Computation and Language 63
☆ ThetaEvolve: Test-time Learning on Open Problems
Yiping Wang, Shao-Rong Su, Zhiyuan Zeng, Eva Xu, Liliang Ren, Xinyu Yang, Zeyi Huang, Xuehai He, Luyao Ma, Baolin Peng, Hao Cheng, Pengcheng He, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, Yelong Shen
Recent advances in large language models (LLMs) have enabled breakthroughs in mathematical discovery, exemplified by AlphaEvolve, a closed-source system that evolves programs to improve bounds on open problems. However, it relies on ensembles of frontier LLMs to achieve new bounds and is a pure inference system that models cannot internalize the evolving strategies. We introduce ThetaEvolve, an open-source framework that simplifies and extends AlphaEvolve to efficiently scale both in-context learning and Reinforcement Learning (RL) at test time, allowing models to continually learn from their experiences in improving open optimization problems. ThetaEvolve features a single LLM, a large program database for enhanced exploration, batch sampling for higher throughput, lazy penalties to discourage stagnant outputs, and optional reward shaping for stable training signals, etc. ThetaEvolve is the first evolving framework that enable a small open-source model, like DeepSeek-R1-0528-Qwen3-8B, to achieve new best-known bounds on open problems (circle packing and first auto-correlation inequality) mentioned in AlphaEvolve. Besides, across two models and four open tasks, we find that ThetaEvolve with RL at test-time consistently outperforms inference-only baselines, and the model indeed learns evolving capabilities, as the RL-trained checkpoints demonstrate faster progress and better final performance on both trained target task and other unseen tasks. We release our code publicly: https://github.com/ypwang61/ThetaEvolve
comment: 30 pages, link: https://github.com/ypwang61/ThetaEvolve
☆ MegaChat: A Synthetic Persian Q&A Dataset for High-Quality Sales Chatbot Evaluation
Small and medium-sized enterprises (SMEs) in Iran increasingly leverage Telegram for sales, where real-time engagement is essential for conversion. However, developing AI-driven chatbots for this purpose requires large, high-quality question-and-answer (Q&A) datasets, which are typically expensive and resource-intensive to produce, especially for low-resource languages like Persian. In this paper, we introduce MegaChat, the first fully synthetic Persian Q&A dataset designed to evaluate intelligent sales chatbots in Telegram-based e-commerce. We propose a novel, automated multi-agent architecture that generates persona-aware Q&A pairs by collecting data from active Telegram shopping channels. The system employs specialized agents for question generation, validation, and refinement, ensuring the production of realistic and diverse conversational data. To evaluate answer generation, we compare three classic retrieval-augmented generation (RAG) models with our advanced agentic system, which features multi-query retrieval, reranking, and persona-aligned response synthesis. Using GPT-5.1 for evaluation across six quality dimensions, our results show that the agentic architecture outperformed traditional RAG models in 4 out of 5 diverse channels, demonstrating its ability to generate scalable, high-quality datasets without relying on expensive human annotation or complex fine-tuning. MegaChat provides SMEs with an efficient, cost-effective solution for building intelligent customer engagement systems in specialized commercial domains, enabling advancements in multilingual conversational AI for low-resource languages. Download: https://github.com/MegaChat-Tech/MegaChat-DataSet
comment: 6 pages, 11 figures, 2 tables
☆ Ambiguity Awareness Optimization: Towards Semantic Disambiguation for Direct Preference Optimization EMNLP 2025
Direct Preference Optimization (DPO) is a widely used reinforcement learning from human feedback (RLHF) method across various domains. Recent research has increasingly focused on the role of token importance in improving DPO effectiveness. It is observed that identical or semantically similar content (defined as ambiguous content) frequently appears within the preference pairs. We hypothesize that the presence of ambiguous content during DPO training may introduce ambiguity, thereby limiting further improvements in alignment. Through mathematical analysis and proof-of-concept experiments, we reveal that ambiguous content may potentially introduce ambiguities, thereby degrading performance. To address this issue, we introduce Ambiguity Awareness Optimization (AAO), a simple yet effective approach that automatically re-weights ambiguous content to reduce ambiguities by calculating semantic similarity from preference pairs. Through extensive experiments, we demonstrate that AAO consistently and significantly surpasses state-of-the-art approaches in performance, without markedly increasing response length, across multiple model scales and widely adopted benchmark datasets, including AlpacaEval 2, MT-Bench, and Arena-Hard. Specifically, AAO outperforms DPO by up to 8.9 points on AlpacaEval 2 and achieves an improvement of by up to 15.0 points on Arena-Hard.
comment: Accepted at EMNLP 2025 main
☆ Is Passive Expertise-Based Personalization Enough? A Case Study in AI-Assisted Test-Taking EMNLP 2025
Novice and expert users have different systematic preferences in task-oriented dialogues. However, whether catering to these preferences actually improves user experience and task performance remains understudied. To investigate the effects of expertise-based personalization, we first built a version of an enterprise AI assistant with passive personalization. We then conducted a user study where participants completed timed exams, aided by the two versions of the AI assistant. Preliminary results indicate that passive personalization helps reduce task load and improve assistant perception, but reveal task-specific limitations that can be addressed through providing more user agency. These findings underscore the importance of combining active and passive personalization to optimize user experience and effectiveness in enterprise task-oriented environments.
comment: Accepted into Tailoring AI: Exploring Active and Passive LLM Personalization (PALS) workshop at EMNLP 2025
☆ Optimizing Multimodal Language Models through Attention-based Interpretability
Modern large language models become multimodal, analyzing various data formats like text and images. While fine-tuning is effective for adapting these multimodal language models (MLMs) to downstream tasks, full fine-tuning is computationally expensive. Parameter-Efficient Fine-Tuning (PEFT) methods address this by training only a small portion of model weights. However, MLMs are difficult to interpret, making it challenging to identify which components are most effective for training to balance efficiency and performance. We propose an attention-based interpretability method for MLMs by analyzing attention scores relative to image tokens. The core idea is to identify attention heads that focus on image key objects. We utilize this information to select optimal model components for PEFT in multimodal models. Our contributions include a method for identifying attention heads associated with image key objects, its application to PEFT for image captioning, and the creation of a new dataset containing images, key object masks, and their textual descriptions. We conducted experiments on MLMs with 2-3 billion parameters to validate the method's effectiveness. By calculating Head Impact (HI) scores we quantify an attention head's focus on key objects, indicating its significance in image understanding. Our fine-tuning experiments demonstrate that adapting layers with the highest HI scores leads to the most significant shifts in metrics compared to pre-trained, randomly selected, or lowest-HI-score layers. This indicates that fine-tuning a small percentage (around 0.01%) of parameters in these crucial layers can substantially influence image understanding capabilities.
comment: Accepted for ICAI-2025 conference
☆ Scaling HuBERT for African Languages: From Base to Large and XL
Despite recent progress in multilingual speech processing, African languages remain under-represented in both research and deployed systems, particularly when it comes to strong, open-weight encoders that transfer well under low-resource supervision. Self-supervised learning has proven especially promising in such settings, yet most publicly released models targeting African speech remain at BASE scale, leaving unanswered whether larger encoders, trained exclusively on Africa-centric audio, offer tangible benefits and how model capacity interacts with data composition. This work addresses that gap by introducing SSA-HuBERT-Large (317M parameters) and SSA-HuBERT-XL (964M parameters), the first large models trained solely on African speech, alongside a BASE size counterpart. We release these models as open weights: see https://huggingface.co/collections/Orange/african-speech-foundation-models. By conducting a carefully controlled experimental study focused exclusively on Sub-Saharan languages, covering automatic speech recognition (ASR) and language identification (LID) tasks, we demonstrate that larger architectures significantly improve performance by effectively leveraging large audio datasets.
comment: Journée d'études AFIA-ATALA 2025 : Technologies linguistiques pour les langues peu dotées
☆ Towards Improving Interpretability of Language Model Generation through a Structured Knowledge Discovery Approach
Knowledge-enhanced text generation aims to enhance the quality of generated text by utilizing internal or external knowledge sources. While language models have demonstrated impressive capabilities in generating coherent and fluent text, the lack of interpretability presents a substantial obstacle. The limited interpretability of generated text significantly impacts its practical usability, particularly in knowledge-enhanced text generation tasks that necessitate reliability and explainability. Existing methods often employ domain-specific knowledge retrievers that are tailored to specific data characteristics, limiting their generalizability to diverse data types and tasks. To overcome this limitation, we directly leverage the two-tier architecture of structured knowledge, consisting of high-level entities and low-level knowledge triples, to design our task-agnostic structured knowledge hunter. Specifically, we employ a local-global interaction scheme for structured knowledge representation learning and a hierarchical transformer-based pointer network as the backbone for selecting relevant knowledge triples and entities. By combining the strong generative ability of language models with the high faithfulness of the knowledge hunter, our model achieves high interpretability, enabling users to comprehend the model output generation process. Furthermore, we empirically demonstrate the effectiveness of our model in both internal knowledge-enhanced table-to-text generation on the RotoWireFG dataset and external knowledge-enhanced dialogue response generation on the KdConv dataset. Our task-agnostic model outperforms state-of-the-art methods and corresponding language models, setting new standards on the benchmark.
☆ Tackling a Challenging Corpus for Early Detection of Gambling Disorder: UNSL at MentalRiskES 2025
Gambling disorder is a complex behavioral addiction that is challenging to understand and address, with severe physical, psychological, and social consequences. Early Risk Detection (ERD) on the Web has become a key task in the scientific community for identifying early signs of mental health behaviors based on social media activity. This work presents our participation in the MentalRiskES 2025 challenge, specifically in Task 1, aimed at classifying users at high or low risk of developing a gambling-related disorder. We proposed three methods based on a CPI+DMC approach, addressing predictive effectiveness and decision-making speed as independent objectives. The components were implemented using the SS3, BERT with extended vocabulary, and SBERT models, followed by decision policies based on historical user analysis. Although it was a challenging corpus, two of our proposals achieved the top two positions in the official results, performing notably in decision metrics. Further analysis revealed some difficulty in distinguishing between users at high and low risk, reinforcing the need to explore strategies to improve data interpretation and quality, and to promote more transparent and reliable ERD systems for mental disorders.
comment: In Iberian Language Evaluation Forum (IberLEF 2025), Zaragoza, Spain
☆ Every Token Counts: Generalizing 16M Ultra-Long Context in Large Language Models
This work explores the challenge of building ``Machines that Can Remember'', framing long-term memory as the problem of efficient ultra-long context modeling. We argue that this requires three key properties: \textbf{sparsity}, \textbf{random-access flexibility}, and \textbf{length generalization}. To address ultra-long-context modeling, we leverage Hierarchical Sparse Attention (HSA), a novel attention mechanism that satisfies all three properties. We integrate HSA into Transformers to build HSA-UltraLong, which is an 8B-parameter MoE model trained on over 8 trillion tokens and is rigorously evaluated on different tasks with in-domain and out-of-domain context lengths to demonstrate its capability in handling ultra-long contexts. Results show that our model performs comparably to full-attention baselines on in-domain lengths while achieving over 90\% accuracy on most in-context retrieval tasks with contexts up to 16M. This report outlines our experimental insights and open problems, contributing a foundation for future research in ultra-long context modeling.
