted merging and entropy-guided splitting to guard against over- and under-segmentation. On the C-NMC leukemia microscopy dataset, our tool achieves a silhouette score of 0.51, demonstrating superior cohesion and separation over static baselines. The method's adaptive uncertainty modeling and label-free operation hold immediate potential for integration within the INFANT pediatric oncology network, enabling scalable, up-to-date support for personalized leukemia management.
comment: 6 pages, 1 figure
♻ ☆ CAMA: Enhancing Mathematical Reasoning in Large Language Models with Causal Knowledge
Large Language Models (LLMs) have demonstrated strong performance across a wide range of tasks, yet they still struggle with complex mathematical reasoning, a challenge fundamentally rooted in deep structural dependencies. To address this challenge, we propose \textbf{CA}usal \textbf{MA}thematician (\textbf{CAMA}), a two-stage causal framework that equips LLMs with explicit, reusable mathematical structure. In the learning stage, CAMA first constructs the \textbf{M}athematical \textbf{C}ausal \textbf{G}raph (\textbf{MCG}), a high-level representation of solution strategies, by combining LLM priors with causal discovery algorithms applied to a corpus of question-solution pairs. The resulting MCG encodes essential knowledge points and their causal dependencies. To better align the graph with downstream reasoning tasks, CAMA further refines the MCG through iterative feedback derived from a selected subset of the question-solution pairs. In the reasoning stage, given a new question, CAMA dynamically extracts a task-relevant subgraph from the MCG, conditioned on both the question content and the LLM's intermediate reasoning trace. This subgraph, which encodes the most pertinent knowledge points and their causal dependencies, is then injected back into the LLM to guide its reasoning process. Empirical results on real-world datasets show that CAMA significantly improves LLM performance on challenging mathematical problems. Furthermore, our experiments demonstrate that structured guidance consistently outperforms unstructured alternatives, and that incorporating asymmetric causal relationships yields greater improvements than using symmetric associations alone.
♻ ☆ Privacy Reasoning in Ambiguous Contexts
We study the ability of language models to reason about appropriate information disclosure - a central aspect of the evolving field of agentic privacy. Whereas previous works have focused on evaluating a model's ability to align with human decisions, we examine the role of ambiguity and missing context on model performance when making information-sharing decisions. We identify context ambiguity as a crucial barrier for high performance in privacy assessments. By designing Camber, a framework for context disambiguation, we show that model-generated decision rationales can reveal ambiguities and that systematically disambiguating context based on these rationales leads to significant accuracy improvements (up to 13.3% in precision and up to 22.3% in recall) as well as reductions in prompt sensitivity. Overall, our results indicate that approaches for context disambiguation are a promising way forward to enhance agentic privacy reasoning.
♻ ☆ Network Inversion for Uncertainty-Aware Out-of-Distribution Detection
Out-of-distribution (OOD) detection and uncertainty estimation (UE) are critical components for building safe machine learning systems, especially in real-world scenarios where unexpected inputs are inevitable. However the two problems have, until recently, separately been addressed. In this work, we propose a novel framework that combines network inversion with classifier training to simultaneously address both OOD detection and uncertainty estimation. For a standard n-class classification task, we extend the classifier to an (n+1)-class model by introducing a "garbage" class, initially populated with random gaussian noise to represent outlier inputs. After each training epoch, we use network inversion to reconstruct input images corresponding to all output classes that initially appear as noisy and incoherent and are therefore excluded to the garbage class for retraining the classifier. This cycle of training, inversion, and exclusion continues iteratively till the inverted samples begin to resemble the in-distribution data more closely, with a significant drop in the uncertainty, suggesting that the classifier has learned to carve out meaningful decision boundaries while sanitising the class manifolds by pushing OOD content into the garbage class. During inference, this training scheme enables the model to effectively detect and reject OOD samples by classifying them into the garbage class. Furthermore, the confidence scores associated with each prediction can be used to estimate uncertainty for both in-distribution and OOD inputs. Our approach is scalable, interpretable, and does not require access to external OOD datasets or post-hoc calibration techniques while providing a unified solution to the dual challenges of OOD detection and uncertainty estimation.
♻ ☆ Interpretability for Time Series Transformers using A Concept Bottleneck Framework
Mechanistic interpretability focuses on reverse engineering the internal mechanisms learned by neural networks. We extend our focus and propose to mechanistically forward engineer using our framework based on Concept Bottleneck Models. In the context of long-term time series forecasting, we modify the training objective to encourage a model to develop representations which are similar to predefined, interpretable concepts using Centered Kernel Alignment. This steers the bottleneck components to learn the predefined concepts, while allowing other components to learn other, undefined concepts. We apply the framework to the Vanilla Transformer, Autoformer and FEDformer, and present an in-depth analysis on synthetic data and on a variety of benchmark datasets. We find that the model performance remains mostly unaffected, while the model shows much improved interpretability. Additionally, we verify the interpretation of the bottleneck components with an intervention experiment using activation patching.
♻ ☆ CheMixHub: Datasets and Benchmarks for Chemical Mixture Property Prediction
Developing improved predictive models for multi-molecular systems is crucial, as nearly every chemical product used results from a mixture of chemicals. While being a vital part of the industry pipeline, the chemical mixture space remains relatively unexplored by the Machine Learning community. In this paper, we introduce CheMixHub, a holistic benchmark for molecular mixtures, covering a corpus of 11 chemical mixtures property prediction tasks, from drug delivery formulations to battery electrolytes, totalling approximately 500k data points gathered and curated from 7 publicly available datasets. CheMixHub introduces various data splitting techniques to assess context-specific generalization and model robustness, providing a foundation for the development of predictive models for chemical mixture properties. Furthermore, we map out the modelling space of deep learning models for chemical mixtures, establishing initial benchmarks for the community. This dataset has the potential to accelerate chemical mixture development, encompassing reformulation, optimization, and discovery. The dataset and code for the benchmarks can be found at: https://github.com/chemcognition-lab/chemixhub
comment: 9 pages, 4 figures
♻ ☆ Gradient-Based Program Repair: Fixing Bugs in Continuous Program Spaces
Automatic program repair seeks to generate correct code from buggy programs, with most approaches searching the correct program in a discrete, symbolic space of source code tokens. This symbolic search is fundamentally limited by its inability to directly reason about program behavior. We introduce Gradient-Based Program Repair (GBPR), a new paradigm that reframes program repair as continuous optimization in a differentiable numerical program space. Our core insight is to compile symbolic programs into differentiable numerical representations, enabling search in the numerical program space directly guided by program behavior. To evaluate GBPR, we present RaspBugs, a new benchmark of 1,466 buggy symbolic RASP programs and their respective numerical representations. Our experiments demonstrate that GBPR can effectively repair buggy symbolic programs by gradient-based optimization in the numerical program space, with convincing repair trajectories. To our knowledge, we are the first to state program repair as continuous optimization in a numerical program space. Our work establishes a new direction for program repair research, bridging two rich worlds: continuous optimization and program behavior.
♻ ☆ Curvature Dynamic Black-box Attack: revisiting adversarial robustness via dynamic curvature estimation
Adversarial attack reveals the vulnerability of deep learning models. It is assumed that high curvature may give rise to rough decision boundary and thus result in less robust models. However, the most commonly used \textit{curvature} is the curvature of loss function, scores or other parameters from within the model as opposed to decision boundary curvature, since the former can be relatively easily formed using second order derivative. In this paper, we propose a new query-efficient method, dynamic curvature estimation (DCE), to estimate the decision boundary curvature in a black-box setting. Our approach is based on CGBA, a black-box adversarial attack. By performing DCE on a wide range of classifiers, we discovered, statistically, a connection between decision boundary curvature and adversarial robustness. We also propose a new attack method, curvature dynamic black-box attack (CDBA) with improved performance using the estimated curvature.
♻ ☆ Activation Quantization of Vision Encoders Needs Prefixing Registers
Transformer-based vision encoders -- such as CLIP -- are central to multimodal intelligence, powering applications from autonomous web agents to robotic control. Since these applications often demand real-time processing of massive visual data, reducing the inference cost of vision encoders is critical. Quantization offers a practical path, but remains challenging even at 8-bit precision due to massive-scale activations (i.e., outliers). In this work, we propose $\textit{RegCache}$, a training-free algorithm that mitigates outliers in large-scale pretrained vision encoders and serves as a plug-in module that can be applied on top of other quantization methods. The proposed RegCache introduces outlier-prone yet semantically meaningless prefix tokens to the target vision encoder, which prevents other tokens from having outliers. Notably, we observe that outliers in vision encoders behave differently from those in language models, motivating two technical innovations: middle-layer prefixing and token deletion. Experiments show that our method consistently improves the accuracy of quantized models across both text-supervised and self-supervised vision encoders.
comment: 19 pages, 8 figures
♻ ☆ Learning Contrastive Feature Representations for Facial Action Unit Detection
For the Facial Action Unit (AU) detection task, accurately capturing the subtle facial differences between distinct AUs is essential for reliable detection. Additionally, AU detection faces challenges from class imbalance and the presence of noisy or false labels, which undermine detection accuracy. In this paper, we introduce a novel contrastive learning framework aimed for AU detection that incorporates both self-supervised and supervised signals, thereby enhancing the learning of discriminative features for accurate AU detection. To tackle the class imbalance issue, we employ a negative sample re-weighting strategy that adjusts the step size of updating parameters for minority and majority class samples. Moreover, to address the challenges posed by noisy and false AU labels, we employ a sampling technique that encompasses three distinct types of positive sample pairs. This enables us to inject self-supervised signals into the supervised signal, effectively mitigating the adverse effects of noisy labels. Our experimental assessments, conducted on five widely-utilized benchmark datasets (BP4D, DISFA, BP4D+, GFT and Aff-Wild2), underscore the superior performance of our approach compared to state-of-the-art methods of AU detection. Our code is available at https://github.com/Ziqiao-Shang/AUNCE.
comment: This paper has been accepted by Pattern Recognition
♻ ☆ DP-MicroAdam: Private and Frugal Algorithm for Training and Fine-tuning
Adaptive optimizers are the de facto standard in non-private training as they often enable faster convergence and improved performance. In contrast, differentially private (DP) training is still predominantly performed with DP-SGD, typically requiring extensive compute and hyperparameter tuning. We propose DP-MicroAdam, a memory-efficient and sparsity-aware adaptive DP optimizer. We prove that DP-MicroAdam converges in stochastic non-convex optimization at the optimal $\mathcal{O}(1/\sqrt{T})$ rate, up to privacy-dependent constants. Empirically, DP-MicroAdam outperforms existing adaptive DP optimizers and achieves competitive or superior accuracy compared to DP-SGD across a range of benchmarks, including CIFAR-10, large-scale ImageNet training, and private fine-tuning of pretrained transformers. These results demonstrate that adaptive optimization can improve both performance and stability under differential privacy.
♻ ☆ Towards Responsible Development of Generative AI for Education: An Evaluation-Driven Approach
A major challenge facing the world is the provision of equitable and universal access to quality education. Recent advances in generative AI (gen AI) have created excitement about the potential of new technologies to offer a personal tutor for every learner and a teaching assistant for every teacher. The full extent of this dream, however, has not yet materialised. We argue that this is primarily due to the difficulties with verbalising pedagogical intuitions into gen AI prompts and the lack of good evaluation practices, reinforced by the challenges in defining excellent pedagogy. Here we present our work collaborating with learners and educators to translate high level principles from learning science into a pragmatic set of seven diverse educational benchmarks, spanning quantitative, qualitative, automatic and human evaluations; and to develop a new set of fine-tuning datasets to improve the pedagogical capabilities of Gemini, introducing LearnLM-Tutor. Our evaluations show that LearnLM-Tutor is consistently preferred over a prompt tuned Gemini by educators and learners on a number of pedagogical dimensions. We hope that this work can serve as a first step towards developing a comprehensive educational evaluation framework, and that this can enable rapid progress within the AI and EdTech communities towards maximising the positive impact of gen AI in education.
♻ ☆ SDFs from Unoriented Point Clouds using Neural Variational Heat Distances
We propose a novel variational approach for computing neural Signed Distance Fields (SDF) from unoriented point clouds. To this end, we replace the commonly used eikonal equation with the heat method, carrying over to the neural domain what has long been standard practice for computing distances on discrete surfaces. This yields two convex optimization problems for whose solution we employ neural networks: We first compute a neural approximation of the gradients of the unsigned distance field through a small time step of heat flow with weighted point cloud densities as initial data. Then we use it to compute a neural approximation of the SDF. We prove that the underlying variational problems are well-posed. Through numerical experiments, we demonstrate that our method provides state-of-the-art surface reconstruction and consistent SDF gradients. Furthermore, we show in a proof-of-concept that it is accurate enough for solving a PDE on the zero-level set.
comment: 16 pages, 19 figures, 4 tables
♻ ☆ Deep Reinforcement Learning for Drone Route Optimization in Post-Disaster Road Assessment
Rapid post-disaster road damage assessment is critical for effective emergency response, yet traditional optimization methods suffer from excessive computational time and require domain knowledge for algorithm design, making them unsuitable for time-sensitive disaster scenarios. This study proposes an attention-based encoder-decoder model (AEDM) for rapid drone routing decision in post-disaster road damage assessment. The method employs deep reinforcement learning to determine high-quality drone assessment routes without requiring algorithmic design knowledge. A network transformation method is developed to convert link-based routing problems into equivalent node-based formulations, while a synthetic road network generation technique addresses the scarcity of large-scale training datasets. The model is trained using policy optimization with multiple optima (POMO) with multi-task learning capabilities to handle diverse parameter combinations. Experimental results demonstrate two key strengths of AEDM: it outperforms commercial solvers by 20--71\% and traditional heuristics by 23--35\% in solution quality, while achieving rapid inference (1--2 seconds) versus 100--2,000 seconds for traditional methods. The model exhibits strong generalization across varying problem scales, drone numbers, and time constraints, consistently outperforming baseline methods on unseen parameter distributions and real-world road networks. The proposed method effectively balances computational efficiency with solution quality, making it particularly suitable for time-critical disaster response applications where rapid decision-making is essential for saving lives. The source code for AEDM is publicly available at https://github.com/PJ-HTU/AEDM-for-Post-disaster-road-assessment.
comment: 28 pages, 15 figures
♻ ☆ Federated ADMM from Bayesian Duality
We propose a new Bayesian approach to derive and extend the federated Alternating Direction Method of Multipliers (ADMM). We show that the solutions of variational-Bayesian objectives are associated with a duality structure that not only resembles ADMM but also extends it. For example, ADMM-like updates are recovered when the objective is optimized over the isotropic-Gaussian family, and new non-trivial extensions are obtained for other more flexible exponential families. Examples include a Newton-like variant that converges in one step on quadratics and an Adam-like variant called IVON-ADMM that has the same cost as Adam but yields up to 7% accuracy boosts in heterogeneous deep learning. Our work opens a new direction to use Bayes to extend ADMM and other primal-dual methods.
comment: First two authors contributed equally. Code is at https://github.com/team-approx-bayes/bayes-admm
♻ ☆ $μ$PC: Scaling Predictive Coding to 100+ Layer Networks
The biological implausibility of backpropagation (BP) has motivated many alternative, brain-inspired algorithms that attempt to rely only on local information, such as predictive coding (PC) and equilibrium propagation. However, these algorithms have notoriously struggled to train very deep networks, preventing them from competing with BP in large-scale settings. Indeed, scaling PC networks (PCNs) has recently been posed as a challenge for the community (Pinchetti et al., 2024). Here, we show that 100+ layer PCNs can be trained reliably using a Depth-$μ$P parameterisation (Yang et al., 2023; Bordelon et al., 2023) which we call "$μ$PC". By analysing the scaling behaviour of PCNs, we reveal several pathologies that make standard PCNs difficult to train at large depths. We then show that, despite addressing only some of these instabilities, $μ$PC allows stable training of very deep (up to 128-layer) residual networks on simple classification tasks with competitive performance and little tuning compared to current benchmarks. Moreover, $μ$PC enables zero-shot transfer of both weight and activity learning rates across widths and depths. Our results serve as a first step towards scaling PC to more complex architectures and have implications for other local algorithms. Code for $μ$PC is made available as part of a JAX library for PCNs.
comment: 35 pages, 42 figures
♻ ☆ Spatially Parallel All-optical Neural Networks
All-optical neural networks (AONNs) have emerged as a promising paradigm for ultrafast and energy-efficient computation. These networks typically consist of multiple serially connected layers between input and output layers--a configuration we term spatially series AONNs, with deep neural networks (DNNs) being the most prominent examples. However, such series architectures suffer from progressive signal degradation during information propagation and critically require additional nonlinearity designs to model complex relationships effectively. Here we propose a spatially parallel architecture for all-optical neural networks (SP-AONNs). Unlike series architecture that sequentially processes information through consecutively connected optical layers, SP-AONNs divide the input signal into identical copies fed simultaneously into separate optical layers. Through coherent interference between these parallel linear sub-networks, SP-AONNs inherently enable nonlinear computation without relying on active nonlinear components or iterative updates. We implemented a modular 4F optical system for SP-AONNs and evaluated its performance across multiple image classification benchmarks. Experimental results demonstrate that increasing the number of parallel sub-networks consistently enhances accuracy, improves noise robustness, and expands model expressivity. Our findings highlight spatial parallelism as a practical and scalable strategy for advancing the capabilities of optical neural computing.
comment: 13 pages, 4 figures
♻ ☆ An AI-Enabled Hybrid Cyber-Physical Framework for Adaptive Control in Smart Grids
Evolving smart grids require flexible and adaptive control methods. A harmonized hybrid cyber-physical framework, which considers both physical and cyber layers and ensures adaptability, is one of the critical challenges to enable sustainable and scalable smart grids. This paper proposes a three-layer (physical, cyber, control) architecture, with an energy management system as the core of the system. Adaptive Dynamic Programming(ADP) and Artificial Intelligence-based optimization techniques are used for sustainability and scalability. The deployment is considered under two contingencies: Cloud Independent and cloud-assisted. They allow us to test the proposed model under a low-latency localized decision scenario and also under a centralized control scenario. The architecture is simulated on a standard IEEE 33-Bus system, yielding positive results. The proposed framework can ensure grid stability, optimize dispatch, and respond to ever-changing grid dynamics.
comment: 16 pages, 11 figures, IEEEaccess journal
♻ ☆ Learning to Rank Critical Road Segments via Heterogeneous Graphs with OD Flow Integration
Existing learning-to-rank methods for road networks often fail to incorporate origin-destination (OD) flows and route information, limiting their ability to model long-range spatial dependencies. To address this gap, we propose HetGL2R, a heterogeneous graph learning framework for ranking road-segment importance. HetGL2R builds a tripartite graph that unifies OD flows, routes, and network topology, and further introduces attribute-guided graphs that elevate node attributes into explicit nodes to model functional similarity. A heterogeneous joint random walk algorithm (HetGWalk) samples both graph types to generate context-rich node sequences. These sequences are encoded with a Transformer to learn embeddings that capture long-range structural dependencies driven by OD demand and route configuration, as well as functional associations derived from attribute similarity. Finally, a listwise ranking strategy with a KL-divergence loss evaluates and ranks segment importance. Experiments on three SUMO-generated simulated networks of different scales show that, against state-of-the-art methods, HetGL2R achieves average improvements of approximately 7.52%, 4.40% and 3.57% in ranking performance.
♻ ☆ LongCat-Flash-Omni Technical Report
We introduce LongCat-Flash-Omni, a state-of-the-art open-source omni-modal model with 560 billion parameters, excelling at real-time audio-visual interaction. By adopting a curriculum-inspired progressive training strategy that transitions from simpler to increasingly complex modality sequence modeling tasks, LongCat-Flash-Omni attains comprehensive multimodal capabilities while maintaining strong unimodal capability. Building upon LongCat-Flash, which adopts a high-performance Shortcut-connected Mixture-of-Experts (MoE) architecture with zero-computation experts, LongCat-Flash-Omni integrates efficient multimodal perception and speech reconstruction modules. Despite its immense size of 560B parameters (with 27B activated), LongCat-Flash-Omni achieves low-latency real-time audio-visual interaction. For training infrastructure, we developed a modality-decoupled parallelism scheme specifically designed to manage the data and model heterogeneity inherent in large-scale multimodal training. This innovative approach demonstrates exceptional efficiency by sustaining over 90% of the throughput achieved by text-only training. Extensive evaluations show that LongCat-Flash-Omni achieves state-of-the-art performance on omni-modal benchmarks among open-source models. Furthermore, it delivers highly competitive results across a wide range of modality-specific tasks, including text, image, and video understanding, as well as audio understanding and generation. We provide a comprehensive overview of the model architecture design, training procedures, and data strategies, and open-source the model to foster future research and development in the community.
♻ ☆ Point3R: Streaming 3D Reconstruction with Explicit Spatial Pointer Memory
Dense 3D scene reconstruction from an ordered sequence or unordered image collections is a critical step when bringing research in computer vision into practical scenarios. Following the paradigm introduced by DUSt3R, which unifies an image pair densely into a shared coordinate system, subsequent methods maintain an implicit memory to achieve dense 3D reconstruction from more images. However, such implicit memory is limited in capacity and may suffer from information loss of earlier frames. We propose Point3R, an online framework targeting dense streaming 3D reconstruction. To be specific, we maintain an explicit spatial pointer memory directly associated with the 3D structure of the current scene. Each pointer in this memory is assigned a specific 3D position and aggregates scene information nearby in the global coordinate system into a changing spatial feature. Information extracted from the latest frame interacts explicitly with this pointer memory, enabling dense integration of the current observation into the global coordinate system. We design a 3D hierarchical position embedding to promote this interaction and design a simple yet effective fusion mechanism to ensure that our pointer memory is uniform and efficient. Our method achieves competitive or state-of-the-art performance on various tasks with low training costs. Code: https://github.com/YkiWu/Point3R.
comment: Code is available at: https://github.com/YkiWu/Point3R
♻ ☆ Probability calibration for precipitation nowcasting NeurIPS 2025
Reliable precipitation nowcasting is critical for weather-sensitive decision-making, yet neural weather models (NWMs) can produce poorly calibrated probabilistic forecasts. Standard calibration metrics such as the expected calibration error (ECE) fail to capture miscalibration across precipitation thresholds. We introduce the expected thresholded calibration error (ETCE), a new metric that better captures miscalibration in ordered classes like precipitation amounts. We extend post-processing techniques from computer vision to the forecasting domain. Our results show that selective scaling with lead time conditioning reduces model miscalibration without reducing the forecast quality.
comment: Accepted to NeurIPS 2025 Workshop: Tackling Climate Change with Machine Learning
♻ ☆ Counterfactual Explanation for Multivariate Time Series Forecasting with Exogenous Variables
Currently, machine learning is widely used across various domains, including time series data analysis. However, some machine learning models function as black boxes, making interpretability a critical concern. One approach to address this issue is counterfactual explanation (CE), which aims to provide insights into model predictions. This study focuses on the relatively underexplored problem of generating counterfactual explanations for time series forecasting. We propose a method for extracting CEs in time series forecasting using exogenous variables, which are frequently encountered in fields such as business and marketing. In addition, we present methods for analyzing the influence of each variable over an entire time series, generating CEs by altering only specific variables, and evaluating the quality of the resulting CEs. We validate the proposed method through theoretical analysis and empirical experiments, showcasing its accuracy and practical applicability. These contributions are expected to support real-world decision-making based on time series data analysis.
comment: 27pages,9figures,9tables
♻ ☆ Atom of Thoughts for Markov LLM Test-Time Scaling NeurIPS 2025
Large Language Models (LLMs) achieve superior performance through training-time scaling, and test-time scaling further enhances their capabilities by conducting effective reasoning during inference. However, as the scale of reasoning increases, existing test-time scaling methods suffer from accumulated historical information, which not only wastes computational resources but also interferes with effective reasoning. To address this issue, we observe that complex reasoning can be achieved by solving a series of independent and self-contained subquestions. These subquestions are essentially \textit{atomic questions}, exhibiting the memoryless property similar to Markov processes. Based on this observation, we propose Atom of Thoughts (\our), where each state transition consists of decomposing the current question into a dependency-based directed acyclic graph and contracting its subquestions, forming a simplified question that maintains answer equivalence with the original problem. This answer preservation enables the iterative \textit{decomposition-contraction} process to naturally form a meaningful Markov reasoning process. Furthermore, these atomic states can be seamlessly integrated into existing test-time scaling methods, enabling \our to serve as a plug-in enhancement for improving reasoning capabilities. Experiments across six benchmarks demonstrate the effectiveness of \our both as a standalone framework and a plug-in enhancement. Notably, on HotpotQA, when applied to gpt-4o-mini, \our achieves an \textbf{80.6\%} F1 score, surpassing o3-mini by \textbf{3.4\%} and DeepSeek-R1 by \textbf{10.6\%}. The code is available at \href{https://github.com/qixucen/atom}{https://github.com/qixucen/atom}.
comment: Accepted to NeurIPS 2025
♻ ☆ Actionable and diverse counterfactual explanations incorporating domain knowledge and causal constraints
Counterfactual explanations enhance the actionable interpretability of machine learning models by identifying the minimal changes required to achieve a desired outcome of the model. However, existing methods often ignore the complex dependencies in real-world datasets, leading to unrealistic or impractical modifications. Motivated by cybersecurity applications in the email marketing domain, we propose a method for generating Diverse, Actionable, and kNowledge-Constrained Explanations (DANCE), which incorporates feature dependencies and causal constraints to ensure plausibility and real-world feasibility of counterfactuals. Our method learns linear and nonlinear constraints from data or integrates expert-provided dependency graphs, ensuring counterfactuals are plausible and actionable. By maintaining consistency with feature relationships, the method produces explanations that align with real-world constraints. Additionally, it balances plausibility, diversity, and sparsity, effectively addressing key limitations in existing algorithms. The work is developed based on a real-life case study with Freshmail, the largest email marketing company in Poland and supported by a joint R&D project Sendguard. Furthermore, we provide an extensive evaluation using 140 public datasets, which highlights its ability to generate meaningful, domain-relevant counterfactuals that outperform other existing approaches based on widely used metrics. The source code for reproduction of the results can be found in a GitHub repository we provide.
♻ ☆ REWA: A General Theory of Witness-Based Similarity
We present a universal framework for similarity-preserving encodings that subsumes all discrete, continuous, algebraic, and learned similarity methods under a single theoretical umbrella. By formulating similarity as functional witness projection over monoids, we prove that \[ O\!\left(\frac{1}{Δ^{2}}\log N\right) \] encoding complexity with ranking preservation holds for arbitrary algebraic structures. This unification reveals that Bloom filters, Locality Sensitive Hashing (LSH), Count-Min sketches, Random Fourier Features, and Transformer attention kernels are instances of the same underlying mechanism. We provide complete proofs with explicit constants under 4-wise independent hashing, handle heavy-tailed witnesses via normalization and clipping, and prove \[ O(\log N) \] complexity for all major similarity methods from 1970-2024. We give explicit constructions for Boolean, Natural, Real, Tropical, and Product monoids, prove tight concentration bounds, and demonstrate compositional properties enabling multi-primitive similarity systems.
♻ ☆ Split Conformal Prediction under Data Contamination
Conformal prediction is a non-parametric technique for constructing prediction intervals or sets from arbitrary predictive models under the assumption that the data is exchangeable. It is popular as it comes with theoretical guarantees on the marginal coverage of the prediction sets and the split conformal prediction variant has a very low computational cost compared to model training. We study the robustness of split conformal prediction in a data contamination setting, where we assume a small fraction of the calibration scores are drawn from a different distribution than the bulk. We quantify the impact of the corrupted data on the coverage and efficiency of the constructed sets when evaluated on "clean" test points, and verify our results with numerical experiments. Moreover, we propose an adjustment in the classification setting which we call Contamination Robust Conformal Prediction, and verify the efficacy of our approach using both synthetic and real datasets.
♻ ☆ Quantifying Statistical Significance of Deep Nearest Neighbor Anomaly Detection via Selective Inference
In real-world applications, anomaly detection (AD) often operates without access to anomalous data, necessitating semi-supervised methods that rely solely on normal data. Among these methods, deep k-nearest neighbor (deep kNN) AD stands out for its interpretability and flexibility, leveraging distance-based scoring in deep latent spaces.Despite its strong performance, deep kNN lacks a mechanism to quantify uncertainty-an essential feature for critical applications such as industrial inspection. To address this limitation, we propose a statistical framework that quantifies the significance of detected anomalies in the form of p-values, thereby enabling control over false positive rates at a user-specified significance level (e.g.,0.05). A central challenge lies in managing selection bias, which we tackle using Selective Inference-a principled method for conducting inference conditioned on data-driven selections. We evaluate our method on diverse datasets and demonstrate that it provides reliable AD well-suited for industrial use cases.
comment: 19 pages, 15 figures
♻ ☆ FP64 is All You Need: Rethinking Failure Modes in Physics-Informed Neural Networks
Physics Informed Neural Networks (PINNs) often exhibit failure modes in which the PDE residual loss converges while the solution error stays large, a phenomenon traditionally blamed on local optima separated from the true solution by steep loss barriers. We challenge this understanding by demonstrate that the real culprit is insufficient arithmetic precision: with standard FP32, the LBFGS optimizer prematurely satisfies its convergence test, freezing the network in a spurious failure phase. Simply upgrading to FP64 rescues optimization, enabling vanilla PINNs to solve PDEs without any failure modes. These results reframe PINN failure modes as precision induced stalls rather than inescapable local minima and expose a three stage training dynamic unconverged, failure, success whose boundaries shift with numerical precision. Our findings emphasize that rigorous arithmetic precision is the key to dependable PDE solving with neural networks.
♻ ☆ FedCanon: Non-Convex Composite Federated Learning with Efficient Proximal Operation on Heterogeneous Data
Composite federated learning offers a general framework for solving machine learning problems with additional regularization terms. However, existing methods often face significant limitations: many require clients to perform computationally expensive proximal operations, and their performance is frequently vulnerable to data heterogeneity. To overcome these challenges, we propose a novel composite federated learning algorithm called \textbf{FedCanon}, designed to solve the optimization problems comprising a possibly non-convex loss function and a weakly convex, potentially non-smooth regularization term. By decoupling proximal mappings from local updates, FedCanon requires only a single proximal evaluation on the server per iteration, thereby reducing the overall proximal computation cost. Concurrently, it integrates control variables into local updates to mitigate the client drift arising from data heterogeneity. The entire architecture avoids the complex subproblems of primal-dual alternatives. The theoretical analysis provides the first rigorous convergence guarantees for this proximal-skipping framework in the general non-convex setting. It establishes that FedCanon achieves a sublinear convergence rate, and a linear rate under the Polyak-Łojasiewicz condition, without the restrictive bounded heterogeneity assumption. Extensive experiments demonstrate that FedCanon outperforms the state-of-the-art methods in terms of both accuracy and computational efficiency, particularly under heterogeneous data distributions.
♻ ☆ Un-mixing Test-time Adaptation under Heterogeneous Data Streams
Deploying deep models in real-world scenarios remains challenging due to significant performance drops under distribution shifts between training and deployment environments. Test-Time Adaptation (TTA) has recently emerged as a promising solution, enabling on-the-fly model adaptation. However, its effectiveness deteriorates in the presence of mixed distribution shifts -- common in practical settings -- where multiple target domains coexist. In this paper, we study TTA under mixed distribution shifts and move beyond conventional whole-batch adaptation paradigms. By revisiting distribution shifts from a spectral perspective, we find that the heterogeneity across latent domains is often pronounced in Fourier space. In particular, high-frequency components encode domain-specific variations, which facilitates clearer separation of samples from different distributions. Motivated by this observation, we propose to un-mix heterogeneous data streams using high-frequency domain cues, making diverse shift patterns more tractable. To this end, we propose Frequency-based Decentralized Adaptation (FreDA), a novel framework that decomposes globally heterogeneous data stream into locally homogeneous clusters in the Fourier space. It leverages decentralized learning and augmentation strategies to robustly adapt under mixed domain shifts. Extensive experiments across various environments (corrupted, natural, and medical) show the superiority of our method over the state-of-the-arts.
♻ ☆ Anomaly Resilient Temporal QoS Prediction using Hypergraph Convoluted Transformer Network
Quality-of-Service (QoS) prediction is a critical task in the service lifecycle, enabling precise and adaptive service recommendations by anticipating performance variations over time in response to evolving network uncertainties and user preferences. However, contemporary QoS prediction methods frequently encounter data sparsity and cold-start issues, which hinder accurate QoS predictions and limit the ability to capture diverse user preferences. Additionally, these methods often assume QoS data reliability, neglecting potential credibility issues such as outliers and the presence of greysheep users and services with atypical invocation patterns. Furthermore, traditional approaches fail to leverage diverse features, including domain-specific knowledge and complex higher-order patterns, essential for accurate QoS predictions. In this paper, we introduce a real-time, trust-aware framework for temporal QoS prediction to address the aforementioned challenges, featuring an end-to-end deep architecture called the Hypergraph Convoluted Transformer Network (HCTN). HCTN combines a hypergraph structure with graph convolution over hyper-edges to effectively address high-sparsity issues by capturing complex, high-order correlations. Complementing this, the transformer network utilizes multi-head attention along with parallel 1D convolutional layers and fully connected dense blocks to capture both fine-grained and coarse-grained dynamic patterns. Additionally, our approach includes a sparsity-resilient solution for detecting greysheep users and services, incorporating their unique characteristics to improve prediction accuracy. Trained with a robust loss function resistant to outliers, HCTN demonstrated state-of-the-art performance on the large-scale WSDREAM-2 datasets for response time and throughput.
comment: 12 pages, 8 figures
♻ ☆ Scale-Agnostic Kolmogorov-Arnold Geometry in Neural Networks
Recent work by Freedman and Mulligan demonstrated that shallow multilayer perceptrons spontaneously develop Kolmogorov-Arnold geometric (KAG) structure during training on synthetic three-dimensional tasks. However, it remained unclear whether this phenomenon persists in realistic high-dimensional settings and what spatial properties this geometry exhibits. We extend KAG analysis to MNIST digit classification (784 dimensions) using 2-layer MLPs with systematic spatial analysis at multiple scales. We find that KAG emerges during training and appears consistently across spatial scales, from local 7-pixel neighborhoods to the full 28x28 image. This scale-agnostic property holds across different training procedures: both standard training and training with spatial augmentation produce the same qualitative pattern. These findings reveal that neural networks spontaneously develop organized, scale-invariant geometric structure during learning on realistic high-dimensional data.
♻ ☆ Rapid optimization in high dimensional space by deep kernel learning augmented genetic algorithms
Exploration of complex high-dimensional spaces presents significant challenges in fields such as molecular discovery, process optimization, and supply chain management. Genetic Algorithms (GAs), while offering significant power for creating new candidate spaces, often entail high computational demands due to the need for evaluation of each new proposed solution. On the other hand, Deep Kernel Learning (DKL) efficiently navigates the spaces of preselected candidate structures but lacks generative capabilities. This study introduces an approach that amalgamates the generative power of GAs to create new candidates with the efficiency of DKL-based surrogate models to rapidly ascertain the behavior of new candidate spaces. This DKL-GA framework can be further used to build Bayesian Optimization (BO) workflows. We demonstrate the effectiveness of this approach through the optimization of the FerroSIM model, showcasing its broad applicability to diverse challenges, including molecular discovery and battery charging optimization.
♻ ☆ Physics Steering: Causal Control of Cross-Domain Concepts in a Physics Foundation Model
Recent advances in mechanistic interpretability have revealed that large language models (LLMs) develop internal representations corresponding not only to concrete entities but also distinct, human-understandable abstract concepts and behaviour. Moreover, these hidden features can be directly manipulated to steer model behaviour. However, it remains an open question whether this phenomenon is unique to models trained on inherently structured data (ie. language, images) or if it is a general property of foundation models. In this work, we investigate the internal representations of a large physics-focused foundation model. Inspired by recent work identifying single directions in activation space for complex behaviours in LLMs, we extract activation vectors from the model during forward passes over simulation datasets for different physical regimes. We then compute "delta" representations between the two regimes. These delta tensors act as concept directions in activation space, encoding specific physical features. By injecting these concept directions back into the model during inference, we can steer its predictions, demonstrating causal control over physical behaviours, such as inducing or removing some particular physical feature from a simulation. These results suggest that scientific foundation models learn generalised representations of physical principles. They do not merely rely on superficial correlations and patterns in the simulations. Our findings open new avenues for understanding and controlling scientific foundation models and has implications for AI-enabled scientific discovery.
comment: 16 Pages, 9 Figures. Code available soon at https://github.com/DJ-Fear/walrus_steering
♻ ☆ Structured Prompting Enables More Robust Evaluation of Language Models
As language models (LMs) are increasingly adopted across domains, high-quality benchmarking frameworks that accurately estimate performance are essential for guiding deployment decisions. While frameworks such as Holistic Evaluation of Language Models (HELM) enable broad evaluation across tasks, they often rely on fixed prompts that fail to generalize across LMs, yielding unrepresentative performance estimates. Unless we approximate each LM's ceiling (maximum achievable via changes to the prompt), we risk underestimating performance. Declarative prompting frameworks, such as DSPy, offer a scalable alternative to manual prompt engineering by crafting structured prompts that can be optimized per task. However, such frameworks have not been systematically evaluated across established benchmarks. We present a reproducible DSPy+HELM framework that introduces structured prompting methods which elicit reasoning, enabling more accurate LM benchmarking. Using four prompting methods, we evaluate four frontier LMs across seven benchmarks (general/medical domain) against existing HELM baseline scores. We find that without structured prompting: (i) HELM underestimates LM performance (by 4% average), (ii) performance estimates vary more across benchmarks ($+$2% standard deviation), (iii) performance gaps are misrepresented (leaderboard rankings flip on 3/7 benchmarks), and (iv) introducing chain-of-thought reduces LM sensitivity to prompt design (smaller $Δ$ across prompts). To our knowledge, this is the first benchmarking study to systematically integrate structured prompting into an established evaluation framework, demonstrating how scalable performance-ceiling approximation yields more robust, decision-useful benchmarks. We open-source (i) DSPy+HELM Integration (https://github.com/stanford-crfm/helm/pull/3893) and (ii) Prompt Optimization Pipeline (https://github.com/StanfordMIMI/dspy-helm).
♻ ☆ Quantitative Attractor Analysis of High-Capacity Kernel Hopfield Networks
Kernel-based learning methods such as Kernel Logistic Regression (KLR) can substantially increase the storage capacity of Hopfield networks, but the principles governing their performance and stability remain largely uncharacterized. This paper presents a comprehensive quantitative analysis of the attractor landscape in KLR-trained networks to establish a solid foundation for their design and application. Through extensive, statistically validated simulations, we address critical questions of generality, scalability, and robustness. Our comparative analysis shows that KLR and Kernel Ridge Regression (KRR) exhibit similarly high storage capacities and clean attractor landscapes under typical operating conditions, suggesting that this behavior is a general property of kernel regression methods, although KRR is computationally much faster. We identify a non-trivial, scale-dependent law for the kernel width $γ$, demonstrating that optimal capacity requires $γ$ to be scaled such that $γN$ increases with network size $N$. This finding implies that larger networks require more localized kernels, in which each pattern's influence is more spatially confined, to mitigate inter-pattern interference. Under this optimized scaling, we provide clear evidence that storage capacity scales linearly with network size~($P \propto N$). Furthermore, our sensitivity analysis shows that performance is remarkably robust with respect to the choice of the regularization parameter $λ$. Collectively, these findings provide a concise set of empirical principles for designing high-capacity and robust associative memories and clarify the mechanisms that enable kernel methods to overcome the classical limitations of Hopfield-type models.
comment: 16 pages, 7 figures
♻ ☆ Axial-UNet: A Neural Weather Model for Precipitation Nowcasting
Accurately predicting short-term precipitation is critical for weather-sensitive applications such as disaster management, aviation, and urban planning. Traditional numerical weather prediction can be computationally intensive at high resolution and short lead times. In this work, we propose a lightweight UNet-based encoder-decoder augmented with axial-attention blocks that attend along image rows and columns to capture long-range spatial interactions, while temporal context is provided by conditioning on multiple past radar frames. Our hybrid architecture captures both local and long-range spatio-temporal dependencies from radar image sequences, enabling fixed lead-time precipitation nowcasting with modest compute. Experimental results on a preprocessed subset of the HKO-7 radar dataset demonstrate that our model outperforms ConvLSTM, pix2pix-style cGANs, and a plain UNet in pixel-fidelity metrics, reaching PSNR 47.67 and SSIM 0.9943. We report PSNR/SSIM here; extending evaluation to meteorology-oriented skill measures (e.g., CSI/FSS) is left to future work. The approach is simple, scalable, and effective for resource-constrained, real-time forecasting scenarios.
comment: 16 pages, 3 figures. Accepted at the International Conference on Distributed Computing and Intelligent Technology (ICDCIT 2026), to appear in Springer LNCS
♻ ☆ Private Sketches for Linear Regression
Linear regression is frequently applied in a variety of domains, some of which might contain sensitive information. This necessitates that the application of these methods does not reveal private information. Differentially private (DP) linear regression methods, developed for this purpose, compute private estimates of the solution. These techniques typically involve computing a noisy version of the solution vector. Instead, we propose releasing private sketches of the datasets, which can then be used to compute an approximate solution to the regression problem. This is motivated by the \emph{sketch-and-solve} paradigm, where the regression problem is solved on a smaller sketch of the dataset instead of on the original problem space. The solution obtained on the sketch can also be shown to have good approximation guarantees to the original problem. Various sketching methods have been developed for improving the computational efficiency of linear regression problems under this paradigm. We adopt this paradigm for the purpose of releasing private sketches of the data. We construct differentially private sketches for the problems of least squares regression, as well as least absolute deviations regression. We show that the privacy constraints lead to sketched versions of regularized regression. We compute the bounds on the regularization parameter required for guaranteeing privacy. The availability of these private sketches facilitates the application of commonly available solvers for regression, without the risk of privacy leakage.
comment: 13 pages
♻ ☆ Exploiting Vocabulary Frequency Imbalance in Language Model Pre-training NeurIPS 2025
Large language models are trained with tokenizers, and the resulting token distribution is highly imbalanced: a few words dominate the stream while most occur rarely. Recent practice favors ever-larger vocabularies, but it is unclear where the benefit comes from. To this end, we perform a controlled study that scales the vocabulary of the language model from 24K to 196K while holding data, computation, and optimization unchanged. We begin by quantifying the complexity of tokenized text -- formalized via Kolmogorov complexity -- and show that larger vocabularies reduce this complexity. Above 24K, every common word is already tokenized as a single token, so enlarging vocabulary only deepens the relative token-frequency imbalance. Word-level loss decomposition shows that larger vocabularies reduce cross-entropy loss almost exclusively by lowering uncertainty on the 2,500 most frequent words, even though loss on the rare tail rises. The same frequent words cover roughly 75% of tokens in downstream benchmarks, so this training advantage transfers intact. We further show that enlarging model parameters with a fixed vocabulary yields the same frequent-word benefit. Our results recast "bigger vocabularies help" as "lowering complexity of tokenized text helps," offering a simple, principled knob for tokenizer-model co-design and clarifying the loss dynamics that govern language model scaling in pre-training.
comment: NeurIPS 2025
♻ ☆ Channel Estimation for RIS-Assisted mmWave Systems via Diffusion Models
Reconfigurable intelligent surface (RIS) has been recognized as a promising technology for next-generation wireless communications. However, the performance of RIS-assisted systems critically depends on accurate channel state information (CSI). To address this challenge, this letter proposes a novel channel estimation method for RIS-aided millimeter-wave (mmWave) systems based on diffusion models (DMs). Specifically, the forward diffusion process of the original signal is formulated to model the received signal as a noisy observation within the framework of DMs. Subsequently, the channel estimation task is formulated as the reverse diffusion process, and a sampling algorithm based on denoising diffusion implicit models (DDIMs) is developed to enable effective inference. Furthermore, a lightweight neural network, termed BRCNet, is introduced to replace the conventional U-Net, significantly reducing the number of parameters and computational complexity. Extensive experiments conducted under various scenarios demonstrate that the proposed method consistently outperforms existing baselines.
comment: replaced with revised version
♻ ☆ Deep Improvement Supervision
Recently, it was shown that small, looped architectures, such as Tiny Recursive Models (TRMs), can outperform Large Language Models (LLMs) on complex reasoning tasks, including the Abstraction and Reasoning Corpus (ARC). In this work, we investigate a core question: how can we further improve the efficiency of these methods with minimal changes? To address this, we frame the latent reasoning of TRMs as a form of classifier-free guidance and implicit policy improvement algorithm. Building on these insights, we propose a novel training scheme that provides a target for each loop during training. We demonstrate that our approach significantly enhances training efficiency. Our method reduces the total number of forward passes by 18x and eliminates halting mechanisms, while maintaining quality comparable to standard TRMs. Notably, we achieve 24% accuracy on ARC-1 with only 0.8M parameters, outperforming most LLMs.
♻ ☆ Leveraging Semantic Attribute Binding for Free-Lunch Color Control in Diffusion Models WACV 2026
Recent advances in text-to-image (T2I) diffusion models have enabled remarkable control over various attributes, yet precise color specification remains a fundamental challenge. Existing approaches, such as ColorPeel, rely on model personalization, requiring additional optimization and limiting flexibility in specifying arbitrary colors. In this work, we introduce ColorWave, a novel training-free approach that achieves exact RGB-level color control in diffusion models without fine-tuning. By systematically analyzing the cross-attention mechanisms within IP-Adapter, we uncover an implicit binding between textual color descriptors and reference image features. Leveraging this insight, our method rewires these bindings to enforce precise color attribution while preserving the generative capabilities of pretrained models. Our approach maintains generation quality and diversity, outperforming prior methods in accuracy and applicability across diverse object categories. Through extensive evaluations, we demonstrate that ColorWave establishes a new paradigm for structured, color-consistent diffusion-based image synthesis.
comment: WACV 2026. Project page: https://hecoding.github.io/colorwave-page
♻ ☆ Pre-Training Estimators for Structural Models: Application to Consumer Search
We develop pre-trained estimators for structural econometric models. The estimator uses a neural net to recognize the structural model's parameter from data patterns. Once trained, the estimator can be shared and applied to different datasets at negligible cost and effort. Under sufficient training, the estimator converges to the Bayesian posterior given the data patterns. As an illustration, we construct a pretrained estimator for a sequential search model (available at pnnehome.github.io). Estimation takes only seconds and achieves high accuracy on 12 real datasets. More broadly, pretrained estimators can make structural models much easier to use and more accessible.
comment: Originally posted on SSRN on June 7, 2024
♻ ☆ Data efficient surrogate modeling for engineering design: Ensemble-free batch mode deep active learning for regression
High fidelity design evaluation processes such as Computational Fluid Dynamics and Finite Element Analysis are often replaced with data driven surrogates to reduce computational cost in engineering design optimization. However, building accurate surrogate models still requires a large number of expensive simulations. To address this challenge, we introduce epsilon HQS, a scalable active learning strategy that leverages a student teacher framework to train deep neural networks efficiently. Unlike Bayesian AL methods, which are computationally demanding with DNNs, epsilon HQS selectively queries informative samples to reduce labeling cost. Applied to CFD, FEA, and propeller design tasks, our method achieves higher accuracy under fixed labeling cost budgets.
comment: 6 pages, 4 figures
♻ ☆ SACA: Selective Attention-Based Clustering Algorithm
Clustering algorithms are fundamental tools across many fields, with density-based methods offering particular advantages in identifying arbitrarily shaped clusters and handling noise. However, their effectiveness is often limited by the requirement of critical parameter tuning by users, which typically requires significant domain expertise. This paper introduces a novel density-based clustering algorithm loosely inspired by the concept of selective attention, designed to minimize reliance on parameter tuning for most applications. The proposed method computes an adaptive threshold to exclude sparsely distributed points and outliers, constructs an initial cluster framework, and subsequently reintegrates the filtered points to refine the final results. Extensive experiments on diverse benchmark datasets demonstrate the robustness, accuracy, and ease of use of the proposed approach, establishing it as a powerful alternative to conventional density-based clustering techniques.
comment: 32 pages, 14 figures
♻ ☆ MolEdit: Knowledge Editing for Multimodal Molecule Language Models
Understanding and continuously refining multimodal molecular knowledge is crucial for advancing biomedicine, chemistry, and materials science. Molecule language models (MoLMs) have become powerful tools in these domains, integrating structural representations (e.g., SMILES strings, molecular graphs) with rich contextual descriptions (e.g., physicochemical properties). However, MoLMs can encode and propagate inaccuracies due to outdated web-mined training corpora or malicious manipulation, jeopardizing downstream discovery pipelines. While knowledge editing has been explored for general-domain AI, its application to MoLMs remains uncharted, presenting unique challenges due to the multifaceted and interdependent nature of molecular knowledge. In this paper, we take the first step toward MoLM editing for two critical tasks: molecule-to-caption generation and caption-to-molecule generation. To address molecule-specific challenges, we propose MolEdit, a powerful framework that enables targeted modifications while preserving unrelated molecular knowledge. MolEdit combines a Multi-Expert Knowledge Adapter that routes edits to specialized experts for different molecular facets with an Expertise-Aware Editing Switcher that activates the adapters only when input closely matches the stored edits across all expertise, minimizing interference with unrelated knowledge. To systematically evaluate editing performance, we introduce MEBench, a comprehensive benchmark assessing multiple dimensions, including Reliability (accuracy of the editing), Locality (preservation of irrelevant knowledge), and Generality (robustness to reformed queries). Across extensive experiments on two popular MoLM backbones, MolEdit delivers up to 18.8% higher Reliability and 12.0% better Locality than baselines while maintaining efficiency. The code is available at: https://github.com/LzyFischer/MolEdit.
Artificial Intelligence 122
☆ Thinking by Doing: Building Efficient World Model Reasoning in LLMs via Multi-turn Interaction
Developing robust world model reasoning is crucial for large language model (LLM) agents to plan and interact in complex environments. While multi-turn interaction offers a superior understanding of environmental dynamics via authentic feedback, current approaches often impose a rigid reasoning process, which constrains the model's active learning, ultimately hindering efficient world model reasoning. To address these issues, we explore world-model internalization through efficient interaction and active reasoning (WMAct), which liberates the model from structured reasoning, allowing the model to shape thinking directly through its doing, and achieves effective and efficient world model reasoning with two key mechanisms: (1) a reward rescaling mechanism adjusting outcome reward based on action efficacy to incentivize redundancy reduction and purposeful interaction; (2) an interaction frequency annealing strategy to progressively reduce the maximum allowed interaction turns, which compels the model to condense its learning and internalize environmental dynamics rather than over-relying on environmental cues. Our experiments on Sokoban, Maze, and Taxi show that WMAct yields effective world model reasoning capable of resolving tasks in a single turn that previously required multiple interactions and fosters strong transferability to complex environments, improving performance on a suite of reasoning benchmarks.
comment: 17 pages, 9 figures
☆ The Price of Progress: Algorithmic Efficiency and the Falling Cost of AI Inference
Language models have seen enormous progress on advanced benchmarks in recent years, but much of this progress has only been possible by using more costly models. Benchmarks may therefore present a warped picture of progress in practical capabilities per dollar. To remedy this, we use data from Artificial Analysis and Epoch AI to form the largest dataset of current and historical prices to run benchmarks to date. We find that the price for a given level of benchmark performance has decreased remarkably fast, around $5\times$ to $10\times$ per year, for frontier models on knowledge, reasoning, math, and software engineering benchmarks. These reductions in the cost of AI inference are due to economic forces, hardware efficiency improvements, and algorithmic efficiency improvements. Isolating out open models to control for competition effects and dividing by hardware price declines, we estimate that algorithmic efficiency progress is around $3\times$ per year. Finally, we recommend that evaluators both publicize and take into account the price of benchmarking as an essential part of measuring the real-world impact of AI.
☆ Physics-Informed Neural Networks for Thermophysical Property Retrieval
Inverse heat problems refer to the estimation of material thermophysical properties given observed or known heat diffusion behaviour. Inverse heat problems have wide-ranging uses, but a critical application lies in quantifying how building facade renovation reduces thermal transmittance, a key determinant of building energy efficiency. However, solving inverse heat problems with non-invasive data collected in situ is error-prone due to environmental variability or deviations from theoretically assumed conditions. Hence, current methods for measuring thermal conductivity are either invasive, require lengthy observation periods, or are sensitive to environmental and experimental conditions. Here, we present a PINN-based iterative framework to estimate the thermal conductivity k of a wall from a set of thermographs; our framework alternates between estimating the forward heat problem with a PINN for a fixed k, and optimizing k by comparing the thermographs and surface temperatures predicted by the PINN, repeating until the estimated k's convergence. Using both environmental data captured by a weather station and data generated from Finite-Volume-Method software simulations, we accurately predict k across different environmental conditions and data collection sampling times, given the temperature profile of the wall at dawn is close to steady state. Although violating the steady-state assumption impacts the accuracy of k's estimation, we show that our proposed framework still only exhibits a maximum MAE of 4.0851. Our work demonstrates the potential of PINN-based methods for reliable estimation of material properties in situ and under realistic conditions, without lengthy measurement campaigns. Given the lack of research on using machine learning, and more specifically on PINNs, for solving in-situ inverse problems, we expect our work to be a starting point for more research on the topic.
comment: 26 pages, 4 figures, 3 tables
☆ ASTRO: Adaptive Stitching via Dynamics-Guided Trajectory Rollouts
Offline reinforcement learning (RL) enables agents to learn optimal policies from pre-collected datasets. However, datasets containing suboptimal and fragmented trajectories present challenges for reward propagation, resulting in inaccurate value estimation and degraded policy performance. While trajectory stitching via generative models offers a promising solution, existing augmentation methods frequently produce trajectories that are either confined to the support of the behavior policy or violate the underlying dynamics, thereby limiting their effectiveness for policy improvement. We propose ASTRO, a data augmentation framework that generates distributionally novel and dynamics-consistent trajectories for offline RL. ASTRO first learns a temporal-distance representation to identify distinct and reachable stitch targets. We then employ a dynamics-guided stitch planner that adaptively generates connecting action sequences via Rollout Deviation Feedback, defined as the gap between target state sequence and the actual arrived state sequence by executing predicted actions, to improve trajectory stitching's feasibility and reachability. This approach facilitates effective augmentation through stitching and ultimately enhances policy learning. ASTRO outperforms prior offline RL augmentation methods across various algorithms, achieving notable performance gain on the challenging OGBench suite and demonstrating consistent improvements on standard offline RL benchmarks such as D4RL.
☆ Towards Continuous Intelligence Growth: Self-Training, Continual Learning, and Dual-Scale Memory in SuperIntelliAgent
We introduce SuperIntelliAgent, an agentic learning framework that couples a trainable small diffusion model (the learner) with a frozen large language model (the verifier) to enable continual intelligence growth through self-supervised interaction. Unlike conventional supervised fine-tuning, SuperIntelliAgent learns autonomously without annotation: the learner generates candidate outputs, the verifier evaluates them through step-by-step reasoning, and their interaction produces chosen/rejected pairs for Direct Preference Optimization (DPO). This converts each input into a pseudo-training signal for continual improvement. The framework integrates dual-scale memory: short-term in-context memory that preserves reasoning traces across refinement cycles, and long-term memory that consolidates acquired knowledge through lightweight on-the-fly fine-tuning. A replay buffer retains samples that show verifiable progress and replays them as auxiliary supervision, reinforcing recent learning while forming adaptive curricula. SuperIntelliAgent is infrastructure-agnostic and can be plugged into existing agentic frameworks while turning ordinary inference loops into a lifelong optimization process. We posit that pairing a trainable learner with a reasoning-capable verifier forms a minimal reliable unit of growing intelligence, as paired feedback and partial-history replay yield richer learning curricula and stronger preference alignment. With a small number of automatically generated DPO pairs, the learner improves across all benchmarks, indicating that this mechanism provides a promising direction for continual intelligence accumulation and real-world deployment.
comment: 15 pages, 4 figures
☆ Evaluating LLMs for One-Shot Patching of Real and Artificial Vulnerabilities
Automated vulnerability patching is crucial for software security, and recent advancements in Large Language Models (LLMs) present promising capabilities for automating this task. However, existing research has primarily assessed LLMs using publicly disclosed vulnerabilities, leaving their effectiveness on related artificial vulnerabilities largely unexplored. In this study, we empirically evaluate the patching effectiveness and complementarity of several prominent LLMs, such as OpenAI's GPT variants, LLaMA, DeepSeek, and Mistral models, using both real and artificial vulnerabilities. Our evaluation employs Proof-of-Vulnerability (PoV) test execution to concretely assess whether LLM-generated source code successfully patches vulnerabilities. Our results reveal that LLMs patch real vulnerabilities more effectively compared to artificial ones. Additionally, our analysis reveals significant variability across LLMs in terms of overlapping (multiple LLMs patching the same vulnerabilities) and complementarity (vulnerabilities patched exclusively by a single LLM), emphasizing the importance of selecting appropriate LLMs for effective vulnerability patching.
comment: Pre-print - Extended version of the poster paper accepted at the 41st ACM/SIGAPP Symposium on Applied Computing (SAC) Smarter Engineering-Building AI and Building with AI (SEAI) 2026
☆ LFM2 Technical Report
We present LFM2, a family of Liquid Foundation Models designed for efficient on-device deployment and strong task capabilities. Using hardware-in-the-loop architecture search under edge latency and memory constraints, we obtain a compact hybrid backbone that combines gated short convolutions with a small number of grouped query attention blocks, delivering up to 2x faster prefill and decode on CPUs compared to similarly sized models. The LFM2 family covers 350M-8.3B parameters, including dense models (350M, 700M, 1.2B, 2.6B) and a mixture-of-experts variant (8.3B total, 1.5B active), all with 32K context length. LFM2's training pipeline includes a tempered, decoupled Top-K knowledge distillation objective that avoids support mismatch; curriculum learning with difficulty-ordered data; and a three-stage post-training recipe of supervised fine-tuning, length-normalized preference optimization, and model merging. Pre-trained on 10-12T tokens, LFM2 models achieve strong results across diverse benchmarks; for example, LFM2-2.6B reaches 79.56% on IFEval and 82.41% on GSM8K. We further build multimodal and retrieval variants: LFM2-VL for vision-language tasks, LFM2-Audio for speech, and LFM2-ColBERT for retrieval. LFM2-VL supports tunable accuracy-latency tradeoffs via token-efficient visual processing, while LFM2-Audio separates audio input and output pathways to enable real-time speech-to-speech interaction competitive with models 3x larger. LFM2-ColBERT provides a low-latency encoder for queries and documents, enabling high-performance retrieval across multiple languages. All models are released with open weights and deployment packages for ExecuTorch, llama.cpp, and vLLM, making LFM2 a practical base for edge applications that need fast, memory-efficient inference and strong task capabilities.
