MyArxiv
Computation and Language 34
☆ Geometry of Reason: Spectral Signatures of Valid Mathematical Reasoning
We present a training-free method for detecting valid mathematical reasoning in large language models through spectral analysis of attention patterns. By treating attention matrices as adjacency matrices of dynamic graphs over tokens, we extract four interpretable spectral diagnostics, the Fiedler value (algebraic connectivity), high-frequency energy ratio (HFER), graph signal smoothness, and spectral entropy, that exhibit statistically significant differences between valid and invalid mathematical proofs. Experiments across seven transformer models from four independent architectural families (Meta Llama, Alibaba Qwen, Microsoft Phi, and Mistral AI) demonstrate that this spectral signature produces effect sizes up to Cohen's $d = 3.30$ ($p < 10^{-116}$), enabling 85.0--95.6\% classification accuracy under rigorous evaluation, with calibrated thresholds reaching 93--95\% on the full dataset. The method requires no training data, fine-tuning, or learned classifiers: a single threshold on a spectral metric suffices for high accuracy. Through systematic label correction, we discover that the spectral method detects logical coherence rather than compiler acceptance, identifying mathematically valid proofs that formal verifiers reject due to technical failures. We further identify an architectural dependency: Mistral-7B's Sliding Window Attention shifts the discriminative signal from HFER to late-layer Smoothness ($d = 2.09$, $p_{\text{MW}} = 1.16 \times 10^{-48}$), revealing that attention mechanism design affects which spectral features capture reasoning validity. These findings establish spectral graph analysis as a principled framework for reasoning verification with immediate applications to hallucination detection and AI safety monitoring.
comment: 58 pages, 19 figures, Under Review
☆ Adapting Natural Language Processing Models Across Jurisdictions: A pilot Study in Canadian Cancer Registries
Population-based cancer registries depend on pathology reports as their primary diagnostic source, yet manual abstraction is resource-intensive and contributes to delays in cancer data. While transformer-based NLP systems have improved registry workflows, their ability to generalize across jurisdictions with differing reporting conventions remains poorly understood. We present the first cross-provincial evaluation of adapting BCCRTron, a domain-adapted transformer model developed at the British Columbia Cancer Registry, alongside GatorTron, a biomedical transformer model, for cancer surveillance in Canada. Our training dataset consisted of approximately 104,000 and 22,000 de-identified pathology reports from the Newfoundland & Labrador Cancer Registry (NLCR) for Tier 1 (cancer vs. non-cancer) and Tier 2 (reportable vs. non-reportable) tasks, respectively. Both models were fine-tuned using complementary synoptic and diagnosis focused report section input pipelines. Across NLCR test sets, the adapted models maintained high performance, demonstrating transformers pretrained in one jurisdiction can be localized to another with modest fine-tuning. To improve sensitivity, we combined the two models using a conservative OR-ensemble achieving a Tier 1 recall of 0.99 and reduced missed cancers to 24, compared with 48 and 54 for the standalone models. For Tier 2, the ensemble achieved 0.99 recall and reduced missed reportable cancers to 33, compared with 54 and 46 for the individual models. These findings demonstrate that an ensemble combining complementary text representations substantially reduce missed cancers and improve error coverage in cancer-registry NLP. We implement a privacy-preserving workflow in which only model weights are shared between provinces, supporting interoperable NLP infrastructure and a future pan-Canadian foundation model for cancer pathology and registry workflows.
☆ Memory Bank Compression for Continual Adaptation of Large Language Models
Large Language Models (LLMs) have become a mainstay for many everyday applications. However, as data evolve their knowledge quickly becomes outdated. Continual learning aims to update LLMs with new information without erasing previously acquired knowledge. Although methods such as full fine-tuning can incorporate new data, they are computationally expensive and prone to catastrophic forgetting, where prior knowledge is overwritten. Memory-augmented approaches address this by equipping LLMs with a memory bank, that is an external memory module which stores information for future use. However, these methods face a critical limitation, in particular, the memory bank constantly grows in the real-world scenario when large-scale data streams arrive. In this paper, we propose MBC, a model that compresses the memory bank through a codebook optimization strategy during online adaptation learning. To ensure stable learning, we also introduce an online resetting mechanism that prevents codebook collapse. In addition, we employ Key-Value Low-Rank Adaptation in the attention layers of the LLM, enabling efficient utilization of the compressed memory representations. Experiments with benchmark question-answering datasets demonstrate that MBC reduces the memory bank size to 0.3% when compared against the most competitive baseline, while maintaining high retention accuracy during online adaptation learning. Our code is publicly available at https://github.com/Thomkat/MBC.
comment: Accepted to the 41st ACM/SIGAPP Symposium on Applied Computing (SAC '26)
☆ Exploring the Performance of Large Language Models on Subjective Span Identification Tasks
Identifying relevant text spans is important for several downstream tasks in NLP, as it contributes to model explainability. While most span identification approaches rely on relatively smaller pre-trained language models like BERT, a few recent approaches have leveraged the latest generation of Large Language Models (LLMs) for the task. Current work has focused on explicit span identification like Named Entity Recognition (NER), while more subjective span identification with LLMs in tasks like Aspect-based Sentiment Analysis (ABSA) has been underexplored. In this paper, we fill this important gap by presenting an evaluation of the performance of various LLMs on text span identification in three popular tasks, namely sentiment analysis, offensive language identification, and claim verification. We explore several LLM strategies like instruction tuning, in-context learning, and chain of thought. Our results indicate underlying relationships within text aid LLMs in identifying precise text spans.
☆ TeleDoCTR: Domain-Specific and Contextual Troubleshooting for Telecommunications
Ticket troubleshooting refers to the process of analyzing and resolving problems that are reported through a ticketing system. In large organizations offering a wide range of services, this task is highly complex due to the diversity of submitted tickets and the need for specialized domain knowledge. In particular, troubleshooting in telecommunications (telecom) is a very time-consuming task as it requires experts to interpret ticket content, consult documentation, and search historical records to identify appropriate resolutions. This human-intensive approach not only delays issue resolution but also hinders overall operational efficiency. To enhance the effectiveness and efficiency of ticket troubleshooting in telecom, we propose TeleDoCTR, a novel telecom-related, domain-specific, and contextual troubleshooting system tailored for end-to-end ticket resolution in telecom. TeleDoCTR integrates both domain-specific ranking and generative models to automate key steps of the troubleshooting workflow which are: routing tickets to the appropriate expert team responsible for resolving the ticket (classification task), retrieving contextually and semantically similar historical tickets (retrieval task), and generating a detailed fault analysis report outlining the issue, root cause, and potential solutions (generation task). We evaluate TeleDoCTR on a real-world dataset from a telecom infrastructure and demonstrate that it achieves superior performance over existing state-of-the-art methods, significantly enhancing the accuracy and efficiency of the troubleshooting process.
☆ Sigmoid Head for Quality Estimation under Language Ambiguity
Language model (LM) probability is not a reliable quality estimator, as natural language is ambiguous. When multiple output options are valid, the model's probability distribution is spread across them, which can misleadingly indicate low output quality. This issue is caused by two reasons: (1) LMs' final output activation is softmax, which does not allow multiple correct options to receive high probabilities simultaneuously and (2) LMs' training data is single, one-hot encoded references, indicating that there is only one correct option at each output step. We propose training a module for Quality Estimation on top of pre-trained LMs to address these limitations. The module, called Sigmoid Head, is an extra unembedding head with sigmoid activation to tackle the first limitation. To tackle the second limitation, during the negative sampling process to train the Sigmoid Head, we use a heuristic to avoid selecting potentially alternative correct tokens. Our Sigmoid Head is computationally efficient during training and inference. The probability from Sigmoid Head is notably better quality signal compared to the original softmax head. As the Sigmoid Head does not rely on human-annotated quality data, it is more robust to out-of-domain settings compared to supervised QE.
☆ Fast-weight Product Key Memory
Sequence modeling layers in modern language models typically face a trade-off between storage capacity and computational efficiency. While Softmax attention offers unbounded storage at prohibitive quadratic costs, linear variants provide efficiency but suffer from limited, fixed-size storage. We propose Fast-weight Product Key Memory (FwPKM), a novel architecture that resolves this tension by transforming the sparse Product Key Memory (PKM) from a static module into a dynamic, "fast-weight" episodic memory. Unlike PKM, FwPKM updates its parameters dynamically at both training and inference time via local chunk-level gradient descent, allowing the model to rapidly memorize and retrieve new key-value pairs from input sequences. Experiments reveal that FwPKM functions as an effective episodic memory that complements the semantic memory of standard modules, yielding significant perplexity reductions on long-context datasets. Notably, in Needle in a Haystack evaluations, FwPKM generalizes to 128K-token contexts despite being trained on only 4K-token sequences.
☆ Physio-DPO: Aligning Large Language Models with the Protein Energy Landscape to Eliminate Structural Hallucinations
Large Protein Language Models have shown strong potential for generative protein design, yet they frequently produce structural hallucinations, generating sequences with high linguistic likelihood that fold into thermodynamically unstable conformations. Existing alignment approaches such as Direct Preference Optimization are limited in this setting, as they model preferences as binary labels and ignore the continuous structure of the physical energy landscape. We propose Physio-DPO, a physics informed alignment framework that grounds protein language models in thermodynamic stability. Physio-DPO introduces a magnitude aware objective that scales optimization updates according to the energy gap between native structures and physics perturbed hard negatives. Experiments show that Physio-DPO consistently outperforms strong baselines including SFT, PPO, and standard DPO, reducing self consistency RMSD to 1.28 Å and increasing foldability to 92.8%. Qualitative analysis further demonstrates that Physio-DPO effectively mitigates structural hallucinations by recovering biophysical interactions such as hydrophobic core packing and hydrogen bond networks.
☆ Probabilistic Guarantees for Reducing Contextual Hallucinations in LLMs
Large language models (LLMs) frequently produce contextual hallucinations, where generated content contradicts or ignores information explicitly stated in the prompt. Such errors are particularly problematic in deterministic automation workflows, where inputs are fixed and correctness is unambiguous. We introduce a simple and model-agnostic framework that provides explicit probabilistic guarantees for reducing hallucinations in this setting. We formalize the notion of a specific task, defined by a fixed input and a deterministic correctness criterion, and show that issuing the same prompt in independent context windows yields an exponential reduction in the probability that all model outputs are incorrect. To identify a correct answer among repeated runs, we incorporate an LLM-as-a-judge and prove that the probability that the judged pipeline fails decays at a rate determined by the judge's true- and false-positive probabilities. When the judge is imperfect, we strengthen it through majority vote over independent judge calls, obtaining ensemble-level error rates that decrease exponentially in the number of votes. This yields an explicit bound on the probability that the pipeline selects a hallucinated answer. Experiments on controlled extraction tasks with synthetic noisy judges match these predictions exactly: pipeline failure decreases exponentially with the number of repetitions, and hallucination-selection decreases exponentially with the number of judges in the ensemble. Together, these results provide a lightweight, modular, and theoretically grounded method for driving hallucination probabilities arbitrarily low in fixed-input LLM workflows-without modifying model weights, decoding strategies, or prompt engineering.
☆ Beyond IVR: Benchmarking Customer Support LLM Agents for Business-Adherence
Traditional customer support systems, such as Interactive Voice Response (IVR), rely on rigid scripts and lack the flexibility required for handling complex, policy-driven tasks. While large language model (LLM) agents offer a promising alternative, evaluating their ability to act in accordance with business rules and real-world support workflows remains an open challenge. Existing benchmarks primarily focus on tool usage or task completion, overlooking an agent's capacity to adhere to multi-step policies, navigate task dependencies, and remain robust to unpredictable user or environment behavior. In this work, we introduce JourneyBench, a benchmark designed to assess policy-aware agents in customer support. JourneyBench leverages graph representations to generate diverse, realistic support scenarios and proposes the User Journey Coverage Score, a novel metric to measure policy adherence. We evaluate multiple state-of-the-art LLMs using two agent designs: a Static-Prompt Agent (SPA) and a Dynamic-Prompt Agent (DPA) that explicitly models policy control. Across 703 conversations in three domains, we show that DPA significantly boosts policy adherence, even allowing smaller models like GPT-4o-mini to outperform more capable ones like GPT-4o. Our findings demonstrate the importance of structured orchestration and establish JourneyBench as a critical resource to advance AI-driven customer support beyond IVR-era limitations.
comment: 17 pages, 3 figures, preprint
☆ CSSBench: Evaluating the Safety of Lightweight LLMs against Chinese-Specific Adversarial Patterns
Large language models (LLMs) are increasingly deployed in cost-sensitive and on-device scenarios, and safety guardrails have advanced mainly in English. However, real-world Chinese malicious queries typically conceal intent via homophones, pinyin, symbol-based splitting, and other Chinese-specific patterns. These Chinese-specific adversarial patterns create the safety evaluation gap that is not well captured by existing benchmarks focused on English. This gap is particularly concerning for lightweight models, which may be more vulnerable to such specific adversarial perturbations. To bridge this gap, we introduce the Chinese-Specific Safety Benchmark (CSSBench) that emphasizes these adversarial patterns and evaluates the safety of lightweight LLMs in Chinese. Our benchmark covers six domains that are common in real Chinese scenarios, including illegal activities and compliance, privacy leakage, health and medical misinformation, fraud and hate, adult content, and public and political safety, and organizes queries into multiple task types. We evaluate a set of popular lightweight LLMs and measure over-refusal behavior to assess safety-induced performance degradation. Our results show that the Chinese-specific adversarial pattern is a critical challenge for lightweight LLMs. This benchmark offers a comprehensive evaluation of LLM safety in Chinese, assisting robust deployments in practice.
comment: 18 pages
☆ InfoSynth: Information-Guided Benchmark Synthesis for LLMs
Large language models (LLMs) have demonstrated significant advancements in reasoning and code generation. However, efficiently creating new benchmarks to evaluate these capabilities remains a challenge. Traditional benchmark creation relies on manual human effort, a process that is both expensive and time-consuming. Furthermore, existing benchmarks often contaminate LLM training data, necessitating novel and diverse benchmarks to accurately assess their genuine capabilities. This work introduces InfoSynth, a novel framework for automatically generating and evaluating reasoning benchmarks guided by information-theoretic principles. We propose metrics based on KL-divergence and entropy to quantify benchmark novelty and diversity without relying on costly model evaluations. Building on this framework, we develop an end-to-end pipeline that synthesizes robust Python coding problems from seed datasets using genetic algorithms and iterative code feedback. Our method generates accurate test cases and solutions to new problems 97% of the time, and the synthesized benchmarks consistently exhibit higher novelty and diversity compared to their seed datasets. Moreover, our algorithm provides a method for controlling the novelty/diversity and difficulty of generated problems. InfoSynth offers a scalable, self-verifying pipeline for constructing high-quality, novel and diverse benchmarks for LLMs. Project Page: https://ishirgarg.github.io/infosynth_web/
☆ A Language-Agnostic Hierarchical LoRA-MoE Architecture for CTC-based Multilingual ASR
Large-scale multilingual ASR (mASR) models such as Whisper achieve strong performance but incur high computational and latency costs, limiting their deployment on resource-constrained edge devices. In this study, we propose a lightweight and language-agnostic multilingual ASR system based on a CTC architecture with domain adaptation. Specifically, we introduce a Language-agnostic Hierarchical LoRA-MoE (HLoRA) framework integrated into an mHuBERT-CTC model, enabling end-to-end decoding via LID-posterior-driven LoRA routing. The hierarchical design consists of a multilingual shared LoRA for learning language-invariant acoustic representations and language-specific LoRA experts for modeling language-dependent characteristics. The proposed routing mechanism removes the need for prior language identity information or explicit language labels during inference, achieving true language-agnostic decoding. Experiments on MSR-86K and the MLC-SLM 2025 Challenge datasets demonstrate that HLoRA achieves competitive performance with state-of-the-art two-stage inference methods using only single-pass decoding, significantly improving decoding efficiency for low-resource mASR applications.
comment: 5 pages, submitted to IEEE Signal Processing Letters
☆ ECR: Manifold-Guided Semantic Cues for Compact Language Models
Compact models often lose the structure of their embedding space. The issue shows up when the capacity is tight or the data spans several languages. Such collapse makes it difficult for downstream tasks to build on the resulting representation. Existing compression methods focus on aligning model outputs at a superficial level but fail to preserve the underlying manifold structure. This mismatch often leads to semantic drift in the compact model, causing both task behavior and linguistic properties to deviate from the reference model. To address those issues, we provide a new framework called Embedding Consistency Regulation (ECR). This framework first derives a set of semantic anchors from teacher embeddings (computed once offline). Then, the compact model learns to maintain consistent geometry around these anchors, without relying on matching logits or internal features. ECR adds only a small projection step at inference, without altering the decoding architecture or its runtime behavior. In experiments on a 100K multilingual corpus, ECR consistently stabilizes training and preserves semantic structure across tasks and languages. It also produces a more compact and task-aligned representation space, enabling low-capacity models to learn cleaner manifolds than conventional baselines. ECR works without teacher outputs and is compatible with, but independent of, distillation. Taken together, our results show that ECR helps compact models better follow task requirements and makes them easier to deploy under strict efficiency or privacy limits.
comment: Preprint 13pages, 6 figures
☆ Retrieval--Reasoning Processes for Multi-hop Question Answering: A Four-Axis Design Framework and Empirical Trends
Multi-hop question answering (QA) requires systems to iteratively retrieve evidence and reason across multiple hops. While recent RAG and agentic methods report strong results, the underlying retrieval--reasoning \emph{process} is often left implicit, making procedural choices hard to compare across model families. This survey takes the execution procedure as the unit of analysis and introduces a four-axis framework covering (A) overall execution plan, (B) index structure, (C) next-step control (strategies and triggers), and (D) stop/continue criteria. Using this schema, we map representative multi-hop QA systems and synthesize reported ablations and tendencies on standard benchmarks (e.g., HotpotQA, 2WikiMultiHopQA, MuSiQue), highlighting recurring trade-offs among effectiveness, efficiency, and evidence faithfulness. We conclude with open challenges for retrieval--reasoning agents, including structure-aware planning, transferable control policies, and robust stopping under distribution shift.
☆ The Illusion of Insight in Reasoning Models
Do reasoning models have "Aha!" moments? Prior work suggests that models like DeepSeek-R1-Zero undergo sudden mid-trace realizations that lead to accurate outputs, implying an intrinsic capacity for self-correction. Yet, it remains unclear whether such intrinsic shifts in reasoning strategy actually improve performance. Here, we study mid-reasoning shifts and instrument training runs to detect them. Our analysis spans 1M+ reasoning traces, hundreds of training checkpoints, three reasoning domains, and multiple decoding temperatures and model architectures. We find that reasoning shifts are rare, do not become more frequent with training, and seldom improve accuracy, indicating that they do not correspond to prior perceptions of model insight. However, their effect varies with model uncertainty. Building on this finding, we show that artificially triggering extrinsic shifts under high entropy reliably improves accuracy. Our results show that mid-reasoning shifts are symptoms of unstable inference behavior rather than an intrinsic mechanism for self-correction.
♻ ☆ C-VARC: A Large-Scale Chinese Value Rule Corpus for Value Alignment of Large Language Models
Ensuring that Large Language Models (LLMs) align with mainstream human values and ethical norms is crucial for the safe and sustainable development of AI. Current value evaluation and alignment are constrained by Western cultural bias and incomplete domestic frameworks reliant on non-native rules; furthermore, the lack of scalable, rule-driven scenario generation methods makes evaluations costly and inadequate across diverse cultural contexts. To address these challenges, we propose a hierarchical value framework grounded in core Chinese values, encompassing three main dimensions, 12 core values, and 50 derived values. Based on this framework, we construct a large-scale Chinese Value Rule Corpus (C-VARC) containing over 250,000 value rules enhanced and expanded through human annotation. Experimental results demonstrate that scenarios guided by C-VARC exhibit clearer value boundaries and greater content diversity compared to those produced through direct generation. In the evaluation across six sensitive themes (e.g., surrogacy, suicide), seven mainstream LLMs preferred C-VARC generated options in over 70.5% of cases, while five Chinese human annotators showed an 87.5% alignment with C-VARC, confirming its universality, cultural relevance, and strong alignment with Chinese values. Additionally, we construct 400,000 rule-based moral dilemma scenarios that objectively capture nuanced distinctions in conflicting value prioritization across 17 LLMs. Our work establishes a culturally-adaptive benchmarking framework for comprehensive value evaluation and alignment, representing Chinese characteristics.
♻ ☆ RadarPLM: Adapting Pre-trained Language Models for Marine Radar Target Detection by Selective Fine-tuning
Recent advances in pre-trained language models (PLMs) have demonstrated their capabilities in capturing universal knowledge, making them promising for radar signal processing applications. Nevertheless, directly fine-tuning PLMs on radar signals is both computationally expensive and prone to overfitting, particularly in low signal-to-clutter ratio (SCR) environments. In this paper, we propose a novel fine-tuning framework for PLM-based marine radar target detection. First, we design a lightweight adaptation module, enabling computationally efficient fine-tuning while preserving the pre-trained model's general knowledge. Second, a novel preference-aware loss is developed to selectively optimize different feature patches based on their online-evaluated learning values, guiding the model to concentrate on those generalizable feature patterns during optimization. Finally, a binary classification head is retrained based on autoencoder network to further enhance detection performance. Experiments on real-world radar data show that the proposed RadarPLM framework yields at least a 6.35% improvement in detection performance over the existing networks under low SCR conditions. Especially, in small training samples cases,the proposed RadarPLM also achieves significant advantage over existing networks owing to the incorporation of the PLM.
♻ ☆ Modeling the One-to-Many Property in Open-Domain Dialogue with LLMs
Open-domain Dialogue (OD) exhibits a one-to-many (o2m) property, whereby multiple appropriate responses exist for a single dialogue context. Despite prior research showing that modeling this property boosts response diversity, most modern LLM-based dialogue agents do not explicitly do so. In this work, we model the o2m property of OD in LLMs by decomposing OD generation into two key tasks: Multi-Response Generation (MRG) and Preference-based Selection (PS), which entail generating a set of n semantically and lexically diverse high-quality responses for a given dialogue context, followed by selecting a single response based on human preference, respectively. To facilitate MRG and PS, we introduce o2mDial, a dialogue corpus explicitly designed to capture the o2m property by featuring multiple plausible responses for each context. Leveraging o2mDial, we propose new in-context learning and instruction-tuning strategies, as well as novel evaluation metrics for MRG, alongside a model-based approach for PS. Empirical results demonstrate that applying the proposed two-stage framework to smaller LLMs for OD generation enhances overall response diversity while maintaining contextual coherence, improving response quality by up to 90%, bringing them closer to the performance of larger models.
♻ ☆ SpiderGen: Towards Procedure Generation For Carbon Life Cycle Assessments with Generative AI
Investigating the effects of climate change and global warming caused by GHG emissions have been a key concern worldwide. These emissions are largely contributed to by the production, use and disposal of consumer products. Thus, it is important to build tools to estimate the environmental impact of consumer goods, an essential part of which is conducting Life Cycle Assessments (LCAs). LCAs specify and account for the appropriate processes involved with the production, use, and disposal of the products. We present SpiderGen, an LLM-based workflow which integrates the taxonomy and methodology of traditional LCA with the reasoning capabilities and world knowledge of LLMs to generate graphical representations of the key procedural information used for LCA, known as Product Category Rules Process Flow Graphs (PCR PFGs). We additionally evaluate the output of SpiderGen by comparing it with 65 real-world LCA documents. We find that SpiderGen provides accurate LCA process information that is either fully correct or has minor errors, achieving an F1-Score of 65% across 10 sample data points, as compared to 53% using a one-shot prompting method. We observe that the remaining errors occur primarily due to differences in detail between LCA documents, as well as differences in the "scope" of which auxiliary processes must also be included. We also demonstrate that SpiderGen performs better than several baselines techniques, such as chain-of-thought prompting and one-shot prompting. Finally, we highlight SpiderGen's potential to reduce the human effort and costs for estimating carbon impact, as it is able to produce LCA process information for less than \$1 USD in under 10 minutes as compared to the status quo LCA, which can cost over \$25000 USD and take up to 21-person days.
♻ ☆ Training a Huggingface Model on AWS Sagemaker (Without Tears)
The development of Large Language Models (LLMs) has primarily been driven by resource-rich research groups and industry partners. Due to the lack of on-premise computing resources required for increasingly complex models, many researchers are turning to cloud services like AWS SageMaker to train Hugging Face models. However, the steep learning curve of cloud platforms often presents a barrier for researchers accustomed to local environments. Existing documentation frequently leaves knowledge gaps, forcing users to seek fragmented information across the web. This demo paper aims to democratize cloud adoption by centralizing the essential information required for researchers to successfully train their first Hugging Face model on AWS SageMaker from scratch.
♻ ☆ Sorbet: A Neuromorphic Hardware-Compatible Transformer-Based Spiking Language Model ICML 2025
For reasons such as privacy, there are use cases for language models at the edge. This has given rise to small language models targeted for deployment in resource-constrained devices where energy efficiency is critical. Spiking neural networks (SNNs) offer a promising solution due to their energy efficiency, and there are already works on realizing transformer-based models on SNNs. However, key operations like softmax and layer normalization (LN) are difficult to implement on neuromorphic hardware, and many of these early works sidestepped them. To address these challenges, we introduce Sorbet, a transformer-based spiking language model that is more neuromorphic hardware-compatible. Sorbet incorporates a novel shifting-based softmax called PTsoftmax and a Bit Shifting PowerNorm (BSPN), both designed to replace the respective energy-intensive operations. By leveraging knowledge distillation and model quantization, Sorbet achieved a highly compressed binary weight model that maintains competitive performance while achieving $27.16\times$ energy savings compared to BERT. We validate Sorbet through extensive testing on the GLUE benchmark and a series of ablation studies, demonstrating its potential as an energy-efficient solution for language model inference. Our code is publicly available at \href{https://github.com/Kaiwen-Tang/Sorbet}{https://github.com/Kaiwen-Tang/Sorbet}
comment: Accepted by ICML 2025. Camera-ready version
♻ ☆ Cultural Palette: Pluralising Culture Alignment via Multi-agent Palette
Large language models (LLMs) face challenges in aligning with diverse cultural values despite their remarkable performance in generation, which stems from inherent monocultural biases and difficulties in capturing nuanced cultural semantics. Existing methods struggle to adapt to unknown culture after fine-tuning. Inspired by cultural geography across five continents, we propose Cultural Palette, a multi-agent framework that redefines cultural alignment as an adaptive "color-blending" process for country-specific adaptation. Our approach harnesses cultural geography across five continents through three key steps: First, we synthesize the Pentachromatic Cultural Palette Dataset using GPT-4o, refining continental-level dialogues with Hofstede's cultural dimensions to establish foundational cultural representations. Second, five continent-level alignment agents form specialized cultural communities that generate region-specific draft responses. Third, a Meta Agent employs Cultural MoErges to dynamically blend these cultural "colors" through attention-gated parameter merging, akin to mixing pigments on a palette, resolving conflicts while preserving cultural nuances to produce the final culturally-aligned response. Extensive experiments across various countries demonstrate that \textit{Cultural Palette} surpasses existing baselines in cultural alignment.
comment: 19 pages, 10 figures
♻ ☆ Training-free Context-adaptive Attention for Efficient Long Context Modeling
Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of natural language processing tasks. These capabilities stem primarily from the self-attention mechanism, which enables modeling of long-range dependencies. However, the quadratic complexity of self-attention with respect to sequence length poses significant computational and memory challenges, especially as sequence length extends to extremes. While various sparse attention and KV cache compression methods have been proposed to improve efficiency, they often suffer from limitations such as reliance on fixed patterns, inability to handle both prefilling and decoding stages, or the requirement for additional training. In this paper, we propose Training-free Context-adaptive Attention (TCA-Attention), a training-free sparse attention mechanism that selectively attends to only the informative tokens for efficient long-context inference. Our method consists of two lightweight phases: i) an offline calibration phase that determines head-specific sparsity budgets via a single forward pass, and ii) an online token selection phase that adaptively retains core context tokens using a lightweight redundancy metric. TCA-Attention provides a unified solution that accelerates both prefilling and decoding while reducing KV cache memory footprint, without requiring parameter updates or architectural changes. Theoretical analysis shows that our approach maintains bounded approximation error. Extensive experiments demonstrate that TCA-Attention achieves a 2.8$\times$ speedup and reduces KV cache by 61% at 128K context length while maintaining performance comparable to full attention across various benchmarks, offering a practical plug-and-play solution for efficient long-context inference.
♻ ☆ EXAONE Deep: Reasoning Enhanced Language Models
We present EXAONE Deep series, which exhibits superior capabilities in various reasoning tasks, including math and coding benchmarks. We train our models mainly on the reasoning-specialized dataset that incorporates long streams of thought processes. Evaluation results show that our smaller models, EXAONE Deep 2.4B and 7.8B, outperform other models of comparable size, while the largest model, EXAONE Deep 32B, demonstrates competitive performance against leading open-weight models. All EXAONE Deep models are openly available for research purposes and can be downloaded from https://huggingface.co/LGAI-EXAONE.
♻ ☆ EXAONE 3.5: Series of Large Language Models for Real-world Use Cases
This technical report introduces the EXAONE 3.5 instruction-tuned language models, developed and released by LG AI Research. The EXAONE 3.5 language models are offered in three configurations: 32B, 7.8B, and 2.4B. These models feature several standout capabilities: 1) exceptional instruction following capabilities in real-world scenarios, achieving the highest scores across seven benchmarks, 2) outstanding long-context comprehension, attaining the top performance in four benchmarks, and 3) competitive results compared to state-of-the-art open models of similar sizes across nine general benchmarks. The EXAONE 3.5 language models are open to anyone for research purposes and can be downloaded from https://huggingface.co/LGAI-EXAONE. For commercial use, please reach out to the official contact point of LG AI Research: contact_us@lgresearch.ai.
♻ ☆ EXAONE 3.0 7.8B Instruction Tuned Language Model
We introduce EXAONE 3.0 instruction-tuned language model, the first open model in the family of Large Language Models (LLMs) developed by LG AI Research. Among different model sizes, we publicly release the 7.8B instruction-tuned model to promote open research and innovations. Through extensive evaluations across a wide range of public and in-house benchmarks, EXAONE 3.0 demonstrates highly competitive real-world performance with instruction-following capability against other state-of-the-art open models of similar size. Our comparative analysis shows that EXAONE 3.0 excels particularly in Korean, while achieving compelling performance across general tasks and complex reasoning. With its strong real-world effectiveness and bilingual proficiency, we hope that EXAONE keeps contributing to advancements in Expert AI. Our EXAONE 3.0 instruction-tuned model is available at https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct.
♻ ☆ EXAONE 4.0: Unified Large Language Models Integrating Non-reasoning and Reasoning Modes
This technical report introduces EXAONE 4.0, which integrates a Non-reasoning mode and a Reasoning mode to achieve both the excellent usability of EXAONE 3.5 and the advanced reasoning abilities of EXAONE Deep. To pave the way for the agentic AI era, EXAONE 4.0 incorporates essential features such as agentic tool use, and its multilingual capabilities are extended to support Spanish in addition to English and Korean. The EXAONE 4.0 model series consists of two sizes: a mid-size 32B model optimized for high performance, and a small-size 1.2B model designed for on-device applications. The EXAONE 4.0 demonstrates superior performance compared to open-weight models in its class and remains competitive even against frontier-class models. The models are publicly available for research purposes and can be easily downloaded via https://huggingface.co/LGAI-EXAONE.
comment: Technical Report, 30 Pages
♻ ☆ NeedleChain: Measuring Intact Context Comprehension Capability of Large Language Models
Recent reports suggest that LLMs can handle increasingly long contexts. However, many existing benchmarks for context understanding embed substantial query-irrelevant content, which shifts evaluation toward retrieving relevant snippets rather than fully integrating all provided information. Under this setting, we view that current benchmarks can overestimate true context-understanding ability of LLMs. In particular, we demonstrate that when the context consists entirely of query-relevant text, even advanced models such as GPT-4o fail to reliably integrate inputs as short as 200 tokens. To evaluate this capability more rigorously, we introduce NeedleChain, a benchmark designed to test whether models can faithfully incorporate all given evidence. NeedleChain includes three variants that differ in the required order of comprehension, along with a parallel benchmark based on the needle-in-a-haystack(NIAH) paradigm. By comparing these variants, NeedleChain enables a more comprehensive assessment of context understanding. We further propose a training-free strategy that encourages models to reflect all available information, ROPE contraction, highlighting the importance of full-context integration and pointing to new directions for improving reliable reasoning over context.
comment: 13 pages
♻ ☆ Improving Multi-step RAG with Hypergraph-based Memory for Long-Context Complex Relational Modeling
Multi-step retrieval-augmented generation (RAG) has become a widely adopted strategy for enhancing large language models (LLMs) on tasks that demand global comprehension and intensive reasoning. Many RAG systems incorporate a working memory module to consolidate retrieved information. However, existing memory designs function primarily as passive storage that accumulates isolated facts for the purpose of condensing the lengthy inputs and generating new sub-queries through deduction. This static nature overlooks the crucial high-order correlations among primitive facts, the compositions of which can often provide stronger guidance for subsequent steps. Therefore, their representational strength and impact on multi-step reasoning and knowledge evolution are limited, resulting in fragmented reasoning and weak global sense-making capacity in extended contexts. We introduce HGMem, a hypergraph-based memory mechanism that extends the concept of memory beyond simple storage into a dynamic, expressive structure for complex reasoning and global understanding. In our approach, memory is represented as a hypergraph whose hyperedges correspond to distinct memory units, enabling the progressive formation of higher-order interactions within memory. This mechanism connects facts and thoughts around the focal problem, evolving into an integrated and situated knowledge structure that provides strong propositions for deeper reasoning in subsequent steps. We evaluate HGMem on several challenging datasets designed for global sense-making. Extensive experiments and in-depth analyses show that our method consistently improves multi-step RAG and substantially outperforms strong baseline systems across diverse tasks.
comment: 21 pages
♻ ☆ Learning the Boundary of Solvability: Aligning LLMs to Detect Unsolvable Problems
Ensuring large language model (LLM) reliability requires distinguishing objective unsolvability (inherent contradictions) from subjective capability limitations (tasks exceeding model competence). Current LLMs often conflate these dimensions, leading to hallucinations in which they return confident answers to inherently unsolvable queries. To address this issue, we propose a multi-domain dataset containing both solvable and unsolvable questions, UnsolvableQA, together with an alignment framework, UnsolvableRL. First, we construct UnsolvableQA by "Reverse Construction" that systematically injects logical contradictions into otherwise valid reasoning chains. Second, we introduce UnsolvableRL, a reinforcement learning paradigm that balances objective unsolvability detection with calibrated confidence under capability limits. Empirically, our approach achieves near-perfect unsolvability detection (>90% detection rate) and boosts solvable reasoning accuracy from 43.4% to 69.4% on Qwen3-4B-Instruct. Crucially, we identify a data-training interaction: strict alignment constraints induce Capability Collapse without unsolvable data, but act as a regularizer for rigor when such data are included, thereby improving overall robustness. Our code and data are available at https://github.com/sfasfaffa/unsolvableQA .
comment: preprint
♻ ☆ RAG-BioQA: A Retrieval-Augmented Generation Framework for Long-Form Biomedical Question Answering
The rapidly growth of biomedical literature creates challenges acquiring specific medical information. Current biomedical question-answering systems primarily focus on short-form answers, failing to provide comprehensive explanations necessary for clinical decision-making. We present RAG-BioQA, a retrieval-augmented generation framework for long-form biomedical question answering. Our system integrates BioBERT embeddings with FAISS indexing for retrieval and a LoRA fine-tuned FLAN-T5 model for answer generation. We train on 181k QA pairs from PubMedQA, MedDialog, and MedQuAD, and evaluate on a held-out PubMedQA test set. We compare four retrieval strategies: dense retrieval (FAISS), BM25, ColBERT, and MonoT5. Our results show that domain-adapted dense retrieval outperforms zero-shot neural re-rankers, with the best configuration achieving 0.24 BLEU-1 and 0.29 ROUGE-1. Fine-tuning improves BERTScore by 81\% over the base model. We release our framework to support reproducible biomedical QA research.
comment: Submitted to ICAEI
♻ ☆ Tabby: A Language Model Architecture for Tabular and Structured Data Synthesis
While advances in large language models (LLMs) have greatly improved the quality of synthetic text data in recent years, synthesizing tabular data has received relatively less attention. We address this disparity with Tabby, a simple but powerful post-training modification to the standard Transformer language model architecture, enabling its use for tabular dataset synthesis. Tabby enables the representation of differences across columns using Gated Mixture-of-Experts, with column-specific sets of parameters. Empirically, Tabby results in data quality near or equal to that of real data. By pairing our novel LLM table training technique, Plain, with Tabby, we observe up to a 44% improvement in quality over previous methods. We also show that Tabby extends beyond tables to more general structured data, reaching parity with real data on a nested JSON dataset as well.
comment: 21 pages, 8 figures. Appearing in TMLR 2026
♻ ☆ Scaling Efficient LLMs
Recent LLMs have hundreds of billions of parameters consuming vast resources. Furthermore, the so called "AI scaling law" for transformers suggests that the number of parameters must scale linearly with the size of the data. In response, we inquire into efficient LLMs, i.e. those with the fewest parameters that achieve the desired accuracy on a training corpus. Specifically, by comparing theoretical and empirical estimates of the Kullback-Leibler divergence, we derive a natural AI scaling law that the number of parameters in an efficient LLM scales as $D^γ$ where $D$ is the size of the training data and $ γ\in [0.44, 0.72]$, suggesting the existence of more efficient architectures. Against this backdrop, we propose recurrent transformers, combining the efficacy of transformers with the efficiency of recurrent networks, progressively applying a single transformer layer to a fixed-width sliding window across the input sequence. Recurrent transformers (a) run in linear time in the sequence length, (b) are memory-efficient and amenable to parallel processing in large batches, (c) learn to forget history for language tasks, or accumulate history for long range tasks like copy and selective copy, and (d) are amenable to curriculum training to overcome vanishing gradients. In our experiments, we find that recurrent transformers perform favorably on benchmark tests.
Information Retrieval 2
☆ TeleDoCTR: Domain-Specific and Contextual Troubleshooting for Telecommunications
Ticket troubleshooting refers to the process of analyzing and resolving problems that are reported through a ticketing system. In large organizations offering a wide range of services, this task is highly complex due to the diversity of submitted tickets and the need for specialized domain knowledge. In particular, troubleshooting in telecommunications (telecom) is a very time-consuming task as it requires experts to interpret ticket content, consult documentation, and search historical records to identify appropriate resolutions. This human-intensive approach not only delays issue resolution but also hinders overall operational efficiency. To enhance the effectiveness and efficiency of ticket troubleshooting in telecom, we propose TeleDoCTR, a novel telecom-related, domain-specific, and contextual troubleshooting system tailored for end-to-end ticket resolution in telecom. TeleDoCTR integrates both domain-specific ranking and generative models to automate key steps of the troubleshooting workflow which are: routing tickets to the appropriate expert team responsible for resolving the ticket (classification task), retrieving contextually and semantically similar historical tickets (retrieval task), and generating a detailed fault analysis report outlining the issue, root cause, and potential solutions (generation task). We evaluate TeleDoCTR on a real-world dataset from a telecom infrastructure and demonstrate that it achieves superior performance over existing state-of-the-art methods, significantly enhancing the accuracy and efficiency of the troubleshooting process.
☆ Improving Scientific Document Retrieval with Academic Concept Index
Adapting general-domain retrievers to scientific domains is challenging due to the scarcity of large-scale domain-specific relevance annotations and the substantial mismatch in vocabulary and information needs. Recent approaches address these issues through two independent directions that leverage large language models (LLMs): (1) generating synthetic queries for fine-tuning, and (2) generating auxiliary contexts to support relevance matching. However, both directions overlook the diverse academic concepts embedded within scientific documents, often producing redundant or conceptually narrow queries and contexts. To address this limitation, we introduce an academic concept index, which extracts key concepts from papers and organizes them guided by an academic taxonomy. This structured index serves as a foundation for improving both directions. First, we enhance the synthetic query generation with concept coverage-based generation (CCQGen), which adaptively conditions LLMs on uncovered concepts to generate complementary queries with broader concept coverage. Second, we strengthen the context augmentation with concept-focused auxiliary contexts (CCExpand), which leverages a set of document snippets that serve as concise responses to the concept-aware CCQGen queries. Extensive experiments show that incorporating the academic concept index into both query generation and context augmentation leads to higher-quality queries, better conceptual alignment, and improved retrieval performance.
Machine Learning 75
☆ Two Deep Learning Approaches for Automated Segmentation of Left Ventricle in Cine Cardiac MRI
Left ventricle (LV) segmentation is critical for clinical quantification and diagnosis of cardiac images. In this work, we propose two novel deep learning architectures called LNU-Net and IBU-Net for left ventricle segmentation from short-axis cine MRI images. LNU-Net is derived from layer normalization (LN) U-Net architecture, while IBU-Net is derived from the instance-batch normalized (IB) U-Net for medical image segmentation. The architectures of LNU-Net and IBU-Net have a down-sampling path for feature extraction and an up-sampling path for precise localization. We use the original U-Net as the basic segmentation approach and compared it with our proposed architectures. Both LNU-Net and IBU-Net have left ventricle segmentation methods: LNU-Net applies layer normalization in each convolutional block, while IBU-Net incorporates instance and batch normalization together in the first convolutional block and passes its result to the next layer. Our method incorporates affine transformations and elastic deformations for image data processing. Our dataset that contains 805 MRI images regarding the left ventricle from 45 patients is used for evaluation. We experimentally evaluate the results of the proposed approaches outperforming the dice coefficient and the average perpendicular distance than other state-of-the-art approaches.
comment: 7 pages, 5 figures, published in ICBBB 2022
☆ Geometry of Reason: Spectral Signatures of Valid Mathematical Reasoning
We present a training-free method for detecting valid mathematical reasoning in large language models through spectral analysis of attention patterns. By treating attention matrices as adjacency matrices of dynamic graphs over tokens, we extract four interpretable spectral diagnostics, the Fiedler value (algebraic connectivity), high-frequency energy ratio (HFER), graph signal smoothness, and spectral entropy, that exhibit statistically significant differences between valid and invalid mathematical proofs. Experiments across seven transformer models from four independent architectural families (Meta Llama, Alibaba Qwen, Microsoft Phi, and Mistral AI) demonstrate that this spectral signature produces effect sizes up to Cohen's $d = 3.30$ ($p < 10^{-116}$), enabling 85.0--95.6\% classification accuracy under rigorous evaluation, with calibrated thresholds reaching 93--95\% on the full dataset. The method requires no training data, fine-tuning, or learned classifiers: a single threshold on a spectral metric suffices for high accuracy. Through systematic label correction, we discover that the spectral method detects logical coherence rather than compiler acceptance, identifying mathematically valid proofs that formal verifiers reject due to technical failures. We further identify an architectural dependency: Mistral-7B's Sliding Window Attention shifts the discriminative signal from HFER to late-layer Smoothness ($d = 2.09$, $p_{\text{MW}} = 1.16 \times 10^{-48}$), revealing that attention mechanism design affects which spectral features capture reasoning validity. These findings establish spectral graph analysis as a principled framework for reasoning verification with immediate applications to hallucination detection and AI safety monitoring.
comment: 58 pages, 19 figures, Under Review
☆ FedHypeVAE: Federated Learning with Hypernetwork Generated Conditional VAEs for Differentially Private Embedding Sharing
Federated data sharing promises utility without centralizing raw data, yet existing embedding-level generators struggle under non-IID client heterogeneity and provide limited formal protection against gradient leakage. We propose FedHypeVAE, a differentially private, hypernetwork-driven framework for synthesizing embedding-level data across decentralized clients. Building on a conditional VAE backbone, we replace the single global decoder and fixed latent prior with client-aware decoders and class-conditional priors generated by a shared hypernetwork from private, trainable client codes. This bi-level design personalizes the generative layerrather than the downstream modelwhile decoupling local data from communicated parameters. The shared hypernetwork is optimized under differential privacy, ensuring that only noise-perturbed, clipped gradients are aggregated across clients. A local MMD alignment between real and synthetic embeddings and a Lipschitz regularizer on hypernetwork outputs further enhance stability and distributional coherence under non-IID conditions. After training, a neutral meta-code enables domain agnostic synthesis, while mixtures of meta-codes provide controllable multi-domain coverage. FedHypeVAE unifies personalization, privacy, and distribution alignment at the generator level, establishing a principled foundation for privacy-preserving data synthesis in federated settings. Code: github.com/sunnyinAI/FedHypeVAE
comment: 10 pages, 1 figures, Accepted at AAI'26
☆ Categorical Reparameterization with Denoising Diffusion models
Gradient-based optimization with categorical variables typically relies on score-function estimators, which are unbiased but noisy, or on continuous relaxations that replace the discrete distribution with a smooth surrogate admitting a pathwise (reparameterized) gradient, at the cost of optimizing a biased, temperature-dependent objective. In this paper, we extend this family of relaxations by introducing a diffusion-based soft reparameterization for categorical distributions. For these distributions, the denoiser under a Gaussian noising process admits a closed form and can be computed efficiently, yielding a training-free diffusion sampler through which we can backpropagate. Our experiments show that the proposed reparameterization trick yields competitive or improved optimization performance on various benchmarks.
comment: working paper
☆ Memory Bank Compression for Continual Adaptation of Large Language Models
Large Language Models (LLMs) have become a mainstay for many everyday applications. However, as data evolve their knowledge quickly becomes outdated. Continual learning aims to update LLMs with new information without erasing previously acquired knowledge. Although methods such as full fine-tuning can incorporate new data, they are computationally expensive and prone to catastrophic forgetting, where prior knowledge is overwritten. Memory-augmented approaches address this by equipping LLMs with a memory bank, that is an external memory module which stores information for future use. However, these methods face a critical limitation, in particular, the memory bank constantly grows in the real-world scenario when large-scale data streams arrive. In this paper, we propose MBC, a model that compresses the memory bank through a codebook optimization strategy during online adaptation learning. To ensure stable learning, we also introduce an online resetting mechanism that prevents codebook collapse. In addition, we employ Key-Value Low-Rank Adaptation in the attention layers of the LLM, enabling efficient utilization of the compressed memory representations. Experiments with benchmark question-answering datasets demonstrate that MBC reduces the memory bank size to 0.3% when compared against the most competitive baseline, while maintaining high retention accuracy during online adaptation learning. Our code is publicly available at https://github.com/Thomkat/MBC.
comment: Accepted to the 41st ACM/SIGAPP Symposium on Applied Computing (SAC '26)
☆ A Machine Learning Framework for Off Ball Defensive Role and Performance Evaluation in Football
Evaluating off-ball defensive performance in football is challenging, as traditional metrics do not capture the nuanced coordinated movements that limit opponent action selection and success probabilities. Although widely used possession value models excel at appraising on-ball actions, their application to defense remains limited. Existing counterfactual methods, such as ghosting models, help extend these analyses but often rely on simulating "average" behavior that lacks tactical context. To address this, we introduce a covariate-dependent Hidden Markov Model (CDHMM) tailored to corner kicks, a highly structured aspect of football games. Our label-free model infers time-resolved man-marking and zonal assignments directly from player tracking data. We leverage these assignments to propose a novel framework for defensive credit attribution and a role-conditioned ghosting method for counterfactual analysis of off-ball defensive performance. We show how these contributions provide a interpretable evaluation of defensive contributions against context-aware baselines.
comment: 40 pages, 16 figures
☆ The Reasoning-Creativity Trade-off: Toward Creativity-Driven Problem Solving
State-of-the-art large language model (LLM) pipelines rely on bootstrapped reasoning loops: sampling diverse chains of thought and reinforcing the highest-scoring ones, mainly optimizing correctness. We analyze how this design choice is sensitive to the collapse of the model's distribution over reasoning paths, slashing semantic entropy and undermining creative problem-solving. To analyze this failure, we introduce Distributional Creative Reasoning (DCR), a unified variational objective that casts training as gradient flow through probability measures on solution traces. STaR, GRPO, and DPO, as well as entropy bonuses, and other methods, all constitute special cases of the same loss. The framework delivers three core results: (i) the diversity decay theorem, describing how correctness-based objectives lead to distinct modes of diversity decay for STaR, GRPO, and DPO; (ii) designs that ensure convergence to a stable and diverse policy, effectively preventing collapse; and (iii) simple, actionable recipes to achieve this in practice. DCR thus offers the first principled recipe for LLMs that remain both correct and creative.
comment: 56 pages, 9 figures, submitted to Twenty-Ninth Annual Conference on Artificial Intelligence and Statistics
☆ Stochastic Actor-Critic: Mitigating Overestimation via Temporal Aleatoric Uncertainty
Off-policy actor-critic methods in reinforcement learning train a critic with temporal-difference updates and use it as a learning signal for the policy (actor). This design typically achieves higher sample efficiency than purely on-policy methods. However, critic networks tend to overestimate value estimates systematically. This is often addressed by introducing a pessimistic bias based on uncertainty estimates. Current methods employ ensembling to quantify the critic's epistemic uncertainty-uncertainty due to limited data and model ambiguity-to scale pessimistic updates. In this work, we propose a new algorithm called Stochastic Actor-Critic (STAC) that incorporates temporal (one-step) aleatoric uncertainty-uncertainty arising from stochastic transitions, rewards, and policy-induced variability in Bellman targets-to scale pessimistic bias in temporal-difference updates, rather than relying on epistemic uncertainty. STAC uses a single distributional critic network to model the temporal return uncertainty, and applies dropout to both the critic and actor networks for regularization. Our results show that pessimism based on a distributional critic alone suffices to mitigate overestimation, and naturally leads to risk-averse behavior in stochastic environments. Introducing dropout further improves training stability and performance by means of regularization. With this design, STAC achieves improved computational efficiency using a single distributional critic network.
comment: 19 pages
☆ Precision Autotuning for Linear Solvers via Contextual Bandit-Based RL
We propose a reinforcement learning (RL) framework for adaptive precision tuning of linear solvers, and can be extended to general algorithms. The framework is formulated as a contextual bandit problem and solved using incremental action-value estimation with a discretized state space to select optimal precision configurations for computational steps, balancing precision and computational efficiency. To verify its effectiveness, we apply the framework to iterative refinement for solving linear systems $Ax = b$. In this application, our approach dynamically chooses precisions based on calculated features from the system. In detail, a Q-table maps discretized features (e.g., approximate condition number and matrix norm)to actions (chosen precision configurations for specific steps), optimized via an epsilon-greedy strategy to maximize a multi-objective reward balancing accuracy and computational cost. Empirical results demonstrate effective precision selection, reducing computational cost while maintaining accuracy comparable to double-precision baselines. The framework generalizes to diverse out-of-sample data and offers insight into utilizing RL precision selection for other numerical algorithms, advancing mixed-precision numerical methods in scientific computing. To the best of our knowledge, this is the first work on precision autotuning with RL and verified on unseen datasets.