☆ Toward Automatic Safe Driving Instruction: A Large-Scale Vision Language Model Approach
Large-scale Vision Language Models (LVLMs) exhibit advanced capabilities in tasks that require visual information, including object detection. These capabilities have promising applications in various industrial domains, such as autonomous driving. For example, LVLMs can generate safety-oriented descriptions of videos captured by road-facing cameras. However, ensuring comprehensive safety requires monitoring driver-facing views as well to detect risky events, such as the use of mobiles while driving. Thus, the ability to process synchronized inputs is necessary from both driver-facing and road-facing cameras. In this study, we develop models and investigate the capabilities of LVLMs by constructing a dataset and evaluating their performance on this dataset. Our experimental results demonstrate that while pre-trained LVLMs have limited effectiveness, fine-tuned LVLMs can generate accurate and safety-aware driving instructions. Nonetheless, several challenges remain, particularly in detecting subtle or complex events in the video. Our findings and error analysis provide valuable insights that can contribute to the improvement of LVLM-based systems in this domain.
comment: Accepted to MMLoSo 2025
☆ Transformer-Driven Triple Fusion Framework for Enhanced Multimodal Author Intent Classification in Low-Resource Bangla
The expansion of the Internet and social networks has led to an explosion of user-generated content. Author intent understanding plays a crucial role in interpreting social media content. This paper addresses author intent classification in Bangla social media posts by leveraging both textual and visual data. Recognizing limitations in previous unimodal approaches, we systematically benchmark transformer-based language models (mBERT, DistilBERT, XLM-RoBERTa) and vision architectures (ViT, Swin, SwiftFormer, ResNet, DenseNet, MobileNet), utilizing the Uddessho dataset of 3,048 posts spanning six practical intent categories. We introduce a novel intermediate fusion strategy that significantly outperforms early and late fusion on this task. Experimental results show that intermediate fusion, particularly with mBERT and Swin Transformer, achieves 84.11% macro-F1 score, establishing a new state-of-the-art with an 8.4 percentage-point improvement over prior Bangla multimodal approaches. Our analysis demonstrates that integrating visual context substantially enhances intent classification. Cross-modal feature integration at intermediate levels provides optimal balance between modality-specific representation and cross-modal learning. This research establishes new benchmarks and methodological standards for Bangla and other low-resource languages. We call our proposed framework BangACMM (Bangla Author Content MultiModal).
comment: Accepted at the 28th International Conference on Computer and Information Technology (ICCIT 2025). To be published in IEEE proceedings
☆ MCP vs RAG vs NLWeb vs HTML: A Comparison of the Effectiveness and Efficiency of Different Agent Interfaces to the Web (Technical Report)
Large language model agents are increasingly used to automate web tasks such as product search, offer comparison, and checkout. Current research explores different interfaces through which these agents interact with websites, including traditional HTML browsing, retrieval-augmented generation (RAG) over pre-crawled content, communication via Web APIs using the Model Context Protocol (MCP), and natural-language querying through the NLWeb interface. However, no prior work has compared these four architectures within a single controlled environment using identical tasks.
To address this gap, we introduce a testbed consisting of four simulated e-shops, each offering its products via HTML, MCP, and NLWeb interfaces. For each interface (HTML, RAG, MCP, and NLWeb) we develop specialized agents that perform the same sets of tasks, ranging from simple product searches and price comparisons to complex queries for complementary or substitute products and checkout processes. We evaluate the agents using GPT 4.1, GPT 5, GPT 5 mini, and Claude Sonnet 4 as underlying LLM. Our evaluation shows that the RAG, MCP and NLWeb agents outperform HTML on both effectiveness and efficiency. Averaged over all tasks, F1 rises from 0.67 for HTML to between 0.75 and 0.77 for the other agents. Token usage falls from about 241k for HTML to between 47k and 140k per task. The runtime per task drops from 291 seconds to between 50 and 62 seconds. The best overall configuration is RAG with GPT 5 achieving an F1 score of 0.87 and a completion rate of 0.79. Also taking cost into consideration, RAG with GPT 5 mini offers a good compromise between API usage fees and performance. Our experiments show the choice of the interaction interface has a substantial impact on both the effectiveness and efficiency of LLM-based web agents.
☆ Behavior-Equivalent Token: Single-Token Replacement for Long Prompts in LLMs
Jiancheng Dong, Pengyue Jia, Jingyu Peng, Maolin Wang, Yuhao Wang, Lixin Su, Xin Sun, Shuaiqiang Wang, Dawei Yin, Xiangyu Zhao
Carefully engineered system prompts play a critical role in guiding the behavior of LLM agents, but their considerable length introduces significant drawbacks, including increased inference latency, higher computational cost, and reduced effective context length. This raises the question of whether such lengthy prompts can be replaced by a drastically reduced number of tokens while preserving their behavioral effect on downstream tasks. To enable this, we propose a lightweight three-stage training framework that learns a single prompt-specific Behavior-Equivalent token ([BE]). The framework first trains [BE] to encode the natural-language content of the original system prompt via reconstruction, and then distills the prompt 's downstream behavior into this single token. Importantly, our method requires no access to model internals, no auxiliary compression models, and no labeled responses. Empirical evaluations on three datasets show that a single [BE] token achieves up to a 3000x reduction in prompt length, while retaining about 98% of the downstream performance of the original system prompts. This substantially reduces inference cost and leaves almost the entire context window available for user inputs.
comment: 15 pages, 5 figures
☆ BanglaSentNet: An Explainable Hybrid Deep Learning Framework for Multi-Aspect Sentiment Analysis with Cross-Domain Transfer Learning
Multi-aspect sentiment analysis of Bangla e-commerce reviews remains challenging due to limited annotated datasets, morphological complexity, code-mixing phenomena, and domain shift issues, affecting 300 million Bangla-speaking users. Existing approaches lack explainability and cross-domain generalization capabilities crucial for practical deployment. We present BanglaSentNet, an explainable hybrid deep learning framework integrating LSTM, BiLSTM, GRU, and BanglaBERT through dynamic weighted ensemble learning for multi-aspect sentiment classification. We introduce a dataset of 8,755 manually annotated Bangla product reviews across four aspects (Quality, Service, Price, Decoration) from major Bangladeshi e-commerce platforms. Our framework incorporates SHAP-based feature attribution and attention visualization for transparent insights. BanglaSentNet achieves 85% accuracy and 0.88 F1-score, outperforming standalone deep learning models by 3-7% and traditional approaches substantially. The explainability suite achieves 9.4/10 interpretability score with 87.6% human agreement. Cross-domain transfer learning experiments reveal robust generalization: zero-shot performance retains 67-76% effectiveness across diverse domains (BanglaBook reviews, social media, general e-commerce, news headlines); few-shot learning with 500-1000 samples achieves 90-95% of full fine-tuning performance, significantly reducing annotation costs. Real-world deployment demonstrates practical utility for Bangladeshi e-commerce platforms, enabling data-driven decision-making for pricing optimization, service improvement, and customer experience enhancement. This research establishes a new state-of-the-art benchmark for Bangla sentiment analysis, advances ensemble learning methodologies for low-resource languages, and provides actionable solutions for commercial applications.
comment: Submitted to Springer Nature Computer Science (SNCS) as an extended version of our ICDSAIA 2025 conference paper
☆ Tourism Question Answer System in Indian Language using Domain-Adapted Foundation Models
This article presents the first comprehensive study on designing a baseline extractive question-answering (QA) system for the Hindi tourism domain, with a specialized focus on the Varanasi-a cultural and spiritual hub renowned for its Bhakti-Bhaav (devotional ethos). Targeting ten tourism-centric subdomains-Ganga Aarti, Cruise, Food Court, Public Toilet, Kund, Museum, General, Ashram, Temple and Travel, the work addresses the absence of language-specific QA resources in Hindi for culturally nuanced applications. In this paper, a dataset comprising 7,715 Hindi QA pairs pertaining to Varanasi tourism was constructed and subsequently augmented with 27,455 pairs generated via Llama zero-shot prompting. We propose a framework leveraging foundation models-BERT and RoBERTa, fine-tuned using Supervised Fine-Tuning (SFT) and Low-Rank Adaptation (LoRA), to optimize parameter efficiency and task performance. Multiple variants of BERT, including pre-trained languages (e.g., Hindi-BERT), are evaluated to assess their suitability for low-resource domain-specific QA. Evaluation metrics - F1, BLEU, and ROUGE-L - highlight trade-offs between answer precision and linguistic fluency. Experiments demonstrate that LoRA-based fine-tuning achieves competitive performance (85.3\% F1) while reducing trainable parameters by 98\% compared to SFT, striking a balance between efficiency and accuracy. Comparative analysis across models reveals that RoBERTa with SFT outperforms BERT variants in capturing contextual nuances, particularly for culturally embedded terms (e.g., Aarti, Kund). This work establishes a foundational baseline for Hindi tourism QA systems, emphasizing the role of LORA in low-resource settings and underscoring the need for culturally contextualized NLP frameworks in the tourism domain.
☆ TWEO: Transformers Without Extreme Outliers Enables FP8 Training And Quantization For Dummies
Native FP8 support in modern hardware is essential for training large Transformers, but is severely hindered by extreme activation outliers. Existing solutions either rely on complex mixed-precision engineering or invasive architectural modifications. This paper fundamentally challenges the conventional wisdom that outliers are data-driven. We demonstrate that extreme outliers are a data-independent, mechanically-produced artifact of training, originating from specific structural properties of the weight matrices (i.e., colinearity). Based on this insight, we propose TWEO (Transformers Without Extreme Outliers), a novel, non-invasive loss function. TWEO effectively prevents extreme outliers via a very simple loss term, which reduces outliers from 10000+ to less than 20. TWEO then enables full-model FP8 pre-training with neither engineering tricks nor architectural changes for both LLM and ViT. When standard FP8 training catastrophically collapses, TWEO achieves performance comparable to the BF16 baseline while delivering a 36% increase in training throughput. Also, TWEO enables a new quantization paradigm. Hardware-friendly W8A8 per-tensor static quantization of LLMs, previously considered completely unusable due to outliers, achieves SOTA performance for the first time on TWEO-trained models.