☆ MegaChat: A Synthetic Persian Q&A Dataset for High-Quality Sales Chatbot Evaluation
Small and medium-sized enterprises (SMEs) in Iran increasingly leverage Telegram for sales, where real-time engagement is essential for conversion. However, developing AI-driven chatbots for this purpose requires large, high-quality question-and-answer (Q&A) datasets, which are typically expensive and resource-intensive to produce, especially for low-resource languages like Persian. In this paper, we introduce MegaChat, the first fully synthetic Persian Q&A dataset designed to evaluate intelligent sales chatbots in Telegram-based e-commerce. We propose a novel, automated multi-agent architecture that generates persona-aware Q&A pairs by collecting data from active Telegram shopping channels. The system employs specialized agents for question generation, validation, and refinement, ensuring the production of realistic and diverse conversational data. To evaluate answer generation, we compare three classic retrieval-augmented generation (RAG) models with our advanced agentic system, which features multi-query retrieval, reranking, and persona-aligned response synthesis. Using GPT-5.1 for evaluation across six quality dimensions, our results show that the agentic architecture outperformed traditional RAG models in 4 out of 5 diverse channels, demonstrating its ability to generate scalable, high-quality datasets without relying on expensive human annotation or complex fine-tuning. MegaChat provides SMEs with an efficient, cost-effective solution for building intelligent customer engagement systems in specialized commercial domains, enabling advancements in multilingual conversational AI for low-resource languages. Download: https://github.com/MegaChat-Tech/MegaChat-DataSet
comment: 6 pages, 11 figures, 2 tables
☆ Hierarchical AI-Meteorologist: LLM-Agent System for Multi-Scale and Explainable Weather Forecast Reporting
We present the Hierarchical AI-Meteorologist, an LLM-agent system that generates explainable weather reports using a hierarchical forecast reasoning and weather keyword generation. Unlike standard approaches that treat forecasts as flat time series, our framework performs multi-scale reasoning across hourly, 6-hour, and daily aggregations to capture both short-term dynamics and long-term trends. Its core reasoning agent converts structured meteorological inputs into coherent narratives while simultaneously extracting a few keywords effectively summarizing the dominant meteorological events. These keywords serve as semantic anchors for validating consistency, temporal coherence and factual alignment of the generated reports. Using OpenWeather and Meteostat data, we demonstrate that hierarchical context and keyword-based validation substantially improve interpretability and robustness of LLM-generated weather narratives, offering a reproducible framework for semantic evaluation of automated meteorological reporting and advancing agent-based scientific reasoning.
comment: 9 pages, 4 figures
☆ Agentic AI Framework for Smart Inventory Replenishment
In contemporary retail, the variety of products available (e.g. clothing, groceries, cosmetics, frozen goods) make it difficult to predict the demand, prevent stockouts, and find high-potential products. We suggest an agentic AI model that will be used to monitor the inventory, initiate purchase attempts to the appropriate suppliers, and scan for trending or high-margin products to incorporate. The system applies demand forecasting, supplier selection optimization, multi-agent negotiation and continuous learning. We apply a prototype to a setting in the store of a middle scale mart, test its performance on three conventional and artificial data tables, and compare the results to the base heuristics. Our findings indicate that there is a decrease in stockouts, a reduction of inventory holding costs, and an improvement in product mix turnover. We address constraints, scalability as well as improvement prospect.
comment: Presented at International Conference on Business and Digital Technology, Bahrain, Springer Nature, 27 November 2025
☆ Flow Straighter and Faster: Efficient One-Step Generative Modeling via MeanFlow on Rectified Trajectories
Flow-based generative models have recently demonstrated strong performance, yet sampling typically relies on expensive numerical integration of ordinary differential equations (ODEs). Rectified Flow enables one-step sampling by learning nearly straight probability paths, but achieving such straightness requires multiple computationally intensive reflow iterations. MeanFlow achieves one-step generation by directly modeling the average velocity over time; however, when trained on highly curved flows, it suffers from slow convergence and noisy supervision. To address these limitations, we propose Rectified MeanFlow, a framework that models the mean velocity field along the rectified trajectory using only a single reflow step. This eliminates the need for perfectly straightened trajectories while enabling efficient training. Furthermore, we introduce a simple yet effective truncation heuristic that aims to reduce residual curvature and further improve performance. Extensive experiments on ImageNet at 64, 256, and 512 resolutions show that Re-MeanFlow consistently outperforms prior one-step flow distillation and Rectified Flow methods in both sample quality and training efficiency. Code is available at https://github.com/Xinxi-Zhang/Re-MeanFlow.
☆ ParaGate: Parasitic-Driven Domain Adaptation Transfer Learning for Netlist Performance Prediction
In traditional EDA flows, layout-level performance metrics are only obtainable after placement and routing, hindering global optimization at earlier stages. Although some neural-network-based solutions predict layout-level performance directly from netlists, they often face generalization challenges due to the black-box heuristics of commercial placement-and-routing tools, which create disparate data across designs. To this end, we propose ParaGate, a three-step cross-stage prediction framework that infers layout-level timing and power from netlists. First, we propose a two-phase transfer-learning approach to predict parasitic parameters, pre-training on mid-scale circuits and fine-tuning on larger ones to capture extreme conditions. Next, we rely on EDA tools for timing analysis, offloading the long-path numerical reasoning. Finally, ParaGate performs global calibration using subgraph features. Experiments show that ParaGate achieves strong generalization with minimal fine-tuning data: on openE906, its arrival-time R2 from 0.119 to 0.897. These results demonstrate that ParaGate could provide guidance for global optimization in the synthesis and placement stages.
comment: 8 pages, 6 figures
☆ Towards Improving Interpretability of Language Model Generation through a Structured Knowledge Discovery Approach
Knowledge-enhanced text generation aims to enhance the quality of generated text by utilizing internal or external knowledge sources. While language models have demonstrated impressive capabilities in generating coherent and fluent text, the lack of interpretability presents a substantial obstacle. The limited interpretability of generated text significantly impacts its practical usability, particularly in knowledge-enhanced text generation tasks that necessitate reliability and explainability. Existing methods often employ domain-specific knowledge retrievers that are tailored to specific data characteristics, limiting their generalizability to diverse data types and tasks. To overcome this limitation, we directly leverage the two-tier architecture of structured knowledge, consisting of high-level entities and low-level knowledge triples, to design our task-agnostic structured knowledge hunter. Specifically, we employ a local-global interaction scheme for structured knowledge representation learning and a hierarchical transformer-based pointer network as the backbone for selecting relevant knowledge triples and entities. By combining the strong generative ability of language models with the high faithfulness of the knowledge hunter, our model achieves high interpretability, enabling users to comprehend the model output generation process. Furthermore, we empirically demonstrate the effectiveness of our model in both internal knowledge-enhanced table-to-text generation on the RotoWireFG dataset and external knowledge-enhanced dialogue response generation on the KdConv dataset. Our task-agnostic model outperforms state-of-the-art methods and corresponding language models, setting new standards on the benchmark.
☆ Every Token Counts: Generalizing 16M Ultra-Long Context in Large Language Models
This work explores the challenge of building ``Machines that Can Remember'', framing long-term memory as the problem of efficient ultra-long context modeling. We argue that this requires three key properties: \textbf{sparsity}, \textbf{random-access flexibility}, and \textbf{length generalization}. To address ultra-long-context modeling, we leverage Hierarchical Sparse Attention (HSA), a novel attention mechanism that satisfies all three properties. We integrate HSA into Transformers to build HSA-UltraLong, which is an 8B-parameter MoE model trained on over 8 trillion tokens and is rigorously evaluated on different tasks with in-domain and out-of-domain context lengths to demonstrate its capability in handling ultra-long contexts. Results show that our model performs comparably to full-attention baselines on in-domain lengths while achieving over 90\% accuracy on most in-context retrieval tasks with contexts up to 16M. This report outlines our experimental insights and open problems, contributing a foundation for future research in ultra-long context modeling.
☆ Toward Automatic Safe Driving Instruction: A Large-Scale Vision Language Model Approach
Large-scale Vision Language Models (LVLMs) exhibit advanced capabilities in tasks that require visual information, including object detection. These capabilities have promising applications in various industrial domains, such as autonomous driving. For example, LVLMs can generate safety-oriented descriptions of videos captured by road-facing cameras. However, ensuring comprehensive safety requires monitoring driver-facing views as well to detect risky events, such as the use of mobiles while driving. Thus, the ability to process synchronized inputs is necessary from both driver-facing and road-facing cameras. In this study, we develop models and investigate the capabilities of LVLMs by constructing a dataset and evaluating their performance on this dataset. Our experimental results demonstrate that while pre-trained LVLMs have limited effectiveness, fine-tuned LVLMs can generate accurate and safety-aware driving instructions. Nonetheless, several challenges remain, particularly in detecting subtle or complex events in the video. Our findings and error analysis provide valuable insights that can contribute to the improvement of LVLM-based systems in this domain.
comment: Accepted to MMLoSo 2025
☆ Hard-Constrained Neural Networks with Physics-Embedded Architecture for Residual Dynamics Learning and Invariant Enforcement in Cyber-Physical Systems
This paper presents a framework for physics-informed learning in complex cyber-physical systems governed by differential equations with both unknown dynamics and algebraic invariants. First, we formalize the Hybrid Recurrent Physics-Informed Neural Network (HRPINN), a general-purpose architecture that embeds known physics as a hard structural constraint within a recurrent integrator to learn only residual dynamics. Second, we introduce the Projected HRPINN (PHRPINN), a novel extension that integrates a predict-project mechanism to strictly enforce algebraic invariants by design. The framework is supported by a theoretical analysis of its representational capacity. We validate HRPINN on a real-world battery prognostics DAE and evaluate PHRPINN on a suite of standard constrained benchmarks. The results demonstrate the framework's potential for achieving high accuracy and data efficiency, while also highlighting critical trade-offs between physical consistency, computational cost, and numerical stability, providing practical guidance for its deployment.
comment: 41 pages (30 pages main text + 11 pages appendices), 3 figures, 8 tables. Submitted to JMLR
☆ Multi-Modal Scene Graph with Kolmogorov-Arnold Experts for Audio-Visual Question Answering
In this paper, we propose a novel Multi-Modal Scene Graph with Kolmogorov-Arnold Expert Network for Audio-Visual Question Answering (SHRIKE). The task aims to mimic human reasoning by extracting and fusing information from audio-visual scenes, with the main challenge being the identification of question-relevant cues from the complex audio-visual content. Existing methods fail to capture the structural information within video, and suffer from insufficient fine-grained modeling of multi-modal features. To address these issues, we are the first to introduce a new multi-modal scene graph that explicitly models the objects and their relationship as a visually grounded, structured representation of the audio-visual scene. Furthermore, we design a Kolmogorov-Arnold Network~(KAN)-based Mixture of Experts (MoE) to enhance the expressive power of the temporal integration stage. This enables more fine-grained modeling of cross-modal interactions within the question-aware fused audio-visual representation, leading to capture richer and more nuanced patterns and then improve temporal reasoning performance. We evaluate the model on the established MUSIC-AVQA and MUSIC-AVQA v2 benchmarks, where it achieves state-of-the-art performance. Code and model checkpoints will be publicly released.
☆ Machine Learning for Scientific Visualization: Ensemble Data Analysis
Scientific simulations and experimental measurements produce vast amounts of spatio-temporal data, yet extracting meaningful insights remains challenging due to high dimensionality, complex structures, and missing information. Traditional analysis methods often struggle with these issues, motivating the need for more robust, data-driven approaches. This dissertation explores deep learning methodologies to improve the analysis and visualization of spatio-temporal scientific ensembles, focusing on dimensionality reduction, flow estimation, and temporal interpolation. First, we address high-dimensional data representation through autoencoder-based dimensionality reduction for scientific ensembles. We evaluate the stability of projection metrics under partial labeling and introduce a Pareto-efficient selection strategy to identify optimal autoencoder variants, ensuring expressive and reliable low-dimensional embeddings. Next, we present FLINT, a deep learning model for high-quality flow estimation and temporal interpolation in both flow-supervised and flow-unsupervised settings. FLINT reconstructs missing velocity fields and generates high-fidelity temporal interpolants for scalar fields across 2D+time and 3D+time ensembles without domain-specific assumptions or extensive finetuning. To further improve adaptability and generalization, we introduce HyperFLINT, a hypernetwork-based approach that conditions on simulation parameters to estimate flow fields and interpolate scalar data. This parameter-aware adaptation yields more accurate reconstructions across diverse scientific domains, even with sparse or incomplete data. Overall, this dissertation advances deep learning techniques for scientific visualization, providing scalable, adaptable, and high-quality solutions for interpreting complex spatio-temporal ensembles.
comment: PhD thesis, University of Groningen, 2025
☆ Simultaneous Image Quality Improvement and Artefacts Correction in Accelerated MRI
MR data are acquired in the frequency domain, known as k-space. Acquiring high-quality and high-resolution MR images can be time-consuming, posing a significant challenge when multiple sequences providing complementary contrast information are needed or when the patient is unable to remain in the scanner for an extended period of time. Reducing k-space measurements is a strategy to speed up acquisition, but often leads to reduced quality in reconstructed images. Additionally, in real-world MRI, both under-sampled and full-sampled images are prone to artefacts, and correcting these artefacts is crucial for maintaining diagnostic accuracy. Deep learning methods have been proposed to restore image quality from under-sampled data, while others focused on the correction of artefacts that result from the noise or motion. No approach has however been proposed so far that addresses both acceleration and artefacts correction, limiting the performance of these models when these degradation factors occur simultaneously. To address this gap, we present a method for recovering high-quality images from under-sampled data with simultaneously correction for noise and motion artefact called USArt (Under-Sampling and Artifact correction model). Customized for 2D brain anatomical images acquired with Cartesian sampling, USArt employs a dual sub-model approach. The results demonstrate remarkable increase of signal-to-noise ratio (SNR) and contrast in the images restored. Various under-sampling strategies and degradation levels were explored, with the gradient under-sampling strategy yielding the best outcomes. We achieved up to 5x acceleration and simultaneously artefacts correction without significant degradation, showcasing the model's robustness in real-world settings.
☆ OctoMed: Data Recipes for State-of-the-Art Multimodal Medical Reasoning
High-quality and carefully curated data is a cornerstone of training medical large language models, as it directly impacts both generalization and robustness to unseen clinical tasks. We investigate strategies for training and data curation to develop a robust multimodal reasoning model in the medical domain. Our work focuses on supervised fine-tuning (SFT) and explores data recipes that leverage structured reasoning traces. Using our proposed data recipe, we scale experiments to a dataset of over 8 million examples and 6.8 billion response tokens, achieving state-of-the-art performance among open-source models across diverse out-of-distribution medical benchmark tasks. Our results further indicate that curating a high-quality, diverse training dataset with varying structured reasoning trace lengths enables the fine-tuned model to self-calibrate its reasoning trajectory lengths based on the downstream task, without explicit supervision. We present key insights, describe the data curation strategy, and outline next steps toward developing robust medical vision-language reasoning system.
☆ Adapting Like Humans: A Metacognitive Agent with Test-time Reasoning
Recent Vision-Language Models (VLMs) exhibit strong perceptual reasoning abilities, yet they often struggle to adapt efficiently when encountering novel tasks at test time. In contrast, humans leverage the metacognitive model with memory, enabling continuous strategy refinement through metacognitive control when faced with new challenges. To bridge this gap, we propose metacognitive test-time reasoning (MCTR), a framework that equips models with the ability to learn, adapt, and improve during test time through metacognitive self-updating. Inspired by the dual structure of human metacognition, MCTR comprises meta-level and object-level VLM reasoning modules, each equipped with dedicated memory systems for hierarchical adaptive reasoning. Specifically, MCTR consists of (1) a meta-reasoning module which incrementally builds a structured memory by discovering and storing task-relevant rules, environmental patterns, and action-outcome relationships from test-time observations as natural language descriptions; and (2) an action-reasoning module that determines optimal actions through context-aware perception and strategic reasoning by dynamically retrieving and integrating knowledge from memory. The action-reasoning module continuously updates its policy through proposed metacognitive test-time reinforcement learning, adapting as knowledge memory evolves. We evaluate MCTR on 45 Atari games (33 seen, 12 unseen). MCTR demonstrates robust test-time adaptation, achieving 9/12 top-1 results on unseen games compared with baselines. Analyses through ablations, learning dynamics, and case studies reveal the complementary contributions of both components and show meta-reasoning evolving toward human-like adaptation strategies.
☆ Time Series Forecasting via Direct Per-Step Probability Distribution Modeling AAAI
Deep neural network-based time series prediction models have recently demonstrated superior capabilities in capturing complex temporal dependencies. However, it is challenging for these models to account for uncertainty associated with their predictions, because they directly output scalar values at each time step. To address such a challenge, we propose a novel model named interleaved dual-branch Probability Distribution Network (interPDN), which directly constructs discrete probability distributions per step instead of a scalar. The regression output at each time step is derived by computing the expectation of the predictive distribution on a predefined support set. To mitigate prediction anomalies, a dual-branch architecture is introduced with interleaved support sets, augmented by coarse temporal-scale branches for long-term trend forecasting. Outputs from another branch are treated as auxiliary signals to impose self-supervised consistency constraints on the current branch's prediction. Extensive experiments on multiple real-world datasets demonstrate the superior performance of interPDN.
comment: 16 pages, 8 figures. This is the preprint version of the paper and supplemental material to appear in AAAI, 2026. Please cite the final published version. Code is available at https://github.com/leonardokong486/interPDN
☆ Robust HRRP Recognition under Interrupted Sampling Repeater Jamming using a Prior Jamming Information-Guided Network
Radar automatic target recognition (RATR) based on high-resolution range profile (HRRP) has attracted increasing attention due to its ability to capture fine-grained structural features. However, recognizing targets under electronic countermeasures (ECM), especially the mainstream interrupted-sampling repeater jamming (ISRJ), remains a significant challenge, as HRRPs often suffer from serious feature distortion. To address this, we propose a robust HRRP recognition method guided by prior jamming information. Specifically, we introduce a point spread function (PSF) as prior information to model the HRRP distortion induced by ISRJ. Based on this, we design a recognition network that leverages this prior through a prior-guided feature interaction module and a hybrid loss function to enhance the model's discriminative capability. With the aid of prior information, the model can learn invariant features within distorted HRRP under different jamming parameters. Both the simulated and measured-data experiments demonstrate that our method consistently outperforms state-of-the-art approaches and exhibits stronger generalization capabilities when facing unseen jamming parameters.
☆ AgriCoT: A Chain-of-Thought Benchmark for Evaluating Reasoning in Vision-Language Models for Agriculture
Recent advancements in Vision-Language Models (VLMs) have significantly transformed various industries. In agriculture, these dual-modal capabilities offer promising applications such as precision farming, crop monitoring, pest detection, and environmental sustainability. While several Visual Question Answering (VQA) datasets and benchmarks have been developed to evaluate VLM performance, they often fail to adequately assess the critical reasoning and problem-solving skills required in complex agricultural contexts. To address this gap, we introduce AgriCoT, a VQA dataset that incorporates Chain-of-Thought (CoT) reasoning, specifically designed to evaluate the reasoning capabilities of VLMs. With 4,535 carefully curated samples, AgriCoT offers a comprehensive and robust evaluation of reasoning abilities for VLMs, particularly in zero-shot scenarios, by focusing on their capacity to engage in logical reasoning and effective problem-solving. Our evaluations, conducted with 26 representative VLMs, including both proprietary and open-source models, reveal that while some proprietary models excel at answering questions, there is a notable and significant gap in their reasoning capabilities. This underscores the importance of incorporating CoT for more precise and effective assessments. Our dataset are available at https://huggingface.co/datasets/wenyb/AgriCoT.
☆ One-Shot Secure Aggregation: A Hybrid Cryptographic Protocol for Private Federated Learning in IoT
Federated Learning (FL) offers a promising approach to collaboratively train machine learning models without centralizing raw data, yet its scalability is often throttled by excessive communication overhead. This challenge is magnified in Internet of Things (IoT) environments, where devices face stringent bandwidth, latency, and energy constraints. Conventional secure aggregation protocols, while essential for protecting model updates, frequently require multiple interaction rounds, large payload sizes, and per-client costs rendering them impractical for many edge deployments. In this work, we present Hyb-Agg, a lightweight and communication-efficient secure aggregation protocol that integrates Multi-Key CKKS (MK-CKKS) homomorphic encryption with Elliptic Curve Diffie-Hellman (ECDH)-based additive masking. Hyb-Agg reduces the secure aggregation process to a single, non-interactive client-to-server transmission per round, ensuring that per-client communication remains constant regardless of the number of participants. This design eliminates partial decryption exchanges, preserves strong privacy under the RLWE, CDH, and random oracle assumptions, and maintains robustness against collusion by the server and up to $N-2$ clients. We implement and evaluate Hyb-Agg on both high-performance and resource-constrained devices, including a Raspberry Pi 4, demonstrating that it delivers sub-second execution times while achieving a constant communication expansion factor of approximately 12x over plaintext size. By directly addressing the communication bottleneck, Hyb-Agg enables scalable, privacy-preserving federated learning that is practical for real-world IoT deployments.
comment: 11 pages, 6 figures. Accepted at The 7th IEEE International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA 2025)
☆ Learning to Predict Aboveground Biomass from RGB Images with 3D Synthetic Scenes
Forests play a critical role in global ecosystems by supporting biodiversity and mitigating climate change via carbon sequestration. Accurate aboveground biomass (AGB) estimation is essential for assessing carbon storage and wildfire fuel loads, yet traditional methods rely on labor-intensive field measurements or remote sensing approaches with significant limitations in dense vegetation. In this work, we propose a novel learning-based method for estimating AGB from a single ground-based RGB image. We frame this as a dense prediction task, introducing AGB density maps, where each pixel represents tree biomass normalized by the plot area and each tree's image area. We leverage the recently introduced synthetic 3D SPREAD dataset, which provides realistic forest scenes with per-image tree attributes (height, trunk and canopy diameter) and instance segmentation masks. Using these assets, we compute AGB via allometric equations and train a model to predict AGB density maps, integrating them to recover the AGB estimate for the captured scene. Our approach achieves a median AGB estimation error of 1.22 kg/m^2 on held-out SPREAD data and 1.94 kg/m^2 on a real-image dataset. To our knowledge, this is the first method to estimate aboveground biomass directly from a single RGB image, opening up the possibility for a scalable, interpretable, and cost-effective solution for forest monitoring, while also enabling broader participation through citizen science initiatives.
comment: Presented at STAG 2025
☆ Tourism Question Answer System in Indian Language using Domain-Adapted Foundation Models
This article presents the first comprehensive study on designing a baseline extractive question-answering (QA) system for the Hindi tourism domain, with a specialized focus on the Varanasi-a cultural and spiritual hub renowned for its Bhakti-Bhaav (devotional ethos). Targeting ten tourism-centric subdomains-Ganga Aarti, Cruise, Food Court, Public Toilet, Kund, Museum, General, Ashram, Temple and Travel, the work addresses the absence of language-specific QA resources in Hindi for culturally nuanced applications. In this paper, a dataset comprising 7,715 Hindi QA pairs pertaining to Varanasi tourism was constructed and subsequently augmented with 27,455 pairs generated via Llama zero-shot prompting. We propose a framework leveraging foundation models-BERT and RoBERTa, fine-tuned using Supervised Fine-Tuning (SFT) and Low-Rank Adaptation (LoRA), to optimize parameter efficiency and task performance. Multiple variants of BERT, including pre-trained languages (e.g., Hindi-BERT), are evaluated to assess their suitability for low-resource domain-specific QA. Evaluation metrics - F1, BLEU, and ROUGE-L - highlight trade-offs between answer precision and linguistic fluency. Experiments demonstrate that LoRA-based fine-tuning achieves competitive performance (85.3\% F1) while reducing trainable parameters by 98\% compared to SFT, striking a balance between efficiency and accuracy. Comparative analysis across models reveals that RoBERTa with SFT outperforms BERT variants in capturing contextual nuances, particularly for culturally embedded terms (e.g., Aarti, Kund). This work establishes a foundational baseline for Hindi tourism QA systems, emphasizing the role of LORA in low-resource settings and underscoring the need for culturally contextualized NLP frameworks in the tourism domain.
☆ GAVINA: flexible aggressive undervolting for bit-serial mixed-precision DNN acceleration
Voltage overscaling, or undervolting, is an enticing approximate technique in the context of energy-efficient Deep Neural Network (DNN) acceleration, given the quadratic relationship between power and voltage. Nevertheless, its very high error rate has thwarted its general adoption. Moreover, recent undervolting accelerators rely on 8-bit arithmetic and cannot compete with state-of-the-art low-precision (<8b) architectures. To overcome these issues, we propose a new technique called Guarded Aggressive underVolting (GAV), which combines the ideas of undervolting and bit-serial computation to create a flexible approximation method based on aggressively lowering the supply voltage on a select number of least significant bit combinations. Based on this idea, we implement GAVINA (GAV mIxed-precisioN Accelerator), a novel architecture that supports arbitrary mixed precision and flexible undervolting, with an energy efficiency of up to 89 TOP/sW in its most aggressive configuration. By developing an error model of GAVINA, we show that GAV can achieve an energy efficiency boost of 20% via undervolting, with negligible accuracy degradation on ResNet-18.
comment: Presented in the 2025 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED). Conference proceedings pending to be published
☆ Vision Bridge Transformer at Scale
We introduce Vision Bridge Transformer (ViBT), a large-scale instantiation of Brownian Bridge Models designed for conditional generation. Unlike traditional diffusion models that transform noise into data, Bridge Models directly model the trajectory between inputs and outputs, creating an efficient data-to-data translation paradigm. By scaling these models to 20B and 1.3B parameters, we demonstrate their effectiveness for image and video translation tasks. To support this scale, we adopt a Transformer architecture and propose a variance-stabilized velocity-matching objective for robust training. Together, these advances highlight the power of scaling Bridge Models for instruction-based image editing and complex video translation.
☆ Obstruction reasoning for robotic grasping
Successful robotic grasping in cluttered environments not only requires a model to visually ground a target object but also to reason about obstructions that must be cleared beforehand. While current vision-language embodied reasoning models show emergent spatial understanding, they remain limited in terms of obstruction reasoning and accessibility planning. To bridge this gap, we present UNOGrasp, a learning-based vision-language model capable of performing visually-grounded obstruction reasoning to infer the sequence of actions needed to unobstruct the path and grasp the target object. We devise a novel multi-step reasoning process based on obstruction paths originated by the target object. We anchor each reasoning step with obstruction-aware visual cues to incentivize reasoning capability. UNOGrasp combines supervised and reinforcement finetuning through verifiable reasoning rewards. Moreover, we construct UNOBench, a large-scale dataset for both training and benchmarking, based on MetaGraspNetV2, with over 100k obstruction paths annotated by humans with obstruction ratios, contact points, and natural-language instructions. Extensive experiments and real-robot evaluations show that UNOGrasp significantly improves obstruction reasoning and grasp success across both synthetic and real-world environments, outperforming generalist and proprietary alternatives. Project website: https://tev-fbk.github.io/UnoGrasp/.
☆ Listwise Preference Optimization with Element-wise Confusions for Aspect Sentiment Quad Prediction
Aspect sentiment quad prediction (ASQP) is inherently challenging to predict a structured quadruple with four core sentiment elements, including aspect term (a), aspect category (c), opinion term (o), and sentiment polarity (s). Prior methods relying on marker-based prediction struggle with modeling the intricate relationships among elements and experience sharp performance declines when predicting higher-order elements (e.g., c and s) under standard supervised fine-tuning. To address these limitations, we employ reasoning-based generation to output both the quadruple and a natural language rationale under element prefixes within a unified template, encouraging explicit relational reasoning and interpretability. To further enhance element-wise alignment, we introduce a listwise preference optimization framework for improving structural validity and relational coherence. Specifically, we generate element-wise confusable candidates via syntactic and semantic proximity, then train the model with listwise objectives to prefer the gold candidates over closely competing alternatives. Extensive experiments on four benchmark datasets demonstrate that our framework effectively improves quadruple prediction accuracy and explanation consistency.
comment: 11 pages, 7 figures, and 6 tables
☆ Identification of Malicious Posts on the Dark Web Using Supervised Machine Learning
Given the constant growth and increasing sophistication of cyberattacks, cybersecurity can no longer rely solely on traditional defense techniques and tools. Proactive detection of cyber threats has become essential to help security teams identify potential risks and implement effective mitigation measures. Cyber Threat Intelligence (CTI) plays a key role by providing security analysts with evidence-based knowledge about cyber threats. CTI information can be extracted using various techniques and data sources; however, machine learning has proven promising. As for data sources, social networks and online discussion forums are commonly explored. In this study, we apply text mining techniques and machine learning to data collected from Dark Web forums in Brazilian Portuguese to identify malicious posts. Our contributions include the creation of three original datasets, a novel multi-stage labeling process combining indicators of compromise (IoCs), contextual keywords, and manual analysis, and a comprehensive evaluation of text representations and classifiers. To our knowledge, this is the first study to focus specifically on Brazilian Portuguese content in this domain. The best-performing model, using LightGBM and TF-IDF, was able to detect relevant posts with high accuracy. We also applied topic modeling to validate the model's outputs on unlabeled data, confirming its robustness in real-world scenarios.
comment: Manuscript under review (SN Computer Science)
☆ AI for software engineering: from probable to provable
Vibe coding, the much-touted use of AI techniques for programming, faces two overwhelming obstacles: the difficulty of specifying goals ("prompt engineering" is a form of requirements engineering, one of the toughest disciplines of software engineering); and the hallucination phenomenon. Programs are only useful if they are correct or very close to correct. The solution? Combine the creativity of artificial intelligence with the rigor of formal specification methods and the power of formal program verification, supported by modern proof tools.
☆ REVEAL: Reasoning-enhanced Forensic Evidence Analysis for Explainable AI-generated Image Detection
With the rapid advancement of generative models, visually realistic AI-generated images have become increasingly difficult to distinguish from authentic ones, posing severe threats to social trust and information integrity. Consequently, there is an urgent need for efficient and truly explainable image forensic methods. Recent detection paradigms have shifted towards explainable forensics. However, state-of-the-art approaches primarily rely on post-hoc rationalizations or visual discrimination, lacking a verifiable chain of evidence. This reliance on surface-level pattern matching limits the generation of causally grounded explanations and often results in poor generalization. To bridge this critical gap, we introduce \textbf{REVEAL-Bench}, the first reasoning-enhanced multimodal benchmark for AI-generated image detection that is explicitly structured around a chain-of-evidence derived from multiple lightweight expert models, then records step-by-step reasoning traces and evidential justifications. Building upon this dataset, we propose \textbf{REVEAL} (\underline{R}easoning-\underline{e}nhanced Forensic E\underline{v}id\underline{e}nce \underline{A}na\underline{l}ysis), an effective and explainable forensic framework that integrates detection with a novel expert-grounded reinforcement learning. Our reward mechanism is specially tailored to jointly optimize detection accuracy, explanation fidelity, and logical coherence grounded in explicit forensic evidence, enabling REVEAL to produce fine-grained, interpretable, and verifiable reasoning chains alongside its detection outcomes. Extensive experimental results demonstrate that REVEAL significantly enhances detection accuracy, explanation fidelity, and robust cross-model generalization, benchmarking a new state of the art for explainable image forensics.
☆ Peer-to-Peer Energy Trading in Dairy Farms using Multi-Agent Reinforcement Learning
The integration of renewable energy resources in rural areas, such as dairy farming communities, enables decentralized energy management through Peer-to-Peer (P2P) energy trading. This research highlights the role of P2P trading in efficient energy distribution and its synergy with advanced optimization techniques. While traditional rule-based methods perform well under stable conditions, they struggle in dynamic environments. To address this, Multi-Agent Reinforcement Learning (MARL), specifically Proximal Policy Optimization (PPO) and Deep Q-Networks (DQN), is combined with community/distributed P2P trading mechanisms. By incorporating auction-based market clearing, a price advisor agent, and load and battery management, the approach achieves significant improvements. Results show that, compared to baseline models, DQN reduces electricity costs by 14.2% in Ireland and 5.16% in Finland, while increasing electricity revenue by 7.24% and 12.73%, respectively. PPO achieves the lowest peak hour demand, reducing it by 55.5% in Ireland, while DQN reduces peak hour demand by 50.0% in Ireland and 27.02% in Finland. These improvements are attributed to both MARL algorithms and P2P energy trading, which together results in electricity cost and peak hour demand reduction, and increase electricity selling revenue. This study highlights the complementary strengths of DQN, PPO, and P2P trading in achieving efficient, adaptable, and sustainable energy management in rural communities.
comment: 51 pages, 7 figures, 11 tables, Preprint of the article published in Applied Energy: Shah, M.I.A., Victorio, M.E.C., Duffy, M., Barrett, E. and Mason, K. (2026). Peer-to-peer energy trading in dairy farms using multi-agent reinforcement learning. Applied Energy, 402, 127041. doi:10.1016/j.apenergy.2025.127041
☆ Automated Generation of MDPs Using Logic Programming and LLMs for Robotic Applications
We present a novel framework that integrates Large Language Models (LLMs) with automated planning and formal verification to streamline the creation and use of Markov Decision Processes (MDP). Our system leverages LLMs to extract structured knowledge in the form of a Prolog knowledge base from natural language (NL) descriptions. It then automatically constructs an MDP through reachability analysis, and synthesises optimal policies using the Storm model checker. The resulting policy is exported as a state-action table for execution. We validate the framework in three human-robot interaction scenarios, demonstrating its ability to produce executable policies with minimal manual effort. This work highlights the potential of combining language models with formal methods to enable more accessible and scalable probabilistic planning in robotics.
comment: 9 pages, 11 figures, 2 tables, 2 algorithms, accepted for publication in IEEE Robotics and Automation Letters
☆ Multi-chain Graph Refinement and Selection for Reliable Reasoning in Large Language Models
The complex reasoning ability of Large Language Models (LLMs) poses a critical bottleneck for their practical applications. Test-time expansion methods such as Tree-of-Thought (ToT) and Graph-of-Thought (GoT) enhance reasoning by introducing intermediate reasoning structures, tree search, or graph-based exploration mechanisms. However, their reasoning strategies suffer from limited diversity, redundant search branches, and inadequate integration and error correction across heterogeneous reasoning paths. To address these limitations, we propose a novel reasoning framework called Multi-chain Graph Refinement & Selection (MGRS), which first generates multiple diverse reasoning trajectories for a given problem, refines candidate responses using a composite self- and cross-verification strategy, then constructs a reasoning relation graph and estimates the success rate of intermediate nodes, and finally computes cumulative success rates to select the most reliable answer and corresponding reasoning trajectory. Experimental results demonstrate that MGRS significantly advances both the reasoning capability and computational efficiency of reasoning enhancement methods. Across six benchmark datasets spanning four distinct tasks, MGRS achieves an average accuracy of 82.9%, outperforming state-of-the-art baselines by a clear margin of 2.1%. Remarkably, on the 24-point game, MGRS attains 100% accuracy for the first time, while delivering a 13.6x speed-up compared to the leading Forest of Thoughts framework.
☆ Evolutionary Discovery of Heuristic Policies for Traffic Signal Control
Traffic Signal Control (TSC) involves a challenging trade-off: classic heuristics are efficient but oversimplified, while Deep Reinforcement Learning (DRL) achieves high performance yet suffers from poor generalization and opaque policies. Online Large Language Models (LLMs) provide general reasoning but incur high latency and lack environment-specific optimization. To address these issues, we propose Temporal Policy Evolution for Traffic (\textbf{\method{}}), which uses LLMs as an evolution engine to derive specialized heuristic policies. The framework introduces two key modules: (1) Structured State Abstraction (SSA), converting high-dimensional traffic data into temporal-logical facts for reasoning; and (2) Credit Assignment Feedback (CAF), tracing flawed micro-decisions to poor macro-outcomes for targeted critique. Operating entirely at the prompt level without training, \method{} yields lightweight, robust policies optimized for specific traffic environments, outperforming both heuristics and online LLM actors.
☆ Mind Reading or Misreading? LLMs on the Big Five Personality Test SC
We evaluate large language models (LLMs) for automatic personality prediction from text under the binary Five Factor Model (BIG5). Five models -- including GPT-4 and lightweight open-source alternatives -- are tested across three heterogeneous datasets (Essays, MyPersonality, Pandora) and two prompting strategies (minimal vs. enriched with linguistic and psychological cues). Enriched prompts reduce invalid outputs and improve class balance, but also introduce a systematic bias toward predicting trait presence. Performance varies substantially: Openness and Agreeableness are relatively easier to detect, while Extraversion and Neuroticism remain challenging. Although open-source models sometimes approach GPT-4 and prior benchmarks, no configuration yields consistently reliable predictions in zero-shot binary settings. Moreover, aggregate metrics such as accuracy and macro-F1 mask significant asymmetries, with per-class recall offering clearer diagnostic value. These findings show that current out-of-the-box LLMs are not yet suitable for APPT, and that careful coordination of prompt design, trait framing, and evaluation metrics is essential for interpretable results.
comment: Funding: SoBigDatait (IR0000013), FAIR (PE00000013), ICSC (CN00000013)
☆ Fairness in the Multi-Secretary Problem AAAI'26
This paper bridges two perspectives: it studies the multi-secretary problem through the fairness lens of social choice, and examines multi-winner elections from the viewpoint of online decision making. After identifying the limitations of the prominent proportionality notion of Extended Justified Representation (EJR) in the online domain, the work proposes a set of mechanisms that merge techniques from online algorithms with rules from social choice -- such as the Method of Equal Shares and the Nash Rule -- and supports them through both theoretical analysis and extensive experimental evaluation.
comment: AAAI'26
☆ Does Self-Evaluation Enable Wireheading in Language Models? AAAI 2026
Self-evaluation is increasingly central to language model training, from constitutional AI to self-refinement. We investigate whether coupling self-evaluation to reward signals creates incentives for wireheading, where agents manipulate reward measurements rather than improving task performance. We formalize conditions under which reward-channel control strictly dominates task-focused behavior in POMDPs and test these predictions empirically. Across two models and three tasks, we find that models whose self-grades determine rewards exhibit substantial grade inflation without corresponding accuracy gains, particularly on ambiguous tasks like summarization. Models that self-evaluate but do not control rewards show no such inflation. Our results demonstrate that self-evaluation is safe when decoupled from learning signals but dangerous when coupled, with clear implications for agentic system design.
comment: Accepted (oral) to Foundations of Agentic Systems Theory at AAAI 2026
☆ SpaceMind: Camera-Guided Modality Fusion for Spatial Reasoning in Vision-Language Models
Large vision-language models (VLMs) show strong multimodal understanding but still struggle with 3D spatial reasoning, such as distance estimation, size comparison, and cross-view consistency. Existing 3D-aware methods either depend on auxiliary 3D information or enhance RGB-only VLMs with geometry encoders through shallow feature fusion. We propose SpaceMind, a multimodal large language model explicitly designed for spatial reasoning solely from RGB inputs. The model adopts a dual-encoder architecture, integrating VGGT as a spatial understanding encoder and InternViT as a 2D visual encoder. The key idea is to treat the camera representation as an active guiding modality rather than passive metadata. Specifically, SpaceMind introduces a lightweight Camera-Guided Modality Fusion module before the language model to replace shallow fusion. It applies camera-conditioned biasing to spatial tokens, assigns query-independent weights reflecting their geometric importance, and uses the camera embedding to gate the fused representation. Empirically, SpaceMind establishes new state-of-the-art results on VSI-Bench, SQA3D and SPBench, surpassing both open and proprietary systems on VSI-Bench and SPBench by large margins and achieving state-of-the-art performance on SQA3D. These results demonstrate that camera-guided modality fusion is an effective and practical inductive bias for equipping VLMs with genuinely spatially grounded intelligence. We will release code and model checkpoints to support future research.
☆ What If They Took the Shot? A Hierarchical Bayesian Framework for Counterfactual Expected Goals
This study develops a hierarchical Bayesian framework that integrates expert domain knowledge to quantify player-specific effects in expected goals (xG) estimation, addressing a limitation of standard models that treat all players as identical finishers. Using 9,970 shots from StatsBomb's 2015-16 data and Football Manager 2017 ratings, we combine Bayesian logistic regression with informed priors to stabilise player-level estimates, especially for players with few shots. The hierarchical model reduces posterior uncertainty relative to weak priors and achieves strong external validity: hierarchical and baseline predictions correlate at R2 = 0.75, while an XGBoost benchmark validated against StatsBomb xG reaches R2 = 0.833. The model uncovers interpretable specialisation profiles, including one-on-one finishing (Aguero, Suarez, Belotti, Immobile, Martial), long-range shooting (Pogba), and first-touch execution (Insigne, Salah, Gameiro). It also identifies latent ability in underperforming players such as Immobile and Belotti. The framework supports counterfactual "what-if" analysis by reallocating shots between players under identical contexts. Case studies show that Sansone would generate +2.2 xG from Berardi's chances, driven largely by high-pressure situations, while Vardy-Giroud substitutions reveal strong asymmetry: replacing Vardy with Giroud results in a large decline (about -7 xG), whereas the reverse substitution has only a small effect (about -1 xG). This work provides an uncertainty-aware tool for player evaluation, recruitment, and tactical planning, and offers a general approach for domains where individual skill and contextual factors jointly shape performance.
☆ Bharat Scene Text: A Novel Comprehensive Dataset and Benchmark for Indian Language Scene Text Understanding
Reading scene text, that is, text appearing in images, has numerous application areas, including assistive technology, search, and e-commerce. Although scene text recognition in English has advanced significantly and is often considered nearly a solved problem, Indian language scene text recognition remains an open challenge. This is due to script diversity, non-standard fonts, and varying writing styles, and, more importantly, the lack of high-quality datasets and open-source models. To address these gaps, we introduce the Bharat Scene Text Dataset (BSTD) - a large-scale and comprehensive benchmark for studying Indian Language Scene Text Recognition. It comprises more than 100K words that span 11 Indian languages and English, sourced from over 6,500 scene images captured across various linguistic regions of India. The dataset is meticulously annotated and supports multiple scene text tasks, including: (i) Scene Text Detection, (ii) Script Identification, (iii) Cropped Word Recognition, and (iv) End-to-End Scene Text Recognition. We evaluated state-of-the-art models originally developed for English by adapting (fine-tuning) them for Indian languages. Our results highlight the challenges and opportunities in Indian language scene text recognition. We believe that this dataset represents a significant step toward advancing research in this domain. All our models and data are open source.
comment: Under Peer Review
☆ Evaluating the Clinical Impact of Generative Inpainting on Bone Age Estimation
Generative foundation models can remove visual artifacts through realistic image inpainting, but their impact on medical AI performance remains uncertain. Pediatric hand radiographs often contain non-anatomical markers, and it is unclear whether inpainting these regions preserves features needed for bone age and gender prediction. To evaluate the clinical reliability of generative model-based inpainting for artifact removal, we used the RSNA Bone Age Challenge dataset, selecting 200 original radiographs and generating 600 inpainted versions with gpt-image-1 using natural language prompts to target non-anatomical artifacts. Downstream performance was assessed with deep learning ensembles for bone age estimation and gender classification, using mean absolute error (MAE) and area under the ROC curve (AUC) as metrics, and pixel intensity distributions to detect structural alterations. Inpainting markedly degraded model performance: bone age MAE increased from 6.26 to 30.11 months, and gender classification AUC decreased from 0.955 to 0.704. Inpainted images displayed pixel-intensity shifts and inconsistencies, indicating structural modifications not corrected by simple calibration. These findings show that, although visually realistic, foundation model-based inpainting can obscure subtle but clinically relevant features and introduce latent bias even when edits are confined to non-diagnostic regions, underscoring the need for rigorous, task-specific validation before integrating such generative tools into clinical AI workflows.
comment: 8 pages, 4 figures
☆ Conveying Imagistic Thinking in TCM Translation: A Prompt Engineering and LLM-Based Evaluation Framework
Traditional Chinese Medicine theory is built on imagistic thinking, in which medical principles and diagnostic and therapeutic logic are structured through metaphor and metonymy. However, existing English translations largely rely on literal rendering, making it difficult for target-language readers to reconstruct the underlying conceptual networks and apply them in clinical practice. This study adopted a human-in-the-loop framework and selected four passages from the medical canon Huangdi Neijing that are fundamental in theory. Through prompt-based cognitive scaffolding, DeepSeek V3.1 was guided to identify metaphor and metonymy in the source text and convey the theory in translation. In the evaluation stage, ChatGPT 5 Pro and Gemini 2.5 Pro were instructed by prompts to simulate three types of real-world readers. Human translations, baseline model translations, and prompt-adjusted translations were scored by the simulated readers across five cognitive dimensions, followed by structured interviews and Interpretative Phenomenological Analysis. Results show that the prompt-adjusted LLM translations perform best across all five dimensions, with high cross-model and cross-role consistency. The interview themes reveal differences between human and machine translation, effective strategies for metaphor and metonymy transfer, and readers' cognitive preferences. This study provides a cognitive, efficient and replicable HITL methodological pathway for translation of ancient, concept-dense texts like TCM.
comment: 3 figures
☆ MindPower: Enabling Theory-of-Mind Reasoning in VLM-based Embodied Agents
Theory of Mind (ToM) refers to the ability to infer others' mental states, such as beliefs, desires, and intentions. Current vision-language embodied agents lack ToM-based decision-making, and existing benchmarks focus solely on human mental states while ignoring the agent's own perspective, hindering coherent decision and action generation. To address this, we propose MindPower, a Robot-Centric framework integrating Perception, Mental Reasoning, Decision Making and Action. Given multimodal inputs, MindPower first perceives the environment and human states, then performs ToM Reasoning to model both self and others, and finally generates decisions and actions guided by inferred mental states. Furthermore, we introduce Mind-Reward, a novel optimization objective that encourages VLMs to produce consistent ToM Reasoning and behavior. Our model outperforms GPT-4o by 12.77% in decision making and 12.49% in action generation.
☆ High-Resolution Probabilistic Data-Driven Weather Modeling with a Stretched-Grid
We present a probabilistic data-driven weather model capable of providing an ensemble of high spatial resolution realizations of 87 variables at arbitrary forecast length and ensemble size. The model uses a stretched grid, dedicating 2.5 km resolution to a region of interest, and 31 km resolution elsewhere. Based on a stochastic encoder-decoder architecture, the model is trained using a loss function based on the Continuous Ranked Probability Score (CRPS) evaluated point-wise in real and spectral space. The spectral loss components is shown to be necessary to create fields that are spatially coherent. The model is compared to high-resolution operational numerical weather prediction forecasts from the MetCoOp Ensemble Prediction System (MEPS), showing competitive forecasts when evaluated against observations from surface weather stations. The model produced fields that are more spatially coherent than mean squared error based models and CRPS based models without the spectral component in the loss.
comment: 14 pages, 8 figures
☆ Delta-XAI: A Unified Framework for Explaining Prediction Changes in Online Time Series Monitoring ICLR 2026
Explaining online time series monitoring models is crucial across sensitive domains such as healthcare and finance, where temporal and contextual prediction dynamics underpin critical decisions. While recent XAI methods have improved the explainability of time series models, they mostly analyze each time step independently, overlooking temporal dependencies. This results in further challenges: explaining prediction changes is non-trivial, methods fail to leverage online dynamics, and evaluation remains difficult. To address these challenges, we propose Delta-XAI, which adapts 14 existing XAI methods through a wrapper function and introduces a principled evaluation suite for the online setting, assessing diverse aspects, such as faithfulness, sufficiency, and coherence. Experiments reveal that classical gradient-based methods, such as Integrated Gradients (IG), can outperform recent approaches when adapted for temporal analysis. Building on this, we propose Shifted Window Integrated Gradients (SWING), which incorporates past observations in the integration path to systematically capture temporal dependencies and mitigate out-of-distribution effects. Extensive experiments consistently demonstrate the effectiveness of SWING across diverse settings with respect to diverse metrics. Our code is publicly available at https://anonymous.4open.science/r/Delta-XAI.
comment: Under review at ICLR 2026
☆ From Illusion to Intention: Visual Rationale Learning for Vision-Language Reasoning
Recent advances in vision-language reasoning underscore the importance of thinking with images, where models actively ground their reasoning in visual evidence. Yet, prevailing frameworks treat visual actions as optional tools, boosting metrics but leaving reasoning ungrounded and crops ineffective. This gap gives rise to the illusion of thinking with images: models seem visually grounded but rely on context-agnostic actions that neither refine perception nor guide reasoning toward correct answers. We address this problem by reframing visual actions as core reasoning primitives rather than optional tools, which we term visual rationalization, the visual analogue of textual Chain-of-Thought. Building on this insight, we propose Visual Rationale Learning (ViRL), an end-to-end paradigm that grounds training in the visual rationale itself. ViRL integrates (1) Process Supervision with ground-truth rationales, (2) Objective Alignment via step-level reward shaping, and (3) Fine-Grained Credit Assignment to distinguish correct, redundant, and erroneous actions. By ensuring each action contributes meaningfully to the reasoning chain, ViRL enables models to "get the right answer for the right visual reason". Trained purely with end-to-end RL, ViRL achieves state-of-the-art results across benchmarks spanning perception, hallucination, and reasoning. This work establishes visual rationalization as a task-agnostic, process-grounded paradigm for building transparent, verifiable, and trustworthy vision-language models.
comment: 19 pages, 15 figures
☆ A transfer learning approach for automatic conflicts detection in software requirement sentence pairs based on dual encoders
Software Requirement Document (RD) typically contain tens of thousands of individual requirements, and ensuring consistency among these requirements is critical for the success of software engineering projects. Automated detection methods can significantly enhance efficiency and reduce costs; however, existing approaches still face several challenges, including low detection accuracy on imbalanced data, limited semantic extraction due to the use of a single encoder, and suboptimal performance in cross-domain transfer learning. To address these issues, this paper proposes a Transferable Software Requirement Conflict Detection Framework based on SBERT and SimCSE, termed TSRCDF-SS. First, the framework employs two independent encoders, Sentence-BERT (SBERT) and Simple Contrastive Sentence Embedding (SimCSE), to generate sentence embeddings for requirement pairs, followed by a six-element concatenation strategy. Furthermore, the classifier is enhanced by a two-layer fully connected feedforward neural network (FFNN) with a hybrid loss optimization strategy that integrates a variant of Focal Loss, domain-specific constraints, and a confidence-based penalty term. Finally, the framework synergistically integrates sequential and cross-domain transfer learning. Experimental results demonstrate that the proposed framework achieves a 10.4% improvement in both macro-F1 and weighted-F1 scores in in-domain settings, and an 11.4% increase in macro-F1 in cross-domain scenarios.
comment: 22 pages, 7 figures, 3 tables
☆ TIM-PRM: Verifying multimodal reasoning with Tool-Integrated PRM
Multimodal Large Language Models (MLLMs) have achieved impressive performances in mathematical reasoning, yet they remain vulnerable to visual hallucinations and logical inconsistencies that standard outcome-based supervision fails to mitigate. While Process Reward Models (PRMs) promise step-by-step verification, current approaches typically operate as scalar scorers or generative critics that suffer from sycophancy, blindly validating the flawed hypotheses rather than grounding them in visual reality. To bridge this gap, we introduce TIM-PRM (Tool-Integrated Multimodal PRM), a novel agentic framework that transforms verification from a passive classification task into an active, tool-augmented investigation. TIM-PRM is trained to explicitly plan verification strategies and utilizes a mechanism of Independent Question Asking to query evidence via external tools, effectively decoupling verification from the reasoning context to eliminate confirmation bias. We instantiate this method by curating a high-quality dataset of tool-integrated verification trajectories. Extensive experiments on VisualProcessBench demonstrate that our 8B parameter model surpasses existing open-source multimodal PRMs, significantly outperforming much larger models like Qwen2.5-72B and InternVL-78B, while offering interpretable insights into the verification process.
comment: 14 pages
☆ MIMM-X: Disentangling Spurious Correlations for Medical Image Analysis
Deep learning models can excel on medical tasks, yet often experience spurious correlations, known as shortcut learning, leading to poor generalization in new environments. Particularly in medical imaging, where multiple spurious correlations can coexist, misclassifications can have severe consequences. We propose MIMM-X, a framework that disentangles causal features from multiple spurious correlations by minimizing their mutual information. It enables predictions based on true underlying causal relationships rather than dataset-specific shortcuts. We evaluate MIMM-X on three datasets (UK Biobank, NAKO, CheXpert) across two imaging modalities (MRI and X-ray). Results demonstrate that MIMM-X effectively mitigates shortcut learning of multiple spurious correlations.