☆ BSAT: B-Spline Adaptive Tokenizer for Long-Term Time Series Forecasting
Long-term time series forecasting using transformers is hampered by the quadratic complexity of self-attention and the rigidity of uniform patching, which may be misaligned with the data's semantic structure. In this paper, we introduce the \textit{B-Spline Adaptive Tokenizer (BSAT)}, a novel, parameter-free method that adaptively segments a time series by fitting it with B-splines. BSAT algorithmically places tokens in high-curvature regions and represents each variable-length basis function as a fixed-size token, composed of its coefficient and position. Further, we propose a hybrid positional encoding that combines a additive learnable positional encoding with Rotary Positional Embedding featuring a layer-wise learnable base: L-RoPE. This allows each layer to attend to different temporal dependencies. Our experiments on several public benchmarks show that our model is competitive with strong performance at high compression rates. This makes it particularly well-suited for use cases with strong memory constraints.
comment: 20 pages, 7 figures
☆ Bayesian Inverse Games with High-Dimensional Multi-Modal Observations
Many multi-agent interaction scenarios can be naturally modeled as noncooperative games, where each agent's decisions depend on others' future actions. However, deploying game-theoretic planners for autonomous decision-making requires a specification of all agents' objectives. To circumvent this practical difficulty, recent work develops maximum likelihood techniques for solving inverse games that can identify unknown agent objectives from interaction data. Unfortunately, these methods only infer point estimates and do not quantify estimator uncertainty; correspondingly, downstream planning decisions can overconfidently commit to unsafe actions. We present an approximate Bayesian inference approach for solving the inverse game problem, which can incorporate observation data from multiple modalities and be used to generate samples from the Bayesian posterior over the hidden agent objectives given limited sensor observations in real time. Concretely, the proposed Bayesian inverse game framework trains a structured variational autoencoder with an embedded differentiable Nash game solver on interaction datasets and does not require labels of agents' true objectives. Extensive experiments show that our framework successfully learns prior and posterior distributions, improves inference quality over maximum likelihood estimation-based inverse game approaches, and enables safer downstream decision-making without sacrificing efficiency. When trajectory information is uninformative or unavailable, multimodal inference further reduces uncertainty by exploiting additional observation modalities.
☆ ARISE: Adaptive Reinforcement Integrated with Swarm Exploration SC 2026
Effective exploration remains a key challenge in RL, especially with non-stationary rewards or high-dimensional policies. We introduce ARISE, a lightweight framework that enhances reinforcement learning by augmenting standard policy-gradient methods with a compact swarm-based exploration layer. ARISE blends policy actions with particle-driven proposals, where each particle represents a candidate policy trajectory sampled in the action space, and modulates exploration adaptively using reward-variance cues. While easy benchmarks exhibit only slight improvements (e.g., +0.7% on CartPole-v1), ARISE yields substantial gains on more challenging tasks, including +46% on LunarLander-v3 and +22% on Hopper-v4, while preserving stability on Walker2d and Ant. Under non-stationary reward shifts, ARISE provides marked robustness advantages, outperforming PPO by +75 points on CartPole and improving LunarLander accordingly. Ablation studies confirm that both the swarm component and the adaptive mechanism contribute to the performance. Overall, ARISE offers a simple, architecture-agnostic route to more exploratory and resilient RL agents without altering core algorithmic structures.
comment: 12 pages. Accepted for presentation at WCSC 2026
☆ TeleDoCTR: Domain-Specific and Contextual Troubleshooting for Telecommunications
Ticket troubleshooting refers to the process of analyzing and resolving problems that are reported through a ticketing system. In large organizations offering a wide range of services, this task is highly complex due to the diversity of submitted tickets and the need for specialized domain knowledge. In particular, troubleshooting in telecommunications (telecom) is a very time-consuming task as it requires experts to interpret ticket content, consult documentation, and search historical records to identify appropriate resolutions. This human-intensive approach not only delays issue resolution but also hinders overall operational efficiency. To enhance the effectiveness and efficiency of ticket troubleshooting in telecom, we propose TeleDoCTR, a novel telecom-related, domain-specific, and contextual troubleshooting system tailored for end-to-end ticket resolution in telecom. TeleDoCTR integrates both domain-specific ranking and generative models to automate key steps of the troubleshooting workflow which are: routing tickets to the appropriate expert team responsible for resolving the ticket (classification task), retrieving contextually and semantically similar historical tickets (retrieval task), and generating a detailed fault analysis report outlining the issue, root cause, and potential solutions (generation task). We evaluate TeleDoCTR on a real-world dataset from a telecom infrastructure and demonstrate that it achieves superior performance over existing state-of-the-art methods, significantly enhancing the accuracy and efficiency of the troubleshooting process.
☆ Cost Optimization in Production Line Using Genetic Algorithm
This paper presents a genetic algorithm (GA) approach to cost-optimal task scheduling in a production line. The system consists of a set of serial processing tasks, each with a given duration, unit execution cost, and precedence constraints, which must be assigned to an unlimited number of stations subject to a per-station duration bound. The objective is to minimize the total production cost, modeled as a station-wise function of task costs and the duration bound, while strictly satisfying all prerequisite and capacity constraints. Two chromosome encoding strategies are investigated: a station-based representation implemented using the JGAP library with SuperGene validity checks, and a task-based representation in which genes encode station assignments directly. For each encoding, standard GA operators (crossover, mutation, selection, and replacement) are adapted to preserve feasibility and drive the population toward lower-cost schedules. Experimental results on three classes of precedence structures-tightly coupled, loosely coupled, and uncoupled-demonstrate that the task-based encoding yields smoother convergence and more reliable cost minimization than the station-based encoding, particularly when the number of valid schedules is large. The study highlights the advantages of GA over gradient-based and analytical methods for combinatorial scheduling problems, especially in the presence of complex constraints and non-differentiable cost landscapes.
☆ QSLM: A Performance- and Memory-aware Quantization Framework with Tiered Search Strategy for Spike-driven Language Models DATE
Large Language Models (LLMs) have been emerging as prominent AI models for solving many natural language tasks due to their high performance (e.g., accuracy) and capabilities in generating high-quality responses to the given inputs. However, their large computational cost, huge memory footprints, and high processing power/energy make it challenging for their embedded deployments. Amid several tinyLLMs, recent works have proposed spike-driven language models (SLMs) for significantly reducing the processing power/energy of LLMs. However, their memory footprints still remain too large for low-cost and resource-constrained embedded devices. Manual quantization approach may effectively compress SLM memory footprints, but it requires a huge design time and compute power to find the quantization setting for each network, hence making this approach not-scalable for handling different networks, performance requirements, and memory budgets. To bridge this gap, we propose QSLM, a novel framework that performs automated quantization for compressing pre-trained SLMs, while meeting the performance and memory constraints. To achieve this, QSLM first identifies the hierarchy of the given network architecture and the sensitivity of network layers under quantization, then employs a tiered quantization strategy (e.g., global-, block-, and module-level quantization) while leveraging a multi-objective performance-and-memory trade-off function to select the final quantization setting. Experimental results indicate that our QSLM reduces memory footprint by up to 86.5%, reduces power consumption by up to 20%, maintains high performance across different tasks (i.e., by up to 84.4% accuracy of sentiment classification on the SST-2 dataset and perplexity score of 23.2 for text generation on the WikiText-2 dataset) close to the original non-quantized model while meeting the performance and memory constraints.
comment: Accepted at the Design, Automation and Test in Europe Conference (DATE) 2025 on April 20th-22nd, 2025 in Verona, Italy
☆ IRPO: Scaling the Bradley-Terry Model via Reinforcement Learning
Generative Reward Models (GRMs) have attracted considerable research interest in reward modeling due to their interpretability, inference-time scalability, and potential for refinement through reinforcement learning (RL). However, widely used pairwise GRMs create a computational bottleneck when integrated with RL algorithms such as Group Relative Policy Optimization (GRPO). This bottleneck arises from two factors: (i) the O(n^2) time complexity of pairwise comparisons required to obtain relative scores, and (ii) the computational overhead of repeated sampling or additional chain-of-thought (CoT) reasoning to improve performance. To address the first factor, we propose Intergroup Relative Preference Optimization (IRPO), a novel RL framework that incorporates the well-established Bradley-Terry model into GRPO. By generating a pointwise score for each response, IRPO enables efficient evaluation of arbitrarily many candidates during RL training while preserving interpretability and fine-grained reward signals. Experimental results demonstrate that IRPO achieves state-of-the-art (SOTA) performance among pointwise GRMs across multiple benchmarks, with performance comparable to that of current leading pairwise GRMs. Furthermore, we show that IRPO significantly outperforms pairwise GRMs in post-training evaluations.
comment: 14 pages, 4 figures
☆ Sparse FEONet: A Low-Cost, Memory-Efficient Operator Network via Finite-Element Local Sparsity for Parametric PDEs
In this paper, we study the finite element operator network (FEONet), an operator-learning method for parametric problems, originally introduced in J. Y. Lee, S. Ko, and Y. Hong, Finite Element Operator Network for Solving Elliptic-Type Parametric PDEs, SIAM J. Sci. Comput., 47(2), C501-C528, 2025. FEONet realizes the parameter-to-solution map on a finite element space and admits a training procedure that does not require training data, while exhibiting high accuracy and robustness across a broad class of problems. However, its computational cost increases and accuracy may deteriorate as the number of elements grows, posing notable challenges for large-scale problems. In this paper, we propose a new sparse network architecture motivated by the structure of the finite elements to address this issue. Throughout extensive numerical experiments, we show that the proposed sparse network achieves substantial improvements in computational cost and efficiency while maintaining comparable accuracy. We also establish theoretical results demonstrating that the sparse architecture can approximate the target operator effectively and provide a stability analysis ensuring reliable training and prediction.
☆ Three factor delay learning rules for spiking neural networks
Spiking Neural Networks (SNNs) are dynamical systems that operate on spatiotemporal data, yet their learnable parameters are often limited to synaptic weights, contributing little to temporal pattern recognition. Learnable parameters that delay spike times can improve classification performance in temporal tasks, but existing methods rely on large networks and offline learning, making them unsuitable for real-time operation in resource-constrained environments. In this paper, we introduce synaptic and axonal delays to leaky integrate and fire (LIF)-based feedforward and recurrent SNNs, and propose three-factor learning rules to simultaneously learn delay parameters online. We employ a smooth Gaussian surrogate to approximate spike derivatives exclusively for the eligibility trace calculation, and together with a top-down error signal determine parameter updates. Our experiments show that incorporating delays improves accuracy by up to 20% over a weights-only baseline, and for networks with similar parameter counts, jointly learning weights and delays yields up to 14% higher accuracy. On the SHD speech recognition dataset, our method achieves similar accuracy to offline backpropagation-based approaches. Compared to state-of-the-art methods, it reduces model size by 6.6x and inference latency by 67%, with only a 2.4% drop in classification accuracy. Our findings benefit the design of power and area-constrained neuromorphic processors by enabling on-device learning and lowering memory requirements.
comment: 7 pages, 5 figures
☆ Avatar Forcing: Real-Time Interactive Head Avatar Generation for Natural Conversation
Talking head generation creates lifelike avatars from static portraits for virtual communication and content creation. However, current models do not yet convey the feeling of truly interactive communication, often generating one-way responses that lack emotional engagement. We identify two key challenges toward truly interactive avatars: generating motion in real-time under causal constraints and learning expressive, vibrant reactions without additional labeled data. To address these challenges, we propose Avatar Forcing, a new framework for interactive head avatar generation that models real-time user-avatar interactions through diffusion forcing. This design allows the avatar to process real-time multimodal inputs, including the user's audio and motion, with low latency for instant reactions to both verbal and non-verbal cues such as speech, nods, and laughter. Furthermore, we introduce a direct preference optimization method that leverages synthetic losing samples constructed by dropping user conditions, enabling label-free learning of expressive interaction. Experimental results demonstrate that our framework enables real-time interaction with low latency (approximately 500ms), achieving 6.8X speedup compared to the baseline, and produces reactive and expressive avatar motion, which is preferred over 80% against the baseline.
comment: Project page: https://taekyungki.github.io/AvatarForcing/
☆ Interpretability-Guided Bi-objective Optimization: Aligning Accuracy and Explainability
This paper introduces Interpretability-Guided Bi-objective Optimization (IGBO), a framework that trains interpretable models by incorporating structured domain knowledge via a bi-objective formulation. IGBO encodes feature importance hierarchies as a Directed Acyclic Graph (DAG) and uses Temporal Integrated Gradients (TIG) to measure feature importance. To address the Out-of-Distribution (OOD) problem in TIG computation, we propose an Optimal Path Oracle that learns data-manifold-aware integration paths. Theoretical analysis proves convergence properties and robustness to mini-batch noise, while empirical results on time-series data demonstrate IGBO's effectiveness in enforcing DAG constraints with minimal accuracy loss, outperforming standard regularization baselines.
comment: 10 pages
☆ HyperPriv-EPN: Hypergraph Learning with Privileged Knowledge for Ependymoma Prognosis
Preoperative prognosis of Ependymoma is critical for treatment planning but challenging due to the lack of semantic insights in MRI compared to post-operative surgical reports. Existing multimodal methods fail to leverage this privileged text data when it is unavailable during inference. To bridge this gap, we propose HyperPriv-EPN, a hypergraph-based Learning Using Privileged Information (LUPI) framework. We introduce a Severed Graph Strategy, utilizing a shared encoder to process both a Teacher graph (enriched with privileged post-surgery information) and a Student graph (restricted to pre-operation data). Through dual-stream distillation, the Student learns to hallucinate semantic community structures from visual features alone. Validated on a multi-center cohort of 311 patients, HyperPriv-EPN achieves state-of-the-art diagnostic accuracy and survival stratification. This effectively transfers expert knowledge to the preoperative setting, unlocking the value of historical post-operative data to guide the diagnosis of new patients without requiring text at inference.
comment: 6 pages, 2 figures, 2 tables
☆ Do Chatbot LLMs Talk Too Much? The YapBench Benchmark
Large Language Models (LLMs) such as ChatGPT, Claude, and Gemini increasingly act as general-purpose copilots, yet they often respond with unnecessary length on simple requests, adding redundant explanations, hedging, or boilerplate that increases cognitive load and inflates token-based inference cost. Prior work suggests that preference-based post-training and LLM-judged evaluations can induce systematic length bias, where longer answers are rewarded even at comparable quality. We introduce YapBench, a lightweight benchmark for quantifying user-visible over-generation on brevity-ideal prompts. Each item consists of a single-turn prompt, a curated minimal-sufficient baseline answer, and a category label. Our primary metric, YapScore, measures excess response length beyond the baseline in characters, enabling comparisons across models without relying on any specific tokenizer. We summarize model performance via the YapIndex, a uniformly weighted average of category-level median YapScores. YapBench contains over three hundred English prompts spanning three common brevity-ideal settings: (A) minimal or ambiguous inputs where the ideal behavior is a short clarification, (B) closed-form factual questions with short stable answers, and (C) one-line coding tasks where a single command or snippet suffices. Evaluating 76 assistant LLMs, we observe an order-of-magnitude spread in median excess length and distinct category-specific failure modes, including vacuum-filling on ambiguous inputs and explanation or formatting overhead on one-line technical requests. We release the benchmark and maintain a live leaderboard for tracking verbosity behavior over time.
☆ Stronger Approximation Guarantees for Non-Monotone γ-Weakly DR-Submodular Maximization AAMAS 2026
Maximizing submodular objectives under constraints is a fundamental problem in machine learning and optimization. We study the maximization of a nonnegative, non-monotone $γ$-weakly DR-submodular function over a down-closed convex body. Our main result is an approximation algorithm whose guarantee depends smoothly on $γ$; in particular, when $γ=1$ (the DR-submodular case) our bound recovers the $0.401$ approximation factor, while for $γ<1$ the guarantee degrades gracefully and, it improves upon previously reported bounds for $γ$-weakly DR-submodular maximization under the same constraints. Our approach combines a Frank-Wolfe-guided continuous-greedy framework with a $γ$-aware double-greedy step, yielding a simple yet effective procedure for handling non-monotonicity. This results in state-of-the-art guarantees for non-monotone $γ$-weakly DR-submodular maximization over down-closed convex bodies.
comment: Extended version of paper accepted in AAMAS 2026
☆ Traffic-Aware Optimal Taxi Placement Using Graph Neural Network-Based Reinforcement Learning
In the context of smart city transportation, efficient matching of taxi supply with passenger demand requires real-time integration of urban traffic network data and mobility patterns. Conventional taxi hotspot prediction models often rely solely on historical demand, overlooking dynamic influences such as traffic congestion, road incidents, and public events. This paper presents a traffic-aware, graph-based reinforcement learning (RL) framework for optimal taxi placement in metropolitan environments. The urban road network is modeled as a graph where intersections represent nodes, road segments serve as edges, and node attributes capture historical demand, event proximity, and real-time congestion scores obtained from live traffic APIs. Graph Neural Network (GNN) embeddings are employed to encode spatial-temporal dependencies within the traffic network, which are then used by a Q-learning agent to recommend optimal taxi hotspots. The reward mechanism jointly optimizes passenger waiting time, driver travel distance, and congestion avoidance. Experiments on a simulated Delhi taxi dataset, generated using real geospatial boundaries and historic ride-hailing request patterns, demonstrate that the proposed model reduced passenger waiting time by about 56% and reduced travel distance by 38% compared to baseline stochastic selection. The proposed approach is adaptable to multi-modal transport systems and can be integrated into smart city platforms for real-time urban mobility optimization.
☆ Cycling Race Time Prediction: A Personalized Machine Learning Approach Using Route Topology and Training Load
Predicting cycling duration for a given route is essential for training planning and event preparation. Existing solutions rely on physics-based models that require extensive parameterization, including aerodynamic drag coefficients and real-time wind forecasts, parameters impractical for most amateur cyclists. This work presents a machine learning approach that predicts ride duration using route topology features combined with the athlete's current fitness state derived from training load metrics. The model learns athlete-specific performance patterns from historical data, substituting complex physical measurements with historical performance proxies. We evaluate the approach using a single-athlete dataset (N=96 rides) in an N-of-1 study design. After rigorous feature engineering to eliminate data leakage, we find that Lasso regression with Topology + Fitness features achieves MAE=6.60 minutes and R2=0.922. Notably, integrating fitness metrics (CTL, ATL) reduces error by 14% compared to topology alone (MAE=7.66 min), demonstrating that physiological state meaningfully constrains performance even in self-paced efforts. Progressive checkpoint predictions enable dynamic race planning as route difficulty becomes apparent.
comment: 14 pages, 22 figures
☆ HFedMoE: Resource-aware Heterogeneous Federated Learning with Mixture-of-Experts
While federated learning (FL) enables fine-tuning of large language models (LLMs) without compromising data privacy, the substantial size of an LLM renders on-device training impractical for resource-constrained clients, such as mobile devices. Thus, Mixture-of-Experts (MoE) models have emerged as a computation-efficient solution, which activates only a sparse subset of experts during model training to reduce computing burden without sacrificing performance. Though integrating MoE into FL fine-tuning holds significant potential, it still encounters three key challenges: i) selecting appropriate experts for clients remains challenging due to the lack of a reliable metric to measure each expert's impact on local fine-tuning performance, ii) the heterogeneous computing resources across clients severely hinder MoE-based LLM fine-tuning, as dynamic expert activations across diverse input samples can overwhelm resource-constrained devices, and iii) client-specific expert subsets and routing preference undermine global aggregation, where misaligned expert updates and inconsistent gating networks in troduce destructive interference. To address these challenges, we propose HFedMoE, a heterogeneous MoE-based FL fine-tuning framework that customizes a subset of experts to each client for computation-efficient LLM fine-tuning. Specifically, HFedMoE identifies the expert importance based on its contributions to fine-tuning performance, and then adaptively selects a subset of experts from an information bottleneck perspective to align with each client' s computing budget. A sparsity-aware model aggregation strategy is also designed to aggregate the actively fine-tuned experts and gating parameters with importance weighted contributions. Extensive experiments demonstrate that HFedMoE outperforms state-of-the-art benchmarks in training accuracy and convergence speed.
comment: 14 pages, 16 figures
☆ AceFF: A State-of-the-Art Machine Learning Potential for Small Molecules
We introduce AceFF, a pre-trained machine learning interatomic potential (MLIP) optimized for small molecule drug discovery. While MLIPs have emerged as efficient alternatives to Density Functional Theory (DFT), generalizability across diverse chemical spaces remains difficult. AceFF addresses this via a refined TensorNet2 architecture trained on a comprehensive dataset of drug-like compounds. This approach yields a force field that balances high-throughput inference speed with DFT-level accuracy. AceFF fully supports the essential medicinal chemistry elements (H, B, C, N, O, F, Si, P, S, Cl, Br, I) and is explicitly trained to handle charged states. Validation against rigorous benchmarks, including complex torsional energy scans, molecular dynamics trajectories, batched minimizations, and forces and anergy accuracy demonstrates that AceFF establishes a new state-of-the-art for organic molecules. The AceFF-2 model weights and inference code are available at https://huggingface.co/Acellera/AceFF-2.0.
☆ Learning to be Reproducible: Custom Loss Design for Robust Neural Networks
To enhance the reproducibility and reliability of deep learning models, we address a critical gap in current training methodologies: the lack of mechanisms that ensure consistent and robust performance across runs. Our empirical analysis reveals that even under controlled initialization and training conditions, the accuracy of the model can exhibit significant variability. To address this issue, we propose a Custom Loss Function (CLF) that reduces the sensitivity of training outcomes to stochastic factors such as weight initialization and data shuffling. By fine-tuning its parameters, CLF explicitly balances predictive accuracy with training stability, leading to more consistent and reliable model performance. Extensive experiments across diverse architectures for both image classification and time series forecasting demonstrate that our approach significantly improves training robustness without sacrificing predictive performance. These results establish CLF as an effective and efficient strategy for developing more stable, reliable and trustworthy neural networks.
☆ Adversarial Samples Are Not Created Equal
Over the past decade, numerous theories have been proposed to explain the widespread vulnerability of deep neural networks to adversarial evasion attacks. Among these, the theory of non-robust features proposed by Ilyas et al. has been widely accepted, showing that brittle but predictive features of the data distribution can be directly exploited by attackers. However, this theory overlooks adversarial samples that do not directly utilize these features. In this work, we advocate that these two kinds of samples - those which use use brittle but predictive features and those that do not - comprise two types of adversarial weaknesses and should be differentiated when evaluating adversarial robustness. For this purpose, we propose an ensemble-based metric to measure the manipulation of non-robust features by adversarial perturbations and use this metric to analyze the makeup of adversarial samples generated by attackers. This new perspective also allows us to re-examine multiple phenomena, including the impact of sharpness-aware minimization on adversarial robustness and the robustness gap observed between adversarially training and standard training on robust datasets.
☆ Entropy Production in Machine Learning Under Fokker-Planck Probability Flow
Machine learning models deployed in nonstationary environments experience performance degradation due to data drift. While many drift detection heuristics exist, most lack a principled dynamical interpretation and provide limited guidance on how retraining frequency should be balanced against operational cost. In this work, we propose an entropy--based retraining framework grounded in nonequilibrium stochastic dynamics. Modeling deployment--time data drift as probability flow governed by a Fokker--Planck equation, we quantify model--data mismatch using a time--evolving Kullback--Leibler divergence. We show that the time derivative of this mismatch admits an entropy--balance decomposition featuring a nonnegative entropy production term driven by probability currents. This interpretation motivates entropy--triggered retraining as a label--free intervention strategy that responds to accumulated mismatch rather than delayed performance collapse. In a controlled nonstationary classification experiment, entropy--triggered retraining achieves predictive performance comparable to high--frequency retraining while reducing retraining events by an order of magnitude relative to daily and label--based policies.
comment: 10 pages, 3 figures. Submitted for journal review
☆ Cloud-Native Generative AI for Automated Planogram Synthesis: A Diffusion Model Approach for Multi-Store Retail Optimization
Planogram creation is a significant challenge for retail, requiring an average of 30 hours per complex layout. This paper introduces a cloud-native architecture using diffusion models to automatically generate store-specific planograms. Unlike conventional optimization methods that reorganize existing layouts, our system learns from successful shelf arrangements across multiple retail locations to create new planogram configurations. The architecture combines cloud-based model training via AWS with edge deployment for real-time inference. The diffusion model integrates retail-specific constraints through a modified loss function. Simulation-based analysis demonstrates the system reduces planogram design time by 98.3% (from 30 to 0.5 hours) while achieving 94.4% constraint satisfaction. Economic analysis reveals a 97.5% reduction in creation expenses with a 4.4-month break-even period. The cloud-native architecture scales linearly, supporting up to 10,000 concurrent store requests. This work demonstrates the viability of generative AI for automated retail space optimization.
comment: International Conference on Software Engineering and Data Engineering : Springer Nature
☆ Federated Customization of Large Models: Approaches, Experiments, and Insights
In this article, we explore federated customization of large models and highlight the key challenges it poses within the federated learning framework. We review several popular large model customization techniques, including full fine-tuning, efficient fine-tuning, prompt engineering, prefix-tuning, knowledge distillation, and retrieval-augmented generation. Then, we discuss how these techniques can be implemented within the federated learning framework. Moreover, we conduct experiments on federated prefix-tuning, which, to the best of our knowledge, is the first trial to apply prefix-tuning in the federated learning setting. The conducted experiments validate its feasibility with performance close to centralized approaches. Further comparison with three other federated customization methods demonstrated its competitive performance, satisfactory efficiency, and consistent robustness.
comment: 8 pages, 1 figure
☆ Optimizing LSTM Neural Networks for Resource-Constrained Retail Sales Forecasting: A Model Compression Study
Standard LSTM(Long Short-Term Memory) neural networks provide accurate predictions for sales data in the retail industry, but require a lot of computing power. It can be challenging especially for mid to small retail industries. This paper examines LSTM model compression by gradually reducing the number of hidden units from 128 to 16. We used the Kaggle Store Item Demand Forecasting dataset, which has 913,000 daily sales records from 10 stores and 50 items, to look at the trade-off between model size and how accurate the predictions are. Experiments show that lowering the number of hidden LSTM units to 64 maintains the same level of accuracy while also improving it. The mean absolute percentage error (MAPE) ranges from 23.6% for the full 128-unit model to 12.4% for the 64-unit model. The optimized model is 73% smaller (from 280KB to 76KB) and 47% more accurate. These results show that larger models do not always achieve better results.
comment: Accepted to IEEE ICUIS 2025 (International Conference on Ubiquitous and Intelligent Systems). 5 pages, 3 figures, 1 table
☆ A Sparse-Attention Deep Learning Model Integrating Heterogeneous Multimodal Features for Parkinson's Disease Severity Profiling
Characterising the heterogeneous presentation of Parkinson's disease (PD) requires integrating biological and clinical markers within a unified predictive framework. While multimodal data provide complementary information, many existing computational models struggle with interpretability, class imbalance, or effective fusion of high-dimensional imaging and tabular clinical features. To address these limitations, we propose the Class-Weighted Sparse-Attention Fusion Network (SAFN), an interpretable deep learning framework for robust multimodal profiling. SAFN integrates MRI cortical thickness, MRI volumetric measures, clinical assessments, and demographic variables using modality-specific encoders and a symmetric cross-attention mechanism that captures nonlinear interactions between imaging and clinical representations. A sparsity-constrained attention-gating fusion layer dynamically prioritises informative modalities, while a class-balanced focal loss (beta = 0.999, gamma = 1.5) mitigates dataset imbalance without synthetic oversampling. Evaluated on 703 participants (570 PD, 133 healthy controls) from the Parkinson's Progression Markers Initiative using subject-wise five-fold cross-validation, SAFN achieves an accuracy of 0.98 plus or minus 0.02 and a PR-AUC of 1.00 plus or minus 0.00, outperforming established machine learning and deep learning baselines. Interpretability analysis shows a clinically coherent decision process, with approximately 60 percent of predictive weight assigned to clinical assessments, consistent with Movement Disorder Society diagnostic principles. SAFN provides a reproducible and transparent multimodal modelling paradigm for computational profiling of neurodegenerative disease.
☆ Generative Conditional Missing Imputation Networks
In this study, we introduce a sophisticated generative conditional strategy designed to impute missing values within datasets, an area of considerable importance in statistical analysis. Specifically, we initially elucidate the theoretical underpinnings of the Generative Conditional Missing Imputation Networks (GCMI), demonstrating its robust properties in the context of the Missing Completely at Random (MCAR) and the Missing at Random (MAR) mechanisms. Subsequently, we enhance the robustness and accuracy of GCMI by integrating a multiple imputation framework using a chained equations approach. This innovation serves to bolster model stability and improve imputation performance significantly. Finally, through a series of meticulous simulations and empirical assessments utilizing benchmark datasets, we establish the superior efficacy of our proposed methods when juxtaposed with other leading imputation techniques currently available. This comprehensive evaluation not only underscores the practicality of GCMI but also affirms its potential as a leading-edge tool in the field of statistical data analysis.
☆ Trajectory Guard -- A Lightweight, Sequence-Aware Model for Real-Time Anomaly Detection in Agentic AI AAAI
Autonomous LLM agents generate multi-step action plans that can fail due to contextual misalignment or structural incoherence. Existing anomaly detection methods are ill-suited for this challenge: mean-pooling embeddings dilutes anomalous steps, while contrastive-only approaches ignore sequential structure. Standard unsupervised methods on pre-trained embeddings achieve F1-scores no higher than 0.69. We introduce Trajectory Guard, a Siamese Recurrent Autoencoder with a hybrid loss function that jointly learns task-trajectory alignment via contrastive learning and sequential validity via reconstruction. This dual objective enables unified detection of both "wrong plan for this task" and "malformed plan structure." On benchmarks spanning synthetic perturbations and real-world failures from security audits (RAS-Eval) and multi-agent systems (Who\&When), we achieve F1-scores of 0.88-0.94 on balanced sets and recall of 0.86-0.92 on imbalanced external benchmarks. At 32 ms inference latency, our approach runs 17-27$\times$ faster than LLM Judge baselines, enabling real-time safety verification in production deployments.
comment: Accepted to AAAI Trustagent 2026
♻ ☆ Effects of Structural Allocation of Geometric Task Diversity in Linear Meta-Learning Models
Meta-learning aims to leverage information across related tasks to improve prediction on unlabeled data for new tasks when only a small number of labeled observations are available ("few-shot" learning). Increased task diversity is often believed to enhance meta-learning by providing richer information across tasks. However, recent work by Kumar et al. (2022) shows that increasing task diversity, quantified through the overall geometric spread of task representations, can in fact degrade meta-learning prediction performance across a range of models and datasets. In this work, we build on this observation by showing that meta-learning performance is affected not only by the overall geometric variability of task parameters, but also by how this variability is allocated relative to an underlying low-dimensional structure. Similar to Pimonova et al. (2025), we decompose task-specific regression effects into a structurally informative component and an orthogonal, non-informative component. We show theoretically and through simulation that meta-learning prediction degrades when a larger fraction of between-task variability lies in orthogonal, non-informative directions, even when the overall geometric variability of tasks is held fixed.
♻ ☆ Distributed Sparse Linear Regression under Communication Constraints
In multiple domains, statistical tasks are performed in distributed settings, with data split among several end machines that are connected to a fusion center. In various applications, the end machines have limited bandwidth and power, and thus a tight communication budget. In this work we focus on distributed learning of a sparse linear regression model, under severe communication constraints. We propose several two round distributed schemes, whose communication per machine is sublinear in the data dimension. In our schemes, individual machines compute debiased lasso estimators, but send to the fusion center only very few values. On the theoretical front, we analyze one of these schemes and prove that with high probability it achieves exact support recovery at low signal to noise ratios, where individual machines fail to recover the support. We show in simulations that our scheme works as well as, and in some cases better, than more communication intensive approaches.
comment: 50 pages, 5 figures
♻ ☆ Benchmark Success, Clinical Failure: When Reinforcement Learning Optimizes for Benchmarks, Not Patients
Recent Reinforcement Learning (RL) advances for Large Language Models (LLMs) have improved reasoning tasks, yet their resource-constrained application to medical imaging remains underexplored. We introduce ChexReason, a vision-language model trained via R1-style methodology (SFT followed by GRPO) using only 2,000 SFT samples, 1,000 RL samples, and a single A100 GPU. Evaluations on CheXpert and NIH benchmarks reveal a fundamental tension: GRPO recovers in-distribution performance (23% improvement on CheXpert, macro-F1 = 0.346) but degrades cross-dataset transferability (19% drop on NIH). This mirrors high-resource models like NV-Reason-CXR-3B, suggesting the issue stems from the RL paradigm rather than scale. We identify a generalization paradox where the SFT checkpoint uniquely improves on NIH before optimization, indicating teacher-guided reasoning captures more institution-agnostic features. Furthermore, cross-model comparisons show structured reasoning scaffolds benefit general-purpose VLMs but offer minimal gain for medically pre-trained models. Consequently, curated supervised fine-tuning may outperform aggressive RL for clinical deployment requiring robustness across diverse populations.
♻ ☆ Brain network science modelling of sparse neural networks enables Transformers and LLMs to perform as fully connected
Dynamic sparse training (DST) can reduce the computational demands in ANNs, but faces difficulties in keeping peak performance at high sparsity levels. The Cannistraci-Hebb training (CHT) is a brain-inspired method for growing connectivity in DST. CHT leverages a gradient-free, topology-driven link regrowth, which has shown ultra-sparse (less than 1% connectivity) advantage across various tasks compared to fully connected networks. Yet, CHT suffers two main drawbacks: (i) its time complexity is $O(Nd^3)$ - N node network size, d node degree - restricting it to ultra-sparse regimes. (ii) it selects top link prediction scores, which is inappropriate for the early training epochs, when the network presents unreliable connections. Here, we design the first brain-inspired network model - termed bipartite receptive field (BRF) - to initialize the connectivity of sparse artificial neural networks. We further introduce a GPU-friendly matrix-based approximation of CH link prediction, reducing complexity to $O(N^3)$. We introduce the Cannistraci-Hebb training soft rule (CHTs), which adopts a flexible strategy for sampling connections in both link removal and regrowth, balancing the exploration and exploitation of network topology. Additionally, we integrate CHTs with a sigmoid gradual density decay (CHTss). Empirical results show that BRF offers performance advantages over previous network science models. Using 1% of connections, CHTs outperforms fully connected networks in MLP architectures on image classification tasks, compressing some networks to less than 30% of the nodes. Using 5% of the connections, CHTss outperforms fully connected networks in two Transformer-based machine translation tasks. Finally, at 30% connectivity, both CHTs and CHTss outperform other DST methods in language modeling task.
♻ ☆ uGMM-NN: Univariate Gaussian Mixture Model Neural Network
This paper introduces the Univariate Gaussian Mixture Model Neural Network (uGMM-NN), a novel neural architecture that embeds probabilistic reasoning directly into the computational units of deep networks. Unlike traditional neurons, which apply weighted sums followed by fixed non-linearities, each uGMM-NN node parameterizes its activations as a univariate Gaussian mixture, with learnable means, variances, and mixing coefficients. This design enables richer representations by capturing multimodality and uncertainty at the level of individual neurons, while retaining the scalability of standard feed-forward networks. We demonstrate that uGMM-NN can achieve competitive discriminative performance compared to conventional multilayer perceptrons, while additionally offering a probabilistic interpretation of activations. The proposed framework provides a foundation for integrating uncertainty-aware components into modern neural architectures, opening new directions for both discriminative and generative modeling.
comment: 12 pages, 3 figures
♻ ☆ Clustering by Denoising: Latent plug-and-play diffusion for single-cell data
Single-cell RNA sequencing (scRNA-seq) enables the study of cellular heterogeneity. Yet, clustering accuracy, and with it downstream analyses based on cell labels, remain challenging due to measurement noise and biological variability. In standard latent spaces (e.g., obtained through PCA), data from different cell types can be projected close together, making accurate clustering difficult. We introduce a latent plug-and-play diffusion framework that separates the observation and denoising space. This separation is operationalized through a novel Gibbs sampling procedure: the learned diffusion prior is applied in a low-dimensional latent space to perform denoising, while to steer this process, noise is reintroduced into the original high-dimensional observation space. This unique "input-space steering" ensures the denoising trajectory remains faithful to the original data structure. Our approach offers three key advantages: (1) adaptive noise handling via a tunable balance between prior and observed data; (2) uncertainty quantification through principled uncertainty estimates for downstream analysis; and (3) generalizable denoising by leveraging clean reference data to denoise noisier datasets, and via averaging, improve quality beyond the training set. We evaluate robustness on both synthetic and real single-cell genomics data. Our method improves clustering accuracy on synthetic data across varied noise levels and dataset shifts. On real-world single-cell data, our method demonstrates improved biological coherence in the resulting cell clusters, with cluster boundaries that better align with known cell type markers and developmental trajectories.
♻ ☆ Adaptive Learning Guided by Bias-Noise-Alignment Diagnostics
Learning systems deployed in nonstationary and safety-critical environments often suffer from instability, slow convergence, or brittle adaptation when learning dynamics evolve over time. While modern optimization, reinforcement learning, and meta-learning methods adapt to gradient statistics, they largely ignore the temporal structure of the error signal itself. This paper proposes a diagnostic-driven adaptive learning framework that explicitly models error evolution through a principled decomposition into bias, capturing persistent drift; noise, capturing stochastic variability; and alignment, capturing repeated directional excitation leading to overshoot. These diagnostics are computed online from lightweight statistics of loss or temporal-difference (TD) error trajectories and are independent of model architecture or task domain. We show that the proposed bias-noise-alignment decomposition provides a unifying control backbone for supervised optimization, actor-critic reinforcement learning, and learned optimizers. Within this framework, we introduce three diagnostic-driven instantiations: the Human-inspired Supervised Adaptive Optimizer (HSAO), Hybrid Error-Diagnostic Reinforcement Learning (HED-RL) for actor-critic methods, and the Meta-Learned Learning Policy (MLLP). Under standard smoothness assumptions, we establish bounded effective updates and stability properties for all cases. Representative diagnostic illustrations in actor-critic learning highlight how the proposed signals modulate adaptation in response to TD error structure. Overall, this work elevates error evolution to a first-class object in adaptive learning and provides an interpretable, lightweight foundation for reliable learning in dynamic environments.
comment: This preprint focuses on the theoretical framework and diagnostic behavior. Comprehensive experimental validation in application-specific settings is deferred to a companion experimental study
♻ ☆ Data-Driven Analysis of Crash Patterns in SAE Level 2 and Level 4 Automated Vehicles Using K-means Clustering and Association Rule Mining
Automated Vehicles (AV) hold potential to reduce or eliminate human driving errors, enhance traffic safety, and support sustainable mobility. Recently, crash data has increasingly revealed that AV behavior can deviate from expected safety outcomes, raising concerns about the technology's safety and operational reliability in mixed traffic environments. While past research has investigated AV crash, most studies rely on small-size California-centered datasets, with a limited focus on understanding crash trends across various SAE Levels of automation. This study analyzes over 2,500 AV crash records from the United States National Highway Traffic Safety Administration (NHTSA), covering SAE Levels 2 and 4, to uncover underlying crash dynamics. A two-stage data mining framework is developed. K-means clustering is first applied to segment crash records into 4 distinct behavioral clusters based on temporal, spatial, and environmental factors. Then, Association Rule Mining (ARM) is used to extract interpretable multivariate relationships between crash patterns and crash contributors including lighting conditions, surface condition, vehicle dynamics, and environmental conditions within each cluster. These insights provide actionable guidance for AV developers, safety regulators, and policymakers in formulating AV deployment strategies and minimizing crash risks.
comment: 7 tables, 7 figures, 23 pages including references
♻ ☆ The Curse of Depth in Large Language Models NeurIPS 2025
In this paper, we introduce the Curse of Depth, a concept that highlights, explains, and addresses the recent observation in modern Large Language Models (LLMs) where nearly half of the layers are less effective than expected. We first confirm the wide existence of this phenomenon across the most popular families of LLMs such as Llama, Mistral, DeepSeek, and Qwen. Our analysis, theoretically and empirically, identifies that the underlying reason for the ineffectiveness of deep layers in LLMs is the widespread usage of Pre-Layer Normalization (Pre-LN). While Pre-LN stabilizes the training of Transformer LLMs, its output variance exponentially grows with the model depth, which undesirably causes the derivative of the deep Transformer blocks to be an identity matrix, and therefore barely contributes to the training. To resolve this training pitfall, we propose LayerNorm Scaling (LNS), which scales the variance of output of the layer normalization inversely by the square root of its depth. This simple modification mitigates the output variance explosion of deeper Transformer layers, improving their contribution. Across a wide range of model sizes (130M to 7B), our experiments show that LNS consistently outperforms previous normalization and scaling techniques in enhancing LLM pre-training performance. Moreover, this improvement seamlessly carries over to supervised fine-tuning. All these gains can be attributed to the fact that LayerNorm Scaling enables deeper layers to contribute more effectively during training. Our code is available at \href{https://github.com/lmsdss/LayerNorm-Scaling}{LayerNorm-Scaling}.
comment: Accepted by NeurIPS 2025
♻ ☆ Designing an Optimal Sensor Network via Minimizing Information Loss
Optimal experimental design is a classic topic in statistics, with many well-studied problems, applications, and solutions. The design problem we study is the placement of sensors to monitor spatiotemporal processes, explicitly accounting for the temporal dimension in our modeling and optimization. We observe that recent advancements in computational sciences often yield large datasets based on physics-based simulations, which are rarely leveraged in experimental design. We introduce a novel model-based sensor placement criterion, along with a highly-efficient optimization algorithm, which integrates physics-based simulations and Bayesian experimental design principles to identify sensor networks that "minimize information loss" from simulated data. Our technique relies on sparse variational inference and (separable) Gauss-Markov priors, and thus may adapt many techniques from Bayesian experimental design. We validate our method through a case study monitoring air temperature in Phoenix, Arizona, using state-of-the-art physics-based simulations. Our results show our framework to be superior to random or quasi-random sampling, particularly with a limited number of sensors. We conclude by discussing practical considerations and implications of our framework, including more complex modeling tools and real-world deployments.
comment: 37 pages, 15 figures. Camera-ready version; accepted to Bayesian Analysis
♻ ☆ PolarGrad: A Class of Matrix-Gradient Optimizers from a Unifying Preconditioning Perspective
The ever-growing scale of deep learning models and training data underscores the critical importance of efficient optimization methods. While preconditioned gradient methods such as Adam and AdamW are the de facto optimizers for training neural networks and large language models, structure-aware preconditioned optimizers like Shampoo and Muon, which utilize the matrix structure of gradients, have demonstrated promising evidence of faster convergence. In this paper, we introduce a unifying framework for analyzing "matrix-aware" preconditioned methods, which not only sheds light on the effectiveness of Muon and related optimizers but also leads to a class of new structure-aware preconditioned methods. A key contribution of this framework is its precise distinction between preconditioning strategies that treat neural network weights as vectors (addressing curvature anisotropy) versus those that consider their matrix structure (addressing gradient anisotropy). This perspective provides new insights into several empirical phenomena in language model pre-training, including Adam's training instabilities, Muon's accelerated convergence, and the necessity of learning rate warmup for Adam. Building upon this framework, we introduce PolarGrad, a new class of preconditioned optimization methods based on the polar decomposition of matrix-valued gradients. As a special instance, PolarGrad includes Muon with updates scaled by the nuclear norm of the gradients. We provide numerical implementations of these methods, leveraging efficient numerical polar decomposition algorithms for enhanced convergence. Our extensive evaluations across diverse matrix optimization problems and language model pre-training tasks demonstrate that PolarGrad outperforms both Adam and Muon.
♻ ☆ Digital implementations of deep feature extractors are intrinsically informative
Rapid information (energy) propagation in deep feature extractors is crucial to balance computational complexity versus expressiveness as a representation of the input. We prove an upper bound for the speed of energy propagation in a unified framework that covers different neural network models, both over Euclidean and non-Euclidean domains. Additional structural information about the signal domain can be used to explicitly determine or improve the rate of decay. To illustrate this, we show global exponential energy decay for a range of 1) feature extractors with discrete-domain input signals, and 2) convolutional neural networks (CNNs) via scattering over locally compact abelian (LCA) groups.
comment: 6 pages; updated to match the published manuscript of SampTA 2025 proceedings (IEEE Xplore); added IEEE copyright notice
♻ ☆ Beyond Accuracy: What Matters in Designing Well-Behaved Image Classification Models?
Deep learning has become an essential part of computer vision, with deep neural networks (DNNs) excelling in predictive performance. However, they often fall short in other critical quality dimensions, such as robustness, calibration, or fairness. While existing studies have focused on a subset of these quality dimensions, none have explored a more general form of "well-behavedness" of DNNs. With this work, we address this gap by simultaneously studying nine different quality dimensions for image classification. Through a large-scale study, we provide a bird's-eye view by analyzing 326 backbone models and how different training paradigms and model architectures affect these quality dimensions. We reveal various new insights such that (i) vision-language models exhibit high class balance on ImageNet-1k classification and strong robustness against domain changes; (ii) training models initialized with weights obtained through self-supervised learning is an effective strategy to improve most considered quality dimensions; and (iii) the training dataset size is a major driver for most of the quality dimensions. We conclude our study by introducing the QUBA score (Quality Understanding Beyond Accuracy), a novel metric that ranks models across multiple dimensions of quality, enabling tailored recommendations based on specific user needs.
comment: Published in TMLR (12/2025) | OpenReview: https://openreview.net/forum?id=E7HDtLCoT6 | Project page: https://visinf.github.io/beyond-accuracy/
♻ ☆ PrivTune: Efficient and Privacy-Preserving Fine-Tuning of Large Language Models via Device-Cloud Collaboration
With the rise of large language models, service providers offer language models as a service, enabling users to fine-tune customized models via uploaded private datasets. However, this raises concerns about sensitive data leakage. Prior methods, relying on differential privacy within device-cloud collaboration frameworks, struggle to balance privacy and utility, exposing users to inference attacks or degrading fine-tuning performance. To address this, we propose PrivTune, an efficient and privacy-preserving fine-tuning framework via Split Learning (SL). The key idea of PrivTune is to inject crafted noise into token representations from the SL bottom model, making each token resemble the $n$-hop indirect neighbors. PrivTune formulates this as an optimization problem to compute the optimal noise vector, aligning with defense-utility goals. On this basis, it then adjusts the parameters (i.e., mean) of the $d_χ$-Privacy noise distribution to align with the optimization direction and scales the noise according to token importance to minimize distortion. Experiments on five datasets (covering both classification and generation tasks) against three embedding inversion and three attribute inference attacks show that, using RoBERTa on the Stanford Sentiment Treebank dataset, PrivTune reduces the attack success rate to 10% with only a 3.33% drop in utility performance, outperforming state-of-the-art baselines.
comment: Accepted at IEEE INFOCOM 2026 (full version)
♻ ☆ Training a Huggingface Model on AWS Sagemaker (Without Tears)
The development of Large Language Models (LLMs) has primarily been driven by resource-rich research groups and industry partners. Due to the lack of on-premise computing resources required for increasingly complex models, many researchers are turning to cloud services like AWS SageMaker to train Hugging Face models. However, the steep learning curve of cloud platforms often presents a barrier for researchers accustomed to local environments. Existing documentation frequently leaves knowledge gaps, forcing users to seek fragmented information across the web. This demo paper aims to democratize cloud adoption by centralizing the essential information required for researchers to successfully train their first Hugging Face model on AWS SageMaker from scratch.
♻ ☆ Sorbet: A Neuromorphic Hardware-Compatible Transformer-Based Spiking Language Model ICML 2025
For reasons such as privacy, there are use cases for language models at the edge. This has given rise to small language models targeted for deployment in resource-constrained devices where energy efficiency is critical. Spiking neural networks (SNNs) offer a promising solution due to their energy efficiency, and there are already works on realizing transformer-based models on SNNs. However, key operations like softmax and layer normalization (LN) are difficult to implement on neuromorphic hardware, and many of these early works sidestepped them. To address these challenges, we introduce Sorbet, a transformer-based spiking language model that is more neuromorphic hardware-compatible. Sorbet incorporates a novel shifting-based softmax called PTsoftmax and a Bit Shifting PowerNorm (BSPN), both designed to replace the respective energy-intensive operations. By leveraging knowledge distillation and model quantization, Sorbet achieved a highly compressed binary weight model that maintains competitive performance while achieving $27.16\times$ energy savings compared to BERT. We validate Sorbet through extensive testing on the GLUE benchmark and a series of ablation studies, demonstrating its potential as an energy-efficient solution for language model inference. Our code is publicly available at \href{https://github.com/Kaiwen-Tang/Sorbet}{https://github.com/Kaiwen-Tang/Sorbet}
comment: Accepted by ICML 2025. Camera-ready version
♻ ☆ Simulation as Supervision: Mechanistic Pretraining for Scientific Discovery
Scientific modeling faces a tradeoff between the interpretability of mechanistic theory and the predictive power of machine learning. While hybrid approaches like Physics-Informed Neural Networks (PINNs) embed domain knowledge as functional constraints, they can be brittle under model misspecification. We introduce Simulation-Grounded Neural Networks (SGNNs), a framework that instead embeds domain knowledge into the training data to establish a structural prior. By pretraining on synthetic corpora spanning diverse model structures and observational artifacts, SGNNs learn the broad patterns of physical possibility. This allows the model to internalize the underlying dynamics of a system without being forced to satisfy a single, potentially incorrect equation. We evaluated SGNNs across scientific disciplines and found that this approach confers significant robustness. In prediction tasks, SGNNs nearly tripled COVID-19 forecasting skill versus CDC baselines. In tests on dengue outbreaks, SGNNs outperformed physics-constrained models even when both were restricted to incorrect human-to-human transmission equations, demonstrating that SGNNs are potentially more robust to model misspecification. For inference, SGNNs extend the logic of simulation-based inference to enable supervised learning for unobservable targets, estimating early COVID-19 transmissibility more accurately than traditional methods. Finally, SGNNs enable back-to-simulation attribution, a form of mechanistic interpretability that maps real-world data back to the simulated manifold to identify underlying processes. By unifying these disparate simulation-based techniques into a single framework, we demonstrate that mechanistic simulations can serve as effective training data for robust scientific inference that generalizes beyond the limitations of fixed functional forms.