☆ Listwise Preference Optimization with Element-wise Confusions for Aspect Sentiment Quad Prediction
Aspect sentiment quad prediction (ASQP) is inherently challenging to predict a structured quadruple with four core sentiment elements, including aspect term (a), aspect category (c), opinion term (o), and sentiment polarity (s). Prior methods relying on marker-based prediction struggle with modeling the intricate relationships among elements and experience sharp performance declines when predicting higher-order elements (e.g., c and s) under standard supervised fine-tuning. To address these limitations, we employ reasoning-based generation to output both the quadruple and a natural language rationale under element prefixes within a unified template, encouraging explicit relational reasoning and interpretability. To further enhance element-wise alignment, we introduce a listwise preference optimization framework for improving structural validity and relational coherence. Specifically, we generate element-wise confusable candidates via syntactic and semantic proximity, then train the model with listwise objectives to prefer the gold candidates over closely competing alternatives. Extensive experiments on four benchmark datasets demonstrate that our framework effectively improves quadruple prediction accuracy and explanation consistency.
comment: 11 pages, 7 figures, and 6 tables
☆ Are LLMs Good Safety Agents or a Propaganda Engine?
Neemesh Yadav, Francesco Ortu, Jiarui Liu, Joeun Yook, Bernhard Schölkopf, Rada Mihalcea, Alberto Cazzaniga, Zhijing Jin
Large Language Models (LLMs) are trained to refuse to respond to harmful content. However, systematic analyses of whether this behavior is truly a reflection of its safety policies or an indication of political censorship, that is practiced globally by countries, is lacking. Differentiating between safety influenced refusals or politically motivated censorship is hard and unclear. For this purpose we introduce PSP, a dataset built specifically to probe the refusal behaviors in LLMs from an explicitly political context. PSP is built by formatting existing censored content from two data sources, openly available on the internet: sensitive prompts in China generalized to multiple countries, and tweets that have been censored in various countries. We study: 1) impact of political sensitivity in seven LLMs through data-driven (making PSP implicit) and representation-level approaches (erasing the concept of politics); and, 2) vulnerability of models on PSP through prompt injection attacks (PIAs). Associating censorship with refusals on content with masked implicit intent, we find that most LLMs perform some form of censorship. We conclude with summarizing major attributes that can cause a shift in refusal distributions across models and contexts of different countries.
comment: 15 pages, 7 tables, 4 figures
☆ Multi-chain Graph Refinement and Selection for Reliable Reasoning in Large Language Models
The complex reasoning ability of Large Language Models (LLMs) poses a critical bottleneck for their practical applications. Test-time expansion methods such as Tree-of-Thought (ToT) and Graph-of-Thought (GoT) enhance reasoning by introducing intermediate reasoning structures, tree search, or graph-based exploration mechanisms. However, their reasoning strategies suffer from limited diversity, redundant search branches, and inadequate integration and error correction across heterogeneous reasoning paths. To address these limitations, we propose a novel reasoning framework called Multi-chain Graph Refinement & Selection (MGRS), which first generates multiple diverse reasoning trajectories for a given problem, refines candidate responses using a composite self- and cross-verification strategy, then constructs a reasoning relation graph and estimates the success rate of intermediate nodes, and finally computes cumulative success rates to select the most reliable answer and corresponding reasoning trajectory. Experimental results demonstrate that MGRS significantly advances both the reasoning capability and computational efficiency of reasoning enhancement methods. Across six benchmark datasets spanning four distinct tasks, MGRS achieves an average accuracy of 82.9%, outperforming state-of-the-art baselines by a clear margin of 2.1%. Remarkably, on the 24-point game, MGRS attains 100% accuracy for the first time, while delivering a 13.6x speed-up compared to the leading Forest of Thoughts framework.
☆ Dripper: Token-Efficient Main HTML Extraction with a Lightweight LM
Mengjie Liu, Jiahui Peng, Pei Chu, Jiantao Qiu, Ren Ma, He Zhu, Rui Min, Lindong Lu, Wenchang Ning, Linfeng Hou, Kaiwen Liu, Yuan Qu, Zhenxiang Li, Chao Xu, Zhongying Tu, Wentao Zhang, Conghui He
Accurately and efficiently extracting main content from general web pages is of great significance for obtaining training data for large models. Using well-pre-trained decoder-only generative language models offers excellent document comprehension capabilities, thereby effectively enhancing parsing quality. However, it remains constrained by issues such as context window length, inference cost, and format hallucination. We present Dripper, an efficient HTML main content extraction framework powered by lightweight language models, which addresses these challenges through four key innovations: (1) We design a specialized HTML simplification algorithm that reduces input token count to 22\% compared to raw HTML while preserving critical structural information; (2) We reformulate main content extraction as a semantic block sequence classification task, significantly reducing inference cost; (3) We introduce a controlled decoding mechanism that strictly constrains the output space through logits processors, effectively eliminating hallucination issues common in small-scale models; (4) We propose WebMainBench, an evaluation dataset containing over 7,800 web pages with meticulously human-annotated main content extraction labels. Experimental results demonstrate that using only a 0.6B parameter model, Dripper achieves state-of-the-art performance across all evaluation benchmarks and outperforms all baseline methods, attaining an ROUGE-N F1 score of 81.58\%( 83.13\% with fall-back strategy) on our proposed WebMainBench dataset.
☆ Mind Reading or Misreading? LLMs on the Big Five Personality Test SC
We evaluate large language models (LLMs) for automatic personality prediction from text under the binary Five Factor Model (BIG5). Five models -- including GPT-4 and lightweight open-source alternatives -- are tested across three heterogeneous datasets (Essays, MyPersonality, Pandora) and two prompting strategies (minimal vs. enriched with linguistic and psychological cues). Enriched prompts reduce invalid outputs and improve class balance, but also introduce a systematic bias toward predicting trait presence. Performance varies substantially: Openness and Agreeableness are relatively easier to detect, while Extraversion and Neuroticism remain challenging. Although open-source models sometimes approach GPT-4 and prior benchmarks, no configuration yields consistently reliable predictions in zero-shot binary settings. Moreover, aggregate metrics such as accuracy and macro-F1 mask significant asymmetries, with per-class recall offering clearer diagnostic value. These findings show that current out-of-the-box LLMs are not yet suitable for APPT, and that careful coordination of prompt design, trait framing, and evaluation metrics is essential for interpretable results.
comment: Funding: SoBigDatait (IR0000013), FAIR (PE00000013), ICSC (CN00000013)
☆ Accent Placement Models for Rigvedic Sanskrit Text AACL
The Rigveda, among the oldest Indian texts in Vedic Sanskrit, employs a distinctive pitch-accent system : udātta, anudātta, svarita whose marks encode melodic and interpretive cues but are often absent from modern e-texts. This work develops a parallel corpus of accented-unaccented ślokas and conducts a controlled comparison of three strategies for automatic accent placement in Rigvedic verse: (i) full fine-tuning of ByT5, a byte-level Transformer that operates directly on Unicode combining marks, (ii) a from-scratch BiLSTM-CRF sequence-labeling baseline, and (iii) LoRA-based parameter-efficient fine-tuning atop ByT5.
Evaluation uses Word Error Rate (WER) and Character Error Rate (CER) for orthographic fidelity, plus a task-specific Diacritic Error Rate (DER) that isolates accent edits. Full ByT5 fine-tuning attains the lowest error across all metrics; LoRA offers strong efficiency-accuracy trade-offs, and BiLSTM-CRF serves as a transparent baseline. The study underscores practical requirements for accent restoration - Unicode-safe preprocessing, mark-aware tokenization, and evaluation that separates grapheme from accent errors - and positions heritage-language technology as an emerging NLP area connecting computational modeling with philological and pedagogical aims. Results establish reproducible baselines for Rigvedic accent restoration and provide guidance for downstream tasks such as accent-aware OCR, ASR/chant synthesis, and digital scholarship.
comment: Submitted to AACL-IJCNLP 2025
☆ Bharat Scene Text: A Novel Comprehensive Dataset and Benchmark for Indian Language Scene Text Understanding
Anik De, Abhirama Subramanyam Penamakuri, Rajeev Yadav, Aditya Rathore, Harshiv Shah, Devesh Sharma, Sagar Agarwal, Pravin Kumar, Anand Mishra
Reading scene text, that is, text appearing in images, has numerous application areas, including assistive technology, search, and e-commerce. Although scene text recognition in English has advanced significantly and is often considered nearly a solved problem, Indian language scene text recognition remains an open challenge. This is due to script diversity, non-standard fonts, and varying writing styles, and, more importantly, the lack of high-quality datasets and open-source models. To address these gaps, we introduce the Bharat Scene Text Dataset (BSTD) - a large-scale and comprehensive benchmark for studying Indian Language Scene Text Recognition. It comprises more than 100K words that span 11 Indian languages and English, sourced from over 6,500 scene images captured across various linguistic regions of India. The dataset is meticulously annotated and supports multiple scene text tasks, including: (i) Scene Text Detection, (ii) Script Identification, (iii) Cropped Word Recognition, and (iv) End-to-End Scene Text Recognition. We evaluated state-of-the-art models originally developed for English by adapting (fine-tuning) them for Indian languages. Our results highlight the challenges and opportunities in Indian language scene text recognition. We believe that this dataset represents a significant step toward advancing research in this domain. All our models and data are open source.