☆ Ovis-Image Technical Report
We introduce $\textbf{Ovis-Image}$, a 7B text-to-image model specifically optimized for high-quality text rendering, designed to operate efficiently under stringent computational constraints. Built upon our previous Ovis-U1 framework, Ovis-Image integrates a diffusion-based visual decoder with the stronger Ovis 2.5 multimodal backbone, leveraging a text-centric training pipeline that combines large-scale pre-training with carefully tailored post-training refinements. Despite its compact architecture, Ovis-Image achieves text rendering performance on par with significantly larger open models such as Qwen-Image and approaches closed-source systems like Seedream and GPT4o. Crucially, the model remains deployable on a single high-end GPU with moderate memory, narrowing the gap between frontier-level text rendering and practical deployment. Our results indicate that combining a strong multimodal backbone with a carefully designed, text-focused training recipe is sufficient to achieve reliable bilingual text rendering without resorting to oversized or proprietary models.
comment: Code is released at https://github.com/AIDC-AI/Ovis-Image
☆ Pooling Attention: Evaluating Pretrained Transformer Embeddings for Deception Classification
This paper investigates fake news detection as a downstream evaluation of Transformer representations, benchmarking encoder-only and decoder-only pre-trained models (BERT, GPT-2, Transformer-XL) as frozen embedders paired with lightweight classifiers. Through controlled preprocessing comparing pooling versus padding and neural versus linear heads, results demonstrate that contextual self-attention encodings consistently transfer effectively. BERT embeddings combined with logistic regression outperform neural baselines on LIAR dataset splits, while analyses of sequence length and aggregation reveal robustness to truncation and advantages from simple max or average pooling. This work positions attention-based token encoders as robust, architecture-centric foundations for veracity tasks, isolating Transformer contributions from classifier complexity.
comment: Accepted at the IEEE 7th Computing, Communications and IoT Applications Conference (ComComAp 2025), Madrid, Spain, December 2025. 6 pages
☆ Commanding Humanoid by Free-form Language: A Large Language Action Model with Unified Motion Vocabulary
Enabling humanoid robots to follow free-form language commands is critical for seamless human-robot interaction, collaborative task execution, and general-purpose embodied intelligence. While recent advances have improved low-level humanoid locomotion and robot manipulation, language-conditioned whole-body control remains a significant challenge. Existing methods are often limited to simple instructions and sacrifice either motion diversity or physical plausibility. To address this, we introduce Humanoid-LLA, a Large Language Action Model that maps expressive language commands to physically executable whole-body actions for humanoid robots. Our approach integrates three core components: a unified motion vocabulary that aligns human and humanoid motion primitives into a shared discrete space; a vocabulary-directed controller distilled from a privileged policy to ensure physical feasibility; and a physics-informed fine-tuning stage using reinforcement learning with dynamics-aware rewards to enhance robustness and stability. Extensive evaluations in simulation and on a real-world Unitree G1 humanoid show that Humanoid-LLA delivers strong language generalization while maintaining high physical fidelity, outperforming existing language-conditioned controllers in motion naturalness, stability, and execution success rate.
comment: Project page: https://humanoidlla.github.io/
☆ Bandit Guided Submodular Curriculum for Adaptive Subset Selection
Traditional curriculum learning proceeds from easy to hard samples, yet defining a reliable notion of difficulty remains elusive. Prior work has used submodular functions to induce difficulty scores in curriculum learning. We reinterpret adaptive subset selection and formulate it as a multi-armed bandit problem, where each arm corresponds to a submodular function guiding sample selection. We introduce ONLINESUBMOD, a novel online greedy policy that optimizes a utility-driven reward and provably achieves no-regret performance under various sampling regimes. Empirically, ONLINESUBMOD outperforms both traditional curriculum learning and bi-level optimization approaches across vision and language datasets, showing superior accuracy-efficiency tradeoffs. More broadly, we show that validationdriven reward metrics offer a principled way to guide the curriculum schedule.
comment: 10 pages main, 21 pages Appendix, 8 figures
☆ EnECG: Efficient Ensemble Learning for Electrocardiogram Multi-task Foundation Model
Electrocardiogram (ECG) analysis plays a vital role in the early detection, monitoring, and management of various cardiovascular conditions. While existing models have achieved notable success in ECG interpretation, they fail to leverage the interrelated nature of various cardiac abnormalities. Conversely, developing a specific model capable of extracting all relevant features for multiple ECG tasks remains a significant challenge. Large-scale foundation models, though powerful, are not typically pretrained on ECG data, making full re-training or fine-tuning computationally expensive. To address these challenges, we propose EnECG(Mixture of Experts-based Ensemble Learning for ECG Multi-tasks), an ensemble-based framework that integrates multiple specialized foundation models, each excelling in different aspects of ECG interpretation. Instead of relying on a single model or single task, EnECG leverages the strengths of multiple specialized models to tackle a variety of ECG-based tasks. To mitigate the high computational cost of full re-training or fine-tuning, we introduce a lightweight adaptation strategy: attaching dedicated output layers to each foundation model and applying Low-Rank Adaptation (LoRA) only to these newly added parameters. We then adopt a Mixture of Experts (MoE) mechanism to learn ensemble weights, effectively combining the complementary expertise of individual models. Our experimental results demonstrate that by minimizing the scope of fine-tuning, EnECG can help reduce computational and memory costs while maintaining the strong representational power of foundation models. This framework not only enhances feature extraction and predictive performance but also ensures practical efficiency for real-world clinical applications. The code is available at https://github.com/yuhaoxu99/EnECG.git.
☆ AgentShield: Make MAS more secure and efficient
Large Language Model (LLM)-based Multi-Agent Systems (MAS) offer powerful cooperative reasoning but remain vulnerable to adversarial attacks, where compromised agents can undermine the system's overall performance. Existing defenses either depend on single trusted auditors, creating single points of failure, or sacrifice efficiency for robustness. To resolve this tension, we propose \textbf{AgentShield}, a distributed framework for efficient, decentralized auditing. AgentShield introduces a novel three-layer defense: \textbf{(i) Critical Node Auditing} prioritizes high-influence agents via topological analysis; \textbf{(ii) Light Token Auditing} implements a cascade protocol using lightweight sentry models for rapid discriminative verification; and \textbf{(iii) Two-Round Consensus Auditing} triggers heavyweight arbiters only upon uncertainty to ensure global agreement. This principled design optimizes the robustness-efficiency trade-off. Experiments demonstrate that AgentShield achieves a 92.5\% recovery rate and reduces auditing overhead by over 70\% compared to existing methods, maintaining high collaborative accuracy across diverse MAS topologies and adversarial scenarios.
☆ MICCAI STS 2024 Challenge: Semi-Supervised Instance-Level Tooth Segmentation in Panoramic X-ray and CBCT Images
Orthopantomogram (OPGs) and Cone-Beam Computed Tomography (CBCT) are vital for dentistry, but creating large datasets for automated tooth segmentation is hindered by the labor-intensive process of manual instance-level annotation. This research aimed to benchmark and advance semi-supervised learning (SSL) as a solution for this data scarcity problem. We organized the 2nd Semi-supervised Teeth Segmentation (STS 2024) Challenge at MICCAI 2024. We provided a large-scale dataset comprising over 90,000 2D images and 3D axial slices, which includes 2,380 OPG images and 330 CBCT scans, all featuring detailed instance-level FDI annotations on part of the data. The challenge attracted 114 (OPG) and 106 (CBCT) registered teams. To ensure algorithmic excellence and full transparency, we rigorously evaluated the valid, open-source submissions from the top 10 (OPG) and top 5 (CBCT) teams, respectively. All successful submissions were deep learning-based SSL methods. The winning semi-supervised models demonstrated impressive performance gains over a fully-supervised nnU-Net baseline trained only on the labeled data. For the 2D OPG track, the top method improved the Instance Affinity (IA) score by over 44 percentage points. For the 3D CBCT track, the winning approach boosted the Instance Dice score by 61 percentage points. This challenge confirms the substantial benefit of SSL for complex, instance-level medical image segmentation tasks where labeled data is scarce. The most effective approaches consistently leveraged hybrid semi-supervised frameworks that combined knowledge from foundational models like SAM with multi-stage, coarse-to-fine refinement pipelines. Both the challenge dataset and the participants' submitted code have been made publicly available on GitHub (https://github.com/ricoleehduu/STS-Challenge-2024), ensuring transparency and reproducibility.
☆ Leveraging Textual Compositional Reasoning for Robust Change Captioning AAAI 2026
Change captioning aims to describe changes between a pair of images. However, existing works rely on visual features alone, which often fail to capture subtle but meaningful changes because they lack the ability to represent explicitly structured information such as object relationships and compositional semantics. To alleviate this, we present CORTEX (COmpositional Reasoning-aware TEXt-guided), a novel framework that integrates complementary textual cues to enhance change understanding. In addition to capturing cues from pixel-level differences, CORTEX utilizes scene-level textual knowledge provided by Vision Language Models (VLMs) to extract richer image text signals that reveal underlying compositional reasoning. CORTEX consists of three key modules: (i) an Image-level Change Detector that identifies low-level visual differences between paired images, (ii) a Reasoning-aware Text Extraction (RTE) module that use VLMs to generate compositional reasoning descriptions implicit in visual features, and (iii) an Image-Text Dual Alignment (ITDA) module that aligns visual and textual features for fine-grained relational reasoning. This enables CORTEX to reason over visual and textual features and capture changes that are otherwise ambiguous in visual features alone.
comment: Accepted at AAAI 2026
☆ Switching-time bioprocess control with pulse-width-modulated optogenetics
Biotechnology can benefit from dynamic control to improve production efficiency. In this context, optogenetics enables modulation of gene expression using light as an external input, allowing fine-tuning of protein levels to unlock dynamic metabolic control and regulation of cell growth. Optogenetic systems can be actuated by light intensity. However, relying solely on intensity-driven control (i.e., signal amplitude) may fail to properly tune optogenetic bioprocesses when the dose-response relationship (i.e., light intensity versus gene-expression strength) is steep. In these cases, tunability is effectively constrained to either fully active or fully repressed gene expression, with little intermediate regulation. Pulse-width modulation, a concept widely used in electronics, can alleviate this issue by alternating between fully ON and OFF light intensity within forcing periods, thereby smoothing the average response and enhancing process controllability. Naturally, optimizing pulse-width-modulated optogenetics entails a switching-time optimal control problem with a binary input over many forcing periods. While this can be formulated as a mixed-integer program on a refined time grid, the number of decision variables can grow rapidly with increasing time-grid resolution and number of forcing periods, compromising tractability. Here, we propose an alternative solution based on reinforcement learning. We parametrize control actions via the duty cycle, a continuous variable that encodes the ON-to-OFF switching time within each forcing period, thereby respecting the intrinsic binary nature of the light intensity.
comment: Submitted conference paper
☆ ORION: Teaching Language Models to Reason Efficiently in the Language of Thought
Large Reasoning Models (LRMs) achieve strong performance in mathematics, code generation, and task planning, but their reliance on long chains of verbose "thinking" tokens leads to high latency, redundancy, and incoherent reasoning paths. Inspired by the Language of Thought Hypothesis, which posits that human reasoning operates over a symbolic, compositional mental language called Mentalese, we introduce a framework that trains models to reason in a similarly compact style. Mentalese encodes abstract reasoning as ultra-compressed, structured tokens, enabling models to solve complex problems with far fewer steps. To improve both efficiency and accuracy, we propose SHORTER LENGTH PREFERENCE OPTIMIZATION (SLPO), a reinforcement learning method that rewards concise solutions that stay correct, while still allowing longer reasoning when needed. Applied to Mentalese-aligned models, SLPO yields significantly higher compression rates by enabling concise reasoning that preserves the benefits of detailed thinking without the computational overhead. Across benchmarks including AIME 2024 and 2025, MinervaMath, OlympiadBench, Math500, and AMC, our ORION models produce reasoning traces with 4-16x fewer tokens, achieve up to 5x lower inference latency, and reduce training costs by 7-9x relative to the DeepSeek R1 Distilled model, while maintaining 90-98% of its accuracy. ORION also surpasses Claude and ChatGPT-4o by up to 5% in accuracy while maintaining 2x compression. These results show that Mentalese-style compressed reasoning offers a step toward human-like cognitive efficiency, enabling real-time, cost-effective reasoning without sacrificing accuracy.
☆ Adversarial Training for Process Reward Models
Process Reward Models (PRMs) enhance reasoning ability of LLMs by providing step-level supervision. However, their widespread adoption is limited due to expensive manual step-level annotation and poor generalization of static training data to novel errors. We introduce Adversarially Trained PRMs (\texttt{APRM}), where a Generator ($G$) learns to produce reasoning errors to deceive a PRM ($R$), while $R$ concurrently learns to detect them. This interaction yields progressively harder negatives for $R$, improving its robustness and generalization to novel errors without requiring manual step-level labels. Averaged across diverse mathematical reasoning benchmarks, \texttt{APRM} improves solver accuracy by $+3.4$ percentage points (pp) over the strongest PRM baseline. \texttt{APRM} achieves gains of $+5.3$ pp on out-of-distribution tasks.
☆ InsightEval: An Expert-Curated Benchmark for Assessing Insight Discovery in LLM-Driven Data Agents
Data analysis has become an indispensable part of scientific research. To discover the latent knowledge and insights hidden within massive datasets, we need to perform deep exploratory analysis to realize their full value. With the advent of large language models (LLMs) and multi-agent systems, more and more researchers are making use of these technologies for insight discovery. However, there are few benchmarks for evaluating insight discovery capabilities. As one of the most comprehensive existing frameworks, InsightBench also suffers from many critical flaws: format inconsistencies, poorly conceived objectives, and redundant insights. These issues may significantly affect the quality of data and the evaluation of agents. To address these issues, we thoroughly investigate shortcomings in InsightBench and propose essential criteria for a high-quality insight benchmark. Regarding this, we develop a data-curation pipeline to construct a new dataset named InsightEval. We further introduce a novel metric to measure the exploratory performance of agents. Through extensive experiments on InsightEval, we highlight prevailing challenges in automated insight discovery and raise some key findings to guide future research in this promising direction.
☆ Serving Heterogeneous LoRA Adapters in Distributed LLM Inference Systems
Low-Rank Adaptation (LoRA) has become the de facto method for parameter-efficient fine-tuning of large language models (LLMs), enabling rapid adaptation to diverse domains. In production, LoRA-based models are served at scale, creating multi-tenant environments with hundreds of adapters sharing a base model. However, state-of-the-art serving systems co-batch heterogeneous adapters without accounting for rank (size) variability, leading to severe performance skew, which ultimately requires adding more GPUs to satisfy service-level objectives (SLOs). Existing optimizations, focused on loading, caching, and kernel execution, ignore this heterogeneity, leaving GPU resources underutilized. We present LoRAServe, a workload-aware dynamic adapter placement and routing framework designed to tame rank diversity in LoRA serving. By dynamically rebalancing adapters across GPUs and leveraging GPU Direct RDMA for remote access, LoRAServe maximizes throughput and minimizes tail latency under real-world workload drift. Evaluations on production traces from Company X show that LoRAServe elicits up to 2$\times$ higher throughput, up to 9$\times$ lower TTFT, while using up to 50% fewer GPUs under SLO constraints compared to state-of-the-art systems.
☆ Escaping Barren Plateaus in Variational Quantum Algorithms Using Negative Learning Rate in Quantum Internet of Things
Variational Quantum Algorithms (VQAs) are becoming the primary computational primitive for next-generation quantum computers, particularly those embedded as resource-constrained accelerators in the emerging Quantum Internet of Things (QIoT). However, under such device-constrained execution conditions, the scalability of learning is severely limited by barren plateaus, where gradients collapse to zero and training stalls. This poses a practical challenge to delivering VQA-enabled intelligence on QIoT endpoints, which often have few qubits, constrained shot budgets, and strict latency requirements. In this paper, we present a novel approach for escaping barren plateaus by including negative learning rates into the optimization process in QIoT devices. Our method introduces controlled instability into model training by switching between positive and negative learning phases, allowing recovery of significant gradients and exploring flatter areas in the loss landscape. We theoretically evaluate the effect of negative learning on gradient variance and propose conditions under which it helps escape from barren zones. The experimental findings on typical VQA benchmarks show consistent improvements in both convergence and simulation results over traditional optimizers. By escaping barren plateaus, our approach leads to a novel pathway for robust optimization in quantum-classical hybrid models.
comment: Accepted at IEEE Internet of Things Journal
☆ CausalProfiler: Generating Synthetic Benchmarks for Rigorous and Transparent Evaluation of Causal Machine Learning
Causal machine learning (Causal ML) aims to answer "what if" questions using machine learning algorithms, making it a promising tool for high-stakes decision-making. Yet, empirical evaluation practices in Causal ML remain limited. Existing benchmarks often rely on a handful of hand-crafted or semi-synthetic datasets, leading to brittle, non-generalizable conclusions. To bridge this gap, we introduce CausalProfiler, a synthetic benchmark generator for Causal ML methods. Based on a set of explicit design choices about the class of causal models, queries, and data considered, the CausalProfiler randomly samples causal models, data, queries, and ground truths constituting the synthetic causal benchmarks. In this way, Causal ML methods can be rigorously and transparently evaluated under a variety of conditions. This work offers the first random generator of synthetic causal benchmarks with coverage guarantees and transparent assumptions operating on the three levels of causal reasoning: observation, intervention, and counterfactual. We demonstrate its utility by evaluating several state-of-the-art methods under diverse conditions and assumptions, both in and out of the identification regime, illustrating the types of analyses and insights the CausalProfiler enables.
☆ Fast dynamical similarity analysis
To understand how neural systems process information, it is often essential to compare one circuit with another, one brain with another, or data with a model. Traditional similarity measures ignore the dynamical processes underlying neural representations. Dynamical similarity methods offer a framework to compare the temporal structure of dynamical systems by embedding their (possibly) nonlinear dynamics into a globally linear space and there computing conjugacy metrics. However, identifying the best embedding and computing these metrics can be computationally slow. Here we introduce fast Dynamical Similarity Analysis (fastDSA), which is computationally far more efficient than previous methods while maintaining their accuracy and robustness. FastDSA introduces two key components that boost efficiency: (1) automatic selection of the effective model order of the Hankel (delay) embedding from the data via a data-driven singular-value threshold that identifies the informative subspace and discards noise to lower computational cost without sacrificing signal, and (2) a novel optimization procedure and objective, which replaces the slow exact orthogonality constraint in finding a minimal distance between dynamics matrices with a lightweight process to keep the search close to the space of orthogonal transformations. We demonstrate that fastDSA is at least an order of magnitude faster than the previous methods. Furthermore, we demonstrate that fastDSA has the properties of its ancestor, including its invariances and sensitivities to system dynamics. FastDSA, therefore, provides a computationally efficient and accurate method for dynamical similarity analysis.
☆ A Unified and Stable Risk Minimization Framework for Weakly Supervised Learning with Theoretical Guarantees
Weakly supervised learning has emerged as a practical alternative to fully supervised learning when complete and accurate labels are costly or infeasible to acquire. However, many existing methods are tailored to specific supervision patterns -- such as positive-unlabeled (PU), unlabeled-unlabeled (UU), complementary-label (CLL), partial-label (PLL), or similarity-unlabeled annotations -- and rely on post-hoc corrections to mitigate instability induced by indirect supervision. We propose a principled, unified framework that bypasses such post-hoc adjustments by directly formulating a stable surrogate risk grounded in the structure of weakly supervised data. The formulation naturally subsumes diverse settings -- including PU, UU, CLL, PLL, multi-class unlabeled, and tuple-based learning -- under a single optimization objective. We further establish a non-asymptotic generalization bound via Rademacher complexity that clarifies how supervision structure, model capacity, and sample size jointly govern performance. Beyond this, we analyze the effect of class-prior misspecification on the bound, deriving explicit terms that quantify its impact, and we study identifiability, giving sufficient conditions -- most notably via supervision stratification across groups -- under which the target risk is recoverable. Extensive experiments show consistent gains across class priors, dataset scales, and class counts -- without heuristic stabilization -- while exhibiting robustness to overfitting.
♻ ☆ NegBLEURT Forest: Leveraging Inconsistencies for Detecting Jailbreak Attacks
Jailbreak attacks designed to bypass safety mechanisms pose a serious threat by prompting LLMs to generate harmful or inappropriate content, despite alignment with ethical guidelines. Crafting universal filtering rules remains difficult due to their inherent dependence on specific contexts. To address these challenges without relying on threshold calibration or model fine-tuning, this work introduces a semantic consistency analysis between successful and unsuccessful responses, demonstrating that a negation-aware scoring approach captures meaningful patterns. Building on this insight, a novel detection framework called NegBLEURT Forest is proposed to evaluate the degree of alignment between outputs elicited by adversarial prompts and expected safe behaviors. It identifies anomalous responses using the Isolation Forest algorithm, enabling reliable jailbreak detection. Experimental results show that the proposed method consistently achieves top-tier performance, ranking first or second in accuracy across diverse models using the crafted dataset, while competing approaches exhibit notable sensitivity to model and data variations.
comment: This paper has been accepted in IEEE Consumer Communications & Networking Conference 2026
♻ ☆ Uncovering Zero-Shot Generalization Gaps in Time-Series Foundation Models Using Real-World Videos AAAI 2026
Recent research on time-series foundation models (TSFMs) has underscored the scarcity of real-world data, often supplemented with synthetic sources in existing datasets, whose generalizability remains however debated. As such, in this work, we propose a novel benchmarking approach: in particular, we aim at building a curated dataset reflecting real world physical temporal dynamics, extracting temporal signals from real-world videos using optical flow. As such, we introduce REAL-V-TSFM, a novel dataset designed to capture rich and diverse time series derived from real-world videos. Experimental results on state-of-the-art TSFMs under zero-shot forecasting show that, despite strong performance on conventional benchmarks, these models exhibit performance degradation on the proposed dataset, suggesting limited generalizability to novel datasets. These findings underscore the need for novel approaches to acquiring time series data and highlight the lack of universality in recent TSFMs, while further validating the effectiveness of our video-based time series data extraction pipeline.
comment: This paper has been accepted by Artificial Intelligence for Time Series Analysis (AI4TS) Workshop @ AAAI 2026: Theory, Algorithms, and Applications
♻ ☆ New-Onset Diabetes Assessment Using Artificial Intelligence-Enhanced Electrocardiography ML4H 2025
Diabetes has a long asymptomatic period which can often remain undiagnosed for multiple years. In this study, we trained a deep learning model to detect new-onset diabetes using 12-lead ECG and readily available demographic information. To do so, we used retrospective data where patients have both a hemoglobin A1c and ECG measured. However, such patients may not be representative of the complete patient population. As part of the study, we proposed a methodology to evaluate our model in the target population by estimating the probability of receiving an A1c test and reweight the retrospective population to represent the general population. We also adapted an efficient algorithm to generate Shapley values for both ECG signals and demographic features at the same time for model interpretation. The model offers an automated, more accurate method for early diabetes detection compared to current screening efforts. Their potential use in wearable devices can facilitate large-scale, community-wide screening, improving healthcare outcomes.
comment: 25 pages, 9 figures, published as a conference paper at ML4H 2025
♻ ☆ CzechLynx: A Dataset for Individual Identification and Pose Estimation of the Eurasian Lynx
We introduce CzechLynx, the first large-scale, open-access dataset for individual identification, pose estimation, and instance segmentation of the Eurasian lynx (Lynx lynx). CzechLynx contains 39,760 camera trap images annotated with segmentation masks, identity labels, and 20-point skeletons and covers 319 unique individuals across 15 years of systematic monitoring in two geographically distinct regions: southwest Bohemia and the Western Carpathians. In addition to the real camera trap data, we provide a large complementary set of photorealistic synthetic images and a Unity-based generation pipeline with diffusion-based text-to-texture modeling, capable of producing arbitrarily large amounts of synthetic data spanning diverse environments, poses, and coat-pattern variations. To enable systematic testing across realistic ecological scenarios, we define three complementary evaluation protocols: (i) geo-aware, (ii) time-aware open-set, and (iii) time-aware closed-set, covering cross-regional and long-term monitoring settings. With the provided resources, CzechLynx offers a unique, flexible benchmark for robust evaluation of computer vision and machine learning models across realistic ecological scenarios.
♻ ☆ Robust LLM Unlearning with MUDMAN: Meta-Unlearning with Disruption Masking And Normalization
Language models can retain dangerous knowledge and skills even after extensive safety fine-tuning, posing both misuse and misalignment risks. Recent studies show that even specialized unlearning methods can be easily reversed. To address this, we systematically evaluate many existing and novel components of unlearning methods and identify ones crucial for irreversible unlearning. We introduce Disruption Masking, a technique in which we only allow updating weights, where the signs of the unlearning gradient and the retaining gradient are the same. This ensures all updates are non-disruptive. Additionally, we identify the need for normalizing the unlearning gradients, and also confirm the usefulness of meta-learning. We combine these insights into MUDMAN (Meta-Unlearning with Disruption Masking and Normalization) and validate its effectiveness at preventing the recovery of dangerous capabilities. MUDMAN outperforms the prior TAR method by 40%, setting a new state-of-the-art for robust unlearning.
♻ ☆ Training for Obsolescence? The AI-Driven Education Trap
Artificial intelligence is simultaneously transforming the production function of human capital in schools and the return to skills in the labor market. We develop a theoretical model to analyze the potential for misallocation when these two forces are considered in isolation. We study an educational planner who observes AI's immediate productivity benefits in teaching specific skills but fails to fully internalize the technology's future wage-suppressing effects on those same skills. Motivated by a pre-registered pilot study suggesting a positive correlation between a skill's "teachability" by AI and its vulnerability to automation, we show that this information friction leads to a systematic skill mismatch. The planner over-invests in skills destined for obsolescence, a distortion that increases monotonically with AI prevalence. Extensions demonstrate that this mismatch is exacerbated by the neglect of unpriced non-cognitive skills and by the endogenous over-adoption of educational technology. Our findings caution that policies promoting AI in education, if not paired with forward-looking labor market signals, may paradoxically undermine students' long-term human capital, such as by crowding out skills like persistence that are forged through intellectual struggle.
comment: Under review
♻ ☆ ADNF-Clustering: An Adaptive and Dynamic Neuro-Fuzzy Clustering for Leukemia Prediction
Leukemia diagnosis and monitoring rely increasingly on high-throughput image data, yet conventional clustering methods lack the flexibility to accommodate evolving cellular patterns and quantify uncertainty in real time. We introduce Adaptive and Dynamic Neuro-Fuzzy Clustering, a novel streaming-capable framework that combines Convolutional Neural Network-based feature extraction with an online fuzzy clustering engine. ADNF initializes soft partitions via Fuzzy C-Means, then continuously updates micro-cluster centers, densities, and fuzziness parameters using a Fuzzy Temporal Index (FTI) that measures entropy evolution. A topology refinement stage performs density-weighted merging and entropy-guided splitting to guard against over- and under-segmentation. On the C-NMC leukemia microscopy dataset, our tool achieves a silhouette score of 0.51, demonstrating superior cohesion and separation over static baselines. The method's adaptive uncertainty modeling and label-free operation hold immediate potential for integration within the INFANT pediatric oncology network, enabling scalable, up-to-date support for personalized leukemia management.
comment: 6 pages, 1 figure
♻ ☆ CAMA: Enhancing Mathematical Reasoning in Large Language Models with Causal Knowledge
Large Language Models (LLMs) have demonstrated strong performance across a wide range of tasks, yet they still struggle with complex mathematical reasoning, a challenge fundamentally rooted in deep structural dependencies. To address this challenge, we propose \textbf{CA}usal \textbf{MA}thematician (\textbf{CAMA}), a two-stage causal framework that equips LLMs with explicit, reusable mathematical structure. In the learning stage, CAMA first constructs the \textbf{M}athematical \textbf{C}ausal \textbf{G}raph (\textbf{MCG}), a high-level representation of solution strategies, by combining LLM priors with causal discovery algorithms applied to a corpus of question-solution pairs. The resulting MCG encodes essential knowledge points and their causal dependencies. To better align the graph with downstream reasoning tasks, CAMA further refines the MCG through iterative feedback derived from a selected subset of the question-solution pairs. In the reasoning stage, given a new question, CAMA dynamically extracts a task-relevant subgraph from the MCG, conditioned on both the question content and the LLM's intermediate reasoning trace. This subgraph, which encodes the most pertinent knowledge points and their causal dependencies, is then injected back into the LLM to guide its reasoning process. Empirical results on real-world datasets show that CAMA significantly improves LLM performance on challenging mathematical problems. Furthermore, our experiments demonstrate that structured guidance consistently outperforms unstructured alternatives, and that incorporating asymmetric causal relationships yields greater improvements than using symmetric associations alone.
♻ ☆ Natural, Artificial, and Human Intelligences
Human achievement, whether in culture, science, or technology, is unparalleled in the known existence. This achievement is tied to the enormous communities of knowledge, made possible by language: leaving theological content aside, it is very much true that "in the beginning was the word", and that in Western societies, this became particularly identified with the written word. There lies the challenge regarding modern age chatbots: they can 'do' language apparently as well as ourselves and there is a natural question of whether they can be considered intelligent, in the same way as we are or otherwise. Are humans uniquely intelligent? We consider this question in terms of the psychological literature on intelligence, evidence for intelligence in non-human animals, the role of written language in science and technology, progress with artificial intelligence, the history of intelligence testing (for both humans and machines), and the role of embodiment in intelligence. We think that it is increasingly difficult to consider humans uniquely intelligent. There are current limitations in chatbots, e.g., concerning perceptual and social awareness, but much attention is currently devoted to overcoming such limitations.
♻ ☆ Privacy Reasoning in Ambiguous Contexts
We study the ability of language models to reason about appropriate information disclosure - a central aspect of the evolving field of agentic privacy. Whereas previous works have focused on evaluating a model's ability to align with human decisions, we examine the role of ambiguity and missing context on model performance when making information-sharing decisions. We identify context ambiguity as a crucial barrier for high performance in privacy assessments. By designing Camber, a framework for context disambiguation, we show that model-generated decision rationales can reveal ambiguities and that systematically disambiguating context based on these rationales leads to significant accuracy improvements (up to 13.3% in precision and up to 22.3% in recall) as well as reductions in prompt sensitivity. Overall, our results indicate that approaches for context disambiguation are a promising way forward to enhance agentic privacy reasoning.
♻ ☆ Entropy Rectifying Guidance for Diffusion and Flow Models NeurIPS 2025
Guidance techniques are commonly used in diffusion and flow models to improve image quality and input consistency for conditional generative tasks such as class-conditional and text-to-image generation. In particular, classifier-free guidance (CFG) is the most widely adopted guidance technique. It results, however, in trade-offs across quality, diversity and consistency: improving some at the expense of others. While recent work has shown that it is possible to disentangle these factors to some extent, such methods come with an overhead of requiring an additional (weaker) model, or require more forward passes per sampling step. In this paper, we propose Entropy Rectifying Guidance (ERG), a simple and effective guidance method based on inference-time changes in the attention mechanism of state-of-the-art diffusion transformer architectures, which allows for simultaneous improvements over image quality, diversity and prompt consistency. ERG is more general than CFG and similar guidance techniques, as it extends to unconditional sampling. We show that ERG results in significant improvements in various tasks, including text-to-image, class-conditional and unconditional image generation. We also show that ERG can be seamlessly combined with other recent guidance methods such as CADS and APG, further improving generation results.
comment: NeurIPS 2025
♻ ☆ MTTR-A: Measuring Cognitive Recovery Latency in Multi-Agent Systems
Ensuring cognitive stability in autonomous multi-agent systems (MAS) is a central challenge for large-scale, distributed AI. While existing observability tools monitor system outputs, they cannot quantify how rapidly agentic workflows recover once reasoning coherence has been lost. We adapt classical reliability metrics-Mean Time-to-Recovery (MTTR), Mean Time Between Failures (MTBF), and related ratios-into the cognitive domain, defining MTTR-A (Mean Time-to-Recovery for Agentic Systems) as a runtime measure of cognitive recovery latency. MTTR-A quantifies the time required for a MAS to detect reasoning drift and restore consistent operation, capturing the recovery of reasoning coherence rather than infrastructural repair. A benchmark simulation using the AG~News corpus and the LangGraph orchestration framework was conducted, modeling recovery latencies across multiple reflex modes. Automated reflexes restored stability within approximately 6s on average, while human-approval interventions required about 12s. Across 200 runs, the median simulated MTTR-A was 6.21+-2.14s, MTBF=6.7+-2.14s, and NRR=0.08, demonstrating measurable runtime resilience across reflex strategies. By formalizing recovery latency as a quantifiable property of distributed reasoning-and deriving reliability bounds linking recovery time and cognitive uptime-this work establishes a foundation for runtime dependability in agentic cognition, transforming cognitive recovery from an ad-hoc process into a standardized, interpretable performance
comment: preprint
♻ ☆ LAPS-Diff: A Diffusion-Based Framework for Singing Voice Synthesis With Language Aware Prosody-Style Guided Learning
The field of Singing Voice Synthesis (SVS) has seen significant advancements in recent years due to the rapid progress of diffusion-based approaches. However, capturing vocal style, genre-specific pitch inflections, and language-dependent characteristics remains challenging, particularly in low-resource scenarios. To address this, we propose LAPS-Diff, a diffusion model integrated with language-aware embeddings and a vocal-style guided learning mechanism, specifically designed for Bollywood Hindi singing style. We curate a Hindi SVS dataset and leverage pre-trained language models to extract word and phone-level embeddings for an enriched lyrics representation. Additionally, we incorporated a style encoder and a pitch extraction model to compute style and pitch losses, capturing features essential to the naturalness and expressiveness of the synthesized singing, particularly in terms of vocal style and pitch variations. Furthermore, we utilize MERT and IndicWav2Vec models to extract musical and contextual embeddings, serving as conditional priors to refine the acoustic feature generation process further. Based on objective and subjective evaluations, we demonstrate that LAPS-Diff significantly improves the quality of the generated samples compared to the considered state-of-the-art (SOTA) model for our constrained dataset that is typical of the low resource scenario.
comment: 10 pages, 5 figures, 3 Tables
♻ ☆ Structured Cognitive Loop for Behavioral Intelligence in Large Language Model Agents SC
Large language models have advanced natural language understanding and generation, but their use as autonomous agents introduces architectural challenges for multi-step tasks. Existing frameworks often mix cognition, memory, and control in a single prompt, reducing coherence and predictability. The Structured Cognitive Loop (SCL) is proposed as an alternative architecture that separates these functions. In SCL, the language model handles cognition, memory is stored externally, and execution is guided by a lightweight controller within a goal-directed loop. This design allows intermediate results to be recorded and verified before actions are taken, improving traceability and evaluation. SCL is evaluated against prompt-based baselines such as ReAct and LangChain agents across three tasks: travel planning, conditional email drafting, and constraint-guided image generation. Under matched settings, SCL achieves an average task success rate of 86.3 percent, compared with 70.5 to 76.8 percent for baselines. It also shows higher goal fidelity, fewer redundant calls, and reduced unsupported assertions. These results indicate that separating cognition, memory, and control can enhance reliability and interpretability without relying on larger models or heavier prompts. The findings should be regarded as preliminary evidence, with broader tests across model families and task domains planned for future work.
comment: Updated the order of the SCL configuration modules to match the diagram
♻ ☆ Continual Learning of Domain Knowledge from Human Feedback in Text-to-SQL
Large Language Models (LLMs) can generate SQL queries from natural language questions but struggle with database-specific schemas and tacit domain knowledge. We introduce a framework for continual learning from human feedback in text-to-SQL, where a learning agent receives natural language feedback to refine queries and distills the revealed knowledge for reuse on future tasks. This distilled knowledge is stored in a structured memory, enabling the agent to improve execution accuracy over time. We design and evaluate multiple variations of a learning agent architecture that vary in how they capture and retrieve past experiences. Experiments on the BIRD benchmark Dev set show that memory-augmented agents, particularly the Procedural Agent, achieve significant accuracy gains and error reduction by leveraging human-in-the-loop feedback. Our results highlight the importance of transforming tacit human expertise into reusable knowledge, paving the way for more adaptive, domain-aware text-to-SQL systems that continually learn from a human-in-the-loop.
comment: 34 pages, 6 figures, 4 tables
♻ ☆ iSeal: Encrypted Fingerprinting for Reliable LLM Ownership Verification AAAI 2026
Given the high cost of large language model (LLM) training from scratch, safeguarding LLM intellectual property (IP) has become increasingly crucial. As the standard paradigm for IP ownership verification, LLM fingerprinting thus plays a vital role in addressing this challenge. Existing LLM fingerprinting methods verify ownership by extracting or injecting model-specific features. However, they overlook potential attacks during the verification process, leaving them ineffective when the model thief fully controls the LLM's inference process. In such settings, attackers may share prompt-response pairs to enable fingerprint unlearning or manipulate outputs to evade exact-match verification. We propose iSeal, the first fingerprinting method designed for reliable verification when the model thief controls the suspected LLM in an end-to-end manner. It injects unique features into both the model and an external module, reinforced by an error-correction mechanism and a similarity-based verification strategy. These components are resistant to verification-time attacks, including collusion-based fingerprint unlearning and response manipulation, backed by both theoretical analysis and empirical results. iSeal achieves 100 percent Fingerprint Success Rate (FSR) on 12 LLMs against more than 10 attacks, while baselines fail under unlearning and response manipulations.
comment: Accepted by AAAI 2026
♻ ☆ Learning Rules from Rewards
Humans can flexibly generalize knowledge across domains by leveraging structured relational representations. While prior research has shown how such representations support analogical reasoning, less is known about how they are recruited to guide adaptive behavior. We address this gap by introducing the Relational Regression Tree Learner (RRTL), a model that incrementally builds policies over structured relational inputs by selecting task-relevant relations during the learning process. RRTL is grounded in the framework of relational reinforcement learning but diverges from traditional approaches by focusing on ground (i.e., non-variabilized) rules that refer to specific object configurations. Across three Atari games of increasing relational complexity (Breakout, Pong, Demon Attack), the model learns to act effectively by identifying a small set of relevant relations from a broad pool of candidate relations. A comparative version of the model, which partitions the state space using relative magnitude values (e.g., "more", "same", "less"), showed more robust learning than a version using logical (binary) splits. These results provide a proof of principle that reinforcement signals can guide the selection of structured representations, offering a computational framework for understanding how relational knowledge is learned and deployed in adaptive behavior.
♻ ☆ Leveraging Biomolecule and Natural Language through Multi-Modal Learning: A Survey
The integration of biomolecular modeling with natural language (BL) has emerged as a promising interdisciplinary area at the intersection of artificial intelligence, chemistry and biology. This approach leverages the rich, multifaceted descriptions of biomolecules contained within textual data sources to enhance our fundamental understanding and enable downstream computational tasks such as biomolecule property prediction. The fusion of the nuanced narratives expressed through natural language with the structural and functional specifics of biomolecules described via various molecular modeling techniques opens new avenues for comprehensively representing and analyzing biomolecules. By incorporating the contextual language data that surrounds biomolecules into their modeling, BL aims to capture a holistic view encompassing both the symbolic qualities conveyed through language as well as quantitative structural characteristics. In this review, we provide an extensive analysis of recent advancements achieved through cross modeling of biomolecules and natural language. (1) We begin by outlining the technical representations of biomolecules employed, including sequences, 2D graphs, and 3D structures. (2) We then examine in depth the rationale and key objectives underlying effective multi-modal integration of language and molecular data sources. (3) We subsequently survey the practical applications enabled to date in this developing research area. (4) We also compile and summarize the available resources and datasets to facilitate future work. (5) Looking ahead, we identify several promising research directions worthy of further exploration and investment to continue advancing the field. The related resources and contents are updating in https://github.com/QizhiPei/Awesome-Biomolecule-Language-Cross-Modeling.
comment: 2025.11.28 Updated Version
♻ ☆ Curvature Dynamic Black-box Attack: revisiting adversarial robustness via dynamic curvature estimation
Adversarial attack reveals the vulnerability of deep learning models. It is assumed that high curvature may give rise to rough decision boundary and thus result in less robust models. However, the most commonly used \textit{curvature} is the curvature of loss function, scores or other parameters from within the model as opposed to decision boundary curvature, since the former can be relatively easily formed using second order derivative. In this paper, we propose a new query-efficient method, dynamic curvature estimation (DCE), to estimate the decision boundary curvature in a black-box setting. Our approach is based on CGBA, a black-box adversarial attack. By performing DCE on a wide range of classifiers, we discovered, statistically, a connection between decision boundary curvature and adversarial robustness. We also propose a new attack method, curvature dynamic black-box attack (CDBA) with improved performance using the estimated curvature.
♻ ☆ Biased by Design: Leveraging AI Biases to Enhance Critical Thinking of News Readers
This paper explores the design of a propaganda detection tool using Large Language Models (LLMs). Acknowledging the inherent biases in AI models, especially in political contexts, we investigate how these biases might be leveraged to enhance critical thinking in news consumption. Countering the typical view of AI biases as detrimental, our research proposes strategies of user choice and personalization in response to a user's political stance, applying psychological concepts of confirmation bias and cognitive dissonance. We present findings from a qualitative user study, offering insights and design recommendations (bias awareness, personalization and choice, and gradual introduction of diverse perspectives) for AI tools in propaganda detection.
comment: European Conference on Information Systems (ECIS)
♻ ☆ SAEmnesia: Erasing Concepts in Diffusion Models with Supervised Sparse Autoencoders
Concept unlearning in diffusion models is hampered by feature splitting, where concepts are distributed across many latent features, making their removal challenging and computationally expensive. We introduce SAEmnesia, a supervised sparse autoencoder framework that overcomes this by enforcing one-to-one concept-neuron mappings. By systematically labeling concepts during training, our method achieves feature centralization, binding each concept to a single, interpretable neuron. This enables highly targeted and efficient concept erasure. SAEmnesia reduces hyperparameter search by 96.7% and achieves a 9.2% improvement over the state-of-the-art on the UnlearnCanvas benchmark. Our method also demonstrates superior scalability in sequential unlearning, improving accuracy by 28.4% when removing nine objects, establishing a new standard for precise and controllable concept erasure. Moreover, SAEmnesia mitigates the possibility of generating unwanted content under adversarial attack and effectively removes nudity when evaluated with I2P.
♻ ☆ Yo'City: Personalized and Boundless 3D Realistic City Scene Generation via Self-Critic Expansion
Realistic 3D city generation is fundamental to a wide range of applications, including virtual reality and digital twins. However, most existing methods rely on training a single diffusion model, which limits their ability to generate personalized and boundless city-scale scenes. In this paper, we present Yo'City, a novel agentic framework that enables user-customized and infinitely expandable 3D city generation by leveraging the reasoning and compositional capabilities of off-the-shelf large models. Specifically, Yo'City first conceptualize the city through a top-down planning strategy that defines a hierarchical "City-District-Grid" structure. The Global Planner determines the overall layout and potential functional districts, while the Local Designer further refines each district with detailed grid-level descriptions. Subsequently, the grid-level 3D generation is achieved through a "produce-refine-evaluate" isometric image synthesis loop, followed by image-to-3D generation. To simulate continuous city evolution, Yo'City further introduces a user-interactive, relationship-guided expansion mechanism, which performs scene graph-based distance- and semantics-aware layout optimization, ensuring spatially coherent city growth. To comprehensively evaluate our method, we construct a diverse benchmark dataset and design six multi-dimensional metrics that assess generation quality from the perspectives of semantics, geometry, texture, and layout. Extensive experiments demonstrate that Yo'City consistently outperforms existing state-of-the-art methods across all evaluation aspects.
comment: 22 pages, 16 figures
♻ ☆ Learning Contrastive Feature Representations for Facial Action Unit Detection
For the Facial Action Unit (AU) detection task, accurately capturing the subtle facial differences between distinct AUs is essential for reliable detection. Additionally, AU detection faces challenges from class imbalance and the presence of noisy or false labels, which undermine detection accuracy. In this paper, we introduce a novel contrastive learning framework aimed for AU detection that incorporates both self-supervised and supervised signals, thereby enhancing the learning of discriminative features for accurate AU detection. To tackle the class imbalance issue, we employ a negative sample re-weighting strategy that adjusts the step size of updating parameters for minority and majority class samples. Moreover, to address the challenges posed by noisy and false AU labels, we employ a sampling technique that encompasses three distinct types of positive sample pairs. This enables us to inject self-supervised signals into the supervised signal, effectively mitigating the adverse effects of noisy labels. Our experimental assessments, conducted on five widely-utilized benchmark datasets (BP4D, DISFA, BP4D+, GFT and Aff-Wild2), underscore the superior performance of our approach compared to state-of-the-art methods of AU detection. Our code is available at https://github.com/Ziqiao-Shang/AUNCE.
comment: This paper has been accepted by Pattern Recognition
♻ ☆ A Style is Worth One Code: Unlocking Code-to-Style Image Generation with Discrete Style Space
Innovative visual stylization is a cornerstone of artistic creation, yet generating novel and consistent visual styles remains a significant challenge. Existing generative approaches typically rely on lengthy textual prompts, reference images, or parameter-efficient fine-tuning to guide style-aware image generation, but often struggle with style consistency, limited creativity, and complex style representations. In this paper, we affirm that a style is worth one numerical code by introducing the novel task, code-to-style image generation, which produces images with novel, consistent visual styles conditioned solely on a numerical style code. To date, this field has only been primarily explored by the industry (e.g., Midjourney), with no open-source research from the academic community. To fill this gap, we propose CoTyle, the first open-source method for this task. Specifically, we first train a discrete style codebook from a collection of images to extract style embeddings. These embeddings serve as conditions for a text-to-image diffusion model (T2I-DM) to generate stylistic images. Subsequently, we train an autoregressive style generator on the discrete style embeddings to model their distribution, allowing the synthesis of novel style embeddings. During inference, a numerical style code is mapped to a unique style embedding by the style generator, and this embedding guides the T2I-DM to generate images in the corresponding style. Unlike existing methods, our method offers unparalleled simplicity and diversity, unlocking a vast space of reproducible styles from minimal input. Extensive experiments validate that CoTyle effectively turns a numerical code into a style controller, demonstrating a style is worth one code.
comment: Code: https://github.com/Kwai-Kolors/CoTyle Demo: https://huggingface.co/spaces/Kwai-Kolors/CoTyle Homepage: https://kwai-kolors.github.io/CoTyle/
♻ ☆ Real-Time Obstacle Avoidance for a Mobile Robot Using CNN-Based Sensor Fusion
Obstacle avoidance is a critical component of the navigation stack required for mobile robots to operate effectively in complex and unknown environments. In this research, three end-to-end Convolutional Neural Networks (CNNs) were trained and evaluated offline and deployed on a differential-drive mobile robot for real-time obstacle avoidance to generate low-level steering commands from synchronized color and depth images acquired by an Intel RealSense D415 RGB-D camera in diverse environments. Offline evaluation showed that the NetConEmb model achieved the best performance with a notably low MedAE of $0.58 \times 10^{-3}$ rad/s. In comparison, the lighter NetEmb architecture, which reduces the number of trainable parameters by approximately 25\% and converges faster, produced comparable results with an RMSE of $21.68 \times 10^{-3}$ rad/s, close to the $21.42 \times 10^{-3}$ rad/s obtained by NetConEmb. Real-time navigation further confirmed NetConEmb's robustness, achieving a 100\% success rate in both known and unknown environments, while NetEmb and NetGated succeeded only in navigating the known environment.
♻ ☆ Towards Responsible Development of Generative AI for Education: An Evaluation-Driven Approach
A major challenge facing the world is the provision of equitable and universal access to quality education. Recent advances in generative AI (gen AI) have created excitement about the potential of new technologies to offer a personal tutor for every learner and a teaching assistant for every teacher. The full extent of this dream, however, has not yet materialised. We argue that this is primarily due to the difficulties with verbalising pedagogical intuitions into gen AI prompts and the lack of good evaluation practices, reinforced by the challenges in defining excellent pedagogy. Here we present our work collaborating with learners and educators to translate high level principles from learning science into a pragmatic set of seven diverse educational benchmarks, spanning quantitative, qualitative, automatic and human evaluations; and to develop a new set of fine-tuning datasets to improve the pedagogical capabilities of Gemini, introducing LearnLM-Tutor. Our evaluations show that LearnLM-Tutor is consistently preferred over a prompt tuned Gemini by educators and learners on a number of pedagogical dimensions. We hope that this work can serve as a first step towards developing a comprehensive educational evaluation framework, and that this can enable rapid progress within the AI and EdTech communities towards maximising the positive impact of gen AI in education.
♻ ☆ Progressive Localisation in Localist LLMs
This paper demonstrates that progressive localization, the gradual increase of attention locality from early distributed layers to late localized layers, represents the optimal architecture for creating interpretable large language models (LLMs) while preserving performance. Through systematic experimentation with GPT-2 fine-tuned on The Psychology of Artificial Superintelligence, we evaluate seven locality configurations ranging from fully distributed to strictly localist, with five progressive schedules implementing polynomial increases (linear through quintic). We investigate whether interpretability constraints can be aligned with natural semantic structure while being applied strategically across network depth. We demonstrate that progressive semantic localization, combining adaptive semantic block partitioning with steep polynomial locality schedules, achieves near-baseline language modeling performance while providing interpretable attention patterns. Multiple independent training runs with different random seeds establish that results are statistically robust and highly reproducible. The approach dramatically outperforms both fixed-window localization and naive uniform locality constraints. Analysis reveals that maintaining flexibility through low-fidelity constraints preserves model capacity while providing interpretability benefits, and that steep schedules concentrating locality in decision-critical final layers while preserving distributed learning in early layers achieve near-baseline attention distribution characteristics. These findings demonstrate that interpretability mechanisms should align with semantic structure to achieve practical performance-interpretability tradeoffs for trustworthy AI systems.
♻ ☆ $μ$PC: Scaling Predictive Coding to 100+ Layer Networks
The biological implausibility of backpropagation (BP) has motivated many alternative, brain-inspired algorithms that attempt to rely only on local information, such as predictive coding (PC) and equilibrium propagation. However, these algorithms have notoriously struggled to train very deep networks, preventing them from competing with BP in large-scale settings. Indeed, scaling PC networks (PCNs) has recently been posed as a challenge for the community (Pinchetti et al., 2024). Here, we show that 100+ layer PCNs can be trained reliably using a Depth-$μ$P parameterisation (Yang et al., 2023; Bordelon et al., 2023) which we call "$μ$PC". By analysing the scaling behaviour of PCNs, we reveal several pathologies that make standard PCNs difficult to train at large depths. We then show that, despite addressing only some of these instabilities, $μ$PC allows stable training of very deep (up to 128-layer) residual networks on simple classification tasks with competitive performance and little tuning compared to current benchmarks. Moreover, $μ$PC enables zero-shot transfer of both weight and activity learning rates across widths and depths. Our results serve as a first step towards scaling PC to more complex architectures and have implications for other local algorithms. Code for $μ$PC is made available as part of a JAX library for PCNs.
comment: 35 pages, 42 figures
♻ ☆ Chiplet-Based RISC-V SoC with Modular AI Acceleration
Achieving high performance, energy efficiency, and cost-effectiveness while maintaining architectural flexibility is a critical challenge in the development and deployment of edge AI devices. Monolithic SoC designs struggle with this complex balance mainly due to low manufacturing yields (below 16%) at advanced 360 mm^2 process nodes. This paper presents a novel chiplet-based RISC-V SoC architecture that addresses these limitations through modular AI acceleration and intelligent system level optimization. Our proposed design integrates 4 different key innovations in a 30mm x 30mm silicon interposer: adaptive cross-chiplet Dynamic Voltage and Frequency Scaling (DVFS); AI-aware Universal Chiplet Interconnect Express (UCIe) protocol extensions featuring streaming flow control units and compression-aware transfers; distributed cryptographic security across heterogeneous chiplets; and intelligent sensor-driven load migration. The proposed architecture integrates a 7nm RISC-V CPU chiplet with dual 5nm AI accelerators (15 TOPS INT8 each), 16GB HBM3 memory stacks, and dedicated power management controllers. Experimental results across industry standard benchmarks like MobileNetV2, ResNet-50 and real-time video processing demonstrate significant performance improvements. The AI-optimized configuration achieves ~14.7% latency reduction, 17.3% throughput improvement, and 16.2% power reduction compared to previous basic chiplet implementations. These improvements collectively translate to a 40.1% efficiency gain corresponding to ~3.5 mJ per MobileNetV2 inference (860 mW/244 images/s), while maintaining sub-5ms real-time capability across all experimented workloads. These performance upgrades demonstrate that modular chiplet designs can achieve near-monolithic computational density while enabling cost efficiency, scalability and upgradeability, crucial for next-generation edge AI device applications.
comment: 3 pages, 3 figures, 2 tables, 3rd IEEE International Conference of Computational Intelligence and Network Systems 2025
♻ ☆ YARE-GAN: Yet Another Resting State EEG-GAN
Resting-state EEG offers a non-invasive view of spontaneous brain activity, yet the extraction of meaningful patterns is often constrained by limited availability of high-quality data, and heavy reliance on manually engineered EEG features. Generative Adversarial Networks (GANs) offer not only a means to synthesize and augment neural signals, but also a promising way for learning meaningful representations directly from raw data, a dual capability that remains largely unexplored in EEG research. In this study, we introduce a scalable GAN-based framework for resting-state EEG that serves this dual role: 1) synthesis and 2) unsupervised feature extraction. The generated time series closely replicate key statistical and spectral properties of real EEG, as validated through both visual and quantitative evaluations. Importantly, we demonstrate that the model's learned representations can be repurposed for a downstream gender classification task, achieving higher out-of-sample accuracy than models trained directly on EEG signals and performing comparably to recent EEG foundation models, while using significantly less data and computational resources. These findings highlight the potential of generative models to serve as both neural signal generators and unsupervised feature extractors, paving the way for more data-efficient, architecture-driven approaches to EEG analysis with reduced reliance on manual feature engineering. The implementation code for this study is available at: https://github.com/Yeganehfrh/YARE-GAN.
♻ ☆ RvLLM: LLM Runtime Verification with Domain Knowledge
Large language models (LLMs) have emerged as a dominant AI paradigm due to their exceptional text understanding and generation capabilities. However, their tendency to generate inconsistent or erroneous outputs challenges their reliability, especially in high-stakes domains requiring accuracy and trustworthiness. Existing research primarily focuses on detecting and mitigating model misbehavior in general-purpose scenarios, often overlooking the potential of integrating domain-specific knowledge. In this work, we advance misbehavior detection by incorporating domain knowledge. The core idea is to design a general specification language that enables domain experts to customize domain-specific predicates in a lightweight and intuitive manner, supporting later runtime verification of LLM outputs. To achieve this, we design a novel specification language, ESL, and introduce a runtime verification framework, RvLLM, to validate LLM output against domain-specific constraints defined in ESL. We evaluate RvLLM on three representative tasks: violation detection against Singapore Rapid Transit Systems Act, numerical comparison, and inequality solving. Experimental results demonstrate that RvLLM effectively detects erroneous outputs across various LLMs in a lightweight and flexible manner. The results reveal that despite their impressive capabilities, LLMs remain prone to low-level errors due to limited interpretability and a lack of formal guarantees during inference, and our framework offers a potential long-term solution by leveraging expert domain knowledge to rigorously and efficiently verify LLM outputs.
comment: 24 pages, 11 tables, 13 figures
♻ ☆ LongCat-Flash-Omni Technical Report
We introduce LongCat-Flash-Omni, a state-of-the-art open-source omni-modal model with 560 billion parameters, excelling at real-time audio-visual interaction. By adopting a curriculum-inspired progressive training strategy that transitions from simpler to increasingly complex modality sequence modeling tasks, LongCat-Flash-Omni attains comprehensive multimodal capabilities while maintaining strong unimodal capability. Building upon LongCat-Flash, which adopts a high-performance Shortcut-connected Mixture-of-Experts (MoE) architecture with zero-computation experts, LongCat-Flash-Omni integrates efficient multimodal perception and speech reconstruction modules. Despite its immense size of 560B parameters (with 27B activated), LongCat-Flash-Omni achieves low-latency real-time audio-visual interaction. For training infrastructure, we developed a modality-decoupled parallelism scheme specifically designed to manage the data and model heterogeneity inherent in large-scale multimodal training. This innovative approach demonstrates exceptional efficiency by sustaining over 90% of the throughput achieved by text-only training. Extensive evaluations show that LongCat-Flash-Omni achieves state-of-the-art performance on omni-modal benchmarks among open-source models. Furthermore, it delivers highly competitive results across a wide range of modality-specific tasks, including text, image, and video understanding, as well as audio understanding and generation. We provide a comprehensive overview of the model architecture design, training procedures, and data strategies, and open-source the model to foster future research and development in the community.
♻ ☆ Point3R: Streaming 3D Reconstruction with Explicit Spatial Pointer Memory
Dense 3D scene reconstruction from an ordered sequence or unordered image collections is a critical step when bringing research in computer vision into practical scenarios. Following the paradigm introduced by DUSt3R, which unifies an image pair densely into a shared coordinate system, subsequent methods maintain an implicit memory to achieve dense 3D reconstruction from more images. However, such implicit memory is limited in capacity and may suffer from information loss of earlier frames. We propose Point3R, an online framework targeting dense streaming 3D reconstruction. To be specific, we maintain an explicit spatial pointer memory directly associated with the 3D structure of the current scene. Each pointer in this memory is assigned a specific 3D position and aggregates scene information nearby in the global coordinate system into a changing spatial feature. Information extracted from the latest frame interacts explicitly with this pointer memory, enabling dense integration of the current observation into the global coordinate system. We design a 3D hierarchical position embedding to promote this interaction and design a simple yet effective fusion mechanism to ensure that our pointer memory is uniform and efficient. Our method achieves competitive or state-of-the-art performance on various tasks with low training costs. Code: https://github.com/YkiWu/Point3R.
comment: Code is available at: https://github.com/YkiWu/Point3R
♻ ☆ InfiMed-ORBIT: Aligning LLMs on Open-Ended Complex Tasks via Rubric-Based Incremental Training
Reinforcement learning has powered many of the recent breakthroughs in large language models, especially for tasks where rewards can be computed automatically, such as code generation. However, these methods deteriorate in open-ended domains like medical consultation, where feedback is inherently ambiguous, highly context-dependent, and cannot be reduced to a reliable scalar signal. In such settings, RL must either rely on supervision-intensive reward models that often fail to generalize, or it falls into pathological behaviors such as reward hacking - an especially troubling risk for high-stakes medical dialogue. To address these limitations, we introduce ORBIT, an open-ended rubric-based incremental training framework for high-stakes medical dialogue. ORBIT integrates synthetic dialogue generation with dynamically constructed rubrics that serve as adaptive guides for incremental RL. Instead of relying on external medical knowledge bases or handcrafted rule sets, ORBIT uses rubric-driven feedback to steer the learning process. Its judge component can be instantiated with general-purpose instruction-following LLMs, removing the need for any task-specific fine-tuning. Applied to the Qwen3-4B-Instruct model, ORBIT raises the HealthBench-Hard score from 7.0 to 27.5 using only 2k training samples, achieving SOTA performance for models at this scale. With larger rubric datasets, ORBIT-trained models further compete with the strongest open-source baselines on HealthBench-Hard. Our analysis shows that rubric-guided RL consistently improves consultation quality across diverse medical scenarios. We also apply such rubric generation and training pipeline to InfoBench, where ORBIT enhances instruction-following performance, highlighting the generality of rubric-based feedback.