♻ ☆ It's complicated. The relationship of algorithmic fairness and non-discrimination provisions for high-risk systems in the EU AI Act NeurIPS 2025
What constitutes a fair decision? This question is not only difficult for humans but becomes more challenging when Artificial Intelligence (AI) models are used. In light of discriminatory algorithmic behaviors, the EU has recently passed the AI Act, which mandates specific rules for high-risk systems, incorporating both traditional legal non-discrimination regulations and machine learning based algorithmic fairness concepts. This paper aims to bridge these two different concepts in the AI Act through: First, a necessary high-level introduction of both concepts targeting legal and computer science-oriented scholars, and second, an in-depth analysis of the AI Act's relationship between legal non-discrimination regulations and algorithmic fairness. Our analysis reveals three key findings: (1.) Most non-discrimination regulations target only high-risk AI systems. (2.) The regulation of high-risk systems encompasses both data input requirements and output monitoring, though these regulations are partly inconsistent and raise questions of computational feasibility. (3.) Finally, we consider the possible (future) interaction of classical EU non-discrimination law and the AI Act regulations. We recommend developing more specific auditing and testing methodologies for AI systems. This paper aims to serve as a foundation for future interdisciplinary collaboration between legal scholars and computer science-oriented machine learning researchers studying discrimination in AI systems.
comment: Accepted at the Workshop on Regulatable ML at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025). This version has been updated after acceptance
♻ ☆ Frequent subgraph-based persistent homology for graph classification
Persistent homology (PH) has recently emerged as a powerful tool for extracting topological features. Integrating PH into machine learning and deep learning models enhances topology awareness and interpretability. However, most PH methods on graphs rely on a limited set of filtrations, such as degree-based or weight-based filtrations, which overlook richer features like recurring information across the dataset and thus restrict expressive power. In this work, we propose a novel graph filtration called Frequent Subgraph Filtration (FSF), which is derived from frequent subgraphs and produces stable and information-rich frequency-based persistent homology (FPH) features. We study the theoretical properties of FSF and provide both proofs and experimental validation. Beyond persistent homology itself, we introduce two approaches for graph classification: an FPH-based machine learning model (FPH-ML) and a hybrid framework that integrates FPH with graph neural networks (FPH-GNNs) to enhance topology-aware graph representation learning. Our frameworks bridge frequent subgraph mining and topological data analysis, offering a new perspective on topology-aware feature extraction. Experimental results show that FPH-ML achieves competitive or superior accuracy compared with kernel-based and degree-based filtration methods. When integrated into graph neural networks, FPH yields relative performance gains ranging from 0.4 to 21 percent, with improvements of up to 8.2 percentage points over GCN and GIN backbones across benchmarks.
comment: v2: Author list updated to include previously omitted co-authors
♻ ☆ Flattening Hierarchies with Policy Bootstrapping NeurIPS 2025
Offline goal-conditioned reinforcement learning (GCRL) is a promising approach for pretraining generalist policies on large datasets of reward-free trajectories, akin to the self-supervised objectives used to train foundation models for computer vision and natural language processing. However, scaling GCRL to longer horizons remains challenging due to the combination of sparse rewards and discounting, which obscures the comparative advantages of primitive actions with respect to distant goals. Hierarchical RL methods achieve strong empirical results on long-horizon goal-reaching tasks, but their reliance on modular, timescale-specific policies and subgoal generation introduces significant additional complexity and hinders scaling to high-dimensional goal spaces. In this work, we introduce an algorithm to train a flat (non-hierarchical) goal-conditioned policy by bootstrapping on subgoal-conditioned policies with advantage-weighted importance sampling. Our approach eliminates the need for a generative model over the (sub)goal space, which we find is key for scaling to high-dimensional control in large state spaces. We further show that existing hierarchical and bootstrapping-based approaches correspond to specific design choices within our derivation. Across a comprehensive suite of state- and pixel-based locomotion and manipulation benchmarks, our method matches or surpasses state-of-the-art offline GCRL algorithms and scales to complex, long-horizon tasks where prior approaches fail. Project page: https://johnlyzhou.github.io/saw/
comment: NeurIPS 2025 (Spotlight, top 3.2%)
♻ ☆ Iterative Tuning of Nonlinear Model Predictive Control for Robotic Manufacturing Tasks
Manufacturing processes are often perturbed by drifts in the environment and wear in the system, requiring control re-tuning even in the presence of repetitive operations. This paper presents an iterative learning framework for automatic tuning of Nonlinear Model Predictive Control (NMPC) weighting matrices based on task-level performance feedback. Inspired by norm-optimal Iterative Learning Control (ILC), the proposed method adaptively adjusts NMPC weights Q and R across task repetitions to minimize key performance indicators (KPIs) related to tracking accuracy, control effort, and saturation. Unlike gradient-based approaches that require differentiating through the NMPC solver, we construct an empirical sensitivity matrix, enabling structured weight updates without analytic derivatives. The framework is validated through simulation on a UR10e robot performing carbon fiber winding on a tetrahedral core. Results demonstrate that the proposed approach converges to near-optimal tracking performance (RMSE within 0.3% of offline Bayesian Optimization (BO)) in just 4 online repetitions, compared to 100 offline evaluations required by BO algorithm. The method offers a practical solution for adaptive NMPC tuning in repetitive robotic tasks, combining the precision of carefully optimized controllers with the flexibility of online adaptation.
♻ ☆ Episodic Contextual Bandits with Knapsacks under Conversion Models
We study an online setting, where a decision maker (DM) interacts with contextual bandit-with-knapsack (BwK) instances in repeated episodes. These episodes start with different resource amounts, and the contexts' probability distributions are non-stationary in an episode. All episodes share the same latent conversion model, which governs the random outcome contingent upon a request's context and an allocation decision. Our model captures applications such as dynamic pricing on perishable resources with episodic replenishment, and first price auctions in repeated episodes with different starting budgets. We design an online algorithm that achieves a regret sub-linear in $T$, the number of episodes, assuming access to a \emph{confidence bound oracle} that achieves an $o(T)$-regret. Such an oracle is readily available from existing contextual bandit literature. We overcome the technical challenge with arbitrarily many possible contexts, which leads to a reinforcement learning problem with an unbounded state space. Our framework provides improved regret bounds in certain settings when the DM is provided with unlabeled feature data, which is novel to the contextual BwK literature.
♻ ☆ MCD: Marginal Contrastive Discrimination for conditional density estimation
We consider the problem of conditional density estimation, which is a major topic of interest in the fields of statistical and machine learning. Our method, called Marginal Contrastive Discrimination, MCD, reformulates the conditional density function into two factors, the marginal density function of the target variable and a ratio of density functions which can be estimated through binary classification. Like noise-contrastive methods, MCD can leverage state-of-the-art supervised learning techniques to perform conditional density estimation, including neural networks. Our benchmark reveals that our method significantly outperforms in practice existing methods on most density models and regression datasets.
♻ ☆ A Near-optimal, Scalable and Parallelizable Framework for Stochastic Bandits Robust to Adversarial Corruptions and Beyond NeurIPS 2025
We investigate various stochastic bandit problems in the presence of adversarial corruptions. A seminal work for this problem is the BARBAR~\cite{gupta2019better} algorithm, which achieves both robustness and efficiency. However, it suffers from a regret of $O(KC)$, which does not match the lower bound of $Ω(C)$, where $K$ denotes the number of arms and $C$ denotes the corruption level. In this paper, we first improve the BARBAR algorithm by proposing a novel framework called BARBAT, which eliminates the factor of $K$ to achieve an optimal regret bound up to a logarithmic factor. We also extend BARBAT to various settings, including multi-agent bandits, graph bandits, combinatorial semi-bandits and batched bandits. Compared with the Follow-the-Regularized-Leader framework, our methods are more amenable to parallelization, making them suitable for multi-agent and batched bandit settings, and they incur lower computational costs, particularly in semi-bandit problems. Numerical experiments verify the efficiency of the proposed methods.
comment: Accepted at NeurIPS 2025
♻ ☆ Towards Knowledge Guided Pretraining Approaches for Multimodal Foundation Models: Applications in Remote Sensing
Self-supervised learning has emerged as a powerful paradigm for pretraining foundation models using large-scale data. Existing pretraining approaches predominantly rely on masked reconstruction or next-token prediction strategies, demonstrating strong performance across various downstream tasks, including geoscience applications. However, these approaches do not fully capture the knowledge of causal interplay between different geospatial and environmental variables. To address this limitation, we propose Knowledge Guided Variable-Step Forecasting (KG-VSF), a novel pretraining task that models forecasting as a conditional generation task, where driver variables (e.g., weather) inform the prediction of response variables (e.g., satellite imagery). We demonstrate that pretraining in such a fashion leads to strong embeddings which give enhanced performance when finetuned on downstream tasks where capturing this causality matters such as pixel wise crop type mapping, soil moisture estimation and forecasting, missing image prediction, and future image forecasting when compared to finetuning embeddings from other standard pretraining approaches.
comment: 31 pages with appendix
♻ ☆ CIC: Circular Image Compression
Learned image compression (LIC) is currently the cutting-edge method. However, the inherent difference between testing and training images of LIC results in performance degradation to some extent. Especially for out-of-sample, out-of-distribution, or out-of-domain testing images, the performance of LIC degrades significantly. Classical LIC is a serial image compression (SIC) approach that utilizes an open-loop architecture with serial encoding and decoding units. Nevertheless, according to the principles of automatic control systems, a closed-loop architecture holds the potential to improve the dynamic and static performance of LIC. Therefore, a circular image compression (CIC) approach with closed-loop encoding and decoding elements is proposed to minimize the gap between testing and training images and upgrade the capability of LIC. The proposed CIC establishes a nonlinear loop equation and proves that steady-state error between reconstructed and original images is close to zero by Taylor series expansion. The proposed CIC method possesses the property of Post-Training and Plug-and-Play which can be built on any existing advanced SIC methods. Experimental results including rate-distortion curves on five public image compression datasets demonstrate that the proposed CIC outperforms eight competing state-of-the-art open-source SIC algorithms in reconstruction capacity. Experimental results further show that the proposed method is suitable for out-of-sample testing images with dark backgrounds, sharp edges, high contrast, grid shapes, or complex patterns.
♻ ☆ From Autoencoders to CycleGAN: Robust Unpaired Face Manipulation via Adversarial Learning
Human face synthesis and manipulation are increasingly important in entertainment and AI, with a growing demand for highly realistic, identity-preserving images even when only unpaired, unaligned datasets are available. We study unpaired face manipulation via adversarial learning, moving from autoencoder baselines to a robust, guided CycleGAN framework. While autoencoders capture coarse identity, they often miss fine details. Our approach integrates spectral normalization for stable training, identity- and perceptual-guided losses to preserve subject identity and high-level structure, and landmark-weighted cycle constraints to maintain facial geometry across pose and illumination changes. Experiments show that our adversarial trained CycleGAN improves realism (FID), perceptual quality (LPIPS), and identity preservation (ID-Sim) over autoencoders, with competitive cycle-reconstruction SSIM and practical inference times, which achieved high quality without paired datasets and approaching pix2pix on curated paired subsets. These results demonstrate that guided, spectrally normalized CycleGANs provide a practical path from autoencoders to robust unpaired face manipulation.
comment: 8 pages, 7 figures
♻ ☆ Mitigating optimistic bias in entropic risk estimation and optimization
The entropic risk measure is widely used in high-stakes decision-making across economics, management science, finance, and safety-critical control systems because it captures tail risks associated with uncertain losses. However, when data are limited, the empirical entropic risk estimator, formed by replacing the expectation in the risk measure with a sample average, underestimates true risk. We show that this negative bias grows superlinearly with the standard deviation of the loss for distributions with unbounded right tails. We further demonstrate that several existing bias reduction techniques developed for empirical risk either continue to underestimate entropic risk or substantially overestimate it, potentially leading to overly risky or overly conservative decisions. To address this issue, we develop a parametric bootstrap procedure that is strongly asymptotically consistent and provides a controlled overestimation of entropic risk under mild assumptions. The method first fits a distribution to the data and then estimates the empirical estimator's bias via bootstrapping. We show that the fitted distribution must satisfy only weak regularity conditions, and Gaussian mixture models offer a convenient and flexible choice within this class. As an application, we introduce a distributionally robust optimization model for an insurance contract design problem that incorporates correlations in household losses. We show that selecting regularization parameters using standard cross-validation can lead to substantially higher out-of-sample risk for the insurer if the validation bias is not corrected. Our approach improves performance by recommending higher and more accurate premiums, thereby better reflecting the underlying tail risk.
♻ ☆ Causality-Inspired Safe Residual Correction for Multivariate Time Series
While modern multivariate forecasters such as Transformers and GNNs achieve strong benchmark performance, they often suffer from systematic errors at specific variables or horizons and, critically, lack guarantees against performance degradation in deployment. Existing post-hoc residual correction methods attempt to fix these errors, but are inherently greedy: although they may improve average accuracy, they can also "help in the wrong way" by overcorrecting reliable predictions and causing local failures in unseen scenarios. To address this critical "safety gap," we propose CRC (Causality-inspired Safe Residual Correction), a plug-and-play framework explicitly designed to ensure non-degradation. CRC follows a divide-and-conquer philosophy: it employs a causality-inspired encoder to expose direction-aware structure by decoupling self- and cross-variable dynamics, and a hybrid corrector to model residual errors. Crucially, the correction process is governed by a strict four-fold safety mechanism that prevents harmful updates. Experiments across multiple datasets and forecasting backbones show that CRC consistently improves accuracy, while an in-depth ablation study confirms that its core safety mechanisms ensure exceptionally high non-degradation rates (NDR), making CRC a correction framework suited for safe and reliable deployment.
♻ ☆ Infinite-Width Limit of a Single Attention Layer: Analysis via Tensor Programs
In modern theoretical analyses of neural networks, the infinite-width limit is often invoked to justify Gaussian approximations of neuron preactivations (e.g., via neural network Gaussian processes or Tensor Programs). However, these Gaussian-based asymptotic theories have so far been unable to capture the behavior of attention layers, except under special regimes such as infinitely many heads or tailored scaling schemes. In this paper, leveraging the Tensor Programs framework, we rigorously identify the infinite-width limit distribution of variables within a single attention layer under realistic architectural dimensionality and standard $1/\sqrt{n}$-scaling with $n$ dimensionality. We derive the exact form of this limit law without resorting to infinite-head approximations or tailored scalings, demonstrating that it departs fundamentally from Gaussianity. This limiting distribution exhibits non-Gaussianity from a hierarchical structure, being Gaussian conditional on the random similarity scores. Numerical experiments validate our theoretical predictions, confirming the effectiveness of our theory at finite width and accurate description of finite-head attentions. Beyond characterizing a standalone attention layer, our findings lay the groundwork for developing a unified theory of deep Transformer architectures in the infinite-width regime.
♻ ☆ Improving Multi-step RAG with Hypergraph-based Memory for Long-Context Complex Relational Modeling
Multi-step retrieval-augmented generation (RAG) has become a widely adopted strategy for enhancing large language models (LLMs) on tasks that demand global comprehension and intensive reasoning. Many RAG systems incorporate a working memory module to consolidate retrieved information. However, existing memory designs function primarily as passive storage that accumulates isolated facts for the purpose of condensing the lengthy inputs and generating new sub-queries through deduction. This static nature overlooks the crucial high-order correlations among primitive facts, the compositions of which can often provide stronger guidance for subsequent steps. Therefore, their representational strength and impact on multi-step reasoning and knowledge evolution are limited, resulting in fragmented reasoning and weak global sense-making capacity in extended contexts. We introduce HGMem, a hypergraph-based memory mechanism that extends the concept of memory beyond simple storage into a dynamic, expressive structure for complex reasoning and global understanding. In our approach, memory is represented as a hypergraph whose hyperedges correspond to distinct memory units, enabling the progressive formation of higher-order interactions within memory. This mechanism connects facts and thoughts around the focal problem, evolving into an integrated and situated knowledge structure that provides strong propositions for deeper reasoning in subsequent steps. We evaluate HGMem on several challenging datasets designed for global sense-making. Extensive experiments and in-depth analyses show that our method consistently improves multi-step RAG and substantially outperforms strong baseline systems across diverse tasks.
comment: 21 pages
♻ ☆ Unregularized Linear Convergence in Zero-Sum Game from Preference Feedback
Aligning large language models (LLMs) with human preferences has proven effective for enhancing model capabilities, yet standard preference modeling using the Bradley-Terry model assumes transitivity, overlooking the inherent complexity of human population preferences. Nash learning from human feedback (NLHF) addresses this by framing non-transitive preferences as a two-player zero-sum game, where alignment reduces to finding the Nash equilibrium (NE). However, existing algorithms typically rely on regularization, incurring unavoidable bias when computing the duality gap in the original game. In this work, we provide the first convergence guarantee for Optimistic Multiplicative Weights Update ($\mathtt{OMWU}$) in NLHF, showing that it achieves last-iterate linear convergence after a burn-in phase whenever an NE with full support exists, with an instance-dependent linear convergence rate to the original NE, measured by duality gaps. Compared to prior results in Wei et al. (2020), we do not require the assumption of NE uniqueness. Our analysis identifies a novel marginal convergence behavior, where the probability of rarely played actions grows exponentially from exponentially small values, enabling exponentially better dependence on instance-dependent constants than prior results. Experiments corroborate the theoretical strengths of $\mathtt{OMWU}$ in both tabular and neural policy classes, demonstrating its potential for LLM applications.
comment: 28 pages
♻ ☆ Real-Time Forecasting of Pathological Gait via IMU Navigation: A Few-Shot and Generative Learning Framework for Wearable Devices
Current gait analysis faces challenges in various aspects, including limited and poorly labeled data within existing wearable electronics databases, difficulties in collecting patient data due to privacy concerns, and the inadequacy of the Zero-Velocity Update Technique (ZUPT) in accurately analyzing pathological gait patterns. To address these limitations, we introduce GaitMotion, a novel machine-learning framework that employs few-shot learning on a multitask dataset collected via wearable IMU sensors for real-time pathological gait analysis. GaitMotion enhances data quality through detailed, ground-truth-labeled sequences and achieves accurate step and stride segmentation and stride length estimation, which are essential for diagnosing neurological disorders. We incorporate a generative augmentation component, which synthesizes rare or underrepresented pathological gait patterns. GaitMotion achieves a 65\% increase in stride length estimation accuracy compared to ZUPT. In addition, its application to real patient datasets via transfer learning confirms its robust predictive capability. By integrating generative AI into wearable gait analysis, GaitMotion not only refines the precision of pathological gait forecasting but also demonstrates a scalable framework for leveraging synthetic data in biomechanical pattern recognition, paving the way for more personalized and data-efficient digital health services.
♻ ☆ Tabby: A Language Model Architecture for Tabular and Structured Data Synthesis
While advances in large language models (LLMs) have greatly improved the quality of synthetic text data in recent years, synthesizing tabular data has received relatively less attention. We address this disparity with Tabby, a simple but powerful post-training modification to the standard Transformer language model architecture, enabling its use for tabular dataset synthesis. Tabby enables the representation of differences across columns using Gated Mixture-of-Experts, with column-specific sets of parameters. Empirically, Tabby results in data quality near or equal to that of real data. By pairing our novel LLM table training technique, Plain, with Tabby, we observe up to a 44% improvement in quality over previous methods. We also show that Tabby extends beyond tables to more general structured data, reaching parity with real data on a nested JSON dataset as well.
comment: 21 pages, 8 figures. Appearing in TMLR 2026
♻ ☆ Scaling Efficient LLMs
Recent LLMs have hundreds of billions of parameters consuming vast resources. Furthermore, the so called "AI scaling law" for transformers suggests that the number of parameters must scale linearly with the size of the data. In response, we inquire into efficient LLMs, i.e. those with the fewest parameters that achieve the desired accuracy on a training corpus. Specifically, by comparing theoretical and empirical estimates of the Kullback-Leibler divergence, we derive a natural AI scaling law that the number of parameters in an efficient LLM scales as $D^γ$ where $D$ is the size of the training data and $ γ\in [0.44, 0.72]$, suggesting the existence of more efficient architectures. Against this backdrop, we propose recurrent transformers, combining the efficacy of transformers with the efficiency of recurrent networks, progressively applying a single transformer layer to a fixed-width sliding window across the input sequence. Recurrent transformers (a) run in linear time in the sequence length, (b) are memory-efficient and amenable to parallel processing in large batches, (c) learn to forget history for language tasks, or accumulate history for long range tasks like copy and selective copy, and (d) are amenable to curriculum training to overcome vanishing gradients. In our experiments, we find that recurrent transformers perform favorably on benchmark tests.
♻ ☆ Fusion of Multiscale Features Via Centralized Sparse-attention Network for EEG Decoding
Electroencephalography (EEG) signal decoding is a key technology that translates brain activity into executable commands, laying the foundation for direct brain-machine interfacing and intelligent interaction. To address the inherent spatiotemporal heterogeneity of EEG signals, this paper proposes a multi-branch parallel architecture, where each temporal scale is equipped with an independent spatial feature extraction module. To further enhance multi-branch feature fusion, we propose a Fusion of Multiscale Features via Centralized Sparse-attention Network (EEG-CSANet), a centralized sparse-attention network. It employs a main-auxiliary branch architecture, where the main branch models core spatiotemporal patterns via multiscale self-attention, and the auxiliary branch facilitates efficient local interactions through sparse cross-attention. Experimental results show that EEG-CSANet achieves state-of-the-art (SOTA) performance across five public datasets (BCIC-IV-2A, BCIC-IV-2B, HGD, SEED, and SEED-VIG), with accuracies of 88.54%, 91.09%, 97.15%, 96.03%, and 90.56%, respectively. Such performance demonstrates its strong adaptability and robustness across various EEG decoding tasks. Moreover, extensive ablation studies are conducted to enhance the interpretability of EEG-CSANet. In the future, we hope that EEG-CSANet could serve as a promising baseline model in the field of EEG signal decoding. The source code is publicly available at: https://github.com/Xiangrui-Cai/EEG-CSANet
♻ ☆ Robust Molecular Property Prediction via Densifying Scarce Labeled Data
A widely recognized limitation of molecular prediction models is their reliance on structures observed in the training data, resulting in poor generalization to out-of-distribution compounds. Yet in drug discovery, the compounds most critical for advancing research often lie beyond the training set, making the bias toward the training data particularly problematic. This mismatch introduces substantial covariate shift, under which standard deep learning models produce unstable and inaccurate predictions. Furthermore, the scarcity of labeled data-stemming from the onerous and costly nature of experimental validation-further exacerbates the difficulty of achieving reliable generalization. To address these limitations, we propose a novel bilevel optimization approach that leverages unlabeled data to interpolate between in-distribution (ID) and out-of-distribution (OOD) data, enabling the model to learn how to generalize beyond the training distribution. We demonstrate significant performance gains on challenging real-world datasets with substantial covariate shift, supported by t-SNE visualizations highlighting our interpolation method.
♻ ☆ Combinatorial Creativity: A New Frontier in Generalization Abilities
Artificial intelligence (AI) systems, and Large Language Models (LLMs) in particular, are increasingly employed for creative tasks like scientific idea generation, constituting a form of generalization from training data unaddressed by existing conceptual frameworks. Despite its similarities to compositional generalization (CG), combinatorial creativity (CC) is an open-ended ability. Instead of evaluating for accuracy or correctness against fixed targets, which would contradict the open-ended nature of CC, we propose a theoretical framework and algorithmic task for evaluating outputs by their degrees of novelty and utility. From here, we make several important empirical contributions: (1) We obtain the first insights into the scaling behavior of creativity for LLMs. (2) We discover that, for fixed compute budgets, there exist optimal model depths and widths for creative ability. (3) We find that the ideation-execution gap, whereby LLMs excel at generating novel scientific ideas but struggle to ensure their practical feasibility, may be explained by a more fundamental novelty-utility tradeoff characteristic of creativity algorithms in general. Though our findings persist up to the 100M scale, frontier models today are well into the billions of parameters. Therefore, our conceptual framework and empirical findings can best serve as a starting point for understanding and improving the creativity of frontier-size models today, as we begin to bridge the gap between human and machine intelligence.
comment: Preprint. The first two authors contributed equally
♻ ☆ Reinforcement Learning from Human Feedback
Reinforcement learning from human feedback (RLHF) has become an important technical and storytelling tool to deploy the latest machine learning systems. In this book, we hope to give a gentle introduction to the core methods for people with some level of quantitative background. The book starts with the origins of RLHF -- both in recent literature and in a convergence of disparate fields of science in economics, philosophy, and optimal control. We then set the stage with definitions, problem formulation, data collection, and other common math used in the literature. The core of the book details every optimization stage in using RLHF, from starting with instruction tuning to training a reward model and finally all of rejection sampling, reinforcement learning, and direct alignment algorithms. The book concludes with advanced topics -- understudied research questions in synthetic data and evaluation -- and open questions for the field.
comment: 193 pages. Web-native version at https://rlhfbook.com/ Continually improving, latest version at website
Artificial Intelligence 57
☆ Geometry of Reason: Spectral Signatures of Valid Mathematical Reasoning
We present a training-free method for detecting valid mathematical reasoning in large language models through spectral analysis of attention patterns. By treating attention matrices as adjacency matrices of dynamic graphs over tokens, we extract four interpretable spectral diagnostics, the Fiedler value (algebraic connectivity), high-frequency energy ratio (HFER), graph signal smoothness, and spectral entropy, that exhibit statistically significant differences between valid and invalid mathematical proofs. Experiments across seven transformer models from four independent architectural families (Meta Llama, Alibaba Qwen, Microsoft Phi, and Mistral AI) demonstrate that this spectral signature produces effect sizes up to Cohen's $d = 3.30$ ($p < 10^{-116}$), enabling 85.0--95.6\% classification accuracy under rigorous evaluation, with calibrated thresholds reaching 93--95\% on the full dataset. The method requires no training data, fine-tuning, or learned classifiers: a single threshold on a spectral metric suffices for high accuracy. Through systematic label correction, we discover that the spectral method detects logical coherence rather than compiler acceptance, identifying mathematically valid proofs that formal verifiers reject due to technical failures. We further identify an architectural dependency: Mistral-7B's Sliding Window Attention shifts the discriminative signal from HFER to late-layer Smoothness ($d = 2.09$, $p_{\text{MW}} = 1.16 \times 10^{-48}$), revealing that attention mechanism design affects which spectral features capture reasoning validity. These findings establish spectral graph analysis as a principled framework for reasoning verification with immediate applications to hallucination detection and AI safety monitoring.
comment: 58 pages, 19 figures, Under Review
☆ FedHypeVAE: Federated Learning with Hypernetwork Generated Conditional VAEs for Differentially Private Embedding Sharing
Federated data sharing promises utility without centralizing raw data, yet existing embedding-level generators struggle under non-IID client heterogeneity and provide limited formal protection against gradient leakage. We propose FedHypeVAE, a differentially private, hypernetwork-driven framework for synthesizing embedding-level data across decentralized clients. Building on a conditional VAE backbone, we replace the single global decoder and fixed latent prior with client-aware decoders and class-conditional priors generated by a shared hypernetwork from private, trainable client codes. This bi-level design personalizes the generative layerrather than the downstream modelwhile decoupling local data from communicated parameters. The shared hypernetwork is optimized under differential privacy, ensuring that only noise-perturbed, clipped gradients are aggregated across clients. A local MMD alignment between real and synthetic embeddings and a Lipschitz regularizer on hypernetwork outputs further enhance stability and distributional coherence under non-IID conditions. After training, a neutral meta-code enables domain agnostic synthesis, while mixtures of meta-codes provide controllable multi-domain coverage. FedHypeVAE unifies personalization, privacy, and distribution alignment at the generator level, establishing a principled foundation for privacy-preserving data synthesis in federated settings. Code: github.com/sunnyinAI/FedHypeVAE
comment: 10 pages, 1 figures, Accepted at AAI'26
LLM Agents for Combinatorial Efficient Frontiers: Investment Portfolio Optimization
Investment portfolio optimization is a task conducted in all major financial institutions. The Cardinality Constrained Mean-Variance Portfolio Optimization (CCPO) problem formulation is ubiquitous for portfolio optimization. The challenge of this type of portfolio optimization, a mixed-integer quadratic programming (MIQP) problem, arises from the intractability of solutions from exact solvers, where heuristic algorithms are used to find approximate portfolio solutions. CCPO entails many laborious and complex workflows and also requires extensive effort pertaining to heuristic algorithm development, where the combination of pooled heuristic solutions results in improved efficient frontiers. Hence, common approaches are to develop many heuristic algorithms. Agentic frameworks emerge as a promising candidate for many problems within combinatorial optimization, as they have been shown to be equally efficient with regard to automating large workflows and have been shown to be excellent in terms of algorithm development, sometimes surpassing human-level performance. This study implements a novel agentic framework for the CCPO and explores several concrete architectures. In benchmark problems, the implemented agentic framework matches state-of-the-art algorithms. Furthermore, complex workflows and algorithm development efforts are alleviated, while in the worst case, lower but acceptable error is reported.
☆ An Agentic Framework for Neuro-Symbolic Programming
Integrating symbolic constraints into deep learning models could make them more robust, interpretable, and data-efficient. Still, it remains a time-consuming and challenging task. Existing frameworks like DomiKnowS help this integration by providing a high-level declarative programming interface, but they still assume the user is proficient with the library's specific syntax. We propose AgenticDomiKnowS (ADS) to eliminate this dependency. ADS translates free-form task descriptions into a complete DomiKnowS program using an agentic workflow that creates and tests each DomiKnowS component separately. The workflow supports optional human-in-the-loop intervention, enabling users familiar with DomiKnowS to refine intermediate outputs. We show how ADS enables experienced DomiKnowS users and non-users to rapidly construct neuro-symbolic programs, reducing development time from hours to 10-15 minutes.
☆ Stochastic Actor-Critic: Mitigating Overestimation via Temporal Aleatoric Uncertainty
Off-policy actor-critic methods in reinforcement learning train a critic with temporal-difference updates and use it as a learning signal for the policy (actor). This design typically achieves higher sample efficiency than purely on-policy methods. However, critic networks tend to overestimate value estimates systematically. This is often addressed by introducing a pessimistic bias based on uncertainty estimates. Current methods employ ensembling to quantify the critic's epistemic uncertainty-uncertainty due to limited data and model ambiguity-to scale pessimistic updates. In this work, we propose a new algorithm called Stochastic Actor-Critic (STAC) that incorporates temporal (one-step) aleatoric uncertainty-uncertainty arising from stochastic transitions, rewards, and policy-induced variability in Bellman targets-to scale pessimistic bias in temporal-difference updates, rather than relying on epistemic uncertainty. STAC uses a single distributional critic network to model the temporal return uncertainty, and applies dropout to both the critic and actor networks for regularization. Our results show that pessimism based on a distributional critic alone suffices to mitigate overestimation, and naturally leads to risk-averse behavior in stochastic environments. Introducing dropout further improves training stability and performance by means of regularization. With this design, STAC achieves improved computational efficiency using a single distributional critic network.
comment: 19 pages
☆ Exploring the Performance of Large Language Models on Subjective Span Identification Tasks
Identifying relevant text spans is important for several downstream tasks in NLP, as it contributes to model explainability. While most span identification approaches rely on relatively smaller pre-trained language models like BERT, a few recent approaches have leveraged the latest generation of Large Language Models (LLMs) for the task. Current work has focused on explicit span identification like Named Entity Recognition (NER), while more subjective span identification with LLMs in tasks like Aspect-based Sentiment Analysis (ABSA) has been underexplored. In this paper, we fill this important gap by presenting an evaluation of the performance of various LLMs on text span identification in three popular tasks, namely sentiment analysis, offensive language identification, and claim verification. We explore several LLM strategies like instruction tuning, in-context learning, and chain of thought. Our results indicate underlying relationships within text aid LLMs in identifying precise text spans.
Detecting Performance Degradation under Data Shift in Pathology Vision-Language Model
Vision-Language Models have demonstrated strong potential in medical image analysis and disease diagnosis. However, after deployment, their performance may deteriorate when the input data distribution shifts from that observed during development. Detecting such performance degradation is essential for clinical reliability, yet remains challenging for large pre-trained VLMs operating without labeled data. In this study, we investigate performance degradation detection under data shift in a state-of-the-art pathology VLM. We examine both input-level data shift and output-level prediction behavior to understand their respective roles in monitoring model reliability. To facilitate systematic analysis of input data shift, we develop DomainSAT, a lightweight toolbox with a graphical interface that integrates representative shift detection algorithms and enables intuitive exploration of data shift. Our analysis shows that while input data shift detection is effective at identifying distributional changes and providing early diagnostic signals, it does not always correspond to actual performance degradation. Motivated by this observation, we further study output-based monitoring and introduce a label-free, confidence-based degradation indicator that directly captures changes in model prediction confidence. We find that this indicator exhibits a close relationship with performance degradation and serves as an effective complement to input shift detection. Experiments on a large-scale pathology dataset for tumor classification demonstrate that combining input data shift detection and output confidence-based indicators enables more reliable detection and interpretation of performance degradation in VLMs under data shift. These findings provide a practical and complementary framework for monitoring the reliability of foundation models in digital pathology.
comment: 8 pages, 6 figures
☆ A Vision-and-Knowledge Enhanced Large Language Model for Generalizable Pedestrian Crossing Behavior Inference
Existing paradigms for inferring pedestrian crossing behavior, ranging from statistical models to supervised learning methods, demonstrate limited generalizability and perform inadequately on new sites. Recent advances in Large Language Models (LLMs) offer a shift from numerical pattern fitting to semantic, context-aware behavioral reasoning, yet existing LLM applications lack domain-specific adaptation and visual context. This study introduces Pedestrian Crossing LLM (PedX-LLM), a vision-and-knowledge enhanced framework designed to transform pedestrian crossing inference from site-specific pattern recognition to generalizable behavioral reasoning. By integrating LLaVA-extracted visual features with textual data and transportation domain knowledge, PedX-LLM fine-tunes a LLaMA-2-7B foundation model via Low-Rank Adaptation (LoRA) to infer crossing decisions. PedX-LLM achieves 82.0% balanced accuracy, outperforming the best statistical and supervised learning methods. Results demonstrate that the vision-augmented module contributes a 2.9% performance gain by capturing the built environment and integrating domain knowledge yields an additional 4.1% improvement. To evaluate generalizability across unseen environments, cross-site validation was conducted using site-based partitioning. The zero-shot PedX-LLM configuration achieves 66.9% balanced accuracy on five unseen test sites, outperforming the baseline data-driven methods by at least 18 percentage points. Incorporating just five validation examples via few-shot learning to PedX-LLM further elevates the balanced accuracy to 72.2%. PedX-LLM demonstrates strong generalizability to unseen scenarios, confirming that vision-and-knowledge-enhanced reasoning enables the model to mimic human-like decision logic and overcome the limitations of purely data-driven methods.
☆ QSLM: A Performance- and Memory-aware Quantization Framework with Tiered Search Strategy for Spike-driven Language Models DATE
Large Language Models (LLMs) have been emerging as prominent AI models for solving many natural language tasks due to their high performance (e.g., accuracy) and capabilities in generating high-quality responses to the given inputs. However, their large computational cost, huge memory footprints, and high processing power/energy make it challenging for their embedded deployments. Amid several tinyLLMs, recent works have proposed spike-driven language models (SLMs) for significantly reducing the processing power/energy of LLMs. However, their memory footprints still remain too large for low-cost and resource-constrained embedded devices. Manual quantization approach may effectively compress SLM memory footprints, but it requires a huge design time and compute power to find the quantization setting for each network, hence making this approach not-scalable for handling different networks, performance requirements, and memory budgets. To bridge this gap, we propose QSLM, a novel framework that performs automated quantization for compressing pre-trained SLMs, while meeting the performance and memory constraints. To achieve this, QSLM first identifies the hierarchy of the given network architecture and the sensitivity of network layers under quantization, then employs a tiered quantization strategy (e.g., global-, block-, and module-level quantization) while leveraging a multi-objective performance-and-memory trade-off function to select the final quantization setting. Experimental results indicate that our QSLM reduces memory footprint by up to 86.5%, reduces power consumption by up to 20%, maintains high performance across different tasks (i.e., by up to 84.4% accuracy of sentiment classification on the SST-2 dataset and perplexity score of 23.2 for text generation on the WikiText-2 dataset) close to the original non-quantized model while meeting the performance and memory constraints.
comment: Accepted at the Design, Automation and Test in Europe Conference (DATE) 2025 on April 20th-22nd, 2025 in Verona, Italy
☆ IRPO: Scaling the Bradley-Terry Model via Reinforcement Learning
Generative Reward Models (GRMs) have attracted considerable research interest in reward modeling due to their interpretability, inference-time scalability, and potential for refinement through reinforcement learning (RL). However, widely used pairwise GRMs create a computational bottleneck when integrated with RL algorithms such as Group Relative Policy Optimization (GRPO). This bottleneck arises from two factors: (i) the O(n^2) time complexity of pairwise comparisons required to obtain relative scores, and (ii) the computational overhead of repeated sampling or additional chain-of-thought (CoT) reasoning to improve performance. To address the first factor, we propose Intergroup Relative Preference Optimization (IRPO), a novel RL framework that incorporates the well-established Bradley-Terry model into GRPO. By generating a pointwise score for each response, IRPO enables efficient evaluation of arbitrarily many candidates during RL training while preserving interpretability and fine-grained reward signals. Experimental results demonstrate that IRPO achieves state-of-the-art (SOTA) performance among pointwise GRMs across multiple benchmarks, with performance comparable to that of current leading pairwise GRMs. Furthermore, we show that IRPO significantly outperforms pairwise GRMs in post-training evaluations.
comment: 14 pages, 4 figures
☆ Fast-weight Product Key Memory
Sequence modeling layers in modern language models typically face a trade-off between storage capacity and computational efficiency. While Softmax attention offers unbounded storage at prohibitive quadratic costs, linear variants provide efficiency but suffer from limited, fixed-size storage. We propose Fast-weight Product Key Memory (FwPKM), a novel architecture that resolves this tension by transforming the sparse Product Key Memory (PKM) from a static module into a dynamic, "fast-weight" episodic memory. Unlike PKM, FwPKM updates its parameters dynamically at both training and inference time via local chunk-level gradient descent, allowing the model to rapidly memorize and retrieve new key-value pairs from input sequences. Experiments reveal that FwPKM functions as an effective episodic memory that complements the semantic memory of standard modules, yielding significant perplexity reductions on long-context datasets. Notably, in Needle in a Haystack evaluations, FwPKM generalizes to 128K-token contexts despite being trained on only 4K-token sequences.
☆ Avatar Forcing: Real-Time Interactive Head Avatar Generation for Natural Conversation
Talking head generation creates lifelike avatars from static portraits for virtual communication and content creation. However, current models do not yet convey the feeling of truly interactive communication, often generating one-way responses that lack emotional engagement. We identify two key challenges toward truly interactive avatars: generating motion in real-time under causal constraints and learning expressive, vibrant reactions without additional labeled data. To address these challenges, we propose Avatar Forcing, a new framework for interactive head avatar generation that models real-time user-avatar interactions through diffusion forcing. This design allows the avatar to process real-time multimodal inputs, including the user's audio and motion, with low latency for instant reactions to both verbal and non-verbal cues such as speech, nods, and laughter. Furthermore, we introduce a direct preference optimization method that leverages synthetic losing samples constructed by dropping user conditions, enabling label-free learning of expressive interaction. Experimental results demonstrate that our framework enables real-time interaction with low latency (approximately 500ms), achieving 6.8X speedup compared to the baseline, and produces reactive and expressive avatar motion, which is preferred over 80% against the baseline.
comment: Project page: https://taekyungki.github.io/AvatarForcing/
☆ Interpretability-Guided Bi-objective Optimization: Aligning Accuracy and Explainability
This paper introduces Interpretability-Guided Bi-objective Optimization (IGBO), a framework that trains interpretable models by incorporating structured domain knowledge via a bi-objective formulation. IGBO encodes feature importance hierarchies as a Directed Acyclic Graph (DAG) and uses Temporal Integrated Gradients (TIG) to measure feature importance. To address the Out-of-Distribution (OOD) problem in TIG computation, we propose an Optimal Path Oracle that learns data-manifold-aware integration paths. Theoretical analysis proves convergence properties and robustness to mini-batch noise, while empirical results on time-series data demonstrate IGBO's effectiveness in enforcing DAG constraints with minimal accuracy loss, outperforming standard regularization baselines.
comment: 10 pages
☆ DA-DPO: Cost-efficient Difficulty-aware Preference Optimization for Reducing MLLM Hallucinations
Direct Preference Optimization (DPO) has shown strong potential for mitigating hallucinations in Multimodal Large Language Models (MLLMs). However, existing multimodal DPO approaches often suffer from overfitting due to the difficulty imbalance in preference data. Our analysis shows that MLLMs tend to overemphasize easily distinguishable preference pairs, which hinders fine-grained hallucination suppression and degrades overall performance. To address this issue, we propose Difficulty-Aware Direct Preference Optimization (DA-DPO), a cost-effective framework designed to balance the learning process. DA-DPO consists of two main components: (1) Difficulty Estimation leverages pre-trained vision--language models with complementary generative and contrastive objectives, whose outputs are integrated via a distribution-aware voting strategy to produce robust difficulty scores without additional training; and (2) Difficulty-Aware Training reweights preference pairs based on their estimated difficulty, down-weighting easy samples while emphasizing harder ones to alleviate overfitting. This framework enables more effective preference optimization by prioritizing challenging examples, without requiring new data or extra fine-tuning stages. Extensive experiments demonstrate that DA-DPO consistently improves multimodal preference optimization, yielding stronger robustness to hallucinations and better generalization across standard benchmarks, while remaining computationally efficient. The project page is available at https://artanic30.github.io/project_pages/DA-DPO/.
comment: Accepted by TMLR
☆ Noise-Robust Tiny Object Localization with Flows
Despite significant advances in generic object detection, a persistent performance gap remains for tiny objects compared to normal-scale objects. We demonstrate that tiny objects are highly sensitive to annotation noise, where optimizing strict localization objectives risks noise overfitting. To address this, we propose Tiny Object Localization with Flows (TOLF), a noise-robust localization framework leveraging normalizing flows for flexible error modeling and uncertainty-guided optimization. Our method captures complex, non-Gaussian prediction distributions through flow-based error modeling, enabling robust learning under noisy supervision. An uncertainty-aware gradient modulation mechanism further suppresses learning from high-uncertainty, noise-prone samples, mitigating overfitting while stabilizing training. Extensive experiments across three datasets validate our approach's effectiveness. Especially, TOLF boosts the DINO baseline by 1.2% AP on the AI-TOD dataset.
comment: 11 pages, 5 figures
☆ Stronger Approximation Guarantees for Non-Monotone γ-Weakly DR-Submodular Maximization AAMAS 2026
Maximizing submodular objectives under constraints is a fundamental problem in machine learning and optimization. We study the maximization of a nonnegative, non-monotone $γ$-weakly DR-submodular function over a down-closed convex body. Our main result is an approximation algorithm whose guarantee depends smoothly on $γ$; in particular, when $γ=1$ (the DR-submodular case) our bound recovers the $0.401$ approximation factor, while for $γ<1$ the guarantee degrades gracefully and, it improves upon previously reported bounds for $γ$-weakly DR-submodular maximization under the same constraints. Our approach combines a Frank-Wolfe-guided continuous-greedy framework with a $γ$-aware double-greedy step, yielding a simple yet effective procedure for handling non-monotonicity. This results in state-of-the-art guarantees for non-monotone $γ$-weakly DR-submodular maximization over down-closed convex bodies.
comment: Extended version of paper accepted in AAMAS 2026
☆ HFedMoE: Resource-aware Heterogeneous Federated Learning with Mixture-of-Experts
While federated learning (FL) enables fine-tuning of large language models (LLMs) without compromising data privacy, the substantial size of an LLM renders on-device training impractical for resource-constrained clients, such as mobile devices. Thus, Mixture-of-Experts (MoE) models have emerged as a computation-efficient solution, which activates only a sparse subset of experts during model training to reduce computing burden without sacrificing performance. Though integrating MoE into FL fine-tuning holds significant potential, it still encounters three key challenges: i) selecting appropriate experts for clients remains challenging due to the lack of a reliable metric to measure each expert's impact on local fine-tuning performance, ii) the heterogeneous computing resources across clients severely hinder MoE-based LLM fine-tuning, as dynamic expert activations across diverse input samples can overwhelm resource-constrained devices, and iii) client-specific expert subsets and routing preference undermine global aggregation, where misaligned expert updates and inconsistent gating networks in troduce destructive interference. To address these challenges, we propose HFedMoE, a heterogeneous MoE-based FL fine-tuning framework that customizes a subset of experts to each client for computation-efficient LLM fine-tuning. Specifically, HFedMoE identifies the expert importance based on its contributions to fine-tuning performance, and then adaptively selects a subset of experts from an information bottleneck perspective to align with each client' s computing budget. A sparsity-aware model aggregation strategy is also designed to aggregate the actively fine-tuned experts and gating parameters with importance weighted contributions. Extensive experiments demonstrate that HFedMoE outperforms state-of-the-art benchmarks in training accuracy and convergence speed.
comment: 14 pages, 16 figures
☆ Priority-Aware Multi-Robot Coverage Path Planning
Multi-robot systems are widely used for coverage tasks that require efficient coordination across large environments. In Multi-Robot Coverage Path Planning (MCPP), the objective is typically to minimize the makespan by generating non-overlapping paths for full-area coverage. However, most existing methods assume uniform importance across regions, limiting their effectiveness in scenarios where some zones require faster attention. We introduce the Priority-Aware MCPP (PA-MCPP) problem, where a subset of the environment is designated as prioritized zones with associated weights. The goal is to minimize, in lexicographic order, the total priority-weighted latency of zone coverage and the overall makespan. To address this, we propose a scalable two-phase framework combining (1) greedy zone assignment with local search, spanning-tree-based path planning, and (2) Steiner-tree-guided residual coverage. Experiments across diverse scenarios demonstrate that our method significantly reduces priority-weighted latency compared to standard MCPP baselines, while maintaining competitive makespan. Sensitivity analyses further show that the method scales well with the number of robots and that zone coverage behavior can be effectively controlled by adjusting priority weights.
comment: IEEE Robotics and Automation Letters, 8 pages, 10 figures
☆ Learning to be Reproducible: Custom Loss Design for Robust Neural Networks
To enhance the reproducibility and reliability of deep learning models, we address a critical gap in current training methodologies: the lack of mechanisms that ensure consistent and robust performance across runs. Our empirical analysis reveals that even under controlled initialization and training conditions, the accuracy of the model can exhibit significant variability. To address this issue, we propose a Custom Loss Function (CLF) that reduces the sensitivity of training outcomes to stochastic factors such as weight initialization and data shuffling. By fine-tuning its parameters, CLF explicitly balances predictive accuracy with training stability, leading to more consistent and reliable model performance. Extensive experiments across diverse architectures for both image classification and time series forecasting demonstrate that our approach significantly improves training robustness without sacrificing predictive performance. These results establish CLF as an effective and efficient strategy for developing more stable, reliable and trustworthy neural networks.
☆ Improving Scientific Document Retrieval with Academic Concept Index
Adapting general-domain retrievers to scientific domains is challenging due to the scarcity of large-scale domain-specific relevance annotations and the substantial mismatch in vocabulary and information needs. Recent approaches address these issues through two independent directions that leverage large language models (LLMs): (1) generating synthetic queries for fine-tuning, and (2) generating auxiliary contexts to support relevance matching. However, both directions overlook the diverse academic concepts embedded within scientific documents, often producing redundant or conceptually narrow queries and contexts. To address this limitation, we introduce an academic concept index, which extracts key concepts from papers and organizes them guided by an academic taxonomy. This structured index serves as a foundation for improving both directions. First, we enhance the synthetic query generation with concept coverage-based generation (CCQGen), which adaptively conditions LLMs on uncovered concepts to generate complementary queries with broader concept coverage. Second, we strengthen the context augmentation with concept-focused auxiliary contexts (CCExpand), which leverages a set of document snippets that serve as concise responses to the concept-aware CCQGen queries. Extensive experiments show that incorporating the academic concept index into both query generation and context augmentation leads to higher-quality queries, better conceptual alignment, and improved retrieval performance.
☆ Cracking IoT Security: Can LLMs Outsmart Static Analysis Tools?
Smart home IoT platforms such as openHAB rely on Trigger Action Condition (TAC) rules to automate device behavior, but the interplay among these rules can give rise to interaction threats, unintended or unsafe behaviors emerging from implicit dependencies, conflicting triggers, or overlapping conditions. Identifying these threats requires semantic understanding and structural reasoning that traditionally depend on symbolic, constraint-driven static analysis. This work presents the first comprehensive evaluation of Large Language Models (LLMs) across a multi-category interaction threat taxonomy, assessing their performance on both the original openHAB (oHC/IoTB) dataset and a structurally challenging Mutation dataset designed to test robustness under rule transformations. We benchmark Llama 3.1 8B, Llama 70B, GPT-4o, Gemini-2.5-Pro, and DeepSeek-R1 across zero-, one-, and two-shot settings, comparing their results against oHIT's manually validated ground truth. Our findings show that while LLMs exhibit promising semantic understanding, particularly on action- and condition-related threats, their accuracy degrades significantly for threats requiring cross-rule structural reasoning, especially under mutated rule forms. Model performance varies widely across threat categories and prompt settings, with no model providing consistent reliability. In contrast, the symbolic reasoning baseline maintains stable detection across both datasets, unaffected by rule rewrites or structural perturbations. These results underscore that LLMs alone are not yet dependable for safety critical interaction-threat detection in IoT environments. We discuss the implications for tool design and highlight the potential of hybrid architectures that combine symbolic analysis with LLM-based semantic interpretation to reduce false positives while maintaining structural rigor.
☆ A Comprehensive Dataset for Human vs. AI Generated Image Detection
Multimodal generative AI systems like Stable Diffusion, DALL-E, and MidJourney have fundamentally changed how synthetic images are created. These tools drive innovation but also enable the spread of misleading content, false information, and manipulated media. As generated images become harder to distinguish from photographs, detecting them has become an urgent priority. To combat this challenge, We release MS COCOAI, a novel dataset for AI generated image detection consisting of 96000 real and synthetic datapoints, built using the MS COCO dataset. To generate synthetic images, we use five generators: Stable Diffusion 3, Stable Diffusion 2.1, SDXL, DALL-E 3, and MidJourney v6. Based on the dataset, we propose two tasks: (1) classifying images as real or generated, and (2) identifying which model produced a given synthetic image. The dataset is available at https://huggingface.co/datasets/Rajarshi-Roy-research/Defactify_Image_Dataset.