comment: Under Peer Review
☆ Conveying Imagistic Thinking in TCM Translation: A Prompt Engineering and LLM-Based Evaluation Framework
Traditional Chinese Medicine theory is built on imagistic thinking, in which medical principles and diagnostic and therapeutic logic are structured through metaphor and metonymy. However, existing English translations largely rely on literal rendering, making it difficult for target-language readers to reconstruct the underlying conceptual networks and apply them in clinical practice. This study adopted a human-in-the-loop framework and selected four passages from the medical canon Huangdi Neijing that are fundamental in theory. Through prompt-based cognitive scaffolding, DeepSeek V3.1 was guided to identify metaphor and metonymy in the source text and convey the theory in translation. In the evaluation stage, ChatGPT 5 Pro and Gemini 2.5 Pro were instructed by prompts to simulate three types of real-world readers. Human translations, baseline model translations, and prompt-adjusted translations were scored by the simulated readers across five cognitive dimensions, followed by structured interviews and Interpretative Phenomenological Analysis. Results show that the prompt-adjusted LLM translations perform best across all five dimensions, with high cross-model and cross-role consistency. The interview themes reveal differences between human and machine translation, effective strategies for metaphor and metonymy transfer, and readers' cognitive preferences. This study provides a cognitive, efficient and replicable HITL methodological pathway for translation of ancient, concept-dense texts like TCM.
comment: 3 figures
☆ Standard Occupation Classifier -- A Natural Language Processing Approach
Standard Occupational Classifiers (SOC) are systems used to categorize and classify different types of jobs and occupations based on their similarities in terms of job duties, skills, and qualifications. Integrating these facets with Big Data from job advertisement offers the prospect to investigate labour demand that is specific to various occupations. This project investigates the use of recent developments in natural language processing to construct a classifier capable of assigning an occupation code to a given job advertisement. We develop various classifiers for both UK ONS SOC and US O*NET SOC, using different Language Models. We find that an ensemble model, which combines Google BERT and a Neural Network classifier while considering job title, description, and skills, achieved the highest prediction accuracy. Specifically, the ensemble model exhibited a classification accuracy of up to 61% for the lower (or fourth) tier of SOC, and 72% for the third tier of SOC. This model could provide up to date, accurate information on the evolution of the labour market using job advertisements.
☆ Decoding the Past: Explainable Machine Learning Models for Dating Historical Texts
Accurately dating historical texts is essential for organizing and interpreting cultural heritage collections. This article addresses temporal text classification using interpretable, feature-engineered tree-based machine learning models. We integrate five feature categories - compression-based, lexical structure, readability, neologism detection, and distance features - to predict the temporal origin of English texts spanning five centuries. Comparative analysis shows that these feature domains provide complementary temporal signals, with combined models outperforming any individual feature set. On a large-scale corpus, we achieve 76.7% accuracy for century-scale prediction and 26.1% for decade-scale classification, substantially above random baselines (20% and 2.3%). Under relaxed temporal precision, performance increases to 96.0% top-2 accuracy for centuries and 85.8% top-10 accuracy for decades. The final model exhibits strong ranking capabilities with AUCROC up to 94.8% and AUPRC up to 83.3%, and maintains controlled errors with mean absolute deviations of 27 years and 30 years, respectively. For authentication-style tasks, binary models around key thresholds (e.g., 1850-1900) reach 85-98% accuracy. Feature importance analysis identifies distance features and lexical structure as most informative, with compression-based features providing complementary signals. SHAP explainability reveals systematic linguistic evolution patterns, with the 19th century emerging as a pivot point across feature domains. Cross-dataset evaluation on Project Gutenberg highlights domain adaptation challenges, with accuracy dropping by 26.4 percentage points, yet the computational efficiency and interpretability of tree-based models still offer a scalable, explainable alternative to neural architectures.
☆ Social Perceptions of English Spelling Variation on Twitter: A Comparative Analysis of Human and LLM Responses
Spelling variation (e.g. funnnn vs. fun) can influence the social perception of texts and their writers: we often have various associations with different forms of writing (is the text informal? does the writer seem young?). In this study, we focus on the social perception of spelling variation in online writing in English and study to what extent this perception is aligned between humans and large language models (LLMs). Building on sociolinguistic methodology, we compare LLM and human ratings on three key social attributes of spelling variation (formality, carefulness, age). We find generally strong correlations in the ratings between humans and LLMs. However, notable differences emerge when we analyze the distribution of ratings and when comparing between different types of spelling variation.
☆ ShoppingComp: Are LLMs Really Ready for Your Shopping Cart?
We present ShoppingComp, a challenging real-world benchmark for rigorously evaluating LLM-powered shopping agents on three core capabilities: precise product retrieval, expert-level report generation, and safety critical decision making. Unlike prior e-commerce benchmarks, ShoppingComp introduces highly complex tasks under the principle of guaranteeing real products and ensuring easy verifiability, adding a novel evaluation dimension for identifying product safety hazards alongside recommendation accuracy and report quality. The benchmark comprises 120 tasks and 1,026 scenarios, curated by 35 experts to reflect authentic shopping needs. Results reveal stark limitations of current LLMs: even state-of-the-art models achieve low performance (e.g., 11.22% for GPT-5, 3.92% for Gemini-2.5-Flash). These findings highlight a substantial gap between research benchmarks and real-world deployment, where LLMs make critical errors such as failure to identify unsafe product usage or falling for promotional misinformation, leading to harmful recommendations. ShoppingComp fills the gap and thus establishes a new standard for advancing reliable and practical agents in e-commerce.
☆ Pooling Attention: Evaluating Pretrained Transformer Embeddings for Deception Classification
This paper investigates fake news detection as a downstream evaluation of Transformer representations, benchmarking encoder-only and decoder-only pre-trained models (BERT, GPT-2, Transformer-XL) as frozen embedders paired with lightweight classifiers. Through controlled preprocessing comparing pooling versus padding and neural versus linear heads, results demonstrate that contextual self-attention encodings consistently transfer effectively. BERT embeddings combined with logistic regression outperform neural baselines on LIAR dataset splits, while analyses of sequence length and aggregation reveal robustness to truncation and advantages from simple max or average pooling. This work positions attention-based token encoders as robust, architecture-centric foundations for veracity tasks, isolating Transformer contributions from classifier complexity.
comment: Accepted at the IEEE 7th Computing, Communications and IoT Applications Conference (ComComAp 2025), Madrid, Spain, December 2025. 6 pages
☆ Training-Free Loosely Speculative Decoding: Accepting Semantically Correct Drafts Beyond Exact Match
Jinze Li, Yixing Xu, Guanchen Li, Shuo Yang, Jinfeng Xu, Xuanwu Yin, Dong Li, Edith C. H. Ngai, Emad Barsoum
Large language models (LLMs) achieve strong performance across diverse tasks but suffer from high inference latency due to their autoregressive generation. Speculative Decoding (SPD) mitigates this issue by verifying candidate tokens in parallel from a smaller draft model, yet its strict exact-match verification discards many semantically valid continuations. Moreover, existing training-based SPD methods often suffer from performance degradation on out-of-distribution (OOD) tasks. To this end, we propose Training-Free Loosely Speculative Decoding (FLy), a novel method that loosens the rigid verification criterion by leveraging the target model's self-corrective behavior to judge whether a draft-target mismatch remains semantically valid. FLy introduces a two-tier mechanism: an entropy-level gate that identifies whether the current token allows multiple plausible alternatives or is nearly deterministic, and a token-level deferred window that distinguishes genuine errors from differently worded yet semantically correct variants. To further reduce latency, we design a multi-level acceleration strategy that accelerates not only the target model but also the drafter itself. Owing to its training-free design, FLy composes seamlessly with arbitrary draft-target pairs and generalizes across models and domains without hyperparameter re-tuning. Experiments show that FLy preserves more than 99% of the target model's accuracy while achieving an average 2.81x speedup on Llama-3.1-70B-Instruct and 5.07x speedup on the 405B variant. Notably, on out-of-domain datasets, our method remains highly effective and outperforms the training-based method EAGLE-3 by 1.62x.
comment: Under review
☆ Visual Puns from Idioms: An Iterative LLM-T2IM-MLLM Framework ICASSP 2026
We study idiom-based visual puns--images that align an idiom's literal and figurative meanings--and present an iterative framework that coordinates a large language model (LLM), a text-to-image model (T2IM), and a multimodal LLM (MLLM) for automatic generation and evaluation. Given an idiom, the system iteratively (i) generates detailed visual prompts, (ii) synthesizes an image, (iii) infers the idiom from the image, and (iv) refines the prompt until recognition succeeds or a step limit is reached. Using 1,000 idioms as inputs, we synthesize a corresponding dataset of visual pun images with paired prompts, enabling benchmarking of both generation and understanding. Experiments across 10 LLMs, 10 MLLMs, and one T2IM (Qwen-Image) show that MLLM choice is the primary performance driver: GPT achieves the highest accuracies, Gemini follows, and the best open-source MLLM (Gemma) is competitive with some closed models. On the LLM side, Claude attains the strongest average performance for prompt generation.
comment: Submitted to ICASSP 2026 (under review)
☆ Artwork Interpretation with Vision Language Models: A Case Study on Emotions and Emotion Symbols AACL
Emotions are a fundamental aspect of artistic expression. Due to their abstract nature, there is a broad spectrum of emotion realization in artworks. These are subject to historical change and their analysis requires expertise in art history. In this article, we investigate which aspects of emotional expression can be detected by current (2025) vision language models (VLMs). We present a case study of three VLMs (Llava-Llama and two Qwen models) in which we ask these models four sets of questions of increasing complexity about artworks (general content, emotional content, expression of emotions, and emotion symbols) and carry out a qualitative expert evaluation. We find that the VLMs recognize the content of the images surprisingly well and often also which emotions they depict and how they are expressed. The models perform best for concrete images but fail for highly abstract or highly symbolic images. Reliable recognition of symbols remains fundamentally difficult. Furthermore, the models continue to exhibit the well-known LLM weakness of providing inconsistent answers to related questions.
comment: Accepted for publication at the IJCNLP-AACL workshop on Multimodal Models for Low-Resource Contexts and Social Impact
☆ Language-conditioned world model improves policy generalization by reading environmental descriptions
To interact effectively with humans in the real world, it is important for agents to understand language that describes the dynamics of the environment--that is, how the environment behaves--rather than just task instructions specifying "what to do". Understanding this dynamics-descriptive language is important for human-agent interaction and agent behavior. Recent work address this problem using a model-based approach: language is incorporated into a world model, which is then used to learn a behavior policy. However, these existing methods either do not demonstrate policy generalization to unseen games or rely on limiting assumptions. For instance, assuming that the latency induced by inference-time planning is tolerable for the target task or expert demonstrations are available. Expanding on this line of research, we focus on improving policy generalization from a language-conditioned world model while dropping these assumptions. We propose a model-based reinforcement learning approach, where a language-conditioned world model is trained through interaction with the environment, and a policy is learned from this model--without planning or expert demonstrations. Our method proposes Language-aware Encoder for Dreamer World Model (LED-WM) built on top of DreamerV3. LED-WM features an observation encoder that uses an attention mechanism to explicitly ground language descriptions to entities in the observation. We show that policies trained with LED-WM generalize more effectively to unseen games described by novel dynamics and language compared to other baselines in several settings in two environments: MESSENGER and MESSENGER-WM.To highlight how the policy can leverage the trained world model before real-world deployment, we demonstrate the policy can be improved through fine-tuning on synthetic test trajectories generated by the world model.