♻ ☆ Counterfactual Explanation for Multivariate Time Series Forecasting with Exogenous Variables
Currently, machine learning is widely used across various domains, including time series data analysis. However, some machine learning models function as black boxes, making interpretability a critical concern. One approach to address this issue is counterfactual explanation (CE), which aims to provide insights into model predictions. This study focuses on the relatively underexplored problem of generating counterfactual explanations for time series forecasting. We propose a method for extracting CEs in time series forecasting using exogenous variables, which are frequently encountered in fields such as business and marketing. In addition, we present methods for analyzing the influence of each variable over an entire time series, generating CEs by altering only specific variables, and evaluating the quality of the resulting CEs. We validate the proposed method through theoretical analysis and empirical experiments, showcasing its accuracy and practical applicability. These contributions are expected to support real-world decision-making based on time series data analysis.
comment: 27pages,9figures,9tables
♻ ☆ Atom of Thoughts for Markov LLM Test-Time Scaling NeurIPS 2025
Large Language Models (LLMs) achieve superior performance through training-time scaling, and test-time scaling further enhances their capabilities by conducting effective reasoning during inference. However, as the scale of reasoning increases, existing test-time scaling methods suffer from accumulated historical information, which not only wastes computational resources but also interferes with effective reasoning. To address this issue, we observe that complex reasoning can be achieved by solving a series of independent and self-contained subquestions. These subquestions are essentially \textit{atomic questions}, exhibiting the memoryless property similar to Markov processes. Based on this observation, we propose Atom of Thoughts (\our), where each state transition consists of decomposing the current question into a dependency-based directed acyclic graph and contracting its subquestions, forming a simplified question that maintains answer equivalence with the original problem. This answer preservation enables the iterative \textit{decomposition-contraction} process to naturally form a meaningful Markov reasoning process. Furthermore, these atomic states can be seamlessly integrated into existing test-time scaling methods, enabling \our to serve as a plug-in enhancement for improving reasoning capabilities. Experiments across six benchmarks demonstrate the effectiveness of \our both as a standalone framework and a plug-in enhancement. Notably, on HotpotQA, when applied to gpt-4o-mini, \our achieves an \textbf{80.6\%} F1 score, surpassing o3-mini by \textbf{3.4\%} and DeepSeek-R1 by \textbf{10.6\%}. The code is available at \href{https://github.com/qixucen/atom}{https://github.com/qixucen/atom}.
comment: Accepted to NeurIPS 2025
♻ ☆ Actionable and diverse counterfactual explanations incorporating domain knowledge and causal constraints
Counterfactual explanations enhance the actionable interpretability of machine learning models by identifying the minimal changes required to achieve a desired outcome of the model. However, existing methods often ignore the complex dependencies in real-world datasets, leading to unrealistic or impractical modifications. Motivated by cybersecurity applications in the email marketing domain, we propose a method for generating Diverse, Actionable, and kNowledge-Constrained Explanations (DANCE), which incorporates feature dependencies and causal constraints to ensure plausibility and real-world feasibility of counterfactuals. Our method learns linear and nonlinear constraints from data or integrates expert-provided dependency graphs, ensuring counterfactuals are plausible and actionable. By maintaining consistency with feature relationships, the method produces explanations that align with real-world constraints. Additionally, it balances plausibility, diversity, and sparsity, effectively addressing key limitations in existing algorithms. The work is developed based on a real-life case study with Freshmail, the largest email marketing company in Poland and supported by a joint R&D project Sendguard. Furthermore, we provide an extensive evaluation using 140 public datasets, which highlights its ability to generate meaningful, domain-relevant counterfactuals that outperform other existing approaches based on widely used metrics. The source code for reproduction of the results can be found in a GitHub repository we provide.
♻ ☆ Vectorized Online POMDP Planning ICRA 2026
Planning under partial observability is an essential capability of autonomous robots. The Partially Observable Markov Decision Process (POMDP) provides a powerful framework for planning under partial observability problems, capturing the stochastic effects of actions and the limited information available through noisy observations. POMDP solving could benefit tremendously from massive parallelization of today's hardware, but parallelizing POMDP solvers has been challenging. They rely on interleaving numerical optimization over actions with the estimation of their values, which creates dependencies and synchronization bottlenecks between parallel processes that can quickly offset the benefits of parallelization. In this paper, we propose Vectorized Online POMDP Planner (VOPP), a novel parallel online solver that leverages a recent POMDP formulation that analytically solves part of the optimization component, leaving only the estimation of expectations for numerical computation. VOPP represents all data structures related to planning as a collection of tensors and implements all planning steps as fully vectorized computations over this representation. The result is a massively parallel solver with no dependencies and synchronization bottlenecks between parallel computations. Experimental results indicate that VOPP is at least 20X more efficient in computing near-optimal solutions compared to an existing state-of-the-art parallel online solver.
comment: 9 pages, 3 figures. Submitted to ICRA 2026
♻ ☆ Un-mixing Test-time Adaptation under Heterogeneous Data Streams
Deploying deep models in real-world scenarios remains challenging due to significant performance drops under distribution shifts between training and deployment environments. Test-Time Adaptation (TTA) has recently emerged as a promising solution, enabling on-the-fly model adaptation. However, its effectiveness deteriorates in the presence of mixed distribution shifts -- common in practical settings -- where multiple target domains coexist. In this paper, we study TTA under mixed distribution shifts and move beyond conventional whole-batch adaptation paradigms. By revisiting distribution shifts from a spectral perspective, we find that the heterogeneity across latent domains is often pronounced in Fourier space. In particular, high-frequency components encode domain-specific variations, which facilitates clearer separation of samples from different distributions. Motivated by this observation, we propose to un-mix heterogeneous data streams using high-frequency domain cues, making diverse shift patterns more tractable. To this end, we propose Frequency-based Decentralized Adaptation (FreDA), a novel framework that decomposes globally heterogeneous data stream into locally homogeneous clusters in the Fourier space. It leverages decentralized learning and augmentation strategies to robustly adapt under mixed domain shifts. Extensive experiments across various environments (corrupted, natural, and medical) show the superiority of our method over the state-of-the-arts.
♻ ☆ Noise Injection Reveals Hidden Capabilities of Sandbagging Language Models NeurIPS 2025
Capability evaluations play a crucial role in assessing and regulating frontier AI systems. The effectiveness of these evaluations faces a significant challenge: strategic underperformance, or ``sandbagging'', where models deliberately underperform during evaluation. Sandbagging can manifest either through explicit developer intervention or through unintended model behavior, presenting a fundamental obstacle to accurate capability assessment. We introduce a novel sandbagging detection method based on injecting noise of varying magnitudes into model weights. While non-sandbagging models show predictable performance degradation with increasing noise, we demonstrate that sandbagging models exhibit anomalous performance improvements, likely due to disruption of underperformance mechanisms while core capabilities remain partially intact. Through experiments across various model architectures, sizes, and sandbagging techniques, we establish this distinctive response pattern as a reliable, model-agnostic signal for detecting sandbagging behavior. Importantly, we find noise-injection is capable of eliciting the full performance of Mistral Large 120B in a setting where the model underperforms without being instructed to do so. Our findings provide a practical tool for AI evaluation and oversight, addressing a challenge in ensuring accurate capability assessment of frontier AI systems.
comment: Published at NeurIPS 2025, code available at https://github.com/camtice/SandbagDetect. Preliminary work presented at SATA and SoLaR (NeurIPS 2024 workshops)
♻ ☆ Scale-Agnostic Kolmogorov-Arnold Geometry in Neural Networks
Recent work by Freedman and Mulligan demonstrated that shallow multilayer perceptrons spontaneously develop Kolmogorov-Arnold geometric (KAG) structure during training on synthetic three-dimensional tasks. However, it remained unclear whether this phenomenon persists in realistic high-dimensional settings and what spatial properties this geometry exhibits. We extend KAG analysis to MNIST digit classification (784 dimensions) using 2-layer MLPs with systematic spatial analysis at multiple scales. We find that KAG emerges during training and appears consistently across spatial scales, from local 7-pixel neighborhoods to the full 28x28 image. This scale-agnostic property holds across different training procedures: both standard training and training with spatial augmentation produce the same qualitative pattern. These findings reveal that neural networks spontaneously develop organized, scale-invariant geometric structure during learning on realistic high-dimensional data.
♻ ☆ UNO: Unifying One-stage Video Scene Graph Generation via Object-Centric Visual Representation Learning WACV 2026
Video Scene Graph Generation (VidSGG) aims to represent dynamic visual content by detecting objects and modeling their temporal interactions as structured graphs. Prior studies typically target either coarse-grained box-level or fine-grained panoptic pixel-level VidSGG, often requiring task-specific architectures and multi-stage training pipelines. In this paper, we present UNO (UNified Object-centric VidSGG), a single-stage, unified framework that jointly addresses both tasks within an end-to-end architecture. UNO is designed to minimize task-specific modifications and maximize parameter sharing, enabling generalization across different levels of visual granularity. The core of UNO is an extended slot attention mechanism that decomposes visual features into object and relation slots. To ensure robust temporal modeling, we introduce object temporal consistency learning, which enforces consistent object representations across frames without relying on explicit tracking modules. Additionally, a dynamic triplet prediction module links relation slots to corresponding object pairs, capturing evolving interactions over time. We evaluate UNO on standard box-level and pixel-level VidSGG benchmarks. Results demonstrate that UNO not only achieves competitive performance across both tasks but also offers improved efficiency through a unified, object-centric design.
comment: 11 pages, 7 figures. Accepted at WACV 2026
♻ ☆ Computational Foundations for Strategic Coopetition: Formalizing Interdependence and Complementarity
Modern socio-technical systems are characterized by strategic coopetition where actors simultaneously cooperate to create value and compete to capture it. While conceptual modeling languages like i* provide rich qualitative representations of strategic dependencies, they lack mechanisms for quantitative analysis of dynamic trade-offs. Conversely, classical game theory offers mathematical rigor but strips away contextual richness. This technical report bridges this gap by developing computational foundations that formalize two critical dimensions of coopetition: interdependence and complementarity. We ground interdependence in i* structural dependency analysis, translating depender-dependee-dependum relationships into quantitative interdependence coefficients through a structured translation framework. We formalize complementarity following Brandenburger and Nalebuff's Added Value concept, modeling synergistic value creation with validated parameterization. We integrate structural dependencies with bargaining power in value appropriation and introduce a game-theoretic formulation where Nash Equilibrium incorporates structural interdependence. Validation combines comprehensive experimental testing across power and logarithmic value function specifications, demonstrating functional form robustness, with empirical application to the Samsung-Sony S-LCD joint venture (2004-2011), where logarithmic specifications achieve validation score 59/60 compared to power functions (55/60), with both demonstrating strong empirical fit to S-LCD historical patterns. This technical report serves as the foundational reference for a coordinated research program examining strategic coopetition in requirements engineering and multi-agent systems, with companion work addressing trust dynamics, team production, and reciprocity mechanisms.
comment: 37 pages, 9 figures
♻ ☆ ARIAL: An Agentic Framework for Document VQA with Precise Answer Localization
Document Visual Question Answering (VQA) requires models to not only extract accurate textual answers but also precisely localize them within document images, a capability critical for interpretability in high-stakes applications. However, existing systems achieve strong textual accuracy while producing unreliable spatial grounding, or sacrifice performance for interpretability. We present ARIAL (Agentic Reasoning for Interpretable Answer Localization), a modular framework that orchestrates specialized tools through an LLM-based planning agent to achieve both precise answer extraction and reliable spatial grounding. ARIAL decomposes Document VQA into structured subtasks: OCR-based text extraction with TrOCR, retrieval-augmented context selection using semantic search, answer generation via a fine-tuned Gemma 3-27B model, and explicit bounding-box localization through text-to-region alignment. This modular architecture produces transparent reasoning traces, enabling tool-level auditability and independent component optimization. We evaluate ARIAL on four benchmarks (DocVQA, FUNSD, CORD, and SROIE) using both textual accuracy (ANLS) and spatial precision (mAP at IoU 0.50 to 0.95). ARIAL achieves state-of-the-art results across all datasets: 88.7 ANLS and 50.1 mAP on DocVQA, 90.0 ANLS and 50.3 mAP on FUNSD, 85.5 ANLS and 60.2 mAP on CORD, and 93.1 ANLS on SROIE, surpassing the previous best method (DLaVA) by +2.8 ANLS and +3.9 mAP on DocVQA. Our work demonstrates how agentic orchestration of specialized tools can simultaneously improve performance and interpretability, providing a pathway toward trustworthy, explainable document AI systems.
♻ ☆ Physics Steering: Causal Control of Cross-Domain Concepts in a Physics Foundation Model
Recent advances in mechanistic interpretability have revealed that large language models (LLMs) develop internal representations corresponding not only to concrete entities but also distinct, human-understandable abstract concepts and behaviour. Moreover, these hidden features can be directly manipulated to steer model behaviour. However, it remains an open question whether this phenomenon is unique to models trained on inherently structured data (ie. language, images) or if it is a general property of foundation models. In this work, we investigate the internal representations of a large physics-focused foundation model. Inspired by recent work identifying single directions in activation space for complex behaviours in LLMs, we extract activation vectors from the model during forward passes over simulation datasets for different physical regimes. We then compute "delta" representations between the two regimes. These delta tensors act as concept directions in activation space, encoding specific physical features. By injecting these concept directions back into the model during inference, we can steer its predictions, demonstrating causal control over physical behaviours, such as inducing or removing some particular physical feature from a simulation. These results suggest that scientific foundation models learn generalised representations of physical principles. They do not merely rely on superficial correlations and patterns in the simulations. Our findings open new avenues for understanding and controlling scientific foundation models and has implications for AI-enabled scientific discovery.
comment: 16 Pages, 9 Figures. Code available soon at https://github.com/DJ-Fear/walrus_steering
♻ ☆ Structured Prompting Enables More Robust Evaluation of Language Models
As language models (LMs) are increasingly adopted across domains, high-quality benchmarking frameworks that accurately estimate performance are essential for guiding deployment decisions. While frameworks such as Holistic Evaluation of Language Models (HELM) enable broad evaluation across tasks, they often rely on fixed prompts that fail to generalize across LMs, yielding unrepresentative performance estimates. Unless we approximate each LM's ceiling (maximum achievable via changes to the prompt), we risk underestimating performance. Declarative prompting frameworks, such as DSPy, offer a scalable alternative to manual prompt engineering by crafting structured prompts that can be optimized per task. However, such frameworks have not been systematically evaluated across established benchmarks. We present a reproducible DSPy+HELM framework that introduces structured prompting methods which elicit reasoning, enabling more accurate LM benchmarking. Using four prompting methods, we evaluate four frontier LMs across seven benchmarks (general/medical domain) against existing HELM baseline scores. We find that without structured prompting: (i) HELM underestimates LM performance (by 4% average), (ii) performance estimates vary more across benchmarks ($+$2% standard deviation), (iii) performance gaps are misrepresented (leaderboard rankings flip on 3/7 benchmarks), and (iv) introducing chain-of-thought reduces LM sensitivity to prompt design (smaller $Δ$ across prompts). To our knowledge, this is the first benchmarking study to systematically integrate structured prompting into an established evaluation framework, demonstrating how scalable performance-ceiling approximation yields more robust, decision-useful benchmarks. We open-source (i) DSPy+HELM Integration (https://github.com/stanford-crfm/helm/pull/3893) and (ii) Prompt Optimization Pipeline (https://github.com/StanfordMIMI/dspy-helm).
♻ ☆ Domain adaptation of large language models for geotechnical applications
The rapid advancement of large language models (LLMs) is transforming opportunities in geotechnical engineering, where workflows rely on complex, text-rich data. While general-purpose LLMs demonstrate strong reasoning capabilities, their effectiveness in geotechnical applications is constrained by limited exposure to specialized terminology and domain logic. Thus, domain adaptation, tailoring general LLMs for geotechnical use, has become essential. This paper presents the first systematic review of LLM adaptation and application in geotechnical contexts. It critically examines four key adaptation strategies, including prompt engineering, retrieval augmented generation, domain-adaptive pretraining, and fine-tuning, and evaluates their comparative benefits, limitations, and implementation trends. This review synthesizes current applications spanning geological interpretation, subsurface characterization, design analysis, numerical modeling, risk assessment, and geotechnical education. Findings show that domain-adapted LLMs substantially improve reasoning accuracy, automation, and interpretability, yet remain limited by data scarcity, validation challenges, and explainability concerns. Future research directions are also suggested. This review establishes a critical foundation for developing geotechnically literate LLMs and guides researchers and practitioners in advancing the digital transformation of geotechnical engineering.
♻ ☆ Deep Improvement Supervision
Recently, it was shown that small, looped architectures, such as Tiny Recursive Models (TRMs), can outperform Large Language Models (LLMs) on complex reasoning tasks, including the Abstraction and Reasoning Corpus (ARC). In this work, we investigate a core question: how can we further improve the efficiency of these methods with minimal changes? To address this, we frame the latent reasoning of TRMs as a form of classifier-free guidance and implicit policy improvement algorithm. Building on these insights, we propose a novel training scheme that provides a target for each loop during training. We demonstrate that our approach significantly enhances training efficiency. Our method reduces the total number of forward passes by 18x and eliminates halting mechanisms, while maintaining quality comparable to standard TRMs. Notably, we achieve 24% accuracy on ARC-1 with only 0.8M parameters, outperforming most LLMs.
♻ ☆ Reranking partisan animosity in algorithmic social media feeds alters affective polarization
Today, social media platforms hold sole power to study the effects of feed ranking algorithms. We developed a platform-independent method that reranks participants' feeds in real-time and used this method to conduct a preregistered 10-day field experiment with 1,256 participants on X during the 2024 U.S. presidential campaign. Our experiment used a large language model to rerank posts that expressed antidemocratic attitudes and partisan animosity (AAPA). Decreasing or increasing AAPA exposure shifted out-party partisan animosity by two points on a 100-point feeling thermometer, with no detectable differences across party lines, providing causal evidence that exposure to AAPA content alters affective polarization. This work establishes a method to study feed algorithms without requiring platform cooperation, enabling independent evaluation of ranking interventions in naturalistic settings.
♻ ☆ Data efficient surrogate modeling for engineering design: Ensemble-free batch mode deep active learning for regression
High fidelity design evaluation processes such as Computational Fluid Dynamics and Finite Element Analysis are often replaced with data driven surrogates to reduce computational cost in engineering design optimization. However, building accurate surrogate models still requires a large number of expensive simulations. To address this challenge, we introduce epsilon HQS, a scalable active learning strategy that leverages a student teacher framework to train deep neural networks efficiently. Unlike Bayesian AL methods, which are computationally demanding with DNNs, epsilon HQS selectively queries informative samples to reduce labeling cost. Applied to CFD, FEA, and propeller design tasks, our method achieves higher accuracy under fixed labeling cost budgets.
comment: 6 pages, 4 figures
♻ ☆ VLMs have Tunnel Vision: Evaluating Nonlocal Visual Reasoning in Leading VLMs
Vision-Language Models (VLMs) excel at complex visual tasks such as VQA and chart understanding, yet recent work suggests they struggle with simple perceptual tests. We present an evaluation of vision-language models' capacity for nonlocal visual reasoning: reasoning that requires chaining evidence collected from multiple, possibly distant regions of an image. We isolate three distinct forms of nonlocal vision: comparative perception, which demands holding two images in working memory and comparing them; saccadic search, which requires making discrete, evidence-driven jumps to locate successive targets; and smooth visual search, which involves following a continuous contour. Flagship models (e.g., GPT-5, Gemini 2.5 Pro, Claude Sonnet 4), even those that perform well on prior primitive-vision benchmarks, fail these tests and barely exceed random accuracy on two variants of our tasks that are trivial for humans. Our structured evaluation suite allows us to test whether VLMs can perform visual algorithms similar to those used by humans. Our findings show that despite gains in raw visual acuity, current models lack core visual reasoning capabilities.
♻ ☆ SACA: Selective Attention-Based Clustering Algorithm
Clustering algorithms are fundamental tools across many fields, with density-based methods offering particular advantages in identifying arbitrarily shaped clusters and handling noise. However, their effectiveness is often limited by the requirement of critical parameter tuning by users, which typically requires significant domain expertise. This paper introduces a novel density-based clustering algorithm loosely inspired by the concept of selective attention, designed to minimize reliance on parameter tuning for most applications. The proposed method computes an adaptive threshold to exclude sparsely distributed points and outliers, constructs an initial cluster framework, and subsequently reintegrates the filtered points to refine the final results. Extensive experiments on diverse benchmark datasets demonstrate the robustness, accuracy, and ease of use of the proposed approach, establishing it as a powerful alternative to conventional density-based clustering techniques.
comment: 32 pages, 14 figures
Computation and Language 70
☆ Intelligent Neural Networks: From Layered Architectures to Graph-Organized Intelligence
Biological neurons exhibit remarkable intelligence: they maintain internal states, communicate selectively with other neurons, and self-organize into complex graphs rather than rigid hierarchical layers. What if artificial intelligence could emerge from similarly intelligent computational units? We introduce Intelligent Neural Networks (INN), a paradigm shift where neurons are first-class entities with internal memory and learned communication patterns, organized in complete graphs rather than sequential layers. Each Intelligent Neuron combines selective state-space dynamics (knowing when to activate) with attention-based routing (knowing to whom to send signals), enabling emergent computation through graph-structured interactions. On the standard Text8 character modeling benchmark, INN achieves 1.705 Bit-Per-Character (BPC), significantly outperforming a comparable Transformer (2.055 BPC) and matching a highly optimized LSTM baseline. Crucially, a parameter-matched baseline of stacked Mamba blocks fails to converge (>3.4 BPC) under the same training protocol, demonstrating that INN's graph topology provides essential training stability. Ablation studies confirm this: removing inter-neuron communication degrades performance or leads to instability, proving the value of learned neural routing. This work demonstrates that neuron-centric design with graph organization is not merely bio-inspired -- it is computationally effective, opening new directions for modular, interpretable, and scalable neural architectures.
comment: Code available at https://github.com/AntoineSal/IntelligentNeuralNetwork
☆ PRISM: Privacy-Aware Routing for Adaptive Cloud-Edge LLM Inference via Semantic Sketch Collaboration AAAI 2026
Large Language Models (LLMs) demonstrate impressive capabilities in natural language understanding and generation, but incur high communication overhead and privacy risks in cloud deployments, while facing compute and memory constraints when confined to edge devices. Cloud-edge inference has emerged as a promising paradigm for improving privacy in LLM services by retaining sensitive computations on local devices. However, existing cloud-edge inference approaches apply uniform privacy protection without considering input sensitivity, resulting in unnecessary perturbation and degraded utility even for non-sensitive tokens. To address this limitation, we propose Privacy-aware Routing for Inference with Semantic Modulation (PRISM), a context-aware framework that dynamically balances privacy and inference quality. PRISM executes in four stages: (1) the edge device profiles entity-level sensitivity; (2) a soft gating module on the edge selects an execution mode - cloud, edge, or collaboration; (3) for collaborative paths, the edge applies adaptive two-layer local differential privacy based on entity risks; and (4) the cloud LLM generates a semantic sketch from the perturbed prompt, which is then refined by the edge-side small language model (SLM) using local context. Our results show that PRISM consistently achieves superior privacy-utility trade-offs across various scenarios, reducing energy consumption and latency to 40-50% of baseline methods such as Uniform and Selective LDP, while maintaining high output quality under strong privacy constraints. These findings are validated through comprehensive evaluations involving realistic prompts, actual energy measurements, and heterogeneous cloud-edge model deployments.
comment: Accepted to AAAI 2026. This is the arXiv preprint version
☆ Modeling Romanized Hindi and Bengali: Dataset Creation and Multilingual LLM Integration
The development of robust transliteration techniques to enhance the effectiveness of transforming Romanized scripts into native scripts is crucial for Natural Language Processing tasks, including sentiment analysis, speech recognition, information retrieval, and intelligent personal assistants. Despite significant advancements, state-of-the-art multilingual models still face challenges in handling Romanized script, where the Roman alphabet is adopted to represent the phonetic structure of diverse languages. Within the South Asian context, where the use of Romanized script for Indo-Aryan languages is widespread across social media and digital communication platforms, such usage continues to pose significant challenges for cutting-edge multilingual models. While a limited number of transliteration datasets and models are available for Indo-Aryan languages, they generally lack sufficient diversity in pronunciation and spelling variations, adequate code-mixed data for large language model (LLM) training, and low-resource adaptation. To address this research gap, we introduce a novel transliteration dataset for two popular Indo-Aryan languages, Hindi and Bengali, which are ranked as the 3rd and 7th most spoken languages worldwide. Our dataset comprises nearly 1.8 million Hindi and 1 million Bengali transliteration pairs. In addition to that, we pre-train a custom multilingual seq2seq LLM based on Marian architecture using the developed dataset. Experimental results demonstrate significant improvements compared to existing relevant models in terms of BLEU and CER metrics.
comment: Proceedings of the 8th Workshop on Big Data for Cybersecurity (BigCyber)
☆ ReAG: Reasoning-Augmented Generation for Knowledge-based Visual Question Answering
Multimodal Large Language Models (MLLMs) have shown impressive capabilities in jointly understanding text, images, and videos, often evaluated via Visual Question Answering (VQA). However, even state-of-the-art MLLMs struggle with domain-specific or knowledge-intensive queries, where relevant information is underrepresented in pre-training data. Knowledge-based VQA (KB-VQA) addresses this by retrieving external documents to condition answer generation, but current retrieval-augmented approaches suffer from low precision, noisy passages, and limited reasoning. To address this, we propose ReAG, a novel Reasoning-Augmented Multimodal RAG approach that combines coarse- and fine-grained retrieval with a critic model that filters irrelevant passages, ensuring high-quality additional context. The model follows a multi-stage training strategy leveraging reinforcement learning to enhance reasoning over retrieved content, while supervised fine-tuning serves only as a cold start. Extensive experiments on Encyclopedic-VQA and InfoSeek demonstrate that ReAG significantly outperforms prior methods, improving answer accuracy and providing interpretable reasoning grounded in retrieved evidence. Our source code is publicly available at: https://github.com/aimagelab/ReAG.
☆ Mechanistic Finetuning of Vision-Language-Action Models via Few-Shot Demonstrations
Vision-Language Action (VLAs) models promise to extend the remarkable success of vision-language models (VLMs) to robotics. Yet, unlike VLMs in the vision-language domain, VLAs for robotics require finetuning to contend with varying physical factors like robot embodiment, environment characteristics, and spatial relationships of each task. Existing fine-tuning methods lack specificity, adapting the same set of parameters regardless of a task's visual, linguistic, and physical characteristics. Inspired by functional specificity in neuroscience, we hypothesize that it is more effective to finetune sparse model representations specific to a given task. In this work, we introduce Robotic Steering, a finetuning approach grounded in mechanistic interpretability that leverages few-shot demonstrations to identify and selectively finetune task-specific attention heads aligned with the physical, visual, and linguistic requirements of robotic tasks. Through comprehensive on-robot evaluations with a Franka Emika robot arm, we demonstrate that Robotic Steering outperforms LoRA while achieving superior robustness under task variation, reduced computational cost, and enhanced interpretability for adapting VLAs to diverse robotic tasks.
☆ Improving LLM-based Ontology Matching with fine-tuning on synthetic data
Large Language Models (LLMs) are increasingly being integrated into various components of Ontology Matching pipelines. This paper investigates the capability of LLMs to perform ontology matching directly on ontology modules and generate the corresponding alignments. Furthermore, it is explored how a dedicated fine-tuning strategy can enhance the model's matching performance in a zero-shot setting. The proposed method incorporates a search space reduction technique to select relevant subsets from both source and target ontologies, which are then used to automatically construct prompts. Recognizing the scarcity of reference alignments for training, a novel LLM-based approach is introduced for generating a synthetic dataset. This process creates a corpus of ontology submodule pairs and their corresponding reference alignments, specifically designed to fine-tune an LLM for the ontology matching task. The proposed approach was evaluated on the Conference, Geolink, Enslaved, Taxon, and Hydrography datasets from the OAEI complex track. The results demonstrate that the LLM fine-tuned on the synthetically generated data exhibits superior performance compared to the non-fine-tuned base model. The key contribution is a strategy that combines automatic dataset generation with fine-tuning to effectively adapt LLMs for ontology matching tasks.
☆ Smarter, not Bigger: Fine-Tuned RAG-Enhanced LLMs for Automotive HIL Testing
Hardware-in-the-Loop (HIL) testing is essential for automotive validation but suffers from fragmented and underutilized test artifacts. This paper presents HIL-GPT, a retrieval-augmented generation (RAG) system integrating domain-adapted large language models (LLMs) with semantic retrieval. HIL-GPT leverages embedding fine-tuning using a domain-specific dataset constructed via heuristic mining and LLM-assisted synthesis, combined with vector indexing for scalable, traceable test case and requirement retrieval. Experiments show that fine-tuned compact models, such as \texttt{bge-base-en-v1.5}, achieve a superior trade-off between accuracy, latency, and cost compared to larger models, challenging the notion that bigger is always better. An A/B user study further confirms that RAG-enhanced assistants improve perceived helpfulness, truthfulness, and satisfaction over general-purpose LLMs. These findings provide insights for deploying efficient, domain-aligned LLM-based assistants in industrial HIL environments.
☆ Extension Condition "violations" and Merge optimality constraints
We analyze, using the mathematical formulation of Merge within the Strong Minimalist Thesis framework, a set of linguistic phenomena, including head-to-head movement, phrasal affixes and syntactic cliticization, verb-particle alternation, and operator-variable phenomena. These are often regarded as problematic, as violations of the Extension Condition. We show that, in fact, all of these phenomena can be explained without involving any EC violation. We first show that derivations using Sideward Merge are possible for all of these cases: these respect EC, though they involve some amount of optimality violations, with respect to Resource Restrictions cost functions, andthe amount of violation differs among these cases. We show that all the cases that involve large optimality violations can be derived in alternative ways involving neither EC nor the use of SM. The main remaining case (head-to-head movement) only involves SM with minimal violations of optimality (near equilibrium fluctuations). We analyze explicitly also the cases of multiple wh-fronting, clusters of clitics in Romance languages and possessor agreement construction in Korean, and how an explanation of these phenomena based on SM can be made compatible with the colored operad generators for phases and theta roles. We also show that the EC condition has a clear algebraic meaning in the mathematical formulation of Merge and is therefore an intrinsic structural algebraic constraint of the model, rather than an additional assumption. We also show that the minimal optimality violating SM plays a structural role in the Markovian properties of Merge, and we compare different optimality conditions coming from Minimal Search and from Resource Restriction in terms of their effect on the dynamics of the Hopf algebra Markov chain, in a simple explicit example.
comment: 85 pages
☆ DeepSeekMath-V2: Towards Self-Verifiable Mathematical Reasoning
Large language models have made significant progress in mathematical reasoning, which serves as an important testbed for AI and could impact scientific research if further advanced. By scaling reasoning with reinforcement learning that rewards correct final answers, LLMs have improved from poor performance to saturating quantitative reasoning competitions like AIME and HMMT in one year. However, this approach faces fundamental limitations. Pursuing higher final answer accuracy doesn't address a key issue: correct answers don't guarantee correct reasoning. Moreover, many mathematical tasks like theorem proving require rigorous step-by-step derivation rather than numerical answers, making final answer rewards inapplicable. To push the limits of deep reasoning, we believe it is necessary to verify the comprehensiveness and rigor of mathematical reasoning. Self-verification is particularly important for scaling test-time compute, especially for open problems without known solutions. Towards self-verifiable mathematical reasoning, we investigate how to train an accurate and faithful LLM-based verifier for theorem proving. We then train a proof generator using the verifier as the reward model, and incentivize the generator to identify and resolve as many issues as possible in their own proofs before finalizing them. To maintain the generation-verification gap as the generator becomes stronger, we propose to scale verification compute to automatically label new hard-to-verify proofs, creating training data to further improve the verifier. Our resulting model, DeepSeekMath-V2, demonstrates strong theorem-proving capabilities, achieving gold-level scores on IMO 2025 and CMO 2024 and a near-perfect 118/120 on Putnam 2024 with scaled test-time compute.
☆ Joint Speech and Text Training for LLM-Based End-to-End Spoken Dialogue State Tracking ICASSP 2026
End-to-end spoken dialogue state tracking (DST) is made difficult by the tandem of having to handle speech input and data scarcity. Combining speech foundation encoders and large language models has been proposed in recent work as to alleviate some of this difficulty. Although this approach has been shown to result in strong spoken DST models, achieving state-of-the-art performance in realistic multi-turn DST, it struggles to generalize across domains and requires annotated spoken DST training data for each domain of interest. However, collecting such data for every target domain is both costly and difficult. Noting that textual DST data is more easily obtained for various domains, in this work, we propose jointly training on available spoken DST data and written textual data from other domains as a way to achieve cross-domain generalization. We conduct experiments which show the efficacy of our proposed method for getting good cross-domain DST performance without relying on spoken training data from the target domains.
comment: submitted to ICASSP 2026
☆ What Shape Is Optimal for Masks in Text Removal?
The advent of generative models has dramatically improved the accuracy of image inpainting. In particular, by removing specific text from document images, reconstructing original images is extremely important for industrial applications. However, most existing methods of text removal focus on deleting simple scene text which appears in images captured by a camera in an outdoor environment. There is little research dedicated to complex and practical images with dense text. Therefore, we created benchmark data for text removal from images including a large amount of text. From the data, we found that text-removal performance becomes vulnerable against mask profile perturbation. Thus, for practical text-removal tasks, precise tuning of the mask shape is essential. This study developed a method to model highly flexible mask profiles and learn their parameters using Bayesian optimization. The resulting profiles were found to be character-wise masks. It was also found that the minimum cover of a text region is not optimal. Our research is expected to pave the way for a user-friendly guideline for manual masking.
comment: 12 pages, 17 figures
☆ Exploring Performance Variations in Finetuned Translators of Ultra-Low Resource Languages: Do Linguistic Differences Matter?
Finetuning pre-trained language models with small amounts of data is a commonly-used method to create translators for ultra-low resource languages such as endangered Indigenous languages. However, previous works have reported substantially different performances with translators created using similar methodology and data. In this work we systematically explored possible causes of the performance difference, aiming to determine whether it was a product of different cleaning procedures, limitations of the pre-trained models, the size of the base model, or the size of the training dataset, studying both directions of translation. Our studies, using two Brazilian Indigenous languages, related but with significant structural linguistic characteristics, indicated none or very limited influence from those training factors, suggesting differences between languages may play a significant role in the ability to produce translators by fine-tuning pre-trained models.
☆ Mapping Clinical Doubt: Locating Linguistic Uncertainty in LLMs AAAI'26
Large Language Models (LLMs) are increasingly used in clinical settings, where sensitivity to linguistic uncertainty can influence diagnostic interpretation and decision-making. Yet little is known about where such epistemic cues are internally represented within these models. Distinct from uncertainty quantification, which measures output confidence, this work examines input-side representational sensitivity to linguistic uncertainty in medical text. We curate a contrastive dataset of clinical statements varying in epistemic modality (e.g., 'is consistent with' vs. 'may be consistent with') and propose Model Sensitivity to Uncertainty (MSU), a layerwise probing metric that quantifies activation-level shifts induced by uncertainty cues. Our results show that LLMs exhibit structured, depth-dependent sensitivity to clinical uncertainty, suggesting that epistemic information is progressively encoded in deeper layers. These findings reveal how linguistic uncertainty is internally represented in LLMs, offering insight into their interpretability and epistemic reliability.
comment: Accepted to AAAI'26 SECURE-AI4H Workshop
☆ SuRe: Surprise-Driven Prioritised Replay for Continual LLM Learning
Continual learning, one's ability to adapt to a sequence of tasks without forgetting previously acquired knowledge, remains a major challenge in machine learning and a key gap between artificial and human intelligence. While regularisation and replay perform well in vision, they lag behind multi-task learning for large language models (LLMs), especially at scale with many tasks. We revisit replay and argue that two failure modes drive this gap: selection (what to rehearse) and integration (how to consolidate new knowledge). To address selection, we propose Surprise-prioritised Replay (SuRe), a simple, architecture-agnostic rule that ranks and stores the most surprising (high Negative Log-Likelihood) sequences. SuRe achieves state-of-the-art performance in the Large Number of Tasks (LNT) setting and delivers the best overall average across both Standard CL and LNT benchmarks. To address integration, we add a dual-learner design with fast and slow LoRA adapters merged via an exponential moving average (EMA), enabling rapid adaptation while stabilising long-term knowledge. Combining SuRe with the dual learner yields further gains, including improvements of up to +5 accuracy points on LNT over prior SOTA. Ablation studies confirm that our proposed method remains robust under reduced replay frequency and small buffer size, demonstrating both effectiveness and sample efficiency. Taken together, our results establish replay as a strong baseline for continual LLM fine-tuning and demonstrate that surprise-based selection and slow-weight consolidation are complementary components for mitigating catastrophic forgetting.
☆ PAT: Accelerating LLM Decoding via Prefix-Aware Attention with Resource Efficient Multi-Tile Kernel ASPLOS'26
LLM serving is increasingly dominated by decode attention, which is a memory-bound operation due to massive KV cache loading from global memory. Meanwhile, real-world workloads exhibit substantial, hierarchical shared prefixes across requests (e.g., system prompts, tools/templates, RAG). Existing attention implementations fail to fully exploit prefix sharing: *one-query-per-CTA* execution repeatedly loads shared prefix KV cache, while *one-size-fits-all* tiling leaves on-chip resources idle and exacerbates bubbles for uneven KV lengths. These choices amplify memory bandwidth pressure and stall memory-bound decode attention. This paper introduces PAT, a prefix-aware attention kernel implementation for LLM decoding that organizes execution with a pack-forward-merge paradigm. PAT packs queries by shared prefix to reduce repeated memory accesses, runs a customized multi-tile kernel to achieve high resource efficiency. It further applies practical multi-stream forwarding and KV splitting to reduce resource bubbles. The final merge performs online softmax with negligible overhead. We implement PAT as an off-the-shelf plugin for vLLM. Evaluation on both real-world and synthetic workloads shows that PAT reduces attention latency by 67.4% on average and TPOT by 13.6-83.4% under the same configurations against state-of-the-art attention kernels.
comment: Accepted by ASPLOS'26
☆ Named Entity Recognition for the Kurdish Sorani Language: Dataset Creation and Comparative Analysis
This work contributes towards balancing the inclusivity and global applicability of natural language processing techniques by proposing the first 'name entity recognition' dataset for Kurdish Sorani, a low-resource and under-represented language, that consists of 64,563 annotated tokens. It also provides a tool for facilitating this task in this and many other languages and performs a thorough comparative analysis, including classic machine learning models and neural systems. The results obtained challenge established assumptions about the advantage of neural approaches within the context of NLP. Conventional methods, in particular CRF, obtain F1-scores of 0.825, outperforming the results of BiLSTM-based models (0.706) significantly. These findings indicate that simpler and more computationally efficient classical frameworks can outperform neural architectures in low-resource settings.
☆ Sentiment Analysis Of Shopee Product Reviews Using Distilbert
The rapid growth of digital commerce has led to the accumulation of a massive number of consumer reviews on online platforms. Shopee, as one of the largest e-commerce platforms in Southeast Asia, receives millions of product reviews every day containing valuable information regarding customer satisfaction and preferences. Manual analysis of these reviews is inefficient, thus requiring a computational approach such as sentiment analysis. This study examines the use of DistilBERT, a lightweight transformer-based deep learning model, for sentiment classification on Shopee product reviews. The dataset used consists of approximately one million English-language reviews that have been preprocessed and trained using the distilbert-base-uncased model. Evaluation was conducted using accuracy, precision, recall, and F1-score metrics, and compared against benchmark models such as BERT and SVM. The results show that DistilBERT achieved an accuracy of 94.8%, slightly below BERT (95.3%) but significantly higher than SVM (90.2%), with computation time reduced by more than 55%. These findings demonstrate that DistilBERT provides an optimal balance between accuracy and efficiency, making it suitable for large scale sentiment analysis on e-commerce platforms. Keywords: Sentiment Analysis, DistilBERT, Shopee Reviews, Natural Language Processing, Deep Learning, Transformer Models.
comment: 6 pages, 11 figures
☆ Token-Level Marginalization for Multi-Label LLM Classifiers
This paper addresses the critical challenge of deriving interpretable confidence scores from generative language models (LLMs) when applied to multi-label content safety classification. While models like LLaMA Guard are effective for identifying unsafe content and its categories, their generative architecture inherently lacks direct class-level probabilities, which hinders model confidence assessment and performance interpretation. This limitation complicates the setting of dynamic thresholds for content moderation and impedes fine-grained error analysis. This research proposes and evaluates three novel token-level probability estimation approaches to bridge this gap. The aim is to enhance model interpretability and accuracy, and evaluate the generalizability of this framework across different instruction-tuned models. Through extensive experimentation on a synthetically generated, rigorously annotated dataset, it is demonstrated that leveraging token logits significantly improves the interpretability and reliability of generative classifiers, enabling more nuanced content safety moderation.
☆ Swarms of Large Language Model Agents for Protein Sequence Design with Experimental Validation
Designing proteins de novo with tailored structural, physicochemical, and functional properties remains a grand challenge in biotechnology, medicine, and materials science, due to the vastness of sequence space and the complex coupling between sequence, structure, and function. Current state-of-the-art generative methods, such as protein language models (PLMs) and diffusion-based architectures, often require extensive fine-tuning, task-specific data, or model reconfiguration to support objective-directed design, thereby limiting their flexibility and scalability. To overcome these limitations, we present a decentralized, agent-based framework inspired by swarm intelligence for de novo protein design. In this approach, multiple large language model (LLM) agents operate in parallel, each assigned to a specific residue position. These agents iteratively propose context-aware mutations by integrating design objectives, local neighborhood interactions, and memory and feedback from previous iterations. This position-wise, decentralized coordination enables emergent design of diverse, well-defined sequences without reliance on motif scaffolds or multiple sequence alignments, validated with experiments on proteins with alpha helix and coil structures. Through analyses of residue conservation, structure-based metrics, and sequence convergence and embeddings, we demonstrate that the framework exhibits emergent behaviors and effective navigation of the protein fitness landscape. Our method achieves efficient, objective-directed designs within a few GPU-hours and operates entirely without fine-tuning or specialized training, offering a generalizable and adaptable solution for protein design. Beyond proteins, the approach lays the groundwork for collective LLM-driven design across biomolecular systems and other scientific discovery tasks.
☆ Beyond Query-Level Comparison: Fine-Grained Reinforcement Learning for Text-to-SQL with Automated Interpretable Critiques
Text-to-SQL, a pivotal natural language processing (NLP) task that converts textual queries into executable SQL, has seen substantial progress in recent years. However, existing evaluation and reward mechanisms used to train and assess the text-to-SQL models remain a critical bottleneck. Current approaches heavily rely on manually annotated gold SQL queries, which are costly to produce and impractical for large-scale evaluation. More importantly, most reinforcement learning (RL) methods in text-to-SQL leverage only the final binary execution outcome as the reward signal, a coarse-grained supervision that overlooks detailed structural and semantic errors from the perspective of rubrics. To address these challenges, we propose RuCo-C, a novel generative judge model for fine-grained, query-specific automatic evaluation using interpretable critiques without human intervention. Our framework first automatically generates query-specific evaluation rubrics for human-free annotation, linking them to interpretable critiques. Subsequently, it integrates densified reward feedback through a "progressive exploration" strategy during the RL training process, which dynamically adjusts the rewards to enhance the model's performance. Comprehensive experiments demonstrate that RuCo-C outperforms existing methods in text-to-SQL evaluation, yielding significant performance gains.
☆ From Compound Figures to Composite Understanding: Developing a Multi-Modal LLM from Biomedical Literature with Medical Multiple-Image Benchmarking and Validation
Multi-modal large language models (MLLMs) have shown promise in advancing healthcare. However, most existing models remain confined to single-image understanding, which greatly limits their applicability in clinical workflows. In practice, medical diagnosis and progression often require synthesizing information across multiple images from different modalities or time points. The development of medical MLLMs capable of such multi-image understanding has been hindered by the lack of large-scale, high-quality annotated training data. To address this limitation, we propose a novel framework that leverages license-permissive compound images in biomedical literature, as a rich yet underutilized data source for multi-image analysis. Specifically, we design a five-stage, context-aware instruction generation paradigm underpinned by a divide-and-conquer strategy. By decomposing multi-image analysis into manageable sub-tasks, this paradigm empowers MLLMs to move beyond single-panel analysis and provide a composite understanding by learning the complex spatial, temporal, and cross-modal relationships inherent in these compound figures. By parsing over 237,000 compound figures and their contextual text for instruction generation, we develop M3LLM, a medical multi-image multi-modal large language model. For benchmarking, we construct PMC-MI-Bench for composite understanding, manually validated by medical experts. Extensive experiments show that M3LLM significantly outperforms both general-purpose and specialized medical MLLMs across multi-image, single-image, text-only, and multi-choice scenarios. Notably, M3LLM exhibits strong generalization to longitudinal chest X-ray analysis using the MIMIC dataset. This work establishes a scalable and efficient paradigm for developing medical MLLMs capable of composite reasoning, bridging the gap between biomedical literature and real-world clinical applications.
☆ Focused Chain-of-Thought: Efficient LLM Reasoning via Structured Input Information
Recent large language models achieve strong reasoning performance by generating detailed chain-of-thought traces, but this often leads to excessive token use and high inference latency. Existing efficiency approaches typically focus on model-centric interventions, such as reinforcement learning or supervised fine-tuning, to reduce verbosity. In contrast, we propose a training-free, input-centric approach. Inspired by cognitive psychology, we introduce Focused Chain-of-Thought (F-CoT), which separates information extraction from the reasoning process. F-CoT first organizes the essential information from a query into a concise, structured context and then guides the model to reason exclusively over this context. By preventing attention to irrelevant details, F-CoT naturally produces shorter reasoning paths. On arithmetic word problems, F-CoT reduces generated tokens by 2-3x while maintaining accuracy comparable to standard zero-shot CoT. These results highlight structured input as a simple yet effective lever for more efficient LLM reasoning.
☆ RefineBench: Evaluating Refinement Capability of Language Models via Checklists
Can language models (LMs) self-refine their own responses? This question is increasingly relevant as a wide range of real-world user interactions involve refinement requests. However, prior studies have largely tested LMs' refinement abilities on verifiable tasks such as competition math or symbolic reasoning with simplified scaffolds, whereas users often pose open-ended queries and provide varying degrees of feedback on what they desire. The recent advent of reasoning models that exhibit self-reflection patterns in their chains-of-thought further motivates this question. To analyze this, we introduce RefineBench, a benchmark of 1,000 challenging problems across 11 domains paired with a checklist-based evaluation framework. We evaluate two refinement modes: (1) guided refinement, where an LM is provided natural language feedback, and (2) self-refinement, where LMs attempt to improve without guidance. In the self-refinement setting, even frontier LMs such as Gemini 2.5 Pro and GPT-5 achieve modest baseline scores of 31.3% and 29.1%, respectively, and most models fail to consistently improve across iterations (e.g., Gemini-2.5-Pro gains only +1.8%, while DeepSeek-R1 declines by -0.1%). By contrast, in guided refinement, both proprietary LMs and large open-weight LMs (>70B) can leverage targeted feedback to refine responses to near-perfect levels within five turns. These findings suggest that frontier LMs require breakthroughs to self-refine their incorrect responses, and that RefineBench provides a valuable testbed for tracking progress.
comment: Project website: https://passing2961.github.io/refinebench-page/
☆ Lips-Jaw and Tongue-Jaw Articulatory Tradeoff in DYNARTmo
This paper investigates how the dynamic articulatory model DYNARTmo accounts for articulatory tradeoffs between primary and secondary articulators, with a focus on lips-jaw and tongue-jaw coordination. While DYNARTmo does not implement full task-dynamic second-order biomechanics, it adopts first-order task-space gesture specifications comparable to those used in articulatory phonology and integrates a simplified mechanism for distributing articulatory effort across multiple articulators. We first outline the conceptual relationship between task dynamics and DYNARTmo, emphasizing the distinction between high-level task-space trajectories and their low-level articulatory execution. We then present simulation results for a set of CV syllables that illustrate how jaw displacement varies as a function of both place of articulation (labial, apical, dorsal) and vowel context (/a/, /i/, /u/). The model reproduces empirically attested patterns of articulatory synergy, including jaw-supported apical closures, lower-lip elevation in bilabial stops, tongue-jaw co-movement, and saturation effects in labial constrictions. These results demonstrate that even with computationally simplified assumptions, DYNARTmo can generate realistic spatio-temporal movement patterns that capture key aspects of articulatory tradeoff and synergy across a range of consonant-vowel combinations.
comment: 12 pages, 3 figures, supplementary material: python code
☆ A Theoretically Grounded Hybrid Ensemble for Reliable Detection of LLM-Generated Text
The rapid proliferation of Large Language Models (LLMs) has blurred the line between human and machine authorship, creating practical risks for academic integrity and information reliability. Existing text detectors typically rely on a single methodological paradigm and suffer from poor generalization and high false positive rates (FPR), especially on high-stakes academic text. We propose a theoretically grounded hybrid ensemble that systematically fuses three complementary detection paradigms: (i) a RoBERTa-based transformer classifier for deep semantic feature extraction, (ii) a GPT-2-based probabilistic detector using perturbation-induced likelihood curvature, and (iii) a statistical linguistic feature analyzer capturing stylometric patterns. The core novelty lies in an optimized weighted voting framework, where ensemble weights are learned on the probability simplex to maximize F1-score rather than set heuristically. We provide a bias-variance analysis and empirically demonstrate low inter-model correlation (rho ~ 0.35-0.42), a key condition for variance reduction. Evaluated on a large-scale, multigenerator corpus of 30,000 documents, our system achieves 94.2% accuracy and an AUC of 0.978, with a 35% relative reduction in false positives on academic text. This yields a more reliable and ethically responsible detector for real-world deployment in education and other high-stakes domains.
comment: 24 pages
☆ From Topology to Retrieval: Decoding Embedding Spaces with Unified Signatures
Studying how embeddings are organized in space not only enhances model interpretability but also uncovers factors that drive downstream task performance. In this paper, we present a comprehensive analysis of topological and geometric measures across a wide set of text embedding models and datasets. We find a high degree of redundancy among these measures and observe that individual metrics often fail to sufficiently differentiate embedding spaces. Building on these insights, we introduce Unified Topological Signatures (UTS), a holistic framework for characterizing embedding spaces. We show that UTS can predict model-specific properties and reveal similarities driven by model architecture. Further, we demonstrate the utility of our method by linking topological structure to ranking effectiveness and accurately predicting document retrievability. We find that a holistic, multi-attribute perspective is essential to understanding and leveraging the geometry of text embeddings.
☆ C$^2$DLM: Causal Concept-Guided Diffusion Large Language Models
Autoregressive (AR) language models and Diffusion Language Models (DLMs) constitute the two principal paradigms of large language models. However, both paradigms suffer from insufficient reasoning capabilities. Human reasoning inherently relies on causal knowledge and thought, which are reflected in natural language. But in the AR paradigm, language is modeled as next token prediction (a strictly left-to-right, token-by-token order), whereas natural language itself exhibits more flexible causal structures. In the DLM paradigm, the attention mechanism is fully connected, which entirely disregards causal order. To fill this gap, we propose a \underline{\textbf{C}}ausal \underline{\textbf{C}}oncept-Guided \underline{\textbf{D}}iffusion \underline{\textbf{L}}anguage \underline{\textbf{M}}odel (C$^2$DLM). Starting from DLM's fully connected attention, C$^2$DLM first obtains a concept-level causal graph from the teacher model, and then explicitly guides attention to learn causal relationships between concepts. By focusing on causal relationships and avoiding interference from difficult subgoals involving causal inversion, C$^2$DLM improves 12\% with about 3.2 times training speedup in the COT-OrderPerturb task, and achieves an average gain of 1.31\% across six downstream reasoning tasks. More details in the repository ~\href{https://github.com/Kairong-Han/C-2-DLM}{here}.
☆ Bridging the Modality Gap by Similarity Standardization with Pseudo-Positive Samples ACL
Advances in vision-language models (VLMs) have enabled effective cross-modality retrieval. However, when both text and images exist in the database, similarity scores would differ in scale by modality. This phenomenon, known as the modality gap, hinders accurate retrieval. Most existing studies address this issue with manually labeled data, e.g., by fine-tuning VLMs on them. In this work, we propose a similarity standardization approach with pseudo data construction. We first compute the mean and variance of the similarity scores between each query and its paired data in text or image modality. Using these modality-specific statistics, we standardize all similarity scores to compare on a common scale across modalities. These statistics are calculated from pseudo pairs, which are constructed by retrieving the text and image candidates with the highest cosine similarity to each query. We evaluate our method across seven VLMs using two multi-modal QA benchmarks (MMQA and WebQA), where each question requires retrieving either text or image data. Our experimental results show that our method significantly improves retrieval performance, achieving average Recall@20 gains of 64% on MMQA and 28% on WebQA when the query and the target data belong to different modalities. Compared to E5-V, which addresses the modality gap through image captioning, we confirm that our method more effectively bridges the modality gap.
comment: Accepted to PACLIC2025
☆ A Hybrid Theory and Data-driven Approach to Persuasion Detection with Large Language Models
Traditional psychological models of belief revision focus on face-to-face interactions, but with the rise of social media, more effective models are needed to capture belief revision at scale, in this rich text-based online discourse. Here, we use a hybrid approach, utilizing large language models (LLMs) to develop a model that predicts successful persuasion using features derived from psychological experiments. Our approach leverages LLM generated ratings of features previously examined in the literature to build a random forest classification model that predicts whether a message will result in belief change. Of the eight features tested, \textit{epistemic emotion} and \textit{willingness to share} were the top-ranking predictors of belief change in the model. Our findings provide insights into the characteristics of persuasive messages and demonstrate how LLMs can enhance models of successful persuasion based on psychological theory. Given these insights, this work has broader applications in fields such as online influence detection and misinformation mitigation, as well as measuring the effectiveness of online narratives.
☆ Early Risk Prediction with Temporally and Contextually Grounded Clinical Language Processing
Clinical notes in Electronic Health Records (EHRs) capture rich temporal information on events, clinician reasoning, and lifestyle factors often missing from structured data. Leveraging them for predictive modeling can be impactful for timely identification of chronic diseases. However, they present core natural language processing (NLP) challenges: long text, irregular event distribution, complex temporal dependencies, privacy constraints, and resource limitations. We present two complementary methods for temporally and contextually grounded risk prediction from longitudinal notes. First, we introduce HiTGNN, a hierarchical temporal graph neural network that integrates intra-note temporal event structures, inter-visit dynamics, and medical knowledge to model patient trajectories with fine-grained temporal granularity. Second, we propose ReVeAL, a lightweight, test-time framework that distills the reasoning of large language models into smaller verifier models. Applied to opportunistic screening for Type 2 Diabetes (T2D) using temporally realistic cohorts curated from private and public hospital corpora, HiTGNN achieves the highest predictive accuracy, especially for near-term risk, while preserving privacy and limiting reliance on large proprietary models. ReVeAL enhances sensitivity to true T2D cases and retains explanatory reasoning. Our ablations confirm the value of temporal structure and knowledge augmentation, and fairness analysis shows HiTGNN performs more equitably across subgroups.
☆ ResearchArcade: Graph Interface for Academic Tasks
Academic research generates diverse data sources, and as researchers increasingly use machine learning to assist research tasks, a crucial question arises: Can we build a unified data interface to support the development of machine learning models for various academic tasks? Models trained on such a unified interface can better support human researchers throughout the research process, eventually accelerating knowledge discovery. In this work, we introduce ResearchArcade, a graph-based interface that connects multiple academic data sources, unifies task definitions, and supports a wide range of base models to address key academic challenges. ResearchArcade utilizes a coherent multi-table format with graph structures to organize data from different sources, including academic corpora from ArXiv and peer reviews from OpenReview, while capturing information with multiple modalities, such as text, figures, and tables. ResearchArcade also preserves temporal evolution at both the manuscript and community levels, supporting the study of paper revisions as well as broader research trends over time. Additionally, ResearchArcade unifies diverse academic task definitions and supports various models with distinct input requirements. Our experiments across six academic tasks demonstrate that combining cross-source and multi-modal information enables a broader range of tasks, while incorporating graph structures consistently improves performance over baseline methods. This highlights the effectiveness of ResearchArcade and its potential to advance research progress.