☆ CoCo-Fed: A Unified Framework for Memory- and Communication-Efficient Federated Learning at the Wireless Edge
The deployment of large-scale neural networks within the Open Radio Access Network (O-RAN) architecture is pivotal for enabling native edge intelligence. However, this paradigm faces two critical bottlenecks: the prohibitive memory footprint required for local training on resource-constrained gNBs, and the saturation of bandwidth-limited backhaul links during the global aggregation of high-dimensional model updates. To address these challenges, we propose CoCo-Fed, a novel Compression and Combination-based Federated learning framework that unifies local memory efficiency and global communication reduction. Locally, CoCo-Fed breaks the memory wall by performing a double-dimension down-projection of gradients, adapting the optimizer to operate on low-rank structures without introducing additional inference parameters/latency. Globally, we introduce a transmission protocol based on orthogonal subspace superposition, where layer-wise updates are projected and superimposed into a single consolidated matrix per gNB, drastically reducing the backhaul traffic. Beyond empirical designs, we establish a rigorous theoretical foundation, proving the convergence of CoCo-Fed even under unsupervised learning conditions suitable for wireless sensing tasks. Extensive simulations on an angle-of-arrival estimation task demonstrate that CoCo-Fed significantly outperforms state-of-the-art baselines in both memory and communication efficiency while maintaining robust convergence under non-IID settings.
comment: 7 pages, 3 figures, 1 algorithm
☆ ECR: Manifold-Guided Semantic Cues for Compact Language Models
Compact models often lose the structure of their embedding space. The issue shows up when the capacity is tight or the data spans several languages. Such collapse makes it difficult for downstream tasks to build on the resulting representation. Existing compression methods focus on aligning model outputs at a superficial level but fail to preserve the underlying manifold structure. This mismatch often leads to semantic drift in the compact model, causing both task behavior and linguistic properties to deviate from the reference model. To address those issues, we provide a new framework called Embedding Consistency Regulation (ECR). This framework first derives a set of semantic anchors from teacher embeddings (computed once offline). Then, the compact model learns to maintain consistent geometry around these anchors, without relying on matching logits or internal features. ECR adds only a small projection step at inference, without altering the decoding architecture or its runtime behavior. In experiments on a 100K multilingual corpus, ECR consistently stabilizes training and preserves semantic structure across tasks and languages. It also produces a more compact and task-aligned representation space, enabling low-capacity models to learn cleaner manifolds than conventional baselines. ECR works without teacher outputs and is compatible with, but independent of, distillation. Taken together, our results show that ECR helps compact models better follow task requirements and makes them easier to deploy under strict efficiency or privacy limits.
comment: Preprint 13pages, 6 figures
☆ Parametrized Sharing for Multi-Agent Hybrid DRL for Multiple Multi-Functional RISs-Aided Downlink NOMA Networks
Multi-functional reconfigurable intelligent surface (MF-RIS) is conceived to address the communication efficiency thanks to its extended signal coverage from its active RIS capability and self-sustainability from energy harvesting (EH). We investigate the architecture of multi-MF-RISs to assist non-orthogonal multiple access (NOMA) downlink networks. We formulate an energy efficiency (EE) maximization problem by optimizing power allocation, transmit beamforming and MF-RIS configurations of amplitudes, phase-shifts and EH ratios, as well as the position of MF-RISs, while satisfying constraints of available power, user rate requirements, and self-sustainability property. We design a parametrized sharing scheme for multi-agent hybrid deep reinforcement learning (PMHRL), where the multi-agent proximal policy optimization (PPO) and deep-Q network (DQN) handle continuous and discrete variables, respectively. The simulation results have demonstrated that proposed PMHRL has the highest EE compared to other benchmarks, including cases without parametrized sharing, pure PPO and DQN. Moreover, the proposed multi-MF-RISs-aided downlink NOMA achieves the highest EE compared to scenarios of no-EH/amplification, traditional RISs, and deployment without RISs/MF-RISs under different multiple access.
☆ Optimizing LSTM Neural Networks for Resource-Constrained Retail Sales Forecasting: A Model Compression Study
Standard LSTM(Long Short-Term Memory) neural networks provide accurate predictions for sales data in the retail industry, but require a lot of computing power. It can be challenging especially for mid to small retail industries. This paper examines LSTM model compression by gradually reducing the number of hidden units from 128 to 16. We used the Kaggle Store Item Demand Forecasting dataset, which has 913,000 daily sales records from 10 stores and 50 items, to look at the trade-off between model size and how accurate the predictions are. Experiments show that lowering the number of hidden LSTM units to 64 maintains the same level of accuracy while also improving it. The mean absolute percentage error (MAPE) ranges from 23.6% for the full 128-unit model to 12.4% for the 64-unit model. The optimized model is 73% smaller (from 280KB to 76KB) and 47% more accurate. These results show that larger models do not always achieve better results.
comment: Accepted to IEEE ICUIS 2025 (International Conference on Ubiquitous and Intelligent Systems). 5 pages, 3 figures, 1 table
☆ Probability-Aware Parking Selection
Current parking navigation systems often underestimate total travel time by failing to account for the time spent searching for a parking space, which significantly affects user experience, mode choice, congestion, and emissions. To address this issue, this paper introduces the probability-aware parking selection problem, which aims to direct drivers to the best parking location rather than straight to their destination. An adaptable dynamic programming framework is proposed for decision-making based on probabilistic information about parking availability at the parking lot level. Closed-form analysis determines when it is optimal to target a specific parking lot or explore alternatives, as well as the expected time cost. Sensitivity analysis and three illustrative cases are examined, demonstrating the model's ability to account for the dynamic nature of parking availability. Acknowledging the financial costs of permanent sensing infrastructure, the paper provides analytical and empirical assessments of errors incurred when leveraging stochastic observations to estimate parking availability. Experiments with real-world data from the US city of Seattle indicate this approach's viability, with mean absolute error decreasing from 7% to below 2% as observation frequency grows. In data-based simulations, probability-aware strategies demonstrate time savings up to 66% relative to probability-unaware baselines, yet still take up to 123% longer than direct-to-destination estimates.
comment: 10 pages, 6 figures, 3 tables. To be published in IEEE Transactions on Intelligent Transportation Systems
☆ Trajectory Guard -- A Lightweight, Sequence-Aware Model for Real-Time Anomaly Detection in Agentic AI AAAI
Autonomous LLM agents generate multi-step action plans that can fail due to contextual misalignment or structural incoherence. Existing anomaly detection methods are ill-suited for this challenge: mean-pooling embeddings dilutes anomalous steps, while contrastive-only approaches ignore sequential structure. Standard unsupervised methods on pre-trained embeddings achieve F1-scores no higher than 0.69. We introduce Trajectory Guard, a Siamese Recurrent Autoencoder with a hybrid loss function that jointly learns task-trajectory alignment via contrastive learning and sequential validity via reconstruction. This dual objective enables unified detection of both "wrong plan for this task" and "malformed plan structure." On benchmarks spanning synthetic perturbations and real-world failures from security audits (RAS-Eval) and multi-agent systems (Who\&When), we achieve F1-scores of 0.88-0.94 on balanced sets and recall of 0.86-0.92 on imbalanced external benchmarks. At 32 ms inference latency, our approach runs 17-27$\times$ faster than LLM Judge baselines, enabling real-time safety verification in production deployments.
comment: Accepted to AAAI Trustagent 2026
☆ The Illusion of Insight in Reasoning Models
Do reasoning models have "Aha!" moments? Prior work suggests that models like DeepSeek-R1-Zero undergo sudden mid-trace realizations that lead to accurate outputs, implying an intrinsic capacity for self-correction. Yet, it remains unclear whether such intrinsic shifts in reasoning strategy actually improve performance. Here, we study mid-reasoning shifts and instrument training runs to detect them. Our analysis spans 1M+ reasoning traces, hundreds of training checkpoints, three reasoning domains, and multiple decoding temperatures and model architectures. We find that reasoning shifts are rare, do not become more frequent with training, and seldom improve accuracy, indicating that they do not correspond to prior perceptions of model insight. However, their effect varies with model uncertainty. Building on this finding, we show that artificially triggering extrinsic shifts under high entropy reliably improves accuracy. Our results show that mid-reasoning shifts are symptoms of unstable inference behavior rather than an intrinsic mechanism for self-correction.
♻ ☆ Benchmark Success, Clinical Failure: When Reinforcement Learning Optimizes for Benchmarks, Not Patients
Recent Reinforcement Learning (RL) advances for Large Language Models (LLMs) have improved reasoning tasks, yet their resource-constrained application to medical imaging remains underexplored. We introduce ChexReason, a vision-language model trained via R1-style methodology (SFT followed by GRPO) using only 2,000 SFT samples, 1,000 RL samples, and a single A100 GPU. Evaluations on CheXpert and NIH benchmarks reveal a fundamental tension: GRPO recovers in-distribution performance (23% improvement on CheXpert, macro-F1 = 0.346) but degrades cross-dataset transferability (19% drop on NIH). This mirrors high-resource models like NV-Reason-CXR-3B, suggesting the issue stems from the RL paradigm rather than scale. We identify a generalization paradox where the SFT checkpoint uniquely improves on NIH before optimization, indicating teacher-guided reasoning captures more institution-agnostic features. Furthermore, cross-model comparisons show structured reasoning scaffolds benefit general-purpose VLMs but offer minimal gain for medically pre-trained models. Consequently, curated supervised fine-tuning may outperform aggressive RL for clinical deployment requiring robustness across diverse populations.
♻ ☆ Modeling the One-to-Many Property in Open-Domain Dialogue with LLMs
Open-domain Dialogue (OD) exhibits a one-to-many (o2m) property, whereby multiple appropriate responses exist for a single dialogue context. Despite prior research showing that modeling this property boosts response diversity, most modern LLM-based dialogue agents do not explicitly do so. In this work, we model the o2m property of OD in LLMs by decomposing OD generation into two key tasks: Multi-Response Generation (MRG) and Preference-based Selection (PS), which entail generating a set of n semantically and lexically diverse high-quality responses for a given dialogue context, followed by selecting a single response based on human preference, respectively. To facilitate MRG and PS, we introduce o2mDial, a dialogue corpus explicitly designed to capture the o2m property by featuring multiple plausible responses for each context. Leveraging o2mDial, we propose new in-context learning and instruction-tuning strategies, as well as novel evaluation metrics for MRG, alongside a model-based approach for PS. Empirical results demonstrate that applying the proposed two-stage framework to smaller LLMs for OD generation enhances overall response diversity while maintaining contextual coherence, improving response quality by up to 90%, bringing them closer to the performance of larger models.
♻ ☆ QUITE: A Query Rewrite System Beyond Rules with LLM Agents
Query rewrite transforms SQL queries into semantically equivalent forms that run more efficiently. Existing approaches mainly rely on predefined rewrite rules, but they handle a limited subset of queries and can cause performance regressions. This limitation stems from three challenges of rule-based query rewrite: (1) it is hard to discover and verify new rules, (2) fixed rewrite rules do not generalize to new query patterns, and (3) some rewrite techniques cannot be expressed as fixed rules. Motivated by the fact that human experts exhibit significantly better rewrite ability but suffer from scalability, and Large Language Models (LLMs) have demonstrated nearly human-level semantic and reasoning abilities, we propose a new approach of using LLMs to rewrite SQL queries beyond rules. Due to the hallucination problems in LLMs, directly applying LLMs often leads to nonequivalent and suboptimal queries. To address this issue, we propose QUITE (query rewrite), a training-free and feedback-aware system based on LLM agents that rewrites SQL queries into semantically equivalent forms with significantly better performance, covering a broader range of query patterns and rewrite strategies compared to rule-based methods. Firstly, we design a multi-agent framework controlled by a finite state machine (FSM) to equip LLMs with the ability to use external tools and enhance the rewrite process with real-time database feedback. Secondly, we develop a rewrite middleware to enhance the ability of LLMs to generate optimized query equivalents. Finally, we employ a novel hint injection technique to improve execution plans for rewritten queries. Extensive experiments show that QUITE reduces query execution time by up to 35.8% over state-of-the-art approaches and produces 24.1% more rewrites than prior methods, covering query cases that earlier systems did not handle.
♻ ☆ The Curse of Depth in Large Language Models NeurIPS 2025
In this paper, we introduce the Curse of Depth, a concept that highlights, explains, and addresses the recent observation in modern Large Language Models (LLMs) where nearly half of the layers are less effective than expected. We first confirm the wide existence of this phenomenon across the most popular families of LLMs such as Llama, Mistral, DeepSeek, and Qwen. Our analysis, theoretically and empirically, identifies that the underlying reason for the ineffectiveness of deep layers in LLMs is the widespread usage of Pre-Layer Normalization (Pre-LN). While Pre-LN stabilizes the training of Transformer LLMs, its output variance exponentially grows with the model depth, which undesirably causes the derivative of the deep Transformer blocks to be an identity matrix, and therefore barely contributes to the training. To resolve this training pitfall, we propose LayerNorm Scaling (LNS), which scales the variance of output of the layer normalization inversely by the square root of its depth. This simple modification mitigates the output variance explosion of deeper Transformer layers, improving their contribution. Across a wide range of model sizes (130M to 7B), our experiments show that LNS consistently outperforms previous normalization and scaling techniques in enhancing LLM pre-training performance. Moreover, this improvement seamlessly carries over to supervised fine-tuning. All these gains can be attributed to the fact that LayerNorm Scaling enables deeper layers to contribute more effectively during training. Our code is available at \href{https://github.com/lmsdss/LayerNorm-Scaling}{LayerNorm-Scaling}.
comment: Accepted by NeurIPS 2025
♻ ☆ Navigating the safe harbor paradox in human-machine systems
When deploying artificial skills, decision-makers often assume that layering human oversight is a safe harbor that mitigates the risks of full automation in high-complexity tasks. This paper formally challenges the economic validity of this widespread assumption, arguing that the true bottom-line economic utility of a human-machine skill policy is highly contingent on situational and design factors. To investigate this gap, we develop an in-silico exploratory framework for policy analysis based on Monte Carlo simulations to quantify the economic impact of skill policies in the execution of tasks presenting varying levels of complexity across diverse setups. Our results show that in complex scenarios, a human-machine strategy can yield the highest economic utility, but only if genuine augmentation is achieved. In contrast, when failing to realize this synergy, the human-machine approach can perform worse than either the machine-exclusive or the human-exclusive policy, actively destroying value under the pressure of costs that are not sufficiently compensated by performance gains. This finding points to a key implication for decision-makers: when the context is complex and critical, simply allocating human and machine skills to a task may be insufficient, and far from being a silver-bullet solution or a low-risk compromise. Rather, it is a critical opportunity to boost competitiveness that demands a strong organizational commitment to enabling augmentation. Also, our findings show that improving the cost-effectiveness of machine skills over time, while useful, does not replace the fundamental need to focus on achieving augmentation when surprise is the norm, even when machines become more effective than humans in handling uncertainty.
comment: Rework of the title based on an improved framing (safe harbor paradox); results unchanged; conclusions unchanged
♻ ☆ PrivTune: Efficient and Privacy-Preserving Fine-Tuning of Large Language Models via Device-Cloud Collaboration
With the rise of large language models, service providers offer language models as a service, enabling users to fine-tune customized models via uploaded private datasets. However, this raises concerns about sensitive data leakage. Prior methods, relying on differential privacy within device-cloud collaboration frameworks, struggle to balance privacy and utility, exposing users to inference attacks or degrading fine-tuning performance. To address this, we propose PrivTune, an efficient and privacy-preserving fine-tuning framework via Split Learning (SL). The key idea of PrivTune is to inject crafted noise into token representations from the SL bottom model, making each token resemble the $n$-hop indirect neighbors. PrivTune formulates this as an optimization problem to compute the optimal noise vector, aligning with defense-utility goals. On this basis, it then adjusts the parameters (i.e., mean) of the $d_χ$-Privacy noise distribution to align with the optimization direction and scales the noise according to token importance to minimize distortion. Experiments on five datasets (covering both classification and generation tasks) against three embedding inversion and three attribute inference attacks show that, using RoBERTa on the Stanford Sentiment Treebank dataset, PrivTune reduces the attack success rate to 10% with only a 3.33% drop in utility performance, outperforming state-of-the-art baselines.
comment: Accepted at IEEE INFOCOM 2026 (full version)
♻ ☆ Simulation as Supervision: Mechanistic Pretraining for Scientific Discovery
Scientific modeling faces a tradeoff between the interpretability of mechanistic theory and the predictive power of machine learning. While hybrid approaches like Physics-Informed Neural Networks (PINNs) embed domain knowledge as functional constraints, they can be brittle under model misspecification. We introduce Simulation-Grounded Neural Networks (SGNNs), a framework that instead embeds domain knowledge into the training data to establish a structural prior. By pretraining on synthetic corpora spanning diverse model structures and observational artifacts, SGNNs learn the broad patterns of physical possibility. This allows the model to internalize the underlying dynamics of a system without being forced to satisfy a single, potentially incorrect equation. We evaluated SGNNs across scientific disciplines and found that this approach confers significant robustness. In prediction tasks, SGNNs nearly tripled COVID-19 forecasting skill versus CDC baselines. In tests on dengue outbreaks, SGNNs outperformed physics-constrained models even when both were restricted to incorrect human-to-human transmission equations, demonstrating that SGNNs are potentially more robust to model misspecification. For inference, SGNNs extend the logic of simulation-based inference to enable supervised learning for unobservable targets, estimating early COVID-19 transmissibility more accurately than traditional methods. Finally, SGNNs enable back-to-simulation attribution, a form of mechanistic interpretability that maps real-world data back to the simulated manifold to identify underlying processes. By unifying these disparate simulation-based techniques into a single framework, we demonstrate that mechanistic simulations can serve as effective training data for robust scientific inference that generalizes beyond the limitations of fixed functional forms.
♻ ☆ It's complicated. The relationship of algorithmic fairness and non-discrimination provisions for high-risk systems in the EU AI Act NeurIPS 2025
What constitutes a fair decision? This question is not only difficult for humans but becomes more challenging when Artificial Intelligence (AI) models are used. In light of discriminatory algorithmic behaviors, the EU has recently passed the AI Act, which mandates specific rules for high-risk systems, incorporating both traditional legal non-discrimination regulations and machine learning based algorithmic fairness concepts. This paper aims to bridge these two different concepts in the AI Act through: First, a necessary high-level introduction of both concepts targeting legal and computer science-oriented scholars, and second, an in-depth analysis of the AI Act's relationship between legal non-discrimination regulations and algorithmic fairness. Our analysis reveals three key findings: (1.) Most non-discrimination regulations target only high-risk AI systems. (2.) The regulation of high-risk systems encompasses both data input requirements and output monitoring, though these regulations are partly inconsistent and raise questions of computational feasibility. (3.) Finally, we consider the possible (future) interaction of classical EU non-discrimination law and the AI Act regulations. We recommend developing more specific auditing and testing methodologies for AI systems. This paper aims to serve as a foundation for future interdisciplinary collaboration between legal scholars and computer science-oriented machine learning researchers studying discrimination in AI systems.
comment: Accepted at the Workshop on Regulatable ML at the 39th Conference on Neural Information Processing Systems (NeurIPS 2025). This version has been updated after acceptance
♻ ☆ EXAONE Deep: Reasoning Enhanced Language Models
We present EXAONE Deep series, which exhibits superior capabilities in various reasoning tasks, including math and coding benchmarks. We train our models mainly on the reasoning-specialized dataset that incorporates long streams of thought processes. Evaluation results show that our smaller models, EXAONE Deep 2.4B and 7.8B, outperform other models of comparable size, while the largest model, EXAONE Deep 32B, demonstrates competitive performance against leading open-weight models. All EXAONE Deep models are openly available for research purposes and can be downloaded from https://huggingface.co/LGAI-EXAONE.
♻ ☆ Flattening Hierarchies with Policy Bootstrapping NeurIPS 2025
Offline goal-conditioned reinforcement learning (GCRL) is a promising approach for pretraining generalist policies on large datasets of reward-free trajectories, akin to the self-supervised objectives used to train foundation models for computer vision and natural language processing. However, scaling GCRL to longer horizons remains challenging due to the combination of sparse rewards and discounting, which obscures the comparative advantages of primitive actions with respect to distant goals. Hierarchical RL methods achieve strong empirical results on long-horizon goal-reaching tasks, but their reliance on modular, timescale-specific policies and subgoal generation introduces significant additional complexity and hinders scaling to high-dimensional goal spaces. In this work, we introduce an algorithm to train a flat (non-hierarchical) goal-conditioned policy by bootstrapping on subgoal-conditioned policies with advantage-weighted importance sampling. Our approach eliminates the need for a generative model over the (sub)goal space, which we find is key for scaling to high-dimensional control in large state spaces. We further show that existing hierarchical and bootstrapping-based approaches correspond to specific design choices within our derivation. Across a comprehensive suite of state- and pixel-based locomotion and manipulation benchmarks, our method matches or surpasses state-of-the-art offline GCRL algorithms and scales to complex, long-horizon tasks where prior approaches fail. Project page: https://johnlyzhou.github.io/saw/
comment: NeurIPS 2025 (Spotlight, top 3.2%)
♻ ☆ EXAONE 3.0 7.8B Instruction Tuned Language Model
We introduce EXAONE 3.0 instruction-tuned language model, the first open model in the family of Large Language Models (LLMs) developed by LG AI Research. Among different model sizes, we publicly release the 7.8B instruction-tuned model to promote open research and innovations. Through extensive evaluations across a wide range of public and in-house benchmarks, EXAONE 3.0 demonstrates highly competitive real-world performance with instruction-following capability against other state-of-the-art open models of similar size. Our comparative analysis shows that EXAONE 3.0 excels particularly in Korean, while achieving compelling performance across general tasks and complex reasoning. With its strong real-world effectiveness and bilingual proficiency, we hope that EXAONE keeps contributing to advancements in Expert AI. Our EXAONE 3.0 instruction-tuned model is available at https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct.
♻ ☆ EXAONE 4.0: Unified Large Language Models Integrating Non-reasoning and Reasoning Modes
This technical report introduces EXAONE 4.0, which integrates a Non-reasoning mode and a Reasoning mode to achieve both the excellent usability of EXAONE 3.5 and the advanced reasoning abilities of EXAONE Deep. To pave the way for the agentic AI era, EXAONE 4.0 incorporates essential features such as agentic tool use, and its multilingual capabilities are extended to support Spanish in addition to English and Korean. The EXAONE 4.0 model series consists of two sizes: a mid-size 32B model optimized for high performance, and a small-size 1.2B model designed for on-device applications. The EXAONE 4.0 demonstrates superior performance compared to open-weight models in its class and remains competitive even against frontier-class models. The models are publicly available for research purposes and can be easily downloaded via https://huggingface.co/LGAI-EXAONE.
comment: Technical Report, 30 Pages
♻ ☆ NormCode: A Semi-Formal Language for Auditable AI Planning
As AI systems move into high stakes domains such as legal reasoning, medical diagnosis, and financial decision making, regulators and practitioners increasingly demand auditability. Auditability means the ability to trace exactly what each step in a multi step workflow saw and did. Current large language model based workflows are fundamentally opaque. Context pollution, defined as the accumulation of information across reasoning steps, causes models to hallucinate and lose track of constraints. At the same time, implicit data flow makes it impossible to reconstruct what any given step actually received as input. We present NormCode, a semi formal language that makes AI workflows auditable by construction. Each inference step operates in enforced data isolation and can access only explicitly passed inputs. This eliminates cross step contamination and ensures that every intermediate state can be inspected. A strict separation between semantic operations, meaning probabilistic language model reasoning, and syntactic operations, meaning deterministic data flow, allows auditors to clearly distinguish inference from mechanical restructuring. The multi format ecosystem, consisting of NCDS, NCD, NCN, and NCDN files, allows developers, domain experts, and auditors to inspect the same plan in formats suited to their individual needs. A four phase compilation pipeline transforms natural language intent into executable JSON repositories. A visual Canvas application provides real time graph visualization and breakpoint debugging. We validate the approach by achieving full accuracy on base X addition and by self hosted execution of the NormCode compiler itself. These results demonstrate that structured intermediate representations can bridge human intuition and machine rigor while maintaining full transparency.
comment: Archive name: NormCode: A Semi Formal Language for Context Isolated AI Planning
♻ ☆ Consistent Opponent Modeling in Imperfect-Information Games
The goal of agents in multi-agent environments is to maximize total reward against the opposing agents that are encountered. Following a game-theoretic solution concept, such as Nash equilibrium, may obtain a strong performance in some settings; however, such approaches fail to capitalize on historical and observed data from repeated interactions against our opponents. Opponent modeling algorithms integrate machine learning techniques to exploit suboptimal opponents utilizing available data; however, the effectiveness of such approaches in imperfect-information games to date is quite limited. We show that existing opponent modeling approaches fail to satisfy a simple desirable property even against static opponents drawn from a known prior distribution; namely, they do not guarantee that the model approaches the opponent's true strategy even in the limit as the number of game iterations approaches infinity. We develop a new algorithm that is able to achieve this property and runs efficiently by solving a convex minimization problem based on the sequence-form game representation using projected gradient descent. The algorithm is guaranteed to efficiently converge to the opponent's true strategy under standard Bayesian identifiability and visitation assumptions, given observations from gameplay and possibly additional historical data if it is available.
♻ ☆ Digital Twin based Automatic Reconfiguration of Robotic Systems in Smart Environments SC2
Robotic systems have become integral to smart environments, enabling applications ranging from urban surveillance and automated agriculture to industrial automation. However, their effective operation in dynamic settings - such as smart cities and precision farming - is challenged by continuously evolving topographies and environmental conditions. Traditional control systems often struggle to adapt quickly, leading to inefficiencies or operational failures. To address this limitation, we propose a novel framework for autonomous and dynamic reconfiguration of robotic controllers using Digital Twin technology. Our approach leverages a virtual replica of the robot's operational environment to simulate and optimize movement trajectories in response to real-world changes. By recalculating paths and control parameters in the Digital Twin and deploying the updated code to the physical robot, our method ensures rapid and reliable adaptation without manual intervention. This work advances the integration of Digital Twins in robotics, offering a scalable solution for enhancing autonomy in smart, dynamic environments.
comment: Accepted for presentation to 11th IEEE International Smart Cities Conference (ISC2 2025)
♻ ☆ SUSTAINABLE Platform: Seamless Smart Farming Integration Towards Agronomy Automation SC2
The global agricultural sector is undergoing a transformative shift, driven by increasing food demands, climate variability and the need for sustainable practices. SUSTAINABLE is a smart farming platform designed to integrate IoT, AI, satellite imaging, and role-based task orchestration to enable efficient, traceable, and sustainable agriculture with a pilot usecase in viticulture. This paper explores current smart agriculture solutions, presents a comparative evaluation, and introduces SUSTAINABLE's key features, including satellite index integration, real-time environmental data, and role-aware task management tailored to Mediterranean vineyards.
comment: Accepted for presentation to 11th IEEE International Smart Cities Conference (ISC2 2025)
♻ ☆ NeedleChain: Measuring Intact Context Comprehension Capability of Large Language Models
Recent reports suggest that LLMs can handle increasingly long contexts. However, many existing benchmarks for context understanding embed substantial query-irrelevant content, which shifts evaluation toward retrieving relevant snippets rather than fully integrating all provided information. Under this setting, we view that current benchmarks can overestimate true context-understanding ability of LLMs. In particular, we demonstrate that when the context consists entirely of query-relevant text, even advanced models such as GPT-4o fail to reliably integrate inputs as short as 200 tokens. To evaluate this capability more rigorously, we introduce NeedleChain, a benchmark designed to test whether models can faithfully incorporate all given evidence. NeedleChain includes three variants that differ in the required order of comprehension, along with a parallel benchmark based on the needle-in-a-haystack(NIAH) paradigm. By comparing these variants, NeedleChain enables a more comprehensive assessment of context understanding. We further propose a training-free strategy that encourages models to reflect all available information, ROPE contraction, highlighting the importance of full-context integration and pointing to new directions for improving reliable reasoning over context.
comment: 13 pages
♻ ☆ A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism
Neural architecture search (NAS) has emerged as a powerful paradigm that enables researchers to automatically explore vast search spaces and discover efficient neural networks. However, NAS suffers from a critical bottleneck, i.e. the evaluation of numerous architectures during the search process demands substantial computing resources and time. In order to improve the efficiency of NAS, a series of methods have been proposed to reduce the evaluation time of neural architectures. However, they are not efficient enough and still only focus on the accuracy of architectures. Beyond classification accuracy, real-world applications increasingly demand more efficient and compact network architectures that balance multiple performance criteria. To address these challenges, we propose the SMEMNAS, a pairwise comparison relation-assisted multi-objective evolutionary algorithm based on a multi-population mechanism. In the SMEMNAS, a surrogate model is constructed based on pairwise comparison relations to predict the accuracy ranking of architectures, rather than the absolute accuracy. Moreover, two populations cooperate with each other in the search process, i.e. a main population that guides the evolutionary process, while a vice population that enhances search diversity. Our method aims to discover high-performance models that simultaneously optimize multiple objectives. We conduct comprehensive experiments on CIFAR-10, CIFAR-100 and ImageNet datasets to validate the effectiveness of our approach. With only a single GPU searching for 0.17 days, competitive architectures can be found by SMEMNAS which achieves 78.91% accuracy with the MAdds of 570M on the ImageNet. This work makes a significant advancement in the field of NAS.
comment: Accepted by IEEE Transactions on Systems, Man, and Cybernetics: Systems. Published on https://ieeexplore.ieee.org/document/11321923
♻ ☆ AnyMS: Bottom-up Attention Decoupling for Layout-guided and Training-free Multi-subject Customization
Multi-subject customization aims to synthesize multiple user-specified subjects into a coherent image. To address issues such as subjects missing or conflicts, recent works incorporate layout guidance to provide explicit spatial constraints. However, existing methods still struggle to balance three critical objectives: text alignment, subject identity preservation, and layout control, while the reliance on additional training further limits their scalability and efficiency. In this paper, we present AnyMS, a novel training-free framework for layout-guided multi-subject customization. AnyMS leverages three input conditions: text prompt, subject images, and layout constraints, and introduces a bottom-up dual-level attention decoupling mechanism to harmonize their integration during generation. Specifically, global decoupling separates cross-attention between textual and visual conditions to ensure text alignment. Local decoupling confines each subject's attention to its designated area, which prevents subject conflicts and thus guarantees identity preservation and layout control. Moreover, AnyMS employs pre-trained image adapters to extract subject-specific features aligned with the diffusion model, removing the need for subject learning or adapter tuning. Extensive experiments demonstrate that AnyMS achieves state-of-the-art performance, supporting complex compositions and scaling to a larger number of subjects.
♻ ☆ Energy Decay Network (EDeN)
This paper and accompanying Python and C++ Framework is the product of the authors perceived problems with narrow (Discrimination based) AI. (Artificial Intelligence) The Framework attempts to develop a genetic transfer of experience through potential structural expressions using a common regulation/exchange value (energy) to create a model whereby neural architecture and all unit processes are co-dependently developed by genetic and real time signal processing influences; successful routes are defined by stability of the spike distribution per epoch which is influenced by genetically encoded morphological development biases.These principles are aimed towards creating a diverse and robust network that is capable of adapting to general tasks by training within a simulation designed for transfer learning to other mediums at scale.
♻ ☆ Improving Multi-step RAG with Hypergraph-based Memory for Long-Context Complex Relational Modeling
Multi-step retrieval-augmented generation (RAG) has become a widely adopted strategy for enhancing large language models (LLMs) on tasks that demand global comprehension and intensive reasoning. Many RAG systems incorporate a working memory module to consolidate retrieved information. However, existing memory designs function primarily as passive storage that accumulates isolated facts for the purpose of condensing the lengthy inputs and generating new sub-queries through deduction. This static nature overlooks the crucial high-order correlations among primitive facts, the compositions of which can often provide stronger guidance for subsequent steps. Therefore, their representational strength and impact on multi-step reasoning and knowledge evolution are limited, resulting in fragmented reasoning and weak global sense-making capacity in extended contexts. We introduce HGMem, a hypergraph-based memory mechanism that extends the concept of memory beyond simple storage into a dynamic, expressive structure for complex reasoning and global understanding. In our approach, memory is represented as a hypergraph whose hyperedges correspond to distinct memory units, enabling the progressive formation of higher-order interactions within memory. This mechanism connects facts and thoughts around the focal problem, evolving into an integrated and situated knowledge structure that provides strong propositions for deeper reasoning in subsequent steps. We evaluate HGMem on several challenging datasets designed for global sense-making. Extensive experiments and in-depth analyses show that our method consistently improves multi-step RAG and substantially outperforms strong baseline systems across diverse tasks.
comment: 21 pages
♻ ☆ Learning the Boundary of Solvability: Aligning LLMs to Detect Unsolvable Problems
Ensuring large language model (LLM) reliability requires distinguishing objective unsolvability (inherent contradictions) from subjective capability limitations (tasks exceeding model competence). Current LLMs often conflate these dimensions, leading to hallucinations in which they return confident answers to inherently unsolvable queries. To address this issue, we propose a multi-domain dataset containing both solvable and unsolvable questions, UnsolvableQA, together with an alignment framework, UnsolvableRL. First, we construct UnsolvableQA by "Reverse Construction" that systematically injects logical contradictions into otherwise valid reasoning chains. Second, we introduce UnsolvableRL, a reinforcement learning paradigm that balances objective unsolvability detection with calibrated confidence under capability limits. Empirically, our approach achieves near-perfect unsolvability detection (>90% detection rate) and boosts solvable reasoning accuracy from 43.4% to 69.4% on Qwen3-4B-Instruct. Crucially, we identify a data-training interaction: strict alignment constraints induce Capability Collapse without unsolvable data, but act as a regularizer for rigor when such data are included, thereby improving overall robustness. Our code and data are available at https://github.com/sfasfaffa/unsolvableQA .
comment: preprint
♻ ☆ Satellite to Street : Disaster Impact Estimator
Accurate assessment of post-disaster damage is essential for prioritizing emergency response, yet current practices rely heavily on manual interpretation of satellite imagery.This approach is time-consuming, subjective, and difficult to scale during large-area disasters. Although recent deep-learning models for semantic segmentation and change detection have improved automation, many of them still struggle to capture subtle structural variations and often perform poorly when dealing with highly imbalanced datasets, where undamaged buildings dominate. This thesis introduces Satellite-to-Street:Disaster Impact Estimator, a deep-learning framework that produces detailed, pixel-level damage maps by analyzing pre and post-disaster satellite images together. The model is built on a modified dual-input U-Net architecture that strengthens feature fusion between both images, allowing it to detect not only small, localized changes but also broader contextual patterns across the scene. To address the imbalance between damage categories, a class-aware weighted loss function is used, which helps the model better recognize major and destroyed structures. A consistent preprocessing pipeline is employed to align image pairs, standardize resolutions, and prepare the dataset for training. Experiments conducted on publicly available disaster datasets show that the proposed framework achieves better classification of damaged regions compared to conventional segmentation networks.The generated damage maps provide faster and objective method for analyzing disaster impact, working alongside expert judgment rather than replacing it. In addition to identifying which areas are damaged, the system is capable of distinguishing different levels of severity, ranging from slight impact to complete destruction. This provides a more detailed and practical understanding of how the disaster has affected each region.
comment: 6 pages,4 figures, 2 tables
♻ ☆ RAG-BioQA: A Retrieval-Augmented Generation Framework for Long-Form Biomedical Question Answering
The rapidly growth of biomedical literature creates challenges acquiring specific medical information. Current biomedical question-answering systems primarily focus on short-form answers, failing to provide comprehensive explanations necessary for clinical decision-making. We present RAG-BioQA, a retrieval-augmented generation framework for long-form biomedical question answering. Our system integrates BioBERT embeddings with FAISS indexing for retrieval and a LoRA fine-tuned FLAN-T5 model for answer generation. We train on 181k QA pairs from PubMedQA, MedDialog, and MedQuAD, and evaluate on a held-out PubMedQA test set. We compare four retrieval strategies: dense retrieval (FAISS), BM25, ColBERT, and MonoT5. Our results show that domain-adapted dense retrieval outperforms zero-shot neural re-rankers, with the best configuration achieving 0.24 BLEU-1 and 0.29 ROUGE-1. Fine-tuning improves BERTScore by 81\% over the base model. We release our framework to support reproducible biomedical QA research.
comment: Submitted to ICAEI
♻ ☆ Computing Evolutionarily Stable Strategies in Multiplayer Games
We present an algorithm for computing all evolutionarily stable strategies in nondegenerate normal-form games with three or more players.
comment: Reverting to original title after fixing Google scholar merge
♻ ☆ Fusion of Multiscale Features Via Centralized Sparse-attention Network for EEG Decoding
Electroencephalography (EEG) signal decoding is a key technology that translates brain activity into executable commands, laying the foundation for direct brain-machine interfacing and intelligent interaction. To address the inherent spatiotemporal heterogeneity of EEG signals, this paper proposes a multi-branch parallel architecture, where each temporal scale is equipped with an independent spatial feature extraction module. To further enhance multi-branch feature fusion, we propose a Fusion of Multiscale Features via Centralized Sparse-attention Network (EEG-CSANet), a centralized sparse-attention network. It employs a main-auxiliary branch architecture, where the main branch models core spatiotemporal patterns via multiscale self-attention, and the auxiliary branch facilitates efficient local interactions through sparse cross-attention. Experimental results show that EEG-CSANet achieves state-of-the-art (SOTA) performance across five public datasets (BCIC-IV-2A, BCIC-IV-2B, HGD, SEED, and SEED-VIG), with accuracies of 88.54%, 91.09%, 97.15%, 96.03%, and 90.56%, respectively. Such performance demonstrates its strong adaptability and robustness across various EEG decoding tasks. Moreover, extensive ablation studies are conducted to enhance the interpretability of EEG-CSANet. In the future, we hope that EEG-CSANet could serve as a promising baseline model in the field of EEG signal decoding. The source code is publicly available at: https://github.com/Xiangrui-Cai/EEG-CSANet
♻ ☆ Robust Molecular Property Prediction via Densifying Scarce Labeled Data
A widely recognized limitation of molecular prediction models is their reliance on structures observed in the training data, resulting in poor generalization to out-of-distribution compounds. Yet in drug discovery, the compounds most critical for advancing research often lie beyond the training set, making the bias toward the training data particularly problematic. This mismatch introduces substantial covariate shift, under which standard deep learning models produce unstable and inaccurate predictions. Furthermore, the scarcity of labeled data-stemming from the onerous and costly nature of experimental validation-further exacerbates the difficulty of achieving reliable generalization. To address these limitations, we propose a novel bilevel optimization approach that leverages unlabeled data to interpolate between in-distribution (ID) and out-of-distribution (OOD) data, enabling the model to learn how to generalize beyond the training distribution. We demonstrate significant performance gains on challenging real-world datasets with substantial covariate shift, supported by t-SNE visualizations highlighting our interpolation method.
♻ ☆ Combinatorial Creativity: A New Frontier in Generalization Abilities
Artificial intelligence (AI) systems, and Large Language Models (LLMs) in particular, are increasingly employed for creative tasks like scientific idea generation, constituting a form of generalization from training data unaddressed by existing conceptual frameworks. Despite its similarities to compositional generalization (CG), combinatorial creativity (CC) is an open-ended ability. Instead of evaluating for accuracy or correctness against fixed targets, which would contradict the open-ended nature of CC, we propose a theoretical framework and algorithmic task for evaluating outputs by their degrees of novelty and utility. From here, we make several important empirical contributions: (1) We obtain the first insights into the scaling behavior of creativity for LLMs. (2) We discover that, for fixed compute budgets, there exist optimal model depths and widths for creative ability. (3) We find that the ideation-execution gap, whereby LLMs excel at generating novel scientific ideas but struggle to ensure their practical feasibility, may be explained by a more fundamental novelty-utility tradeoff characteristic of creativity algorithms in general. Though our findings persist up to the 100M scale, frontier models today are well into the billions of parameters. Therefore, our conceptual framework and empirical findings can best serve as a starting point for understanding and improving the creativity of frontier-size models today, as we begin to bridge the gap between human and machine intelligence.
comment: Preprint. The first two authors contributed equally
Computation and Language 46
☆ A Chain-of-Thought Approach to Semantic Query Categorization in e-Commerce Taxonomies SIGIR
Search in e-Commerce is powered at the core by a structured representation of the inventory, often formulated as a category taxonomy. An important capability in e-Commerce with hierarchical taxonomies is to select a set of relevant leaf categories that are semantically aligned with a given user query. In this scope, we address a fundamental problem of search query categorization in real-world e-Commerce taxonomies. A correct categorization of a query not only provides a way to zoom into the correct inventory space, but opens the door to multiple intent understanding capabilities for a query. A practical and accurate solution to this problem has many applications in e-commerce, including constraining retrieved items and improving the relevance of the search results. For this task, we explore a novel Chain-of-Thought (CoT) paradigm that combines simple tree-search with LLM semantic scoring. Assessing its classification performance on human-judged query-category pairs, relevance tests, and LLM-based reference methods, we find that the CoT approach performs better than a benchmark that uses embedding-based query category predictions. We show how the CoT approach can detect problems within a hierarchical taxonomy. Finally, we also propose LLM-based approaches for query-categorization of the same spirit, but which scale better at the range of millions of queries.
comment: 9 pages, accepted at SIGIR eCom 2025
☆ Rule-Based Approaches to Atomic Sentence Extraction
Natural language often combines multiple ideas into complex sentences. Atomic sentence extraction, the task of decomposing complex sentences into simpler sentences that each express a single idea, improves performance in information retrieval, question answering, and automated reasoning systems. Previous work has formalized the "split-and-rephrase" task and established evaluation metrics, and machine learning approaches using large language models have improved extraction accuracy. However, these methods lack interpretability and provide limited insight into which linguistic structures cause extraction failures. Although some studies have explored dependency-based extraction of subject-verb-object triples and clauses, no principled analysis has examined which specific clause structures and dependencies lead to extraction difficulties. This study addresses this gap by analyzing how complex sentence structures, including relative clauses, adverbial clauses, coordination patterns, and passive constructions, affect the performance of rule-based atomic sentence extraction. Using the WikiSplit dataset, we implemented dependency-based extraction rules in spaCy, generated 100 gold=standard atomic sentence sets, and evaluated performance using ROUGE and BERTScore. The system achieved ROUGE-1 F1 = 0.6714, ROUGE-2 F1 = 0.478, ROUGE-L F1 = 0.650, and BERTScore F1 = 0.5898, indicating moderate-to-high lexical, structural, and semantic alignment. Challenging structures included relative clauses, appositions, coordinated predicates, adverbial clauses, and passive constructions. Overall, rule-based extraction is reasonably accurate but sensitive to syntactic complexity.
☆ Noise-Aware Named Entity Recognition for Historical VET Documents
This paper addresses Named Entity Recognition (NER) in the domain of Vocational Education and Training (VET), focusing on historical, digitized documents that suffer from OCR-induced noise. We propose a robust NER approach leveraging Noise-Aware Training (NAT) with synthetically injected OCR errors, transfer learning, and multi-stage fine-tuning. Three complementary strategies, training on noisy, clean, and artificial data, are systematically compared. Our method is one of the first to recognize multiple entity types in VET documents. It is applied to German documents but transferable to arbitrary languages. Experimental results demonstrate that domain-specific and noise-aware fine-tuning substantially increases robustness and accuracy under noisy conditions. We provide publicly available code for reproducible noise-aware NER in domain-specific contexts.
comment: This is an extended, non-peer-reviewed version of the paper presented at VISAPP 2026
☆ Defensive M2S: Training Guardrail Models on Compressed Multi-turn Conversations
Guardrail models are essential for ensuring the safety of Large Language Model (LLM) deployments, but processing full multi-turn conversation histories incurs significant computational cost. We propose Defensive M2S, a training paradigm that fine-tunes guardrail models on Multi-turn to Single-turn (M2S) compressed conversations rather than complete dialogue histories. We provide a formal complexity analysis showing that M2S reduces training cost from $O(n^2)$ to $O(n)$ for $n$-turn conversations. Empirically, on our training dataset (779 samples, avg. 10.6 turns), M2S requires only 169K tokens compared to 15.7M tokens for the multi-turn baseline -- a 93$\times$ reduction. We evaluate Defensive M2S across three guardrail model families (LlamaGuard, Nemotron, Qwen3Guard) and three compression templates (hyphenize, numberize, pythonize) on SafeDialBench, a comprehensive multi-turn jailbreak benchmark. Our best configuration, Qwen3Guard with hyphenize compression, achieves 93.8% attack detection recall while reducing inference tokens by 94.6% (from 3,231 to 173 tokens per conversation). This represents a 38.9 percentage point improvement over the baseline while dramatically reducing both training and inference costs. Our findings demonstrate that M2S compression can serve as an effective efficiency technique for guardrail deployment, enabling scalable safety screening of long multi-turn conversations.
☆ Language as Mathematical Structure: Examining Semantic Field Theory Against Language Games
Large language models (LLMs) offer a new empirical setting in which long-standing theories of linguistic meaning can be examined. This paper contrasts two broad approaches: social constructivist accounts associated with language games, and a mathematically oriented framework we call Semantic Field Theory. Building on earlier work by the author, we formalize the notions of lexical fields (Lexfelder) and linguistic fields (Lingofelder) as interacting structures in a continuous semantic space. We then analyze how core properties of transformer architectures-such as distributed representations, attention mechanisms, and geometric regularities in embedding spaces-relate to these concepts. We argue that the success of LLMs in capturing semantic regularities supports the view that language exhibits an underlying mathematical structure, while their persistent limitations in pragmatic reasoning and context sensitivity are consistent with the importance of social grounding emphasized in philosophical accounts of language use. On this basis, we suggest that mathematical structure and language games can be understood as complementary rather than competing perspectives. The resulting framework clarifies the scope and limits of purely statistical models of language and motivates new directions for theoretically informed AI architectures.
☆ Comparative Efficiency Analysis of Lightweight Transformer Models: A Multi-Domain Empirical Benchmark for Enterprise NLP Deployment
In the rapidly evolving landscape of enterprise natural language processing (NLP), the demand for efficient, lightweight models capable of handling multi-domain text automation tasks has intensified. This study conducts a comparative analysis of three prominent lightweight Transformer models - DistilBERT, MiniLM, and ALBERT - across three distinct domains: customer sentiment classification, news topic classification, and toxicity and hate speech detection. Utilizing datasets from IMDB, AG News, and the Measuring Hate Speech corpus, we evaluated performance using accuracy-based metrics including accuracy, precision, recall, and F1-score, as well as efficiency metrics such as model size, inference time, throughput, and memory usage. Key findings reveal that no single model dominates all performance dimensions. ALBERT achieves the highest task-specific accuracy in multiple domains, MiniLM excels in inference speed and throughput, and DistilBERT demonstrates the most consistent accuracy across tasks while maintaining competitive efficiency. All results reflect controlled fine-tuning under fixed enterprise-oriented constraints rather than exhaustive hyperparameter optimization. These results highlight trade-offs between accuracy and efficiency, recommending MiniLM for latency-sensitive enterprise applications, DistilBERT for balanced performance, and ALBERT for resource-constrained environments.
comment: 11 pages, 6 figures. Code and reproducibility resources available on GitHub
☆ Toward Better Temporal Structures for Geopolitical Events Forecasting
Forecasting on geopolitical temporal knowledge graphs (TKGs) through the lens of large language models (LLMs) has recently gained traction. While TKGs and their generalization, hyper-relational temporal knowledge graphs (HTKGs), offer a straightforward structure to represent simple temporal relationships, they lack the expressive power to convey complex facts efficiently. One of the critical limitations of HTKGs is a lack of support for more than two primary entities in temporal facts, which commonly occur in real-world events. To address this limitation, in this work, we study a generalization of HTKGs, Hyper-Relational Temporal Knowledge Generalized Hypergraphs (HTKGHs). We first derive a formalization for HTKGHs, demonstrating their backward compatibility while supporting two complex types of facts commonly found in geopolitical incidents. Then, utilizing this formalization, we introduce the htkgh-polecat dataset, built upon the global event database POLECAT. Finally, we benchmark and analyze popular LLMs on the relation prediction task, providing insights into their adaptability and capabilities in complex forecasting scenarios.
comment: 17 pages, 13 figures, 3 tables
☆ Deep Delta Learning
The efficacy of deep residual networks is fundamentally predicated on the identity shortcut connection. While this mechanism effectively mitigates the vanishing gradient problem, it imposes a strictly additive inductive bias on feature transformations, thereby limiting the network's capacity to model complex state transitions. In this paper, we introduce Deep Delta Learning (DDL), a novel architecture that generalizes the standard residual connection by modulating the identity shortcut with a learnable, data-dependent geometric transformation. This transformation, termed the Delta Operator, constitutes a rank-1 perturbation of the identity matrix, parameterized by a reflection direction vector $\mathbf{k}(\mathbf{X})$ and a gating scalar $β(\mathbf{X})$. We provide a spectral analysis of this operator, demonstrating that the gate $β(\mathbf{X})$ enables dynamic interpolation between identity mapping, orthogonal projection, and geometric reflection. Furthermore, we restructure the residual update as a synchronous rank-1 injection, where the gate acts as a dynamic step size governing both the erasure of old information and the writing of new features. This unification empowers the network to explicitly control the spectrum of its layer-wise transition operator, enabling the modeling of complex, non-monotonic dynamics while preserving the stable training characteristics of gated residual architectures.
comment: Project Page: https://github.com/yifanzhang-pro/deep-delta-learning
☆ Do LLMs Judge Distantly Supervised Named Entity Labels Well? Constructing the JudgeWEL Dataset
We present judgeWEL, a dataset for named entity recognition (NER) in Luxembourgish, automatically labelled and subsequently verified using large language models (LLM) in a novel pipeline. Building datasets for under-represented languages remains one of the major bottlenecks in natural language processing, where the scarcity of resources and linguistic particularities make large-scale annotation costly and potentially inconsistent. To address these challenges, we propose and evaluate a novel approach that leverages Wikipedia and Wikidata as structured sources of weak supervision. By exploiting internal links within Wikipedia articles, we infer entity types based on their corresponding Wikidata entries, thereby generating initial annotations with minimal human intervention. Because such links are not uniformly reliable, we mitigate noise by employing and comparing several LLMs to identify and retain only high-quality labelled sentences. The resulting corpus is approximately five times larger than the currently available Luxembourgish NER dataset and offers broader and more balanced coverage across entity categories, providing a substantial new resource for multilingual and low-resource NER research.