comment: NeuRIPS 2025. Workshop: LAW 2025: Bridging Language, Agent, and World Models
☆ ORION: Teaching Language Models to Reason Efficiently in the Language of Thought
Large Reasoning Models (LRMs) achieve strong performance in mathematics, code generation, and task planning, but their reliance on long chains of verbose "thinking" tokens leads to high latency, redundancy, and incoherent reasoning paths. Inspired by the Language of Thought Hypothesis, which posits that human reasoning operates over a symbolic, compositional mental language called Mentalese, we introduce a framework that trains models to reason in a similarly compact style. Mentalese encodes abstract reasoning as ultra-compressed, structured tokens, enabling models to solve complex problems with far fewer steps. To improve both efficiency and accuracy, we propose SHORTER LENGTH PREFERENCE OPTIMIZATION (SLPO), a reinforcement learning method that rewards concise solutions that stay correct, while still allowing longer reasoning when needed. Applied to Mentalese-aligned models, SLPO yields significantly higher compression rates by enabling concise reasoning that preserves the benefits of detailed thinking without the computational overhead. Across benchmarks including AIME 2024 and 2025, MinervaMath, OlympiadBench, Math500, and AMC, our ORION models produce reasoning traces with 4-16x fewer tokens, achieve up to 5x lower inference latency, and reduce training costs by 7-9x relative to the DeepSeek R1 Distilled model, while maintaining 90-98% of its accuracy. ORION also surpasses Claude and ChatGPT-4o by up to 5% in accuracy while maintaining 2x compression. These results show that Mentalese-style compressed reasoning offers a step toward human-like cognitive efficiency, enabling real-time, cost-effective reasoning without sacrificing accuracy.
☆ FEANEL: A Benchmark for Fine-Grained Error Analysis in K-12 English Writing
Jingheng Ye, Shen Wang, Jiaqi Chen, Hebin Wang, Deqing Zou, Yanyu Zhu, Jiwei Tang, Hai-Tao Zheng, Ruitong Liu, Haoyang Li, Yanfeng Wang, Qingsong Wen
Large Language Models (LLMs) have transformed artificial intelligence, offering profound opportunities for educational applications. However, their ability to provide fine-grained educational feedback for K-12 English writing remains underexplored. In this paper, we challenge the error analysis and pedagogical skills of LLMs by introducing the problem of Fine-grained Error Analysis for English Learners and present the Fine-grained Error ANalysis for English Learners (FEANEL) Benchmark. The benchmark comprises 1,000 essays written by elementary and secondary school students, and a well-developed English writing error taxonomy. Each error is annotated by language education experts and categorized by type, severity, and explanatory feedback, using a part-of-speech-based taxonomy they co-developed. We evaluate state-of-the-art LLMs on the FEANEL Benchmark to explore their error analysis and pedagogical abilities. Experimental results reveal significant gaps in current LLMs' ability to perform fine-grained error analysis, highlighting the need for advancements in particular methods for educational applications.
comment: 19 pages, 7 figures, and 4 tables. The dataset is available at https://huggingface.co/datasets/Feanel/FEANEL
☆ JBE-QA: Japanese Bar Exam QA Dataset for Assessing Legal Domain Knowledge
We introduce JBE-QA, a Japanese Bar Exam Question-Answering dataset to evaluate large language models' legal knowledge. Derived from the multiple-choice (tanto-shiki) section of the Japanese bar exam (2015-2024), JBE-QA provides the first comprehensive benchmark for Japanese legal-domain evaluation of LLMs. It covers the Civil Code, the Penal Code, and the Constitution, extending beyond the Civil Code focus of prior Japanese resources. Each question is decomposed into independent true/false judgments with structured contextual fields. The dataset contains 3,464 items with balanced labels. We evaluate 26 LLMs, including proprietary, open-weight, Japanese-specialised, and reasoning models. Our results show that proprietary models with reasoning enabled perform best, and the Constitution questions are generally easier than the Civil Code or the Penal Code questions.
comment: Three tables and one figure
☆ RAG System for Supporting Japanese Litigation Procedures: Faithful Response Generation Complying with Legal Norms SIGIR
This study discusses the essential components that a Retrieval-Augmented Generation (RAG)-based LLM system should possess in order to support Japanese medical litigation procedures complying with legal norms. In litigation, expert commissioners, such as physicians, architects, accountants, and engineers, provide specialized knowledge to help judges clarify points of dispute. When considering the substitution of these expert roles with a RAG-based LLM system, the constraint of strict adherence to legal norms is imposed. Specifically, three requirements arise: (1) the retrieval module must retrieve appropriate external knowledge relevant to the disputed issues in accordance with the principle prohibiting the use of private knowledge, (2) the responses generated must originate from the context provided by the RAG and remain faithful to that context, and (3) the retrieval module must reference external knowledge with appropriate timestamps corresponding to the issues at hand. This paper discusses the design of a RAG-based LLM system that satisfies these requirements.
comment: This is a preprint version of a paper reviewed and accepted at BREV-RAG 2025: Beyond Relevance-based EValuation of RAG Systems, a SIGIR-AP 2025 workshop
☆ Mitigating Semantic Drift: Evaluating LLMs' Efficacy in Psychotherapy through MI Dialogue Summarization
Recent advancements in large language models (LLMs) have shown their potential across both general and domain-specific tasks. However, there is a growing concern regarding their lack of sensitivity, factual incorrectness in responses, inconsistent expressions of empathy, bias, hallucinations, and overall inability to capture the depth and complexity of human understanding, especially in low-resource and sensitive domains such as psychology. To address these challenges, our study employs a mixed-methods approach to evaluate the efficacy of LLMs in psychotherapy. We use LLMs to generate precise summaries of motivational interviewing (MI) dialogues and design a two-stage annotation scheme based on key components of the Motivational Interviewing Treatment Integrity (MITI) framework, namely evocation, collaboration, autonomy, direction, empathy, and a non-judgmental attitude. Using expert-annotated MI dialogues as ground truth, we formulate multi-class classification tasks to assess model performance under progressive prompting techniques, incorporating one-shot and few-shot prompting. Our results offer insights into LLMs' capacity for understanding complex psychological constructs and highlight best practices to mitigate ``semantic drift" in therapeutic settings. Our work contributes not only to the MI community by providing a high-quality annotated dataset to address data scarcity in low-resource domains but also critical insights for using LLMs for precise contextual interpretation in complex behavioral therapy.
♻ ☆ Asymmetric REINFORCE for off-Policy Reinforcement Learning: Balancing positive and negative rewards
Reinforcement learning (RL) is increasingly used to align large language models (LLMs). Off-policy methods offer greater implementation simplicity and data efficiency than on-policy techniques, but often result in suboptimal performance. In this work, we study the intermediate range of algorithms between off-policy RL and supervised fine-tuning by analyzing a simple off-policy REINFORCE algorithm, where the advantage is defined as $A=r-V$, with $r$ a reward and $V$ some tunable baseline. Intuitively, lowering $V$ emphasizes high-reward samples, while raising it penalizes low-reward ones more heavily. We first provide a theoretical analysis of this off-policy REINFORCE algorithm, showing that when the baseline $V$ lower-bounds the expected reward, the algorithm enjoys a policy improvement guarantee. Our analysis reveals that while on-policy updates can safely leverage both positive and negative signals, off-policy updates benefit from focusing more on positive rewards than on negative ones. We validate our findings experimentally in a controlled stochastic bandit setting and through fine-tuning state-of-the-art LLMs on reasoning tasks.
♻ ☆ Robust LLM Unlearning with MUDMAN: Meta-Unlearning with Disruption Masking And Normalization
Language models can retain dangerous knowledge and skills even after extensive safety fine-tuning, posing both misuse and misalignment risks. Recent studies show that even specialized unlearning methods can be easily reversed. To address this, we systematically evaluate many existing and novel components of unlearning methods and identify ones crucial for irreversible unlearning.
We introduce Disruption Masking, a technique in which we only allow updating weights, where the signs of the unlearning gradient and the retaining gradient are the same. This ensures all updates are non-disruptive.
Additionally, we identify the need for normalizing the unlearning gradients, and also confirm the usefulness of meta-learning. We combine these insights into MUDMAN (Meta-Unlearning with Disruption Masking and Normalization) and validate its effectiveness at preventing the recovery of dangerous capabilities. MUDMAN outperforms the prior TAR method by 40%, setting a new state-of-the-art for robust unlearning.
♻ ☆ Toward Honest Language Models for Deductive Reasoning
Jiarui Liu, Kaustubh Dhole, Yingheng Wang, Haoyang Wen, Sarah Zhang, Haitao Mao, Gaotang Li, Neeraj Varshney, Jingguo Liu, Xiaoman Pan
Deductive reasoning is the process of deriving conclusions strictly from the given premises, without relying on external knowledge. We define honesty in this setting as a model's ability to respond only when the conclusion is logically entailed by the premises, and to abstain otherwise. However, current language models often fail to reason honestly, producing unwarranted answers when the input is insufficient. To study this challenge, we formulate honest deductive reasoning as multi-step tasks where models must either derive the correct conclusion or abstain. We curate two datasets from graph structures, one for linear algebra and one for logical inference, and introduce unanswerable cases by randomly perturbing an edge in half of the instances. We find that prompting and existing training methods, including GRPO with or without supervised fine-tuning initialization, struggle on these tasks. In particular, GRPO optimize only for final task outcomes, leaving models vulnerable to collapse when negative rewards dominate early training. To address this, we propose ACNCHOR, a reinforcement learning method that injects ground truth trajectories into rollouts, preventing early training collapse. Our results demonstrate that this method stabilizes learning and significantly improves the overall reasoning performance, underscoring the importance of training dynamics for enabling honest deductive reasoning in language models.