☆ AfriStereo: A Culturally Grounded Dataset for Evaluating Stereotypical Bias in Large Language Models
Existing AI bias evaluation benchmarks largely reflect Western perspectives, leaving African contexts underrepresented and enabling harmful stereotypes in applications across various domains. To address this gap, we introduce AfriStereo, the first open-source African stereotype dataset and evaluation framework grounded in local socio-cultural contexts. Through community engaged efforts across Senegal, Kenya, and Nigeria, we collected 1,163 stereotypes spanning gender, ethnicity, religion, age, and profession. Using few-shot prompting with human-in-the-loop validation, we augmented the dataset to over 5,000 stereotype-antistereotype pairs. Entries were validated through semantic clustering and manual annotation by culturally informed reviewers. Preliminary evaluation of language models reveals that nine of eleven models exhibit statistically significant bias, with Bias Preference Ratios (BPR) ranging from 0.63 to 0.78 (p <= 0.05), indicating systematic preferences for stereotypes over antistereotypes, particularly across age, profession, and gender dimensions. Domain-specific models appeared to show weaker bias in our setup, suggesting task-specific training may mitigate some associations. Looking ahead, AfriStereo opens pathways for future research on culturally grounded bias evaluation and mitigation, offering key methodologies for the AI community on building more equitable, context-aware, and globally inclusive NLP technologies.
♻ ☆ A Trio Neural Model for Dynamic Entity Relatedness Ranking CoNLL 2018
Measuring entity relatedness is a fundamental task for many natural language processing and information retrieval applications. Prior work often studies entity relatedness in static settings and an unsupervised manner. However, entities in real-world are often involved in many different relationships, consequently entity-relations are very dynamic over time. In this work, we propose a neural networkbased approach for dynamic entity relatedness, leveraging the collective attention as supervision. Our model is capable of learning rich and different entity representations in a joint framework. Through extensive experiments on large-scale datasets, we demonstrate that our method achieves better results than competitive baselines.
comment: In Proceedings of CoNLL 2018
♻ ☆ Automated Composition of Agents: A Knapsack Approach for Agentic Component Selection NeurIPS 2025
Designing effective agentic systems requires the seamless composition and integration of agents, tools, and models within dynamic and uncertain environments. Most existing methods rely on static, semantic retrieval approaches for tool or agent discovery. However, effective reuse and composition of existing components remain challenging due to incomplete capability descriptions and the limitations of retrieval methods. Component selection suffers because the decisions are not based on capability, cost, and real-time utility. To address these challenges, we introduce a structured, automated framework for agentic system composition that is inspired by the knapsack problem. Our framework enables a composer agent to systematically identify, select, and assemble an optimal set of agentic components by jointly considering performance, budget constraints, and compatibility. By dynamically testing candidate components and modeling their utility in real-time, our approach streamlines the assembly of agentic systems and facilitates scalable reuse of resources. Empirical evaluation with Claude 3.5 Sonnet across five benchmarking datasets shows that our online-knapsack-based composer consistently lies on the Pareto frontier, achieving higher success rates at significantly lower component costs compared to our baselines. In the single-agent setup, the online knapsack composer shows a success rate improvement of up to 31.6% in comparison to the retrieval baselines. In multi-agent systems, the online knapsack composer increases success rate from 37% to 87% when agents are selected from an agent inventory of 100+ agents. The substantial performance gap confirms the robust adaptability of our method across diverse domains and budget constraints.
comment: Accepted to NeurIPS 2025 Conference
♻ ☆ Linguistically-Controlled Paraphrase Generation ACL
Controlled paraphrase generation produces paraphrases that preserve meaning while allowing precise control over linguistic attributes of the output. We introduce LingConv, an encoder-decoder framework that enables fine-grained control over 40 linguistic attributes in English. To improve reliability, we introduce a novel inference-time quality control mechanism that iteratively refines attribute embeddings to generate paraphrases that closely match target attributes without sacrificing semantic fidelity. LingConv reduces attribute error by up to 34% over existing models, with the quality control mechanism contributing an additional 14% improvement.
comment: This paper was published in Findings of ACL: EMNLP 2025
♻ ☆ One Patient, Many Contexts: Scaling Medical AI with Contextual Intelligence
Medical AI, including clinical language models, vision-language models, and multimodal health record models, already summarizes notes, answers questions, and supports decisions. Their adaptation to new populations, specialties, or care settings often relies on fine-tuning, prompting, or retrieval from external knowledge bases. These strategies can scale poorly and risk contextual errors: outputs that appear plausible but miss critical patient or situational information. We envision context switching as a solution. Context switching adjusts model reasoning at inference without retraining. Generative models can tailor outputs to patient biology, care setting, or disease. Multimodal models can reason on notes, laboratory results, imaging, and genomics, even when some data are missing or delayed. Agent models can coordinate tools and roles based on tasks and users. In each case, context switching enables medical AI to adapt across specialties, populations, and geographies. It requires advances in data design, model architectures, and evaluation frameworks, and establishes a foundation for medical AI that scales to infinitely many contexts while remaining reliable and suited to real-world care.
♻ ☆ Do Large Language Models Think Like the Brain? Sentence-Level Evidence from fMRI and Hierarchical Embeddings
Understanding whether large language models (LLMs) and the human brain converge on similar computational principles remains a fundamental and important question in cognitive neuroscience and AI. Do the brain-like patterns observed in LLMs emerge simply from scaling, or do they reflect deeper alignment with the architecture of human language processing? This study focuses on the sentence-level neural mechanisms of language models, systematically investigating how hierarchical representations in LLMs align with the dynamic neural responses during human sentence comprehension. By comparing hierarchical embeddings from 14 publicly available LLMs with fMRI data collected from participants, who were exposed to a naturalistic narrative story, we constructed sentence-level neural prediction models to precisely identify the model layers most significantly correlated with brain region activations. Results show that improvements in model performance drive the evolution of representational architectures toward brain-like hierarchies, particularly achieving stronger functional and anatomical correspondence at higher semantic abstraction levels.
♻ ☆ AutoHall: Automated Factuality Hallucination Dataset Generation for Large Language Models
Large language models (LLMs) have gained broad applications across various domains but still struggle with hallucinations. Currently, hallucinations occur frequently in the generation of factual content and pose a great challenge to trustworthy LLMs. However, hallucination detection is hindered by the laborious and expensive manual annotation of hallucinatory content. Meanwhile, as different LLMs exhibit distinct types and rates of hallucination, the collection of hallucination datasets is inherently model-specific, which also increases the cost. To address this issue, this paper proposes a method called $\textbf{AutoHall}$ for $\underline{Auto}$matically constructing model-specific $\underline{Hall}$ucination datasets based on existing fact-checking datasets. The empirical results reveal variations in hallucination proportions and types among different models. Moreover, we introduce a zero-resource and black-box hallucination detection method based on self-contradiction to recognize the hallucination in our constructed dataset, achieving superior detection performance compared to baselines. Further analysis on our dataset provides insight into factors that may contribute to LLM hallucinations. Our codes and datasets are publicly available at https://github.com/zouyingcao/AutoHall.
comment: Accepted by IEEE Transactions on Audio, Speech, and Language Processing (TASLP)
♻ ☆ Event Stream-based Sign Language Translation: A High-Definition Benchmark Dataset and A Novel Baseline
Sign Language Translation (SLT) is a core task in the field of AI-assisted disability. Traditional SLT methods are typically based on visible light videos, which are easily affected by factors such as lighting variations, rapid hand movements, and privacy concerns. This paper proposes the use of bio-inspired event cameras to alleviate the aforementioned issues. Specifically, we introduce a new high-definition event-based sign language dataset, termed Event-CSL, which effectively addresses the data scarcity in this research area. The dataset comprises 14,827 videos, 14,821 glosses, and 2,544 Chinese words in the text vocabulary. These samples are collected across diverse indoor and outdoor scenes, covering multiple viewpoints, lighting conditions, and camera motions. We have also benchmarked existing mainstream SLT methods on this dataset to facilitate fair comparisons in future research.Furthermore, we propose a novel event-based sign language translation framework, termed EvSLT. The framework first segments continuous video features into clips and employs a Mamba-based memory aggregation module to compress and aggregate spatial detail features at the clip level. Subsequently, these spatial features, along with temporal representations obtained from temporal convolution, are then fused by a graph-guided spatiotemporal fusion module. Extensive experiments on Event-CSL, as well as other publicly available datasets, demonstrate the superior performance of our method. The dataset and source code will be released on https://github.com/Event-AHU/OpenESL
♻ ☆ Self-Guided Defense: Adaptive Safety Alignment for Reasoning Models via Synthesized Guidelines
Reasoning models have demonstrated remarkable capabilities in complex reasoning tasks. However, ensuring their safety against adversarial jailbreak prompts remains a critical challenge. Due to the covert and deceptive nature of such prompts, they can often evade built-in safety mechanisms and lead to the generation of harmful content. This underscores the need for an adaptive safety alignment approach that enables models to autonomously reinforce their defenses in response to adversarial inputs. This paper introduces the Synthesized Guideline-based Adaptive Safety Alignment (SGASA) framework, which internalizes model-generated safety guidelines to strengthen models' ability to enhance robustness against harmful adversarial prompts while minimizing unnecessary refusals of benign requests. SGASA consists of two key stages: Data Pre-synthesis, which generates safety guidelines and augmented prompts; and Alignment Fine-tuning, which leverages Supervised Fine-tuning (SFT) and Direct Preference Optimization (DPO) to embed these guidelines into the model. Extensive experiments across multiple datasets demonstrate that SGASA significantly improves model safety, validating its adaptive and scalable effectiveness.
♻ ☆ KSHSeek: Data-Driven Approaches to Mitigating and Detecting Knowledge-Shortcut Hallucinations in Generative Models
The emergence of large language models (LLMs) has significantly advanced the development of natural language processing (NLP), especially in text generation tasks like question answering. However, model hallucinations remain a major challenge in natural language generation (NLG) tasks due to their complex causes. We systematically expand on the causes of factual hallucinations from the perspective of knowledge shortcuts, analyzing hallucinations arising from correct and defect-free data and demonstrating that knowledge-shortcut hallucinations are prevalent in generative models. To mitigate this issue, we propose a high similarity pruning algorithm at the data preprocessing level to reduce spurious correlations in the data. Additionally, we design a specific detection method for knowledge-shortcut hallucinations to evaluate the effectiveness of our mitigation strategy. Experimental results show that our approach effectively reduces knowledge-shortcut hallucinations, particularly in fine-tuning tasks, without negatively impacting model performance in question answering. This work introduces a new paradigm for mitigating specific hallucination issues in generative models, enhancing their robustness and reliability in real-world applications.
comment: 16 pages, 34 figures
♻ ☆ FlowerTune: A Cross-Domain Benchmark for Federated Fine-Tuning of Large Language Models
Large Language Models (LLMs) have achieved state-of-the-art results across diverse domains, yet their development remains reliant on vast amounts of publicly available data, raising concerns about data scarcity and the lack of access to domain-specific, sensitive information. Federated Learning (FL) presents a compelling framework to address these challenges by enabling decentralized fine-tuning on pre-trained LLMs without sharing raw data. However, the compatibility and performance of pre-trained LLMs in FL settings remain largely under explored. We introduce the FlowerTune LLM Leaderboard, a first-of-its-kind benchmarking suite designed to evaluate federated fine-tuning of LLMs across four diverse domains: general NLP, finance, medical, and coding. Each domain includes federated instruction-tuning datasets and domain-specific evaluation metrics. Our results, obtained through a collaborative, open-source and community-driven approach, provide the first comprehensive comparison across 26 pre-trained LLMs with different aggregation and fine-tuning strategies under federated settings, offering actionable insights into model performance, resource constraints, and domain adaptation. This work lays the foundation for developing privacy-preserving, domain-specialized LLMs for real-world applications.
♻ ☆ IROTE: Human-like Traits Elicitation of Large Language Model via In-Context Self-Reflective Optimization AAAI 2026
Trained on various human-authored corpora, Large Language Models (LLMs) have demonstrated a certain capability of reflecting specific human-like traits (e.g., personality or values) by prompting, benefiting applications like personalized LLMs and social simulations. However, existing methods suffer from the superficial elicitation problem: LLMs can only be steered to mimic shallow and unstable stylistic patterns, failing to embody the desired traits precisely and consistently across diverse tasks like humans. To address this challenge, we propose IROTE, a novel in-context method for stable and transferable trait elicitation. Drawing on psychological theories suggesting that traits are formed through identity-related reflection, our method automatically generates and optimizes a textual self-reflection within prompts, which comprises self-perceived experience, to stimulate LLMs' trait-driven behavior. The optimization is performed by iteratively maximizing an information-theoretic objective that enhances the connections between LLMs' behavior and the target trait, while reducing noisy redundancy in reflection without any fine-tuning, leading to evocative and compact trait reflection. Extensive experiments across three human trait systems manifest that one single IROTE-generated self-reflection can induce LLMs' stable impersonation of the target trait across diverse downstream tasks beyond simple questionnaire answering, consistently outperforming existing strong baselines.
comment: This paper is accepted by AAAI 2026
♻ ☆ Masked Diffusion Models as Energy Minimization
We present a systematic theoretical framework that interprets masked diffusion models (MDMs) as solutions to energy minimization problems in discrete optimal transport. Specifically, we prove that three distinct energy formulations--kinetic, conditional kinetic, and geodesic energy--are mathematically equivalent under the structure of MDMs, and that MDMs minimize all three when the mask schedule satisfies a closed-form optimality condition. This unification not only clarifies the theoretical foundations of MDMs, but also motivates practical improvements in sampling. By parameterizing interpolation schedules via Beta distributions, we reduce the schedule design space to a tractable 2D search, enabling efficient post-training tuning without model modification. Experiments on synthetic and real-world benchmarks demonstrate that our energy-inspired schedules outperform hand-crafted baselines, particularly in low-step sampling settings.
♻ ☆ Mind the Gap: Bridging Thought Leap for Improved Chain-of-Thought Tuning NeurIPS 2025
Large language models (LLMs) have achieved remarkable progress on mathematical tasks through Chain-of-Thought (CoT) reasoning. However, existing mathematical CoT datasets often suffer from Thought Leaps due to experts omitting intermediate steps, which negatively impacts model learning and generalization. We propose the CoT Thought Leap Bridge Task, which aims to automatically detect leaps and generate missing intermediate reasoning steps to restore the completeness and coherence of CoT. To facilitate this, we constructed a specialized training dataset called ScaleQM+, based on the structured ScaleQuestMath dataset, and trained CoT-Bridge to bridge thought leaps. Through comprehensive experiments on mathematical reasoning benchmarks, we demonstrate that models fine-tuned on bridged datasets consistently outperform those trained on original datasets, with improvements of up to +5.87% on NuminaMath. Our approach effectively enhances distilled data (+3.02%) and provides better starting points for reinforcement learning (+3.1%), functioning as a plug-and-play module compatible with existing optimization techniques. Furthermore, CoT-Bridge demonstrate improved generalization to out-of-domain logical reasoning tasks, confirming that enhancing reasoning completeness yields broadly applicable benefits.
comment: Accepted to NeurIPS 2025. Camera ready version. Code: https://github.com/ZJU-REAL/Mind-the-Gap Project: https://zju-real.github.io/CoT-Bridge/
♻ ☆ Agentar-Scale-SQL: Advancing Text-to-SQL through Orchestrated Test-Time Scaling
State-of-the-art (SOTA) Text-to-SQL methods still lag significantly behind human experts on challenging benchmarks like BIRD. Current approaches that explore test-time scaling lack an orchestrated strategy and neglect the model's internal reasoning process. To bridge this gap, we introduce Agentar-Scale-SQL, a novel framework leveraging scalable computation to improve performance. Agentar-Scale-SQL implements an Orchestrated Test-Time Scaling strategy that synergistically combines three distinct perspectives: i) Internal Scaling via RL-enhanced Intrinsic Reasoning, ii) Sequential Scaling through Iterative Refinement, and iii) Parallel Scaling using Diverse Synthesis and Tournament Selection. Agentar-Scale-SQL is a general-purpose framework designed for easy adaptation to new databases and more powerful language models. Extensive experiments show that Agentar-Scale-SQL achieves SOTA performance on the BIRD benchmark, reaching 81.67% execution accuracy on the test set and ranking first on the official leaderboard, demonstrating an effective path toward human-level performance.
♻ ☆ From Perception to Reasoning: Deep Thinking Empowers Multimodal Large Language Models
With the remarkable success of Multimodal Large Language Models (MLLMs) in perception tasks, enhancing their complex reasoning capabilities has emerged as a critical research focus. Existing models still suffer from challenges such as opaque reasoning paths and insufficient generalization ability. Chain-of-Thought (CoT) reasoning, which has demonstrated significant efficacy in language models by enhancing reasoning transparency and output interpretability, holds promise for improving model reasoning capabilities when extended to the multimodal domain. This paper provides a systematic review centered on "Multimodal Chain-of-Thought" (MCoT). First, it analyzes the background and theoretical motivations for its inception from the perspectives of technical evolution and task demands. Then, it introduces mainstream MCoT methods from three aspects: CoT paradigms, the post-training stage, and the inference stage, while also analyzing their underlying mechanisms. Furthermore, the paper summarizes existing evaluation benchmarks and metrics, and discusses the application scenarios of MCoT. Finally, it analyzes the challenges currently facing MCoT and provides an outlook on its future research directions.
comment: Survey; 7 figures, 3 tables, 44 pages
♻ ☆ MCTS-SQL: Light-Weight LLMs can Master the Text-to-SQL through Monte Carlo Tree Search AAAI 2026
Text-to-SQL is a fundamental yet challenging task in the NLP area, aiming at translating natural language questions into SQL queries. While recent advances in large language models have greatly improved performance, most existing approaches depend on models with tens of billions of parameters or costly APIs, limiting their applicability in resource-constrained environments. For real world, especially on edge devices, it is crucial for Text-to-SQL to ensure cost-effectiveness. Therefore, enabling the light-weight models for Text-to-SQL is of great practical significance. However, smaller LLMs often struggle with complicated user instruction, redundant schema linking or syntax correctness. To address these challenges, we propose MCTS-SQL, a novel framework that uses Monte Carlo Tree Search to guide SQL generation through multi-step refinement. Since the light-weight models' weak performance of single-shot prediction, we generate better results through several trials with feedback. However, directly applying MCTS-based methods inevitably leads to significant time and computational overhead. Driven by this issue, we propose a token-level prefix-cache mechanism that stores prior information during iterations, effectively improved the execution speed. Experiments results on the SPIDER and BIRD benchmarks demonstrate the effectiveness of our approach. Using a small open-source Qwen2.5-Coder-1.5B, our method outperforms ChatGPT-3.5. When leveraging a more powerful model Gemini 2.5 to explore the performance upper bound, we achieved results competitive with the SOTA. Our findings demonstrate that even small models can be effectively deployed in practical Text-to-SQL systems with the right strategy.
comment: Accepted by AAAI 2026
♻ ☆ On the Superimposed Noise Accumulation Problem in Sequential Knowledge Editing of Large Language Models
Sequential knowledge editing techniques aim to continuously update knowledge in large language models at low cost, preventing models from generating outdated or incorrect information. However, existing sequential editing methods suffer from a significant decline in editing success rates after long-term editing. Through theoretical analysis and experiments, our findings reveal that as the number of edits increases, the model's output increasingly deviates from the desired target, leading to a drop in editing success rates. We refer to this issue as the superimposed noise accumulation problem. Our further analysis demonstrates that the problem is related to the erroneous activation of irrelevant knowledge and conflicts between activated knowledge. Based on this analysis, a method named DeltaEdit is proposed that reduces conflicts between knowledge through dynamic orthogonal constraint strategies. Experiments show that DeltaEdit significantly reduces superimposed noise, achieving a 16.8% improvement in editing performance over the strongest baseline.
♻ ☆ Odin: Oriented Dual-module Integration for Text-rich Network Representation Learning
Text-attributed graphs require models to effectively combine strong textual understanding with structurally informed reasoning. Existing approaches either rely on GNNs--limited by over-smoothing and hop-dependent diffusion--or employ Transformers that overlook graph topology and treat nodes as isolated sequences. We propose Odin (Oriented Dual-module INtegration), a new architecture that injects graph structure into Transformers at selected depths through an oriented dual-module mechanism. Unlike message-passing GNNs, Odin does not rely on multi-hop diffusion; instead, multi-hop structures are integrated at specific Transformer layers, yielding low-, mid-, and high-level structural abstraction aligned with the model's semantic hierarchy. Because aggregation operates on the global [CLS] representation, Odin fundamentally avoids over-smoothing and decouples structural abstraction from neighborhood size or graph topology. We further establish that Odin's expressive power strictly contains that of both pure Transformers and GNNs. To make the design efficient in large-scale or low-resource settings, we introduce Light Odin, a lightweight variant that preserves the same layer-aligned structural abstraction for faster training and inference. Experiments on multiple text-rich graph benchmarks show that Odin achieves state-of-the-art accuracy, while Light Odin delivers competitive performance with significantly reduced computational cost. Together, Odin and Light Odin form a unified, hop-free framework for principled structure-text integration. The source code of this model has been released at https://github.com/hongkaifeng/Odin.
comment: 32 pages, 2 figures
♻ ☆ WritingBench: A Comprehensive Benchmark for Generative Writing
Recent advancements in large language models (LLMs) have significantly enhanced text generation capabilities, yet evaluating their performance in generative writing remains a challenge. Existing benchmarks primarily focus on generic text generation or limited in writing tasks, failing to capture the diverse requirements of high-quality written contents across various domains. To bridge this gap, we present WritingBench, a comprehensive benchmark designed to evaluate LLMs across 6 core writing domains and 100 subdomains. We further propose a query-dependent evaluation framework that empowers LLMs to dynamically generate instance-specific assessment criteria. This framework is complemented by a fine-tuned critic model for criteria-aware scoring, enabling evaluations in style, format and length. The framework's validity is further demonstrated by its data curation capability, which enables a 7B-parameter model to outperform the performance of GPT-4o in writing. We open-source the benchmark, along with evaluation tools and modular framework components, to advance the development of LLMs in writing.
♻ ☆ OpenMMReasoner: Pushing the Frontiers for Multimodal Reasoning with an Open and General Recipe
Recent advancements in large reasoning models have fueled growing interest in extending such capabilities to multimodal domains. However, despite notable progress in visual reasoning, the lack of transparent and reproducible data curation and training strategies remains a major barrier to scalable research. In this work, we introduce OpenMMReasoner, a fully transparent two-stage recipe for multimodal reasoning spanning supervised fine-tuning (SFT) and reinforcement learning (RL). In the SFT stage, we construct an 874K-sample cold-start dataset with rigorous step-by-step validation, providing a strong foundation for reasoning capabilities. The subsequent RL stage leverages a 74K-sample dataset across diverse domains to further sharpen and stabilize these abilities, resulting in a more robust and efficient learning process. Extensive evaluations demonstrate that our training recipe not only surpasses strong baselines but also highlights the critical role of data quality and training design in shaping multimodal reasoning performance. Notably, our method achieves a 11.6% improvement over the Qwen2.5-VL-7B-Instruct baseline across nine multimodal reasoning benchmarks, establishing a solid empirical foundation for future large-scale multimodal reasoning research. We open-sourced all our codes, pipeline, and data at https://github.com/EvolvingLMMs-Lab/OpenMMReasoner.
♻ ☆ Holistic Evaluation of Multimodal LLMs on Spatial Intelligence
Multimodal models have achieved remarkable progress in recent years. Nevertheless, they continue to exhibit notable limitations in spatial understanding and reasoning, the very capability that anchors artificial general intelligence in the physical world. With the recent release of GPT-5, allegedly the most powerful AI model to date, it is timely to examine where the leading models (GPT, Gemini, Grok, Seed, Qwen, and Intern) stand on the path toward spatial intelligence (SI). We thus propose EASI for holistic Evaluation of multimodAl LLMs on Spatial Intelligence. EASI conceptualizes a comprehensive taxonomy of spatial tasks that unifies existing benchmarks and a growing collection of newly curated ones, enabling systematic evaluation of state-of-the-art models. In this report, we conduct the study across eight key benchmarks, at a cost exceeding ten billion total tokens. Our empirical study then reveals that (1) GPT-5 demonstrates unprecedented strength in SI, yet (2) still falls short of human performance significantly across a broad spectrum of SI-tasks. Moreover, we (3) show that SI-tasks expose greater model capability deficiency than non-SI tasks, to the extent that (4) proprietary models do not exhibit a decisive advantage when facing the most difficult ones. In addition, we conduct a qualitative evaluation across a diverse set of scenarios that are intuitive for humans, yet fail the most advanced multimodal models. EASI is an ongoing community effort: we have open-sourced the EASI codebase that provides a one-stop and reproducible solution with standardized interfaces, integrated protocols and prompts that significantly reduce the friction of configuring and running multiple benchmarks; we have also launched an accompanying EASI leaderboard to provide a continually updated snapshot of model performance across the full SI spectrum, accelerating collective progress toward robust SI.
comment: Codebase: https://github.com/EvolvingLMMs-Lab/EASI/; Leaderboard: https://huggingface.co/spaces/lmms-lab-si/EASI-Leaderboard
♻ ☆ G$^2$VLM: Geometry Grounded Vision Language Model with Unified 3D Reconstruction and Spatial Reasoning
Vision-Language Models (VLMs) still lack robustness in spatial intelligence, demonstrating poor performance on spatial understanding and reasoning tasks. We attribute this gap to the absence of a visual geometry learning process capable of reconstructing 3D space from 2D images. We present G$^2$VLM, a geometry grounded vision-language model that bridges two fundamental aspects of spatial intelligence: spatial 3D reconstruction and spatial understanding. G$^2$VLM natively leverages learned 3D visual geometry features to directly predict 3D attributes and enhance spatial reasoning tasks via in-context learning and interleaved reasoning. Our unified design is highly scalable for spatial understanding: it trains on abundant multi-view image and video data, while simultaneously leveraging the benefits of 3D visual priors that are typically only derived from hard-to-collect annotations. Experimental results demonstrate G$^2$VLM is proficient in both tasks, achieving comparable results to state-of-the-art feed-forward 3D reconstruction models and achieving better or competitive results across spatial understanding and reasoning tasks. By unifying a semantically strong VLM with low-level 3D vision tasks, we hope G$^2$VLM can serve as a strong baseline for the community and unlock more future applications, such as 3D scene editing.
comment: code are released at https://github.com/InternRobotics/G2VLM
♻ ☆ KeepKV: Achieving Periodic Lossless KV Cache Compression for Efficient LLM Inference
Efficient inference of large language models (LLMs) is hindered by an ever-growing key-value (KV) cache, making KV cache compression a critical research direction. Traditional methods selectively evict less important KV cache entries, which leads to information loss and hallucinations. Recently, merging-based strategies have been explored to retain more information by merging KV pairs that would be discarded; however, these existing approaches inevitably introduce inconsistencies in attention distributions before and after merging, causing degraded generation quality. To overcome this challenge, we propose KeepKV, a novel adaptive KV cache merging method designed to preserve performance under strict memory constraints, achieving single-step lossless compression and providing error bounds for multi-step compression. KeepKV introduces the Electoral Votes mechanism that records merging history and adaptively adjusts attention scores. Moreover, it further leverages a novel Zero Inference-Perturbation Merging method, compensating for attention loss resulting from cache merging. Extensive experiments on various benchmarks and LLM architectures demonstrate that KeepKV substantially reduces memory usage while successfully retaining essential context information, achieving over 2x inference throughput improvement and maintaining superior generation quality even with only 10% KV cache budgets.
comment: 14 pages, 20 figures
♻ ☆ Simulated patient systems powered by large language model-based AI agents offer potential for transforming medical education
Background: Simulated patient systems are important in medical education and research, providing safe, integrative training environments and supporting clinical decision making. Advances in artificial intelligence (AI), especially large language models (LLMs), can enhance simulated patients by replicating medical conditions and doctor patient interactions with high fidelity and at low cost, but effectiveness and trustworthiness remain open challenges. Methods: We developed AIPatient, a simulated patient system powered by LLM based AI agents. The system uses a retrieval augmented generation (RAG) framework with six task specific agents for complex reasoning. To improve realism, it is linked to the AIPatient knowledge graph built from de identified real patient data in the MIMIC III intensive care database. Results: We evaluated electronic health record (EHR) based medical question answering (QA), readability, robustness, stability, and user experience. AIPatient reached 94.15 percent QA accuracy when all six agents were enabled, outperforming versions with partial or no agent integration. The knowledge base achieved an F1 score of 0.89. Readability scores showed a median Flesch Reading Ease of 68.77 and a median Flesch Kincaid Grade of 6.4, indicating accessibility for most medical trainees and clinicians. Robustness and stability were supported by non significant variance in repeated trials (analysis of variance F value 0.61, p greater than 0.1; F value 0.78, p greater than 0.1). A user study with medical students showed that AIPatient provides high fidelity, usability, and educational value, comparable to or better than human simulated patients for history taking. Conclusions: LLM based simulated patient systems can deliver accurate, readable, and reliable medical encounters and show strong potential to transform medical education.
comment: 19 pages, 6 figures, 4 tables
♻ ☆ Extensible Multi-Granularity Fusion Network and Transferable Curriculum Learning for Aspect-based Sentiment Analysis
Aspect-based Sentiment Analysis (ABSA) aims to determine sentiment polarity toward specific aspects in text. Existing methods enrich semantic and syntactic representations through external knowledge or GNNs, but the growing diversity of linguistic features increases model complexity and lacks a unified, extensible framework. We propose an Extensible Multi-Granularity Fusion Network (EMGF) that integrates dependency syntax, constituent syntax, attention-based semantics, and external knowledge graphs. EMGF employs multi-anchor triplet learning and orthogonal projection to effectively fuse multi-granularity features and strengthen their interactions without additional computational overhead. Furthermore, we introduce the first task-specific curriculum learning framework for text-only ABSA, which assigns difficulty scores using five indicators and trains the model from easy to hard to mimic human learning and improve generalization. Experiments on SemEval 2014, Twitter, and MAMS datasets show that EMGF+CL consistently outperforms state-of-the-art ABSA models.
comment: 8 pages, 4 figures
♻ ☆ Privacy-Preserving Reasoning with Knowledge-Distilled Parametric Retrieval Augmented Generation
The current RAG system requires uploading plaintext documents to the cloud, risking private data leakage. Parametric RAG (PRAG) encodes documents as LoRA parameters within LLMs, offering a possible way to reduce exposure of raw content. However, it still faces two issues: (1) PRAG demands synthesizing QA pairs and fine-tuning LLM for each individual document to create its corresponding LoRA, leading to unacceptable inference latency. (2) The performance of PRAG relies solely on synthetic QA data while lacking internal alignment with standard RAG, resulting in poor generalization on out-of-distribution(OOD) inputs. Therefore, achieving high-efficiency parameterization while maintaining RAG-level performance remains a critical challenge for privacy-preserving reasoning. In this paper, we propose DistilledPRAG, a generalizable knowledge-distilled parametric RAG model aligned with standard RAG in document structure and parameter activation. We first synthesize QA pairs from single and multi-documents to enhance cross-document reasoning. Then, we mask the plaintext documents with a special token and translate them to LoRA via a parameter generator, maintaining the standard RAG document structure. Finally, guided by synthetic QA data, we train the parameter generator to match standard RAG's hidden states and output logits, enabling RAG-style reasoning without original documents. Experiments on four QA datasets show that DistilledPRAG outperforms baselines in accuracy and generalizes well on OOD data.
♻ ☆ CANVAS: A Benchmark for Vision-Language Models on Tool-Based User Interface Design
User interface (UI) design is an iterative process in which designers progressively refine their work with design software such as Figma or Sketch. Recent advances in vision language models (VLMs) with tool invocation suggest these models can operate design software to edit a UI design through iteration. Understanding and enhancing this capacity is important, as it highlights VLMs' potential to collaborate with designers within conventional software. However, as no existing benchmark evaluates tool-based design performance, the capacity remains unknown. To address this, we introduce CANVAS, a benchmark for VLMs on tool-based user interface design. Our benchmark contains 598 tool-based design tasks paired with ground-truth references sampled from 3.3K mobile UI designs across 30 function-based categories (e.g., onboarding, messaging). In each task, a VLM updates the design step-by-step through context-based tool invocations (e.g., create a rectangle as a button background), linked to design software. Specifically, CANVAS incorporates two task types: (i) design replication evaluates the ability to reproduce a whole UI screen; (ii) design modification evaluates the ability to modify a specific part of an existing screen. Results suggest that leading models exhibit more strategic tool invocations, improving design quality. Furthermore, we identify common error patterns models exhibit, guiding future work in enhancing tool-based design capabilities.
♻ ☆ More Documents, Same Length: Isolating the Challenge of Multiple Documents in RAG
Retrieval-Augmented Generation (RAG) enhances the accuracy of Large Language Model (LLM) responses by leveraging relevant external documents during generation. Although previous studies noted that retrieving many documents can degrade performance, they did not isolate how the quantity of documents affects performance while controlling for context length. We evaluate various language models on custom datasets derived from a multi-hop QA task. We keep the context length and position of relevant information constant while varying the number of documents, and find that increasing the document count in RAG settings poses significant challenges for most LLMs, reducing performance by up to 20%. However, Qwen2.5 maintained consistent results across increasing document counts, indicating better multi-document handling capability. Finally, our results indicate that processing multiple documents is a separate challenge from handling long contexts. We also make the datasets and code available: https://github.com/shaharl6000/MoreDocsSameLen .
comment: Preprint
♻ ☆ KurdSTS: The Kurdish Semantic Textual Similarity
Semantic Textual Similarity (STS) measures the degree of meaning overlap between two texts and underpins many NLP tasks. While extensive resources exist for high-resource languages, low-resource languages such as Kurdish remain underserved. We present, to our knowledge, the first Kurdish STS dataset: 10,000 sentence pairs spanning formal and informal registers, each annotated for similarity. We benchmark Sentence-BERT, multilingual BERT, and other strong baselines, obtaining competitive results while highlighting challenges arising from Kurdish morphology, orthographic variation, and code-mixing. The dataset and baselines establish a reproducible evaluation suite and provide a strong starting point for future research on Kurdish semantics and low-resource NLP.
♻ ☆ Beyond Introspection: Reinforcing Thinking via Externalist Behavioral Feedback
While inference-time thinking allows Large Language Models (LLMs) to address complex problems, the extended thinking process can be unreliable or inconsistent because of the model's probabilistic nature, especially near its knowledge boundaries. Existing approaches attempt to mitigate this by having the model critique its own reasoning to make corrections. However, such self-critique inherits the same biases of the original output, known as the introspection illusion. Moving beyond such introspection and inspired by core methodologies in ethology, we propose an externalist three-step framework Distillation-Reinforcement-Reasoning (DRR). Rather than relying on a model's introspection, DRR evaluates its observable behaviors to provide corrective feedback. DRR first distills the reasoner's behavioral traces, then trains a lightweight, external Discriminative Model (DM). At inference time, this DM acts as a critic, identifying and rejecting suspicious reasoning steps. This external feedback compels the LLM to discard flawed pathways and explore alternatives, thereby enhancing reasoning quality without altering the base model. Experiments on multiple reasoning benchmarks show that our framework significantly outperforms prominent self-critique methods. Benefiting from a lightweight and annotation-free design, DRR offers a scalable and adaptable solution for improving the reliability of reasoning in a wide range of LLMs.
♻ ☆ Exploring the Human-LLM Synergy in Advancing Theory-driven Qualitative Analysis
Qualitative coding is a demanding yet crucial research method in the field of Human-Computer Interaction (HCI). While recent studies have shown the capability of large language models (LLMs) to perform qualitative coding within theoretical frameworks, their potential for collaborative human-LLM discovery and generation of new insights beyond initial theory remains underexplored. To bridge this gap, we proposed CHALET, a novel approach that harnesses the power of human-LLM partnership to advance theory-driven qualitative analysis by facilitating iterative coding, disagreement analysis, and conceptualization of qualitative data. We demonstrated CHALET's utility by applying it to the qualitative analysis of conversations related to mental-illness stigma, using the attribution model as the theoretical framework. Results highlighted the unique contribution of human-LLM collaboration in uncovering latent themes of stigma across the cognitive, emotional, and behavioral dimensions. We discuss the methodological implications of the human-LLM collaborative approach to theory-based qualitative analysis for the HCI community and beyond.
comment: 51 pages, 6 figures, accepted by ACM Trans. Comput.-Hum. Interact (TOCHI)
♻ ☆ TrackList: Tracing Back Query Linguistic Diversity for Head and Tail Knowledge in Open Large Language Models
Large Language Models (LLMs) have proven efficient in giving definition-type answers to user input queries. While for humans giving various types of answers, such as examples and paraphrases, is an easy task, LLMs struggle to provide correct answers for other than definition-type queries. In this study, we evaluated this drop in performance using TrackList, a fine-grained linguistic and statistical analysis pipeline to investigate the impact of the pre-training data on LLMs answers to diverse linguistic queries. We also introduce RefoMed-EN, an English dataset consisting of 6170 human-annotated medical terms alongside their corresponding definitions, denominations, exemplifications, explanations, or paraphrases. We studied whether the high frequency of a concept (head) or low frequency (tail) impacts the language model's performance. We evaluated the quality of the LLM's output using syntactic and semantic similarity metrics, statistical correlations and embeddings. Results showed that the LLM's task performance for definition type questions is the highest, while for the exemplification type it is the lowest. Additionally, we showed that for definition-type questions, large language models are prone to paraphrase more on popular and frequent knowledge and less on tail and technical knowledge, especially in the expert texts.
comment: under review
♻ ☆ Mavors: Multi-granularity Video Representation for Multimodal Large Language Model
Long-context video understanding in multimodal large language models (MLLMs) faces a critical challenge: balancing computational efficiency with the retention of fine-grained spatio-temporal patterns. Existing approaches (e.g., sparse sampling, dense sampling with low resolution, and token compression) suffer from significant information loss in temporal dynamics, spatial details, or subtle interactions, particularly in videos with complex motion or varying resolutions. To address this, we propose $\mathbf{Mavors}$, a novel framework that introduces $\mathbf{M}$ulti-gr$\mathbf{a}$nularity $\mathbf{v}$ide$\mathbf{o}$ $\mathbf{r}$epre$\mathbf{s}$entation for holistic long-video modeling. Specifically, Mavors directly encodes raw video content into latent representations through two core components: 1) an Intra-chunk Vision Encoder (IVE) that preserves high-resolution spatial features via 3D convolutions and Vision Transformers, and 2) an Inter-chunk Feature Aggregator (IFA) that establishes temporal coherence across chunks using transformer-based dependency modeling with chunk-level rotary position encodings. Moreover, the framework unifies image and video understanding by treating images as single-frame videos via sub-image decomposition. Experiments across diverse benchmarks demonstrate Mavors' superiority in maintaining both spatial fidelity and temporal continuity, significantly outperforming existing methods in tasks requiring fine-grained spatio-temporal reasoning.
comment: 22 pages
♻ ☆ COPO: Causal-Oriented Policy Optimization for Hallucinations of MLLMs
Despite Multimodal Large Language Models (MLLMs) having shown impressive capabilities, they may suffer from hallucinations. Empirically, we find that MLLMs attend disproportionately to task-irrelevant background regions compared with text-only LLMs, implying spurious background-answer correlations. We claim and analyze that (i) outcome-based rewards can be an important factor leading to spurious correlations, and (ii) spurious correlations can be an important factor leading to hallucinations. Based on these results, we propose Causal-Oriented Policy Optimization (COPO) to mitigate these spurious correlations, thus addressing the issue of hallucinations. It imposes token-level sufficiency and necessity constraints to measure each inference token's causal contribution, thus ensuring correct and evidence-grounded output. Specifically, we first evaluate each token's causal contribution via a newly proposed causal completeness reward. This reward is then used to construct a causally informed advantage function within the GRPO optimization framework, encouraging the model to focus on tokens that are causally sufficient and necessary for accurate generation. Experimental results across various benchmarks demonstrate the advantages of COPO.
♻ ☆ Fine-grained and Explainable Factuality Evaluation for Multimodal Summarization
Multimodal summarization aims to generate a concise summary based on the input text and image. However, the existing methods potentially suffer from unfactual output. To evaluate the factuality of multimodal summarization models, we propose two fine-grained and explainable evaluation frameworks (FALLACIOUS) for different application scenarios, i.e. reference-based factuality evaluation framework and reference-free factuality evaluation framework. Notably, the reference-free factuality evaluation framework doesn't need ground truth and hence it has a wider application scenario. To evaluate the effectiveness of the proposed frameworks, we compute the correlation between our frameworks and the other metrics. The experimental results show the effectiveness of our proposed method. We will release our code and dataset via github.
comment: project link: https://github.com/for4WARD/FaithfulnessEvaluation
♻ ☆ ROVER: Recursive Reasoning Over Videos with Vision-Language Models for Embodied Tasks
Vision-language models (VLMs) have exhibited impressive capabilities across diverse image understanding tasks, but still struggle in settings that require reasoning over extended sequences of camera frames from a video. This limits their utility in embodied settings, which require reasoning over long frame sequences from a continuous stream of visual input at each moment of a task attempt. To address this limitation, we propose ROVER (Reasoning Over VidEo Recursively), a framework that enables the model to recursively decompose long-horizon video trajectories into segments corresponding to shorter subtasks within the trajectory. In doing so, ROVER facilitates more focused and accurate reasoning over temporally localized frame sequences without losing global context. We evaluate ROVER, implemented using an in-context learning approach, on diverse OpenX Embodiment videos and on a new dataset derived from RoboCasa that consists of 543 videos showing both expert and perturbed non-expert trajectories across 27 robotic manipulation tasks. ROVER outperforms strong baselines across three video reasoning tasks: task progress estimation, frame-level natural language reasoning, and video question answering. We observe that, by reducing the number of frames the model reasons over at each timestep, ROVER mitigates hallucinations, especially during unexpected or non-optimal moments of a trajectory. In addition, by enabling the implementation of a subtask-specific sliding context window, ROVER's time complexity scales linearly with video length, an asymptotic improvement over baselines. Demos, code, and data available at: https://rover-vlm.github.io
♻ ☆ Financial Risk Relation Identification through Dual-view Adaptation EMNLP 2025
A multitude of interconnected risk events -- ranging from regulatory changes to geopolitical tensions -- can trigger ripple effects across firms. Identifying inter-firm risk relations is thus crucial for applications like portfolio management and investment strategy. Traditionally, such assessments rely on expert judgment and manual analysis, which are, however, subjective, labor-intensive, and difficult to scale. To address this, we propose a systematic method for extracting inter-firm risk relations using Form 10-K filings -- authoritative, standardized financial documents -- as our data source. Leveraging recent advances in natural language processing, our approach captures implicit and abstract risk connections through unsupervised fine-tuning based on chronological and lexical patterns in the filings. This enables the development of a domain-specific financial encoder with a deeper contextual understanding and introduces a quantitative risk relation score for transparency, interpretable analysis. Extensive experiments demonstrate that our method outperforms strong baselines across multiple evaluation settings. Our codes are available at https://github.com/cnclabs/codes.fin.relation.
comment: 11 pages, 3 figures, EMNLP 2025 Main Conference
♻ ☆ Accelerating Training of Recursive Reasoning Models with Curriculum Guided Adaptive Recursion
Recursive reasoning models achieve remarkable performance on complex reasoning tasks through iterative refinement, enabling tiny networks to match large language models thousands of times their size. However, training remains computationally expensive, prior work reporting approximately 36 GPU-hours per dataset, limiting broader adoption and research. We propose CGAR, a novel training methodology that applies curriculum learning to architectural depth rather than traditional data ordering. CGAR introduces two synergistic components: Progressive Depth Curriculum dynamically adjusts recursion depth from shallow to deep configurations during training, preventing early overfitting while reducing computational cost, and Hierarchical Supervision Weighting applies exponentially decaying importance to supervision steps, aligning loss weighting with observed gradient magnitude decay. On Sudoku-Extreme with 423,168 test puzzles, CGAR achieves 1.71x training speedup (10.93 to 6.38 hours, 42% cost reduction) with only 0.63% accuracy drop (86.65% to 86.02%). Systematic ablations reveal Progressive Depth Curriculum alone achieves 2.26x speedup with 85.47% accuracy, demonstrating a rare Pareto improvement where architectural curriculum simultaneously enhances training efficiency and solution quality. CGAR-trained models exhibit superior inference efficiency with 100% halting accuracy and 11% fewer reasoning steps. Our work demonstrates that principled curriculum on architectural depth enables efficient training of recursive reasoning models on modest hardware. Code and models: https://github.com/Kaleemullahqasim/CGAR and https://huggingface.co/Kaleemullah/trm-cgar-sudoku
Information Retrieval 15
☆ CoFiRec: Coarse-to-Fine Tokenization for Generative Recommendation
In web environments, user preferences are often refined progressively as users move from browsing broad categories to exploring specific items. However, existing generative recommenders overlook this natural refinement process. Generative recommendation formulates next-item prediction as autoregressive generation over tokenized user histories, where each item is represented as a sequence of discrete tokens. Prior models typically fuse heterogeneous attributes such as ID, category, title, and description into a single embedding before quantization, which flattens the inherent semantic hierarchy of items and fails to capture the gradual evolution of user intent during web interactions. To address this limitation, we propose CoFiRec, a novel generative recommendation framework that explicitly incorporates the Coarse-to-Fine nature of item semantics into the tokenization process. Instead of compressing all attributes into a single latent space, CoFiRec decomposes item information into multiple semantic levels, ranging from high-level categories to detailed descriptions and collaborative filtering signals. Based on this design, we introduce the CoFiRec Tokenizer, which tokenizes each level independently while preserving structural order. During autoregressive decoding, the language model is instructed to generate item tokens from coarse to fine, progressively modeling user intent from general interests to specific item-level interests. Experiments across multiple public benchmarks and backbones demonstrate that CoFiRec outperforms existing methods, offering a new perspective for generative recommendation. Theoretically, we prove that structured tokenization leads to lower dissimilarity between generated and ground truth items, supporting its effectiveness in generative recommendation. Our code is available at https://github.com/YennNing/CoFiRec.
☆ SciPostGen: Bridging the Gap between Scientific Papers and Poster Layouts
As the number of scientific papers continues to grow, there is a demand for approaches that can effectively convey research findings, with posters serving as a key medium for presenting paper contents. Poster layouts determine how effectively research is communicated and understood, highlighting their growing importance. In particular, a gap remains in understanding how papers correspond to the layouts that present them, which calls for datasets with paired annotations at scale. To bridge this gap, we introduce SciPostGen, a large-scale dataset for understanding and generating poster layouts from scientific papers. Our analyses based on SciPostGen show that paper structures are associated with the number of layout elements in posters. Based on this insight, we explore a framework, Retrieval-Augmented Poster Layout Generation, which retrieves layouts consistent with a given paper and uses them as guidance for layout generation. We conducted experiments under two conditions: with and without layout constraints typically specified by poster creators. The results show that the retriever estimates layouts aligned with paper structures, and our framework generates layouts that also satisfy given constraints.
comment: Dataset: https://huggingface.co/datasets/omron-sinicx/scipostgen, Code: https://github.com/omron-sinicx/scipostgen_dataset_construction
☆ An Efficient Embedding Based Ad Retrieval with GPU-Powered Feature Interaction
In large-scale advertising recommendation systems, retrieval serves as a critical component, aiming to efficiently select a subset of candidate ads relevant to user behaviors from a massive ad inventory for subsequent ranking and recommendation. The Embedding-Based Retrieval (EBR) methods modeled by the dual-tower network are widely used in the industry to maintain both retrieval efficiency and accuracy. However, the dual-tower model has significant limitations: the embeddings of users and ads interact only at the final inner product computation, resulting in insufficient feature interaction capabilities. Although DNN-based models with both user and ad as input features, allowing for early-stage interaction between these features, are introduced in the ranking stage to mitigate this issue, they are computationally infeasible for the retrieval stage. To bridge this gap, this paper proposes an efficient GPU-based feature interaction for the dual-tower network to significantly improve retrieval accuracy while substantially reducing computational costs. Specifically, we introduce a novel compressed inverted list designed for GPU acceleration, enabling efficient feature interaction computation at scale. To the best of our knowledge, this is the first framework in the industry to successfully implement Wide and Deep in a retrieval system. We apply this model to the real-world business scenarios in Tencent Advertising, and experimental results demonstrate that our method outperforms existing approaches in offline evaluation and has been successfully deployed to Tencent's advertising recommendation system, delivering significant online performance gains. This improvement not only validates the effectiveness of the proposed method, but also provides new practical guidance for optimizing large-scale ad retrieval systems.
comment: 9 pages, 4 figures
☆ Structured Extraction from Business Process Diagrams Using Vision-Language Models
Business Process Model and Notation (BPMN) is a widely adopted standard for representing complex business workflows. While BPMN diagrams are often exchanged as visual images, existing methods primarily rely on XML representations for computational analysis. In this work, we present a pipeline that leverages Vision-Language Models (VLMs) to extract structured JSON representations of BPMN diagrams directly from images, without requiring source model files or textual annotations. We also incorporate optical character recognition (OCR) for textual enrichment and evaluate the generated element lists against ground truth data derived from the source XML files. Our approach enables robust component extraction in scenarios where original source files are unavailable. We benchmark multiple VLMs and observe performance improvements in several models when OCR is used for text enrichment. In addition, we conducted extensive statistical analyses of OCR-based enrichment methods and prompt ablation studies, providing a clearer understanding of their impact on model performance.
comment: To appear in the Proceedings of the 2026 ACM Symposium on Applied Computing (SAC '26)
☆ Efficiency and Effectiveness of SPLADE Models on Billion-Scale Web Document Title
This paper presents a comprehensive comparison of BM25, SPLADE, and Expanded-SPLADE models in the context of large-scale web document retrieval. We evaluate the effectiveness and efficiency of these models on datasets spanning from tens of millions to billions of web document titles. SPLADE and Expanded-SPLADE, which utilize sparse lexical representations, demonstrate superior retrieval performance compared to BM25, especially for complex queries. However, these models incur higher computational costs. We introduce pruning strategies, including document-centric pruning and top-k query term selection, boolean query with term threshold to mitigate these costs and improve the models' efficiency without significantly sacrificing retrieval performance. The results show that Expanded-SPLADE strikes the best balance between effectiveness and efficiency, particularly when handling large datasets. Our findings offer valuable insights for deploying sparse retrieval models in large-scale search engines.
☆ UNION: A Lightweight Target Representation for Efficient Zero-Shot Image-Guided Retrieval with Optional Textual Queries ICDM
Image-Guided Retrieval with Optional Text (IGROT) is a general retrieval setting where a query consists of an anchor image, with or without accompanying text, aiming to retrieve semantically relevant target images. This formulation unifies two major tasks: Composed Image Retrieval (CIR) and Sketch-Based Image Retrieval (SBIR). In this work, we address IGROT under low-data supervision by introducing UNION, a lightweight and generalisable target representation that fuses the image embedding with a null-text prompt. Unlike traditional approaches that rely on fixed target features, UNION enhances semantic alignment with multimodal queries while requiring no architectural modifications to pretrained vision-language models. With only 5,000 training samples - from LlavaSCo for CIR and Training-Sketchy for SBIR - our method achieves competitive results across benchmarks, including CIRCO mAP@50 of 38.5 and Sketchy mAP@200 of 82.7, surpassing many heavily supervised baselines. This demonstrates the robustness and efficiency of UNION in bridging vision and language across diverse query types.
comment: Accepted at ICDM - MMSR Workshop 2025
☆ FIGROTD: A Friendly-to-Handle Dataset for Image Guided Retrieval with Optional Text
Image-Guided Retrieval with Optional Text (IGROT) unifies visual retrieval (without text) and composed retrieval (with text). Despite its relevance in applications like Google Image and Bing, progress has been limited by the lack of an accessible benchmark and methods that balance performance across subtasks. Large-scale datasets such as MagicLens are comprehensive but computationally prohibitive, while existing models often favor either visual or compositional queries. We introduce FIGROTD, a lightweight yet high-quality IGROT dataset with 16,474 training triplets and 1,262 test triplets across CIR, SBIR, and CSTBIR. To reduce redundancy, we propose the Variance Guided Feature Mask (VaGFeM), which selectively enhances discriminative dimensions based on variance statistics. We further adopt a dual-loss design (InfoNCE + Triplet) to improve compositional reasoning. Trained on FIGROTD, VaGFeM achieves competitive results on nine benchmarks, reaching 34.8 mAP@10 on CIRCO and 75.7 mAP@200 on Sketchy, outperforming stronger baselines despite fewer triplets.
comment: Accepted at MMM 2026
☆ Evaluating Embedding Models and Pipeline Optimization for AI Search Quality
We evaluate the performance of various text embedding models and pipeline configurations for AI-driven search systems. We compare sentence-transformer and generative embedding models (e.g., All-MPNet, BGE, GTE, and Qwen) at different dimensions, indexing methods (Milvus HNSW/IVF), and chunking strategies. A custom evaluation dataset of 11,975 query-chunk pairs was synthesized from US City Council meeting transcripts using a local large language model (LLM). The data pipeline includes preprocessing, automated question generation per chunk, manual validation, and continuous integration/continuous deployment (CI/CD) integration. We measure retrieval accuracy using reference-based metrics: Top-K Accuracy and Normalized Discounted Cumulative Gain (NDCG). Our results demonstrate that higher-dimensional embeddings significantly boost search quality (e.g., Qwen3-Embedding-8B/4096 achieves Top-3 accuracy about 0.571 versus 0.412 for GTE-large/1024), and that neural re-rankers (e.g., a BGE cross-encoder) further improve ranking accuracy (Top-3 up to 0.527). Finer-grained chunking (512 characters versus 2000 characters) also improves accuracy. We discuss the impact of these factors and outline future directions for pipeline automation and evaluation.
☆ From Topology to Retrieval: Decoding Embedding Spaces with Unified Signatures
Studying how embeddings are organized in space not only enhances model interpretability but also uncovers factors that drive downstream task performance. In this paper, we present a comprehensive analysis of topological and geometric measures across a wide set of text embedding models and datasets. We find a high degree of redundancy among these measures and observe that individual metrics often fail to sufficiently differentiate embedding spaces. Building on these insights, we introduce Unified Topological Signatures (UTS), a holistic framework for characterizing embedding spaces. We show that UTS can predict model-specific properties and reveal similarities driven by model architecture. Further, we demonstrate the utility of our method by linking topological structure to ranking effectiveness and accurately predicting document retrievability. We find that a holistic, multi-attribute perspective is essential to understanding and leveraging the geometry of text embeddings.
☆ Real-Time Procedural Learning From Experience for AI Agents
Learning how to do things from trial and error in real time is a hallmark of biological intelligence, yet most LLM-based agents lack mechanisms to acquire procedural knowledge after deployment. We propose Procedural Recall for Agents with eXperiences Indexed by State (PRAXIS), a lightweight post-training learning mechanism that stores the consequences of actions and retrieves them by jointly matching environmental and internal states of past episodes to the current state. PRAXIS augments agentic action selection with retrieved state-action-result exemplars that are generated in real time. When evaluated on the REAL web browsing benchmark, PRAXIS improves task completion accuracy, reliability, and cost efficiency across different foundation model backbones, and shows preliminary generalization to unseen tasks in similar environments. These results demonstrate that PRAXIS enables the practical adoption of AI agents in fast-evolving stateful environments by helping them learn new procedures effectively.