☆ Vision-Language Reasoning for Geolocalization: A Reinforcement Learning Approach
Recent advances in vision-language models have opened up new possibilities for reasoning-driven image geolocalization. However, existing approaches often rely on synthetic reasoning annotations or external image retrieval, which can limit interpretability and generalizability. In this paper, we present Geo-R, a retrieval-free framework that uncovers structured reasoning paths from existing ground-truth coordinates and optimizes geolocation accuracy via reinforcement learning. We propose the Chain of Region, a rule-based hierarchical reasoning paradigm that generates precise, interpretable supervision by mapping GPS coordinates to geographic entities (e.g., country, province, city) without relying on model-generated or synthetic labels. Building on this, we introduce a lightweight reinforcement learning strategy with coordinate-aligned rewards based on Haversine distance, enabling the model to refine predictions through spatially meaningful feedback. Our approach bridges structured geographic reasoning with direct spatial supervision, yielding improved localization accuracy, stronger generalization, and more transparent inference. Experimental results across multiple benchmarks confirm the effectiveness of Geo-R, establishing a new retrieval-free paradigm for scalable and interpretable image geolocalization. To facilitate further research and ensure reproducibility, both the model and code will be made publicly available.
comment: 8 pages, 1 figures
BERT-JEPA: Reorganizing CLS Embeddings for Language-Invariant Semantics
Joint Embedding Predictive Architectures (JEPA) are a novel self supervised training technique that have shown recent promise across domains. We introduce BERT-JEPA (BEPA), a training paradigm that adds a JEPA training objective to BERT-style models, working to combat a collapsed [CLS] embedding space and turning it into a language-agnostic space. This new structure leads to increased performance across multilingual benchmarks.
comment: 16 pages, 10 figures, 10 tables
☆ The Role of Mixed-Language Documents for Multilingual Large Language Model Pretraining
Multilingual large language models achieve impressive cross-lingual performance despite largely monolingual pretraining. While bilingual data in pretraining corpora is widely believed to enable these abilities, details of its contributions remain unclear. We investigate this question by pretraining models from scratch under controlled conditions, comparing the standard web corpus with a monolingual-only version that removes all multilingual documents. Despite constituting only 2% of the corpus, removing bilingual data causes translation performance to drop 56% in BLEU, while behaviour on cross-lingual QA and general reasoning tasks remains stable, with training curves largely overlapping the baseline. To understand this asymmetry, we categorize bilingual data into parallel (14%), code-switching (72%), and miscellaneous documents (14%) based on the semantic relevance of content in different languages. We then conduct granular ablations by reintroducing parallel or code-switching data into the monolingual-only corpus. Our experiments reveal that parallel data almost fully restores translation performance (91% of the unfiltered baseline), whereas code-switching contributes minimally. Other cross-lingual tasks remain largely unaffected by either type. These findings reveal that translation critically depends on systematic token-level alignments from parallel data, whereas cross-lingual understanding and reasoning appear to be achievable even without bilingual data.
comment: under review
☆ Robust Uncertainty Quantification for Factual Generation of Large Language Models IJCNN 2025
The rapid advancement of large language model(LLM) technology has facilitated its integration into various domains of professional and daily life. However, the persistent challenge of LLM hallucination has emerged as a critical limitation, significantly compromising the reliability and trustworthiness of AI-generated content. This challenge has garnered significant attention within the scientific community, prompting extensive research efforts in hallucination detection and mitigation strategies. Current methodological frameworks reveal a critical limitation: traditional uncertainty quantification approaches demonstrate effectiveness primarily within conventional question-answering paradigms, yet exhibit notable deficiencies when confronted with non-canonical or adversarial questioning strategies. This performance gap raises substantial concerns regarding the dependability of LLM responses in real-world applications requiring robust critical thinking capabilities. This study aims to fill this gap by proposing an uncertainty quantification scenario in the task of generating with multiple facts. We have meticulously constructed a set of trap questions contained with fake names. Based on this scenario, we innovatively propose a novel and robust uncertainty quantification method(RU). A series of experiments have been conducted to verify its effectiveness. The results show that the constructed set of trap questions performs excellently. Moreover, when compared with the baseline methods on four different models, our proposed method has demonstrated great performance, with an average increase of 0.1-0.2 in ROCAUC values compared to the best performing baseline method, providing new sights and methods for addressing the hallucination issue of LLMs.
comment: 9 pages, 5 tables, 5 figures, accepted to IJCNN 2025
☆ DepFlow: Disentangled Speech Generation to Mitigate Semantic Bias in Depression Detection
Speech is a scalable and non-invasive biomarker for early mental health screening. However, widely used depression datasets like DAIC-WOZ exhibit strong coupling between linguistic sentiment and diagnostic labels, encouraging models to learn semantic shortcuts. As a result, model robustness may be compromised in real-world scenarios, such as Camouflaged Depression, where individuals maintain socially positive or neutral language despite underlying depressive states. To mitigate this semantic bias, we propose DepFlow, a three-stage depression-conditioned text-to-speech framework. First, a Depression Acoustic Encoder learns speaker- and content-invariant depression embeddings through adversarial training, achieving effective disentanglement while preserving depression discriminability (ROC-AUC: 0.693). Second, a flow-matching TTS model with FiLM modulation injects these embeddings into synthesis, enabling control over depressive severity while preserving content and speaker identity. Third, a prototype-based severity mapping mechanism provides smooth and interpretable manipulation across the depression continuum. Using DepFlow, we construct a Camouflage Depression-oriented Augmentation (CDoA) dataset that pairs depressed acoustic patterns with positive/neutral content from a sentiment-stratified text bank, creating acoustic-semantic mismatches underrepresented in natural data. Evaluated across three depression detection architectures, CDoA improves macro-F1 by 9%, 12%, and 5%, respectively, consistently outperforming conventional augmentation strategies in depression Detection. Beyond enhancing robustness, DepFlow provides a controllable synthesis platform for conversational systems and simulation-based evaluation, where real clinical data remains limited by ethical and coverage constraints.
☆ Can Large Language Models Still Explain Themselves? Investigating the Impact of Quantization on Self-Explanations
Quantization is widely used to accelerate inference and streamline the deployment of large language models (LLMs), yet its effects on self-explanations (SEs) remain unexplored. SEs, generated by LLMs to justify their own outputs, require reasoning about the model's own decision-making process, a capability that may exhibit particular sensitivity to quantization. As SEs are increasingly relied upon for transparency in high-stakes applications, understanding whether and to what extent quantization degrades SE quality and faithfulness is critical. To address this gap, we examine two types of SEs: natural language explanations (NLEs) and counterfactual examples, generated by LLMs quantized using three common techniques at distinct bit widths. Our findings indicate that quantization typically leads to moderate declines in both SE quality (up to 4.4\%) and faithfulness (up to 2.38\%). The user study further demonstrates that quantization diminishes both the coherence and trustworthiness of SEs (up to 8.5\%). Compared to smaller models, larger models show limited resilience to quantization in terms of SE quality but better maintain faithfulness. Moreover, no quantization technique consistently excels across task accuracy, SE quality, and faithfulness. Given that quantization's impact varies by context, we recommend validating SE quality for specific use cases, especially for NLEs, which show greater sensitivity. Nonetheless, the relatively minor deterioration in SE quality and faithfulness does not undermine quantization's effectiveness as a model compression technique.
comment: In submission
☆ Beyond Perfect APIs: A Comprehensive Evaluation of LLM Agents Under Real-World API Complexity
We introduce WildAGTEval, a benchmark designed to evaluate large language model (LLM) agents' function-calling capabilities under realistic API complexity. Unlike prior work that assumes an idealized API system and disregards real-world factors such as noisy API outputs, WildAGTEval accounts for two dimensions of real-world complexity: 1. API specification, which includes detailed documentation and usage constraints, and 2. API execution, which captures runtime challenges. Consequently, WildAGTEval offers (i) an API system encompassing 60 distinct complexity scenarios that can be composed into approximately 32K test configurations, and (ii) user-agent interactions for evaluating LLM agents on these scenarios. Using WildAGTEval, we systematically assess several advanced LLMs and observe that most scenarios are challenging, with irrelevant information complexity posing the greatest difficulty and reducing the performance of strong LLMs by 27.3%. Furthermore, our qualitative analysis reveals that LLMs occasionally distort user intent merely to claim task completion, critically affecting user satisfaction.
comment: 26 pages
☆ Parallel Universes, Parallel Languages: A Comprehensive Study on LLM-based Multilingual Counterfactual Example Generation
Counterfactuals refer to minimally edited inputs that cause a model's prediction to change, serving as a promising approach to explaining the model's behavior. Large language models (LLMs) excel at generating English counterfactuals and demonstrate multilingual proficiency. However, their effectiveness in generating multilingual counterfactuals remains unclear. To this end, we conduct a comprehensive study on multilingual counterfactuals. We first conduct automatic evaluations on both directly generated counterfactuals in the target languages and those derived via English translation across six languages. Although translation-based counterfactuals offer higher validity than their directly generated counterparts, they demand substantially more modifications and still fall short of matching the quality of the original English counterfactuals. Second, we find the patterns of edits applied to high-resource European-language counterfactuals to be remarkably similar, suggesting that cross-lingual perturbations follow common strategic principles. Third, we identify and categorize four main types of errors that consistently appear in the generated counterfactuals across languages. Finally, we reveal that multilingual counterfactual data augmentation (CDA) yields larger model performance improvements than cross-lingual CDA, especially for lower-resource languages. Yet, the imperfections of the generated counterfactuals limit gains in model performance and robustness.
comment: In submission
☆ Talk Less, Verify More: Improving LLM Assistants with Semantic Checks and Execution Feedback
As large language model (LLM) assistants become increasingly integrated into enterprise workflows, their ability to generate accurate, semantically aligned, and executable outputs is critical. However, current conversational business analytics (CBA) systems often lack built-in verification mechanisms, leaving users to manually validate potentially flawed results. This paper introduces two complementary verification techniques: Q*, which performs reverse translation and semantic matching between code and user intent, and Feedback+, which incorporates execution feedback to guide code refinement. Embedded within a generator-discriminator framework, these mechanisms shift validation responsibilities from users to the system. Evaluations on three benchmark datasets, Spider, Bird, and GSM8K, demonstrate that both Q* and Feedback+ reduce error rates and task completion time. The study also identifies reverse translation as a key bottleneck, highlighting opportunities for future improvement. Overall, this work contributes a design-oriented framework for building more reliable, enterprise-grade GenAI systems capable of trustworthy decision support.
☆ JP-TL-Bench: Anchored Pairwise LLM Evaluation for Bidirectional Japanese-English Translation
We introduce JP-TL-Bench, a lightweight, open benchmark designed to guide the iterative development of Japanese-English translation systems. In this context, the challenge is often "which of these two good translations is better?" rather than "is this translation acceptable?" This distinction matters for Japanese-English, where subtle choices in politeness, implicature, ellipsis, and register strongly affect perceived naturalness. JP-TL-Bench uses a protocol built to make LLM judging both reliable and affordable: it evaluates a candidate model via reference-free, pairwise LLM comparisons against a fixed, versioned anchor set. Pairwise results are aggregated with a Bradley-Terry model and reported as win rates plus a normalized 0-10 "LT" score derived from a logistic transform of fitted log-strengths. Because each candidate is scored against the same frozen anchor set, scores are structurally stable given the same base set, judge, and aggregation code.
comment: 24 pages, 5 figures, 8 tables
☆ From Evidence-Based Medicine to Knowledge Graph: Retrieval-Augmented Generation for Sports Rehabilitation and a Domain Benchmark
In medicine, large language models (LLMs) increasingly rely on retrieval-augmented generation (RAG) to ground outputs in up-to-date external evidence. However, current RAG approaches focus primarily on performance improvements while overlooking evidence-based medicine (EBM) principles. This study addresses two key gaps: (1) the lack of PICO alignment between queries and retrieved evidence, and (2) the absence of evidence hierarchy considerations during reranking. We present a generalizable strategy for adapting EBM to graph-based RAG, integrating the PICO framework into knowledge graph construction and retrieval, and proposing a Bayesian-inspired reranking algorithm to calibrate ranking scores by evidence grade without introducing predefined weights. We validated this framework in sports rehabilitation, a literature-rich domain currently lacking RAG systems and benchmarks. We released a knowledge graph (357,844 nodes and 371,226 edges) and a reusable benchmark of 1,637 QA pairs. The system achieved 0.830 nugget coverage, 0.819 answer faithfulness, 0.882 semantic similarity, and 0.788 PICOT match accuracy. In a 5-point Likert evaluation, five expert clinicians rated the system 4.66-4.84 across factual accuracy, faithfulness, relevance, safety, and PICO alignment. These findings demonstrate that the proposed EBM adaptation strategy improves retrieval and answer quality and is transferable to other clinical domains. The released resources also help address the scarcity of RAG datasets in sports rehabilitation.
comment: 35 pages, 5 figures
☆ From Sight to Insight: Improving Visual Reasoning Capabilities of Multimodal Models via Reinforcement Learning
Reinforcement learning (RL) has emerged as a promising approach for eliciting reasoning chains before generating final answers. However, multimodal large language models (MLLMs) generate reasoning that lacks integration of visual information. This limits their ability to solve problems that demand accurate visual perception, such as visual puzzles. We show that visual perception is the key bottleneck in such tasks: converting images into textual descriptions significantly improves performance, yielding gains of 26.7% for Claude 3.5 and 23.6% for Claude 3.7. To address this, we investigate reward-driven RL as a mechanism to unlock long visual reasoning in open-source MLLMs without requiring costly supervision. We design and evaluate six reward functions targeting different reasoning aspects, including image understanding, thinking steps, and answer accuracy. Using group relative policy optimization (GRPO), our approach explicitly incentivizes longer, structured reasoning and mitigates bypassing of visual information. Experiments on Qwen-2.5-VL-7B achieve 5.56% improvements over the base model, with consistent gains across both in-domain and out-of-domain settings.
comment: 23 pages, 15 Figures, 10 Tables
☆ Overlooked Safety Vulnerability in LLMs: Malicious Intelligent Optimization Algorithm Request and its Jailbreak
The widespread deployment of large language models (LLMs) has raised growing concerns about their misuse risks and associated safety issues. While prior studies have examined the safety of LLMs in general usage, code generation, and agent-based applications, their vulnerabilities in automated algorithm design remain underexplored. To fill this gap, this study investigates this overlooked safety vulnerability, with a particular focus on intelligent optimization algorithm design, given its prevalent use in complex decision-making scenarios. We introduce MalOptBench, a benchmark consisting of 60 malicious optimization algorithm requests, and propose MOBjailbreak, a jailbreak method tailored for this scenario. Through extensive evaluation of 13 mainstream LLMs including the latest GPT-5 and DeepSeek-V3.1, we reveal that most models remain highly susceptible to such attacks, with an average attack success rate of 83.59% and an average harmfulness score of 4.28 out of 5 on original harmful prompts, and near-complete failure under MOBjailbreak. Furthermore, we assess state-of-the-art plug-and-play defenses that can be applied to closed-source models, and find that they are only marginally effective against MOBjailbreak and prone to exaggerated safety behaviors. These findings highlight the urgent need for stronger alignment techniques to safeguard LLMs against misuse in algorithm design.
☆ Knowledge Distillation for Temporal Knowledge Graph Reasoning with Large Language Models
Reasoning over temporal knowledge graphs (TKGs) is fundamental to improving the efficiency and reliability of intelligent decision-making systems and has become a key technological foundation for future artificial intelligence applications. Despite recent progress, existing TKG reasoning models typically rely on large parameter sizes and intensive computation, leading to high hardware costs and energy consumption. These constraints hinder their deployment on resource-constrained, low-power, and distributed platforms that require real-time inference. Moreover, most existing model compression and distillation techniques are designed for static knowledge graphs and fail to adequately capture the temporal dependencies inherent in TKGs, often resulting in degraded reasoning performance. To address these challenges, we propose a distillation framework specifically tailored for temporal knowledge graph reasoning. Our approach leverages large language models as teacher models to guide the distillation process, enabling effective transfer of both structural and temporal reasoning capabilities to lightweight student models. By integrating large-scale public knowledge with task-specific temporal information, the proposed framework enhances the student model's ability to model temporal dynamics while maintaining a compact and efficient architecture. Extensive experiments on multiple publicly available benchmark datasets demonstrate that our method consistently outperforms strong baselines, achieving a favorable trade-off between reasoning accuracy, computational efficiency, and practical deployability.
☆ StockBot 2.0: Vanilla LSTMs Outperform Transformer-based Forecasting for Stock Prices
Accurate forecasting of financial markets remains a long-standing challenge due to complex temporal and often latent dependencies, non-linear dynamics, and high volatility. Building on our earlier recurrent neural network framework, we present an enhanced StockBot architecture that systematically evaluates modern attention-based, convolutional, and recurrent time-series forecasting models within a unified experimental setting. While attention-based and transformer-inspired models offer increased modeling flexibility, extensive empirical evaluation reveals that a carefully constructed vanilla LSTM consistently achieves superior predictive accuracy and more stable buy/sell decision-making when trained under a common set of default hyperparameters. These results highlight the robustness and data efficiency of recurrent sequence models for financial time-series forecasting, particularly in the absence of extensive hyperparameter tuning or the availability of sufficient data when discretized to single-day intervals. Additionally, these results underscore the importance of architectural inductive bias in data-limited market prediction tasks.
comment: 14 pages, 5 figures
☆ Understanding Emotion in Discourse: Recognition Insights and Linguistic Patterns for Generation
While Emotion Recognition in Conversation (ERC) has achieved high accuracy, two critical gaps remain: a limited understanding of \textit{which} architectural choices actually matter, and a lack of linguistic analysis connecting recognition to generation. We address both gaps through a systematic analysis of the IEMOCAP dataset. For recognition, we conduct a rigorous ablation study with 10-seed evaluation and report three key findings. First, conversational context is paramount, with performance saturating rapidly -- 90\% of the total gain achieved within just the most recent 10--30 preceding turns (depending on the label set). Second, hierarchical sentence representations help at utterance-level, but this benefit disappears once conversational context is provided, suggesting that context subsumes intra-utterance structure. Third, external affective lexicons (SenticNet) provide no gain, indicating that pre-trained encoders already capture necessary emotional semantics. With simple architectures using strictly causal context, we achieve 82.69\% (4-way) and 67.07\% (6-way) weighted F1, outperforming prior text-only methods including those using bidirectional context. For linguistic analysis, we analyze 5,286 discourse marker occurrences and find a significant association between emotion and marker positioning ($p < .0001$). Notably, "sad" utterances exhibit reduced left-periphery marker usage (21.9\%) compared to other emotions (28--32\%), consistent with theories linking left-periphery markers to active discourse management. This connects to our recognition finding that sadness benefits most from context (+22\%p): lacking explicit pragmatic signals, sad utterances require conversational history for disambiguation.
☆ Pat-DEVAL: Chain-of-Legal-Thought Evaluation for Patent Description
Patent descriptions must deliver comprehensive technical disclosure while meeting strict legal standards such as enablement and written description requirements. Although large language models have enabled end-to-end automated patent drafting, existing evaluation approaches fail to assess long-form structural coherence and statutory compliance specific to descriptions. We propose Pat-DEVAL, the first multi-dimensional evaluation framework dedicated to patent description bodies. Leveraging the LLM-as-a-judge paradigm, Pat-DEVAL introduces Chain-of-Legal-Thought (CoLT), a legally-constrained reasoning mechanism that enforces sequential patent-law-specific analysis. Experiments validated by patent expert on our Pap2Pat-EvalGold dataset demonstrate that Pat-DEVAL achieves a Pearson correlation of 0.69, significantly outperforming baseline metrics and existing LLM evaluators. Notably, the framework exhibits a superior correlation of 0.73 in Legal-Professional Compliance, proving that the explicit injection of statutory constraints is essential for capturing nuanced legal validity. By establishing a new standard for ensuring both technical soundness and legal compliance, Pat-DEVAL provides a robust methodological foundation for the practical deployment of automated patent drafting systems.
♻ ☆ Towards Acyclic Preference Evaluation of Language Models via Multiple Evaluators
Despite the remarkable success of Large Language Models (LLMs), evaluating their outputs' quality regarding preference remains a critical challenge. While existing works usually leverage a strong LLM as the judge for comparing LLMs' response pairwisely, such a single-evaluator approach is vulnerable to cyclic preference, i.e., output A is better than B, B than C, but C is better than A, causing contradictory evaluation results. To address this, we introduce PGED (Preference Graph Ensemble and Denoising), a novel approach that leverages multiple model-based evaluators to construct preference graphs, and then ensembles and denoises these graphs for acyclic, non-contradictory evaluation results. We provide theoretical guarantees for our framework, demonstrating its efficacy in recovering the ground truth preference structure. Extensive experiments on ten benchmarks demonstrate PGED's superiority in three applications: 1) model ranking for evaluation, 2) response selection for test-time scaling, and 3) data selection for model fine-tuning. Notably, PGED combines small LLM evaluators (e.g., Llama3-8B, Mistral-7B, Qwen2-7B) to outperform strong ones (e.g., Qwen2-72B), showcasing its effectiveness in enhancing evaluation reliability and improving model performance.
♻ ☆ Why Do Multilingual Reasoning Gaps Emerge in Reasoning Language Models?
Reasoning language models (RLMs) achieve strong performance on complex reasoning tasks, yet they still exhibit a multilingual reasoning gap, performing better in high-resource languages than in low-resource ones. While recent efforts have been made to address this gap, its underlying causes remain largely unexplored. In this work, we show that this gap primarily stems from failures in language understanding-specifically, the model's inability to translate multilingual inputs into the language dominating its reasoning traces (typically English). As identifying understanding failures can enable targeted mitigation of the gap, we evaluate a range of detection methods and find that understanding failures are detectable to a meaningful extent, with supervised approaches performing best. Building on this, we propose Selective Translation, a strategy that incorporates an English translation into the initial reasoning trace only when an understanding failure is detected. Experimental results using Qwen3-4B show that Selective Translation substantially bridges the multilingual reasoning gap, achieving near full-translation performance while translating only about 20% of inputs. Together, our results show that failures in language understanding are the primary driver of the multilingual reasoning gap and can be detected and selectively mitigated, clarifying its origin and suggesting a path toward more equitable multilingual reasoning. Our code and data are publicly available at https://github.com/deokhk/RLM_analysis
comment: v2: Fix typos and updated contents
♻ ☆ Navigating the Reality Gap: Privacy-Preserving On-Device Continual Adaptation of ASR for Clinical Telephony
Automatic Speech Recognition (ASR) holds immense potential to assist in clinical documentation and patient report generation, particularly in resource-constrained regions. However, deployment is currently hindered by a technical deadlock: a severe "Reality Gap" between laboratory performance and noisy, real-world clinical audio, coupled with strict privacy and resource constraints. Such adaptation is essential for clinical telephony systems, where patient speech is highly variable and transcription errors can directly impact downstream clinical workflows. We quantify this gap, showing that a robust multilingual model (IndicWav2Vec) degrades up to a 40.94% WER on rural clinical telephony speech from India, rendering it unusable. We demonstrate consistent improvements on these helpline interactions without transmitting raw patient data off-device via an on-device continual adaptation framework using Low-Rank Adaptation (LoRA). We conduct an investigative study of stabilization strategies, characterizing the trade-offs between data-driven and parameter-driven approaches. Our results demonstrate that multi-domain Experience Replay (ER) yields the primary performance gains, achieving a 17.1% relative improvement in target WER and reducing catastrophic forgetting by 55% compared to naive adaptation. Furthermore, we investigate a stabilized importance estimation strategy (Absolute Fisher) to ensure robust convergence against the high-variance gradients common in clinical telephony speech. Finally, we verify via a domain-specific spot check that acoustic adaptation is a fundamental prerequisite for usability in healthcare settings which cannot be bypassed by language models alone.
♻ ☆ CubeBench: Diagnosing Interactive, Long-Horizon Spatial Reasoning Under Partial Observations
Large Language Model (LLM) agents, while proficient in the digital realm, face a significant gap in physical-world deployment due to the challenge of forming and maintaining a robust spatial mental model. We identify three core cognitive challenges hindering this transition: spatial reasoning, long-horizon state tracking via mental simulation, and active exploration under partial observation. To isolate and evaluate these faculties, we introduce CubeBench, a novel generative benchmark centered on the Rubik's Cube. CubeBench uses a three-tiered diagnostic framework that progressively assesses agent capabilities, from foundational state tracking with full symbolic information to active exploration with only partial visual data. Our experiments on leading LLMs reveal critical limitations, including a uniform 0.00% pass rate on all long-horizon tasks, exposing a fundamental failure in long-term planning. We also propose a diagnostic framework to isolate these cognitive bottlenecks by providing external solver tools. By analyzing the failure modes, we provide key insights to guide the development of more physically-grounded intelligent agents.
comment: Webpage: https://cubebench.c7w.tech/
♻ ☆ LLM-Guided Exemplar Selection for Few-Shot Wearable-Sensor Human Activity Recognition
In this paper, we propose an LLM-Guided Exemplar Selection framework to address a key limitation in state-of-the-art Human Activity Recognition (HAR) methods: their reliance on large labeled datasets and purely geometric exemplar selection, which often fail to distinguish similar wearable sensor activities such as walking, walking upstairs, and walking downstairs. Our method incorporates semantic reasoning via an LLM-generated knowledge prior that captures feature importance, inter-class confusability, and exemplar budget multipliers, and uses it to guide exemplar scoring and selection. These priors are combined with margin-based validation cues, PageRank centrality, hubness penalization, and facility-location optimization to obtain a compact and informative set of exemplars. Evaluated on the UCI-HAR dataset under strict few-shot conditions, the framework achieves a macro F1-score of 88.78%, outperforming classical approaches such as random sampling, herding, and k-center. The results show that LLM-derived semantic priors, when integrated with structural and geometric cues, provide a stronger foundation for selecting representative sensor exemplars in few-shot wearable-sensor HAR.
comment: This paper has been accepted for presentation at ABC 2026. The manuscript is under revision prior to camera-ready submission
♻ ☆ Dual LoRA: Enhancing LoRA with Magnitude and Direction Updates
Low-rank adaptation (LoRA) is one of the most popular methods among parameter-efficient fine-tuning (PEFT) methods to adapt pre-trained large language models (LLMs) to specific downstream tasks. However, the model trained based on LoRA often has an unsatisfactory performance due to its low-rank assumption. In this paper, we propose a novel method called Dual LoRA to improve the performance by incorporating an inductive bias into the original LoRA. Specifically, we separate low-rank matrices into two groups: the magnitude group to control whether or not and how far we should update a parameter and the direction group to decide whether this parameter should move forward or backward, to better simulate the parameter updating process of the full fine-tuning based on gradient-based optimization algorithms. We show that this can be simply achieved by adding a ReLU function to the magnitude group and a sign function to the direction group. We conduct several experiments over a wide range of NLP tasks, including natural language understanding (NLU) and commonsense reasoning datasets on RoBERTa, DeBERTa, and LLaMA-1/2/3 as baseline models. The results show that we consistently outperform LoRA and its state-of-the-art variants with the same number of trainable parameters.
♻ ☆ TabiBERT: A Large-Scale ModernBERT Foundation Model and Unified Benchmarking Framework for Turkish
Since the inception of BERT, encoder-only Transformers have evolved significantly in computational efficiency, training stability, and long-context modeling. ModernBERT consolidates these advances by integrating Rotary Positional Embeddings (RoPE), FlashAttention, and refined normalization. Despite these developments, Turkish NLP lacks a monolingual encoder trained from scratch, incorporating such modern architectural paradigms. This work introduces TabiBERT, a monolingual Turkish encoder based on ModernBERT architecture trained from scratch on a large, curated corpus. TabiBERT is pre-trained on one trillion tokens sampled from an 84.88B token multi-domain corpus: web text (73%), scientific publications (20%), source code (6%), and mathematical content (0.3%). It supports 8,192-token context length (16x original BERT), achieves up to 2.65x inference speedup, and reduces GPU memory consumption, enabling larger batch sizes. We introduce TabiBench with 28 datasets across eight task categories with standardized splits and protocols, evaluated using GLUE-style macro-averaging. TabiBERT attains 77.58 on TabiBench, outperforming BERTurk by 1.62 points and establishing state-of-the-art on five of eight categories, with particularly strong gains on question answering (+9.55 points), code retrieval (+2.41 points), and academic understanding (+0.66 points). Compared with task-specific prior best results, including specialized models like TurkishBERTweet, TabiBERT achieves +1.47 average improvement, indicating robust cross-domain generalization. We release model weights, training configurations, and evaluation code for transparent, reproducible Turkish encoder research.
comment: 33 pages, 2 figures, 13 tables
♻ ☆ Scaling Patterns in Adversarial Alignment: Evidence from Multi-LLM Jailbreak Experiments
Large language models (LLMs) increasingly operate in multi-agent and safety-critical settings, raising open questions about how their vulnerabilities scale when models interact adversarially. This study examines whether larger models can systematically jailbreak smaller ones - eliciting harmful or restricted behavior despite alignment safeguards. Using standardized adversarial tasks from JailbreakBench, we simulate over 6,000 multi-turn attacker-target exchanges across major LLM families and scales (0.6B-120B parameters), measuring both harm score and refusal behavior as indicators of adversarial potency and alignment integrity. Each interaction is evaluated through aggregated harm and refusal scores assigned by three independent LLM judges, providing a consistent, model-based measure of adversarial outcomes. Aggregating results across prompts, we find a strong and statistically significant correlation between mean harm and the logarithm of the attacker-to-target size ratio (Pearson r = 0.51, p < 0.001; Spearman rho = 0.52, p < 0.001), indicating that relative model size correlates with the likelihood and severity of harmful completions. Mean harm score variance is higher across attackers (0.18) than across targets (0.10), suggesting that attacker-side behavioral diversity contributes more to adversarial outcomes than target susceptibility. Attacker refusal frequency is strongly and negatively correlated with harm (rho = -0.93, p < 0.001), showing that attacker-side alignment mitigates harmful responses. These findings reveal that size asymmetry influences robustness and provide exploratory evidence for adversarial scaling patterns, motivating more controlled investigations into inter-model alignment and safety.
♻ ☆ Multi-hop Reasoning via Early Knowledge Alignment
Retrieval-Augmented Generation (RAG) has emerged as a powerful paradigm for Large Language Models (LLMs) to address knowledge-intensive queries requiring domain-specific or up-to-date information. To handle complex multi-hop questions that are challenging for single-step retrieval, iterative RAG approaches incorporating reinforcement learning have been proposed. However, existing iterative RAG systems typically plan to decompose questions without leveraging information about the available retrieval corpus, leading to inefficient retrieval and reasoning chains that cascade into suboptimal performance. In this paper, we introduce Early Knowledge Alignment (EKA), a simple but effective module that aligns LLMs with retrieval set before planning in iterative RAG systems with contextually relevant retrieved knowledge. Extensive experiments on six standard RAG datasets demonstrate that by establishing a stronger reasoning foundation, EKA significantly improves retrieval precision, reduces cascading errors, and enhances both performance and efficiency. Our analysis from an entropy perspective demonstrate that incorporating early knowledge reduces unnecessary exploration during the reasoning process, enabling the model to focus more effectively on relevant information subsets. Moreover, EKA proves effective as a versatile, training-free inference strategy that scales seamlessly to large models. Generalization tests across diverse datasets and retrieval corpora confirm the robustness of our approach. Overall, EKA advances the state-of-the-art in iterative RAG systems while illuminating the critical interplay between structured reasoning and efficient exploration in reinforcement learning-augmented frameworks. The code is released at \href{https://github.com/yxzwang/EarlyKnowledgeAlignment}{Github}.
comment: 16 pages
♻ ☆ Through a Compressed Lens: Investigating The Impact of Quantization on Factual Knowledge Recall
Quantization methods are widely used to accelerate inference and streamline the deployment of large language models (LLMs). Although quantization's effects on various LLM capabilities have been extensively studied, one critical area remains underexplored: factual knowledge recall (FKR), the process by which LLMs access stored knowledge. To this end, we conduct comprehensive experiments using three common quantization techniques at distinct bit widths, in conjunction with interpretability-driven analyses on two tasks, knowledge memorization and latent multi-hop reasoning. We show that quantization typically results in information loss within LLMs, consequently diminishing their capacity for FKR. This effect is particularly amplified in smaller models within the same architectural families. However, models quantized at reduced bit precision do not consistently exhibit inferior performance and occasionally quantization may even enhance model FKR. We find that BitSandBytes demonstrates highest preservation of the original full-precision model's FKR. Despite variability across models and methods, quantization causes modest performance degradation and remains an effective compression strategy.
comment: In submission
♻ ☆ CTTA-T: Continual Test-Time Adaptation for Text Understanding via Teacher-Student with a Domain-aware and Generalized Teacher
Text understanding often suffers from domain shifts. To handle testing domains, domain adaptation (DA) is trained to adapt to a fixed and observed testing domain; a more challenging paradigm, test-time adaptation (TTA), cannot access the testing domain during training and online adapts to the testing samples during testing, where the samples are from a fixed domain. We aim to explore a more practical and underexplored scenario, continual test-time adaptation (CTTA) for text understanding, which involves a sequence of testing (unobserved) domains in testing. Current CTTA methods struggle in reducing error accumulation over domains and enhancing generalization to handle unobserved domains: 1) Noise-filtering reduces accumulated errors but discards useful information, and 2) accumulating historical domains enhances generalization, but it is hard to achieve adaptive accumulation. In this paper, we propose a CTTA-T (continual test-time adaptation for text understanding) framework adaptable to evolving target domains: it adopts a teacher-student framework, where the teacher is domain-aware and generalized for evolving domains. To improve teacher predictions, we propose a refine-then-filter based on dropout-driven consistency, which calibrates predictions and removes unreliable guidance. For the adaptation-generalization trade-off, we construct a domain-aware teacher by dynamically accumulating cross-domain semantics via incremental PCA, which continuously tracks domain shifts. Experiments show CTTA-T excels baselines.
♻ ☆ Do Vision Encoders Truly Explain Object Hallucination?: Mitigating Object Hallucination via Simple Fine-Grained CLIPScore
Recently, Large Vision-Language Models (LVLMs) show remarkable performance across various domains. However, these models suffer from object hallucination. In this work, we study object hallucination primarily in a discriminative, retrieval-style evaluation setting (OHD-Caps), rather than in free-form caption generation. This study revisits the previous claim that the cause of such hallucinations lies in the limited representational capacity of the vision encoder. Our analysis implies that the capacity of the vision encoder is not necessarily a major limiting factor in detecting object hallucination. Based on this insight, we propose Fine-grained CLIPScore (F-CLIPScore), a simple yet effective evaluation metric that enhances object-level granularity by incorporating text embeddings at the noun level. Evaluations on the OHD-Caps benchmark show that F-CLIPScore significantly outperforms conventional CLIPScore in accuracy by a large margin of 39.6% without additional training. We further demonstrate that F-CLIPScore-based data filtering reduces object hallucination in LVLM (4.9% in POPE accuracy after alignment pretraining). Our code is publicly available at https://github.com/abzb1/f-clip
comment: Transactions on Machine Learning Research
♻ ☆ PaperRegister: Boosting Flexible-grained Paper Search via Hierarchical Register Indexing
As researchers delve more deeply into their work, paper search requirements may become more flexible, sometimes involving specific details such as module configuration rather than being limited to coarse-grained topics. However, previous paper search systems are unable to meet these flexible-grained requirements, as previous systems mainly collect paper abstract to construct corpus index, which lacks detailed information to support retrieval by some finer-grained queries. In this work, we propose PaperRegister, which transforms traditional abstract-based index into a hierarchical index tree, thereby supporting queries at flexible granularity. Experiments on paper search tasks across a range of granularity demonstrate that PaperRegister achieves the SOTA performance, and particularly excels in the fine-grained scenarios, highlighting good potential as an effective solution for flexible-grained paper search in real-world applications. https://github.com/Li-Z-Q/PaperRegister.
♻ ☆ Optimizing Retrieval for RAG via Reinforcement Learning
As retrieval-augmented generation (RAG) becomes more widespread, the role of retrieval is shifting from retrieving information for human browsing to retrieving context for AI reasoning. This shift creates more complex search environments, where relevance is difficult to pre-define. Existing retrievers rely on supervised fine-tuning (SFT) with human labels or synthetic data, resulting in static relevance that struggles to adapt to diverse RAG environments. To address this challenge, we propose R3, a Retrieval framework optimized for RAG through Reinforcement learning (RL). Specifically, we adopt an RL training paradigm that enables the retriever to explore and self-improve within given RAG environments, automating the learning process with minimal manual experimentation or tuning effort. Extensive experiments across diverse tasks demonstrate that R3 improves RAG performance by 5.2% over the original retriever and surpasses state-of-the-art retrievers by 4.9%, while achieving comparable results to LLM-augmented retrieval and RAG systems built on post-trained or instruction-tuned LLMs. It is both efficient and practical, requiring only 4 GPUs and completing training within a single day.
♻ ☆ FedSEA-LLaMA: A Secure, Efficient and Adaptive Federated Splitting Framework for Large Language Models
Private data holds promise for improving LLMs due to its high quality, but its scattered distribution across data silos and the high computational demands of LLMs limit their deployment in federated environments. To address this, the transformer-based federated split models are proposed, which offload most model parameters to the server (or distributed clients) while retaining only a small portion on the client to ensure data privacy. Despite this design, they still face three challenges: 1) Peer-to-peer key encryption struggles to secure transmitted vectors effectively; 2) The auto-regressive nature of LLMs means that federated split learning can only train and infer sequentially, causing high communication overhead; 3) Fixed partition points lack adaptability to downstream tasks. In this paper, we introduce FedSEA-LLaMA, a Secure, Efficient, and Adaptive Federated splitting framework based on LLaMA2. First, we inject Gaussian noise into forward-pass hidden states to enable secure end-to-end vector transmission. Second, we employ attention-mask compression and KV cache collaboration to reduce communication costs, accelerating training and inference. Third, we allow users to dynamically adjust the partition points for input/output blocks based on specific task requirements. Experiments on natural language understanding, summarization, and conversational QA tasks show that FedSEA-LLaMA maintains performance comparable to centralized LLaMA2 and achieves up to 8x speedups in training and inference. Further analysis of privacy attacks and different partition points also demonstrates the effectiveness of FedSEA-LLaMA in security and adaptability.
♻ ☆ Inner-Probe: Discovering Copyright-related Data Generation in LLM Architecture
Large Language Models (LLMs) utilize extensive knowledge databases and show powerful text generation ability. However, their reliance on high-quality copyrighted datasets raises concerns about copyright infringements in generated texts. Current research often employs prompt engineering or semantic classifiers to identify copyrighted content, but these approaches have two significant limitations: (1) Challenging to identify which specific subdataset (e.g., works from particular authors) influences an LLM's output. (2) Treating the entire training database as copyrighted, hence overlooking the inclusion of non-copyrighted training data. We propose Inner-Probe, a lightweight framework designed to evaluate the influence of copyrighted sub-datasets on LLM-generated texts. Unlike traditional methods relying solely on text, we discover that the results of multi-head attention (MHA) during LLM output generation provide more effective information. Thus, Inner-Probe performs sub-dataset contribution analysis using a lightweight LSTM based network trained on MHA results in a supervised manner. Harnessing such a prior, Inner-Probe enables non-copyrighted text detection through a concatenated global projector trained with unsupervised contrastive learning. Inner-Probe demonstrates 3x improved efficiency compared to semantic model training in sub-dataset contribution analysis on Books3, achieves 15.04% - 58.7% higher accuracy over baselines on the Pile, and delivers a 0.104 increase in AUC for non-copyrighted data filtering.
comment: Accepted by IEEE Transactions on Artificial Intelligence
♻ ☆ W2S-AlignTree: Weak-to-Strong Inference-Time Alignment for Large Language Models via Monte Carlo Tree Search AAAI 2026
Large Language Models (LLMs) demonstrate impressive capabilities, yet their outputs often suffer from misalignment with human preferences due to the inadequacy of weak supervision and a lack of fine-grained control. Training-time alignment methods like Reinforcement Learning from Human Feedback (RLHF) face prohibitive costs in expert supervision and inherent scalability limitations, offering limited dynamic control during inference. Consequently, there is an urgent need for scalable and adaptable alignment mechanisms. To address this, we propose W2S-AlignTree, a pioneering plug-and-play inference-time alignment framework that synergistically combines Monte Carlo Tree Search (MCTS) with the Weak-to-Strong Generalization paradigm for the first time. W2S-AlignTree formulates LLM alignment as an optimal heuristic search problem within a generative search tree. By leveraging weak model's real-time, step-level signals as alignment proxies and introducing an Entropy-Aware exploration mechanism, W2S-AlignTree enables fine-grained guidance during strong model's generation without modifying its parameters. The approach dynamically balances exploration and exploitation in high-dimensional generation search trees. Experiments across controlled sentiment generation, summarization, and instruction-following show that W2S-AlignTree consistently outperforms strong baselines. Notably, W2S-AlignTree raises the performance of Llama3-8B from 1.89 to 2.19, a relative improvement of 15.9 on the summarization task.
comment: AAAI 2026 Oral
♻ ☆ AlignAR: Generative Sentence Alignment for Arabic-English Parallel Corpora of Legal and Literary Texts
High-quality parallel corpora are essential for Machine Translation (MT) research and translation teaching. However, Arabic-English resources remain scarce and existing datasets mainly consist of simple one-to-one mappings. In this paper, we present AlignAR, a generative sentence alignment method, and a new Arabic-English dataset comprising simple legal and complex literary parallel texts. Our evaluation demonstrates that "Easy" datasets lack the discriminatory power to fully assess alignment methods. By reducing one-to-one mappings in our "Hard" subset, we exposed the limitations of traditional alignment methods. In contrast, LLM-based approaches demonstrated better robustness, achieving an overall F1-score of 85.5%, a nearly 9% improvement over previous methods. Our datasets and codes are open-sourced at https://github.com/XXX.
♻ ☆ One Trigger Token Is Enough: A Defense Strategy for Balancing Safety and Usability in Large Language Models
Large Language Models (LLMs) have been extensively used across diverse domains, including virtual assistants, automated code generation, and scientific research. However, they remain vulnerable to jailbreak attacks, which manipulate the models into generating harmful responses despite safety alignment. Recent studies have shown that current safety-aligned LLMs undergo shallow safety alignment. In this work, we conduct an in-depth investigation into the underlying mechanism of this phenomenon and reveal that it manifests through learned ''safety trigger tokens'' that activate the model's safety patterns when paired with the specific input. Through both analysis and empirical verification, we further demonstrate the high similarity of the safety trigger tokens across different harmful inputs. Accordingly, we propose D-STT, a simple yet effective defense algorithm that identifies and explicitly decodes safety trigger tokens of the given safety-aligned LLM to activate the model's learned safety patterns. In this process, the safety trigger is constrained to a single token, which effectively preserves model usability by introducing minimum intervention in the decoding process. Extensive experiments across diverse jailbreak attacks and benign prompts demonstrate that D-STT significantly reduces output harmfulness while preserving model usability and incurring negligible response time overhead, outperforming ten baseline methods.
♻ ☆ Decide less, communicate more: On the construct validity of end-to-end fact-checking in medicine
Technological progress has led to concrete advancements in tasks that were regarded as challenging, such as automatic fact-checking. Interest in adopting these systems for public health and medicine has grown due to the high-stakes nature of medical decisions and challenges in critically appraising a vast and diverse medical literature. Evidence-based medicine connects to every individual, and yet the nature of it is highly technical, rendering the medical literacy of majority users inadequate to sufficiently navigate the domain. Such problems with medical communication ripens the ground for end-to-end fact-checking agents: check a claim against current medical literature and return with an evidence-backed verdict. And yet, such systems remain largely unused. In this position paper, developed with expert input, we present the first study examining how clinical experts verify real claims from social media by synthesizing medical evidence. In searching for this upper-bound, we reveal fundamental challenges in end-to-end fact-checking when applied to medicine: Difficulties connecting claims in the wild to scientific evidence in the form of clinical trials; ambiguities in underspecified claims mixed with mismatched intentions; and inherently subjective veracity labels. We argue that fact-checking should be approached and evaluated as an interactive communication problem, rather than an end-to-end process.
Information Retrieval 6
☆ A Chain-of-Thought Approach to Semantic Query Categorization in e-Commerce Taxonomies SIGIR
Search in e-Commerce is powered at the core by a structured representation of the inventory, often formulated as a category taxonomy. An important capability in e-Commerce with hierarchical taxonomies is to select a set of relevant leaf categories that are semantically aligned with a given user query. In this scope, we address a fundamental problem of search query categorization in real-world e-Commerce taxonomies. A correct categorization of a query not only provides a way to zoom into the correct inventory space, but opens the door to multiple intent understanding capabilities for a query. A practical and accurate solution to this problem has many applications in e-commerce, including constraining retrieved items and improving the relevance of the search results. For this task, we explore a novel Chain-of-Thought (CoT) paradigm that combines simple tree-search with LLM semantic scoring. Assessing its classification performance on human-judged query-category pairs, relevance tests, and LLM-based reference methods, we find that the CoT approach performs better than a benchmark that uses embedding-based query category predictions. We show how the CoT approach can detect problems within a hierarchical taxonomy. Finally, we also propose LLM-based approaches for query-categorization of the same spirit, but which scale better at the range of millions of queries.
comment: 9 pages, accepted at SIGIR eCom 2025
☆ Noise-Aware Named Entity Recognition for Historical VET Documents
This paper addresses Named Entity Recognition (NER) in the domain of Vocational Education and Training (VET), focusing on historical, digitized documents that suffer from OCR-induced noise. We propose a robust NER approach leveraging Noise-Aware Training (NAT) with synthetically injected OCR errors, transfer learning, and multi-stage fine-tuning. Three complementary strategies, training on noisy, clean, and artificial data, are systematically compared. Our method is one of the first to recognize multiple entity types in VET documents. It is applied to German documents but transferable to arbitrary languages. Experimental results demonstrate that domain-specific and noise-aware fine-tuning substantially increases robustness and accuracy under noisy conditions. We provide publicly available code for reproducible noise-aware NER in domain-specific contexts.
comment: This is an extended, non-peer-reviewed version of the paper presented at VISAPP 2026
☆ Reinforcement-Learned Unequal Error Protection for Quantized Semantic Embeddings
This paper tackles the pressing challenge of preserving semantic meaning in communication systems constrained by limited bandwidth. We introduce a novel reinforcement learning framework that achieves per-dimension unequal error protection via adaptive repetition coding. Central to our approach is a composite semantic distortion metric that balances global embedding similarity with entity-level preservation, empowering the reinforcement learning agent to allocate protection in a context-aware manner. Experiments show statistically significant gains over uniform protection, achieving 6.8% higher chrF scores and 9.3% better entity preservation at 1 dB SNR. The key innovation of our framework is the demonstration that simple, intelligently allocated repetition coding enables fine-grained semantic protection -- an advantage unattainable with conventional codes such as LDPC or Reed-Solomon. Our findings challenge traditional channel coding paradigms by establishing that code structure must align with semantic granularity. This approach is particularly suited to edge computing and IoT scenarios, where bandwidth is scarce, but semantic fidelity is critical, providing a practical pathway for next-generation semantic-aware networks.
♻ ☆ Spatially-Grounded Document Retrieval via Patch-to-Region Relevance Propagation
Late-interaction multimodal retrieval models like ColPali achieve state-of-the-art document retrieval by embedding pages as images and computing fine-grained similarity between query tokens and visual patches. However, they operate at page-level granularity, limiting utility for retrieval-augmented generation (RAG) where precise context is paramount. Conversely, OCR-based systems extract structured text with bounding box coordinates but lack semantic grounding for relevance assessment. We propose a hybrid architecture that unifies these paradigms: using ColPali's patch-level similarity scores as spatial relevance filters over OCR-extracted regions. We formalize the coordinate mapping between vision transformer patch grids and OCR bounding boxes, introduce intersection metrics for relevance propagation, and establish theoretical bounds on area efficiency. We evaluate on BBox-DocVQA with ground-truth bounding boxes. For within-page localization (given correct page retrieval), ColQwen3-4B with percentile-50 thresholding achieves 59.7% hit rate at IoU@0.5 (84.4% at IoU@0.25, 35.8% at IoU@0.7), with mean IoU of 0.569, compared to ~6.7% for random region selection. Our approach reduces context tokens by 28.8% compared to returning all OCR regions and by 52.3% compared to full-page image tokens. Our approach operates at inference time without additional training. We release Snappy, an open-source implementation at https://github.com/athrael-soju/Snappy.
comment: 21 pages, 6 figures, 8 tables. Includes ancillary files with full benchmark results and ablation studies. Code available at https://github.com/athrael-soju/Snappy
♻ ☆ PaperRegister: Boosting Flexible-grained Paper Search via Hierarchical Register Indexing
As researchers delve more deeply into their work, paper search requirements may become more flexible, sometimes involving specific details such as module configuration rather than being limited to coarse-grained topics. However, previous paper search systems are unable to meet these flexible-grained requirements, as previous systems mainly collect paper abstract to construct corpus index, which lacks detailed information to support retrieval by some finer-grained queries. In this work, we propose PaperRegister, which transforms traditional abstract-based index into a hierarchical index tree, thereby supporting queries at flexible granularity. Experiments on paper search tasks across a range of granularity demonstrate that PaperRegister achieves the SOTA performance, and particularly excels in the fine-grained scenarios, highlighting good potential as an effective solution for flexible-grained paper search in real-world applications. https://github.com/Li-Z-Q/PaperRegister.
♻ ☆ Optimizing Retrieval for RAG via Reinforcement Learning
As retrieval-augmented generation (RAG) becomes more widespread, the role of retrieval is shifting from retrieving information for human browsing to retrieving context for AI reasoning. This shift creates more complex search environments, where relevance is difficult to pre-define. Existing retrievers rely on supervised fine-tuning (SFT) with human labels or synthetic data, resulting in static relevance that struggles to adapt to diverse RAG environments. To address this challenge, we propose R3, a Retrieval framework optimized for RAG through Reinforcement learning (RL). Specifically, we adopt an RL training paradigm that enables the retriever to explore and self-improve within given RAG environments, automating the learning process with minimal manual experimentation or tuning effort. Extensive experiments across diverse tasks demonstrate that R3 improves RAG performance by 5.2% over the original retriever and surpasses state-of-the-art retrievers by 4.9%, while achieving comparable results to LLM-augmented retrieval and RAG systems built on post-trained or instruction-tuned LLMs. It is both efficient and practical, requiring only 4 GPUs and completing training within a single day.