♻ ☆ Continual Learning of Domain Knowledge from Human Feedback in Text-to-SQL
Thomas Cook, Kelly Patel, Sivapriya Vellaichamy, Udari Madhushani Sehwag, Saba Rahimi, Zhen Zeng, Sumitra Ganesh
Large Language Models (LLMs) can generate SQL queries from natural language questions but struggle with database-specific schemas and tacit domain knowledge. We introduce a framework for continual learning from human feedback in text-to-SQL, where a learning agent receives natural language feedback to refine queries and distills the revealed knowledge for reuse on future tasks. This distilled knowledge is stored in a structured memory, enabling the agent to improve execution accuracy over time. We design and evaluate multiple variations of a learning agent architecture that vary in how they capture and retrieve past experiences. Experiments on the BIRD benchmark Dev set show that memory-augmented agents, particularly the Procedural Agent, achieve significant accuracy gains and error reduction by leveraging human-in-the-loop feedback. Our results highlight the importance of transforming tacit human expertise into reusable knowledge, paving the way for more adaptive, domain-aware text-to-SQL systems that continually learn from a human-in-the-loop.
comment: 34 pages, 6 figures, 4 tables
♻ ☆ OmniRouter: Budget and Performance Controllable Multi-LLM Routing
Large language models (LLMs) deliver superior performance but require substantial computational resources and operate with relatively low efficiency, while smaller models can efficiently handle simpler tasks with fewer resources. LLM routing is a crucial paradigm that dynamically selects the most suitable large language models from a pool of candidates to process diverse inputs, ensuring optimal resource utilization while maintaining response quality. Existing routing frameworks typically model this as a locally optimal decision-making problem, selecting the presumed best-fit LLM for each query individually, which overlooks global budget constraints, resulting in ineffective resource allocation. To tackle this problem, we introduce OmniRouter, a fundamentally controllable routing framework for multi-LLM serving. Instead of making per-query greedy choices, OmniRouter models the routing task as a constrained optimization problem, assigning models that minimize total cost while ensuring the required performance level. Specifically, a hybrid retrieval-augmented predictor is designed to predict the capabilities and costs of LLMs. After obtaining the predicted cost and performance, we utilize a constrained optimizer for cost-optimal assignments that employs Lagrangian dual decomposition with adaptive multipliers. It iteratively converges toward the globally optimal query-model allocation, dynamically balancing latency minimization against quality thresholds while adhering to heterogeneous capacity constraints. Experiments show that OmniRouter achieves up to 6.30% improvement in response accuracy while simultaneously reducing computational costs by at least 10.15% compared to competitive router baselines. The code and the dataset are available at https://github.com/dongyuanjushi/OmniRouter.
♻ ☆ Mina: A Multilingual LLM-Powered Legal Assistant Agent for Bangladesh for Empowering Access to Justice
Bangladesh's low-income population faces major barriers to affordable legal advice due to complex legal language, procedural opacity, and high costs. Existing AI legal assistants lack Bengali-language support and jurisdiction-specific adaptation, limiting their effectiveness. To address this, we developed Mina, a multilingual LLM-based legal assistant tailored for the Bangladeshi context. It employs multilingual embeddings and a RAG-based chain-of-tools framework for retrieval, reasoning, translation, and document generation, delivering context-aware legal drafts, citations, and plain-language explanations via an interactive chat interface. Evaluated by law faculty from leading Bangladeshi universities across all stages of the 2022 and 2023 Bangladesh Bar Council Exams, Mina scored 75-80% in Preliminary MCQs, Written, and simulated Viva Voce exams, matching or surpassing average human performance and demonstrating clarity, contextual understanding, and sound legal reasoning. Even under a conservative upper bound, Mina operates at just 0.12-0.61% of typical legal consultation costs in Bangladesh, yielding a 99.4-99.9\% cost reduction relative to human-provided services. These results confirm its potential as a low-cost, multilingual AI assistant that automates key legal tasks and scales access to justice, offering a real-world case study on building domain-specific, low-resource systems and addressing challenges of multilingual adaptation, efficiency, and sustainable public-service AI deployment.
♻ ☆ STAR-Bench: Probing Deep Spatio-Temporal Reasoning as Audio 4D Intelligence
Zihan Liu, Zhikang Niu, Qiuyang Xiao, Zhisheng Zheng, Ruoqi Yuan, Yuhang Zang, Yuhang Cao, Xiaoyi Dong, Jianze Liang, Xie Chen, Leilei Sun, Dahua Lin, Jiaqi Wang
Despite rapid progress in Multi-modal Large Language Models and Large Audio-Language Models, existing audio benchmarks largely test semantics that can be recovered from text captions, masking deficits in fine-grained perceptual reasoning. We formalize audio 4D intelligence that is defined as reasoning over sound dynamics in time and 3D space, and introduce STAR-Bench to measure it. STAR-Bench combines a Foundational Acoustic Perception setting (six attributes under absolute and relative regimes) with a Holistic Spatio-Temporal Reasoning setting that includes segment reordering for continuous and discrete processes and spatial tasks spanning static localization, multi-source relations, and dynamic trajectories. Our data curation pipeline uses two methods to ensure high-quality samples. For foundational tasks, we use procedurally synthesized and physics-simulated audio. For holistic data, we follow a four-stage process that includes human annotation and final selection based on human performance. Unlike prior benchmarks where caption-only answering reduces accuracy slightly, STAR-Bench induces far larger drops (-31.5\% temporal, -35.2\% spatial), evidencing its focus on linguistically hard-to-describe cues. Evaluating 19 models reveals substantial gaps compared with humans and a capability hierarchy: closed-source models are bottlenecked by fine-grained perception, while open-source models lag across perception, knowledge, and reasoning. Our STAR-Bench provides critical insights and a clear path forward for developing future models with a more robust understanding of the physical world.
comment: Homepage: https://internlm.github.io/StarBench/
♻ ☆ Local Hybrid Retrieval-Augmented Document QA ACL
Organizations handling sensitive documents face a critical dilemma: adopt cloud-based AI systems that offer powerful question-answering capabilities but compromise data privacy, or maintain local processing that ensures security but delivers poor accuracy. We present a question-answering system that resolves this trade-off by combining semantic understanding with keyword precision, operating entirely on local infrastructure without internet access. Our approach demonstrates that organizations can achieve competitive accuracy on complex queries across legal, scientific, and conversational documents while keeping all data on their machines. By balancing two complementary retrieval strategies and using consumer-grade hardware acceleration, the system delivers reliable answers with minimal errors, letting banks, hospitals, and law firms adopt conversational document AI without transmitting proprietary information to external providers. This work establishes that privacy and performance need not be mutually exclusive in enterprise AI deployment.
comment: 10 pages, 5 figures, 3 tables; conference-style (ACL format); fully local RAG system
♻ ☆ Leveraging Biomolecule and Natural Language through Multi-Modal Learning: A Survey
The integration of biomolecular modeling with natural language (BL) has emerged as a promising interdisciplinary area at the intersection of artificial intelligence, chemistry and biology. This approach leverages the rich, multifaceted descriptions of biomolecules contained within textual data sources to enhance our fundamental understanding and enable downstream computational tasks such as biomolecule property prediction. The fusion of the nuanced narratives expressed through natural language with the structural and functional specifics of biomolecules described via various molecular modeling techniques opens new avenues for comprehensively representing and analyzing biomolecules. By incorporating the contextual language data that surrounds biomolecules into their modeling, BL aims to capture a holistic view encompassing both the symbolic qualities conveyed through language as well as quantitative structural characteristics. In this review, we provide an extensive analysis of recent advancements achieved through cross modeling of biomolecules and natural language. (1) We begin by outlining the technical representations of biomolecules employed, including sequences, 2D graphs, and 3D structures. (2) We then examine in depth the rationale and key objectives underlying effective multi-modal integration of language and molecular data sources. (3) We subsequently survey the practical applications enabled to date in this developing research area. (4) We also compile and summarize the available resources and datasets to facilitate future work. (5) Looking ahead, we identify several promising research directions worthy of further exploration and investment to continue advancing the field. The related resources and contents are updating in https://github.com/QizhiPei/Awesome-Biomolecule-Language-Cross-Modeling.
comment: 2025.11.28 Updated Version
♻ ☆ Adversarial Confusion Attack: Disrupting Multimodal Large Language Models
We introduce the Adversarial Confusion Attack, a new class of threats against multimodal large language models (MLLMs). Unlike jailbreaks or targeted misclassification, the goal is to induce systematic disruption that makes the model generate incoherent or confidently incorrect outputs. Applications include embedding adversarial images into websites to prevent MLLM-powered agents from operating reliably. The proposed attack maximizes next-token entropy using a small ensemble of open-source MLLMs. In the white-box setting, we show that a single adversarial image can disrupt all models in the ensemble, both in the full-image and adversarial CAPTCHA settings. Despite relying on a basic adversarial technique (PGD), the attack generates perturbations that transfer to both unseen open-source (e.g., Qwen3-VL) and proprietary (e.g., GPT-5.1) models.
♻ ☆ REFLEX: Self-Refining Explainable Fact-Checking via Disentangling Truth into Style and Substance
The prevalence of misinformation on social media threatens public trust, demanding automated fact-checking systems that provide accurate verdicts with interpretable explanations. However, existing large language model-based (LLM-based) approaches often rely heavily on external knowledge sources, introducing substantial latency and even hallucinations that undermine reliability, interpretability, and responsiveness, which is crucial for real-time use. To address these challenges, we propose REason-guided Fact-checking with Latent EXplanations REFLEX paradigm, a plug-and-play, self-refining paradigm that leverages the internal knowledge in backbone model to improve both verdict accuracy and explanation quality. REFLEX reformulates fact-checking as a role-play dialogue and jointly trains verdict prediction and explanation generation. It adaptively extracts contrastive activation pairs between the backbone model and its fine-tuned variant to construct steering vectors that disentangle truth into style and substance naturally. These activation-level signals guide inference and suppress noisy explanations, enabling more faithful and efficient reasoning. Experiments on real-world datasets show that REFLEX outperforms previous methods that steer toward a single truth direction and underscores the challenge traditional approaches face when handling the subtle, human-unknown truth in fact-checking tasks. Remarkably, with only 465 self-refined training samples, RELFEX achieves state-of-the-art performance. Furthermore, models trained with explanatory objectives can effectively guide those without them, yielding up to a 7.57% improvement, highlighting that internal explanation signals play a dual role in both interpreting and enhancing factual reasoning.