☆ Selecting User Histories to Generate LLM Users for Cold-Start Item Recommendation
Large Language Models (LLMs) have demonstrated remarkable capabilities in reasoning, generalization, and simulating human-like behavior across a wide range of tasks. These strengths present new opportunities to enhance traditional recommendation systems (RS), especially in the cold-start item scenario where newly introduced items lack interactions. Existing works have used LLMs to address cold-start issues in traditional RS through data augmentation, but they have limitations. One recent work directly addresses this issue by prompting LLMs to generate augmented interaction data between randomly sampled users and cold-start items. Then, they train the traditional RS with augmented data, incorporating collaborative signals for cold-start items. Although they use LLMs to provide cold-start items with feedback, they use partial user histories, which does not allow the LLM to fully emulate the user. Furthermore, randomly selecting users is not optimal for augmentation. To address these challenges, we leverage the LLM as a user and develop a reinforcement learning (RL) framework that trains a policy to select users for augmentation, optimizing for cold-start item performance after augmented training. The policy model learns to select users for cold-start item data augmentation based on their behavioral features and histories. To optimize user selection for cold-start item performance, we employ a policy gradient method that updates the policy in the direction of actions that lead to high rewards. Experiments on Amazon Product Review datasets show substantial gains in cold-start item recall, demonstrating the effectiveness of our method as a scalable, serving-efficient augmentation strategy for modern RS.
comment: 12 pages, 15 figures
♻ ☆ A Trio Neural Model for Dynamic Entity Relatedness Ranking CoNLL 2018
Measuring entity relatedness is a fundamental task for many natural language processing and information retrieval applications. Prior work often studies entity relatedness in static settings and an unsupervised manner. However, entities in real-world are often involved in many different relationships, consequently entity-relations are very dynamic over time. In this work, we propose a neural networkbased approach for dynamic entity relatedness, leveraging the collective attention as supervision. Our model is capable of learning rich and different entity representations in a joint framework. Through extensive experiments on large-scale datasets, we demonstrate that our method achieves better results than competitive baselines.
comment: In Proceedings of CoNLL 2018
♻ ☆ RELATE: Relation Extraction in Biomedical Abstracts with LLMs and Ontology Constraints
Biomedical knowledge graphs (KGs) are vital for drug discovery and clinical decision support but remain incomplete. Large language models (LLMs) excel at extracting biomedical relations, yet their outputs lack standardization and alignment with ontologies, limiting KG integration. We introduce RELATE, a three-stage pipeline that maps LLM-extracted relations to standardized ontology predicates using ChemProt and the Biolink Model. The pipeline includes: (1) ontology preprocessing with predicate embeddings, (2) similarity-based retrieval enhanced with SapBERT, and (3) LLM-based reranking with explicit negation handling. This approach transforms relation extraction from free-text outputs to structured, ontology-constrained representations. On the ChemProt benchmark, RELATE achieves 52% exact match and 94% accuracy@10, and in 2,400 HEAL Project abstracts, it effectively rejects irrelevant associations (0.4%) and identifies negated assertions. RELATE captures nuanced biomedical relationships while ensuring quality for KG augmentation. By combining vector search with contextual LLM reasoning, RELATE provides a scalable, semantically accurate framework for converting unstructured biomedical literature into standardized KGs.
♻ ☆ From Raw Features to Effective Embeddings: A Three-Stage Approach for Multimodal Recipe Recommendation
Recipe recommendation has become an essential task in web-based food platforms. A central challenge is effectively leveraging rich multimodal features beyond user-recipe interactions. Our analysis shows that even simple uses of multimodal signals yield competitive performance, suggesting that systematic enhancement of these signals is highly promising. We propose TESMR, a 3-stage framework for recipe recommendation that progressively refines raw multimodal features into effective embeddings through: (1) content-based enhancement using foundation models with multimodal comprehension, (2) relation-based enhancement via message propagation over user-recipe interactions, and (3) learning-based enhancement through contrastive learning with learnable embeddings. Experiments on two real-world datasets show that TESMR outperforms existing methods, achieving 7-15% higher Recall@10.
♻ ☆ ICPO: Intrinsic Confidence-Driven Group Relative Preference Optimization for Efficient Reinforcement Learning
Reinforcement Learning with Verifiable Rewards (RLVR) demonstrates significant potential in enhancing the reasoning capabilities of Large Language Models (LLMs). However, existing RLVR methods are often constrained by issues such as coarse-grained rewards, reward noise, and inefficient exploration, which lead to unstable training and entropy collapse. To address this challenge, we propose the Intrinsic Confidence-Driven Group Relative Preference Optimization method (ICPO). The intuition behind it lies in the fact that the probabilities of an LLM generating different responses can inherently and directly reflect its self-assessment of the reasoning process. Inspired by the idea of preference modeling, ICPO calculates a preference advantage score for each response by comparing the relative generation probabilities of multiple responses under the same input prompt, and integrates this score with verifiable rewards to guide the exploration process. We have discovered that the preference advantage score not only alleviates the issues of coarse-grained rewards and reward noise but also effectively curbs overconfident errors, enhances the relative superiority of undervalued high-quality responses, and prevents the model from overfitting to specific strategies, thereby facilitating more thorough exploration. Comprehensive experiments across four general-domain benchmarks and three mathematical benchmarks demonstrate that ICPO steadily boosts reasoning compared to GRPO.
Machine Learning 24
☆ Intelligent Neural Networks: From Layered Architectures to Graph-Organized Intelligence
Biological neurons exhibit remarkable intelligence: they maintain internal states, communicate selectively with other neurons, and self-organize into complex graphs rather than rigid hierarchical layers. What if artificial intelligence could emerge from similarly intelligent computational units? We introduce Intelligent Neural Networks (INN), a paradigm shift where neurons are first-class entities with internal memory and learned communication patterns, organized in complete graphs rather than sequential layers. Each Intelligent Neuron combines selective state-space dynamics (knowing when to activate) with attention-based routing (knowing to whom to send signals), enabling emergent computation through graph-structured interactions. On the standard Text8 character modeling benchmark, INN achieves 1.705 Bit-Per-Character (BPC), significantly outperforming a comparable Transformer (2.055 BPC) and matching a highly optimized LSTM baseline. Crucially, a parameter-matched baseline of stacked Mamba blocks fails to converge (>3.4 BPC) under the same training protocol, demonstrating that INN's graph topology provides essential training stability. Ablation studies confirm this: removing inter-neuron communication degrades performance or leads to instability, proving the value of learned neural routing. This work demonstrates that neuron-centric design with graph organization is not merely bio-inspired -- it is computationally effective, opening new directions for modular, interpretable, and scalable neural architectures.
comment: Code available at https://github.com/AntoineSal/IntelligentNeuralNetwork
☆ From Pixels to Feelings: Aligning MLLMs with Human Cognitive Perception of Images
While Multimodal Large Language Models (MLLMs) are adept at answering what is in an image-identifying objects and describing scenes-they often lack the ability to understand how an image feels to a human observer. This gap is most evident when considering subjective cognitive properties, such as what makes an image memorable, funny, aesthetically pleasing, or emotionally evocative. To systematically address this challenge, we introduce CogIP-Bench, a comprehensive benchmark for evaluating MLLMs on such image cognitive properties. Our evaluation reveals a significant gap: current models are poorly aligned with human perception of these nuanced properties. We then demonstrate that a post-training phase can effectively bridge this gap, significantly enhancing the model's alignment with human judgments. Furthermore, we show that this learned cognitive alignment is not merely predictive but also transferable to downstream creative tasks. By integrating our cognitively-aligned MLLM into an image generation pipeline, we can guide the synthesis process to produce images that better embody desired traits, such as being more memorable or visually appealing. Our work provides a benchmark to measure this human-like perception, a post-training pipeline to enhance it, and a demonstration that this alignment unlocks more human-centric AI.
comment: Project page with codes/datasets/models: https://follen-cry.github.io/MLLM-Cognition-project-page/
☆ Can Synthetic Data Improve Symbolic Regression Extrapolation Performance? GECCO 2025
Many machine learning models perform well when making predictions within the training data range, but often struggle when required to extrapolate beyond it. Symbolic regression (SR) using genetic programming (GP) can generate flexible models but is prone to unreliable behaviour in extrapolation. This paper investigates whether adding synthetic data can help improve performance in such cases. We apply Kernel Density Estimation (KDE) to identify regions in the input space where the training data is sparse. Synthetic data is then generated in those regions using a knowledge distillation approach: a teacher model generates predictions on new input points, which are then used to train a student model. We evaluate this method across six benchmark datasets, using neural networks (NN), random forests (RF), and GP both as teacher models (to generate synthetic data) and as student models (trained on the augmented data). Results show that GP models can often improve when trained on synthetic data, especially in extrapolation areas. However, the improvement depends on the dataset and teacher model used. The most important improvements are observed when synthetic data from GPe is used to train GPp in extrapolation regions. Changes in interpolation areas show only slight changes. We also observe heterogeneous errors, where model performance varies across different regions of the input space. Overall, this approach offers a practical solution for better extrapolation. Note: An earlier version of this work appeared in the GECCO 2025 Workshop on Symbolic Regression. This arXiv version corrects several parts of the original submission.
comment: 8 pages, 16 figures, GECCO 2025 Symbolic Regression Workshop
☆ GSpaRC: Gaussian Splatting for Real-time Reconstruction of RF Channels
Channel state information (CSI) is essential for adaptive beamforming and maintaining robust links in wireless communication systems. However, acquiring CSI incurs significant overhead, consuming up to 25\% of spectrum resources in 5G networks due to frequent pilot transmissions at sub-millisecond intervals. Recent approaches aim to reduce this burden by reconstructing CSI from spatiotemporal RF measurements, such as signal strength and direction-of-arrival. While effective in offline settings, these methods often suffer from inference latencies in the 5--100~ms range, making them impractical for real-time systems. We present GSpaRC: Gaussian Splatting for Real-time Reconstruction of RF Channels, the first algorithm to break the 1 ms latency barrier while maintaining high accuracy. GSpaRC represents the RF environment using a compact set of 3D Gaussian primitives, each parameterized by a lightweight neural model augmented with physics-informed features such as distance-based attenuation. Unlike traditional vision-based splatting pipelines, GSpaRC is tailored for RF reception: it employs an equirectangular projection onto a hemispherical surface centered at the receiver to reflect omnidirectional antenna behavior. A custom CUDA pipeline enables fully parallelized directional sorting, splatting, and rendering across frequency and spatial dimensions. Evaluated on multiple RF datasets, GSpaRC achieves similar CSI reconstruction fidelity to recent state-of-the-art methods while reducing training and inference time by over an order of magnitude. By trading modest GPU computation for a substantial reduction in pilot overhead, GSpaRC enables scalable, low-latency channel estimation suitable for deployment in 5G and future wireless systems. The code is available here: \href{https://github.com/Nbhavyasai/GSpaRC-WirelessGaussianSplatting.git}{GSpaRC}.
☆ An Efficient Privacy-preserving Intrusion Detection Scheme for UAV Swarm Networks SC
The rapid proliferation of unmanned aerial vehicles (UAVs) and their applications in diverse domains, such as surveillance, disaster management, agriculture, and defense, have revolutionized modern technology. While the potential benefits of swarm-based UAV networks are growing significantly, they are vulnerable to various security attacks that can jeopardize the overall mission success by degrading their performance, disrupting decision-making, and compromising the trajectory planning process. The Intrusion Detection System (IDS) plays a vital role in identifying potential security attacks to ensure the secure operation of UAV swarm networks. However, conventional IDS primarily focuses on binary classification with resource-intensive neural networks and faces challenges, including latency, privacy breaches, increased performance overhead, and model drift. This research aims to address these challenges by developing a novel lightweight and federated continuous learning-based IDS scheme. Our proposed model facilitates decentralized training across diverse UAV swarms to ensure data heterogeneity and privacy. The performance evaluation of our model demonstrates significant improvements, with classification accuracies of 99.45% on UKM-IDS, 99.99% on UAV-IDS, 96.85% on TLM-UAV dataset, and 98.05% on Cyber-Physical datasets.
comment: This paper has been accepted for publication in the Proceedings of the 44th AIAA/IEEE Digital Avionics Systems Conference (DASC) 2025, where it received the Best Paper of Session Award
☆ Exact Learning of Arithmetic with Differentiable Agents NeurIPS 2025
We explore the possibility of exact algorithmic learning with gradient-based methods and introduce a differentiable framework capable of strong length generalization on arithmetic tasks. Our approach centers on Differentiable Finite-State Transducers (DFSTs), a Turing-complete model family that avoids the pitfalls of prior architectures by enabling constant-precision, constant-time generation, and end-to-end log-parallel differentiable training. Leveraging policy-trajectory observations from expert agents, we train DFSTs to perform binary and decimal addition and multiplication. Remarkably, models trained on tiny datasets generalize without error to inputs thousands of times longer than the training examples. These results show that training differentiable agents on structured intermediate supervision could pave the way towards exact gradient-based learning of algorithmic skills. Code available at \href{https://github.com/dngfra/differentiable-exact-algorithmic-learner.git}{https://github.com/dngfra/differentiable-exact-algorithmic-learner.git}.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AI
☆ VeriDispatcher: Multi-Model Dispatching through Pre-Inference Difficulty Prediction for RTL Generation Optimization
Large Language Models (LLMs) show strong performance in RTL generation, but different models excel on different tasks because of architecture and training differences. Prior work mainly prompts or finetunes a single model. What remains not well studied is how to coordinate multiple different LLMs so they jointly improve RTL quality while also reducing cost, instead of running all models and choosing the best output. We define this as the multi-LLM RTL generation problem. We propose VeriDispatcher, a multi-LLM RTL generation framework that dispatches each RTL task to suitable LLMs based on pre-inference difficulty prediction. For each model, we train a compact classifier over semantic embeddings of task descriptions, using difficulty scores derived from benchmark variants that combine syntax, structural similarity, and functional correctness. At inference, VeriDispatcher uses these predictors to route tasks to a selected subset of LLMs. Across 10 diverse LLMs on RTLLM and VerilogEval, VeriDispatcher achieves up to 18% accuracy improvement on RTLLM using only 40% of commercial calls, and on VerilogEval maintains accuracy while reducing commercial usage by 25%, enabling cost-effective, high-quality LLM deployment in hardware design automation.
☆ Integrated Transcriptomic-proteomic Biomarker Identification for Radiation Response Prediction in Non-small Cell Lung Cancer Cell Lines
To develop an integrated transcriptome-proteome framework for identifying concurrent biomarkers predictive of radiation response, as measured by survival fraction at 2 Gy (SF2), in non-small cell lung cancer (NSCLC) cell lines. RNA sequencing (RNA-seq) and data-independent acquisition mass spectrometry (DIA-MS) proteomic data were collected from 73 and 46 NSCLC cell lines, respectively. Following preprocessing, 1,605 shared genes were retained for analysis. Feature selection was performed using least absolute shrinkage and selection operator (Lasso) regression with a frequency-based ranking criterion under five-fold cross-validation repeated ten times. Support vector regression (SVR) models were constructed using transcriptome-only, proteome-only, and combined transcriptome-proteome feature sets. Model performance was assessed by the coefficient of determination (R2) and root mean square error (RMSE). Correlation analyses evaluated concordance between RNA and protein expression and the relationships of selected biomarkers with SF2. RNA-protein expression exhibited significant positive correlations (median Pearson's r = 0.363). Independent pipelines identified 20 prioritized gene signatures from transcriptomic, proteomic, and combined datasets. Models trained on single-omic features achieved limited cross-omic generalizability, while the combined model demonstrated balanced predictive accuracy in both datasets (R2=0.461, RMSE=0.120 for transcriptome; R2=0.604, RMSE=0.111 for proteome). This study presents the first proteotranscriptomic framework for SF2 prediction in NSCLC, highlighting the complementary value of integrating transcriptomic and proteomic data. The identified concurrent biomarkers capture both transcriptional regulation and functional protein activity, offering mechanistic insights and translational potential.
☆ Generative Anchored Fields: Controlled Data Generation via Emergent Velocity Fields and Transport Algebra
We present Generative Anchored Fields (GAF), a generative model that learns independent endpoint predictors $J$ (noise) and $K$ (data) rather than a trajectory predictor. The velocity field $v=K-J$ emerges from their time-conditioned disagreement. This factorization enables \textit{Transport Algebra}: algebraic operation on learned $\{(J_n,K_n)\}_{n=1}^N$ heads for compositional control. With class-specific $K_n$ heads, GAF supports a rich family of directed transport maps between a shared base distribution and multiple modalities, enabling controllable interpolation, hybrid generation, and semantic morphing through vector arithmetic. We achieve strong sample quality (FID 7.5 on CelebA-HQ $64\times 64$) while uniquely providing compositional generation as an architectural primitive. We further demonstrate, GAF has lossless cyclic transport between its initial and final state with LPIPS=$0.0$. Code available at https://github.com/IDLabMedia/GAF
comment: 20 pages, 21 figures
☆ Test-time scaling of diffusions with flow maps
A common recipe to improve diffusion models at test-time so that samples score highly against a user-specified reward is to introduce the gradient of the reward into the dynamics of the diffusion itself. This procedure is often ill posed, as user-specified rewards are usually only well defined on the data distribution at the end of generation. While common workarounds to this problem are to use a denoiser to estimate what a sample would have been at the end of generation, we propose a simple solution to this problem by working directly with a flow map. By exploiting a relationship between the flow map and velocity field governing the instantaneous transport, we construct an algorithm, Flow Map Trajectory Tilting (FMTT), which provably performs better ascent on the reward than standard test-time methods involving the gradient of the reward. The approach can be used to either perform exact sampling via importance weighting or principled search that identifies local maximizers of the reward-tilted distribution. We demonstrate the efficacy of our approach against other look-ahead techniques, and show how the flow map enables engagement with complicated reward functions that make possible new forms of image editing, e.g. by interfacing with vision language models.
☆ Modèles de Fondation et Ajustement : Vers une Nouvelle Génération de Modèles pour la Prévision des Séries Temporelles
Inspired by recent advances in large language models, foundation models have been developed for zero-shot time series forecasting, enabling prediction on datasets unseen during pretraining. These large-scale models, trained on vast collections of time series, learn generalizable representations for both point and probabilistic forecasting, reducing the need for task-specific architectures and manual tuning. In this work, we review the main architectures, pretraining strategies, and optimization methods used in such models, and study the effect of fine-tuning after pretraining to enhance their performance on specific datasets. Our empirical results show that fine-tuning generally improves zero-shot forecasting capabilities, especially for long-term horizons.
comment: in French language
♻ ☆ Strategic inputs: feature selection from game-theoretic perspective
The exponential growth of data volumes has led to escalating computational costs in machine learning model training. However, many features fail to contribute positively to model performance while consuming substantial computational resources. This paper presents an end-to-end feature selection framework for tabular data based on game theory. We formulate feature selection procedure based on a cooperative game where features are modeled as players, and their importance is determined through the evaluation of synergistic interactions and marginal contributions. The proposed framework comprises four core components: sample selection, game-theoretic feature importance evaluation, redundant feature elimination, and optimized model training. Experimental results demonstrate that the proposed method achieves substantial computation reduction while preserving predictive performance, thereby offering an efficient solution of the computational challenges of large-scale machine learning. The source code is available at https://github.com/vectorsss/strategy_inputs.
♻ ☆ Graph Laplacian-based Bayesian Multi-fidelity Modeling
We present a novel probabilistic approach for generating multi-fidelity data while accounting for errors inherent in both low- and high-fidelity data. In this approach a graph Laplacian constructed from the low-fidelity data is used to define a multivariate Gaussian prior density for the coordinates of the true data points. In addition, few high-fidelity data points are used to construct a conjugate likelihood term. Thereafter, Bayes rule is applied to derive an explicit expression for the posterior density which is also multivariate Gaussian. The maximum \textit{a posteriori} (MAP) estimate of this density is selected to be the optimal multi-fidelity estimate. It is shown that the MAP estimate and the covariance of the posterior density can be determined through the solution of linear systems of equations. Thereafter, two methods, one based on spectral truncation and another based on a low-rank approximation, are developed to solve these equations efficiently. The multi-fidelity approach is tested on a variety of problems in solid and fluid mechanics with data that represents vectors of quantities of interest and discretized spatial fields in one and two dimensions. The results demonstrate that by utilizing a small fraction of high-fidelity data, the multi-fidelity approach can significantly improve the accuracy of a large collection of low-fidelity data points.
comment: Published in Computer Methods in Applied Mechanics and Engineering, Volume 435, 2025, Article 117647
♻ ☆ Fast multiplication by two's complement addition of numbers represented as a set of polynomial radix 2 indexes, stored as an integer list for massively parallel computation
We demonstrate a multiplication method based on numbers represented as set of polynomial radix 2 indices stored as an integer list. The 'polynomial integer index multiplication' method is a set of algorithms implemented in python code. We demonstrate the method to be faster than both the Number Theoretic Transform (NTT) and Karatsuba for multiplication within a certain bit range. Also implemented in python code for comparison purposes with the polynomial radix 2 integer method. We demonstrate that it is possible to express any integer or real number as a list of integer indices, representing a finite series in base two. The finite series of integer index representation of a number can then be stored and distributed across multiple CPUs / GPUs. We show that operations of addition and multiplication can be applied as two's complement additions operating on the index integer representations and can be fully distributed across a given CPU / GPU architecture. We demonstrate fully distributed arithmetic operations such that the 'polynomial integer index multiplication' method overcomes the current limitation of parallel multiplication methods. Ie, the need to share common core memory and common disk for the calculation of results and intermediate results.
comment: This paper has been withdrawn after an error was identified in a key proof. The revision requires substantial re-derivation and may replace the main theorem. A corrected version may be posted once the results are verified. therefore we require additional time to rework the argument
♻ ☆ Ga$_2$O$_3$ TCAD Mobility Parameter Calibration using Simulation Augmented Machine Learning with Physics Informed Neural Network
In this paper, we demonstrate the feasibility of performing automatic Technology Computer Aided Design (TCAD) parameter calibration and extraction using machine learning, with the machine trained solely by TCAD simulation data. The methodology is validated using experimental data. Schottky Barrier Diodes (SBDs) with different effective anode workfunction (WF) are fabricated with emerging ultra-wide bandgap material, Gallium Oxide (Ga2O3), and are measured at various temperatures (T). Their current voltage curves are used for automatic Ga2O3 Philips Unified Mobility (PhuMob) model parameters calibration. Five critical PhuMob parameters were calibrated. The machine consists of an autoencoder and a neural network and is trained solely by TCAD simulation data with variations in WF, T, and the five PhuMob parameters (seven variations in total). Then, Ga2O3 PhuMob parameters are extracted from the noisy experimental curves. Subsequent TCAD simulation using the extracted parameters shows that the quality of the parameters is as good as an expert's calibration at the pre-turned on regime, but not in the on state regime. By using a simple physics-informed neural network, the machine performs as well as the human expert in all regimes.
comment: 7 pages, 10 figures
♻ ☆ ShieldAgent: Shielding Agents via Verifiable Safety Policy Reasoning
Autonomous agents powered by foundation models have seen widespread adoption across various real-world applications. However, they remain highly vulnerable to malicious instructions and attacks, which can result in severe consequences such as privacy breaches and financial losses. More critically, existing guardrails for LLMs are not applicable due to the complex and dynamic nature of agents. To tackle these challenges, we propose ShieldAgent, the first guardrail agent designed to enforce explicit safety policy compliance for the action trajectory of other protected agents through logical reasoning. Specifically, ShieldAgent first constructs a safety policy model by extracting verifiable rules from policy documents and structuring them into a set of action-based probabilistic rule circuits. Given the action trajectory of the protected agent, ShieldAgent retrieves relevant rule circuits and generates a shielding plan, leveraging its comprehensive tool library and executable code for formal verification. In addition, given the lack of guardrail benchmarks for agents, we introduce ShieldAgent-Bench, a dataset with 3K safety-related pairs of agent instructions and action trajectories, collected via SOTA attacks across 6 web environments and 7 risk categories. Experiments show that ShieldAgent achieves SOTA on ShieldAgent-Bench and three existing benchmarks, outperforming prior methods by 11.3% on average with a high recall of 90.1%. Additionally, ShieldAgent reduces API queries by 64.7% and inference time by 58.2%, demonstrating its high precision and efficiency in safeguarding agents.
♻ ☆ A Trio Neural Model for Dynamic Entity Relatedness Ranking CoNLL 2018
Measuring entity relatedness is a fundamental task for many natural language processing and information retrieval applications. Prior work often studies entity relatedness in static settings and an unsupervised manner. However, entities in real-world are often involved in many different relationships, consequently entity-relations are very dynamic over time. In this work, we propose a neural networkbased approach for dynamic entity relatedness, leveraging the collective attention as supervision. Our model is capable of learning rich and different entity representations in a joint framework. Through extensive experiments on large-scale datasets, we demonstrate that our method achieves better results than competitive baselines.
comment: In Proceedings of CoNLL 2018
♻ ☆ One-Shot Learning for k-SAT
Consider a $k$-SAT formula $Φ$ where every variable appears at most $d$ times. Let $σ$ be a satisfying assignment, sampled proportionally to $e^{βm(σ)}$ where $m(σ)$ is the number of true variables and $β$ is a real parameter. Given $Φ$ and $σ$, can we efficiently learn $β$? This problem falls into a recent line of work about single-sample (``one-shot'') learning of Markov random fields. Our $k$-SAT setting was recently studied by Galanis, Kalavasis, Kandiros (SODA24). They showed that single-sample learning is possible when roughly $d\leq 2^{k/6.45}$ and impossible when $d\geq (k+1) 2^{k-1}$. In addition to the gap in~$d$, their impossibility result left open the question of whether the feasibility threshold for one-shot learning is dictated by the satisfiability threshold for bounded-degree $k$-SAT formulas. Our main contribution is to answer this question negatively. We show that one-shot learning for $k$-SAT is infeasible well below the satisfiability threshold; in fact, we obtain impossibility results for degrees $d$ as low as $k^2$ when $β$ is sufficiently large, and bootstrap this to small values of $β$ when $d$ scales exponentially with $k$, via a probabilistic construction. On the positive side, we simplify the analysis of the learning algorithm, obtaining significantly stronger bounds on $d$ in terms of $β$. For the uniform case $β\rightarrow 0$, we show that learning is possible under the condition $d\lesssim 2^{k/2}$. This is (up to constant factors) all the way to the sampling threshold -- it is known that sampling a uniformly-distributed satisfying assignment is NP-hard for $d\gtrsim 2^{k/2}$.
♻ ☆ RouterArena: An Open Platform for Comprehensive Comparison of LLM Routers
Today's LLM ecosystem comprises a wide spectrum of models that differ in size, capability, and cost. No single model is optimal for all scenarios; hence, LLM routers have become essential for selecting the most appropriate model under varying circumstances. However, the rapid emergence of various routers makes choosing the right one increasingly challenging. To address this problem, we need a comprehensive router comparison and a standardized leaderboard, similar to those available for models. In this work, we introduce RouterArena, the first open platform enabling comprehensive comparison of LLM routers. RouterArena has (1) a principally constructed dataset with broad knowledge domain coverage, (2) distinguishable difficulty levels for each domain, (3) an extensive list of evaluation metrics, and (4) an automated framework for leaderboard updates. Leveraging our framework, we have produced the initial leaderboard with detailed metrics comparison as shown in Figure 1. Our framework for evaluating new routers is on https://github.com/RouteWorks/RouterArena. Our leaderboard is on https://routeworks.github.io/.
comment: 22 pages, 13 figures, 9 tables
♻ ☆ FairPO: Robust Preference Optimization for Fair Multi-Label Learning
Multi-label classification (MLC) often suffers from performance disparities across labels. We propose \textbf{FairPO}, a framework combining preference-based loss and group-robust optimization to improve fairness by targeting underperforming labels. FairPO partitions labels into a \textit{privileged} set for targeted improvement and a \textit{non-privileged} set to maintain baseline performance. For privileged labels, a DPO-inspired preference loss addresses hard examples by correcting ranking errors between true labels and their confusing counterparts. A constrained objective maintains performance for non-privileged labels, while a Group Robust Preference Optimization (GRPO) formulation adaptively balances both objectives to mitigate bias. We also demonstrate FairPO's versatility with reference-free variants using Contrastive (CPO) and Simple (SimPO) Preference Optimization.
♻ ☆ Automated Constitutive Model Discovery by Pairing Sparse Regression Algorithms with Model Selection Criteria
The automated discovery of constitutive models from data has recently emerged as a promising alternative to the traditional model calibration paradigm. In this work, we present a fully automated framework for constitutive model discovery that systematically pairs three sparse regression algorithms Least Absolute Shrinkage and Selection Operator (LASSO), Least Angle Regression (LARS), and Orthogonal Matching Pursuit (OMP)) with three model selection criteria: $K$-fold cross-validation (CV), Akaike Information Criterion (AIC), and Bayesian Information Criterion (BIC). This pairing yields nine distinct algorithms for model discovery and enables a systematic exploration of the trade-off between sparsity, predictive performance, and computational cost. While LARS serves as an efficient path-based solver for the $\ell_1$-constrained problem, OMP is introduced as a tractable heuristic for $\ell_0$-regularized selection. The framework is applied to both isotropic and anisotropic hyperelasticity, utilizing both synthetic and experimental datasets. Results reveal that all nine algorithm-criterion combinations perform consistently well in discovering isotropic and anisotropic materials, yielding highly accurate constitutive models. These findings broaden the range of viable discovery algorithms beyond $\ell_1$-based approaches such as LASSO.
♻ ☆ Detecting Masquerade Attacks in Controller Area Networks Using Graph Machine Learning
Modern vehicles rely on a myriad of electronic control units (ECUs) interconnected via controller area networks (CANs) for critical operations. Despite their ubiquitous use and reliability, CANs are susceptible to sophisticated cyberattacks, particularly masquerade attacks, which inject false data that mimic legitimate messages at the expected frequency. These attacks pose severe risks such as unintended acceleration, brake deactivation, and rogue steering. Traditional intrusion detection systems (IDS) often struggle to detect these subtle intrusions due to their seamless integration into normal traffic. This paper introduces a novel framework for detecting masquerade attacks in the CAN bus using graph machine learning (ML). We hypothesize that the integration of shallow graph embeddings with time series features derived from CAN frames enhances the detection of masquerade attacks. We show that by representing CAN bus frames as message sequence graphs (MSGs) and enriching each node with contextual statistical attributes from time series, we can enhance detection capabilities across various attack patterns compared to using graph-based features only. Our method ensures a comprehensive and dynamic analysis of CAN frame interactions, improving robustness and efficiency. Extensive experiments on the ROAD dataset validate the effectiveness of our approach, demonstrating statistically significant improvements in the detection rates of masquerade attacks compared to a baseline that uses graph-based features only as confirmed by Mann-Whitney U and Kolmogorov-Smirnov tests p < 0.05.
♻ ☆ Improved Generalization Bounds for Transductive Learning by Transductive Local Complexity and Its Applications ICML 2025
We introduce Transductive Local Complexity (TLC) as a new tool for analyzing the generalization performance of transductive learning methods. Our work extends the classical Local Rademacher Complexity (LRC) to the transductive setting, incorporating substantial and novel components beyond standard inductive LRC analysis. Although LRC has been used to obtain sharp generalization bounds and minimax rates for inductive tasks such as classification and nonparametric regression, it has remained an open problem whether a localized Rademacher complexity framework can be effectively adapted to transductive learning to achieve sharp or nearly sharp bounds consistent with inductive results. We provide an affirmative answer via TLC. TLC is constructed by first deriving a new concentration inequality in Theorem 4.1 for the supremum of empirical processes capturing the gap between test and training losses, termed the test-train process, under uniform sampling without replacement, which leverages a novel combinatorial property of the test-train process and a new proof strategy applying the exponential Efron-Stein inequality twice. A subsequent peeling strategy and a new surrogate variance operator then yield excess risk bounds in the transductive setting that are nearly consistent with classical LRC-based inductive bounds up to a logarithmic gap. We further advance transductive learning through two applications: (1) for realizable transductive learning over binary-valued classes with finite VC dimension and $u \ge m \ge \dVC$ where $u$ and $m$ are the number of test features and training features, our Theorem 6.1 gives a nearly optimal bound $Θ(\dVC \log(me/\dVC)/m)$ matching the minimax rate $Θ(\dVC/m)$ up to $\log m$, resolving a decade-old open question; and (2) Theorem 6.3 presents a sharper excess risk bound for transductive kernel learning compared to the current state-of-the-art.
comment: The conference version (https://openreview.net/pdf?id=NRVdvg7VMn) at ICML 2025 is a special case of this paper where the length of the chain set to 2 (that is $Q=2$, please refer to Def. 5.1), and the main results of the conference version are direct consequences of the main results in this paper
♻ ☆ Automated Composition of Agents: A Knapsack Approach for Agentic Component Selection NeurIPS 2025
Designing effective agentic systems requires the seamless composition and integration of agents, tools, and models within dynamic and uncertain environments. Most existing methods rely on static, semantic retrieval approaches for tool or agent discovery. However, effective reuse and composition of existing components remain challenging due to incomplete capability descriptions and the limitations of retrieval methods. Component selection suffers because the decisions are not based on capability, cost, and real-time utility. To address these challenges, we introduce a structured, automated framework for agentic system composition that is inspired by the knapsack problem. Our framework enables a composer agent to systematically identify, select, and assemble an optimal set of agentic components by jointly considering performance, budget constraints, and compatibility. By dynamically testing candidate components and modeling their utility in real-time, our approach streamlines the assembly of agentic systems and facilitates scalable reuse of resources. Empirical evaluation with Claude 3.5 Sonnet across five benchmarking datasets shows that our online-knapsack-based composer consistently lies on the Pareto frontier, achieving higher success rates at significantly lower component costs compared to our baselines. In the single-agent setup, the online knapsack composer shows a success rate improvement of up to 31.6% in comparison to the retrieval baselines. In multi-agent systems, the online knapsack composer increases success rate from 37% to 87% when agents are selected from an agent inventory of 100+ agents. The substantial performance gap confirms the robust adaptability of our method across diverse domains and budget constraints.
comment: Accepted to NeurIPS 2025 Conference
Artificial Intelligence 28
☆ AI summaries in online search influence users' attitudes
This study examined how AI-generated summaries, which have become visually prominent in online search results, affect how users think about different issues. In a preregistered randomized controlled experiment, participants (N = 2,004) viewed mock search result pages varying in the presence (vs. absence), placement (top vs. middle), and stance (benefit-framed vs. harm-framed) of AI-generated summaries across four publicly debated topics. Compared to a no-summary control group, participants exposed to AI-generated summaries reported issue attitudes, behavioral intentions, and policy support that aligned more closely with the AI summary stance. The summaries placed at the top of the page produced stronger shifts in users' issue attitudes (but not behavioral intentions or policy support) than those placed at the middle of the page. We also observed moderating effects from issue familiarity and general trust toward AI. In addition, users perceived the AI summaries more useful when it emphasized health harms versus benefits. These findings suggest that AI-generated search summaries can significantly shape public perceptions, raising important implications for the design and regulation of AI-integrated information ecosystems.
☆ The Hidden AI Race: Tracking Environmental Costs of Innovation
The past decade has seen a massive rise in the popularity of AI systems, mainly owing to the developments in Gen AI, which has revolutionized numerous industries and applications. However, this progress comes at a considerable cost to the environment as training and deploying these models consume significant computational resources and energy and are responsible for large carbon footprints in the atmosphere. In this paper, we study the amount of carbon dioxide released by models across different domains over varying time periods. By examining parameters such as model size, repository activity (e.g., commits and repository age), task type, and organizational affiliation, we identify key factors influencing the environmental impact of AI development. Our findings reveal that model size and versioning frequency are strongly correlated with higher emissions, while domain-specific trends show that NLP models tend to have lower carbon footprints compared to audio-based systems. Organizational context also plays a significant role, with university-driven projects exhibiting the highest emissions, followed by non-profits and companies, while community-driven projects show a reduction in emissions. These results highlight the critical need for green AI practices, including the adoption of energy-efficient architectures, optimizing development workflows, and leveraging renewable energy sources. We also discuss a few practices that can lead to a more sustainable future with AI, and we end this paper with some future research directions that could be motivated by our work. This work not only provides actionable insights to mitigate the environmental impact of AI but also poses new research questions for the community to explore. By emphasizing the interplay between sustainability and innovation, our study aims to guide future efforts toward building a more ecologically responsible AI ecosystem.
☆ Distracted Robot: How Visual Clutter Undermine Robotic Manipulation
In this work, we propose an evaluation protocol for examining the performance of robotic manipulation policies in cluttered scenes. Contrary to prior works, we approach evaluation from a psychophysical perspective, therefore we use a unified measure of clutter that accounts for environmental factors as well as the distractors quantity, characteristics, and arrangement. Using this measure, we systematically construct evaluation scenarios in both hyper-realistic simulation and real-world and conduct extensive experimentation on manipulation policies, in particular vision-language-action (VLA) models. Our experiments highlight the significant impact of scene clutter, lowering the performance of the policies, by as much as 34% and show that despite achieving similar average performance across the tasks, different VLA policies have unique vulnerabilities and a relatively low agreement on success scenarios. We further show that our clutter measure is an effective indicator of performance degradation and analyze the impact of distractors in terms of their quantity and occluding influence. At the end, we show that finetuning on enhanced data, although effective, does not equally remedy all negative impacts of clutter on performance.
comment: 12 figures, 2 tables
☆ Improving Robotic Manipulation Robustness via NICE Scene Surgery
Learning robust visuomotor policies for robotic manipulation remains a challenge in real-world settings, where visual distractors can significantly degrade performance and safety. In this work, we propose an effective and scalable framework, Naturalistic Inpainting for Context Enhancement (NICE). Our method minimizes out-of-distribution (OOD) gap in imitation learning by increasing visual diversity through construction of new experiences using existing demonstrations. By utilizing image generative frameworks and large language models, NICE performs three editing operations, object replacement, restyling, and removal of distracting (non-target) objects. These changes preserve spatial relationships without obstructing target objects and maintain action-label consistency. Unlike previous approaches, NICE requires no additional robot data collection, simulator access, or custom model training, making it readily applicable to existing robotic datasets. Using real-world scenes, we showcase the capability of our framework in producing photo-realistic scene enhancement. For downstream tasks, we use NICE data to finetune a vision-language model (VLM) for spatial affordance prediction and a vision-language-action (VLA) policy for object manipulation. Our evaluations show that NICE successfully minimizes OOD gaps, resulting in over 20% improvement in accuracy for affordance prediction in highly cluttered scenes. For manipulation tasks, success rate increases on average by 11% when testing in environments populated with distractors in different quantities. Furthermore, we show that our method improves visual robustness, lowering target confusion by 6%, and enhances safety by reducing collision rate by 7%.
comment: 11 figures, 3 tables
☆ CAPE: Context-Aware Diffusion Policy Via Proximal Mode Expansion for Collision Avoidance
In robotics, diffusion models can capture multi-modal trajectories from demonstrations, making them a transformative approach in imitation learning. However, achieving optimal performance following this regiment requires a large-scale dataset, which is costly to obtain, especially for challenging tasks, such as collision avoidance. In those tasks, generalization at test time demands coverage of many obstacles types and their spatial configurations, which are impractical to acquire purely via data. To remedy this problem, we propose Context-Aware diffusion policy via Proximal mode Expansion (CAPE), a framework that expands trajectory distribution modes with context-aware prior and guidance at inference via a novel prior-seeded iterative guided refinement procedure. The framework generates an initial trajectory plan and executes a short prefix trajectory, and then the remaining trajectory segment is perturbed to an intermediate noise level, forming a trajectory prior. Such a prior is context-aware and preserves task intent. Repeating the process with context-aware guided denoising iteratively expands mode support to allow finding smoother, less collision-prone trajectories. For collision avoidance, CAPE expands trajectory distribution modes with collision-aware context, enabling the sampling of collision-free trajectories in previously unseen environments while maintaining goal consistency. We evaluate CAPE on diverse manipulation tasks in cluttered unseen simulated and real-world settings and show up to 26% and 80% higher success rates respectively compared to SOTA methods, demonstrating better generalization to unseen environments.
comment: 4 tables, 9 figures
☆ Agentic AI Framework for Cloudburst Prediction and Coordinated Response
The challenge is growing towards extreme and short-duration rainfall events like a cloudburst that are peculiar to the traditional forecasting systems, in which the predictions and the response are taken as two distinct processes. The paper outlines an agentic artificial intelligence system to study atmospheric water-cycle intelligence, which combines sensing, forecasting, downscaling, hydrological modeling and coordinated response into a single, interconnected, priceless, closed-loop system. The framework uses autonomous but cooperative agents that reason, sense, and act throughout the entire event lifecycle, and use the intelligence of weather prediction to become real-time decision intelligence. Comparison of multi-year radar, satellite, and ground-based evaluation of the northern part of Pakistan demonstrates that the multi-agent configuration enhances forecast reliability, critical success index and warning lead time compared to the baseline models. Population reach was maximised, and errors during evacuation were minimised through communication and routing agents, and adaptive recalibration and transparent auditability were provided by the embedded layer of learning. Collectively, this leads to the conclusion that collaborative AI agents are capable of transforming atmospheric data streams into practicable foresight and provide a platform of scalable adaptive and learning-based climate resilience.
comment: Presented at International Conference on Business and Digital Technology, Bahrain, Springer Nature, 27 November 2025
☆ MammoRGB: Dual-View Mammogram Synthesis Using Denoising Diffusion Probabilistic Models
Purpose: This study aims to develop and evaluate a three channel denoising diffusion probabilistic model (DDPM) for synthesizing single breast dual view mammograms and to assess the impact of channel representations on image fidelity and cross view consistency. Materials and Methods: A pretrained three channel DDPM, sourced from Hugging Face, was fine tuned on a private dataset of 11020 screening mammograms to generate paired craniocaudal (CC) and mediolateral oblique (MLO) views. Three third channel encodings of the CC and MLO views were evaluated: sum, absolute difference, and zero channel. Each model produced 500 synthetic image pairs. Quantitative assessment involved breast mask segmentation using Intersection over Union (IoU) and Dice Similarity Coefficient (DSC), with distributional comparisons against 2500 real pairs using Earth Movers Distance (EMD) and Kolmogorov Smirnov (KS) tests. Qualitative evaluation included a visual Turing test by a non expert radiologist to assess cross view consistency and artifacts. Results: Synthetic mammograms showed IoU and DSC distributions comparable to real images, with EMD and KS values (0.020 and 0.077 respectively). Models using sum or absolute difference encodings outperformed others in IoU and DSC (p < 0.001), though distributions remained broadly similar. Generated CC and MLO views maintained cross view consistency, with 6 to 8 percent of synthetic images exhibiting artifacts consistent with those in the training data. Conclusion: Three channel DDPMs can generate realistic and anatomically consistent dual view mammograms with promising applications in dataset augmentation.
☆ Exact Learning of Arithmetic with Differentiable Agents NeurIPS 2025
We explore the possibility of exact algorithmic learning with gradient-based methods and introduce a differentiable framework capable of strong length generalization on arithmetic tasks. Our approach centers on Differentiable Finite-State Transducers (DFSTs), a Turing-complete model family that avoids the pitfalls of prior architectures by enabling constant-precision, constant-time generation, and end-to-end log-parallel differentiable training. Leveraging policy-trajectory observations from expert agents, we train DFSTs to perform binary and decimal addition and multiplication. Remarkably, models trained on tiny datasets generalize without error to inputs thousands of times longer than the training examples. These results show that training differentiable agents on structured intermediate supervision could pave the way towards exact gradient-based learning of algorithmic skills. Code available at \href{https://github.com/dngfra/differentiable-exact-algorithmic-learner.git}{https://github.com/dngfra/differentiable-exact-algorithmic-learner.git}.
comment: Accepted at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AI
☆ VeriDispatcher: Multi-Model Dispatching through Pre-Inference Difficulty Prediction for RTL Generation Optimization
Large Language Models (LLMs) show strong performance in RTL generation, but different models excel on different tasks because of architecture and training differences. Prior work mainly prompts or finetunes a single model. What remains not well studied is how to coordinate multiple different LLMs so they jointly improve RTL quality while also reducing cost, instead of running all models and choosing the best output. We define this as the multi-LLM RTL generation problem. We propose VeriDispatcher, a multi-LLM RTL generation framework that dispatches each RTL task to suitable LLMs based on pre-inference difficulty prediction. For each model, we train a compact classifier over semantic embeddings of task descriptions, using difficulty scores derived from benchmark variants that combine syntax, structural similarity, and functional correctness. At inference, VeriDispatcher uses these predictors to route tasks to a selected subset of LLMs. Across 10 diverse LLMs on RTLLM and VerilogEval, VeriDispatcher achieves up to 18% accuracy improvement on RTLLM using only 40% of commercial calls, and on VerilogEval maintains accuracy while reducing commercial usage by 25%, enabling cost-effective, high-quality LLM deployment in hardware design automation.
☆ All Centers Are at most a Few Tokens Apart: Knowledge Distillation with Domain Invariant Prompt Tuning
Domain generalization is critical in computational pathology (CPath) due to inherent domain shifts caused by variations in staining protocols, scanner devices, and imaging settings across clinical centers. Vision-language models (VLMs), such as PLIP-a pathology-tuned CLIP-trained on image-text pairs across diverse domains, serve as strong knowledge distillation sources. However, their zero-shot performance with predefined prompts remains limited due to sensitivity to prompt variations. Moreover, unlike natural images, histopathology centers lack semantic descriptors (e.g., 'sketch'), making it difficult to define domain-specific prompts for clinical centers. This requires a data-driven approach for learning domain-specific and ultimately class-generic continuous prompts. We propose Domain Invariant Prompt Tuning (DIPT) for knowledge distillation process, a novel step that learns multiple input tokens for each domain. These tokens are trained separately for each domain and are averaged across domains, leading to domain-invariant prompts. Our student model then distills knowledge from PLIP's text encoder by leveraging the prompts learned by DIPT. This leads to alignment of visual features with domain-invariant embeddings, enhancing generalization by training on multiple domains. Our method adds a significant improvement in average F1-score to existing state-of-the-art (SOTA) knowledge distillation approaches in domain generalization with histopathology datasets. This work helps the way of deploying robust CPath models in real-world clinical problems with heterogeneous data sources.
☆ Agentic AI Framework for Individuals with Disabilities and Neurodivergence: A Multi-Agent System for Healthy Eating, Daily Routines, and Inclusive Well-Being
The paper presents a detailed Agentic Artificial Intelligence (AI) model that would enable people with disabilities and neurodivergence to lead healthier lives and have more regular days. The system will use a multi-layer structure; it will include an Application and Interface Layer, an Agents Layer, and a Data Source Layer to provide adaptive, transparent, and inclusive support. Fundamentally, a hybrid reasoning engine will synchronize four special-purpose agents, which include: a personalized-nutrition-based, called a Meal Planner Agent; an adaptive-scheduling-based, called a Reminder Agent; interactive assistance during grocery shopping and cooking, called a Food Guidance Agent; and a continuous-intake-and-physiological-tracking, called a Monitoring Agent. All the agents interact through a central communicative system called the Blackboard/Event Bus, which allows autonomous interaction and real-time feedback loops with multimedia user interfaces. Privacy-sensitive data sources, including electronic health records (EHRs), nutritional databases, wearable sensors, and smart kitchen Internet of Things, are also included in the framework and placed into a policy-controlled layer, which ensures data safety and compliance with consent. Collaborative care and clinician dashboards allow common supervision, and discussable artificial intelligence (XAI) modules give brief explanations of why a decision was made, making users responsible and reliant. The proposed agentic AI framework is an extension beyond traditional assistive systems since it incorporates inclusiveness, personalization, and accessibility at all levels. It displays the intersection of multi-agent reasoning, multi-modal interfaces, and human-centered design that will enable the development of autonomy, health, and digital equity among people with disabilities and neurodivergence.
comment: Presented at International Conference on Business and Digital Technology, Bahrain, Springer Nature, 27 November 2025
☆ Solving Context Window Overflow in AI Agents
Large Language Models (LLMs) have become increasingly capable of interacting with external tools, granting access to specialized knowledge beyond their training data - critical in dynamic, knowledge-intensive domains such as Chemistry and Materials Science. However, large tool outputs can overflow the LLMs' context window, preventing task completion. Existing solutions such as truncation or summarization fail to preserve complete outputs, making them unsuitable for workflows requiring the full data. This work introduces a method that enables LLMs to process and utilize tool responses of arbitrary length without loss of information. By shifting the model's interaction from raw data to memory pointers, the method preserves tool functionality, allows seamless integration into agentic workflows, and reduces token usage and execution time. The proposed method is validated on a real-world Materials Science application that cannot be executed with conventional workflows, and its effectiveness is demonstrated via a comparative analysis where both methods succeed. In this experiment, the proposed approach consumed approximately seven times fewer tokens than the traditional workflow.
☆ ReAG: Reasoning-Augmented Generation for Knowledge-based Visual Question Answering
Multimodal Large Language Models (MLLMs) have shown impressive capabilities in jointly understanding text, images, and videos, often evaluated via Visual Question Answering (VQA). However, even state-of-the-art MLLMs struggle with domain-specific or knowledge-intensive queries, where relevant information is underrepresented in pre-training data. Knowledge-based VQA (KB-VQA) addresses this by retrieving external documents to condition answer generation, but current retrieval-augmented approaches suffer from low precision, noisy passages, and limited reasoning. To address this, we propose ReAG, a novel Reasoning-Augmented Multimodal RAG approach that combines coarse- and fine-grained retrieval with a critic model that filters irrelevant passages, ensuring high-quality additional context. The model follows a multi-stage training strategy leveraging reinforcement learning to enhance reasoning over retrieved content, while supervised fine-tuning serves only as a cold start. Extensive experiments on Encyclopedic-VQA and InfoSeek demonstrate that ReAG significantly outperforms prior methods, improving answer accuracy and providing interpretable reasoning grounded in retrieved evidence. Our source code is publicly available at: https://github.com/aimagelab/ReAG.
☆ CoFiRec: Coarse-to-Fine Tokenization for Generative Recommendation
In web environments, user preferences are often refined progressively as users move from browsing broad categories to exploring specific items. However, existing generative recommenders overlook this natural refinement process. Generative recommendation formulates next-item prediction as autoregressive generation over tokenized user histories, where each item is represented as a sequence of discrete tokens. Prior models typically fuse heterogeneous attributes such as ID, category, title, and description into a single embedding before quantization, which flattens the inherent semantic hierarchy of items and fails to capture the gradual evolution of user intent during web interactions. To address this limitation, we propose CoFiRec, a novel generative recommendation framework that explicitly incorporates the Coarse-to-Fine nature of item semantics into the tokenization process. Instead of compressing all attributes into a single latent space, CoFiRec decomposes item information into multiple semantic levels, ranging from high-level categories to detailed descriptions and collaborative filtering signals. Based on this design, we introduce the CoFiRec Tokenizer, which tokenizes each level independently while preserving structural order. During autoregressive decoding, the language model is instructed to generate item tokens from coarse to fine, progressively modeling user intent from general interests to specific item-level interests. Experiments across multiple public benchmarks and backbones demonstrate that CoFiRec outperforms existing methods, offering a new perspective for generative recommendation. Theoretically, we prove that structured tokenization leads to lower dissimilarity between generated and ground truth items, supporting its effectiveness in generative recommendation. Our code is available at https://github.com/YennNing/CoFiRec.
☆ Probabilistic Fusion and Calibration of Neural Speaker Diarization Models
End-to-End Neural Diarization (EEND) systems produce frame-level probabilistic speaker activity estimates, yet since evaluation focuses primarily on Diarization Error Rate (DER), the reliability and calibration of these confidence scores have been largely neglected. When fusing multiple diarization systems, DOVER-Lap remains the only established approach, operating at the segment level with hard decisions. We propose working with continuous probability outputs, which enables more sophisticated calibration and fusion techniques that can leverage model uncertainty and complementary strengths across different architectures. This paper presents the first comprehensive framework for calibrating and fusing EEND models at the probability level. We investigate two output formulations (multilabel and powerset representations) and their impact on calibration and fusion effectiveness. Through extensive experiments on the CallHome two-speaker benchmark, we demonstrate that proper calibration provides substantial improvements even for individual models (up to 19% relative DER reduction), in some cases mitigating the absence of domain adaptation. We reveal that joint calibration in powerset space consistently outperforms independent per-speaker calibration, and that the Fuse-then-Calibrate ordering generally outperforms calibrating individual models before fusion while requiring calibration of only a single combined model. Our best configuration outperforms DOVER-Lap in terms of DER while providing reliable confidence estimates essential for downstream applications. This work proposes best practices for probability-level fusion of EEND systems and demonstrates the advantages of leveraging soft outputs over hard decisions.
☆ Test-time scaling of diffusions with flow maps
A common recipe to improve diffusion models at test-time so that samples score highly against a user-specified reward is to introduce the gradient of the reward into the dynamics of the diffusion itself. This procedure is often ill posed, as user-specified rewards are usually only well defined on the data distribution at the end of generation. While common workarounds to this problem are to use a denoiser to estimate what a sample would have been at the end of generation, we propose a simple solution to this problem by working directly with a flow map. By exploiting a relationship between the flow map and velocity field governing the instantaneous transport, we construct an algorithm, Flow Map Trajectory Tilting (FMTT), which provably performs better ascent on the reward than standard test-time methods involving the gradient of the reward. The approach can be used to either perform exact sampling via importance weighting or principled search that identifies local maximizers of the reward-tilted distribution. We demonstrate the efficacy of our approach against other look-ahead techniques, and show how the flow map enables engagement with complicated reward functions that make possible new forms of image editing, e.g. by interfacing with vision language models.
☆ Foundations of Quantum Granular Computing with Effect-Based Granules, Algebraic Properties and Reference Architectures
This paper develops the foundations of Quantum Granular Computing (QGC), extending classical granular computing including fuzzy, rough, and shadowed granules to the quantum regime. Quantum granules are modeled as effects on a finite dimensional Hilbert space, so granular memberships are given by Born probabilities. This operator theoretic viewpoint provides a common language for sharp (projective) and soft (nonprojective) granules and embeds granulation directly into the standard formalism of quantum information theory. We establish foundational results for effect based quantum granules, including normalization and monotonicity properties, the emergence of Boolean islands from commuting families, granular refinement under Luders updates, and the evolution of granules under quantum channels via the adjoint channel in the Heisenberg picture. We connect QGC with quantum detection and estimation theory by interpreting the effect operators realizing Helstrom minimum error measurement for binary state discrimination as Helstrom type decision granules, i.e., soft quantum counterparts of Bayes optimal decision regions. Building on these results, we introduce Quantum Granular Decision Systems (QGDS) with three reference architectures that specify how quantum granules can be defined, learned, and integrated with classical components while remaining compatible with near term quantum hardware. Case studies on qubit granulation, two qubit parity effects, and Helstrom style soft decisions illustrate how QGC reproduces fuzzy like graded memberships and smooth decision boundaries while exploiting noncommutativity, contextuality, and entanglement. The framework thus provides a unified and mathematically grounded basis for operator valued granules in quantum information processing, granular reasoning, and intelligent systems.
comment: Three figures and the graphical abstract
☆ Geometrically-Constrained Agent for Spatial Reasoning
Vision Language Models (VLMs) exhibit a fundamental semantic-to-geometric gap in spatial reasoning: they excel at qualitative semantic inference but their reasoning operates within a lossy semantic space, misaligned with high-fidelity geometry. Current paradigms fail to bridge this gap. Training-based methods suffer from an ``oracle paradox,'' learning flawed spatial logic from imperfect oracles. Tool-integrated methods constrain the final computation but critically leave the VLM's planning process unconstrained, resulting in geometrically flawed plans. In this work, we propose Geometrically-Constrained Agent (GCA), a training-free agentic paradigm that resolves this gap by introducing a formal task constraint. Specifically, we strategically decouples the VLM's role into two stages. First, acting as a semantic analyst, the VLM translates the user's ambiguous query into the formal, verifiable task constraint, which defines the reference frame and objective. Second, acting as a task solver, the VLM generates and executes tool calls strictly within the deterministic bounds defined by the constraint. This geometrically-constrained reasoning strategy successfully resolve the semantic-to-geometric gap, yielding a robust and verifiable reasoning pathway for spatial reasoning. Comprehensive experiments demonstrate that GCA achieves SOTA performance on multiple spatial reasoning benchmarks, surpassing existing training-based and tool-integrated methods by ~27%. Please see our homepage at https://gca-spatial-reasoning.github.io.
comment: 27 pages, 13 figures
☆ Automated Design Optimization via Strategic Search with Large Language Models
Traditional optimization methods excel in well-defined search spaces but struggle with design problems where transformations and design parameters are difficult to define. Large language models (LLMs) offer a promising alternative by dynamically interpreting design spaces and leveraging encoded domain knowledge. To this end, we introduce AUTO, an LLM agent framework that treats design optimization as a gradient-free search problem guided by strategic LLM reasoning. The framework employs two collaborative agents: a Strategist that selects between exploration and exploitation strategies, and an Implementor that executes detailed designs. Applied to GPU code optimization -- a domain critical to fields from machine learning to scientific computing -- AUTO generates solutions competitive with expert implementations for chemical kinetics integration and dense matrix multiplication. The framework achieves 50-70% search efficiency relative to Bayesian optimization methodologies. It completes optimizations in approximately 8 hours at an estimated cost of up to \$159 per run, compared to an estimated cost of up to \$480 with median-wage software developers. These findings open the door to automating design optimization in ill-defined search spaces with limited prior information.
comment: 14 pages, 5 tables, 7 figures, preprint
♻ ☆ HumaniBench: A Human-Centric Framework for Large Multimodal Models Evaluation
Although recent large multimodal models (LMMs) demonstrate impressive progress on vision language tasks, their alignment with human centered (HC) principles, such as fairness, ethics, inclusivity, empathy, and robustness; remains poorly understood. We present HumaniBench, a unified evaluation framework designed to characterize HC alignment across realistic, socially grounded visual contexts. HumaniBench contains 32,000 expert-verified image question pairs derived from real world news imagery and spanning seven evaluation tasks: scene understanding, instance identity, multiple-choice visual question answering (VQA), multilinguality, visual grounding, empathetic captioning, and image resilience testing. Each task is mapped to one or more HC principles through a principled operationalization of metrics covering accuracy, harmful content detection, hallucination and faithfulness, coherence, cross lingual quality, empathy, and robustness.We evaluate 15 state-of-the-art LMMs under this framework and observe consistent cross model trade offs: proprietary systems achieve the strongest performance on ethics, reasoning, and empathy, while open-source models exhibit superior visual grounding and resilience. All models, however, show persistent gaps in fairness and multilingual inclusivity. We further analyze the effect of inference-time techniques, finding that chain of thought prompting and test-time scaling yield 8 to 12 % improvements on several HC dimensions. HumaniBench provides a reproducible, extensible foundation for systematic HC evaluation of LMMs and enables fine-grained analysis of alignment trade-offs that are not captured by conventional multimodal benchmarks. https://vectorinstitute.github.io/humanibench/
♻ ☆ FairPO: Robust Preference Optimization for Fair Multi-Label Learning
Multi-label classification (MLC) often suffers from performance disparities across labels. We propose \textbf{FairPO}, a framework combining preference-based loss and group-robust optimization to improve fairness by targeting underperforming labels. FairPO partitions labels into a \textit{privileged} set for targeted improvement and a \textit{non-privileged} set to maintain baseline performance. For privileged labels, a DPO-inspired preference loss addresses hard examples by correcting ranking errors between true labels and their confusing counterparts. A constrained objective maintains performance for non-privileged labels, while a Group Robust Preference Optimization (GRPO) formulation adaptively balances both objectives to mitigate bias. We also demonstrate FairPO's versatility with reference-free variants using Contrastive (CPO) and Simple (SimPO) Preference Optimization.