Machine Learning 75
☆ When Small Models Are Right for Wrong Reasons: Process Verification for Trustworthy Agents AAAI 2026
Deploying small language models (7-9B parameters) as autonomous agents requires trust in their reasoning, not just their outputs. We reveal a critical reliability crisis: 50-69\% of correct answers from these models contain fundamentally flawed reasoning -- a ``Right-for-Wrong-Reasons'' phenomenon invisible to standard accuracy metrics. Through analysis of 10,734 reasoning traces across three models and diverse tasks, we introduce the Reasoning Integrity Score (RIS), a process-based metric validated with substantial inter-rater agreement ($κ=0.657$). Conventional practices are challenged by our findings: while retrieval-augmented generation (RAG) significantly improves reasoning integrity (Cohen's $d=0.23$--$0.93$), meta-cognitive interventions like self-critique often harm performance ($d=-0.14$ to $-0.33$) in small models on the evaluated tasks. Mechanistic analysis reveals RAG succeeds by grounding calculations in external evidence, reducing errors by 7.6\%, while meta-cognition amplifies confusion without sufficient model capacity. To enable deployment, verification capabilities are distilled into a neural classifier achieving 0.86 F1-score with 100$\times$ speedup. These results underscore the necessity of process-based verification for trustworthy agents: accuracy alone is dangerously insufficient when models can be right for entirely wrong reasons.
comment: Accepted to Trustagent workshop AAAI 2026
☆ Improving LLM-Assisted Secure Code Generation through Retrieval-Augmented-Generation and Multi-Tool Feedback
Large Language Models (LLMs) can generate code but often introduce security vulnerabilities, logical inconsistencies, and compilation errors. Prior work demonstrates that LLMs benefit substantially from structured feedback, static analysis, retrieval augmentation, and execution-based refinement. We propose a retrieval-augmented, multi-tool repair workflow in which a single code-generating LLM iteratively refines its outputs using compiler diagnostics, CodeQL security scanning, and KLEE symbolic execution. A lightweight embedding model is used for semantic retrieval of previously successful repairs, providing security-focused examples that guide generation. Evaluated on a combined dataset of 3,242 programs generated by DeepSeek-Coder-1.3B and CodeLlama-7B, the system demonstrates significant improvements in robustness. For DeepSeek, security vulnerabilities were reduced by 96%. For the larger CodeLlama model, the critical security defect rate was decreased from 58.55% to 22.19%, highlighting the efficacy of tool-assisted self-repair even on "stubborn" models.
☆ Interpretable Machine Learning for Quantum-Informed Property Predictions in Artificial Sensing Materials
Digital sensing faces challenges in developing sustainable methods to extend the applicability of customized e-noses to complex body odor volatilome (BOV). To address this challenge, we developed MORE-ML, a computational framework that integrates quantum-mechanical (QM) property data of e-nose molecular building blocks with machine learning (ML) methods to predict sensing-relevant properties. Within this framework, we expanded our previous dataset, MORE-Q, to MORE-QX by sampling a larger conformational space of interactions between BOV molecules and mucin-derived receptors. This dataset provides extensive electronic binding features (BFs) computed upon BOV adsorption. Analysis of MORE-QX property space revealed weak correlations between QM properties of building blocks and resulting BFs. Leveraging this observation, we defined electronic descriptors of building blocks as inputs for tree-based ML models to predict BFs. Benchmarking showed CatBoost models outperform alternatives, especially in transferability to unseen compounds. Explainable AI methods further highlighted which QM properties most influence BF predictions. Collectively, MORE-ML combines QM insights with ML to provide mechanistic understanding and rational design principles for molecular receptors in BOV sensing. This approach establishes a foundation for advancing artificial sensing materials capable of analyzing complex odor mixtures, bridging the gap between molecular-level computations and practical e-nose applications.
comment: 18 pages, 6 figures, 1 table
☆ Noise-Aware Named Entity Recognition for Historical VET Documents
This paper addresses Named Entity Recognition (NER) in the domain of Vocational Education and Training (VET), focusing on historical, digitized documents that suffer from OCR-induced noise. We propose a robust NER approach leveraging Noise-Aware Training (NAT) with synthetically injected OCR errors, transfer learning, and multi-stage fine-tuning. Three complementary strategies, training on noisy, clean, and artificial data, are systematically compared. Our method is one of the first to recognize multiple entity types in VET documents. It is applied to German documents but transferable to arbitrary languages. Experimental results demonstrate that domain-specific and noise-aware fine-tuning substantially increases robustness and accuracy under noisy conditions. We provide publicly available code for reproducible noise-aware NER in domain-specific contexts.
comment: This is an extended, non-peer-reviewed version of the paper presented at VISAPP 2026
☆ Neural Chains and Discrete Dynamical Systems
We inspect the analogy between machine-learning (ML) applications based on the transformer architecture without self-attention, {\it neural chains} hereafter, and discrete dynamical systems associated with discretised versions of neural integral and partial differential equations (NIE, PDE). A comparative analysis of the numerical solution of the (viscid and inviscid) Burgers and Eikonal equations via standard numerical discretization (also cast in terms of neural chains) and via PINN's learning is presented and commented on. It is found that standard numerical discretization and PINN learning provide two different paths to acquire essentially the same knowledge about the dynamics of the system. PINN learning proceeds through random matrices which bear no direct relation to the highly structured matrices associated with finite-difference (FD) procedures. Random matrices leading to acceptable solutions are far more numerous than the unique tridiagonal form in matrix space, which explains why the PINN search typically lands on the random ensemble. The price is a much larger number of parameters, causing lack of physical transparency (explainability) as well as large training costs with no counterpart in the FD procedure. However, our results refer to one-dimensional dynamic problems, hence they don't rule out the possibility that PINNs and ML in general, may offer better strategies for high-dimensional problems.
☆ Laplacian Kernelized Bandit
We study multi-user contextual bandits where users are related by a graph and their reward functions exhibit both non-linear behavior and graph homophily. We introduce a principled joint penalty for the collection of user reward functions $\{f_u\}$, combining a graph smoothness term based on RKHS distances with an individual roughness penalty. Our central contribution is proving that this penalty is equivalent to the squared norm within a single, unified \emph{multi-user RKHS}. We explicitly derive its reproducing kernel, which elegantly fuses the graph Laplacian with the base arm kernel. This unification allows us to reframe the problem as learning a single ''lifted'' function, enabling the design of principled algorithms, \texttt{LK-GP-UCB} and \texttt{LK-GP-TS}, that leverage Gaussian Process posteriors over this new kernel for exploration. We provide high-probability regret bounds that scale with an \emph{effective dimension} of the multi-user kernel, replacing dependencies on user count or ambient dimension. Empirically, our methods outperform strong linear and non-graph-aware baselines in non-linear settings and remain competitive even when the true rewards are linear. Our work delivers a unified, theoretically grounded, and practical framework that bridges Laplacian regularization with kernelized bandits for structured exploration.
Detecting Spike Wave Discharges (SWD) using 1-dimensional Residual UNet
The manual labeling of events in electroencephalography (EEG) records is time-consuming. This is especially true when EEG recordings are taken continuously over weeks to months. Therefore, a method to automatically label pertinent EEG events reduces the manual workload. Spike wave discharges (SWD), which are the electrographic hallmark of absence seizures, are EEG events that are often labeled manually. While some previous studies have utilized machine learning to automatically segment and classify EEG signals like SWDs, they can be improved. Here we compare the performance of 14 machine learning classifiers on our own manually annotated dataset of 961 hours of EEG recordings from C3H/HeJ mice, including 22,637 labeled SWDs. We find that a 1D UNet performs best for labeling SWDs in this dataset. We also improve the 1D UNet by augmenting our training data and determine that scaling showed the greatest benefit of all augmentation procedures applied. We then compare the 1D UNet with data augmentation, AugUNet1D, against a recently published time- and frequency-based algorithmic approach called "Twin Peaks". AugUNet1D showed superior performance and detected events with more similar features to the SWDs labeled manually. AugUNet1D, pretrained on our manually annotated data or untrained, is made public for others users.
☆ Geometric Regularization in Mixture-of-Experts: The Disconnect Between Weights and Activations
Mixture-of-Experts (MoE) models achieve efficiency through sparse activation, but the role of geometric regularization in expert specialization remains unclear. We apply orthogonality loss to enforce expert diversity and find it fails on multiple fronts: it does not reduce weight-space overlap (MSO actually increases by up to 114%), activation-space overlap remains high (~0.6) regardless of regularization, and effects on performance are inconsistent -- marginal improvement on WikiText-103 (-0.9%), slight degradation on TinyStories (+0.9%), and highly variable results on PTB (std > 1.0). Our analysis across 7 regularization strengths reveals no significant correlation (r = -0.293, p = 0.523) between weight and activation orthogonality. These findings demonstrate that weight-space regularization neither achieves its geometric goal nor reliably improves performance, making it unsuitable for MoE diversity.
☆ Deep Networks Learn Deep Hierarchical Models
We consider supervised learning with $n$ labels and show that layerwise SGD on residual networks can efficiently learn a class of hierarchical models. This model class assumes the existence of an (unknown) label hierarchy $L_1 \subseteq L_2 \subseteq \dots \subseteq L_r = [n]$, where labels in $L_1$ are simple functions of the input, while for $i > 1$, labels in $L_i$ are simple functions of simpler labels. Our class surpasses models that were previously shown to be learnable by deep learning algorithms, in the sense that it reaches the depth limit of efficient learnability. That is, there are models in this class that require polynomial depth to express, whereas previous models can be computed by log-depth circuits. Furthermore, we suggest that learnability of such hierarchical models might eventually form a basis for understanding deep learning. Beyond their natural fit for domains where deep learning excels, we argue that the mere existence of human ``teachers" supports the hypothesis that hierarchical structures are inherently available. By providing granular labels, teachers effectively reveal ``hints'' or ``snippets'' of the internal algorithms used by the brain. We formalize this intuition, showing that in a simplified model where a teacher is partially aware of their internal logic, a hierarchical structure emerges that facilitates efficient learnability.
☆ Imitation from Observations with Trajectory-Level Generative Embeddings
We consider the offline imitation learning from observations (LfO) where the expert demonstrations are scarce and the available offline suboptimal data are far from the expert behavior. Many existing distribution-matching approaches struggle in this regime because they impose strict support constraints and rely on brittle one-step models, making it hard to extract useful signal from imperfect data. To tackle this challenge, we propose TGE, a trajectory-level generative embedding for offline LfO that constructs a dense, smooth surrogate reward by estimating expert state density in the latent space of a temporal diffusion model trained on offline trajectory data. By leveraging the smooth geometry of the learned diffusion embedding, TGE captures long-horizon temporal dynamics and effectively bridges the gap between disjoint supports, ensuring a robust learning signal even when offline data is distributionally distinct from the expert. Empirically, the proposed approach consistently matches or outperforms prior offline LfO methods across a range of D4RL locomotion and manipulation benchmarks.
comment: 24 pages, 6 figures, 7 tables
☆ Controllable Concept Bottleneck Models
Concept Bottleneck Models (CBMs) have garnered much attention for their ability to elucidate the prediction process through a human-understandable concept layer. However, most previous studies focused on static scenarios where the data and concepts are assumed to be fixed and clean. In real-world applications, deployed models require continuous maintenance: we often need to remove erroneous or sensitive data (unlearning), correct mislabeled concepts, or incorporate newly acquired samples (incremental learning) to adapt to evolving environments. Thus, deriving efficient editable CBMs without retraining from scratch remains a significant challenge, particularly in large-scale applications. To address these challenges, we propose Controllable Concept Bottleneck Models (CCBMs). Specifically, CCBMs support three granularities of model editing: concept-label-level, concept-level, and data-level, the latter of which encompasses both data removal and data addition. CCBMs enjoy mathematically rigorous closed-form approximations derived from influence functions that obviate the need for retraining. Experimental results demonstrate the efficiency and adaptability of our CCBMs, affirming their practical value in enabling dynamic and trustworthy CBMs.
comment: arXiv admin note: substantial text overlap with arXiv:2405.15476
☆ A Comparative Study of Adaptation Strategies for Time Series Foundation Models in Anomaly Detection
Time series anomaly detection is essential for the reliable operation of complex systems, but most existing methods require extensive task-specific training. We explore whether time series foundation models (TSFMs), pretrained on large heterogeneous data, can serve as universal backbones for anomaly detection. Through systematic experiments across multiple benchmarks, we compare zero-shot inference, full model adaptation, and parameter-efficient fine-tuning (PEFT) strategies. Our results demonstrate that TSFMs outperform task-specific baselines, achieving notable gains in AUC-PR and VUS-PR, particularly under severe class imbalance. Moreover, PEFT methods such as LoRA, OFT, and HRA not only reduce computational cost but also match or surpass full fine-tuning in most cases, indicating that TSFMs can be efficiently adapted for anomaly detection, even when pretrained for forecasting. These findings position TSFMs as promising general-purpose models for scalable and efficient time series anomaly detection.
☆ A Comparative Analysis of Interpretable Machine Learning Methods
In recent years, Machine Learning (ML) has seen widespread adoption across a broad range of sectors, including high-stakes domains such as healthcare, finance, and law. This growing reliance has raised increasing concerns regarding model interpretability and accountability, particularly as legal and regulatory frameworks place tighter constraints on using black-box models in critical applications. Although interpretable ML has attracted substantial attention, systematic evaluations of inherently interpretable models, especially for tabular data, remain relatively scarce and often focus primarily on aggregated performance outcomes. To address this gap, we present a large-scale comparative evaluation of 16 inherently interpretable methods, ranging from classical linear models and decision trees to more recent approaches such as Explainable Boosting Machines (EBMs), Symbolic Regression (SR), and Generalized Optimal Sparse Decision Trees (GOSDT). Our study spans 216 real-world tabular datasets and goes beyond aggregate rankings by stratifying performance according to structural dataset characteristics, including dimensionality, sample size, linearity, and class imbalance. In addition, we assess training time and robustness under controlled distributional shifts. Our results reveal clear performance hierarchies, especially for regression tasks, where EBMs consistently achieve strong predictive accuracy. At the same time, we show that performance is highly context-dependent: SR and Interpretable Generalized Additive Neural Networks (IGANNs) perform particularly well in non-linear regimes, while GOSDT models exhibit pronounced sensitivity to class imbalance. Overall, these findings provide practical guidance for practitioners seeking a balance between interpretability and predictive performance, and contribute to a deeper empirical understanding of interpretable modeling for tabular data.
☆ RMAAT: Astrocyte-Inspired Memory Compression and Replay for Efficient Long-Context Transformers
The quadratic complexity of self-attention mechanism presents a significant impediment to applying Transformer models to long sequences. This work explores computational principles derived from astrocytes-glial cells critical for biological memory and synaptic modulation-as a complementary approach to conventional architectural modifications for efficient self-attention. We introduce the Recurrent Memory Augmented Astromorphic Transformer (RMAAT), an architecture integrating abstracted astrocyte functionalities. RMAAT employs a recurrent, segment-based processing strategy where persistent memory tokens propagate contextual information. An adaptive compression mechanism, governed by a novel retention factor derived from simulated astrocyte long-term plasticity (LTP), modulates these tokens. Attention within segments utilizes an efficient, linear-complexity mechanism inspired by astrocyte short-term plasticity (STP). Training is performed using Astrocytic Memory Replay Backpropagation (AMRB), a novel algorithm designed for memory efficiency in recurrent networks. Evaluations on the Long Range Arena (LRA) benchmark demonstrate RMAAT's competitive accuracy and substantial improvements in computational and memory efficiency, indicating the potential of incorporating astrocyte-inspired dynamics into scalable sequence models.
☆ E-GRPO: High Entropy Steps Drive Effective Reinforcement Learning for Flow Models
Recent reinforcement learning has enhanced the flow matching models on human preference alignment. While stochastic sampling enables the exploration of denoising directions, existing methods which optimize over multiple denoising steps suffer from sparse and ambiguous reward signals. We observe that the high entropy steps enable more efficient and effective exploration while the low entropy steps result in undistinguished roll-outs. To this end, we propose E-GRPO, an entropy aware Group Relative Policy Optimization to increase the entropy of SDE sampling steps. Since the integration of stochastic differential equations suffer from ambiguous reward signals due to stochasticity from multiple steps, we specifically merge consecutive low entropy steps to formulate one high entropy step for SDE sampling, while applying ODE sampling on other steps. Building upon this, we introduce multi-step group normalized advantage, which computes group-relative advantages within samples sharing the same consolidated SDE denoising step. Experimental results on different reward settings have demonstrated the effectiveness of our methods.
comment: Code: https://github.com/shengjun-zhang/VisualGRPO
Secure, Verifiable, and Scalable Multi-Client Data Sharing via Consensus-Based Privacy-Preserving Data Distribution
We propose the Consensus-Based Privacy-Preserving Data Distribution (CPPDD) framework, a lightweight and post-setup autonomous protocol for secure multi-client data aggregation. The framework enforces unanimous-release confidentiality through a dual-layer protection mechanism that combines per-client affine masking with priority-driven sequential consensus locking. Decentralized integrity is verified via step (sigma_S) and data (sigma_D) checksums, facilitating autonomous malicious deviation detection and atomic abort without requiring persistent coordination. The design supports scalar, vector, and matrix payloads with O(N*D) computation and communication complexity, optional edge-server offloading, and resistance to collusion under N-1 corruptions. Formal analysis proves correctness, Consensus-Dependent Integrity and Fairness (CDIF) with overwhelming-probability abort on deviation, and IND-CPA security assuming a pseudorandom function family. Empirical evaluations on MNIST-derived vectors demonstrate linear scalability up to N = 500 with sub-millisecond per-client computation times. The framework achieves 100% malicious deviation detection, exact data recovery, and three-to-four orders of magnitude lower FLOPs compared to MPC and HE baselines. CPPDD enables atomic collaboration in secure voting, consortium federated learning, blockchain escrows, and geo-information capacity building, addressing critical gaps in scalability, trust minimization, and verifiable multi-party computation for regulated and resource-constrained environments.
comment: Preprint. Under review
☆ Deep Delta Learning
The efficacy of deep residual networks is fundamentally predicated on the identity shortcut connection. While this mechanism effectively mitigates the vanishing gradient problem, it imposes a strictly additive inductive bias on feature transformations, thereby limiting the network's capacity to model complex state transitions. In this paper, we introduce Deep Delta Learning (DDL), a novel architecture that generalizes the standard residual connection by modulating the identity shortcut with a learnable, data-dependent geometric transformation. This transformation, termed the Delta Operator, constitutes a rank-1 perturbation of the identity matrix, parameterized by a reflection direction vector $\mathbf{k}(\mathbf{X})$ and a gating scalar $β(\mathbf{X})$. We provide a spectral analysis of this operator, demonstrating that the gate $β(\mathbf{X})$ enables dynamic interpolation between identity mapping, orthogonal projection, and geometric reflection. Furthermore, we restructure the residual update as a synchronous rank-1 injection, where the gate acts as a dynamic step size governing both the erasure of old information and the writing of new features. This unification empowers the network to explicitly control the spectrum of its layer-wise transition operator, enabling the modeling of complex, non-monotonic dynamics while preserving the stable training characteristics of gated residual architectures.
comment: Project Page: https://github.com/yifanzhang-pro/deep-delta-learning
☆ Revati: Transparent GPU-Free Time-Warp Emulation for LLM Serving
Deploying LLMs efficiently requires testing hundreds of serving configurations, but evaluating each one on a GPU cluster takes hours and costs thousands of dollars. Discrete-event simulators are faster and cheaper, but they require re-implementing the serving system's control logic -- a burden that compounds as frameworks evolve. We present Revati, a time-warp emulator that enables performance modeling by directly executing real serving system code at simulation-like speed. The system intercepts CUDA API calls to virtualize device management, allowing serving frameworks to run without physical GPUs. Instead of executing GPU kernels, it performs time jumps -- fast-forwarding virtual time by predicted kernel durations. We propose a coordination protocol that synchronizes these jumps across distributed processes while preserving causality. On vLLM and SGLang, Revati achieves less than 5% prediction error across multiple models and parallelism configurations, while running 5-17x faster than real GPU execution.
☆ Real-Time Human Detection for Aerial Captured Video Sequences via Deep Models
Human detection in videos plays an important role in various real-life applications. Most traditional approaches depend on utilizing handcrafted features, which are problem-dependent and optimal for specific tasks. Moreover, they are highly susceptible to dynamical events such as illumination changes, camera jitter, and variations in object sizes. On the other hand, the proposed feature learning approaches are cheaper and easier because highly abstract and discriminative features can be produced automatically without the need of expert knowledge. In this paper, we utilize automatic feature learning methods, which combine optical flow and three different deep models (i.e., supervised convolutional neural network (S-CNN), pretrained CNN feature extractor, and hierarchical extreme learning machine) for human detection in videos captured using a nonstatic camera on an aerial platform with varying altitudes. The models are trained and tested on the publicly available and highly challenging UCF-ARG aerial dataset. The comparison between these models in terms of training, testing accuracy, and learning speed is analyzed. The performance evaluation considers five human actions (digging, waving, throwing, walking, and running). Experimental results demonstrated that the proposed methods are successful for the human detection task. The pretrained CNN produces an average accuracy of 98.09%. S-CNN produces an average accuracy of 95.6% with softmax and 91.7% with Support Vector Machines (SVM). H-ELM has an average accuracy of 95.9%. Using a normal Central Processing Unit (CPU), H-ELM's training time takes 445 seconds. Learning in S-CNN takes 770 seconds with a high-performance Graphical Processing Unit (GPU).
☆ NOS-Gate: Queue-Aware Streaming IDS for Consumer Gateways under Timing-Controlled Evasion
Timing and burst patterns can leak through encryption, and an adaptive adversary can exploit them. This undermines metadata-only detection in a stand-alone consumer gateway. Therefore, consumer gateways need streaming intrusion detection on encrypted traffic using metadata only, under tight CPU and latency budgets. We present a streaming IDS for stand-alone gateways that instantiates a lightweight two-state unit derived from Network-Optimised Spiking (NOS) dynamics per flow, named NOS-Gate. NOS-Gate scores fixed-length windows of metadata features and, under a $K$-of-$M$ persistence rule, triggers a reversible mitigation that temporarily reduces the flow's weight under weighted fair queueing (WFQ). We evaluate NOS-Gate under timing-controlled evasion using an executable 'worlds' benchmark that specifies benign device processes, auditable attacker budgets, contention structure, and packet-level WFQ replay to quantify queue impact. All methods are calibrated label-free via burn-in quantile thresholding. Across multiple reproducible worlds and malicious episodes, at an achieved $0.1%$ false-positive operating point, NOS-Gate attains 0.952 incident recall versus 0.857 for the best baseline in these runs. Under gating, it reduces p99.9 queueing delay and p99.9 collateral delay with a mean scoring cost of ~ 2.09 μs per flow-window on CPU.
comment: 9 pages, 3 figures, 4 tables
☆ Engineering Attack Vectors and Detecting Anomalies in Additive Manufacturing SP 2025
Additive manufacturing (AM) is rapidly integrating into critical sectors such as aerospace, automotive, and healthcare. However, this cyber-physical convergence introduces new attack surfaces, especially at the interface between computer-aided design (CAD) and machine execution layers. In this work, we investigate targeted cyberattacks on two widely used fused deposition modeling (FDM) systems, Creality's flagship model K1 Max, and Ender 3. Our threat model is a multi-layered Man-in-the-Middle (MitM) intrusion, where the adversary intercepts and manipulates G-code files during upload from the user interface to the printer firmware. The MitM intrusion chain enables several stealthy sabotage scenarios. These attacks remain undetectable by conventional slicer software or runtime interfaces, resulting in structurally defective yet externally plausible printed parts. To counter these stealthy threats, we propose an unsupervised Intrusion Detection System (IDS) that analyzes structured machine logs generated during live printing. Our defense mechanism uses a frozen Transformer-based encoder (a BERT variant) to extract semantic representations of system behavior, followed by a contrastively trained projection head that learns anomaly-sensitive embeddings. Later, a clustering-based approach and a self-attention autoencoder are used for classification. Experimental results demonstrate that our approach effectively distinguishes between benign and compromised executions.
comment: This paper has been accepted to EAI SmartSP 2025. This is the preprint version
BERT-JEPA: Reorganizing CLS Embeddings for Language-Invariant Semantics
Joint Embedding Predictive Architectures (JEPA) are a novel self supervised training technique that have shown recent promise across domains. We introduce BERT-JEPA (BEPA), a training paradigm that adds a JEPA training objective to BERT-style models, working to combat a collapsed [CLS] embedding space and turning it into a language-agnostic space. This new structure leads to increased performance across multilingual benchmarks.
comment: 16 pages, 10 figures, 10 tables
☆ Deterministic Coreset for Lp Subspace
We introduce the first iterative algorithm for constructing a $\varepsilon$-coreset that guarantees deterministic $\ell_p$ subspace embedding for any $p \in [1,\infty)$ and any $\varepsilon > 0$. For a given full rank matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ where $n \gg d$, $\mathbf{X}' \in \mathbb{R}^{m \times d}$ is an $(\varepsilon,\ell_p)$-subspace embedding of $\mathbf{X}$, if for every $\mathbf{q} \in \mathbb{R}^d$, $(1-\varepsilon)\|\mathbf{Xq}\|_{p}^{p} \leq \|\mathbf{X'q}\|_{p}^{p} \leq (1+\varepsilon)\|\mathbf{Xq}\|_{p}^{p}$. Specifically, in this paper, $\mathbf{X}'$ is a weighted subset of rows of $\mathbf{X}$ which is commonly known in the literature as a coreset. In every iteration, the algorithm ensures that the loss on the maintained set is upper and lower bounded by the loss on the original dataset with appropriate scalings. So, unlike typical coreset guarantees, due to bounded loss, our coreset gives a deterministic guarantee for the $\ell_p$ subspace embedding. For an error parameter $\varepsilon$, our algorithm takes $O(\mathrm{poly}(n,d,\varepsilon^{-1}))$ time and returns a deterministic $\varepsilon$-coreset, for $\ell_p$ subspace embedding whose size is $O\left(\frac{d^{\max\{1,p/2\}}}{\varepsilon^{2}}\right)$. Here, we remove the $\log$ factors in the coreset size, which had been a long-standing open problem. Our coresets are optimal as they are tight with the lower bound. As an application, our coreset can also be used for approximately solving the $\ell_p$ regression problem in a deterministic manner.
☆ Solving nonlinear subsonic compressible flow in infinite domain via multi-stage neural networks
In aerodynamics, accurately modeling subsonic compressible flow over airfoils is critical for aircraft design. However, solving the governing nonlinear perturbation velocity potential equation presents computational challenges. Traditional approaches often rely on linearized equations or finite, truncated domains, which introduce non-negligible errors and limit applicability in real-world scenarios. In this study, we propose a novel framework utilizing Physics-Informed Neural Networks (PINNs) to solve the full nonlinear compressible potential equation in an unbounded (infinite) domain. We address the unbounded-domain and convergence challenges inherent in standard PINNs by incorporating a coordinate transformation and embedding physical asymptotic constraints directly into the network architecture. Furthermore, we employ a Multi-Stage PINN (MS-PINN) approach to iteratively minimize residuals, achieving solution accuracy approaching machine precision. We validate this framework by simulating flow over circular and elliptical geometries, comparing our results against traditional finite-domain and linearized solutions. Our findings quantify the noticeable discrepancies introduced by domain truncation and linearization, particularly at higher Mach numbers, and demonstrate that this new framework is a robust, high-fidelity tool for computational fluid dynamics.
comment: 24 pages, 9 figures
☆ Smart Fault Detection in Nanosatellite Electrical Power System
This paper presents a new detection method of faults at Nanosatellites' electrical power without an Attitude Determination Control Subsystem (ADCS) at the LEO orbit. Each part of this system is at risk of fault due to pressure tolerance, launcher pressure, and environmental circumstances. Common faults are line to line fault and open circuit for the photovoltaic subsystem, short circuit and open circuit IGBT at DC to DC converter, and regulator fault of the ground battery. The system is simulated without fault based on a neural network using solar radiation and solar panel's surface temperature as input data and current and load as outputs. Finally, using the neural network classifier, different faults are diagnosed by pattern and type of fault. For fault classification, other machine learning methods are also used, such as PCA classification, decision tree, and KNN.
☆ Quantum King-Ring Domination in Chess: A QAOA Approach
The Quantum Approximate Optimization Algorithm (QAOA) is extensively benchmarked on synthetic random instances such as MaxCut, TSP, and SAT problems, but these lack semantic structure and human interpretability, offering limited insight into performance on real-world problems with meaningful constraints. We introduce Quantum King-Ring Domination (QKRD), a NISQ-scale benchmark derived from chess tactical positions that provides 5,000 structured instances with one-hot constraints, spatial locality, and 10--40 qubit scale. The benchmark pairs human-interpretable coverage metrics with intrinsic validation against classical heuristics, enabling algorithmic conclusions without external oracles. Using QKRD, we systematically evaluate QAOA design choices and find that constraint-preserving mixers (XY, domain-wall) converge approximately 13 steps faster than standard mixers (p<10^{-7}, d\approx0.5) while eliminating penalty tuning, warm-start strategies reduce convergence by 45 steps (p<10^{-127}, d=3.35) with energy improvements exceeding d=8, and Conditional Value-at-Risk (CVaR) optimization yields an informative negative result with worse energy (p<10^{-40}, d=1.21) and no coverage benefit. Intrinsic validation shows QAOA outperforms greedy heuristics by 12.6\% and random selection by 80.1\%. Our results demonstrate that structured benchmarks reveal advantages of problem-informed QAOA techniques obscured in random instances. We release all code, data, and experimental artifacts for reproducible NISQ algorithm research.
☆ Can Optimal Transport Improve Federated Inverse Reinforcement Learning?
In robotics and multi-agent systems, fleets of autonomous agents often operate in subtly different environments while pursuing a common high-level objective. Directly pooling their data to learn a shared reward function is typically impractical due to differences in dynamics, privacy constraints, and limited communication bandwidth. This paper introduces an optimal transport-based approach to federated inverse reinforcement learning (IRL). Each client first performs lightweight Maximum Entropy IRL locally, adhering to its computational and privacy limitations. The resulting reward functions are then fused via a Wasserstein barycenter, which considers their underlying geometric structure. We further prove that this barycentric fusion yields a more faithful global reward estimate than conventional parameter averaging methods in federated learning. Overall, this work provides a principled and communication-efficient framework for deriving a shared reward that generalizes across heterogeneous agents and environments.
☆ Can Large Language Models Still Explain Themselves? Investigating the Impact of Quantization on Self-Explanations
Quantization is widely used to accelerate inference and streamline the deployment of large language models (LLMs), yet its effects on self-explanations (SEs) remain unexplored. SEs, generated by LLMs to justify their own outputs, require reasoning about the model's own decision-making process, a capability that may exhibit particular sensitivity to quantization. As SEs are increasingly relied upon for transparency in high-stakes applications, understanding whether and to what extent quantization degrades SE quality and faithfulness is critical. To address this gap, we examine two types of SEs: natural language explanations (NLEs) and counterfactual examples, generated by LLMs quantized using three common techniques at distinct bit widths. Our findings indicate that quantization typically leads to moderate declines in both SE quality (up to 4.4\%) and faithfulness (up to 2.38\%). The user study further demonstrates that quantization diminishes both the coherence and trustworthiness of SEs (up to 8.5\%). Compared to smaller models, larger models show limited resilience to quantization in terms of SE quality but better maintain faithfulness. Moreover, no quantization technique consistently excels across task accuracy, SE quality, and faithfulness. Given that quantization's impact varies by context, we recommend validating SE quality for specific use cases, especially for NLEs, which show greater sensitivity. Nonetheless, the relatively minor deterioration in SE quality and faithfulness does not undermine quantization's effectiveness as a model compression technique.
comment: In submission
☆ Task-Driven Kernel Flows: Label Rank Compression and Laplacian Spectral Filtering
We present a theory of feature learning in wide L2-regularized networks showing that supervised learning is inherently compressive. We derive a kernel ODE that predicts a "water-filling" spectral evolution and prove that for any stable steady state, the kernel rank is bounded by the number of classes ($C$). We further demonstrate that SGD noise is similarly low-rank ($O(C)$), confining dynamics to the task-relevant subspace. This framework unifies the deterministic and stochastic views of alignment and contrasts the low-rank nature of supervised learning with the high-rank, expansive representations of self-supervision.
comment: 47 pages;3 figures
☆ Rectifying Adversarial Examples Using Their Vulnerabilities
Deep neural network-based classifiers are prone to errors when processing adversarial examples (AEs). AEs are minimally perturbed input data undetectable to humans posing significant risks to security-dependent applications. Hence, extensive research has been undertaken to develop defense mechanisms that mitigate their threats. Most existing methods primarily focus on discriminating AEs based on the input sample features, emphasizing AE detection without addressing the correct sample categorization before an attack. While some tasks may only require mere rejection on detected AEs, others necessitate identifying the correct original input category such as traffic sign recognition in autonomous driving. The objective of this study is to propose a method for rectifying AEs to estimate the correct labels of their original inputs. Our method is based on re-attacking AEs to move them beyond the decision boundary for accurate label prediction, effectively addressing the issue of rectifying minimally perceptible AEs created using white-box attack methods. However, challenge remains with respect to effectively rectifying AEs produced by black-box attacks at a distance from the boundary, or those misclassified into low-confidence categories by targeted attacks. By adopting a straightforward approach of only considering AEs as inputs, the proposed method can address diverse attacks while avoiding the requirement of parameter adjustments or preliminary training. Results demonstrate that the proposed method exhibits consistent performance in rectifying AEs generated via various attack methods, including targeted and black-box attacks. Moreover, it outperforms conventional rectification and input transformation methods in terms of stability against various attacks.
☆ Modern Neuromorphic AI: From Intra-Token to Inter-Token Processing
The rapid growth of artificial intelligence (AI) has brought novel data processing and generative capabilities but also escalating energy requirements. This challenge motivates renewed interest in neuromorphic computing principles, which promise brain-like efficiency through discrete and sparse activations, recurrent dynamics, and non-linear feedback. In fact, modern AI architectures increasingly embody neuromorphic principles through heavily quantized activations, state-space dynamics, and sparse attention mechanisms. This paper elaborates on the connections between neuromorphic models, state-space models, and transformer architectures through the lens of the distinction between intra-token processing and inter-token processing. Most early work on neuromorphic AI was based on spiking neural networks (SNNs) for intra-token processing, i.e., for transformations involving multiple channels, or features, of the same vector input, such as the pixels of an image. In contrast, more recent research has explored how neuromorphic principles can be leveraged to design efficient inter-token processing methods, which selectively combine different information elements depending on their contextual relevance. Implementing associative memorization mechanisms, these approaches leverage state-space dynamics or sparse self-attention. Along with a systematic presentation of modern neuromorphic AI models through the lens of intra-token and inter-token processing, training methodologies for neuromorphic AI models are also reviewed. These range from surrogate gradients leveraging parallel convolutional processing to local learning rules based on reinforcement learning mechanisms.
☆ Neural Minimum Weight Perfect Matching for Quantum Error Codes
Realizing the full potential of quantum computation requires Quantum Error Correction (QEC). QEC reduces error rates by encoding logical information across redundant physical qubits, enabling errors to be detected and corrected. A common decoder used for this task is Minimum Weight Perfect Matching (MWPM) a graph-based algorithm that relies on edge weights to identify the most likely error chains. In this work, we propose a data-driven decoder named Neural Minimum Weight Perfect Matching (NMWPM). Our decoder utilizes a hybrid architecture that integrates Graph Neural Networks (GNNs) to extract local syndrome features and Transformers to capture long-range global dependencies, which are then used to predict dynamic edge weights for the MWPM decoder. To facilitate training through the non-differentiable MWPM algorithm, we formulate a novel proxy loss function that enables end-to-end optimization. Our findings demonstrate significant performance reduction in the Logical Error Rate (LER) over standard baselines, highlighting the advantage of hybrid decoders that combine the predictive capabilities of neural networks with the algorithmic structure of classical matching.
☆ Application Research of a Deep Learning Model Integrating CycleGAN and YOLO in PCB Infrared Defect Detection
This paper addresses the critical bottleneck of infrared (IR) data scarcity in Printed Circuit Board (PCB) defect detection by proposing a cross-modal data augmentation framework integrating CycleGAN and YOLOv8. Unlike conventional methods relying on paired supervision, we leverage CycleGAN to perform unpaired image-to-image translation, mapping abundant visible-light PCB images into the infrared domain. This generative process synthesizes high-fidelity pseudo-IR samples that preserve the structural semantics of defects while accurately simulating thermal distribution patterns. Subsequently, we construct a heterogeneous training strategy that fuses generated pseudo-IR data with limited real IR samples to train a lightweight YOLOv8 detector. Experimental results demonstrate that this method effectively enhances feature learning under low-data conditions. The augmented detector significantly outperforms models trained on limited real data alone and approaches the performance benchmarks of fully supervised training, proving the efficacy of pseudo-IR synthesis as a robust augmentation strategy for industrial inspection.
comment: 8 pages,8 figures
☆ GRIT -- Geometry-Aware PEFT with K-FACPreconditioning, Fisher-Guided Reprojection, andDynamic Rank Adaptation
Parameter-efficient fine-tuning (PEFT) is the default way to adapt LLMs, but widely used LoRA and QLoRA are largely geometry-agnostic: they optimize in fixed, randomly oriented low-rank subspaces with first-order descent, mostly ignoring local loss curvature. This can inflate the effective update budget and amplify drift along weakly constrained directions. We introduce GRIT, a dynamic, curvature-aware LoRA procedure that preserves the LoRA parameterization but: (1) preconditions gradients in rank space using K-FAC as a natural-gradient proxy; (2) periodically reprojects the low-rank basis onto dominant Fisher eigendirections to suppress drift; and (3) adapts the effective rank from the spectrum so capacity concentrates where signal resides. Across instruction-following, comprehension, and reasoning benchmarks on LLaMA backbones, GRIT matches or surpasses LoRA and QLoRA while reducing trainable parameters by 46% on average (25--80% across tasks), without practical quality loss across prompt styles and data mixes. To model forgetting, we fit a curvature-modulated power law. Empirically, GRIT yields lower drift and a better updates-vs-retention frontier than strong PEFT-optimizer baselines (Orthogonal-LoRA, IA3, DoRA, Eff-FT, Shampoo).
☆ Robust Graph Fine-Tuning with Adversarial Graph Prompting
Parameter-Efficient Fine-Tuning (PEFT) method has emerged as a dominant paradigm for adapting pre-trained GNN models to downstream tasks. However, existing PEFT methods usually exhibit significant vulnerability to various noise and attacks on graph topology and node attributes/features. To address this issue, for the first time, we propose integrating adversarial learning into graph prompting and develop a novel Adversarial Graph Prompting (AGP) framework to achieve robust graph fine-tuning. Our AGP has two key aspects. First, we propose the general problem formulation of AGP as a min-max optimization problem and develop an alternating optimization scheme to solve it. For inner maximization, we propose Joint Projected Gradient Descent (JointPGD) algorithm to generate strong adversarial noise. For outer minimization, we employ a simple yet effective module to learn the optimal node prompts to counteract the adversarial noise. Second, we demonstrate that the proposed AGP can theoretically address both graph topology and node noise. This confirms the versatility and robustness of our AGP fine-tuning method across various graph noise. Note that, the proposed AGP is a general method that can be integrated with various pre-trained GNN models to enhance their robustness on the downstream tasks. Extensive experiments on multiple benchmark tasks validate the robustness and effectiveness of AGP method compared to state-of-the-art methods.
☆ Unknown Aware AI-Generated Content Attribution
The rapid advancement of photorealistic generative models has made it increasingly important to attribute the origin of synthetic content, moving beyond binary real or fake detection toward identifying the specific model that produced a given image. We study the problem of distinguishing outputs from a target generative model (e.g., OpenAI Dalle 3) from other sources, including real images and images generated by a wide range of alternative models. Using CLIP features and a simple linear classifier, shown to be effective in prior work, we establish a strong baseline for target generator attribution using only limited labeled data from the target model and a small number of known generators. However, this baseline struggles to generalize to harder, unseen, and newly released generators. To address this limitation, we propose a constrained optimization approach that leverages unlabeled wild data, consisting of images collected from the Internet that may include real images, outputs from unknown generators, or even samples from the target model itself. The proposed method encourages wild samples to be classified as non target while explicitly constraining performance on labeled data to remain high. Experimental results show that incorporating wild data substantially improves attribution performance on challenging unseen generators, demonstrating that unlabeled data from the wild can be effectively exploited to enhance AI generated content attribution in open world settings.
Detecting Unobserved Confounders: A Kernelized Regression Approach
Detecting unobserved confounders is crucial for reliable causal inference in observational studies. Existing methods require either linearity assumptions or multiple heterogeneous environments, limiting applicability to nonlinear single-environment settings. To bridge this gap, we propose Kernel Regression Confounder Detection (KRCD), a novel method for detecting unobserved confounding in nonlinear observational data under single-environment conditions. KRCD leverages reproducing kernel Hilbert spaces to model complex dependencies. By comparing standard and higherorder kernel regressions, we derive a test statistic whose significant deviation from zero indicates unobserved confounding. Theoretically, we prove two key results: First, in infinite samples, regression coefficients coincide if and only if no unobserved confounders exist. Second, finite-sample differences converge to zero-mean Gaussian distributions with tractable variance. Extensive experiments on synthetic benchmarks and the Twins dataset demonstrate that KRCD not only outperforms existing baselines but also achieves superior computational efficiency.
☆ StockBot 2.0: Vanilla LSTMs Outperform Transformer-based Forecasting for Stock Prices
Accurate forecasting of financial markets remains a long-standing challenge due to complex temporal and often latent dependencies, non-linear dynamics, and high volatility. Building on our earlier recurrent neural network framework, we present an enhanced StockBot architecture that systematically evaluates modern attention-based, convolutional, and recurrent time-series forecasting models within a unified experimental setting. While attention-based and transformer-inspired models offer increased modeling flexibility, extensive empirical evaluation reveals that a carefully constructed vanilla LSTM consistently achieves superior predictive accuracy and more stable buy/sell decision-making when trained under a common set of default hyperparameters. These results highlight the robustness and data efficiency of recurrent sequence models for financial time-series forecasting, particularly in the absence of extensive hyperparameter tuning or the availability of sufficient data when discretized to single-day intervals. Additionally, these results underscore the importance of architectural inductive bias in data-limited market prediction tasks.
comment: 14 pages, 5 figures
☆ Optimized Hybrid Feature Engineering for Resource-Efficient Arrhythmia Detection in ECG Signals: An Optimization Framework
Cardiovascular diseases, particularly arrhythmias, remain a leading global cause of mortality, necessitating continuous monitoring via the Internet of Medical Things (IoMT). However, state-of-the-art deep learning approaches often impose prohibitive computational overheads, rendering them unsuitable for resource-constrained edge devices. This study proposes a resource-efficient, data-centric framework that prioritizes feature engineering over complexity. Our optimized pipeline makes the complex, high-dimensional arrhythmia data linearly separable. This is achieved by integrating time-frequency wavelet decompositions with graph-theoretic structural descriptors, such as PageRank centrality. This hybrid feature space, combining wavelet decompositions and graph-theoretic descriptors, is then refined using mutual information and recursive elimination, enabling interpretable, ultra-lightweight linear classifiers. Validation on the MIT-BIH and INCART datasets yields 98.44% diagnostic accuracy with an 8.54 KB model footprint. The system achieves 0.46 $μ$s classification inference latency within a 52 ms per-beat pipeline, ensuring real-time operation. These outcomes provide an order-of-magnitude efficiency gain over compressed models, such as KD-Light (25 KB, 96.32% accuracy), advancing battery-less cardiac sensors.
☆ SSI-GAN: Semi-Supervised Swin-Inspired Generative Adversarial Networks for Neuronal Spike Classification
Mosquitos are the main transmissive agents of arboviral diseases. Manual classification of their neuronal spike patterns is very labor-intensive and expensive. Most available deep learning solutions require fully labeled spike datasets and highly preprocessed neuronal signals. This reduces the feasibility of mass adoption in actual field scenarios. To address the scarcity of labeled data problems, we propose a new Generative Adversarial Network (GAN) architecture that we call the Semi-supervised Swin-Inspired GAN (SSI-GAN). The Swin-inspired, shifted-window discriminator, together with a transformer-based generator, is used to classify neuronal spike trains and, consequently, detect viral neurotropism. We use a multi-head self-attention model in a flat, window-based transformer discriminator that learns to capture sparser high-frequency spike features. Using just 1 to 3% labeled data, SSI-GAN was trained with more than 15 million spike samples collected at five-time post-infection and recording classification into Zika-infected, dengue-infected, or uninfected categories. Hyperparameters were optimized using the Bayesian Optuna framework, and performance for robustness was validated under fivefold Monte Carlo cross-validation. SSI-GAN reached 99.93% classification accuracy on the third day post-infection with only 3% labeled data. It maintained high accuracy across all stages of infection with just 1% supervision. This shows a 97-99% reduction in manual labeling effort relative to standard supervised approaches at the same performance level. The shifted-window transformer design proposed here beat all baselines by a wide margin and set new best marks in spike-based neuronal infection classification.
☆ Reinforcement-Learned Unequal Error Protection for Quantized Semantic Embeddings
This paper tackles the pressing challenge of preserving semantic meaning in communication systems constrained by limited bandwidth. We introduce a novel reinforcement learning framework that achieves per-dimension unequal error protection via adaptive repetition coding. Central to our approach is a composite semantic distortion metric that balances global embedding similarity with entity-level preservation, empowering the reinforcement learning agent to allocate protection in a context-aware manner. Experiments show statistically significant gains over uniform protection, achieving 6.8% higher chrF scores and 9.3% better entity preservation at 1 dB SNR. The key innovation of our framework is the demonstration that simple, intelligently allocated repetition coding enables fine-grained semantic protection -- an advantage unattainable with conventional codes such as LDPC or Reed-Solomon. Our findings challenge traditional channel coding paradigms by establishing that code structure must align with semantic granularity. This approach is particularly suited to edge computing and IoT scenarios, where bandwidth is scarce, but semantic fidelity is critical, providing a practical pathway for next-generation semantic-aware networks.
☆ Early Prediction of Liver Cirrhosis Up to Three Years in Advance: A Machine Learning Study Benchmarking Against the FIB-4 Score
Objective: Develop and evaluate machine learning (ML) models for predicting incident liver cirrhosis one, two, and three years prior to diagnosis using routinely collected electronic health record (EHR) data, and to benchmark their performance against the FIB-4 score. Methods: We conducted a retrospective cohort study using de-identified EHR data from a large academic health system. Patients with fatty liver disease were identified and categorized into cirrhosis and non-cirrhosis cohorts based on ICD-9/10 codes. Prediction scenarios were constructed using observation and prediction windows to emulate real-world clinical use. Demographics, diagnoses, laboratory results, vital signs, and comorbidity indices were aggregated from the observation window. XGBoost models were trained for 1-, 2-, and 3-year prediction horizons and evaluated on held-out test sets. Model performance was compared with FIB-4 using area under the receiver operating characteristic curve (AUC). Results: Final cohorts included 3,043 patients for the 1-year prediction, 1,981 for the 2-year prediction, and 1,470 for the 3-year prediction. Across all prediction windows, ML models consistently outperformed FIB-4. The XGBoost models achieved AUCs of 0.81, 0.73, and 0.69 for 1-, 2-, and 3-year predictions, respectively, compared with 0.71, 0.63, and 0.57 for FIB-4. Performance gains persisted with longer prediction horizons, indicating improved early risk discrimination. Conclusions: Machine learning models leveraging routine EHR data substantially outperform the traditional FIB-4 score for early prediction of liver cirrhosis. These models enable earlier and more accurate risk stratification and can be integrated into clinical workflows as automated decision-support tools to support proactive cirrhosis prevention and management.
☆ Sequential Reservoir Computing for Efficient High-Dimensional Spatiotemporal Forecasting
Forecasting high-dimensional spatiotemporal systems remains computationally challenging for recurrent neural networks (RNNs) and long short-term memory (LSTM) models due to gradient-based training and memory bottlenecks. Reservoir Computing (RC) mitigates these challenges by replacing backpropagation with fixed recurrent layers and a convex readout optimization, yet conventional RC architectures still scale poorly with input dimensionality. We introduce a Sequential Reservoir Computing (Sequential RC) architecture that decomposes a large reservoir into a series of smaller, interconnected reservoirs. This design reduces memory and computational costs while preserving long-term temporal dependencies. Using both low-dimensional chaotic systems (Lorenz63) and high-dimensional physical simulations (2D vorticity and shallow-water equations), Sequential RC achieves 15-25% longer valid forecast horizons, 20-30% lower error metrics (SSIM, RMSE), and up to three orders of magnitude lower training cost compared to LSTM and standard RNN baselines. The results demonstrate that Sequential RC maintains the simplicity and efficiency of conventional RC while achieving superior scalability for high-dimensional dynamical systems. This approach provides a practical path toward real-time, energy-efficient forecasting in scientific and engineering applications.
☆ Online Finetuning Decision Transformers with Pure RL Gradients
Decision Transformers (DTs) have emerged as a powerful framework for sequential decision making by formulating offline reinforcement learning (RL) as a sequence modeling problem. However, extending DTs to online settings with pure RL gradients remains largely unexplored, as existing approaches continue to rely heavily on supervised sequence-modeling objectives during online finetuning. We identify hindsight return relabeling -- a standard component in online DTs -- as a critical obstacle to RL-based finetuning: while beneficial for supervised learning, it is fundamentally incompatible with importance sampling-based RL algorithms such as GRPO, leading to unstable training. Building on this insight, we propose new algorithms that enable online finetuning of Decision Transformers using pure reinforcement learning gradients. We adapt GRPO to DTs and introduce several key modifications, including sub-trajectory optimization for improved credit assignment, sequence-level likelihood objectives for enhanced stability and efficiency, and active sampling to encourage exploration in uncertain regions. Through extensive experiments, we demonstrate that our methods outperform existing online DT baselines and achieve new state-of-the-art performance across multiple benchmarks, highlighting the effectiveness of pure-RL-based online finetuning for Decision Transformers.