♻ ☆ Efficient Reasoning via Thought-Training and Thought-Free Inference
Recent advances in large language models (LLMs) have leveraged explicit Chain-of-Thought (CoT) prompting to improve reasoning accuracy. However, most existing methods primarily focus on compressing verbose reasoning outputs. These Long-to-Short transformations aim to improve efficiency, but require a large amount of short CoT data. In this work, we introduce \textbf{3TF} (\textbf{T}hought-\textbf{T}raining and \textbf{T}hought-\textbf{F}ree inference), a framework for efficient reasoning that takes a Short-to-Long perspective. We first train a hybrid model that can operate in both reasoning and non-reasoning modes, and then further train it on CoT-annotated data to internalize structured reasoning, while enforcing concise, thought-free outputs at inference time using the no-reasoning mode. Unlike compression-based approaches, 3TF improves the reasoning quality of non-reasoning outputs, enabling models to perform rich internal reasoning implicitly while keeping external outputs short. Empirically, 3TF-trained models obtain large improvements on reasoning benchmarks under thought-free inference, demonstrating that high quality reasoning can be learned and executed implicitly without explicit step-by-step generation.
comment: 11 pages, 4 figures
♻ ☆ RvLLM: LLM Runtime Verification with Domain Knowledge
Large language models (LLMs) have emerged as a dominant AI paradigm due to their exceptional text understanding and generation capabilities. However, their tendency to generate inconsistent or erroneous outputs challenges their reliability, especially in high-stakes domains requiring accuracy and trustworthiness. Existing research primarily focuses on detecting and mitigating model misbehavior in general-purpose scenarios, often overlooking the potential of integrating domain-specific knowledge. In this work, we advance misbehavior detection by incorporating domain knowledge. The core idea is to design a general specification language that enables domain experts to customize domain-specific predicates in a lightweight and intuitive manner, supporting later runtime verification of LLM outputs. To achieve this, we design a novel specification language, ESL, and introduce a runtime verification framework, RvLLM, to validate LLM output against domain-specific constraints defined in ESL. We evaluate RvLLM on three representative tasks: violation detection against Singapore Rapid Transit Systems Act, numerical comparison, and inequality solving. Experimental results demonstrate that RvLLM effectively detects erroneous outputs across various LLMs in a lightweight and flexible manner. The results reveal that despite their impressive capabilities, LLMs remain prone to low-level errors due to limited interpretability and a lack of formal guarantees during inference, and our framework offers a potential long-term solution by leveraging expert domain knowledge to rigorously and efficiently verify LLM outputs.
comment: 24 pages, 11 tables, 13 figures
♻ ☆ LongCat-Flash-Omni Technical Report
Meituan LongCat Team, Bairui Wang, Bayan, Bin Xiao, Bo Zhang, Bolin Rong, Borun Chen, Chang Wan, Chao Zhang, Chen Huang, Chen Chen, Chen Chen, Chengxu Yang, Chengzuo Yang, Cong Han, Dandan Peng, Delian Ruan, Detai Xin, Disong Wang, Dongchao Yang, Fanfan Liu, Fengjiao Chen, Fengyu Yang, Gan Dong, Gang Huang, Gang Xu, Guanglu Wan, Guoqiang Tan, Guoqiao Yu, Haibo Qiu, Hao Lu, Hongbo Liu, Hongyu Xiang, Jiaheng Wu, Jian Yang, Jiaxing Liu, Jing Huang, Jingang Wang, Jinrui Ding, Juchao Jiang, Jun Kuang, Jun Wang, Junhui Mei, Ke Ding, Kefeng Zhang, Lei Chen, Liang Shi, Limeng Qiao, Liming Zheng, Lin Ma, Liuyang Guo, Liya Ma, Luying Sun, Man Gao, Mengshen Zhu, Miao Cao, Minliang Lin, Nuo Xu, Peng Shi, Qi Zhang, Qian Fang, Qian Wang, Qian Yang, Quanxiu Wang, Rongxiang Weng, Rongxin Guo, Ruoxuan Liang, Senbin Yang, Shanbo Xu, Shanglin Lei, Shengze Ye, Shimin Chen, Shuaiqi Chen, Shujie Hu, Shuo Li, Siqi Yang, Siyu Xu, Siyu Ren, Song Li, Songxiang Liu, Tianhao Bai, Tianye Dai, Wei Hong, Wei Wang, Weixiao Zhao, Wengang Cao, Wenlong Zhu, Wenlong He, Xi Su, Xi Nan, Xiaohan Zhao, Xiaohao Wang, Xiaoyu Zhao, Xiaoyu Wang, Xiaoyu Li, Xin Pan, Xin Chen, Xiusong Sun, Xu Xiang, Xudong Xing, Xuezhi Cao, Xunliang Cai, Yang Yang, Yanli Tan, Yao Yao, Yerui Sun, Yi Chen, Yifan Lu, Yin Gong, Yining Zhang, Yitian Chen, Yiyang Gan, Yuchen Tang, Yuchen Xie, Yueqian Wang, Yuewen Zheng, Yufei Zhang, Yufeng Zhong, Yulei Qian, Yuqi Peng, Yuqian Li, Yuwei Jiang, Zeyang Hu, Zheng Zhang, Zhengkun Tian, Zhiqing Hong, Zhixiong Zeng, Zhuqi Mi, Ziran Li, Ziwen Wang, Ziyi Zhao, Ziyuan Zhuang, Zizhe Zhao
We introduce LongCat-Flash-Omni, a state-of-the-art open-source omni-modal model with 560 billion parameters, excelling at real-time audio-visual interaction. By adopting a curriculum-inspired progressive training strategy that transitions from simpler to increasingly complex modality sequence modeling tasks, LongCat-Flash-Omni attains comprehensive multimodal capabilities while maintaining strong unimodal capability. Building upon LongCat-Flash, which adopts a high-performance Shortcut-connected Mixture-of-Experts (MoE) architecture with zero-computation experts, LongCat-Flash-Omni integrates efficient multimodal perception and speech reconstruction modules. Despite its immense size of 560B parameters (with 27B activated), LongCat-Flash-Omni achieves low-latency real-time audio-visual interaction. For training infrastructure, we developed a modality-decoupled parallelism scheme specifically designed to manage the data and model heterogeneity inherent in large-scale multimodal training. This innovative approach demonstrates exceptional efficiency by sustaining over 90% of the throughput achieved by text-only training. Extensive evaluations show that LongCat-Flash-Omni achieves state-of-the-art performance on omni-modal benchmarks among open-source models. Furthermore, it delivers highly competitive results across a wide range of modality-specific tasks, including text, image, and video understanding, as well as audio understanding and generation. We provide a comprehensive overview of the model architecture design, training procedures, and data strategies, and open-source the model to foster future research and development in the community.
♻ ☆ Normal forms in Virus Machines
In the present work, we further study the computational power of virus machines (VMs in short).VMs provide a computing paradigm inspired by the transmission and replication networks of viruses.VMs consist of process units (called hosts) structured by a directed graph whose arcs are called channels and an instruction graph that controls the transmissions of virus objects among hosts. The present work complements our understanding of the computing power of VMs by introducing normal forms; these expressions restrict the features in a given computing model.Some of the features that we restrict in our normal forms include (a) the number of hosts, (b) the number of instructions, and (c) the number of virus objects in each host. After we recall some known results on the computing power of VMs we give our series of normal forms, such as the size of the loops in the network, proving new characterisations of family of sets, such as finite sets, semilinear sets, or recursively enumerable sets (NRE).
comment: 24 pages, 14 figures
♻ ☆ InfiMed-ORBIT: Aligning LLMs on Open-Ended Complex Tasks via Rubric-Based Incremental Training
Reinforcement learning has powered many of the recent breakthroughs in large language models, especially for tasks where rewards can be computed automatically, such as code generation. However, these methods deteriorate in open-ended domains like medical consultation, where feedback is inherently ambiguous, highly context-dependent, and cannot be reduced to a reliable scalar signal. In such settings, RL must either rely on supervision-intensive reward models that often fail to generalize, or it falls into pathological behaviors such as reward hacking - an especially troubling risk for high-stakes medical dialogue. To address these limitations, we introduce ORBIT, an open-ended rubric-based incremental training framework for high-stakes medical dialogue. ORBIT integrates synthetic dialogue generation with dynamically constructed rubrics that serve as adaptive guides for incremental RL. Instead of relying on external medical knowledge bases or handcrafted rule sets, ORBIT uses rubric-driven feedback to steer the learning process. Its judge component can be instantiated with general-purpose instruction-following LLMs, removing the need for any task-specific fine-tuning. Applied to the Qwen3-4B-Instruct model, ORBIT raises the HealthBench-Hard score from 7.0 to 27.5 using only 2k training samples, achieving SOTA performance for models at this scale. With larger rubric datasets, ORBIT-trained models further compete with the strongest open-source baselines on HealthBench-Hard. Our analysis shows that rubric-guided RL consistently improves consultation quality across diverse medical scenarios. We also apply such rubric generation and training pipeline to InfoBench, where ORBIT enhances instruction-following performance, highlighting the generality of rubric-based feedback.
♻ ☆ Atom of Thoughts for Markov LLM Test-Time Scaling NeurIPS 2025
Large Language Models (LLMs) achieve superior performance through training-time scaling, and test-time scaling further enhances their capabilities by conducting effective reasoning during inference. However, as the scale of reasoning increases, existing test-time scaling methods suffer from accumulated historical information, which not only wastes computational resources but also interferes with effective reasoning. To address this issue, we observe that complex reasoning can be achieved by solving a series of independent and self-contained subquestions. These subquestions are essentially \textit{atomic questions}, exhibiting the memoryless property similar to Markov processes. Based on this observation, we propose Atom of Thoughts (\our), where each state transition consists of decomposing the current question into a dependency-based directed acyclic graph and contracting its subquestions, forming a simplified question that maintains answer equivalence with the original problem. This answer preservation enables the iterative \textit{decomposition-contraction} process to naturally form a meaningful Markov reasoning process. Furthermore, these atomic states can be seamlessly integrated into existing test-time scaling methods, enabling \our to serve as a plug-in enhancement for improving reasoning capabilities. Experiments across six benchmarks demonstrate the effectiveness of \our both as a standalone framework and a plug-in enhancement. Notably, on HotpotQA, when applied to gpt-4o-mini, \our achieves an \textbf{80.6\%} F1 score, surpassing o3-mini by \textbf{3.4\%} and DeepSeek-R1 by \textbf{10.6\%}. The code is available at \href{https://github.com/qixucen/atom}{https://github.com/qixucen/atom}.
comment: Accepted to NeurIPS 2025
♻ ☆ Toward Equitable Access: Leveraging Crowdsourced Reviews to Investigate Public Perceptions of Health Resource Accessibility
Zhaoqian Xue, Guanhong Liu, Chong Zhang, Kai Wei, Qingcheng Zeng, Songhua Hu, Wenyue Hua, Lizhou Fan, Yongfeng Zhang, Lingyao Li
Monitoring health resource disparities during public health crises is critical, yet traditional methods, like surveys, lack the requisite speed and spatial granularity. This study introduces a novel framework that leverages: 1) crowdsourced Google Maps reviews (2018-2021) and 2) advanced NLP (DeBERTa) to create a high-resolution, spatial-temporal index of public perception of health resource accessibility in the United States. We then employ Partial Least Squares (PLS) regression to link this perception index to a range of socioeconomic and demographic drivers. Our results quantify significant spatial-temporal shifts in perceived access, confirming that disparities peaked during the COVID-19 crisis and only partially recovered post-peak. We identify political affiliation, racial composition, and educational attainment as primary determinants of these perceptions. This study validates a scalable method for real-time health equity monitoring and provides actionable evidence for interventions to build a more resilient healthcare infrastructure.