♻ ☆ ProtoSiTex: Learning Semi-Interpretable Prototypes for Multi-label Text Classification
The surge in user-generated reviews has amplified the need for interpretable models that can provide fine-grained insights. Existing prototype-based models offer intuitive explanations but typically operate at coarse granularity (sentence or document level) and fail to address the multi-label nature of real-world text classification. We propose ProtoSiTex, a semi-interpretable framework designed for fine-grained multi-label text classification. ProtoSiTex employs a dual-phase alternate training strategy: an unsupervised prototype discovery phase that learns semantically coherent and diverse prototypes, and a supervised classification phase that maps these prototypes to class labels. A hierarchical loss function enforces consistency across subsentence, sentence, and document levels, enhancing interpretability and alignment. Unlike prior approaches, ProtoSiTex captures overlapping and conflicting semantics using adaptive prototypes and multi-head attention. We also introduce a benchmark dataset of hotel reviews annotated at the subsentence level with multiple labels. Experiments on this dataset and two public benchmarks (binary and multi-class) show that ProtoSiTex achieves state-of-the-art performance while delivering faithful, human-aligned explanations, establishing it as a robust solution for semi-interpretable multi-label text classification.
♻ ☆ Frontier AI's Impact on the Cybersecurity Landscape
The impact of frontier AI (i.e., AI agents and foundation models) in cybersecurity is rapidly increasing. In this paper, we comprehensively analyze this trend through multiple aspects: quantitative benchmarks, qualitative literature review, empirical evaluation, and expert survey. Our analyses consistently show that AI's capabilities and applications in attacks have exceeded those on the defensive side. Our empirical evaluation of widely used agent systems on cybersecurity benchmarks highlights that current AI agents struggle with flexible workflow planning and using domain-specific tools for complex security analysis -- capabilities particularly critical for defensive applications. Our expert survey of AI and security researchers and practitioners indicates a prevailing view that AI will continue to benefit attackers over defenders, though the gap is expected to narrow over time. These results show the urgent need to evaluate and mitigate frontier AI's risks, steering it towards benefiting cyber defenses. Responding to this need, we provide concrete calls to action regarding: the construction of new cybersecurity benchmarks, the development of AI agents for defense, the design of provably secure AI agents, the improvement of pre-deployment security testing and transparency, and the strengthening of user-oriented education and defenses. Our paper summary and blog are available at https://rdi.berkeley.edu/frontier-ai-impact-on-cybersecurity/.
♻ ☆ Scaling Equitable Reflection Assessment in Education via Large Language Models and Role-Based Feedback Agents AAAI-26
Formative feedback is widely recognized as one of the most effective drivers of student learning, yet it remains difficult to implement equitably at scale. In large or low-resource courses, instructors often lack the time, staffing, and bandwidth required to review and respond to every student reflection, creating gaps in support precisely where learners would benefit most. This paper presents a theory-grounded system that uses five coordinated role-based LLM agents (Evaluator, Equity Monitor, Metacognitive Coach, Aggregator, and Reflexion Reviewer) to score learner reflections with a shared rubric and to generate short, bias-aware, learner-facing comments. The agents first produce structured rubric scores, then check for potentially biased or exclusionary language, add metacognitive prompts that invite students to think about their own thinking, and finally compose a concise feedback message of at most 120 words. The system includes simple fairness checks that compare scoring error across lower and higher scoring learners, enabling instructors to monitor and bound disparities in accuracy. We evaluate the pipeline in a 12-session AI literacy program with adult learners. In this setting, the system produces rubric scores that approach expert-level agreement, and trained graders rate the AI-generated comments as helpful, empathetic, and well aligned with instructional goals. Taken together, these results show that multi-agent LLM systems can deliver equitable, high-quality formative feedback at a scale and speed that would be impossible for human graders alone. More broadly, the work points toward a future where feedback-rich learning becomes feasible for any course size or context, advancing long-standing goals of equity, access, and instructional capacity in education.
comment: Accepted to AAAI-26 AISI Track
♻ ☆ Beyond Ensembles: Simulating All-Atom Protein Dynamics in a Learned Latent Space
Simulating the long-timescale dynamics of biomolecules is a central challenge in computational science. While enhanced sampling methods can accelerate these simulations, they rely on pre-defined collective variables that are often difficult to identify, restricting their ability to model complex switching mechanisms between metastable states. A recent generative model, LD-FPG, demonstrated that this problem could be bypassed by learning to sample the static equilibrium ensemble as all-atom deformations from a reference structure, establishing a powerful method for all-atom ensemble generation. However, while this approach successfully captures a system's probable conformations, it does not model the temporal evolution between them. We introduce the Graph Latent Dynamics Propagator (GLDP), a modular component for simulating dynamics within the learned latent space of LD-FPG. We then compare three classes of propagators: (i) score-guided Langevin dynamics, (ii) Koopman-based linear operators, and (iii) autoregressive neural networks. Within a unified encoder-propagator-decoder framework, we evaluate long-horizon stability, backbone and side-chain ensemble fidelity, and temporal kinetics via TICA. Benchmarks on systems ranging from small peptides to mixed-topology proteins and large GPCRs reveal that autoregressive neural networks deliver the most robust long rollouts and coherent physical timescales; score-guided Langevin best recovers side-chain thermodynamics when the score is well learned; and Koopman provides an interpretable, lightweight baseline that tends to damp fluctuations. These results clarify the trade-offs among propagators and offer practical guidance for latent-space simulators of all-atom protein dynamics.
♻ ☆ Automated Composition of Agents: A Knapsack Approach for Agentic Component Selection NeurIPS 2025
Designing effective agentic systems requires the seamless composition and integration of agents, tools, and models within dynamic and uncertain environments. Most existing methods rely on static, semantic retrieval approaches for tool or agent discovery. However, effective reuse and composition of existing components remain challenging due to incomplete capability descriptions and the limitations of retrieval methods. Component selection suffers because the decisions are not based on capability, cost, and real-time utility. To address these challenges, we introduce a structured, automated framework for agentic system composition that is inspired by the knapsack problem. Our framework enables a composer agent to systematically identify, select, and assemble an optimal set of agentic components by jointly considering performance, budget constraints, and compatibility. By dynamically testing candidate components and modeling their utility in real-time, our approach streamlines the assembly of agentic systems and facilitates scalable reuse of resources. Empirical evaluation with Claude 3.5 Sonnet across five benchmarking datasets shows that our online-knapsack-based composer consistently lies on the Pareto frontier, achieving higher success rates at significantly lower component costs compared to our baselines. In the single-agent setup, the online knapsack composer shows a success rate improvement of up to 31.6% in comparison to the retrieval baselines. In multi-agent systems, the online knapsack composer increases success rate from 37% to 87% when agents are selected from an agent inventory of 100+ agents. The substantial performance gap confirms the robust adaptability of our method across diverse domains and budget constraints.
comment: Accepted to NeurIPS 2025 Conference
♻ ☆ Chain-of-Influence: Tracing Interdependencies Across Time and Features in Clinical Predictive Modelings
Modeling clinical time-series data is hampered by the challenge of capturing latent, time-varying dependencies among features. State-of-the-art approaches often rely on black-box mechanisms or simple aggregation, failing to explicitly model how the influence of one clinical variable propagates through others over time. We propose $\textbf{Chain-of-Influence (CoI)}$, an interpretable deep learning framework that constructs an explicit, time-unfolded graph of feature interactions. CoI enables the tracing of influence pathways, providing a granular audit trail that shows how any feature at any time contributes to the final prediction, both directly and through its influence on other variables. We evaluate CoI on mortality and disease progression tasks using the MIMIC-IV dataset and a chronic kidney disease cohort. Our framework achieves state-of-the-art predictive performance (AUROC of 0.960 on CKD progression and 0.950 on ICU mortality), with deletion-based sensitivity analyses confirming that CoI's learned attributions faithfully reflect its decision process. Through case studies, we demonstrate that CoI uncovers clinically meaningful, patient-specific patterns of disease progression, offering enhanced transparency into the temporal and cross-feature dependencies that inform clinical decision-making.
♻ ☆ Smart Traffic Signals: Comparing MARL and Fixed-Time Strategies
Urban traffic congestion, particularly at intersections, significantly affects travel time, fuel consumption, and emissions. Traditional fixed-time signal control systems often lack the adaptability to effectively manage dynamic traffic patterns. This study explores the application of multi-agent reinforcement learning (MARL) to optimize traffic signal coordination across multiple intersections within a simulated environment. A simulation was developed to model a network of interconnected intersections with randomly generated vehicle flows to reflect realistic traffic variability. A decentralized MARL controller was implemented in which each traffic signal operates as an autonomous agent, making decisions based on local observations and information from neighboring agents. Performance was evaluated against a baseline fixed-time controller using metrics such as average vehicle wait time and overall throughput. The MARL approach demonstrated statistically significant improvements, including reduced average waiting times and improved throughput. These findings suggest that MARL-based dynamic control strategies hold substantial promise to improve urban traffic management efficiency. More research is recommended to address the challenges of scalability and real-world implementation.
Computation and Language 17
☆ Start Making Sense(s): A Developmental Probe of Attention Specialization Using Lexical Ambiguity ACL
Despite an in-principle understanding of self-attention matrix operations in Transformer language models (LMs), it remains unclear precisely how these operations map onto interpretable computations or functions--and how or when individual attention heads develop specialized attention patterns. Here, we present a pipeline to systematically probe attention mechanisms, and we illustrate its value by leveraging lexical ambiguity--where a single word has multiple meanings--to isolate attention mechanisms that contribute to word sense disambiguation. We take a "developmental" approach: first, using publicly available Pythia LM checkpoints, we identify inflection points in disambiguation performance for each LM in the suite; in 14M and 410M, we identify heads whose attention to disambiguating words covaries with overall disambiguation performance across development. We then stress-test the robustness of these heads to stimulus perturbations: in 14M, we find limited robustness, but in 410M, we identify multiple heads with surprisingly generalizable behavior. Then, in a causal analysis, we find that ablating the target heads demonstrably impairs disambiguation performance, particularly in 14M. We additionally reproduce developmental analyses of 14M across all of its random seeds. Together, these results suggest: that disambiguation benefits from a constellation of mechanisms, some of which (especially in 14M) are highly sensitive to the position and part-of-speech of the disambiguating cue; and that larger models (410M) may contain heads with more robust disambiguation behavior. They also join a growing body of work that highlights the value of adopting a developmental perspective when probing LM mechanisms.
comment: 13 pages (main text), 5 figures (main text) 6 pages (appendix), 6 figures (appendix), journal submission to TACL ("a" decision: pre-MIT Press publication version)
☆ A Comparative Study of LLM Prompting and Fine-Tuning for Cross-genre Authorship Attribution on Chinese Lyrics
We propose a novel study on authorship attribution for Chinese lyrics, a domain where clean, public datasets are sorely lacking. Our contributions are twofold: (1) we create a new, balanced dataset of Chinese lyrics spanning multiple genres, and (2) we develop and fine-tune a domain-specific model, comparing its performance against zero-shot inference using the DeepSeek LLM. We test two central hypotheses. First, we hypothesize that a fine-tuned model will outperform a zero-shot LLM baseline. Second, we hypothesize that performance is genre-dependent. Our experiments strongly confirm Hypothesis 2: structured genres (e.g. Folklore & Tradition) yield significantly higher attribution accuracy than more abstract genres (e.g. Love & Romance). Hypothesis 1 receives only partial support: fine-tuning improves robustness and generalization in Test1 (real-world data and difficult genres), but offers limited or ambiguous gains in Test2, a smaller, synthetically-augmented set. We show that the design limitations of Test2 (e.g., label imbalance, shallow lexical differences, and narrow genre sampling) can obscure the true effectiveness of fine-tuning. Our work establishes the first benchmark for cross-genre Chinese lyric attribution, highlights the importance of genre-sensitive evaluation, and provides a public dataset and analytical framework for future research. We conclude with recommendations: enlarge and diversify test sets, reduce reliance on token-level data augmentation, balance author representation across genres, and investigate domain-adaptive pretraining as a pathway for improved attribution performance.
comment: 8 pages, 6 figures
☆ Tracing How Annotators Think: Augmenting Preference Judgments with Reading Processes
We propose an annotation approach that captures not only labels but also the reading process underlying annotators' decisions, e.g., what parts of the text they focus on, re-read or skim. Using this framework, we conduct a case study on the preference annotation task, creating a dataset PreferRead that contains fine-grained annotator reading behaviors obtained from mouse tracking. PreferRead enables detailed analysis of how annotators navigate between a prompt and two candidate responses before selecting their preference. We find that annotators re-read a response in roughly half of all trials, most often revisiting the option they ultimately choose, and rarely revisit the prompt. Reading behaviors are also significantly related to annotation outcomes: re-reading is associated with higher inter-annotator agreement, whereas long reading paths and times are associated with lower agreement. These results demonstrate that reading processes provide a complementary cognitive dimension for understanding annotator reliability, decision-making and disagreement in complex, subjective NLP tasks. Our code and data are publicly available.
☆ A Customer Journey in the Land of Oz: Leveraging the Wizard of Oz Technique to Model Emotions in Customer Service Interactions
Emotion-aware customer service needs in-domain conversational data, rich annotations, and predictive capabilities, but existing resources for emotion recognition are often out-of-domain, narrowly labeled, and focused on post-hoc detection. To address this, we conducted a controlled Wizard of Oz (WOZ) experiment to elicit interactions with targeted affective trajectories. The resulting corpus, EmoWOZ-CS, contains 2,148 bilingual (Dutch-English) written dialogues from 179 participants across commercial aviation, e-commerce, online travel agencies, and telecommunication scenarios. Our contributions are threefold: (1) Evaluate WOZ-based operator-steered valence trajectories as a design for emotion research; (2) Quantify human annotation performance and variation, including divergences between self-reports and third-party judgments; (3) Benchmark detection and forward-looking emotion inference in real-time support. Findings show neutral dominates participant messages; desire and gratitude are the most frequent non-neutral emotions. Agreement is moderate for multilabel emotions and valence, lower for arousal and dominance; self-reports diverge notably from third-party labels, aligning most for neutral, gratitude, and anger. Objective strategies often elicit neutrality or gratitude, while suboptimal strategies increase anger, annoyance, disappointment, desire, and confusion. Some affective strategies (cheerfulness, gratitude) foster positive reciprocity, whereas others (apology, empathy) can also leave desire, anger, or annoyance. Temporal analysis confirms successful conversation-level steering toward prescribed trajectories, most distinctly for negative targets; positive and neutral targets yield similar final valence distributions. Benchmarks highlight the difficulty of forward-looking emotion inference from prior turns, underscoring the complexity of proactive emotion-aware support.
☆ Improving Score Reliability of Multiple Choice Benchmarks with Consistency Evaluation and Altered Answer Choices
In this work we present the Consistency-Rebalanced Accuracy (CoRA) metric, improving the reliability of Large Language Model (LLM) scores computed on multiple choice (MC) benchmarks. Our metric explores the response consistency of the LLMs, taking advantage of synthetically-generated questions with altered answer choices. With two intermediate scores, i.e. Bare-Minimum-Consistency Accuracy (BMCA) and Consistency Index (CI), CoRA is computed by adjusting the multiple-choice question answering (MCQA) scores to better reflect the level of consistency of the LLM. We present evaluations in different benchmarks using diverse LLMs, and not only demonstrate that LLMs can present low response consistency even when they present high MCQA scores, but also that CoRA can successfully scale down the scores of inconsistent models.
☆ FLAWS: A Benchmark for Error Identification and Localization in Scientific Papers
The identification and localization of errors is a core task in peer review, yet the exponential growth of scientific output has made it increasingly difficult for human reviewers to reliably detect errors given the limited pool of experts. Recent advances in Large Language Models (LLMs) have sparked interest in their potential to support such evaluation tasks, from academic peer review to automated scientific assessment. However, despite the growing use of LLMs in review systems, their capabilities to pinpoint errors remain underexplored. In this work, we introduce Fault Localization Across Writing in Science (FLAWS), an automated benchmark consisting of 713 paper-error pairs designed to evaluate how effectively LLMs detect errors that undermine key claims in research papers. We construct the benchmark by systematically inserting claim-invalidating errors into peer-reviewed papers using LLMs, paired with an automated evaluation metric that measures whether models can identify and localize these errors. Developing such a benchmark presents unique challenges that we overcome: ensuring that the inserted errors are well-defined, challenging, and relevant to the content of the paper, avoiding artifacts that would make identification trivial, and designing a scalable, automated evaluation metric. On the resulting benchmark, we evaluate five frontier LLMs: Claude Sonnet 4.5, DeepSeek Reasoner v3.1, Gemini 2.5 Pro, GPT 5, and Grok 4. Among these, GPT 5 is the top-performing model, achieving 39.1% identification accuracy when k=10, where k is the number of top-ranked error text candidates generated by the LLM.
comment: 30 pages, 12 tables, 2 figures
☆ Revisiting Generalization Across Difficulty Levels: It's Not So Easy
We investigate how well large language models (LLMs) generalize across different task difficulties, a key question for effective data curation and evaluation. Existing research is mixed regarding whether training on easier or harder data leads to better results, and whether those gains come on easier or harder test data. We address this question by conducting a systematic evaluation of LLMs' generalization across models, datasets, and fine-grained groups of example difficulty. We rank examples in six datasets using the outputs of thousands of different LLMs and Item Response Theory (IRT), a well-established difficulty metric in educational testing. Unlike prior work, our difficulty ratings are therefore determined solely by the abilities of many different LLMs, excluding human opinions of difficulty. With a more objective, larger-scale, and finer-grained analysis, we show that cross-difficulty generalization is often limited; training on either easy or hard data cannot achieve consistent improvements across the full range of difficulties. These results show the importance of having a range of difficulties in both training and evaluation data for LLMs, and that taking shortcuts with respect to difficulty is risky.
☆ ToolOrchestra: Elevating Intelligence via Efficient Model and Tool Orchestration
Large language models are powerful generalists, yet solving deep and complex problems such as those of the Humanity's Last Exam (HLE) remains both conceptually challenging and computationally expensive. We show that small orchestrators managing other models and a variety of tools can both push the upper bound of intelligence and improve efficiency in solving difficult agentic tasks. We introduce ToolOrchestra, a method for training small orchestrators that coordinate intelligent tools. ToolOrchestra explicitly uses reinforcement learning with outcome-, efficiency-, and user-preference-aware rewards. Using ToolOrchestra, we produce Orchestrator, an 8B model that achieves higher accuracy at lower cost than previous tool-use agents while aligning with user preferences on which tools are to be used for a given query. On HLE, Orchestrator achieves a score of 37.1%, outperforming GPT-5 (35.1%) while being 2.5x more efficient. On tau2-Bench and FRAMES, Orchestrator surpasses GPT-5 by a wide margin while using only about 30% of the cost. Extensive analysis shows that Orchestrator achieves the best trade-off between performance and cost under multiple metrics, and generalizes robustly to unseen tools. These results demonstrate that composing diverse tools with a lightweight orchestration model is both more efficient and more effective than existing methods, paving the way for practical and scalable tool-augmented reasoning systems.
comment: 21 pages, 6 figures
☆ Matrix: Peer-to-Peer Multi-Agent Synthetic Data Generation Framework
Synthetic data has become increasingly important for training large language models, especially when real data is scarce, expensive, or privacy-sensitive. Many such generation tasks require coordinated multi-agent workflows, where specialized agents collaborate to produce data that is higher quality, more diverse, and structurally richer. However, existing frameworks for multi-agent synthesis often depend on a centralized orchestrator, creating scalability bottlenecks, or are hardcoded for specific domains, limiting flexibility. We present \textbf{Matrix}, a decentralized framework that represents both control and data flow as serialized messages passed through distributed queues. This peer-to-peer design eliminates the central orchestrator. Each task progresses independently through lightweight agents, while compute-intensive operations, such as LLM inference or containerized environments, are handled by distributed services. Built on Ray, Matrix scales to tens of thousands of concurrent agentic workflows and provides a modular, configurable design that enables easy adaptation to a wide range of data generation workflows. We evaluate Matrix across diverse synthesis scenarios, such as multi-agent collaborative dialogue, web-based reasoning data extraction, and tool-use trajectory generation in customer service environments. In all cases, Matrix achieves $2$--$15\times$ higher data generation throughput under identical hardware resources, without compromising output quality.
♻ ☆ AppSelectBench: Application-Level Tool Selection Benchmark
Computer Using Agents (CUAs) are increasingly equipped with external tools, enabling them to perform complex and realistic tasks. For CUAs to operate effectively, application selection, which refers to deciding which application to use before invoking fine-grained tools such as APIs, is a fundamental capability. It determines whether the agent initializes the correct environment, avoids orchestration confusion, and efficiently focuses on relevant context. However, existing benchmarks primarily assess fine-grained API selection, offering limited insight into whether models can reason across and choose between different applications. To fill this gap, we introduce AppSelectBench, a comprehensive benchmark for evaluating application selection in CUAs. AppSelectBench contains a novel user task generation pipeline that produces realistic, diverse, and semantically grounded user intents at scale, together with unified evaluation protocols covering random, heuristic, zero-shot, few-shot, and retrieval-augmented-settings. AppSelectBench covers one hundred widely used desktop applications and includes more than one hundred thousand realistic, diverse, and semantically grounded user tasks. Extensive experiments across both closed-source and open-source large language models reveal systematic strengths and weaknesses in inter-application reasoning, showing that even the most capable models still struggle to make consistent application choices. Together, these results establish AppSelectBench as a foundation for studying and advancing application level reasoning, an essential yet underexplored capability of intelligent CUAs. The source is available at https://microsoft.github.io/appselectbench/.
♻ ☆ Harvesting Textual and Contrastive Data from the HAL Publication Repository
Authorship attribution in natural language processing traditionally struggles to distinguish genuine stylistic signals from topical confounds. While contrastive learning approaches have addressed this by maximizing semantic overlap between positive pairs, creating large-scale datasets under strict topic constraints remains challenging. We introduce HALvest, a 17-billion-token multilingual corpus harvested from 778k open-access academic papers, and HALvest-Contrastive, a derived dataset designed to isolate stylometric signals through controlled topic variation. Unlike prior work that minimizes lexical overlap, we exploit natural topic drift between papers by the same author, treating residual lexical patterns as authorial fingerprints rather than noise. Comparing lexical baselines (BM25) against neural models trained on unrestricted (topic-rich) versus base (topic-decoupled) triplets, we demonstrate that models trained exclusively on topic-decoupled data achieve superior performance across all test conditions, outperforming both retrieval baselines and models exposed to topic-rich training data. Our analysis reveals that while lexical signals provide substantial performance gains for keyword-driven methods, neural architectures learn robust stylometric representations that plateau with moderate context length, suggesting they capture distributional style beyond surface-level tokens. Both datasets and code are publicly available.
comment: New dataset version with only the contrastive learning data
♻ ☆ PoETa v2: Toward More Robust Evaluation of Large Language Models in Portuguese
Large Language Models (LLMs) exhibit significant variations in performance across linguistic and cultural contexts, underscoring the need for systematic evaluation in diverse languages. In this work, we present the most extensive evaluation of LLMs for the Portuguese language to date. Leveraging our newly introduced PoETa v2 benchmark -- a comprehensive suite of over 40 tasks in Portuguese -- we assess more than 20 models covering a broad spectrum of training scales and computational resources. Our study reveals how computational investment and language-specific adaptation impact performance in Portuguese, while also analyzing performance gaps in comparison to equivalent tasks in English. Through this benchmark and analysis, PoETa v2 lays the groundwork for future research on Portuguese language modeling and evaluation. The benchmark is available at https://github.com/PoETaV2/PoETaV2.
♻ ☆ Strong Memory, Weak Control: An Empirical Study of Executive Functioning in LLMs
Working memory, or the ability to hold and manipulate information in the mind, is a critical component of human intelligence and executive functioning. It is correlated with performance on various cognitive tasks, including measures of fluid intelligence, which encompasses reasoning and problem solving. We use a comprehensive set of classic working memory tasks to estimate the working memory capacity of large language models (LLMs). We find that in most cases, LLMs exceed normative human scores. However, we do not find that the increased capacity of working memory is associated with higher performance on other executive functioning tasks or problem solving benchmarks. These results suggest that LLMs may have deficits in attentional control and cognitive flexibility, which result in difficulties with inhibiting automatic responses and adapting to shifting information. Our findings suggest that current reasoning models have mixed results in compensating for these deficits.
♻ ☆ ChiKhaPo: A Large-Scale Multilingual Benchmark for Evaluating Lexical Comprehension and Generation in Large Language Models
Existing benchmarks for large language models (LLMs) are largely restricted to high- or mid-resource languages, and often evaluate performance on higher-order tasks in reasoning and generation. However, plenty of evidence points to the fact that LLMs lack basic linguistic competence in the vast majority of the world's 3800+ written languages. We introduce ChiKhaPo, consisting of 8 subtasks of varying difficulty designed to evaluate the lexical comprehension and generation abilities of generative models. ChiKhaPo draws on existing lexicons, monolingual data, and bitext, and provides coverage for 2700+ languages for 2 subtasks, surpassing any existing benchmark in terms of language coverage. We further show that 6 SOTA models struggle on our benchmark, and discuss the factors contributing to performance scores, including language family, language resourcedness, task, and comprehension versus generation directions. With ChiKhaPo, we hope to enable and encourage the massively multilingual benchmarking of LLMs.
♻ ☆ Beyond the Rubric: Cultural Misalignment in LLM Benchmarks for Sexual and Reproductive Health
Large Language Models (LLMs) have been positioned as having the potential to expand access to health information in the Global South, yet their evaluation remains heavily dependent on benchmarks designed around Western norms. We present insights from a preliminary benchmarking exercise with a chatbot for sexual and reproductive health (SRH) for an underserved community in India. We evaluated using HealthBench, a benchmark for conversational health models by OpenAI. We extracted 637 SRH queries from the dataset and evaluated on the 330 single-turn conversations. Responses were evaluated using HealthBench's rubric-based automated grader, which rated responses consistently low. However, qualitative analysis by trained annotators and public health experts revealed that many responses were actually culturally appropriate and medically accurate. We highlight recurring issues, particularly a Western bias, such as for legal framing and norms (e.g., breastfeeding in public), diet assumptions (e.g., fish safe to eat during pregnancy), and costs (e.g., insurance models). Our findings demonstrate the limitations of current benchmarks in capturing the effectiveness of systems built for different cultural and healthcare contexts. We argue for the development of culturally adaptive evaluation frameworks that meet quality standards while recognizing needs of diverse populations.
comment: https://github.com/Sumon/healthbench-srh-eval/
♻ ☆ AdvancedIF: Rubric-Based Benchmarking and Reinforcement Learning for Advancing LLM Instruction Following
Recent progress in large language models (LLMs) has led to impressive performance on a range of tasks, yet advanced instruction following (IF)-especially for complex, multi-turn, and system-prompted instructions-remains a significant challenge. Rigorous evaluation and effective training for such capabilities are hindered by the lack of high-quality, human-annotated benchmarks and reliable, interpretable reward signals. In this work, we introduce AdvancedIF (we will release this benchmark soon), a comprehensive benchmark featuring over 1,600 prompts and expert-curated rubrics that assess LLMs ability to follow complex, multi-turn, and system-level instructions. We further propose RIFL (Rubric-based Instruction-Following Learning), a novel post-training pipeline that leverages rubric generation, a finetuned rubric verifier, and reward shaping to enable effective reinforcement learning for instruction following. Extensive experiments demonstrate that RIFL substantially improves the instruction-following abilities of LLMs, achieving a 6.7% absolute gain on AdvancedIF and strong results on public benchmarks. Our ablation studies confirm the effectiveness of each component in RIFL. This work establishes rubrics as a powerful tool for both training and evaluating advanced IF in LLMs, paving the way for more capable and reliable AI systems.
♻ ☆ TimeViper: A Hybrid Mamba-Transformer Vision-Language Model for Efficient Long Video Understanding
We introduce TimeViper, a hybrid vision-language model designed to tackle challenges of long video understanding. Processing long videos demands both an efficient model architecture and an effective mechanism for handling extended temporal contexts. To this end, TimeViper adopts a hybrid Mamba-Transformer backbone that combines the efficiency of state-space models with the expressivity of attention mechanisms. Through this hybrid design, we reveal the vision-to-text information aggregation phenomenon, where information progressively flows from vision tokens to text tokens across increasing LLM depth, resulting in severe vision token redundancy. Motivated by this observation, we propose TransV, a token information transfer module that transfers and compresses vision tokens into instruction tokens while maintaining multimodal understanding capabilities. This design enables TimeViper to process hour-long videos exceeding 10,000 frames. Extensive experiments across multiple benchmarks demonstrate that TimeViper competes with state-of-the-art models while extending frame numbers. We further analyze attention behaviors of both Mamba and Transformer layers, offering new insights into hybrid model interpretability. This work represents an initial step towards developing, interpreting, and compressing hybrid Mamba-Transformer architectures.
comment: Project page: https://xuboshen.github.io/TimeViper; Code: https://github.com/xiaomi-research/timeviper
Information Retrieval 11
☆ RIA: A Ranking-Infused Approach for Optimized listwise CTR Prediction
Reranking improves recommendation quality by modeling item interactions. However, existing methods often decouple ranking and reranking, leading to weak listwise evaluation models that suffer from combinatorial sparsity and limited representational power under strict latency constraints. In this paper, we propose RIA (Ranking-Infused Architecture), a unified, end-to-end framework that seamlessly integrates pointwise and listwise evaluation. RIA introduces four key components: (1) the User and Candidate DualTransformer (UCDT) for fine-grained user-item-context modeling; (2) the Context-aware User History and Target (CUHT) module for position-sensitive preference learning; (3) the Listwise Multi-HSTU (LMH) module to capture hierarchical item dependencies; and (4) the Embedding Cache (EC) module to bridge efficiency and effectiveness during inference. By sharing representations across ranking and reranking, RIA enables rich contextual knowledge transfer while maintaining low latency. Extensive experiments show that RIA outperforms state-of-the-art models on both public and industrial datasets, achieving significant gains in AUC and LogLoss. Deployed in Meituan advertising system, RIA yields a +1.69% improvement in Click-Through Rate (CTR) and a +4.54% increase in Cost Per Mille (CPM) in online A/B tests.
☆ FITRep: Attention-Guided Item Representation via MLLMs
Online platforms usually suffer from user experience degradation due to near-duplicate items with similar visuals and text. While Multimodal Large Language Models (MLLMs) enable multimodal embedding, existing methods treat representations as black boxes, ignoring structural relationships (e.g., primary vs. auxiliary elements), leading to local structural collapse problem. To address this, inspired by Feature Integration Theory (FIT), we propose FITRep, the first attention-guided, white-box item representation framework for fine-grained item deduplication. FITRep consists of: (1) Concept Hierarchical Information Extraction (CHIE), using MLLMs to extract hierarchical semantic concepts; (2) Structure-Preserving Dimensionality Reduction (SPDR), an adaptive UMAP-based method for efficient information compression; and (3) FAISS-Based Clustering (FBC), a FAISS-based clustering that assigns each item a unique cluster id using FAISS. Deployed on Meituan's advertising system, FITRep achieves +3.60% CTR and +4.25% CPM gains in online A/B tests, demonstrating both effectiveness and real-world impact.
☆ Beyond Patch Aggregation: 3-Pass Pyramid Indexing for Vision-Enhanced Document Retrieval
Document centric RAG pipelines usually begin with OCR, followed by brittle heuristics for chunking, table parsing, and layout reconstruction. These text first workflows are costly to maintain, sensitive to small layout shifts, and often lose the spatial cues that contain the answer. Vision first retrieval has emerged as a strong alternative. By operating directly on page images, systems like ColPali and ColQwen preserve structure and reduce pipeline complexity while achieving strong benchmark performance. However, these late interaction models tie retrieval to a specific vision backbone and require storing hundreds of patch embeddings per page, creating high memory overhead and complicating large scale deployment. We introduce VisionRAG, a multimodal retrieval system that is OCR free and model agnostic. VisionRAG indexes documents directly as images, preserving layout, tables, and spatial cues, and builds semantic vectors without committing to a specific extraction. Our three pass pyramid indexing framework creates vectors using global page summaries, section headers, visual hotspots, and fact level cues. These summaries act as lightweight retrieval surrogates. At query time, VisionRAG retrieves the most relevant pages using the pyramid index, then forwards the raw page image encoded as base64 to a multimodal LLM for final question answering. During retrieval, reciprocal rank fusion integrates signals across the pyramid to produce robust ranking. VisionRAG stores only 17 to 27 vectors per page, matching the efficiency of patch based methods while staying flexible across multimodal encoders. On financial document benchmarks, it achieves 0.8051 accuracy at 10 on FinanceBench and 0.9629 recall at 100 on TAT DQA. These results show that OCR free, summary guided multimodal retrieval is a practical and scalable alternative to traditional text extraction pipelines.
♻ ☆ Yesterday's News: Benchmarking Multi-Dimensional Out-of-Distribution Generalization of Misinformation Detection Models
This article introduces misinfo-general, a benchmark dataset for evaluating misinformation models' ability to perform out-of-distribution generalization. Misinformation changes rapidly, much more quickly than moderators can annotate at scale, resulting in a shift between the training and inference data distributions. As a result, misinformation detectors need to be able to perform out-of-distribution generalization, an attribute they currently lack. Our benchmark uses distant labelling to enable simulating covariate shifts in misinformation content. We identify time, event, topic, publisher, political bias, misinformation type as important axes for generalization, and we evaluate a common class of baseline models on each. Using article metadata, we show how this model fails desiderata, which is not necessarily obvious from classification metrics. Finally, we analyze properties of the data to ensure limited presence of modelling shortcuts. We make the dataset and accompanying code publicly available: https://github.com/ioverho/misinfo-general
comment: Accepted for publication in Computational Linguistics on November 23, 2025. This is the pre-MIT Press publication version
♻ ☆ From Limited Labels to Open Domains:An Efficient Learning Method for Drone-view Geo-Localization
Traditional supervised drone-view geo-localization (DVGL) methods heavily depend on paired training data and encounter difficulties in learning cross-view correlations from unpaired data. Moreover, when deployed in a new domain, these methods require obtaining the new paired data and subsequent retraining for model adaptation, which significantly increases computational overhead. Existing unsupervised methods have enabled to generate pseudo-labels based on cross-view similarity to infer the pairing relationships. However, geographical similarity and spatial continuity often cause visually analogous features at different geographical locations. The feature confusion compromises the reliability of pseudo-label generation, where incorrect pseudo-labels drive negative optimization. Given these challenges inherent in both supervised and unsupervised DVGL methods, we propose a novel cross-domain invariant knowledge transfer network (CDIKTNet) with limited supervision, whose architecture consists of a cross-domain invariance sub-network (CDIS) and a cross-domain transfer sub-network (CDTS). This architecture facilitates a closed-loop framework for invariance feature learning and knowledge transfer. The CDIS is designed to learn cross-view structural and spatial invariance from a small amount of paired data that serves as prior knowledge. It endows the shared feature space of unpaired data with similar implicit cross-view correlations at initialization, which alleviates feature confusion. Based on this, the CDTS employs dual-path contrastive learning to further optimize each subspace while preserving consistency in a shared feature space. Extensive experiments demonstrate that CDIKTNet achieves state-of-the-art performance under full supervision compared with those supervised methods, and further surpasses existing unsupervised methods in both few-shot and cross-domain initialization.
♻ ☆ CLLMRec: LLM-powered Cognitive-Aware Concept Recommendation via Semantic Alignment and Prerequisite Knowledge Distillation
The growth of Massive Open Online Courses (MOOCs) presents significant challenges for personalized learning, where concept recommendation is crucial. Existing approaches typically rely on heterogeneous information networks or knowledge graphs to capture conceptual relationships, combined with knowledge tracing models to assess learners' cognitive states. However, these methods face significant limitations due to their dependence on high-quality structured knowledge graphs, which are often scarce in real-world educational scenarios. To address this fundamental challenge, this paper proposes CLLMRec, a novel framework that leverages Large Language Models through two synergistic technical pillars: Semantic Alignment and Prerequisite Knowledge Distillation. The Semantic Alignment component constructs a unified representation space by encoding unstructured textual descriptions of learners and concepts. The Prerequisite Knowledge Distillation paradigm employs a teacher-student architecture, where a large teacher LLM (implemented as the Prior Knowledge Aware Component) extracts conceptual prerequisite relationships from its internalized world knowledge and distills them into soft labels to train an efficient student ranker. Building upon these foundations, our framework incorporates a fine-ranking mechanism that explicitly models learners' real-time cognitive states through deep knowledge tracing, ensuring recommendations are both structurally sound and cognitively appropriate. Extensive experiments on two real-world MOOC datasets demonstrate that CLLMRec significantly outperforms existing baseline methods across multiple evaluation metrics, validating its effectiveness in generating truly cognitive-aware and personalized concept recommendations without relying on explicit structural priors.
♻ ☆ Wavelet Enhanced Adaptive Frequency Filter for Sequential Recommendation AAAI 2026
Sequential recommendation has garnered significant attention for its ability to capture dynamic preferences by mining users' historical interaction data. Given that users' complex and intertwined periodic preferences are difficult to disentangle in the time domain, recent research is exploring frequency domain analysis to identify these hidden patterns. However, current frequency-domain-based methods suffer from two key limitations: (i) They primarily employ static filters with fixed characteristics, overlooking the personalized nature of behavioral patterns; (ii) While the global discrete Fourier transform excels at modeling long-range dependencies, it can blur non-stationary signals and short-term fluctuations. To overcome these limitations, we propose a novel method called Wavelet Enhanced Adaptive Frequency Filter for Sequential Recommendation. Specifically, it consists of two vital modules: dynamic frequency-domain filtering and wavelet feature enhancement. The former is used to dynamically adjust filtering operations based on behavioral sequences to extract personalized global information, and the latter integrates wavelet transform to reconstruct sequences, enhancing blurred non-stationary signals and short-term fluctuations. Finally, these two modules work to achieve comprehensive performance and efficiency optimization in long sequential recommendation scenarios. Extensive experiments on four widely-used benchmark datasets demonstrate the superiority of our work.
comment: Accepted by AAAI 2026
♻ ☆ The Structure-Content Trade-off in Knowledge Graph Retrieval
Large Language Models (LLMs) increasingly rely on knowledge graphs for factual reasoning, yet how retrieval design shapes their performance remains unclear. We examine how question decomposition changes the retrieved subgraph's content and structure. Using a hybrid retrieval function that controls the importance of initial question and subquestions, we show that subquestion-based retrieval improves content precision, but yields disjoint subgraphs, while question-based retrieval maintains structure at the cost of relevance. Optimal performance arises between these extremes, revealing that balancing retrieval content and structure is key to effective LLM reasoning over structured knowledge.
♻ ☆ LISRec: Modeling User Preferences with Learned Item Shortcuts for Sequential Recommendation
User-item interaction histories are pivotal for sequential recommendation systems but often include noise, such as unintended clicks or actions that fail to reflect genuine user preferences. To address this, we propose Learned Item Shortcuts for Sequential Recommendation (LISRec), a novel framework that explicitly captures stable preferences by extracting personalized semantic shortcuts from historical interactions. LISRec first learns task-agnostic semantic representations to assess item similarities, then constructs a personalized semantic graph over all user-interacted items. By identifying the maximal semantic connectivity subset within this graph, LISRec selects the most representative items as semantic shortcuts to guide user preference modeling. This focused representation filters out irrelevant actions while preserving the diversity of genuine interests. Experimental results on the Yelp and Amazon Product datasets illustrate that LISRec achieves a 13% improvement over baseline recommendation models, showing its effectiveness in capturing stable user interests. Further analysis indicates that shortcut-based histories better capture user preferences, making more accurate and relevant recommendations. All codes and datasets are available at https://github.com/NEUIR/LISRec.
♻ ☆ Efficient Model-Agnostic Continual Learning for Next POI Recommendation ICDE2026
Next point-of-interest (POI) recommendation improves personalized location-based services by predicting users' next destinations based on their historical check-ins. However, most existing methods rely on static datasets and fixed models, limiting their ability to adapt to changes in user behavior over time. To address this limitation, we explore a novel task termed continual next POI recommendation, where models dynamically adapt to evolving user interests through continual updates. This task is particularly challenging, as it requires capturing shifting user behaviors while retaining previously learned knowledge. Moreover, it is essential to ensure efficiency in update time and memory usage for real-world deployment. To this end, we propose GIRAM (Generative Key-based Interest Retrieval and Adaptive Modeling), an efficient, model-agnostic framework that integrates context-aware sustained interests with recent interests. GIRAM comprises four components: (1) an interest memory to preserve historical preferences; (2) a context-aware key encoding module for unified interest key representation; (3) a generative key-based retrieval module to identify diverse and relevant sustained interests; and (4) an adaptive interest update and fusion module to update the interest memory and balance sustained and recent interests. In particular, GIRAM can be seamlessly integrated with existing next POI recommendation models. Experiments on three real-world datasets demonstrate that GIRAM consistently outperforms state-of-the-art methods while maintaining high efficiency in both update time and memory consumption.
comment: Accepted by ICDE2026
♻ ☆ Have We Really Understood Collaborative Information? An Empirical Investigation WSDM 2026
Collaborative information serves as the cornerstone of recommender systems which typically focus on capturing it from user-item interactions to deliver personalized services. However, current understanding of this crucial resource remains limited. Specifically, a quantitative definition of collaborative information is missing, its manifestation within user-item interactions remains unclear, and its impact on recommendation performance is largely unknown. To bridge this gap, this work conducts a systematic investigation of collaborative information. We begin by clarifying collaborative information in terms of item co-occurrence patterns, identifying its main characteristics, and presenting a quantitative definition. We then estimate the distribution of collaborative information from several aspects, shedding light on how collaborative information is structured in practice. Furthermore, we evaluate the impact of collaborative information on the performance of various recommendation algorithms. Finally, we highlight challenges in effectively capturing collaborative information and outlook promising directions for future research. By establishing an empirical framework, we uncover many insightful observations that advance our understanding of collaborative information and offer valuable guidelines for developing more effective recommender systems.
comment: This work has been accepted by WSDM 2026
Information Retrieval 17
☆ Generating Querying Code from Text for Multi-Modal Electronic Health Record
Electronic health records (EHR) contain extensive structured and unstructured data, including tabular information and free-text clinical notes. Querying relevant patient information often requires complex database operations, increasing the workload for clinicians. However, complex table relationships and professional terminology in EHRs limit the query accuracy. In this work, we construct a publicly available dataset, TQGen, that integrates both \textbf{T}ables and clinical \textbf{T}ext for natural language-to-query \textbf{Gen}eration. To address the challenges posed by complex medical terminology and diverse types of questions in EHRs, we propose TQGen-EHRQuery, a framework comprising a medical knowledge module and a questions template matching module. For processing medical text, we introduced the concept of a toolset, which encapsulates the text processing module as a callable tool, thereby improving processing efficiency and flexibility. We conducted extensive experiments to assess the effectiveness of our dataset and workflow, demonstrating their potential to enhance information querying in EHR systems.
☆ E-GEO: A Testbed for Generative Engine Optimization in E-Commerce
With the rise of large language models (LLMs), generative engines are becoming powerful alternatives to traditional search, reshaping retrieval tasks. In e-commerce, for instance, conversational shopping agents now guide consumers to relevant products. This shift has created the need for generative engine optimization (GEO)--improving content visibility and relevance for generative engines. Yet despite its growing importance, current GEO practices are ad hoc, and their impacts remain poorly understood, especially in e-commerce. We address this gap by introducing E-GEO, the first benchmark built specifically for e-commerce GEO. E-GEO contains over 7,000 realistic, multi-sentence consumer product queries paired with relevant listings, capturing rich intent, constraints, preferences, and shopping contexts that existing datasets largely miss. Using this benchmark, we conduct the first large-scale empirical study of e-commerce GEO, evaluating 15 common rewriting heuristics and comparing their empirical performance. To move beyond heuristics, we further formulate GEO as a tractable optimization problem and develop a lightweight iterative prompt-optimization algorithm that can significantly outperform these baselines. Surprisingly, the optimized prompts reveal a stable, domain-agnostic pattern--suggesting the existence of a "universally effective" GEO strategy. Our data and code are publicly available at https://github.com/psbagga17/E-GEO.
☆ Kleinkram: Open Robotic Data Management
We introduce Kleinkram, a free and open-source system designed to solve the challenge of managing massive, unstructured robotic datasets. Designed as a modular, on-premises cloud solution, Kleinkram enables scalable storage, indexing, and sharing of datasets, ranging from individual experiments to large-scale research collections. Kleinkram natively integrates with standard formats such as ROS bags and MCAP and utilises S3-compatible storage for flexibility. Beyond storage, Kleinkram features an integrated "Action Runner" that executes customizable Docker-based workflows for data validation, curation, and benchmarking. Kleinkram has successfully managed over 30 TB of data from diverse robotic systems, streamlining the research lifecycle through a modern web interface and a robust Command Line Interface (CLI).
comment: for associated source code, see https://github.com/leggedrobotics/kleinkram
☆ HHFT: Hierarchical Heterogeneous Feature Transformer for Recommendation Systems
We propose HHFT (Hierarchical Heterogeneous Feature Transformer), a Transformer-based architecture tailored for industrial CTR prediction. HHFT addresses the limitations of DNN through three key designs: (1) Semantic Feature Partitioning: Grouping heterogeneous features (e.g. user profile, item information, behaviour sequennce) into semantically coherent blocks to preserve domain-specific information; (2) Heterogeneous Transformer Encoder: Adopting block-specific QKV projections and FFNs to avoid semantic confusion between distinct feature types; (3) Hiformer Layer: Capturing high-order interactions across features. Our findings reveal that Transformers significantly outperform DNN baselines, achieving a +0.4% improvement in CTR AUC at scale. We have successfully deployed the model on Taobao's production platform, observing a significant uplift in key business metrics, including a +0.6% increase in Gross Merchandise Value (GMV).
☆ HKRAG: Holistic Knowledge Retrieval-Augmented Generation Over Visually-Rich Documents
Existing multimodal Retrieval-Augmented Generation (RAG) methods for visually rich documents (VRD) are often biased towards retrieving salient knowledge(e.g., prominent text and visual elements), while largely neglecting the critical fine-print knowledge(e.g., small text, contextual details). This limitation leads to incomplete retrieval and compromises the generator's ability to produce accurate and comprehensive answers. To bridge this gap, we propose HKRAG, a new holistic RAG framework designed to explicitly capture and integrate both knowledge types. Our framework features two key components: (1) a Hybrid Masking-based Holistic Retriever that employs explicit masking strategies to separately model salient and fine-print knowledge, ensuring a query-relevant holistic information retrieval; and (2) an Uncertainty-guided Agentic Generator that dynamically assesses the uncertainty of initial answers and actively decides how to integrate the two distinct knowledge streams for optimal response generation. Extensive experiments on open-domain visual question answering benchmarks show that HKRAG consistently outperforms existing methods in both zero-shot and supervised settings, demonstrating the critical importance of holistic knowledge retrieval for VRD understanding.
☆ Enhancing Sequential Recommendation with World Knowledge from Large Language Models
Sequential Recommendation System~(SRS) has become pivotal in modern society, which predicts subsequent actions based on the user's historical behavior. However, traditional collaborative filtering-based sequential recommendation models often lead to suboptimal performance due to the limited information of their collaborative signals. With the rapid development of LLMs, an increasing number of works have incorporated LLMs' world knowledge into sequential recommendation. Although they achieve considerable gains, these approaches typically assume the correctness of LLM-generated results and remain susceptible to noise induced by LLM hallucinations. To overcome these limitations, we propose GRASP (Generation Augmented Retrieval with Holistic Attention for Sequential Prediction), a flexible framework that integrates generation augmented retrieval for descriptive synthesis and similarity retrieval, and holistic attention enhancement which employs multi-level attention to effectively employ LLM's world knowledge even with hallucinations and better capture users' dynamic interests. The retrieved similar users/items serve as auxiliary contextual information for the later holistic attention enhancement module, effectively mitigating the noisy guidance of supervision-based methods. Comprehensive evaluations on two public benchmarks and one industrial dataset reveal that GRASP consistently achieves state-of-the-art performance when integrated with diverse backbones. The code is available at: https://anonymous.4open.science/r/GRASP-SRS.
☆ SEDA: A Self-Adapted Entity-Centric Data Augmentation for Boosting Gird-based Discontinuous NER Models
Named Entity Recognition (NER) is a critical task in natural language processing, yet it remains particularly challenging for discontinuous entities. The primary difficulty lies in text segmentation, as traditional methods often missegment or entirely miss cross-sentence discontinuous entities, significantly affecting recognition accuracy. Therefore, we aim to address the segmentation and omission issues associated with such entities. Recent studies have shown that grid-tagging methods are effective for information extraction due to their flexible tagging schemes and robust architectures. Building on this, we integrate image data augmentation techniques, such as cropping, scaling, and padding, into grid-based models to enhance their ability to recognize discontinuous entities and handle segmentation challenges. Experimental results demonstrate that traditional segmentation methods often fail to capture cross-sentence discontinuous entities, leading to decreased performance. In contrast, our augmented grid models achieve notable improvements. Evaluations on the CADEC, ShARe13, and ShARe14 datasets show F1 score gains of 1-2.5% overall and 3.7-8.4% for discontinuous entities, confirming the effectiveness of our approach.
comment: 9 pages, 5 figures
☆ Towards A Tri-View Diffusion Framework for Recommendation KDD2026
Diffusion models (DMs) have recently gained significant interest for their exceptional potential in recommendation tasks. This stems primarily from their prominent capability in distilling, modeling, and generating comprehensive user preferences. However, previous work fails to examine DMs in recommendation tasks through a rigorous lens. In this paper, we first experimentally investigate the completeness of recommender models from a thermodynamic view. We reveal that existing DM-based recommender models operate by maximizing the energy, while classic recommender models operate by reducing the entropy. Based on this finding, we propose a minimalistic diffusion framework that incorporates both factors via the maximization of Helmholtz free energy. Meanwhile, to foster the optimization, our reverse process is armed with a well-designed denoiser to maintain the inherent anisotropy, which measures the user-item cross-correlation in the context of bipartite graphs. Finally, we adopt an Acceptance-Rejection Gumbel Sampling Process (AR-GSP) to prioritize the far-outnumbered unobserved interactions for model robustness. AR-GSP integrates an acceptance-rejection sampling to ensure high-quality hard negative samples for general recommendation tasks, and a timestep-dependent Gumbel Softmax to handle an adaptive sampling strategy for diffusion models. Theoretical analyses and extensive experiments demonstrate that our proposed framework has distinct superiority over baselines in terms of accuracy and efficiency.
comment: 13 pages, 11 figures, accepted by KDD2026 (First Cycle)
☆ Invisible in Search? Auditing Aesthetic Bias in the Visual Representation of Holocaust Victims on Google
Information retrieval systems, such as search engines, increasingly shape the representation of the past and present states of social reality. Despite their importance, these systems face challenges in dealing with the ethical aspects of representation due to various forms of bias, including aesthetic bias that perpetuates hegemonic patterns of representation. While most research on aesthetic bias has examined it in the context of current societal issues, it is also crucial for historical representation, particularly of sensitive subjects such as historical atrocities. To address this gap, we conduct a comparative audit of the visual representation of Holocaust victims on Google. We find that Google tends to propagate a male-dominated representation of Holocaust victims with an emphasis on atrocity context, risking rendering invisible gender-specific suffering and decreasing potential for nurturing empathy. We also observe a variation in representation across geographic locations, suggesting that search algorithms may produce their own aesthetic of victimhood.
comment: 22 pages
☆ Adaptive Knowledge Transfer for Cross-Disciplinary Cold-Start Knowledge Tracing
Cross-Disciplinary Cold-start Knowledge Tracing (CDCKT) faces a critical challenge: insufficient student interaction data in the target discipline prevents effective knowledge state modeling and performance prediction. Existing cross-disciplinary methods rely on overlapping entities between disciplines for knowledge transfer through simple mapping functions, but suffer from two key limitations: (1) overlapping entities are scarce in real-world scenarios, and (2) simple mappings inadequately capture cross-disciplinary knowledge complexity. To overcome these challenges, we propose Mixed of Experts and Adversarial Generative Network-based Cross-disciplinary Cold-start Knowledge Tracing Framework. Our approach consists of three key components: First, we pre-train a source discipline model and cluster student knowledge states into K categories. Second, these cluster attributes guide a mixture-of-experts network through a gating mechanism, serving as a cross-domain mapping bridge. Third, an adversarial discriminator enforces feature separation by pulling same-attribute student features closer while pushing different-attribute features apart, effectively mitigating small-sample limitations. We validate our method's effectiveness across 20 extreme cross-disciplinary cold-start scenarios.
comment: 10 pages, 5 figures
☆ Popularity Bias Alignment Estimates
We are extending Popularity Bias Memorization theorem from arXiv:archive/2404.12008 in several directions. We extend it to arbitrary degree distributions and also prove both upper and lower estimates for the alignment with top-k singular hyperspace.
☆ $\text{R}^2\text{R}$: A Route-to-Rerank Post-Training Framework for Multi-Domain Decoder-Only Rerankers
Decoder-only rerankers are central to Retrieval-Augmented Generation (RAG). However, generalist models miss domain-specific nuances in high-stakes fields like finance and law, and naive fine-tuning causes surface-form overfitting and catastrophic forgetting. To address this challenge, we introduce R2R, a domain-aware framework that combines dynamic expert routing with a two-stage training strategy, Entity Abstraction for Generalization (EAG). EAG introduces a counter-shortcut mechanism by masking the most predictive surface cues, forcing the reranker to learn domain-invariant relevance patterns rather than memorizing dataset-specific entities. To efficiently activate domain experts, R2R employs a lightweight Latent Semantic Router that probes internal representations from the frozen backbone decoder to select the optimal LoRA expert per query. Extensive experiments across different reranker backbones and diverse domains (legal, medical, and financial) demonstrate that R2R consistently surpasses generalist and single-domain fine-tuned baselines. Our results confirm that R2R is a model-agnostic and modular approach to domain specialization with strong cross-domain robustness.
comment: 13 pages, including 3 figures and 3 tables
☆ The 2nd Workshop on Human-Centered Recommender Systems
Recommender systems shape how people discover information, form opinions, and connect with society. Yet, as their influence grows, traditional metrics, e.g., accuracy, clicks, and engagement, no longer capture what truly matters to humans. The workshop on Human-Centered Recommender Systems (HCRS) calls for a paradigm shift from optimizing engagement toward designing systems that truly understand, involve, and benefit people. It brings together researchers in recommender systems, human-computer interaction, AI safety, and social computing to explore how human values, e.g., trust, safety, fairness, transparency, and well-being, can be integrated into recommendation processes. Centered around three thematic axes-Human Understanding, Human Involvement, and Human Impact-HCRS features keynotes, panels, and papers covering topics from LLM-based interactive recommenders to societal welfare optimization. By fostering interdisciplinary collaboration, HCRS aims to shape the next decade of responsible and human-aligned recommendation research.