☆ The Weather Paradox: Why Precipitation Fails to Predict Traffic Accident Severity in Large-Scale US Data
This study investigates the predictive capacity of environmental, temporal, and spatial factors on traffic accident severity in the United States. Using a dataset of 500,000 U.S. traffic accidents spanning 2016-2023, we trained an XGBoost classifier optimized through randomized search cross-validation and adjusted for class imbalance via class weighting. The final model achieves an overall accuracy of 78%, with strong performance on the majority class (Severity 2), attaining 87% precision and recall. Feature importance analysis reveals that time of day, geographic location, and weather-related variables, including visibility, temperature, and wind speed, rank among the strongest predictors of accident severity. However, contrary to initial hypotheses, precipitation and visibility demonstrate limited predictive power, potentially reflecting behavioral adaptation by drivers under overtly hazardous conditions. The dataset's predominance of mid-level severity accidents constrains the model's capacity to learn meaningful patterns for extreme cases, highlighting the need for alternative sampling strategies, enhanced feature engineering, and integration of external datasets. These findings contribute to evidence-based traffic management and suggest future directions for severity prediction research.
comment: 11 pages, 8 figures, 0 tables. Preprint, machine learning analysis of 500,000 US traffic accidents
♻ ☆ Machine Learnability as a Measure of Order in Aperiodic Sequences
Research on the distribution of prime numbers has revealed a dual character: deterministic in definition yet exhibiting statistical behavior reminiscent of random processes. In this paper we show that it is possible to use an image-focused machine learning model to measure the comparative regularity of prime number fields at specific regions of an Ulam spiral. Specifically, we demonstrate that in pure accuracy terms, models trained on blocks extracted from regions of the spiral in the vicinity of 500m outperform models trained on blocks extracted from the region representing integers lower than 25m. This implies existence of more easily learnable order in the former region than in the latter. Moreover, a detailed breakdown of precision and recall scores seem to imply that the model is favouring a different approach to classification in different regions of the spiral, focusing more on identifying prime patterns at lower numbers and more on eliminating composites at higher numbers. This aligns with number theory conjectures suggesting that at higher orders of magnitude we should see diminishing noise in prime number distributions, with averages (density, AP equidistribution) coming to dominate, while local randomness regularises after scaling by log x. Taken together, these findings point toward an interesting possibility: that machine learning can serve as a new experimental instrument for number theory. Notably, the method shows potential 1 for investigating the patterns in strong and weak primes for cryptographic purposes.
♻ ☆ An Analytical and AI-discovered Stable, Accurate, and Generalizable Subgrid-scale Closure for Geophysical Turbulence
By combining AI and fluid physics, we discover a closed-form closure for 2D turbulence from small direct numerical simulation (DNS) data. Large-eddy simulation (LES) with this closure is accurate and stable, reproducing DNS statistics including those of extremes. We also show that the new closure could be derived from a 4th-order truncated Taylor expansion. Prior analytical and AI-based work only found the 2nd-order expansion, which led to unstable LES. The additional terms emerge only when inter-scale energy transfer is considered alongside standard reconstruction criterion in the sparse-equation discovery.
comment: Main manuscript: 6 pages, 3 figures; End Matter: 1 page, 1 figure; Supplementary Information: 7 pages, 5 figures, 2 tables
♻ ☆ A Gaussian Process View on Observation Noise and Initialization in Wide Neural Networks
Performing gradient descent in a wide neural network is equivalent to computing the posterior mean of a Gaussian Process with the Neural Tangent Kernel (NTK-GP), for a specific prior mean and with zero observation noise. However, existing formulations have two limitations: (i) the NTK-GP assumes noiseless targets, leading to misspecification on noisy data; (ii) the equivalence does not extend to arbitrary prior means, which are essential for well-specified models. To address (i), we introduce a regularizer into the training objective, showing its correspondence to incorporating observation noise in the NTK-GP. To address (ii), we propose a \textit{shifted network} that enables arbitrary prior means and allows obtaining the posterior mean with gradient descent on a single network, without ensembling or kernel inversion. We validate our results with experiments across datasets and architectures, showing that this approach removes key obstacles to the practical use of NTK-GP equivalence in applied Gaussian process modeling.
comment: Work in progress
♻ ☆ Towards Acyclic Preference Evaluation of Language Models via Multiple Evaluators
Despite the remarkable success of Large Language Models (LLMs), evaluating their outputs' quality regarding preference remains a critical challenge. While existing works usually leverage a strong LLM as the judge for comparing LLMs' response pairwisely, such a single-evaluator approach is vulnerable to cyclic preference, i.e., output A is better than B, B than C, but C is better than A, causing contradictory evaluation results. To address this, we introduce PGED (Preference Graph Ensemble and Denoising), a novel approach that leverages multiple model-based evaluators to construct preference graphs, and then ensembles and denoises these graphs for acyclic, non-contradictory evaluation results. We provide theoretical guarantees for our framework, demonstrating its efficacy in recovering the ground truth preference structure. Extensive experiments on ten benchmarks demonstrate PGED's superiority in three applications: 1) model ranking for evaluation, 2) response selection for test-time scaling, and 3) data selection for model fine-tuning. Notably, PGED combines small LLM evaluators (e.g., Llama3-8B, Mistral-7B, Qwen2-7B) to outperform strong ones (e.g., Qwen2-72B), showcasing its effectiveness in enhancing evaluation reliability and improving model performance.
♻ ☆ Why Do Multilingual Reasoning Gaps Emerge in Reasoning Language Models?
Reasoning language models (RLMs) achieve strong performance on complex reasoning tasks, yet they still exhibit a multilingual reasoning gap, performing better in high-resource languages than in low-resource ones. While recent efforts have been made to address this gap, its underlying causes remain largely unexplored. In this work, we show that this gap primarily stems from failures in language understanding-specifically, the model's inability to translate multilingual inputs into the language dominating its reasoning traces (typically English). As identifying understanding failures can enable targeted mitigation of the gap, we evaluate a range of detection methods and find that understanding failures are detectable to a meaningful extent, with supervised approaches performing best. Building on this, we propose Selective Translation, a strategy that incorporates an English translation into the initial reasoning trace only when an understanding failure is detected. Experimental results using Qwen3-4B show that Selective Translation substantially bridges the multilingual reasoning gap, achieving near full-translation performance while translating only about 20% of inputs. Together, our results show that failures in language understanding are the primary driver of the multilingual reasoning gap and can be detected and selectively mitigated, clarifying its origin and suggesting a path toward more equitable multilingual reasoning. Our code and data are publicly available at https://github.com/deokhk/RLM_analysis
comment: v2: Fix typos and updated contents
♻ ☆ Evolutionary Optimization of Physics-Informed Neural Networks: Advancing Generalizability by the Baldwin Effect
Physics-informed neural networks (PINNs) are at the forefront of scientific machine learning, making possible the creation of machine intelligence that is cognizant of physical laws and able to accurately simulate them. However, today's PINNs are often trained for a single physics task and require computationally expensive re-training for each new task, even for tasks from similar physics domains. To address this limitation, this paper proposes a pioneering approach to advance the generalizability of PINNs through the framework of Baldwinian evolution. Drawing inspiration from the neurodevelopment of precocial species that have evolved to learn, predict and react quickly to their environment, we envision PINNs that are pre-wired with connection strengths inducing strong biases towards efficient learning of physics. A novel two-stage stochastic programming formulation coupling evolutionary selection pressure (based on proficiency over a distribution of physics tasks) with lifetime learning (to specialize on a sampled subset of those tasks) is proposed to instantiate the Baldwin effect. The evolved Baldwinian-PINNs demonstrate fast and physics-compliant prediction capabilities across a range of empirically challenging problem instances with more than an order of magnitude improvement in prediction accuracy at a fraction of the computation cost compared to state-of-the-art gradient-based meta-learning methods. For example, when solving the diffusion-reaction equation, a 70x improvement in accuracy was obtained while taking 700x less computational time. This paper thus marks a leap forward in the meta-learning of PINNs as generalizable physics solvers. Sample codes are available at https://github.com/chiuph/Baldwinian-PINN.
comment: Accepted for publication in IEEE Transactions on Evolutionary Computation
♻ ☆ Fair Domain Generalization: An Information-Theoretic View AAAI
Domain generalization (DG) and algorithmic fairness are two critical challenges in machine learning. However, most DG methods focus only on minimizing expected risk in the unseen target domain without considering algorithmic fairness. Conversely, fairness methods typically do not account for domain shifts, so the fairness achieved during training may not generalize to unseen test domains. In this work, we bridge these gaps by studying the problem of Fair Domain Generalization (FairDG), which aims to minimize both expected risk and fairness violations in unseen target domains. We derive novel mutual information-based upper bounds for expected risk and fairness violations in multi-class classification tasks with multi-group sensitive attributes. These bounds provide key insights for algorithm design from an information-theoretic perspective. Guided by these insights, we introduce PAFDG (Pareto-Optimal Fairness for Domain Generalization), a practical framework that solves the FairDG problem and models the utility-fairness trade-off through Pareto optimization. Experiments on real-world vision and language datasets show that PAFDG achieves superior utility-fairness trade-offs compared to existing methods.
comment: Accepted at AAAI (Oral)
♻ ☆ Personalized Federated Heat-Kernel Enhanced Multi-View Clustering via Advanced Tensor Decomposition Techniques
This paper introduces mathematical frameworks that address the challenges of multi-view clustering in federated learning environments. The objective is to integrate optimization techniques based on new objective functions employing heat-kernel coefficients to replace conventional distance metrics with quantum-inspired measures. The proposed frameworks utilize advanced tensor decomposition methods, specifically, PARAFAC2 and Tucker decomposition to efficiently represent high-dimensional, multi-view data while preserving inter-view relationships. The research has yielded the development of four novel algorithms, an efficient federated kernel multi-view clustering (E-FKMVC) model, FedHK-PARAFAC2, FedHK-Tucker, and FedHK-MVC-Person with PARAFAC2 Decomposition (Personalized FedHK-PARAFAC2). The primary objective of these algorithms is to enhance the efficacy of clustering processes while ensuring the confidentiality and efficient communication in federated learning environments. Theoretical analyses of convergence guarantees, privacy bounds, and complexity are provided to validate the effectiveness of the proposed methods. In essence, this paper makes a significant academic contribution to the field of federated multi-view clustering through its innovative integration of mathematical modeling and algorithm design. This approach addresses the critical challenges of data heterogeneity and privacy concerns, paving the way for enhanced data management and analytics in various contexts.
comment: 37 pages, 4 algorithms, 5 tables, and 5 figures
♻ ☆ Evolutionary Optimization of Physics-Informed Neural Networks: Evo-PINN Frontiers and Opportunities
Deep learning models trained on finite data lack a complete understanding of the physical world. On the other hand, physics-informed neural networks (PINNs) are infused with such knowledge through the incorporation of mathematically expressible laws of nature into their training loss function. By complying with physical laws, PINNs provide advantages over purely data-driven models in limited-data regimes and present as a promising route towards Physical AI. This feature has propelled them to the forefront of scientific machine learning, a domain characterized by scarce and costly data. However, the vision of accurate physics-informed learning comes with significant challenges. This work examines PINNs in terms of model optimization and generalization, shedding light on the need for new algorithmic advances to overcome issues pertaining to the training speed, precision, and generalizability of today's PINN models. Of particular interest are gradient-free evolutionary algorithms (EAs) for optimizing the uniquely complex loss landscapes arising in PINN training. Methods synergizing gradient descent and EAs for discovering bespoke neural architectures and balancing multiple terms in physics-informed learning objectives are positioned as important avenues for future research. Another exciting track is to cast EAs as a meta-learner of generalizable PINN models. To substantiate these proposed avenues, we further highlight results from recent literature to showcase the early success of such approaches in addressing the aforementioned challenges in PINN optimization and generalization.
comment: Accepted for publication in IEEE Computational Intelligence Magazine
♻ ☆ Density-Based Algorithms for Corruption-Robust Contextual Search and Convex Optimization COLT22
We study the problem of contextual search, a generalization of binary search in higher dimensions, in the adversarial noise model. Let $d$ be the dimension of the problem, $T$ be the time horizon and $C$ be the total amount of adversarial noise in the system. We focus on the $ε$-ball and the symmetric loss. For the $ε$-ball loss, we give a tight regret bound of $O(C + d \log(1/ε))$ improving over the $O(d^3 \log(1/ε) \log^2(T) + C \log(T) \log(1/ε))$ bound of Krishnamurthy et al (Operations Research '23). For the symmetric loss, we give an efficient algorithm with regret $O(C+d \log T)$. To tackle the symmetric loss case, we study the more general setting of Corruption-Robust Convex Optimization with Subgradient feedback, which is of independent interest. Our techniques are a significant departure from prior approaches. Specifically, we keep track of density functions over the candidate target vectors instead of a knowledge set consisting of the candidate target vectors consistent with the feedback obtained.
comment: Extended abstract accepted at COLT22. This is a significantly updated version
♻ ☆ Survey of Data-driven Newsvendor: Unified Analysis and Spectrum of Achievable Regrets
In the Newsvendor problem, the goal is to guess the number that will be drawn from some distribution, with asymmetric consequences for guessing too high vs. too low. In the data-driven version, the distribution is unknown, and one must work with samples from the distribution. Data-driven Newsvendor has been studied under many variants: additive vs. multiplicative regret, high probability vs. expectation bounds, and different distribution classes. This paper studies all combinations of these variants, filling in many gaps in the literature and simplifying many proofs. In particular, we provide a unified analysis based on the notion of clustered distributions, which in conjunction with our new lower bounds, shows that the entire spectrum of regrets between $1/\sqrt{n}$ and $1/n$ can be possible. Simulations on commonly-used distributions demonstrate that our notion is the "correct" predictor of empirical regret across varying data sizes.
comment: Forthcoming in Operations Research
♻ ☆ Scaling Patterns in Adversarial Alignment: Evidence from Multi-LLM Jailbreak Experiments
Large language models (LLMs) increasingly operate in multi-agent and safety-critical settings, raising open questions about how their vulnerabilities scale when models interact adversarially. This study examines whether larger models can systematically jailbreak smaller ones - eliciting harmful or restricted behavior despite alignment safeguards. Using standardized adversarial tasks from JailbreakBench, we simulate over 6,000 multi-turn attacker-target exchanges across major LLM families and scales (0.6B-120B parameters), measuring both harm score and refusal behavior as indicators of adversarial potency and alignment integrity. Each interaction is evaluated through aggregated harm and refusal scores assigned by three independent LLM judges, providing a consistent, model-based measure of adversarial outcomes. Aggregating results across prompts, we find a strong and statistically significant correlation between mean harm and the logarithm of the attacker-to-target size ratio (Pearson r = 0.51, p < 0.001; Spearman rho = 0.52, p < 0.001), indicating that relative model size correlates with the likelihood and severity of harmful completions. Mean harm score variance is higher across attackers (0.18) than across targets (0.10), suggesting that attacker-side behavioral diversity contributes more to adversarial outcomes than target susceptibility. Attacker refusal frequency is strongly and negatively correlated with harm (rho = -0.93, p < 0.001), showing that attacker-side alignment mitigates harmful responses. These findings reveal that size asymmetry influences robustness and provide exploratory evidence for adversarial scaling patterns, motivating more controlled investigations into inter-model alignment and safety.
♻ ☆ GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
We present GLM-4.1V-Thinking, GLM-4.5V, and GLM-4.6V, a family of vision-language models (VLMs) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document interpretation. In a comprehensive evaluation across 42 public benchmarks, GLM-4.5V achieves state-of-the-art performance on nearly all tasks among open-source models of similar size, and demonstrates competitive or even superior results compared to closed-source models such as Gemini-2.5-Flash on challenging tasks including Coding and GUI Agents. Meanwhile, the smaller GLM-4.1V-9B-Thinking remains highly competitive-achieving superior results to the much larger Qwen2.5-VL-72B on 29 benchmarks. We open-source both GLM-4.1V-9B-Thinking and GLM-4.5V. We further introduce the GLM-4.6V series, open-source multimodal models with native tool use and a 128K context window. A brief overview is available at https://z.ai/blog/glm-4.6v. Code, models and more information are released at https://github.com/zai-org/GLM-V.
♻ ☆ Feature-Modulated UFNO for Improved Prediction of Multiphase Flow in Porous Media
The UNet-enhanced Fourier Neural Operator (UFNO) extends the Fourier Neural Operator (FNO) by incorporating a parallel UNet pathway, enabling the retention of both high- and low-frequency components. While UFNO improves predictive accuracy over FNO, it inefficiently treats scalar inputs (e.g., temperature, injection rate) as spatially distributed fields by duplicating their values across the domain. This forces the model to process redundant constant signals within the frequency domain. Additionally, its standard loss function does not account for spatial variations in error sensitivity, limiting performance in regions of high physical importance. We introduce UFNO-FiLM, an enhanced architecture that incorporates two key innovations. First, we decouple scalar inputs from spatial features using a Feature-wise Linear Modulation (FiLM) layer, allowing the model to modulate spatial feature maps without introducing constant signals into the Fourier transform. Second, we employ a spatially weighted loss function that prioritizes learning in critical regions. Our experiments on subsurface multiphase flow demonstrate a 21\% reduction in gas saturation Mean Absolute Error (MAE) compared to UFNO, highlighting the effectiveness of our approach in improving predictive accuracy.
♻ ☆ Weighted Conditional Flow Matching
Conditional flow matching (CFM) has emerged as a powerful framework for training continuous normalizing flows due to its computational efficiency and effectiveness. However, standard CFM often produces paths that deviate significantly from straight-line interpolations between prior and target distributions, making generation slower and less accurate due to the need for fine discretization at inference. Recent methods enhance CFM performance by inducing shorter and straighter trajectories but typically rely on computationally expensive mini-batch optimal transport (OT). Drawing insights from entropic optimal transport (EOT), we propose Weighted Conditional Flow Matching (W-CFM), a novel approach that modifies the classical CFM loss by weighting each training pair $(x, y)$ with a Gibbs kernel. We show that this weighting recovers the entropic OT coupling up to some bias in the marginals, and we provide the conditions under which the marginals remain nearly unchanged. Moreover, we establish an equivalence between W-CFM and the minibatch OT method in the large-batch limit, showing how our method overcomes computational and performance bottlenecks linked to batch size. Empirically, we test our method on unconditional generation on various synthetic and real datasets, confirming that W-CFM achieves comparable or superior sample quality, fidelity, and diversity to other alternative baselines while maintaining the computational efficiency of vanilla CFM.
comment: Working paper. Changes to generalize the framework
♻ ☆ Coordinate Matrix Machine: A Human-level Concept Learning to Classify Very Similar Documents
Human-level concept learning argues that humans typically learn new concepts from a single example, whereas machine learning algorithms typically require hundreds of samples to learn a single concept. Our brain subconsciously identifies important features and learns more effectively. Contribution: In this paper, we present the Coordinate Matrix Machine (CM$^2$). This purpose-built small model augments human intelligence by learning document structures and using this information to classify documents. While modern "Red AI" trends rely on massive pre-training and energy-intensive GPU infrastructure, CM$^2$ is designed as a Green AI solution. It achieves human-level concept learning by identifying only the structural "important features" a human would consider, allowing it to classify very similar documents using only one sample per class. Advantage: Our algorithm outperforms traditional vectorizers and complex deep learning models that require larger datasets and significant compute. By focusing on structural coordinates rather than exhaustive semantic vectors, CM$^2$ offers: 1. High accuracy with minimal data (one-shot learning) 2. Geometric and structural intelligence 3. Green AI and environmental sustainability 4. Optimized for CPU-only environments 5. Inherent explainability (glass-box model) 6. Faster computation and low latency 7. Robustness against unbalanced classes 8. Economic viability 9. Generic, expandable, and extendable
comment: 16 pages, 3 figures
♻ ☆ KANO: Kolmogorov-Arnold Neural Operator
We introduce Kolmogorov--Arnold Neural Operator (KANO), a dual-domain neural operator jointly parameterized by both spectral and spatial bases with intrinsic symbolic interpretability. We theoretically demonstrate that KANO overcomes the pure-spectral bottleneck of Fourier Neural Operator (FNO): KANO remains expressive over generic position-dependent dynamics (variable coefficient PDEs) for any physical input, whereas FNO stays practical only for spectrally sparse operators and strictly imposes a fast-decaying input Fourier tail. We verify our claims empirically on position-dependent differential operators, for which KANO robustly generalizes but FNO fails to. In the quantum Hamiltonian learning benchmark, KANO reconstructs ground-truth Hamiltonians in closed-form symbolic representations accurate to the fourth decimal place in coefficients and attains $\approx 6\times10^{-6}$ state infidelity from projective measurement data, substantially outperforming that of the FNO trained with ideal full wave function data, $\approx 1.5\times10^{-2}$, by orders of magnitude.
♻ ☆ Through a Compressed Lens: Investigating The Impact of Quantization on Factual Knowledge Recall
Quantization methods are widely used to accelerate inference and streamline the deployment of large language models (LLMs). Although quantization's effects on various LLM capabilities have been extensively studied, one critical area remains underexplored: factual knowledge recall (FKR), the process by which LLMs access stored knowledge. To this end, we conduct comprehensive experiments using three common quantization techniques at distinct bit widths, in conjunction with interpretability-driven analyses on two tasks, knowledge memorization and latent multi-hop reasoning. We show that quantization typically results in information loss within LLMs, consequently diminishing their capacity for FKR. This effect is particularly amplified in smaller models within the same architectural families. However, models quantized at reduced bit precision do not consistently exhibit inferior performance and occasionally quantization may even enhance model FKR. We find that BitSandBytes demonstrates highest preservation of the original full-precision model's FKR. Despite variability across models and methods, quantization causes modest performance degradation and remains an effective compression strategy.
comment: In submission
♻ ☆ From Continual Learning to SGD and Back: Better Rates for Continual Linear Models ALT 2026
We study the common continual learning setup where an overparameterized model is sequentially fitted to a set of jointly realizable tasks. We analyze forgetting, defined as the loss on previously seen tasks, after $k$ iterations. For continual linear models, we prove that fitting a task is equivalent to a single stochastic gradient descent (SGD) step on a modified objective. We develop novel last-iterate SGD upper bounds in the realizable least squares setup and leverage them to derive new results for continual learning. Focusing on random orderings over $T$ tasks, we establish universal forgetting rates, whereas existing rates depend on problem dimensionality or complexity and become prohibitive in highly overparameterized regimes. In continual regression with replacement, we improve the best existing rate from $O((d-\bar{r})/k)$ to $O(\min(1/\sqrt[4]{k}, \sqrt{(d-\bar{r})}/k, \sqrt{T\bar{r}}/k))$, where $d$ is the dimensionality and $\bar{r}$ the average task rank. Furthermore, we establish the first rate for random task orderings without replacement. The resulting rate $O(\min(1/\sqrt[4]{T},\, (d-\bar{r})/T))$ shows that randomization alone, without task repetition, prevents catastrophic forgetting in sufficiently long task sequences. Finally, we prove a matching $O(1/\sqrt[4]{k})$ forgetting rate for continual linear classification on separable data. Our universal rates extend to broader methods, such as block Kaczmarz and POCS, illuminating their loss convergence under i.i.d. and single-pass orderings.
comment: Accepted to ALT 2026
♻ ☆ Homogenization with Guaranteed Bounds via Primal-Dual Physically Informed Neural Networks
Physics-informed neural networks (PINNs) have shown promise in solving partial differential equations (PDEs) relevant to multiscale modeling, but they often fail when applied to materials with discontinuous coefficients, such as media with piecewise constant properties. This paper introduces a dual formulation for the PINN framework to improve the reliability of the homogenization of periodic thermo-conductive composites, for both strong and variational (weak) formulations. The dual approach facilitates the derivation of guaranteed upper and lower error bounds, enabling more robust detection of PINN failure. We compare standard PINNs applied to smoothed material approximations with variational PINNs (VPINNs) using both spectral and neural network-based test functions. Our results indicate that while strong-form PINNs may outperform VPINNs in controlled settings, they are sensitive to material discontinuities and may fail without clear diagnostics. In contrast, VPINNs accommodate piecewise constant material parameters directly but require careful selection of test functions to avoid instability. Dual formulation serves as a reliable indicator of convergence quality, and its integration into PINN frameworks enhances their applicability to homogenization problems in micromechanics.
♻ ☆ A New Flexible Train-Test Split Algorithm, an approach for choosing among the Hold-out, K-fold cross-validation, and Hold-out iteration
Choosing an appropriate strategy for partitioning data into training and evaluation sets is a critical step in machine learning, yet validation methods are often selected using default or conventional settings without considering their impact on generalizability and real-world performance. Common approaches such as hold-out validation or k-fold cross-validation with fixed k values are frequently applied based solely on empirical practice. To address this issue, we propose a flexible Python-based framework that systematically examines how different validation strategies affect predictive performance across seven widely used machine learning algorithms, including Decision Trees, K-Nearest Neighbors, Naive Bayes variants, Logistic Regression, calibrated linear Support Vector Machines, and histogram-based gradient boosting. The framework evaluates these methods under a wide range of validation schemes, including hold-out splits from 10% to 90%, k-fold cross-validation with k between 3 and 15, repeated hold-out, and nested cross-validation. The framework is applied to three biomedical datasets of varying size, and performance is assessed using ROC-AUC, accuracy, and the Matthews correlation coefficient. The results show that no single validation strategy consistently outperforms others across all algorithms and datasets, indicating that optimal validation depends on the interaction between the algorithm, dataset characteristics, and evaluation metric.
♻ ☆ 70% Size, 100% Accuracy: Lossless LLM Compression for Efficient GPU Inference via Dynamic-Length Float (DFloat11) NeurIPS 2025
Large-scale AI models, such as Large Language Models (LLMs) and Diffusion Models (DMs), have grown rapidly in size, creating significant challenges for efficient deployment on resource-constrained hardware. In this paper, we introduce Dynamic-Length Float (DFloat11), a lossless compression framework that reduces LLM and DM size by 30% while preserving outputs that are bit-for-bit identical to the original model. DFloat11 is motivated by the low entropy in the BFloat16 weight representation of LLMs, which reveals significant inefficiency in the existing storage format. By applying entropy coding, DFloat11 assigns dynamic-length encodings to weights based on frequency, achieving near information-optimal compression without any loss of precision. To facilitate efficient inference with dynamic-length encodings, we develop a custom GPU kernel for fast online decompression. Our design incorporates the following: (i) compact, hierarchical lookup tables (LUTs) that fit within GPU SRAM for efficient decoding, (ii) a two-phase GPU kernel for coordinating thread read/write positions using lightweight auxiliary variables, and (iii) transformer-block-level decompression to minimize latency. Experiments on Llama 3.3, Qwen 3, Mistral 3, FLUX.1, and others validate our hypothesis that DFloat11 achieves around 30% model size reduction while preserving bit-for-bit identical outputs. Compared to a potential alternative of offloading parts of an uncompressed model to the CPU to meet memory constraints, DFloat11 achieves 2.3--46.2x higher throughput in token generation. With a fixed GPU memory budget, DFloat11 enables 5.7--14.9x longer generation lengths than uncompressed models. Notably, our method enables lossless inference of Llama 3.1 405B, an 810GB model, on a single node equipped with 8x80GB GPUs.
comment: Published in NeurIPS 2025
♻ ☆ LeanQuant: Accurate and Scalable Large Language Model Quantization with Loss-error-aware Grid ICLR 2025
Large language models (LLMs) have shown immense potential across various domains, but their high memory requirements and inference costs remain critical challenges for deployment. Post-training quantization (PTQ) has emerged as a promising technique to reduce memory requirements and decoding latency. However, recent accurate quantization methods often depend on specialized computations or custom data formats to achieve better model quality, which limits their compatibility with popular frameworks, as they require dedicated inference kernels tailored to specific hardware and software platforms, hindering wider adoption. Furthermore, many competitive methods have high resource requirements and computational overhead for quantizing models, making it challenging to scale them to hundreds of billions of parameters. In response to these challenges, we propose LeanQuant (Loss-Error-Aware Network Quantization), a novel quantization method that is accurate, versatile, and scalable. In the existing popular iterative loss-error-based quantization framework, we identify a critical limitation in prior methods: the min-max affine quantization grid fails to preserve model quality due to outliers in inverse Hessian diagonals. To overcome this fundamental issue, we propose learning loss-error-aware grids, instead of using non-adaptive min-max affine grids. Our approach not only produces quantized models that are more accurate but also generalizes to a wider range of quantization types, including affine and non-uniform quantization, enhancing compatibility with more frameworks. Extensive experiments with recent LLMs demonstrate that LeanQuant is highly accurate, comparing favorably against competitive baselines in model quality, and scalable, achieving very accurate quantization of Llama-3.1 405B, one of the largest open-source LLMs to date, using two Quadro RTX 8000-48GB GPUs in 21 hours.
comment: Published in ICLR 2025
♻ ☆ PTQTP: Post-Training Quantization to Trit-Planes for Large Language Models
Post-training quantization (PTQ) of large language models (LLMs) to extremely low bit-widths remains challenging due to the fundamental trade-off between computational efficiency and representational capacity. While existing ultra-low-bit methods rely on binary approximations or quantization-aware training(QAT), they often suffer from either limited representational capacity or huge training resource overhead. We introduce PTQ to Trit-Planes (PTQTP), a structured PTQ framework that decomposes weight matrices into dual ternary {-1, 0, 1} trit-planes. This approach achieves multiplication-free additive inference by decoupling weights into discrete topology (trit-planes) and continuous magnitude (scales), effectively enabling high-fidelity sparse approximation. PTQTP provides: (1) a theoretically grounded progressive approximation algorithm ensuring global weight consistency; (2) model-agnostic deployment without architectural modifications; and (3) uniform ternary operations that eliminate mixed-precision overhead. Comprehensive experiments on LLaMA3.x and Qwen3 (0.6B-70B) demonstrate that PTQTP significantly outperforms sub-4bit PTQ methods on both language reasoning tasks and mathematical reasoning as well as coding. PTQTP rivals the 1.58-bit QAT performance while requiring only single-hour quantization compared to 10-14 GPU days for training-based methods, and the end-to-end inference speed achieves 4.63$\times$ faster than the FP16 baseline model, establishing a new and practical solution for efficient LLM deployment in resource-constrained environments. Code will available at https://github.com/HeXiao-55/PTQTP.
comment: Ternary Quantization, Under review
♻ ☆ Sketch to Adapt: Fine-Tunable Sketches for Efficient LLM Adaptation ICML 2025
Adapting pre-trained large language models (LLMs) is crucial but challenging due to their enormous size. Parameter-efficient fine-tuning (PEFT) techniques typically employ additive adapters applied to frozen model weights. To further reduce memory usage, model weights are often compressed through quantization. However, existing PEFT methods often yield suboptimal model quality because they rely on restrictive assumptions, such as low-rank constraints on adapters to limit the number of trainable parameters. We find that sketching, a popular data compression technique, can serve as an efficient LLM adaptation strategy while avoiding the low-rank assumption. We introduce SketchTune, a compressive adaptation strategy that compresses LLM weights into compact fine-tunable sketches, integrating compression and adaptation into a unified framework. This integration eliminates the need for complex two-path computation in existing PEFT techniques, enabling faster and more memory-efficient training and inference. SketchTune is supported by mathematical insights into matrix classes that are better approximated using sketching rather than low-rank methods. Our extensive evaluations with Llama and Mistral models demonstrate that SketchTune outperforms leading PEFT methods across diverse tasks while using substantially smaller base models and comparable trainable parameters. As a highlight, SketchTune outperforms LoRA, DoRA, and S2FT on commonsense and math benchmarks using 2.6-3.5$\times$ smaller base models and exceeds LoftQ in accuracy by 14.48% on GSM8K with 7.3$\times$ fewer trainable parameters. Our code is available at https://github.com/LeanModels/SketchTune.
comment: Published in ICML 2025
♻ ☆ Support Vector Machine Kernels as Quantum Propagators
Selecting optimal kernels for regression in physical systems remains a challenge, often relying on trial-and-error with standard functions. In this work, we establish a mathematical correspondence between support vector machine kernels and quantum propagators, demonstrating that kernel efficacy is determined by its spectral alignment with the system's Green's function. Based on this isomorphism, we propose a unified, physics-informed framework for kernel selection and design. For systems with known propagator forms, we derive analytical selection rules that map standard kernels to physical operators. For complex systems where the Green's function is analytically intractable, we introduce a constructive numerical method using the Kernel Polynomial Method with Jackson smoothing to generate custom, physics-aligned kernels. Numerical experiments spanning electrical conductivity, electronic band structure, anharmonic oscillators, and photonic crystals demonstrate that this framework consistently performs well as long as there is an alignment with a Green's function.
comment: Updated version, 17 pages, 7 figures
♻ ☆ Streaming Sliced Optimal Transport
Sliced optimal transport (SOT), or sliced Wasserstein (SW) distance, is widely recognized for its statistical and computational scalability. In this work, we further enhance computational scalability by proposing the first method for estimating SW from sample streams, called \emph{streaming sliced Wasserstein} (Stream-SW). To define Stream-SW, we first introduce a streaming estimator of the one-dimensional Wasserstein distance (1DW). Since the 1DW has a closed-form expression, given by the absolute difference between the quantile functions of the compared distributions, we leverage quantile approximation techniques for sample streams to define a streaming 1DW estimator. By applying the streaming 1DW to all projections, we obtain Stream-SW. The key advantage of Stream-SW is its low memory complexity while providing theoretical guarantees on the approximation error. We demonstrate that Stream-SW achieves a more accurate approximation of SW than random subsampling, with lower memory consumption, when comparing Gaussian distributions and mixtures of Gaussians from streaming samples. Additionally, we conduct experiments on point cloud classification, point cloud gradient flows, and streaming change point detection to further highlight the favorable performance of the proposed Stream-SW
comment: 28 pages, 9 figures, 3 tables
♻ ☆ Asynchronous Fractional Multi-Agent Deep Reinforcement Learning for Age-Minimal Mobile Edge Computing
In the realm of emerging real-time networked applications such as cyber-physical systems (CPS), the Age of Information (AoI) has emerged as a pivotal metric for evaluating timeliness. To meet the high computational demands, such as those in smart manufacturing within CPS, mobile edge computing (MEC) presents a promising solution for optimizing computing and reducing AoI. In this work, we study the timeliness of compute-intensive updates and explore jointly optimizing the task updating (when to generate a task) and offloading (where to process a task) policies to minimize AoI. Specifically, we consider edge load dynamics and formulate a task scheduling problem to minimize the expected time-average AoI. Solving this problem is challenging due to the fractional objective introduced by AoI and the asynchronous decision-making of the semi-Markov game (SMG). To this end, we propose a fractional reinforcement learning (RL) framework. We begin by introducing a fractional single-agent RL framework and establish its linear convergence rate. Building on this, we develop a fractional multi-agent RL framework, extend Dinkelbach's method, and demonstrate its equivalence to the inexact Newton's method. Furthermore, we provide the conditions under which the framework achieves linear convergence to the Nash equilibrium (NE). To tackle the challenge of asynchronous decision-making in the SMG, we further design an asynchronous model-free fractional multi-agent RL algorithm, where each mobile device can determine the task updating and offloading decisions without knowing the real-time system dynamics and decisions of other devices. Experimental results show that when compared with the best existing baseline algorithm, our proposed algorithm reduces the average AoI by up to 50.6%.
♻ ☆ AutoTrust: Benchmarking Trustworthiness in Large Vision Language Models for Autonomous Driving
Recent advancements in large vision language models (VLMs) tailored for autonomous driving (AD) have shown strong scene understanding and reasoning capabilities, making them undeniable candidates for end-to-end driving systems. However, limited work exists on studying the trustworthiness of DriveVLMs -- a critical factor that directly impacts public transportation safety. In this paper, we introduce AutoTrust, a comprehensive trustworthiness benchmark for large vision-language models in autonomous driving (DriveVLMs), considering diverse perspectives -- including trustfulness, safety, robustness, privacy, and fairness. We constructed the largest visual question-answering dataset for investigating trustworthiness issues in driving scenarios, comprising over 10k unique scenes and 18k queries. We evaluated six publicly available VLMs, spanning from generalist to specialist, from open-source to commercial models. Our exhaustive evaluations have unveiled previously undiscovered vulnerabilities of DriveVLMs to trustworthiness threats. Specifically, we found that the general VLMs like LLaVA-v1.6 and GPT-4o-mini surprisingly outperform specialized models fine-tuned for driving in terms of overall trustworthiness. DriveVLMs like DriveLM-Agent are particularly vulnerable to disclosing sensitive information. Additionally, both generalist and specialist VLMs remain susceptible to adversarial attacks and struggle to ensure unbiased decision-making across diverse environments and populations. Our findings call for immediate and decisive action to address the trustworthiness of DriveVLMs -- an issue of critical importance to public safety and the welfare of all citizens relying on autonomous transportation systems. We release all the codes and datasets in https://github.com/taco-group/AutoTrust.
comment: Published at TMLR 2025
♻ ☆ Information-Theoretic Quality Metric of Low-Dimensional Embeddings
In this work we study the quality of low-dimensional embeddings from an explicitly information-theoretic perspective. We begin by noting that classical evaluation metrics such as stress, rank-based neighborhood criteria, or Local Procrustes quantify distortions in distances or in local geometries, but do not directly assess how much information is preserved when projecting high-dimensional data onto a lower-dimensional space. To address this limitation, we introduce the Entropy Rank Preservation Measure (ERPM), a local metric based on the Shannon entropy of the singular-value spectrum of neighborhood matrices and on the stable rank, which quantifies changes in uncertainty between the original representation and its reduced projection, providing neighborhood-level indicators and a global summary statistic. To validate the results of the metric, we compare its outcomes with the Mean Relative Rank Error (MRRE), which is distance-based, and with Local Procrustes, which is based on geometric properties, using a financial time series and a manifold commonly studied in the literature. We observe that distance-based criteria exhibit very low correlation with geometric and spectral measures, while ERPM and Local Procrustes show strong average correlation but display significant discrepancies in local regimes, leading to the conclusion that ERPM complements existing metrics by identifying neighborhoods with severe information loss, thereby enabling a more comprehensive assessment of embeddings, particularly in information-sensitive applications such as the construction of early-warning indicators.
comment: 18 pages, 6 figures, submitted to Machine Learning (Springer Nature)
Artificial Intelligence 72
☆ MotionPhysics: Learnable Motion Distillation for Text-Guided Simulation AAAI2026
Accurately simulating existing 3D objects and a wide variety of materials often demands expert knowledge and time-consuming physical parameter tuning to achieve the desired dynamic behavior. We introduce MotionPhysics, an end-to-end differentiable framework that infers plausible physical parameters from a user-provided natural language prompt for a chosen 3D scene of interest, removing the need for guidance from ground-truth trajectories or annotated videos. Our approach first utilizes a multimodal large language model to estimate material parameter values, which are constrained to lie within plausible ranges. We further propose a learnable motion distillation loss that extracts robust motion priors from pretrained video diffusion models while minimizing appearance and geometry inductive biases to guide the simulation. We evaluate MotionPhysics across more than thirty scenarios, including real-world, human-designed, and AI-generated 3D objects, spanning a wide range of materials such as elastic solids, metals, foams, sand, and both Newtonian and non-Newtonian fluids. We demonstrate that MotionPhysics produces visually realistic dynamic simulations guided by natural language, surpassing the state of the art while automatically determining physically plausible parameters. The code and project page are available at: https://wangmiaowei.github.io/MotionPhysics.github.io/.
comment: AAAI2026 Accepted
☆ Multi-Agent Coordinated Rename Refactoring
The primary value of AI agents in software development lies in their ability to extend the developer's capacity for reasoning and action, not to supplant human involvement. To showcase how to use agents working in tandem with developers, we designed a novel approach for carrying out coordinated renaming. Coordinated renaming, where a single rename refactoring triggers refactorings in multiple, related identifiers, is a frequent yet challenging task. Developers must manually propagate these rename refactorings across numerous files and contexts, a process that is both tedious and highly error-prone. State-of-the-art heuristic-based approaches produce an overwhelming number of false positives, while vanilla Large Language Models (LLMs) provide incomplete suggestions due to their limited context and inability to interact with refactoring tools. This leaves developers with incomplete refactorings or burdens them with filtering too many false positives. Coordinated renaming is exactly the kind of repetitive task that agents can significantly reduce the developers' burden while keeping them in the driver's seat. We designed, implemented, and evaluated the first multi-agent framework that automates coordinated renaming. It operates on a key insight: a developer's initial refactoring is a clue to infer the scope of related refactorings. Our Scope Inference Agent first transforms this clue into an explicit, natural-language Declared Scope. The Planned Execution Agent then uses this as a strict plan to identify program elements that should undergo refactoring and safely executes the changes by invoking the IDE's own trusted refactoring APIs. Finally, the Replication Agent uses it to guide the project-wide search. We first conducted a formative study on the practice of coordinated renaming in 609K commits in 100 open-source projects and surveyed 205 developers ...
☆ MAESTRO: Multi-Agent Evaluation Suite for Testing, Reliability, and Observability
We present MAESTRO, an evaluation suite for the testing, reliability, and observability of LLM-based MAS. MAESTRO standardizes MAS configuration and execution through a unified interface, supports integrating both native and third-party MAS via a repository of examples and lightweight adapters, and exports framework-agnostic execution traces together with system-level signals (e.g., latency, cost, and failures). We instantiate MAESTRO with 12 representative MAS spanning popular agentic frameworks and interaction patterns, and conduct controlled experiments across repeated runs, backend models, and tool configurations. Our case studies show that MAS executions can be structurally stable yet temporally variable, leading to substantial run-to-run variance in performance and reliability. We further find that MAS architecture is the dominant driver of resource profiles, reproducibility, and cost-latency-accuracy trade-off, often outweighing changes in backend models or tool settings. Overall, MAESTRO enables systematic evaluation and provides empirical guidance for designing and optimizing agentic systems.
☆ Progressive Ideation using an Agentic AI Framework for Human-AI Co-Creation
The generation of truly novel and diverse ideas is important for contemporary engineering design, yet it remains a significant cognitive challenge for novice designers. Current 'single-spurt' AI systems exacerbate this challenge by producing a high volume of semantically clustered ideas. We propose MIDAS (Meta-cognitive Ideation through Distributed Agentic AI System), a novel framework that replaces the single-AI paradigm with a distributed 'team' of specialized AI agents designed to emulate the human meta-cognitive ideation workflow. This agentic system progressively refines ideas and assesses each one for both global novelty (against existing solutions) and local novelty (against previously generated ideas). MIDAS, therefore, demonstrates a viable and progressive paradigm for true human-AI co-creation, elevating the human designer from a passive filterer to a participatory, active, collaborative partner.
comment: 21 pages, 11 figures
☆ Neural Chains and Discrete Dynamical Systems
We inspect the analogy between machine-learning (ML) applications based on the transformer architecture without self-attention, {\it neural chains} hereafter, and discrete dynamical systems associated with discretised versions of neural integral and partial differential equations (NIE, PDE). A comparative analysis of the numerical solution of the (viscid and inviscid) Burgers and Eikonal equations via standard numerical discretization (also cast in terms of neural chains) and via PINN's learning is presented and commented on. It is found that standard numerical discretization and PINN learning provide two different paths to acquire essentially the same knowledge about the dynamics of the system. PINN learning proceeds through random matrices which bear no direct relation to the highly structured matrices associated with finite-difference (FD) procedures. Random matrices leading to acceptable solutions are far more numerous than the unique tridiagonal form in matrix space, which explains why the PINN search typically lands on the random ensemble. The price is a much larger number of parameters, causing lack of physical transparency (explainability) as well as large training costs with no counterpart in the FD procedure. However, our results refer to one-dimensional dynamic problems, hence they don't rule out the possibility that PINNs and ML in general, may offer better strategies for high-dimensional problems.
☆ Geometric Regularization in Mixture-of-Experts: The Disconnect Between Weights and Activations
Mixture-of-Experts (MoE) models achieve efficiency through sparse activation, but the role of geometric regularization in expert specialization remains unclear. We apply orthogonality loss to enforce expert diversity and find it fails on multiple fronts: it does not reduce weight-space overlap (MSO actually increases by up to 114%), activation-space overlap remains high (~0.6) regardless of regularization, and effects on performance are inconsistent -- marginal improvement on WikiText-103 (-0.9%), slight degradation on TinyStories (+0.9%), and highly variable results on PTB (std > 1.0). Our analysis across 7 regularization strengths reveals no significant correlation (r = -0.293, p = 0.523) between weight and activation orthogonality. These findings demonstrate that weight-space regularization neither achieves its geometric goal nor reliably improves performance, making it unsuitable for MoE diversity.
☆ Deep Networks Learn Deep Hierarchical Models
We consider supervised learning with $n$ labels and show that layerwise SGD on residual networks can efficiently learn a class of hierarchical models. This model class assumes the existence of an (unknown) label hierarchy $L_1 \subseteq L_2 \subseteq \dots \subseteq L_r = [n]$, where labels in $L_1$ are simple functions of the input, while for $i > 1$, labels in $L_i$ are simple functions of simpler labels. Our class surpasses models that were previously shown to be learnable by deep learning algorithms, in the sense that it reaches the depth limit of efficient learnability. That is, there are models in this class that require polynomial depth to express, whereas previous models can be computed by log-depth circuits. Furthermore, we suggest that learnability of such hierarchical models might eventually form a basis for understanding deep learning. Beyond their natural fit for domains where deep learning excels, we argue that the mere existence of human ``teachers" supports the hypothesis that hierarchical structures are inherently available. By providing granular labels, teachers effectively reveal ``hints'' or ``snippets'' of the internal algorithms used by the brain. We formalize this intuition, showing that in a simplified model where a teacher is partially aware of their internal logic, a hierarchical structure emerges that facilitates efficient learnability.
☆ Defensive M2S: Training Guardrail Models on Compressed Multi-turn Conversations
Guardrail models are essential for ensuring the safety of Large Language Model (LLM) deployments, but processing full multi-turn conversation histories incurs significant computational cost. We propose Defensive M2S, a training paradigm that fine-tunes guardrail models on Multi-turn to Single-turn (M2S) compressed conversations rather than complete dialogue histories. We provide a formal complexity analysis showing that M2S reduces training cost from $O(n^2)$ to $O(n)$ for $n$-turn conversations. Empirically, on our training dataset (779 samples, avg. 10.6 turns), M2S requires only 169K tokens compared to 15.7M tokens for the multi-turn baseline -- a 93$\times$ reduction. We evaluate Defensive M2S across three guardrail model families (LlamaGuard, Nemotron, Qwen3Guard) and three compression templates (hyphenize, numberize, pythonize) on SafeDialBench, a comprehensive multi-turn jailbreak benchmark. Our best configuration, Qwen3Guard with hyphenize compression, achieves 93.8% attack detection recall while reducing inference tokens by 94.6% (from 3,231 to 173 tokens per conversation). This represents a 38.9 percentage point improvement over the baseline while dramatically reducing both training and inference costs. Our findings demonstrate that M2S compression can serve as an effective efficiency technique for guardrail deployment, enabling scalable safety screening of long multi-turn conversations.
☆ Language as Mathematical Structure: Examining Semantic Field Theory Against Language Games
Large language models (LLMs) offer a new empirical setting in which long-standing theories of linguistic meaning can be examined. This paper contrasts two broad approaches: social constructivist accounts associated with language games, and a mathematically oriented framework we call Semantic Field Theory. Building on earlier work by the author, we formalize the notions of lexical fields (Lexfelder) and linguistic fields (Lingofelder) as interacting structures in a continuous semantic space. We then analyze how core properties of transformer architectures-such as distributed representations, attention mechanisms, and geometric regularities in embedding spaces-relate to these concepts. We argue that the success of LLMs in capturing semantic regularities supports the view that language exhibits an underlying mathematical structure, while their persistent limitations in pragmatic reasoning and context sensitivity are consistent with the importance of social grounding emphasized in philosophical accounts of language use. On this basis, we suggest that mathematical structure and language games can be understood as complementary rather than competing perspectives. The resulting framework clarifies the scope and limits of purely statistical models of language and motivates new directions for theoretically informed AI architectures.
☆ RMAAT: Astrocyte-Inspired Memory Compression and Replay for Efficient Long-Context Transformers
The quadratic complexity of self-attention mechanism presents a significant impediment to applying Transformer models to long sequences. This work explores computational principles derived from astrocytes-glial cells critical for biological memory and synaptic modulation-as a complementary approach to conventional architectural modifications for efficient self-attention. We introduce the Recurrent Memory Augmented Astromorphic Transformer (RMAAT), an architecture integrating abstracted astrocyte functionalities. RMAAT employs a recurrent, segment-based processing strategy where persistent memory tokens propagate contextual information. An adaptive compression mechanism, governed by a novel retention factor derived from simulated astrocyte long-term plasticity (LTP), modulates these tokens. Attention within segments utilizes an efficient, linear-complexity mechanism inspired by astrocyte short-term plasticity (STP). Training is performed using Astrocytic Memory Replay Backpropagation (AMRB), a novel algorithm designed for memory efficiency in recurrent networks. Evaluations on the Long Range Arena (LRA) benchmark demonstrate RMAAT's competitive accuracy and substantial improvements in computational and memory efficiency, indicating the potential of incorporating astrocyte-inspired dynamics into scalable sequence models.