♻ ☆ Prompt-R1: Collaborative Automatic Prompting Framework via End-to-end Reinforcement Learning
Wenjin Liu, Haoran Luo, Xueyuan Lin, Haoming Liu, Tiesunlong Shen, Jiapu Wang, Rui Mao, Erik Cambria
Recently, advanced large language models (LLMs) have emerged at an increasingly rapid pace. However, when faced with complex problems, most users are often unable to provide accurate and effective prompts to interact with LLMs, thus limiting the performance of LLMs. To address this challenge, we propose Prompt-R1, an end-to-end reinforcement learning framework that uses a small-scale LLM to collaborate with large-scale LLMs, replacing user interaction to solve problems better. This collaboration is cast as a multi-turn prompt interaction, where the small-scale LLM thinks and generates prompts, and the large-scale LLM performs complex reasoning. A dual-constrained reward is designed to optimize for correctness, generation quality, and reasoning accuracy. Prompt-R1 provides a plug-and-play framework that supports both inference and training with various large-scale LLMs. Experiments on multiple public datasets show that Prompt-R1 significantly outperforms baseline models across tasks. Our code is publicly available at https://github.com/QwenQKing/Prompt-R1.
♻ ☆ Self Iterative Label Refinement via Robust Unlabeled Learning NeurIPS 2025
Recent advances in large language models (LLMs) have yielded impressive performance on various tasks, yet they often depend on high-quality feedback that can be costly. Self-refinement methods attempt to leverage LLMs' internal evaluation mechanisms with minimal human supervision; however, these approaches frequently suffer from inherent biases and overconfidence, especially in domains where the models lack sufficient internal knowledge, resulting in performance degradation. As an initial step toward enhancing self-refinement for broader applications, we introduce an iterative refinement pipeline that employs the Unlabeled-Unlabeled learning framework to improve LLM-generated pseudo-labels for classification tasks. By exploiting two unlabeled datasets with differing positive class ratios, our approach iteratively denoises and refines the initial pseudo-labels, thereby mitigating the adverse effects of internal biases with minimal human supervision. Evaluations on diverse datasets, including low-resource language corpora, patent classifications, and protein structure categorizations, demonstrate that our method consistently outperforms both initial LLM's classification performance and the self-refinement approaches by cutting-edge models (e.g., GPT-4o and DeepSeek-R1). Moreover, we experimentally confirm that our refined classifier facilitates effective post-training alignment for safety in LLMs and demonstrate successful self-refinement in generative tasks as well.\footnote{Our code is available at https://github.com/HikaruAsano/self-iterative-label-refinement.}
comment: To appear in the Thirty-Ninth Annual Conference on Neural Information Processing Systems (NeurIPS 2025)
♻ ☆ Structured Prompting Enables More Robust Evaluation of Language Models
Asad Aali, Muhammad Ahmed Mohsin, Vasiliki Bikia, Arnav Singhvi, Richard Gaus, Suhana Bedi, Hejie Cui, Miguel Fuentes, Alyssa Unell, Yifan Mai, Jordan Cahoon, Michael Pfeffer, Roxana Daneshjou, Sanmi Koyejo, Emily Alsentzer, Christopher Potts, Nigam H. Shah, Akshay S. Chaudhari
As language models (LMs) are increasingly adopted across domains, high-quality benchmarking frameworks that accurately estimate performance are essential for guiding deployment decisions. While frameworks such as Holistic Evaluation of Language Models (HELM) enable broad evaluation across tasks, they often rely on fixed prompts that fail to generalize across LMs, yielding unrepresentative performance estimates. Unless we approximate each LM's ceiling (maximum achievable via changes to the prompt), we risk underestimating performance. Declarative prompting frameworks, such as DSPy, offer a scalable alternative to manual prompt engineering by crafting structured prompts that can be optimized per task. However, such frameworks have not been systematically evaluated across established benchmarks. We present a reproducible DSPy+HELM framework that introduces structured prompting methods which elicit reasoning, enabling more accurate LM benchmarking. Using four prompting methods, we evaluate four frontier LMs across seven benchmarks (general/medical domain) against existing HELM baseline scores. We find that without structured prompting: (i) HELM underestimates LM performance (by 4% average), (ii) performance estimates vary more across benchmarks ($+$2% standard deviation), (iii) performance gaps are misrepresented (leaderboard rankings flip on 3/7 benchmarks), and (iv) introducing chain-of-thought reduces LM sensitivity to prompt design (smaller $Δ$ across prompts). To our knowledge, this is the first benchmarking study to systematically integrate structured prompting into an established evaluation framework, demonstrating how scalable performance-ceiling approximation yields more robust, decision-useful benchmarks. We open-source (i) DSPy+HELM Integration (https://github.com/stanford-crfm/helm/pull/3893) and (ii) Prompt Optimization Pipeline (https://github.com/StanfordMIMI/dspy-helm).
♻ ☆ Benford's Curse: Tracing Digit Bias to Numerical Hallucination in LLMs NeurIPS 2025
Large Language Models (LLMs) exhibit impressive performance on complex reasoning tasks, yet they frequently fail on basic numerical problems, producing incorrect outputs. Inspired by Benford's Law, a statistical pattern in which lower digits occur more frequently as leading digits, we hypothesize that the skewed digit distributions in web-collected corpora may be learned by LLMs during pretraining, leading to biased numerical generation. To investigate the hypothesis, we first examine whether digits frequencies in pretraining corpus (OLMo2) follows Benford's law. We then construct an evaluation benchmark in which the ground-truth digits are uniformly distributed within each of the seven numerical reasoning tasks. Our evaluation results demonstrate that leading open-source LLMs show a consistent pattern of digit bias that resembles Benford's law. Through logit-lens tracing and neuron-level dissection, we identify that this bias arises predominantly from a small subset of highly digit-selective feed-forward network (FFN) neurons in the deeper layers. Finally, we demonstrate that pruning these neurons mitigates imbalanced overgeneration and partially corrects erroneous outputs, providing causal evidence that fine-grained pretraining digit bias can propagate into model behavior. Our findings reveal a fundamental connection between corpus-level statistics and symbolic failure modes in LLMs, offering a new lens for diagnosing and mitigating hallucinations in numerical tasks.
comment: NeurIPS 2025
♻ ☆ Exploiting Vocabulary Frequency Imbalance in Language Model Pre-training NeurIPS 2025
Large language models are trained with tokenizers, and the resulting token distribution is highly imbalanced: a few words dominate the stream while most occur rarely. Recent practice favors ever-larger vocabularies, but it is unclear where the benefit comes from. To this end, we perform a controlled study that scales the vocabulary of the language model from 24K to 196K while holding data, computation, and optimization unchanged. We begin by quantifying the complexity of tokenized text -- formalized via Kolmogorov complexity -- and show that larger vocabularies reduce this complexity. Above 24K, every common word is already tokenized as a single token, so enlarging vocabulary only deepens the relative token-frequency imbalance. Word-level loss decomposition shows that larger vocabularies reduce cross-entropy loss almost exclusively by lowering uncertainty on the 2,500 most frequent words, even though loss on the rare tail rises. The same frequent words cover roughly 75% of tokens in downstream benchmarks, so this training advantage transfers intact. We further show that enlarging model parameters with a fixed vocabulary yields the same frequent-word benefit. Our results recast "bigger vocabularies help" as "lowering complexity of tokenized text helps," offering a simple, principled knob for tokenizer-model co-design and clarifying the loss dynamics that govern language model scaling in pre-training.
comment: NeurIPS 2025
♻ ☆ Deep Improvement Supervision
Recently, it was shown that small, looped architectures, such as Tiny Recursive Models (TRMs), can outperform Large Language Models (LLMs) on complex reasoning tasks, including the Abstraction and Reasoning Corpus (ARC). In this work, we investigate a core question: how can we further improve the efficiency of these methods with minimal changes? To address this, we frame the latent reasoning of TRMs as a form of classifier-free guidance and implicit policy improvement algorithm. Building on these insights, we propose a novel training scheme that provides a target for each loop during training. We demonstrate that our approach significantly enhances training efficiency. Our method reduces the total number of forward passes by 18x and eliminates halting mechanisms, while maintaining quality comparable to standard TRMs. Notably, we achieve 24% accuracy on ARC-1 with only 0.8M parameters, outperforming most LLMs.
♻ ☆ ReGATE: Learning Faster and Better with Fewer Tokens in MLLMs
The computational cost of training multimodal large language models (MLLMs) grows rapidly with the number of processed tokens. Existing efficiency methods mainly target inference via token reduction or merging, offering limited benefits during training. We introduce ReGATE (Reference-Guided Adaptive Token Elision), an adaptive token pruning method for accelerating MLLM training. ReGATE adopts a teacher-student framework, in which a frozen teacher LLM provides per-token guidance losses that are fused with an exponential moving average of the student's difficulty estimates. This adaptive scoring mechanism dynamically selects informative tokens while skipping redundant ones in the forward pass, substantially reducing computation without altering the model architecture. Across three representative MLLMs, ReGATE matches the peak accuracy of standard training on MVBench up to 2$\times$ faster, using only 38% of the tokens. With extended training, it even surpasses the baseline across multiple multimodal benchmarks, cutting total token usage by over 41%. Code and models will be released publicly.