LLM-EDT: Large Language Model Enhanced Cross-domain Sequential Recommendation with Dual-phase Training
Cross-domain Sequential Recommendation (CDSR) has been proposed to enrich user-item interactions by incorporating information from various domains. Despite current progress, the imbalance issue and transition issue hinder further development of CDSR. The former one presents a phenomenon that the interactions in one domain dominate the entire behavior, leading to difficulty in capturing the domain-specific features in the other domain. The latter points to the difficulty in capturing users' cross-domain preferences within the mixed interaction sequence, resulting in poor next-item prediction performance for specific domains. With world knowledge and powerful reasoning ability, Large Language Models (LLMs) partially alleviate the above issues by performing as a generator and an encoder. However, current LLMs-enhanced CDSR methods are still under exploration, which fail to recognize the irrelevant noise and rough profiling problems. Thus, to make peace with the aforementioned challenges, we proposed an LLMs Enhanced Cross-domain Sequential Recommendation with Dual-phase Training ({LLM-EDT}). To address the imbalance issue while introducing less irrelevant noise, we first propose the transferable item augmenter to adaptively generate possible cross-domain behaviors for users. Then, to alleviate the transition issue, we introduce a dual-phase training strategy to empower the domain-specific thread with a domain-shared background. As for the rough profiling problem, we devise a domain-aware profiling module to summarize the user's preference in each domain and adaptively aggregate them to generate comprehensive user profiles. The experiments on three public datasets validate the effectiveness of our proposed LLM-EDT. To ease reproducibility, we have released the detailed code online at {https://anonymous.4open.science/r/LLM-EDT-583F}.
♻ ☆ Personalized Image Generation for Recommendations Beyond Catalogs
Personalization is central to human-AI interaction, yet current diffusion-based image generation systems remain largely insensitive to user diversity. Existing attempts to address this often rely on costly paired preference data or introduce latency through Large Language Models. In this work, we introduce REBECA (REcommendations BEyond CAtalogs), a lightweight and scalable framework for personalized image generation that learns directly from implicit feedback signals such as likes, ratings, and clicks. Instead of fine-tuning the underlying diffusion model, REBECA employs a two-stage process: training a conditional diffusion model to sample user- and rating-specific image embeddings, which are subsequently decoded into images using a pretrained diffusion backbone. This approach enables efficient, fine-tuning-free personalization across large user bases. We rigorously evaluate REBECA on real-world datasets, proposing a novel statistical personalization verifier and a permutation-based hypothesis test to assess preference alignment. Our results demonstrate that REBECA consistently produces high-fidelity images tailored to individual tastes, outperforming baselines while maintaining computational efficiency.
♻ ☆ Modeling Item-Level Dynamic Variability with Residual Diffusion for Bundle Recommendation AAAI'26
Existing solutions for bundle recommendation (BR) have achieved remarkable effectiveness for predicting the user's preference for prebuilt bundles. However, bundle-item (B-I) affiliation will vary dynamically in real scenarios. For example, a bundle themed as 'casual outfit' may add 'hat' or remove 'watch' due to factors such as seasonal variations, changes in user preferences or inventory adjustments. Our empirical study demonstrates that the performance of mainstream BR models may fluctuate or decline under item-level variability. This paper makes the first attempt to address the above problem and proposes a novel Residual Diffusion for Bundle Recommendation(RDiffBR)asamodel-agnostic generative framework which can assist a BR model in adapting this scenario. During the initial training of the BR model, RDiffBR employs a residual diffusion model to process the item-level bundle embeddings which are generated by the BR model to represent bundle theme via a forward-reverse process. In the inference stage, RDiffBR reverses item-level bundle embeddings obtained by the well-trained bundle model under B-I variability scenarios to generate the effective item level bundle embeddings. In particular, the residual connection in our residual approximator significantly enhances BR models' ability to generate high-quality item-level bundle embeddings. Experiments on six BR models and four public datasets from different domains show that RDiffBR improves the performance of Recall and NDCG of backbone BR models by up to 23%, while only increases training time about 4%.
comment: Extended version for AAAI'26
♻ ☆ FunReason: Enhancing Large Language Models' Function Calling via Self-Refinement Multiscale Loss and Automated Data Refinement
The integration of large language models (LLMs) with function calling has emerged as a crucial capability for enhancing their practical utility in real-world applications. However, effectively combining reasoning processes with accurate function execution remains a significant challenge. Traditional training approaches often struggle to balance the detailed reasoning steps with the precision of function calls, leading to suboptimal performance. To address these limitations, we introduce FunReason, a novel framework that enhances LLMs' function calling capabilities through an automated data refinement strategy and a Self-Refinement Multiscale Loss (SRML) approach. FunReason leverages LLMs' natural reasoning abilities to generate high-quality training examples, focusing on query parseability, reasoning coherence, and function call precision. The SRML approach dynamically balances the contribution of reasoning processes and function call accuracy during training, addressing the inherent trade-off between these two critical aspects. FunReason achieves performance comparable to GPT-4o while effectively mitigating catastrophic forgetting during fine-tuning. FunReason provides a comprehensive solution for enhancing LLMs' function calling capabilities by introducing a balanced training methodology and a data refinement pipeline. For code and dataset, please refer to our repository at GitHub https://github.com/BingguangHao/FunReason
Information Retrieval 25
☆ Revisiting Feedback Models for HyDE
Recent approaches that leverage large language models (LLMs) for pseudo-relevance feedback (PRF) have generally not utilized well-established feedback models like Rocchio and RM3 when expanding queries for sparse retrievers like BM25. Instead, they often opt for a simple string concatenation of the query and LLM-generated expansion content. But is this optimal? To answer this question, we revisit and systematically evaluate traditional feedback models in the context of HyDE, a popular method that enriches query representations with LLM-generated hypothetical answer documents. Our experiments show that HyDE's effectiveness can be substantially improved when leveraging feedback algorithms such as Rocchio to extract and weight expansion terms, providing a simple way to further enhance the accuracy of LLM-based PRF methods.
☆ Generative Query Expansion with Multilingual LLMs for Cross-Lingual Information Retrieval
Query expansion is the reformulation of a user query by adding semantically related information, and is an essential component of monolingual and cross-lingual information retrieval used to ensure that relevant documents are not missed. Recently, multilingual large language models (mLLMs) have shifted query expansion from semantic augmentation with synonyms and related words to pseudo-document generation. Pseudo-documents both introduce additional relevant terms and bridge the gap between short queries and long documents, which is particularly beneficial in dense retrieval. This study evaluates recent mLLMs and fine-tuned variants across several generative expansion strategies to identify factors that drive cross-lingual retrieval performance. Results show that query length largely determines which prompting technique is effective, and that more elaborate prompts often do not yield further gains. Substantial linguistic disparities persist: cross-lingual query expansion can produce the largest improvements for languages with the weakest baselines, yet retrieval is especially poor between languages written in different scripts. Fine-tuning is found to lead to performance gains only when the training and test data are of similar format. These outcomes underline the need for more balanced multilingual and cross-lingual training and evaluation resources.
☆ What Drives Cross-lingual Ranking? Retrieval Approaches with Multilingual Language Models
Cross-lingual information retrieval (CLIR) enables access to multilingual knowledge but remains challenging due to disparities in resources, scripts, and weak cross-lingual semantic alignment in embedding models. Existing pipelines often rely on translation and monolingual retrieval heuristics, which add computational overhead and noise, degrading performance. This work systematically evaluates four intervention types, namely document translation, multilingual dense retrieval with pretrained encoders, contrastive learning at word, phrase, and query-document levels, and cross-encoder re-ranking, across three benchmark datasets. We find that dense retrieval models trained specifically for CLIR consistently outperform lexical matching methods and derive little benefit from document translation. Contrastive learning mitigates language biases and yields substantial improvements for encoders with weak initial alignment, and re-ranking can be effective, but depends on the quality of the cross-encoder training data. Although high-resource languages still dominate overall performance, gains over lexical and document-translated baselines are most pronounced for low-resource and cross-script pairs. These findings indicate that cross-lingual search systems should prioritise semantic multilingual embeddings and targeted learning-based alignment over translation-based pipelines, particularly for cross-script and under-resourced languages.
☆ Heterogeneous Multi-treatment Uplift Modeling for Trade-off Optimization in Short-Video Recommendation KDD 2026
The rapid proliferation of short videos on social media platforms presents unique challenges and opportunities for recommendation systems. Users exhibit diverse preferences, and the responses resulting from different strategies often conflict with one another, potentially exhibiting inverse correlations between metrics such as watch time and video view counts. Existing uplift models face limitations in handling the heterogeneous multi-treatment scenarios of short-video recommendations, often failing to effectively capture both the synergistic and individual causal effects of different strategies. Furthermore, traditional fixed-weight approaches for balancing these responses lack personalization and can result in biased decision-making. To address these issues, we propose a novel Heterogeneous Multi-treatment Uplift Modeling (HMUM) framework for trade-off optimization in short-video recommendations. HMUM comprises an Offline Hybrid Uplift Modeling (HUM) module, which captures the synergistic and individual effects of multiple strategies, and an Online Dynamic Decision-Making (DDM) module, which estimates the value weights of different user responses in real-time for personalized decision-making. Evaluated on two public datasets, an industrial dataset, and through online A/B experiments on the Kuaishou platform, our model demonstrated superior offline performance and significant improvements in key metrics. It is now fully deployed on the platform, benefiting hundreds of millions of users.
comment: Accepted by KDD 2026
☆ STORE: Semantic Tokenization, Orthogonal Rotation and Efficient Attention for Scaling Up Ranking Models
Ranking models have become an important part of modern personalized recommendation systems. However, significant challenges persist in handling high-cardinality, heterogeneous, and sparse feature spaces, particularly regarding model scalability and efficiency. We identify two key bottlenecks: (i) Representation Bottleneck: Driven by the high cardinality and dynamic nature of features, model capacity is forced into sparse-activated embedding layers, leading to low-rank representations. This, in turn, triggers phenomena like "One-Epoch" and "Interaction-Collapse," ultimately hindering model scalability.(ii) Computational Bottleneck: Integrating all heterogeneous features into a unified model triggers an explosion in the number of feature tokens, rendering traditional attention mechanisms computationally demanding and susceptible to attention dispersion. To dismantle these barriers, we introduce STORE, a unified and scalable token-based ranking framework built upon three core innovations: (1) Semantic Tokenization fundamentally tackles feature heterogeneity and sparsity by decomposing high-cardinality sparse features into a compact set of stable semantic tokens; and (2) Orthogonal Rotation Transformation is employed to rotate the subspace spanned by low-cardinality static features, which facilitates more efficient and effective feature interactions; and (3) Efficient attention that filters low-contributing tokens to improve computional efficiency while preserving model accuracy. Across extensive offline experiments and online A/B tests, our framework consistently improves prediction accuracy(online CTR by 2.71%, AUC by 1.195%) and training effeciency (1.84 throughput).
☆ Large Language Models Require Curated Context for Reliable Political Fact-Checking -- Even with Reasoning and Web Search
Large language models (LLMs) have raised hopes for automated end-to-end fact-checking, but prior studies report mixed results. As mainstream chatbots increasingly ship with reasoning capabilities and web search tools -- and millions of users already rely on them for verification -- rigorous evaluation is urgent. We evaluate 15 recent LLMs from OpenAI, Google, Meta, and DeepSeek on more than 6,000 claims fact-checked by PolitiFact, comparing standard models with reasoning- and web-search variants. Standard models perform poorly, reasoning offers minimal benefits, and web search provides only moderate gains, despite fact-checks being available on the web. In contrast, a curated RAG system using PolitiFact summaries improved macro F1 by 233% on average across model variants. These findings suggest that giving models access to curated high-quality context is a promising path for automated fact-checking.
☆ Multimodal Large Language Models with Adaptive Preference Optimization for Sequential Recommendation
Recent advances in Large Language Models (LLMs) have opened new avenues for sequential recommendation by enabling natural language reasoning over user behavior sequences. A common approach formulates recommendation as a language modeling task, where interaction histories are transformed into prompts and user preferences are learned via supervised fine-tuning. However, these methods operate solely in the textual modality and often miss users' fine-grained interests, especially when shaped by rich visual signals such as product images or movie posters. Multimodal Large Language Models (MLLMs) offer a promising alternative by aligning text and vision in a shared semantic space. A prevalent training paradigm applies Supervised Fine-Tuning (SFT) followed by Direct Preference Optimization (DPO) to model user preferences. Yet, two core challenges remain: 1) Imbalanced sample hardness, where random negative sampling causes overfitting on easy examples and under-training on hard ones; 2) Cross-modal semantic bias, where the fixed reference model in DPO prevents the policy model from correcting modality misalignments--especially over long sequences. To address these issues, we propose a Multimodal LLM framework that integrates Hardness-aware and Noise-regularized preference optimization for Recommendation (HaNoRec). Specifically, HaNoRec dynamically adjusts optimization weights based on both the estimated hardness of each training sample and the policy model's real-time responsiveness, prioritizing harder examples. It further introduces Gaussian-perturbed distribution optimization on output logits to enhance cross-modal semantic consistency and reduce modality bias inherited from the reference model.
comment: 11 pages,6 figures
☆ When and What to Recommend: Joint Modeling of Timing and Content for Active Sequential Recommendation
Sequential recommendation models user preferences to predict the next target item. Most existing work is passive, where the system responds only when users open the application, missing chances after closure. We investigate active recommendation, which predicts the next interaction time and actively delivers items. Two challenges: accurately estimating the Time of Interest (ToI) and generating Item of Interest (IoI) conditioned on the predicted ToI. We propose PASRec, a diffusion-based framework that aligns ToI and IoI via a joint objective. Experiments on five benchmarks show superiority over eight state-of-the-art baselines under leave-one-out and temporal splits.
comment: 10 pages, 5 figures. Submitted to arXiv
☆ SCoTER: Structured Chain-of-Thought Transfer for Enhanced Recommendation
Harnessing the reasoning power of Large Language Models (LLMs) for recommender systems is hindered by two fundamental challenges. First, current approaches lack a mechanism for automated, data-driven discovery of effective reasoning patterns, relying instead on brittle manual templates or unstable zero-shot prompting. Second, they employ structure-collapsing integration: direct prompting incurs prohibitive online inference costs, while feature extraction collapses reasoning chains into single vectors, discarding stepwise logic. To address these challenges, we propose SCoTER (Structured Chain-of-Thought Transfer for Enhanced Recommendation), a unified framework that treats pattern discovery and structure-aware transfer as a jointly optimized problem. Specifically, SCoTER operationalizes this through two synergistic components: a GVM pipeline for automated pattern discovery and a structure-preserving integration architecture that transfers stepwise logic to efficient models. Formally, we provide information-theoretic justification proving that structure-preserving transfer achieves tighter performance bounds than structure-agnostic alternatives. Empirically, experiments on four benchmarks demonstrate improvements of 3.75\%-11.59\% over a strong TIGER backbone. Moreover, in production deployment on the Tencent Advertising Platform, SCoTER achieved a 2.14\% lift in Gross Merchandise Value (GMV) while eliminating online LLM inference costs. Overall, SCoTER establishes a principled and production-validated blueprint for transferring structured LLM reasoning to large-scale recommender systems.
comment: 12 pages,4 figures
♻ ☆ Relative Advantage Debiasing for Watch-Time Prediction in Short-Video Recommendation
Watch time is widely used as a proxy for user satisfaction in video recommendation platforms. However, raw watch times are influenced by confounding factors such as video duration, popularity, and individual user behaviors, potentially distorting preference signals and resulting in biased recommendation models. We propose a novel relative advantage debiasing framework that corrects watch time by comparing it to empirically derived reference distributions conditioned on user and item groups. This approach yields a quantile-based preference signal and introduces a two-stage architecture that explicitly separates distribution estimation from preference learning. Additionally, we present distributional embeddings to efficiently parameterize watch-time quantiles without requiring online sampling or storage of historical data. Both offline and online experiments demonstrate significant improvements in recommendation accuracy and robustness compared to existing baseline methods.
♻ ☆ Information Extraction From Fiscal Documents Using LLMs
Large Language Models (LLMs) have demonstrated remarkable capabilities in text comprehension, but their ability to process complex, hierarchical tabular data remains underexplored. We present a novel approach to extracting structured data from multi-page government fiscal documents using LLM-based techniques. Applied to annual fiscal documents from the State of Karnataka in India (200+ pages), our method achieves high accuracy through a multi-stage pipeline that leverages domain knowledge, sequential context, and algorithmic validation. A large challenge with traditional OCR methods is the inability to verify the accurate extraction of numbers. When applied to fiscal data, the inherent structure of fiscal tables, with totals at each level of the hierarchy, allows for robust internal validation of the extracted data. We use these hierarchical relationships to create multi-level validation checks. We demonstrate that LLMs can read tables and also process document-specific structural hierarchies, offering a scalable process for converting PDF-based fiscal disclosures into research-ready databases. Our implementation shows promise for broader applications across developing country contexts.
comment: 6 pages. Presented at the AI for Financial Inclusion, Risk Modeling and Resilience in Emerging Markets workshop at ACM ICAIF 2025 Singapore
♻ ☆ Adaptive Candidate Retrieval with Dynamic Knowledge Graph Construction for Cold-Start Recommendation
The cold-start problem remains a critical challenge in real-world recommender systems, as new items with limited interaction data or insufficient information are frequently introduced. Despite recent advances leveraging external knowledge such as knowledge graphs (KGs) and large language models (LLMs), recommender systems still face challenges in practical environments. Static KGs are expensive to construct and quickly become outdated, while LLM-based methods depend on pre-filtered candidate lists due to limited context windows. To address these limitations, we propose ColdRAG, a retrieval-augmented framework that dynamically constructs a knowledge graph from raw metadata, extracts entities and relations to construct an updatable structure, and introduces LLM-guided multi-hop reasoning at inference time to retrieve and rank candidates without relying on pre-filtered lists. Experiments across multiple benchmarks show that ColdRAG consistently outperforms strong seven baselines.
comment: 10 pages
♻ ☆ BioDisco: Multi-agent hypothesis generation with dual-mode evidence, iterative feedback and temporal evaluation
Identifying novel hypotheses is essential to scientific research, yet this process risks being overwhelmed by the sheer volume and complexity of available information. Existing automated methods often struggle to generate novel and evidence-grounded hypotheses, lack robust iterative refinement and rarely undergo rigorous temporal evaluation for future discovery potential. To address this, we propose BioDisco, a multi-agent framework that draws upon language model-based reasoning and a dual-mode evidence system (biomedical knowledge graphs and automated literature retrieval) for grounded novelty, integrates an internal scoring and feedback loop for iterative refinement, and validates performance through pioneering temporal and human evaluations and a Bradley-Terry paired comparison model to provide statistically-grounded assessment. Our evaluations demonstrate superior novelty and significance over ablated configurations and generalist biomedical agents. Designed for flexibility and modularity, BioDisco allows seamless integration of custom language models or knowledge graphs, and can be run with just a few lines of code.
comment: 12 pages main content, 31 including appendices. 8 figures
♻ ☆ Double-Ended Palindromic Trees in Linear Time
The palindromic tree (a.k.a. eertree) is a data structure that provides access to all palindromic substrings of a string. In this paper, we propose a dynamic version of eertree, called double-ended eertree, which supports online operations on the stored string, including double-ended queue operations, counting distinct palindromic substrings, and finding the longest palindromic prefix/suffix. At the heart of our construction, we identify a new class of substring occurrences, called surfaces, that are palindromic substring occurrences that are neither prefixes nor suffixes of any other palindromic substring occurrences, which is of independent interest. Surfaces characterize the link structure of all palindromic substrings in the eertree, thereby allowing a linear-time implementation of double-ended eertrees through a linear-time maintenance of surfaces.
comment: Full version, 64 pages, 2 tables, 17 algorithms. Title changed, abstract improved, some proofs simplified, the persistent part removed for simplicity
♻ ☆ Forgetful by Design? A Critical Audit of YouTube's Search API for Academic Research
This paper critically audits the search endpoint of YouTube's Data API (v3), a common tool for academic research. Through systematic weekly searches over six months using eleven queries, we identify major limitations regarding completeness, representativeness, consistency, and bias. Our findings reveal substantial differences between ranking parameters like relevance and date in terms of video recall and precision, with relevance often retrieving numerous off-topic videos. We also observe severe temporal decay in video discoverability: the number of retrievable videos for a given period drops dramatically within just 20-60 days of publication, even though these videos remain on the platform. This potentially undermines research designs that rely on systematic data collection. Furthermore, search results lack consistency, with identical queries yielding different video sets over time, compromising replicability. A case study on the European Parliament elections highlights how these issues impact research outcomes. While the paper offers several mitigation strategies, it concludes that the API's search function, potentially prioritizing 'freshness' over comprehensive retrieval, is not adequate for robust academic research, especially concerning Digital Services Act requirements.
comment: 25 pages, 2 tables and 4 figures
♻ ☆ DAS: Dual-Aligned Semantic IDs Empowered Industrial Recommender System CIKM 2025
Semantic IDs are discrete identifiers generated by quantizing the Multi-modal Large Language Models (MLLMs) embeddings, enabling efficient multi-modal content integration in recommendation systems. However, their lack of collaborative signals results in a misalignment with downstream discriminative and generative recommendation objectives. Recent studies have introduced various alignment mechanisms to address this problem, but their two-stage framework design still leads to two main limitations: (1) inevitable information loss during alignment, and (2) inflexibility in applying adaptive alignment strategies, consequently constraining the mutual information maximization during the alignment process. To address these limitations, we propose a novel and flexible one-stage Dual-Aligned Semantic IDs (DAS) method that simultaneously optimizes quantization and alignment, preserving semantic integrity and alignment quality while avoiding the information loss typically associated with two-stage methods. Meanwhile, DAS achieves more efficient alignment between the semantic IDs and collaborative signals, with the following two innovative and effective approaches: (1) Multi-view Constrative Alignment: To maximize mutual information between semantic IDs and collaborative signals, we first incorporate an ID-based CF debias module, and then design three effective contrastive alignment methods: dual user-to-item (u2i), dual item-to-item/user-to-user (i2i/u2u), and dual co-occurrence item-to-item/user-to-user (i2i/u2u). (2) Dual Learning: By aligning the dual quantizations of users and ads, the constructed semantic IDs for users and ads achieve stronger alignment. Finally, we conduct extensive offline experiments and online A/B tests to evaluate DAS's effectiveness, which is now successfully deployed across various advertising scenarios at Kuaishou App, serving over 400 million users daily.
comment: Accepted by CIKM 2025
♻ ☆ Align$^3$GR: Unified Multi-Level Alignment for LLM-based Generative Recommendation AAAI 2026
Large Language Models (LLMs) demonstrate significant advantages in leveraging structured world knowledge and multi-step reasoning capabilities. However, fundamental challenges arise when transforming LLMs into real-world recommender systems due to semantic and behavioral misalignment. To bridge this gap, we propose Align$^3$GR, a novel framework that unifies token-level, behavior modeling-level, and preference-level alignment. Our approach introduces: Dual tokenization fusing user-item semantic and collaborative signals. Enhanced behavior modeling with bidirectional semantic alignment. Progressive DPO strategy combining self-play (SP-DPO) and real-world feedback (RF-DPO) for dynamic preference adaptation. Experiments show Align$^3$GR outperforms the SOTA baseline by +17.8% in Recall@10 and +20.2% in NDCG@10 on the public dataset, with significant gains in online A/B tests and full-scale deployment on an industrial large-scale recommendation platform.
comment: Accepted by AAAI 2026 (Oral)
♻ ☆ Health Sentinel: An AI Pipeline For Real-time Disease Outbreak Detection
Early detection of disease outbreaks is crucial to ensure timely intervention by the health authorities. Due to the challenges associated with traditional indicator-based surveillance, monitoring informal sources such as online media has become increasingly popular. However, owing to the number of online articles getting published everyday, manual screening of the articles is impractical. To address this, we propose Health Sentinel. It is a multi-stage information extraction pipeline that uses a combination of ML and non-ML methods to extract events-structured information concerning disease outbreaks or other unusual health events-from online articles. The extracted events are made available to the Media Scanning and Verification Cell (MSVC) at the National Centre for Disease Control (NCDC), Delhi for analysis, interpretation and further dissemination to local agencies for timely intervention. From April 2022 till date, Health Sentinel has processed over 300 million news articles and identified over 95,000 unique health events across India of which over 3,500 events were shortlisted by the public health experts at NCDC as potential outbreaks.
♻ ☆ Agent-OM: Leveraging LLM Agents for Ontology Matching
Ontology matching (OM) enables semantic interoperability between different ontologies and resolves their conceptual heterogeneity by aligning related entities. OM systems currently have two prevailing design paradigms: conventional knowledge-based expert systems and newer machine learning-based predictive systems. While large language models (LLMs) and LLM agents have revolutionised data engineering and have been applied creatively in many domains, their potential for OM remains underexplored. This study introduces a novel agent-powered LLM-based design paradigm for OM systems. With consideration of several specific challenges in leveraging LLM agents for OM, we propose a generic framework, namely Agent-OM (Agent for Ontology Matching), consisting of two Siamese agents for retrieval and matching, with a set of OM tools. Our framework is implemented in a proof-of-concept system. Evaluations of three Ontology Alignment Evaluation Initiative (OAEI) tracks over state-of-the-art OM systems show that our system can achieve results very close to the long-standing best performance on simple OM tasks and can significantly improve the performance on complex and few-shot OM tasks.
comment: 31 pages
♻ ☆ MGFRec: Towards Reinforced Reasoning Recommendation with Multiple Groundings and Feedback KDD 2026
The powerful reasoning and generative capabilities of large language models (LLMs) have inspired researchers to apply them to reasoning-based recommendation tasks, which require in-depth reasoning about user interests and the generation of recommended items. However, previous reasoning-based recommendation methods have typically performed inference within the language space alone, without incorporating the actual item space. This has led to over-interpreting user interests and deviating from real items. Towards this research gap, we propose performing multiple rounds of grounding during inference to help the LLM better understand the actual item space, which could ensure that its reasoning remains aligned with real items. Furthermore, we introduce a user agent that provides feedback during each grounding step, enabling the LLM to better recognize and adapt to user interests. Comprehensive experiments conducted on three Amazon review datasets demonstrate the effectiveness of incorporating multiple groundings and feedback. These findings underscore the critical importance of reasoning within the actual item space, rather than being confined to the language space, for recommendation tasks.
comment: Accepted at KDD 2026
♻ ☆ A Zero-shot Explainable Doctor Ranking Framework with Large Language Models
Online medical service provides patients convenient access to doctors, but effectively ranking doctors based on specific medical needs remains challenging. Current ranking approaches typically lack the interpretability crucial for patient trust and informed decision-making. Additionally, the scarcity of standardized benchmarks and labeled data for supervised learning impedes progress in expertise-aware doctor ranking. To address these challenges, we propose an explainable ranking framework for doctor ranking powered by large language models in a zero-shot setting. Our framework dynamically generates disease-specific ranking criteria to guide the large language model in assessing doctor relevance with transparency and consistency. It further enhances interpretability by generating step-by-step rationales for its ranking decisions, improving the overall explainability of the information retrieval process. To support rigorous evaluation, we built and released DrRank, a novel expertise-driven dataset comprising 38 disease-treatment pairs and 4,325 doctor profiles. On this benchmark, our framework significantly outperforms the strongest baseline by +6.45 NDCG@10. Comprehensive analyses also show our framework is fair across disease types, patient gender, and geographic regions. Furthermore, verification by medical experts confirms the reliability and interpretability of our approach, reinforcing its potential for trustworthy, real-world doctor recommendation. To demonstrate its broader applicability, we validate our framework on two datasets from BEIR benchmark, where it again achieves superior performance. The code and associated data are available at: https://github.com/YangLab-BUPT/DrRank.
comment: Accepted by Big Data Mining and Analytics (JCR Q1)
♻ ☆ Pathway to Relevance: How Cross-Encoders Implement a Semantic Variant of BM25
Mechanistic interpretation has greatly contributed to a more detailed understanding of generative language models, enabling significant progress in identifying structures that implement key behaviors through interactions between internal components. In contrast, interpretability in information retrieval (IR) remains relatively coarse-grained, and much is still unknown as to how IR models determine whether a document is relevant to a query. In this work, we address this gap by mechanistically analyzing how one commonly used model, a cross-encoder, estimates relevance. We find that the model extracts traditional relevance signals, such as term frequency and inverse document frequency, in early-to-middle layers. These concepts are then combined in later layers, similar to the well-known probabilistic ranking function, BM25. Overall, our analysis offers a more nuanced understanding of how IR models compute relevance. Isolating these components lays the groundwork for future interventions that could enhance transparency, mitigate safety risks, and improve scalability.
♻ ☆ VALUE: Value-Aware Large Language Model for Query Rewriting via Weighted Trie in Sponsored Search
Query-to-bidword(i.e., bidding keyword) rewriting is fundamental to sponsored search, transforming noisy user queries into semantically relevant and commercially valuable keywords. Recent advances in large language models (LLMs) improve semantic relevance through generative retrieval frameworks, but they rarely encode the commercial value of keywords. As a result, rewrites are often semantically correct yet economically suboptimal, and a reinforcement learning from human feedback (RLHF) stage is usually added after supervised fine-tuning(SFT) to mitigate this deficiency. However, conventional preference alignment frequently overemphasize the ordering of bidword values and is susceptible to overfitting, which degrades rewrite quality. In addition, bidword value changes rapidly, while existing generative methods do not respond to these fluctuations. To address this shortcoming, we introduce VALUE(Value-Aware Large language model for qUery rewriting via wEighted trie), a framework that integrates value awareness directly into generation and enhances value alignment during training. VALUE employs the Weighted Trie, a novel variant of the classical trie that stores real-time value signals for each token. During decoding, the framework adjusts the LLM's token probabilities with these signals, constraining the search space and steering generation toward high-value rewrites. The alignment stage uses a fine-grained preference learning strategy that emphasizes stable, high-value differences and down-weights noisy or transient fluctuations, thereby improving robustness and reducing overfitting. Offline experiments show that VALUE significantly outperforms baselines in both semantic matching and value-centric metrics. VALUE has been deployed on our advertising system since October 2024 and served the Double Eleven promotions, the biggest shopping carnival in China.
♻ ☆ GFlowGR: Fine-tuning Generative Recommendation Frameworks with Generative Flow Networks
Generative recommendations (GR), which usually include item tokenizers and generative Large Language Models (LLMs), have demonstrated remarkable success across a wide range of scenarios. The majority of existing research efforts primarily concentrate on developing powerful item tokenizers or advancing LLM decoding strategies to attain superior performance. However, the critical fine-tuning step in GR frameworks, which is essential for adapting LLMs to recommendation data, remains largely unexplored. Current approaches predominantly rely on either the next-token prediction loss of supervised fine-tuning (SFT) or recommendationspecific direct preference optimization (DPO) strategies. Both methods ignore the exploration of possible positive unobserved samples, which is commonly referred to as the exposure bias problem. To mitigate this problem, this paper treats the GR as a multi-step generation task and constructs a GFlowNets-based fine-tuning framework (GFlowGR). The proposed framework integrates collaborative knowledge from traditional recommender systems to create an adaptive trajectory sampler and a comprehensive reward model. Leveraging the diverse generation property of GFlowNets, along with sampling and heuristic weighting techniques, GFlowGR emerges as a promising approach to mitigate the exposure bias problem. Extensive empirical results on two real-world datasets and with two different GR backbones highlight the effectiveness and robustness of GFlowGR.
♻ ☆ G-UBS: Towards Robust Understanding of Implicit Feedback via Group-Aware User Behavior Simulation AAAI 2026
User feedback is critical for refining recommendation systems, yet explicit feedback (e.g., likes or dislikes) remains scarce in practice. As a more feasible alternative, inferring user preferences from massive implicit feedback has shown great potential (e.g., a user quickly skipping a recommended video usually indicates disinterest). Unfortunately, implicit feedback is often noisy: a user might skip a video due to accidental clicks or other reasons, rather than disliking it. Such noise can easily misjudge user interests, thereby undermining recommendation performance. To address this issue, we propose a novel Group-aware User Behavior Simulation (G-UBS) paradigm, which leverages contextual guidance from relevant user groups, enabling robust and in-depth interpretation of implicit feedback for individual users. Specifically, G-UBS operates via two key agents. First, the User Group Manager (UGM) effectively clusters users to generate group profiles utilizing a ``summarize-cluster-reflect" workflow based on LLMs. Second, the User Feedback Modeler (UFM) employs an innovative group-aware reinforcement learning approach, where each user is guided by the associated group profiles during the reinforcement learning process, allowing UFM to robustly and deeply examine the reasons behind implicit feedback. To assess our G-UBS paradigm, we have constructed a Video Recommendation benchmark with Implicit Feedback (IF-VR). To the best of our knowledge, this is the first multi-modal benchmark for implicit feedback evaluation in video recommendation, encompassing 15k users, 25k videos, and 933k interaction records with implicit feedback. Extensive experiments on IF-VR demonstrate that G-UBS significantly outperforms mainstream LLMs and MLLMs, with a 4.0% higher proportion of videos achieving a play rate > 30% and 14.9% higher reasoning accuracy on IF-VR.
comment: Accepted in AAAI 2026
Information Retrieval 19
☆ A Recommender System Based on Binary Matrix Representations for Cognitive Disorders
Diagnosing cognitive (mental health) disorders is a delicate and complex task. Identifying the next most informative symptoms to assess, in order to distinguish between possible disorders, presents an additional challenge. This process requires comprehensive knowledge of diagnostic criteria and symptom overlap across disorders, making it difficult to navigate based on symptoms alone. This research aims to develop a recommender system for cognitive disorder diagnosis using binary matrix representations. The core algorithm utilizes a binary matrix of disorders and their symptom combinations. It filters through the rows and columns based on the patient's current symptoms to identify potential disorders and recommend the most informative next symptoms to examine. A prototype of the recommender system was implemented in Python. Using synthetic test and some real-life data, the system successfully identified plausible disorders from an initial symptom set and recommended further symptoms to refine the diagnosis. It also provided additional context on the symptom-disorder relationships. Although this is a prototype, the recommender system shows potential as a clinical support tool. A fully-developed application of this recommender system may assist mental health professionals in identifying relevant disorders more efficiently and guiding symptom-specific follow-up investigations to improve diagnostic accuracy.
comment: 19 pages, 1 figure, 3 tables
☆ General Agentic Memory Via Deep Research
Memory is critical for AI agents, yet the widely-adopted static memory, aiming to create readily available memory in advance, is inevitably subject to severe information loss. To address this limitation, we propose a novel framework called \textbf{general agentic memory (GAM)}. GAM follows the principle of "\textbf{just-in time (JIT) compilation}" where it focuses on creating optimized contexts for its client at runtime while keeping only simple but useful memory during the offline stage. To this end, GAM employs a duo-design with the following components. 1) \textbf{Memorizer}, which highlights key historical information using a lightweight memory, while maintaining complete historical information within a universal page-store. 2) \textbf{Researcher}, which retrieves and integrates useful information from the page-store for its online request guided by the pre-constructed memory. This design allows GAM to effectively leverage the agentic capabilities and test-time scalability of frontier large language models (LLMs), while also facilitating end-to-end performance optimization through reinforcement learning. In our experimental study, we demonstrate that GAM achieves substantial improvement on various memory-grounded task completion scenarios against existing memory systems.
☆ Multi-Agent Collaborative Filtering: Orchestrating Users and Items for Agentic Recommendations
Agentic recommendations cast recommenders as large language model (LLM) agents that can plan, reason, use tools, and interact with users of varying preferences in web applications. However, most existing agentic recommender systems focus on generic single-agent plan-execute workflows or multi-agent task decomposition pipelines. Without recommendation-oriented design, they often underuse the collaborative signals in the user-item interaction history, leading to unsatisfying recommendation results. To address this, we propose the Multi-Agent Collaborative Filtering (MACF) framework for agentic recommendations, drawing an analogy between traditional collaborative filtering algorithms and LLM-based multi-agent collaboration. Specifically, given a target user and query, we instantiate similar users and relevant items as LLM agents with unique profiles. Each agent is able to call retrieval tools, suggest candidate items, and interact with other agents. Different from the static preference aggregation in traditional collaborative filtering, MACF employs a central orchestrator agent to adaptively manage the collaboration between user and item agents via dynamic agent recruitment and personalized collaboration instruction. Experimental results on datasets from three different domains show the advantages of our MACF framework compared to strong agentic recommendation baselines.
☆ A Multimodal Conversational Agent for Tabular Data Analysis
Large language models (LLMs) can reshape information processing by handling data analysis, visualization, and interpretation in an interactive, context-aware dialogue with users, including voice interaction, while maintaining high performance. In this article, we present Talk2Data, a multimodal LLM-driven conversational agent for intuitive data exploration. The system lets users query datasets with voice or text instructions and receive answers as plots, tables, statistics, or spoken explanations. Built on LLMs, the suggested design combines OpenAI Whisper automatic speech recognition (ASR) system, Qwen-coder code generation LLM/model, custom sandboxed execution tools, and Coqui library for text-to-speech (TTS) within an agentic orchestration loop. Unlike text-only analysis tools, it adapts responses across modalities and supports multi-turn dialogues grounded in dataset context. In an evaluation of 48 tasks on three datasets, our prototype achieved 95.8% accuracy with model-only generation time under 1.7 seconds (excluding ASR and execution time). A comparison across five LLM sizes (1.5B-32B) revealed accuracy-latency-cost trade-offs, with a 7B model providing the best balance for interactive use. By routing between conversation with user and code execution, constrained to a transparent sandbox, with simultaneously grounding prompts in schema-level context, the Talk2Data agent reliably retrieves actionable insights from tables while making computations verifiable. In the article, except for the Talk2Data agent itself, we discuss implications for human-data interaction, trust in LLM-driven analytics, and future extensions toward large-scale multimodal assistants.
comment: \c{opyright} 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses
☆ Toward an AI-Native Internet: Rethinking the Web Architecture for Semantic Retrieval
The rise of Generative AI Search is fundamentally transforming how users and intelligent systems interact with the Internet. LLMs increasingly act as intermediaries between humans and web information. Yet the web remains optimized for human browsing rather than AI-driven semantic retrieval, resulting in wasted network bandwidth, lower information quality, and unnecessary complexity for developers. We introduce the concept of an AI-Native Internet, a web architecture in which servers expose semantically relevant information chunks rather than full documents, supported by a Web-native semantic resolver that allows AI applications to discover relevant information sources before retrieving fine-grained chunks. Through motivational experiments, we quantify the inefficiencies of current HTML-based retrieval, and outline architectural directions and open challenges for evolving today's document-centric web into an AI-oriented substrate that better supports semantic access to web content.
☆ Time Matters: Enhancing Sequential Recommendations with Time-Guided Graph Neural ODEs
Sequential recommendation (SR) is widely deployed in e-commerce platforms, streaming services, etc., revealing significant potential to enhance user experience. However, existing methods often overlook two critical factors: irregular user interests between interactions and highly uneven item distributions over time. The former factor implies that actual user preferences are not always continuous, and long-term historical interactions may not be relevant to current purchasing behavior. Therefore, relying only on these historical interactions for recommendations may result in a lack of user interest at the target time. The latter factor, characterized by peaks and valleys in interaction frequency, may result from seasonal trends, special events, or promotions. These externally driven distributions may not align with individual user interests, leading to inaccurate recommendations. To address these deficiencies, we propose TGODE to both enhance and capture the long-term historical interactions. Specifically, we first construct a user time graph and item evolution graph, which utilize user personalized preferences and global item distribution information, respectively. To tackle the temporal sparsity caused by irregular user interactions, we design a time-guided diffusion generator to automatically obtain an augmented time-aware user graph. Additionally, we devise a user interest truncation factor to efficiently identify sparse time intervals and achieve balanced preference inference. After that, the augmented user graph and item graph are fed into a generalized graph neural ordinary differential equation (ODE) to align with the evolution of user preferences and item distributions. This allows two patterns of information evolution to be matched over time. Experimental results demonstrate that TGODE outperforms baseline methods across five datasets, with improvements ranging from 10% to 46%.
☆ UFO: Unfair-to-Fair Evolving Mitigates Unfairness in LLM-based Recommender Systems via Self-Play Fine-tuning
Large language model-based Recommender Systems (LRSs) have demonstrated superior recommendation performance by integrating pre-training with Supervised Fine-Tuning (SFT). However, this approach introduces item-side unfairness. Existing studies primarily attribute this issue to the absence of fairness constraints during SFT and attempt to mitigate unfairness via re-weighting and re-ranking methods. In this paper, we find that unfairness arises not only from SFT but also from pre-training, where inherent biases are further amplified during SFT. This finding underscores the failure of current methods to address the root causes of unfairness. Moreover, current methods struggle to preserve satisfactory recommendation performance. To tackle these issues, we propose an Unfair-to-Fair evOlving (UFO) framework using a self-play mechanism, formulating unfairness mitigation as a two-player game. UFO alternates between two player roles: the \textit{judger}, which identifies unfairness from both pre-training and SFT, and the \textit{corrector}, which adjusts the LRS to address identified unfairness while preserving recommendation performance. Iterative optimization between these roles enables UFO to completely resolve unfairness. Extensive experiments demonstrate that UFO effectively mitigates unfairness while improving recommendation performance.
☆ Path-Constrained Retrieval: A Structural Approach to Reliable LLM Agent Reasoning Through Graph-Scoped Semantic Search
Large Language Model agents often retrieve context from knowledge bases that lack structural consistency with the agent's current reasoning state, leading to incoherent reasoning chains. We introduce Path-Constrained Retrieval (PCR), a retrieval method that combines structural graph constraints with semantic search to ensure retrieved information maintains logical relationships within a knowledge graph. PCR restricts the search space to nodes reachable from an anchor node, preventing retrieval of structurally disconnected information that may lead to inconsistent reasoning. We evaluate PCR on PathRAG-6, a benchmark spanning six domains with 180 nodes and 360 edges. Our results show that PCR achieves full structural consistency compared to 24-32 percent in baseline methods, while maintaining strong relevance scores. On the technology domain, PCR obtains full relevance at rank 10 with full structural consistency, significantly outperforming vector search and hybrid retrieval. PCR reduces the average graph distance of retrieved context by 78 percent compared to baselines, demonstrating retrieval of more structurally consistent information. These findings suggest that path-constrained retrieval is an effective approach for improving the reliability and coherence of LLM agent reasoning systems.
comment: 10 pages
☆ Large Language Model Enhanced Graph Invariant Contrastive Learning for Out-of-Distribution Recommendation
Out-of-distribution (OOD) generalization has emerged as a significant challenge in graph recommender systems. Traditional graph neural network algorithms often fail because they learn spurious environmental correlations instead of stable causal relationships, leading to substantial performance degradation under distribution shifts. While recent advancements in Large Language Models (LLMs) offer a promising avenue due to their vast world knowledge and reasoning capabilities, effectively integrating this knowledge with the fine-grained topology of specific graphs to solve the OOD problem remains a significant challenge. To address these issues, we propose {$\textbf{Inv}$ariant $\textbf{G}$raph $\textbf{C}$ontrastive Learning with $\textbf{LLM}$s for Out-of-Distribution Recommendation (InvGCLLM)}, an innovative causal learning framework that synergistically integrates the strengths of data-driven models and knowledge-driven LLMs. Our framework first employs a data-driven invariant learning model to generate causal confidence scores for each user-item interaction. These scores then guide an LLM to perform targeted graph refinement, leveraging its world knowledge to prune spurious connections and augment missing causal links. Finally, the structurally purified graphs provide robust supervision for a causality-guided contrastive learning objective, enabling the model to learn representations that are resilient to spurious correlations. Experiments conducted on four public datasets demonstrate that InvGCLLM achieves significant improvements in out-of-distribution recommendation, consistently outperforming state-of-the-art baselines.
☆ Democratic Recommendation with User and Item Representatives Produced by Graph Condensation
The challenges associated with large-scale user-item interaction graphs have attracted increasing attention in graph-based recommendation systems, primarily due to computational inefficiencies and inadequate information propagation. Existing methods provide partial solutions but suffer from notable limitations: model-centric approaches, such as sampling and aggregation, often struggle with generalization, while data-centric techniques, including graph sparsification and coarsening, lead to information loss and ineffective handling of bipartite graph structures. Recent advances in graph condensation offer a promising direction by reducing graph size while preserving essential information, presenting a novel approach to mitigating these challenges. Inspired by the principles of democracy, we propose \textbf{DemoRec}, a framework that leverages graph condensation to generate user and item representatives for recommendation tasks. By constructing a compact interaction graph and clustering nodes with shared characteristics from the original graph, DemoRec significantly reduces graph size and computational complexity. Furthermore, it mitigates the over-reliance on high-order information, a critical challenge in large-scale bipartite graphs. Extensive experiments conducted on four public datasets demonstrate the effectiveness of DemoRec, showcasing substantial improvements in recommendation performance, computational efficiency, and robustness compared to SOTA methods.
LLM Reasoning for Cold-Start Item Recommendation
Large Language Models (LLMs) have shown significant potential for improving recommendation systems through their inherent reasoning capabilities and extensive knowledge base. Yet, existing studies predominantly address warm-start scenarios with abundant user-item interaction data, leaving the more challenging cold-start scenarios, where sparse interactions hinder traditional collaborative filtering methods, underexplored. To address this limitation, we propose novel reasoning strategies designed for cold-start item recommendations within the Netflix domain. Our method utilizes the advanced reasoning capabilities of LLMs to effectively infer user preferences, particularly for newly introduced or rarely interacted items. We systematically evaluate supervised fine-tuning, reinforcement learning-based fine-tuning, and hybrid approaches that combine both methods to optimize recommendation performance. Extensive experiments on real-world data demonstrate significant improvements in both methodological efficacy and practical performance in cold-start recommendation contexts. Remarkably, our reasoning-based fine-tuned models outperform Netflix's production ranking model by up to 8% in certain cases.
♻ ☆ The Challenge of Using LLMs to Simulate Human Behavior: A Causal Inference Perspective
Large Language Models (LLMs) have shown impressive potential to simulate human behavior. We identify a fundamental challenge in using them to simulate experiments: when LLM-simulated subjects are blind to the experimental design (as is standard practice with human subjects), variations in treatment systematically affect unspecified variables that should remain constant, violating the unconfoundedness assumption. Using demand estimation as a context and an actual experiment with 40 different products as a benchmark, we show this can lead to implausible results. While confounding may in principle be addressed by controlling for covariates, this can compromise ecological validity in the context of LLM simulations: controlled covariates become artificially salient in the simulated decision process. We show formally that confoundness stems from ambiguous prompting strategies. Therefore, it can be addressed by developing unambiguous prompting strategies through unblinding, i.e., revealing the experiment design in LLM simulations. Our empirical results show that this strategy consistently enhances model performance across all tested models, including both out-of-box reasoning and non-reasoning models. We also show that it is a technique that complements fine-tuning: while fine-tuning can improve simulation performance, an unambiguous prompting strategy makes the predictions robust to the inclusion of irrelevant data in the fine-tuning process.
♻ ☆ Conversational LLMs Simplify Secure Clinical Data Access, Understanding, and Analysis
Large-scale clinical databases offer opportunities for medical research, but their complexity creates barriers to effective use. The Medical Information Mart for Intensive Care (MIMIC-IV), one of the world's largest open-source electronic health record databases, traditionally requires both SQL proficiency and clinical domain expertise. We introduce M3, a system that enables natural language querying of MIMIC-IV data through the Model Context Protocol. With a single command, M3 retrieves MIMIC-IV from PhysioNet, launches a local SQLite instance or connects to hosted BigQuery, and allows researchers to pose clinical questions in plain English. We evaluated M3 using one hundred questions from the EHRSQL 2024 benchmark with two language models: the proprietary Claude Sonnet 4 achieved 94% accuracy, while the open-source gpt-oss-20B (deployable locally on consumer hardware) achieved 93% accuracy. Both models translate natural language into SQL, execute queries against MIMIC-IV, and return structured results alongside the underlying query for verification. Error analysis revealed that most failures stemmed from complex temporal reasoning or ambiguous question phrasing rather than fundamental architectural limitations. The comparable performance of a smaller open-source model demonstrates that privacy-preserving local deployment is viable for sensitive clinical data analysis. M3 lowers technical barriers to critical care data analysis while maintaining security through OAuth2 authentication, query validation, and comprehensive audit logging.
comment: 16 pages, 4 figures
♻ ☆ TBGRecall: A Generative Retrieval Model for E-commerce Recommendation Scenarios
Recommendation systems are essential tools in modern e-commerce, facilitating personalized user experiences by suggesting relevant products. Recent advancements in generative models have demonstrated potential in enhancing recommendation systems; however, these models often exhibit limitations in optimizing retrieval tasks, primarily due to their reliance on autoregressive generation mechanisms. Conventional approaches introduce sequential dependencies that impede efficient retrieval, as they are inherently unsuitable for generating multiple items without positional constraints within a single request session. To address these limitations, we propose TBGRecall, a framework integrating Next Session Prediction (NSP), designed to enhance generative retrieval models for e-commerce applications. Our framework reformulation involves partitioning input samples into multi-session sequences, where each sequence comprises a session token followed by a set of item tokens, and then further incorporate multiple optimizations tailored to the generative task in retrieval scenarios. In terms of training methodology, our pipeline integrates limited historical data pre-training with stochastic partial incremental training, significantly improving training efficiency and emphasizing the superiority of data recency over sheer data volume. Our extensive experiments, conducted on public benchmarks alongside a large-scale industrial dataset from TaoBao, show TBGRecall outperforms the state-of-the-art recommendation methods, and exhibits a clear scaling law trend. Ultimately, NSP represents a significant advancement in the effectiveness of generative recommendation systems for e-commerce applications.
comment: Both authors contributed equally to this research. Work done during internship at Alibaba. Corresponding author: Dunxian Huang (dunxian.hdx@alibaba-inc.com). Affiliations: (1) Shanghai Jiaotong University, Shanghai, China; (2) Alibaba Inc
♻ ☆ DiffuGR: Generative Document Retrieval with Diffusion Language Models
Generative retrieval (GR) re-frames document retrieval as a sequence-based document identifier (DocID) generation task, memorizing documents with model parameters and enabling end-to-end retrieval without explicit indexing. Existing GR methods are based on auto-regressive generative models, i.e., the token generation is performed from left to right. However, such auto-regressive methods suffer from: (1) mismatch between DocID generation and natural language generation, e.g., an incorrect DocID token generated in early left steps would lead to totally erroneous retrieval; and (2) failure to balance the trade-off between retrieval efficiency and accuracy dynamically, which is crucial for practical applications. To address these limitations, we propose generative document retrieval with diffusion language models, dubbed DiffuGR. It models DocID generation as a discrete diffusion process: during training, DocIDs are corrupted through a stochastic masking process, and a diffusion language model is learned to recover them under a retrieval-aware objective. For inference, DiffuGR attempts to generate DocID tokens in parallel and refines them through a controllable number of denoising steps. In contrast to conventional left-to-right auto-regressive decoding, DiffuGR provides a novel mechanism to first generate more confident DocID tokens and refine the generation through diffusion-based denoising. Moreover, DiffuGR also offers explicit runtime control over the qualitylatency tradeoff. Extensive experiments on benchmark retrieval datasets show that DiffuGR is competitive with strong auto-regressive generative retrievers, while offering flexible speed and accuracy tradeoffs through variable denoising budgets. Overall, our results indicate that non-autoregressive diffusion models are a practical and effective alternative for generative document retrieval.
comment: This paper is under review
♻ ☆ Decentralized Identity Management on Ripple: A Conceptual Framework for High-Speed, Low-Cost Identity Transactions in Attestation-Based Attribute-Based Identity
Recent years have seen many industrial implementations and much scholastic research, i.e., prototypes and theoretical frameworks, in Decentralized Identity Management Systems (DIDMS). It is safe to say that Attestation-Based Attribute-Based Decentralized IDM (ABABDIDM) has not received anywhere near the same level of attention in the literature as general Attribute-Based DIDMs (ABDIDM), i.e, decentralized Attribute-Based Access Control (ABAC). The use of decentralization, i.e., DIDM, is to improve upon the security and privacy-related issues of centralized Identity Management Systems (IDM) and Attribute-Based IDMs (ABIDM). And blockchain is the framework used for decentralization in all these schemes. Many DIDMs - even ABDIDMs - have been defined on popular blockchains such as Hyperledger, Ethereum, and Bitcoin. However, despite the characteristics of Ripple that makes it appealing for an ABIDM, there is a lack of research to develop an Identity Management System (IDMS) on Ripple in literature. We have attempted to conceptualize an ABABDIDM on Ripple.
♻ ☆ ReCode: Updating Code API Knowledge with Reinforcement Learning AAAI 2026
Large Language Models (LLMs) exhibit remarkable code generation capabilities but falter when adapting to frequent updates in external library APIs. This critical limitation, stemming from reliance on outdated API knowledge from their training data, even with access to current documentation, impedes reliable code generation in dynamic environments. To tackle this issue, we propose ReCode (rule-based Reinforcement learning for Code Update), a novel framework that mimics human programmer adaptation to API changes. Specifically, we construct a dataset of approximately 2,000 data entries to train the LLMs to perform version migration based on updated information. Then, we introduce a modified string similarity metric for code evaluation as the reward for reinforcement learning. Our experiments demonstrate that ReCode substantially boosts LLMs' code generation performance in dynamic API scenarios, especially on the unseen CodeUpdateArena task. Crucially, compared to supervised fine-tuning, ReCode has less impact on LLMs' general code generation abilities. We apply ReCode on various LLMs and reinforcement learning algorithms (GRPO and DAPO), all achieving consistent improvements. Notably, after training, Qwen2.5-Coder-7B outperforms that of the 32B parameter code instruction-tuned model and the reasoning model with the same architecture. Code is available at https://github.com/zjunlp/ReCode.
comment: AAAI 2026
♻ ☆ ComLQ: Benchmarking Complex Logical Queries in Information Retrieval AAAI 2026
Information retrieval (IR) systems play a critical role in navigating information overload across various applications. Existing IR benchmarks primarily focus on simple queries that are semantically analogous to single- and multi-hop relations, overlooking \emph{complex logical queries} involving first-order logic operations such as conjunction ($\land$), disjunction ($\lor$), and negation ($\lnot$). Thus, these benchmarks can not be used to sufficiently evaluate the performance of IR models on complex queries in real-world scenarios. To address this problem, we propose a novel method leveraging large language models (LLMs) to construct a new IR dataset \textbf{ComLQ} for \textbf{Com}plex \textbf{L}ogical \textbf{Q}ueries, which comprises 2,909 queries and 11,251 candidate passages. A key challenge in constructing the dataset lies in capturing the underlying logical structures within unstructured text. Therefore, by designing the subgraph-guided prompt with the subgraph indicator, an LLM (such as GPT-4o) is guided to generate queries with specific logical structures based on selected passages. All query-passage pairs in ComLQ are ensured \emph{structure conformity} and \emph{evidence distribution} through expert annotation. To better evaluate whether retrievers can handle queries with negation, we further propose a new evaluation metric, \textbf{Log-Scaled Negation Consistency} (\textbf{LSNC@$K$}). As a supplement to standard relevance-based metrics (such as nDCG and mAP), LSNC@$K$ measures whether top-$K$ retrieved passages violate negation conditions in queries. Our experimental results under zero-shot settings demonstrate existing retrieval models' limited performance on complex logical queries, especially on queries with negation, exposing their inferior capabilities of modeling exclusion.
comment: Accepted by AAAI 2026
♻ ☆ Capturing User Interests from Data Streams for Continual Sequential Recommendation WSDM'26
Transformer-based sequential recommendation (SR) models excel at modeling long-range dependencies in user behavior via self-attention. However, updating them with continuously arriving behavior sequences incurs high computational costs or leads to catastrophic forgetting. Although continual learning, a standard approach for non-stationary data streams, has recently been applied to recommendation, existing methods gradually forget long-term user preferences and remain underexplored in SR. In this paper, we introduce Continual Sequential Transformer for Recommendation (CSTRec). CSTRec is designed to effectively adapt to current interests by leveraging well-preserved historical ones, thus capturing the trajectory of user interests over time. The core of CSTRec is Continual Sequential Attention (CSA), a linear attention tailored for continual SR, which enables CSTRec to partially retain historical knowledge without direct access to prior data. CSA has two key components: (1) Cauchy-Schwarz Normalization that stabilizes learning over time under uneven user interaction frequencies; (2) Collaborative Interest Enrichment that alleviates forgetting through shared, learnable interest pools. In addition, we introduce a new technique to facilitate the adaptation of new users by transferring historical knowledge from existing users with similar interests. Extensive experiments on three real-world datasets show that CSTRec outperforms state-of-the-art models in both knowledge retention and acquisition.
comment: WSDM'26