☆ E-GRPO: High Entropy Steps Drive Effective Reinforcement Learning for Flow Models
Recent reinforcement learning has enhanced the flow matching models on human preference alignment. While stochastic sampling enables the exploration of denoising directions, existing methods which optimize over multiple denoising steps suffer from sparse and ambiguous reward signals. We observe that the high entropy steps enable more efficient and effective exploration while the low entropy steps result in undistinguished roll-outs. To this end, we propose E-GRPO, an entropy aware Group Relative Policy Optimization to increase the entropy of SDE sampling steps. Since the integration of stochastic differential equations suffer from ambiguous reward signals due to stochasticity from multiple steps, we specifically merge consecutive low entropy steps to formulate one high entropy step for SDE sampling, while applying ODE sampling on other steps. Building upon this, we introduce multi-step group normalized advantage, which computes group-relative advantages within samples sharing the same consolidated SDE denoising step. Experimental results on different reward settings have demonstrated the effectiveness of our methods.
comment: Code: https://github.com/shengjun-zhang/VisualGRPO
☆ Can Semantic Methods Enhance Team Sports Tactics? A Methodology for Football with Broader Applications
This paper explores how semantic-space reasoning, traditionally used in computational linguistics, can be extended to tactical decision-making in team sports. Building on the analogy between texts and teams -- where players act as words and collective play conveys meaning -- the proposed methodology models tactical configurations as compositional semantic structures. Each player is represented as a multidimensional vector integrating technical, physical, and psychological attributes; team profiles are aggregated through contextual weighting into a higher-level semantic representation. Within this shared vector space, tactical templates such as high press, counterattack, or possession build-up are encoded analogously to linguistic concepts. Their alignment with team profiles is evaluated using vector-distance metrics, enabling the computation of tactical ``fit'' and opponent-exploitation potential. A Python-based prototype demonstrates how these methods can generate interpretable, dynamically adaptive strategy recommendations, accompanied by fine-grained diagnostic insights at the attribute level. Beyond football, the approach offers a generalizable framework for collective decision-making and performance optimization in team-based domains -- ranging from basketball and hockey to cooperative robotics and human-AI coordination systems. The paper concludes by outlining future directions toward real-world data integration, predictive simulation, and hybrid human-machine tactical intelligence.
comment: Submitted to Sci (MDPI) for peer review
☆ Deep Delta Learning
The efficacy of deep residual networks is fundamentally predicated on the identity shortcut connection. While this mechanism effectively mitigates the vanishing gradient problem, it imposes a strictly additive inductive bias on feature transformations, thereby limiting the network's capacity to model complex state transitions. In this paper, we introduce Deep Delta Learning (DDL), a novel architecture that generalizes the standard residual connection by modulating the identity shortcut with a learnable, data-dependent geometric transformation. This transformation, termed the Delta Operator, constitutes a rank-1 perturbation of the identity matrix, parameterized by a reflection direction vector $\mathbf{k}(\mathbf{X})$ and a gating scalar $β(\mathbf{X})$. We provide a spectral analysis of this operator, demonstrating that the gate $β(\mathbf{X})$ enables dynamic interpolation between identity mapping, orthogonal projection, and geometric reflection. Furthermore, we restructure the residual update as a synchronous rank-1 injection, where the gate acts as a dynamic step size governing both the erasure of old information and the writing of new features. This unification empowers the network to explicitly control the spectrum of its layer-wise transition operator, enabling the modeling of complex, non-monotonic dynamics while preserving the stable training characteristics of gated residual architectures.
comment: Project Page: https://github.com/yifanzhang-pro/deep-delta-learning
☆ Do LLMs Judge Distantly Supervised Named Entity Labels Well? Constructing the JudgeWEL Dataset
We present judgeWEL, a dataset for named entity recognition (NER) in Luxembourgish, automatically labelled and subsequently verified using large language models (LLM) in a novel pipeline. Building datasets for under-represented languages remains one of the major bottlenecks in natural language processing, where the scarcity of resources and linguistic particularities make large-scale annotation costly and potentially inconsistent. To address these challenges, we propose and evaluate a novel approach that leverages Wikipedia and Wikidata as structured sources of weak supervision. By exploiting internal links within Wikipedia articles, we infer entity types based on their corresponding Wikidata entries, thereby generating initial annotations with minimal human intervention. Because such links are not uniformly reliable, we mitigate noise by employing and comparing several LLMs to identify and retain only high-quality labelled sentences. The resulting corpus is approximately five times larger than the currently available Luxembourgish NER dataset and offers broader and more balanced coverage across entity categories, providing a substantial new resource for multilingual and low-resource NER research.
☆ Adaptive Causal Coordination Detection for Social Media: A Memory-Guided Framework with Semi-Supervised Learning
Detecting coordinated inauthentic behavior on social media remains a critical and persistent challenge, as most existing approaches rely on superficial correlation analysis, employ static parameter settings, and demand extensive and labor-intensive manual annotation. To address these limitations systematically, we propose the Adaptive Causal Coordination Detection (ACCD) framework. ACCD adopts a three-stage, progressive architecture that leverages a memory-guided adaptive mechanism to dynamically learn and retain optimal detection configurations for diverse coordination scenarios. Specifically, in the first stage, ACCD introduces an adaptive Convergent Cross Mapping (CCM) technique to deeply identify genuine causal relationships between accounts. The second stage integrates active learning with uncertainty sampling within a semi-supervised classification scheme, significantly reducing the burden of manual labeling. The third stage deploys an automated validation module driven by historical detection experience, enabling self-verification and optimization of the detection outcomes. We conduct a comprehensive evaluation using real-world datasets, including the Twitter IRA dataset, Reddit coordination traces, and several widely-adopted bot detection benchmarks. Experimental results demonstrate that ACCD achieves an F1-score of 87.3\% in coordinated attack detection, representing a 15.2\% improvement over the strongest existing baseline. Furthermore, the system reduces manual annotation requirements by 68\% and achieves a 2.8x speedup in processing through hierarchical clustering optimization. In summary, ACCD provides a more accurate, efficient, and highly automated end-to-end solution for identifying coordinated behavior on social platforms, offering substantial practical value and promising potential for broad application.
comment: 15 pages, 8 figures. Under review
☆ Engineering Attack Vectors and Detecting Anomalies in Additive Manufacturing SP 2025
Additive manufacturing (AM) is rapidly integrating into critical sectors such as aerospace, automotive, and healthcare. However, this cyber-physical convergence introduces new attack surfaces, especially at the interface between computer-aided design (CAD) and machine execution layers. In this work, we investigate targeted cyberattacks on two widely used fused deposition modeling (FDM) systems, Creality's flagship model K1 Max, and Ender 3. Our threat model is a multi-layered Man-in-the-Middle (MitM) intrusion, where the adversary intercepts and manipulates G-code files during upload from the user interface to the printer firmware. The MitM intrusion chain enables several stealthy sabotage scenarios. These attacks remain undetectable by conventional slicer software or runtime interfaces, resulting in structurally defective yet externally plausible printed parts. To counter these stealthy threats, we propose an unsupervised Intrusion Detection System (IDS) that analyzes structured machine logs generated during live printing. Our defense mechanism uses a frozen Transformer-based encoder (a BERT variant) to extract semantic representations of system behavior, followed by a contrastively trained projection head that learns anomaly-sensitive embeddings. Later, a clustering-based approach and a self-attention autoencoder are used for classification. Experimental results demonstrate that our approach effectively distinguishes between benign and compromised executions.
comment: This paper has been accepted to EAI SmartSP 2025. This is the preprint version
☆ Word Frequency Counting Based on Serverless MapReduce
With the increasing demand for high-performance and high-efficiency computing, cloud computing, especially serverless computing, has gradually become a research hotspot in recent years, attracting numerous research attention. Meanwhile, MapReduce, which is a popular big data processing model in the industry, has been widely applied in various fields. Inspired by the serverless framework of Function as a Service and the high concurrency and robustness of MapReduce programming model, this paper focus on combining them to reduce the time span and increase the efficiency when executing the word frequency counting task. In this case, the paper use a MapReduce programming model based on a serverless computing platform to figure out the most optimized number of Map functions and Reduce functions for a particular task. For the same amount of workload, extensive experiments show both execution time reduces and the overall efficiency of the program improves at different rates as the number of map functions and reduce functions increases. This paper suppose the discovery of the most optimized number of map and reduce functions can help cooperations and programmers figure out the most optimized solutions.
comment: 6 pages, 4 figures, International Conference on Engineering Management, Information Technology and Intelligence (EMITI 2024)
☆ In Line with Context: Repository-Level Code Generation via Context Inlining
Repository-level code generation has attracted growing attention in recent years. Unlike function-level code generation, it requires the model to understand the entire repository, reasoning over complex dependencies across functions, classes, and modules. However, existing approaches such as retrieval-augmented generation (RAG) or context-based function selection often fall short: they primarily rely on surface-level similarity and struggle to capture the rich dependencies that govern repository-level semantics. In this paper, we introduce InlineCoder, a novel framework for repository-level code generation. InlineCoder enhances the understanding of repository context by inlining the unfinished function into its call graph, thereby reframing the challenging repository understanding as an easier function-level coding task. Given a function signature, InlineCoder first generates a draft completion, termed an anchor, which approximates downstream dependencies and enables perplexity-based confidence estimation. This anchor drives a bidirectional inlining process: (i) Upstream Inlining, which embeds the anchor into its callers to capture diverse usage scenarios; and (ii) Downstream Retrieval, which integrates the anchor's callees into the prompt to provide precise dependency context. The enriched context, combining draft completion with upstream and downstream perspectives, equips the LLM with a comprehensive repository view.
comment: Accepted to FSE 2026
☆ PatchBlock: A Lightweight Defense Against Adversarial Patches for Embedded EdgeAI Devices DATE 2026
Adversarial attacks pose a significant challenge to the reliable deployment of machine learning models in EdgeAI applications, such as autonomous driving and surveillance, which rely on resource-constrained devices for real-time inference. Among these, patch-based adversarial attacks, where small malicious patches (e.g., stickers) are applied to objects, can deceive neural networks into making incorrect predictions with potentially severe consequences. In this paper, we present PatchBlock, a lightweight framework designed to detect and neutralize adversarial patches in images. Leveraging outlier detection and dimensionality reduction, PatchBlock identifies regions affected by adversarial noise and suppresses their impact. It operates as a pre-processing module at the sensor level, efficiently running on CPUs in parallel with GPU inference, thus preserving system throughput while avoiding additional GPU overhead. The framework follows a three-stage pipeline: splitting the input into chunks (Chunking), detecting anomalous regions via a redesigned isolation forest with targeted cuts for faster convergence (Separating), and applying dimensionality reduction on the identified outliers (Mitigating). PatchBlock is both model- and patch-agnostic, can be retrofitted to existing pipelines, and integrates seamlessly between sensor inputs and downstream models. Evaluations across multiple neural architectures, benchmark datasets, attack types, and diverse edge devices demonstrate that PatchBlock consistently improves robustness, recovering up to 77% of model accuracy under strong patch attacks such as the Google Adversarial Patch, while maintaining high portability and minimal clean accuracy loss. Additionally, PatchBlock outperforms the state-of-the-art defenses in efficiency, in terms of computation time and energy consumption per sample, making it suitable for EdgeAI applications.
comment: 7 pages, 5 figures, 5 tables, Accepted to DATE 2026
BERT-JEPA: Reorganizing CLS Embeddings for Language-Invariant Semantics
Joint Embedding Predictive Architectures (JEPA) are a novel self supervised training technique that have shown recent promise across domains. We introduce BERT-JEPA (BEPA), a training paradigm that adds a JEPA training objective to BERT-style models, working to combat a collapsed [CLS] embedding space and turning it into a language-agnostic space. This new structure leads to increased performance across multilingual benchmarks.
comment: 16 pages, 10 figures, 10 tables
☆ Mapping Human Anti-collusion Mechanisms to Multi-agent AI
As multi-agent AI systems become increasingly autonomous, evidence shows they can develop collusive strategies similar to those long observed in human markets and institutions. While human domains have accumulated centuries of anti-collusion mechanisms, it remains unclear how these can be adapted to AI settings. This paper addresses that gap by (i) developing a taxonomy of human anti-collusion mechanisms, including sanctions, leniency & whistleblowing, monitoring & auditing, market design, and governance and (ii) mapping them to potential interventions for multi-agent AI systems. For each mechanism, we propose implementation approaches. We also highlight open challenges, such as the attribution problem (difficulty attributing emergent coordination to specific agents) identity fluidity (agents being easily forked or modified) the boundary problem (distinguishing beneficial cooperation from harmful collusion) and adversarial adaptation (agents learning to evade detection).
☆ Robust Uncertainty Quantification for Factual Generation of Large Language Models IJCNN 2025
The rapid advancement of large language model(LLM) technology has facilitated its integration into various domains of professional and daily life. However, the persistent challenge of LLM hallucination has emerged as a critical limitation, significantly compromising the reliability and trustworthiness of AI-generated content. This challenge has garnered significant attention within the scientific community, prompting extensive research efforts in hallucination detection and mitigation strategies. Current methodological frameworks reveal a critical limitation: traditional uncertainty quantification approaches demonstrate effectiveness primarily within conventional question-answering paradigms, yet exhibit notable deficiencies when confronted with non-canonical or adversarial questioning strategies. This performance gap raises substantial concerns regarding the dependability of LLM responses in real-world applications requiring robust critical thinking capabilities. This study aims to fill this gap by proposing an uncertainty quantification scenario in the task of generating with multiple facts. We have meticulously constructed a set of trap questions contained with fake names. Based on this scenario, we innovatively propose a novel and robust uncertainty quantification method(RU). A series of experiments have been conducted to verify its effectiveness. The results show that the constructed set of trap questions performs excellently. Moreover, when compared with the baseline methods on four different models, our proposed method has demonstrated great performance, with an average increase of 0.1-0.2 in ROCAUC values compared to the best performing baseline method, providing new sights and methods for addressing the hallucination issue of LLMs.
comment: 9 pages, 5 tables, 5 figures, accepted to IJCNN 2025
☆ Bio-inspired Agentic Self-healing Framework for Resilient Distributed Computing Continuum Systems
Human biological systems sustain life through extraordinary resilience, continually detecting damage, orchestrating targeted responses, and restoring function through self-healing. Inspired by these capabilities, this paper introduces ReCiSt, a bio-inspired agentic self-healing framework designed to achieve resilience in Distributed Computing Continuum Systems (DCCS). Modern DCCS integrate heterogeneous computing resources, ranging from resource-constrained IoT devices to high-performance cloud infrastructures, and their inherent complexity, mobility, and dynamic operating conditions expose them to frequent faults that disrupt service continuity. These challenges underscore the need for scalable, adaptive, and self-regulated resilience strategies. ReCiSt reconstructs the biological phases of Hemostasis, Inflammation, Proliferation, and Remodeling into the computational layers Containment, Diagnosis, Meta-Cognitive, and Knowledge for DCCS. These four layers perform autonomous fault isolation, causal diagnosis, adaptive recovery, and long-term knowledge consolidation through Language Model (LM)-powered agents. These agents interpret heterogeneous logs, infer root causes, refine reasoning pathways, and reconfigure resources with minimal human intervention. The proposed ReCiSt framework is evaluated on public fault datasets using multiple LMs, and no baseline comparison is included due to the scarcity of similar approaches. Nevertheless, our results, evaluated under different LMs, confirm ReCiSt's self-healing capabilities within tens of seconds with minimum of 10% of agent CPU usage. Our results also demonstrated depth of analysis to over come uncertainties and amount of micro-agents invoked to achieve resilience.
☆ Sparse Probabilistic Coalition Structure Generation: Bayesian Greedy Pursuit and $\ell_1$ Relaxations
We study coalition structure generation (CSG) when coalition values are not given but must be learned from episodic observations. We model each episode as a sparse linear regression problem, where the realised payoff \(Y_t\) is a noisy linear combination of a small number of coalition contributions. This yields a probabilistic CSG framework in which the planner first estimates a sparse value function from \(T\) episodes, then runs a CSG solver on the inferred coalition set. We analyse two estimation schemes. The first, Bayesian Greedy Coalition Pursuit (BGCP), is a greedy procedure that mimics orthogonal matching pursuit. Under a coherence condition and a minimum signal assumption, BGCP recovers the true set of profitable coalitions with high probability once \(T \gtrsim K \log m\), and hence yields welfare-optimal structures. The second scheme uses an \(\ell_1\)-penalised estimator; under a restricted eigenvalue condition, we derive \(\ell_1\) and prediction error bounds and translate them into welfare gap guarantees. We compare both methods to probabilistic baselines and identify regimes where sparse probabilistic CSG is superior, as well as dense regimes where classical least-squares approaches are competitive.
☆ HarmoniAD: Harmonizing Local Structures and Global Semantics for Anomaly Detection
Anomaly detection is crucial in industrial product quality inspection. Failing to detect tiny defects often leads to serious consequences. Existing methods face a structure-semantics trade-off: structure-oriented models (such as frequency-based filters) are noise-sensitive, while semantics-oriented models (such as CLIP-based encoders) often miss fine details. To address this, we propose HarmoniAD, a frequency-guided dual-branch framework. Features are first extracted by the CLIP image encoder, then transformed into the frequency domain, and finally decoupled into high- and low-frequency paths for complementary modeling of structure and semantics. The high-frequency branch is equipped with a fine-grained structural attention module (FSAM) to enhance textures and edges for detecting small anomalies, while the low-frequency branch uses a global structural context module (GSCM) to capture long-range dependencies and preserve semantic consistency. Together, these branches balance fine detail and global semantics. HarmoniAD further adopts a multi-class joint training strategy, and experiments on MVTec-AD, VisA, and BTAD show state-of-the-art performance with both sensitivity and robustness.
☆ Multiagent Reinforcement Learning for Liquidity Games
Making use of swarm methods in financial market modeling of liquidity, and techniques from financial analysis in swarm analysis, holds the potential to advance both research areas. In swarm research, the use of game theory methods holds the promise of explaining observed phenomena of collective utility adherence with rational self-interested swarm participants. In financial markets, a better understanding of how independent financial agents may self-organize for the betterment and stability of the marketplace would be a boon for market design researchers. This paper unifies Liquidity Games, where trader payoffs depend on aggregate liquidity within a trade, with Rational Swarms, where decentralized agents use difference rewards to align self-interested learning with global objectives. We offer a theoretical frameworks where we define a swarm of traders whose collective objective is market liquidity provision while maintaining agent independence. Using difference rewards within a Markov team games framework, we show that individual liquidity-maximizing behaviors contribute to overall market liquidity without requiring coordination or collusion. This Financial Swarm model provides a framework for modeling rational, independent agents where they achieve both individual profitability and collective market efficiency in bilateral asset markets.
comment: 9 pages
☆ VisNet: Efficient Person Re-Identification via Alpha-Divergence Loss, Feature Fusion and Dynamic Multi-Task Learning
Person re-identification (ReID) is an extremely important area in both surveillance and mobile applications, requiring strong accuracy with minimal computational cost. State-of-the-art methods give good accuracy but with high computational budgets. To remedy this, this paper proposes VisNet, a computationally efficient and effective re-identification model suitable for real-world scenarios. It is the culmination of conceptual contributions, including feature fusion at multiple scales with automatic attention on each, semantic clustering with anatomical body partitioning, a dynamic weight averaging technique to balance classification semantic regularization, and the use of loss function FIDI for improved metric learning tasks. The multiple scales fuse ResNet50's stages 1 through 4 without the use of parallel paths, with semantic clustering introducing spatial constraints through the use of rule-based pseudo-labeling. VisNet achieves 87.05% Rank-1 and 77.65% mAP on the Market-1501 dataset, having 32.41M parameters and 4.601 GFLOPs, hence, proposing a practical approach for real-time deployment in surveillance and mobile applications where computational resources are limited.
☆ The Generative AI Paradox: GenAI and the Erosion of Trust, the Corrosion of Information Verification, and the Demise of Truth
Generative AI (GenAI) now produces text, images, audio, and video that can be perceptually convincing at scale and at negligible marginal cost. While public debate often frames the associated harms as "deepfakes" or incremental extensions of misinformation and fraud, this view misses a broader socio-technical shift: GenAI enables synthetic realities; coherent, interactive, and potentially personalized information environments in which content, identity, and social interaction are jointly manufactured and mutually reinforcing. We argue that the most consequential risk is not merely the production of isolated synthetic artifacts, but the progressive erosion of shared epistemic ground and institutional verification practices as synthetic content, synthetic identity, and synthetic interaction become easy to generate and hard to audit. This paper (i) formalizes synthetic reality as a layered stack (content, identity, interaction, institutions), (ii) expands a taxonomy of GenAI harms spanning personal, economic, informational, and socio-technical risks, (iii) articulates the qualitative shifts introduced by GenAI (cost collapse, throughput, customization, micro-segmentation, provenance gaps, and trust erosion), and (iv) synthesizes recent risk realizations (2023-2025) into a compact case bank illustrating how these mechanisms manifest in fraud, elections, harassment, documentation, and supply-chain compromise. We then propose a mitigation stack that treats provenance infrastructure, platform governance, institutional workflow redesign, and public resilience as complementary rather than substitutable, and outline a research agenda focused on measuring epistemic security. We conclude with the Generative AI Paradox: as synthetic media becomes ubiquitous, societies may rationally discount digital evidence altogether.
☆ DepFlow: Disentangled Speech Generation to Mitigate Semantic Bias in Depression Detection
Speech is a scalable and non-invasive biomarker for early mental health screening. However, widely used depression datasets like DAIC-WOZ exhibit strong coupling between linguistic sentiment and diagnostic labels, encouraging models to learn semantic shortcuts. As a result, model robustness may be compromised in real-world scenarios, such as Camouflaged Depression, where individuals maintain socially positive or neutral language despite underlying depressive states. To mitigate this semantic bias, we propose DepFlow, a three-stage depression-conditioned text-to-speech framework. First, a Depression Acoustic Encoder learns speaker- and content-invariant depression embeddings through adversarial training, achieving effective disentanglement while preserving depression discriminability (ROC-AUC: 0.693). Second, a flow-matching TTS model with FiLM modulation injects these embeddings into synthesis, enabling control over depressive severity while preserving content and speaker identity. Third, a prototype-based severity mapping mechanism provides smooth and interpretable manipulation across the depression continuum. Using DepFlow, we construct a Camouflage Depression-oriented Augmentation (CDoA) dataset that pairs depressed acoustic patterns with positive/neutral content from a sentiment-stratified text bank, creating acoustic-semantic mismatches underrepresented in natural data. Evaluated across three depression detection architectures, CDoA improves macro-F1 by 9%, 12%, and 5%, respectively, consistently outperforming conventional augmentation strategies in depression Detection. Beyond enhancing robustness, DepFlow provides a controllable synthesis platform for conversational systems and simulation-based evaluation, where real clinical data remains limited by ethical and coverage constraints.
☆ ClinicalReTrial: A Self-Evolving AI Agent for Clinical Trial Protocol Optimization
Clinical trial failure remains a central bottleneck in drug development, where minor protocol design flaws can irreversibly compromise outcomes despite promising therapeutics. Although cutting-edge AI methods achieve strong performance in predicting trial success, they are inherently reactive for merely diagnosing risk without offering actionable remedies once failure is anticipated. To fill this gap, this paper proposes ClinicalReTrial, a self-evolving AI agent framework that addresses this gap by casting clinical trial reasoning as an iterative protocol redesign problem. Our method integrates failure diagnosis, safety-aware modification, and candidate evaluation in a closed-loop, reward-driven optimization framework. Serving the outcome prediction model as a simulation environment, ClinicalReTrial enables low-cost evaluation of protocol modifications and provides dense reward signals for continuous self-improvement. To support efficient exploration, the framework maintains hierarchical memory that captures iteration-level feedback within trials and distills transferable redesign patterns across trials. Empirically, ClinicalReTrial improves 83.3% of trial protocols with a mean success probability gain of 5.7%, and retrospective case studies demonstrate strong alignment between the discovered redesign strategies and real-world clinical trial modifications.
☆ Towards Automated Differential Diagnosis of Skin Diseases Using Deep Learning and Imbalance-Aware Strategies
As dermatological conditions become increasingly common and the availability of dermatologists remains limited, there is a growing need for intelligent tools to support both patients and clinicians in the timely and accurate diagnosis of skin diseases. In this project, we developed a deep learning based model for the classification and diagnosis of skin conditions. By leveraging pretraining on publicly available skin disease image datasets, our model effectively extracted visual features and accurately classified various dermatological cases. Throughout the project, we refined the model architecture, optimized data preprocessing workflows, and applied targeted data augmentation techniques to improve overall performance. The final model, based on the Swin Transformer, achieved a prediction accuracy of 87.71 percent across eight skin lesion classes on the ISIC2019 dataset. These results demonstrate the model's potential as a diagnostic support tool for clinicians and a self assessment aid for patients.
comment: The 23rd Australasian Data Science and Machine Learning Conference (AusDM'25)
☆ Can Large Language Models Still Explain Themselves? Investigating the Impact of Quantization on Self-Explanations
Quantization is widely used to accelerate inference and streamline the deployment of large language models (LLMs), yet its effects on self-explanations (SEs) remain unexplored. SEs, generated by LLMs to justify their own outputs, require reasoning about the model's own decision-making process, a capability that may exhibit particular sensitivity to quantization. As SEs are increasingly relied upon for transparency in high-stakes applications, understanding whether and to what extent quantization degrades SE quality and faithfulness is critical. To address this gap, we examine two types of SEs: natural language explanations (NLEs) and counterfactual examples, generated by LLMs quantized using three common techniques at distinct bit widths. Our findings indicate that quantization typically leads to moderate declines in both SE quality (up to 4.4\%) and faithfulness (up to 2.38\%). The user study further demonstrates that quantization diminishes both the coherence and trustworthiness of SEs (up to 8.5\%). Compared to smaller models, larger models show limited resilience to quantization in terms of SE quality but better maintain faithfulness. Moreover, no quantization technique consistently excels across task accuracy, SE quality, and faithfulness. Given that quantization's impact varies by context, we recommend validating SE quality for specific use cases, especially for NLEs, which show greater sensitivity. Nonetheless, the relatively minor deterioration in SE quality and faithfulness does not undermine quantization's effectiveness as a model compression technique.
comment: In submission
☆ Benchmarking Preprocessing and Integration Methods in Single-Cell Genomics
Single-cell data analysis has the potential to revolutionize personalized medicine by characterizing disease-associated molecular changes at the single-cell level. Advanced single-cell multimodal assays can now simultaneously measure various molecules (e.g., DNA, RNA, Protein) across hundreds of thousands of individual cells, providing a comprehensive molecular readout. A significant analytical challenge is integrating single-cell measurements across different modalities. Various methods have been developed to address this challenge, but there has been no systematic evaluation of these techniques with different preprocessing strategies. This study examines a general pipeline for single-cell data analysis, which includes normalization, data integration, and dimensionality reduction. The performance of different algorithm combinations often depends on the dataset sizes and characteristics. We evaluate six datasets across diverse modalities, tissues, and organisms using three metrics: Silhouette Coefficient Score, Adjusted Rand Index, and Calinski-Harabasz Index. Our experiments involve combinations of seven normalization methods, four dimensional reduction methods, and five integration methods. The results show that Seurat and Harmony excel in data integration, with Harmony being more time-efficient, especially for large datasets. UMAP is the most compatible dimensionality reduction method with the integration techniques, and the choice of normalization method varies depending on the integration method used.
comment: The 23rd Australasian Data Science and Machine Learning Conference (AusDM'25)
☆ FaithSCAN: Model-Driven Single-Pass Hallucination Detection for Faithful Visual Question Answering
Faithfulness hallucinations in VQA occur when vision-language models produce fluent yet visually ungrounded answers, severely undermining their reliability in safety-critical applications. Existing detection methods mainly fall into two categories: external verification approaches relying on auxiliary models or knowledge bases, and uncertainty-driven approaches using repeated sampling or uncertainty estimates. The former suffer from high computational overhead and are limited by external resource quality, while the latter capture only limited facets of model uncertainty and fail to sufficiently explore the rich internal signals associated with the diverse failure modes. Both paradigms thus have inherent limitations in efficiency, robustness, and detection performance. To address these challenges, we propose FaithSCAN: a lightweight network that detects hallucinations by exploiting rich internal signals of VLMs, including token-level decoding uncertainty, intermediate visual representations, and cross-modal alignment features. These signals are fused via branch-wise evidence encoding and uncertainty-aware attention. We also extend the LLM-as-a-Judge paradigm to VQA hallucination and propose a low-cost strategy to automatically generate model-dependent supervision signals, enabling supervised training without costly human labels while maintaining high detection accuracy. Experiments on multiple VQA benchmarks show that FaithSCAN significantly outperforms existing methods in both effectiveness and efficiency. In-depth analysis shows hallucinations arise from systematic internal state variations in visual perception, cross-modal reasoning, and language decoding. Different internal signals provide complementary diagnostic cues, and hallucination patterns vary across VLM architectures, offering new insights into the underlying causes of multimodal hallucinations.
comment: 14 pages, 9 figures, 5 tables
☆ Beyond Perfect APIs: A Comprehensive Evaluation of LLM Agents Under Real-World API Complexity
We introduce WildAGTEval, a benchmark designed to evaluate large language model (LLM) agents' function-calling capabilities under realistic API complexity. Unlike prior work that assumes an idealized API system and disregards real-world factors such as noisy API outputs, WildAGTEval accounts for two dimensions of real-world complexity: 1. API specification, which includes detailed documentation and usage constraints, and 2. API execution, which captures runtime challenges. Consequently, WildAGTEval offers (i) an API system encompassing 60 distinct complexity scenarios that can be composed into approximately 32K test configurations, and (ii) user-agent interactions for evaluating LLM agents on these scenarios. Using WildAGTEval, we systematically assess several advanced LLMs and observe that most scenarios are challenging, with irrelevant information complexity posing the greatest difficulty and reducing the performance of strong LLMs by 27.3%. Furthermore, our qualitative analysis reveals that LLMs occasionally distort user intent merely to claim task completion, critically affecting user satisfaction.
comment: 26 pages
☆ Parallel Universes, Parallel Languages: A Comprehensive Study on LLM-based Multilingual Counterfactual Example Generation
Counterfactuals refer to minimally edited inputs that cause a model's prediction to change, serving as a promising approach to explaining the model's behavior. Large language models (LLMs) excel at generating English counterfactuals and demonstrate multilingual proficiency. However, their effectiveness in generating multilingual counterfactuals remains unclear. To this end, we conduct a comprehensive study on multilingual counterfactuals. We first conduct automatic evaluations on both directly generated counterfactuals in the target languages and those derived via English translation across six languages. Although translation-based counterfactuals offer higher validity than their directly generated counterparts, they demand substantially more modifications and still fall short of matching the quality of the original English counterfactuals. Second, we find the patterns of edits applied to high-resource European-language counterfactuals to be remarkably similar, suggesting that cross-lingual perturbations follow common strategic principles. Third, we identify and categorize four main types of errors that consistently appear in the generated counterfactuals across languages. Finally, we reveal that multilingual counterfactual data augmentation (CDA) yields larger model performance improvements than cross-lingual CDA, especially for lower-resource languages. Yet, the imperfections of the generated counterfactuals limit gains in model performance and robustness.
comment: In submission
☆ Next Generation Intelligent Low-Altitude Economy Deployments: The O-RAN Perspective
Despite the growing interest in low-altitude economy (LAE) applications, including UAV-based logistics and emergency response, fundamental challenges remain in orchestrating such missions over complex, signal-constrained environments. These include the absence of real-time, resilient, and context-aware orchestration of aerial nodes with limited integration of artificial intelligence (AI) specialized for LAE missions. This paper introduces an open radio access network (O-RAN)-enabled LAE framework that leverages seamless coordination between the disaggregated RAN architecture, open interfaces, and RAN intelligent controllers (RICs) to facilitate closed-loop, AI-optimized, and mission-critical LAE operations. We evaluate the feasibility and performance of the proposed architecture via a semantic-aware rApp that acts as a terrain interpreter, offering semantic guidance to a reinforcement learning-enabled xApp, which performs real-time trajectory planning for LAE swarm nodes. We survey the capabilities of UAV testbeds that can be leveraged for LAE research, and present critical research challenges and standardization needs.
comment: This article has been accepted for publication in the IEEE Wireless Communications Magazine
☆ An Empirical Evaluation of LLM-Based Approaches for Code Vulnerability Detection: RAG, SFT, and Dual-Agent Systems
The rapid advancement of Large Language Models (LLMs) presents new opportunities for automated software vulnerability detection, a crucial task in securing modern codebases. This paper presents a comparative study on the effectiveness of LLM-based techniques for detecting software vulnerabilities. The study evaluates three approaches, Retrieval-Augmented Generation (RAG), Supervised Fine-Tuning (SFT), and a Dual-Agent LLM framework, against a baseline LLM model. A curated dataset was compiled from Big-Vul and real-world code repositories from GitHub, focusing on five critical Common Weakness Enumeration (CWE) categories: CWE-119, CWE-399, CWE-264, CWE-20, and CWE-200. Our RAG approach, which integrated external domain knowledge from the internet and the MITRE CWE database, achieved the highest overall accuracy (0.86) and F1 score (0.85), highlighting the value of contextual augmentation. Our SFT approach, implemented using parameter-efficient QLoRA adapters, also demonstrated strong performance. Our Dual-Agent system, an architecture in which a secondary agent audits and refines the output of the first, showed promise in improving reasoning transparency and error mitigation, with reduced resource overhead. These results emphasize that incorporating a domain expertise mechanism significantly strengthens the practical applicability of LLMs in real-world vulnerability detection tasks.
☆ Neural Minimum Weight Perfect Matching for Quantum Error Codes
Realizing the full potential of quantum computation requires Quantum Error Correction (QEC). QEC reduces error rates by encoding logical information across redundant physical qubits, enabling errors to be detected and corrected. A common decoder used for this task is Minimum Weight Perfect Matching (MWPM) a graph-based algorithm that relies on edge weights to identify the most likely error chains. In this work, we propose a data-driven decoder named Neural Minimum Weight Perfect Matching (NMWPM). Our decoder utilizes a hybrid architecture that integrates Graph Neural Networks (GNNs) to extract local syndrome features and Transformers to capture long-range global dependencies, which are then used to predict dynamic edge weights for the MWPM decoder. To facilitate training through the non-differentiable MWPM algorithm, we formulate a novel proxy loss function that enables end-to-end optimization. Our findings demonstrate significant performance reduction in the Logical Error Rate (LER) over standard baselines, highlighting the advantage of hybrid decoders that combine the predictive capabilities of neural networks with the algorithmic structure of classical matching.
☆ Will LLM-powered Agents Bias Against Humans? Exploring the Belief-Dependent Vulnerability
LLM-empowered agents can exhibit not only demographic bias (e.g., gender, religion) but also intergroup bias triggered by minimal "us" versus "them" cues. When this intergroup boundary aligns with an agent-human divide, the risk shifts from disparities among human demographic groups to a more fundamental group-level asymmetry, i.e., humans as a whole may be treated as the outgroup by agents. To examine this possibility, we construct a controlled multi-agent social simulation based on allocation decisions under explicit payoff trade-offs and find that agents exhibit a consistent intergroup bias under minimal group cues. Although this bias is attenuated when some counterparts are framed as humans, we attribute the attenuation to an implicit human-norm script that favors humans yet activates only when the agent believes a real human is present. This belief dependence creates a new attack surface. We therefore introduce a Belief Poisoning Attack (BPA) that corrupts persistent identity beliefs to suppress the human-norm script and reactivate outgroup bias toward humans, instantiated as profile poisoning at initialization (BPA-PP) and memory poisoning via optimized belief-refinement suffixes injected into stored reflections (BPA-MP). Finally, we discuss practical mitigation strategies for hardening current agent frameworks against BPA, highlighting feasible interventions at profile and memory boundaries. Extensive experiments demonstrate both the existence of agent intergroup bias and the severity of BPA across settings. Our goal in identifying these vulnerabilities is to inform safer agent design, not to enable real-world exploitation.
comment: 16 pages
☆ GRIT -- Geometry-Aware PEFT with K-FACPreconditioning, Fisher-Guided Reprojection, andDynamic Rank Adaptation
Parameter-efficient fine-tuning (PEFT) is the default way to adapt LLMs, but widely used LoRA and QLoRA are largely geometry-agnostic: they optimize in fixed, randomly oriented low-rank subspaces with first-order descent, mostly ignoring local loss curvature. This can inflate the effective update budget and amplify drift along weakly constrained directions. We introduce GRIT, a dynamic, curvature-aware LoRA procedure that preserves the LoRA parameterization but: (1) preconditions gradients in rank space using K-FAC as a natural-gradient proxy; (2) periodically reprojects the low-rank basis onto dominant Fisher eigendirections to suppress drift; and (3) adapts the effective rank from the spectrum so capacity concentrates where signal resides. Across instruction-following, comprehension, and reasoning benchmarks on LLaMA backbones, GRIT matches or surpasses LoRA and QLoRA while reducing trainable parameters by 46% on average (25--80% across tasks), without practical quality loss across prompt styles and data mixes. To model forgetting, we fit a curvature-modulated power law. Empirically, GRIT yields lower drift and a better updates-vs-retention frontier than strong PEFT-optimizer baselines (Orthogonal-LoRA, IA3, DoRA, Eff-FT, Shampoo).
☆ FlashInfer-Bench: Building the Virtuous Cycle for AI-driven LLM Systems
Recent advances show that large language models (LLMs) can act as autonomous agents capable of generating GPU kernels, but integrating these AI-generated kernels into real-world inference systems remains challenging. FlashInfer-Bench addresses this gap by establishing a standardized, closed-loop framework that connects kernel generation, benchmarking, and deployment. At its core, FlashInfer Trace provides a unified schema describing kernel definitions, workloads, implementations, and evaluations, enabling consistent communication between agents and systems. Built on real serving traces, FlashInfer-Bench includes a curated dataset, a robust correctness- and performance-aware benchmarking framework, a public leaderboard to track LLM agents' GPU programming capabilities, and a dynamic substitution mechanism (apply()) that seamlessly injects the best-performing kernels into production LLM engines such as SGLang and vLLM. Using FlashInfer-Bench, we further evaluate the performance and limitations of LLM agents, compare the trade-offs among different GPU programming languages, and provide insights for future agent design. FlashInfer-Bench thus establishes a practical, reproducible pathway for continuously improving AI-generated kernels and deploying them into large-scale LLM inference.
☆ JP-TL-Bench: Anchored Pairwise LLM Evaluation for Bidirectional Japanese-English Translation
We introduce JP-TL-Bench, a lightweight, open benchmark designed to guide the iterative development of Japanese-English translation systems. In this context, the challenge is often "which of these two good translations is better?" rather than "is this translation acceptable?" This distinction matters for Japanese-English, where subtle choices in politeness, implicature, ellipsis, and register strongly affect perceived naturalness. JP-TL-Bench uses a protocol built to make LLM judging both reliable and affordable: it evaluates a candidate model via reference-free, pairwise LLM comparisons against a fixed, versioned anchor set. Pairwise results are aggregated with a Bradley-Terry model and reported as win rates plus a normalized 0-10 "LT" score derived from a logistic transform of fitted log-strengths. Because each candidate is scored against the same frozen anchor set, scores are structurally stable given the same base set, judge, and aggregation code.
comment: 24 pages, 5 figures, 8 tables
☆ Latent Flow Matching for Expressive Singing Voice Synthesis
Conditional variational autoencoder (cVAE)-based singing voice synthesis provides efficient inference and strong audio quality by learning a score-conditioned prior and a recording-conditioned posterior latent space. However, because synthesis relies on prior samples while training uses posterior latents inferred from real recordings, imperfect distribution matching can cause a prior-posterior mismatch that degrades fine-grained expressiveness such as vibrato and micro-prosody. We propose FM-Singer, which introduces conditional flow matching (CFM) in latent space to learn a continuous vector field transporting prior latents toward posterior latents along an optimal-transport-inspired path. At inference time, the learned latent flow refines a prior sample by solving an ordinary differential equation (ODE) before waveform generation, improving expressiveness while preserving the efficiency of parallel decoding. Experiments on Korean and Chinese singing datasets demonstrate consistent improvements over strong baselines, including lower mel-cepstral distortion and fundamental-frequency error and higher perceptual scores on the Korean dataset. Code, pretrained checkpoints, and audio demos are available at https://github.com/alsgur9368/FM-Singer
☆ SSI-GAN: Semi-Supervised Swin-Inspired Generative Adversarial Networks for Neuronal Spike Classification
Mosquitos are the main transmissive agents of arboviral diseases. Manual classification of their neuronal spike patterns is very labor-intensive and expensive. Most available deep learning solutions require fully labeled spike datasets and highly preprocessed neuronal signals. This reduces the feasibility of mass adoption in actual field scenarios. To address the scarcity of labeled data problems, we propose a new Generative Adversarial Network (GAN) architecture that we call the Semi-supervised Swin-Inspired GAN (SSI-GAN). The Swin-inspired, shifted-window discriminator, together with a transformer-based generator, is used to classify neuronal spike trains and, consequently, detect viral neurotropism. We use a multi-head self-attention model in a flat, window-based transformer discriminator that learns to capture sparser high-frequency spike features. Using just 1 to 3% labeled data, SSI-GAN was trained with more than 15 million spike samples collected at five-time post-infection and recording classification into Zika-infected, dengue-infected, or uninfected categories. Hyperparameters were optimized using the Bayesian Optuna framework, and performance for robustness was validated under fivefold Monte Carlo cross-validation. SSI-GAN reached 99.93% classification accuracy on the third day post-infection with only 3% labeled data. It maintained high accuracy across all stages of infection with just 1% supervision. This shows a 97-99% reduction in manual labeling effort relative to standard supervised approaches at the same performance level. The shifted-window transformer design proposed here beat all baselines by a wide margin and set new best marks in spike-based neuronal infection classification.
☆ Understanding Emotion in Discourse: Recognition Insights and Linguistic Patterns for Generation
While Emotion Recognition in Conversation (ERC) has achieved high accuracy, two critical gaps remain: a limited understanding of \textit{which} architectural choices actually matter, and a lack of linguistic analysis connecting recognition to generation. We address both gaps through a systematic analysis of the IEMOCAP dataset. For recognition, we conduct a rigorous ablation study with 10-seed evaluation and report three key findings. First, conversational context is paramount, with performance saturating rapidly -- 90\% of the total gain achieved within just the most recent 10--30 preceding turns (depending on the label set). Second, hierarchical sentence representations help at utterance-level, but this benefit disappears once conversational context is provided, suggesting that context subsumes intra-utterance structure. Third, external affective lexicons (SenticNet) provide no gain, indicating that pre-trained encoders already capture necessary emotional semantics. With simple architectures using strictly causal context, we achieve 82.69\% (4-way) and 67.07\% (6-way) weighted F1, outperforming prior text-only methods including those using bidirectional context. For linguistic analysis, we analyze 5,286 discourse marker occurrences and find a significant association between emotion and marker positioning ($p < .0001$). Notably, "sad" utterances exhibit reduced left-periphery marker usage (21.9\%) compared to other emotions (28--32\%), consistent with theories linking left-periphery markers to active discourse management. This connects to our recognition finding that sadness benefits most from context (+22\%p): lacking explicit pragmatic signals, sad utterances require conversational history for disambiguation.
☆ Hear the Heartbeat in Phases: Physiologically Grounded Phase-Aware ECG Biometrics
Electrocardiography (ECG) is adopted for identity authentication in wearable devices due to its individual-specific characteristics and inherent liveness. However, existing methods often treat heartbeats as homogeneous signals, overlooking the phase-specific characteristics within the cardiac cycle. To address this, we propose a Hierarchical Phase-Aware Fusion~(HPAF) framework that explicitly avoids cross-feature entanglement through a three-stage design. In the first stage, Intra-Phase Representation (IPR) independently extracts representations for each cardiac phase, ensuring that phase-specific morphological and variation cues are preserved without interference from other phases. In the second stage, Phase-Grouped Hierarchical Fusion (PGHF) aggregates physiologically related phases in a structured manner, enabling reliable integration of complementary phase information. In the final stage, Global Representation Fusion (GRF) further combines the grouped representations and adaptively balances their contributions to produce a unified and discriminative identity representation. Moreover, considering ECG signals are continuously acquired, multiple heartbeats can be collected for each individual. We propose a Heartbeat-Aware Multi-prototype (HAM) enrollment strategy, which constructs a multi-prototype gallery template set to reduce the impact of heartbeat-specific noise and variability. Extensive experiments on three public datasets demonstrate that HPAF achieves state-of-the-art results in the comparison with other methods under both closed and open-set settings.
☆ Online Finetuning Decision Transformers with Pure RL Gradients
Decision Transformers (DTs) have emerged as a powerful framework for sequential decision making by formulating offline reinforcement learning (RL) as a sequence modeling problem. However, extending DTs to online settings with pure RL gradients remains largely unexplored, as existing approaches continue to rely heavily on supervised sequence-modeling objectives during online finetuning. We identify hindsight return relabeling -- a standard component in online DTs -- as a critical obstacle to RL-based finetuning: while beneficial for supervised learning, it is fundamentally incompatible with importance sampling-based RL algorithms such as GRPO, leading to unstable training. Building on this insight, we propose new algorithms that enable online finetuning of Decision Transformers using pure reinforcement learning gradients. We adapt GRPO to DTs and introduce several key modifications, including sub-trajectory optimization for improved credit assignment, sequence-level likelihood objectives for enhanced stability and efficiency, and active sampling to encourage exploration in uncertain regions. Through extensive experiments, we demonstrate that our methods outperform existing online DT baselines and achieve new state-of-the-art performance across multiple benchmarks, highlighting the effectiveness of pure-RL-based online finetuning for Decision Transformers.
☆ FCMBench: A Comprehensive Financial Credit Multimodal Benchmark for Real-world Applications
As multimodal AI becomes widely used for credit risk assessment and document review, a domain-specific benchmark is urgently needed that (1) reflects documents and workflows specific to financial credit applications, (2) includes credit-specific understanding and real-world robustness, and (3) preserves privacy compliance without sacrificing practical utility. Here, we introduce FCMBench-V1.0 -- a large-scale financial credit multimodal benchmark for real-world applications, covering 18 core certificate types, with 4,043 privacy-compliant images and 8,446 QA samples. The FCMBench evaluation framework consists of three dimensions: Perception, Reasoning, and Robustness, including 3 foundational perception tasks, 4 credit-specific reasoning tasks that require decision-oriented understanding of visual evidence, and 10 real-world acquisition artifact types for robustness stress testing. To reconcile compliance with realism, we construct all samples via a closed synthesis-capture pipeline: we manually synthesize document templates with virtual content and capture scenario-aware images in-house. This design also mitigates pre-training data leakage by avoiding web-sourced or publicly released images. FCMBench can effectively discriminate performance disparities and robustness across modern vision-language models. Extensive experiments were conducted on 23 state-of-the-art vision-language models (VLMs) from 14 top AI companies and research institutes. Among them, Gemini 3 Pro achieves the best F1(\%) score as a commercial model (64.61), Qwen3-VL-235B achieves the best score as an open-source baseline (57.27), and our financial credit-specific model, Qfin-VL-Instruct, achieves the top overall score (64.92). Robustness evaluations show that even top-performing models suffer noticeable performance drops under acquisition artifacts.
☆ MethConvTransformer: A Deep Learning Framework for Cross-Tissue Alzheimer's Disease Detection
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder characterized by progressive cognitive decline and widespread epigenetic dysregulation in the brain. DNA methylation, as a stable yet dynamic epigenetic modification, holds promise as a noninvasive biomarker for early AD detection. However, methylation signatures vary substantially across tissues and studies, limiting reproducibility and translational utility. To address these challenges, we develop MethConvTransformer, a transformer-based deep learning framework that integrates DNA methylation profiles from both brain and peripheral tissues to enable biomarker discovery. The model couples a CpG-wise linear projection with convolutional and self-attention layers to capture local and long-range dependencies among CpG sites, while incorporating subject-level covariates and tissue embeddings to disentangle shared and region-specific methylation effects. In experiments across six GEO datasets and an independent ADNI validation cohort, our model consistently outperforms conventional machine-learning baselines, achieving superior discrimination and generalization. Moreover, interpretability analyses using linear projection, SHAP, and Grad-CAM++ reveal biologically meaningful methylation patterns aligned with AD-associated pathways, including immune receptor signaling, glycosylation, lipid metabolism, and endomembrane (ER/Golgi) organization. Together, these results indicate that MethConvTransformer delivers robust, cross-tissue epigenetic biomarkers for AD while providing multi-resolution interpretability, thereby advancing reproducible methylation-based diagnostics and offering testable hypotheses on disease mechanisms.
☆ An AI Monkey Gets Grapes for Sure -- Sphere Neural Networks for Reliable Decision-Making
This paper compares three methodological categories of neural reasoning: LLM reasoning, supervised learning-based reasoning, and explicit model-based reasoning. LLMs remain unreliable and struggle with simple decision-making that animals can master without extensive corpora training. Through disjunctive syllogistic reasoning testing, we show that reasoning via supervised learning is less appealing than reasoning via explicit model construction. Concretely, we show that an Euler Net trained to achieve 100.00% in classic syllogistic reasoning can be trained to reach 100.00% accuracy in disjunctive syllogistic reasoning. However, the retrained Euler Net suffers severely from catastrophic forgetting (its performance drops to 6.25% on already-learned classic syllogistic reasoning), and its reasoning competence is limited to the pattern level. We propose a new version of Sphere Neural Networks that embeds concepts as circles on the surface of an n-dimensional sphere. These Sphere Neural Networks enable the representation of the negation operator via complement circles and achieve reliable decision-making by filtering out illogical statements that form unsatisfiable circular configurations. We demonstrate that the Sphere Neural Network can master 16 syllogistic reasoning tasks, including rigorous disjunctive syllogistic reasoning, while preserving the rigour of classical syllogistic reasoning. We conclude that neural reasoning with explicit model construction is the most reliable among the three methodological categories of neural reasoning.
comment: 19 pages
♻ ☆ $\mathrm{TIME}[t]\subseteq \mathrm{SPACE}[O(\sqrt{t})]$ via Tree Height Compression
We prove a square-root space simulation for deterministic multitape Turing machines, showing $\mathrm{TIME}[t]\subseteq \mathrm{SPACE}[O(\sqrt{t})]$ \emph{measured in tape cells over a fixed finite alphabet}. The key step is a Height Compression Theorem that uniformly (and in logspace) reshapes the canonical left-deep succinct computation tree for a block-respecting run into a binary tree whose evaluation-stack depth along any DFS path is $O(\log T)$ for $T=\lceil t/b\rceil$, while preserving $O(b)$ workspace at leaves and $O(1)$ at internal nodes. Edges have \emph{addressing/topology} checkable in $O(\log t)$ space, and \emph{semantic} correctness across merges is witnessed by an exact $O(b)$ bounded-window replay at the unique interface. Algorithmically, an Algebraic Replay Engine with constant-degree maps over a constant-size field, together with pointerless DFS, index-free streaming, and a \emph{rolling boundary buffer that prevents accumulation of leaf summaries}, ensures constant-size per-level tokens and eliminates wide counters, yielding the additive tradeoff $S(b)=O(b+t/b)$. Choosing $b=Θ(\sqrt{t})$ gives $O(\sqrt{t})$ space with no residual multiplicative polylog factors. The construction is uniform, relativizes, and is robust to standard model choices. Consequences include branching-program upper bounds $2^{O(\sqrt{s})}$ for size-$s$ bounded-fan-in circuits, tightened quadratic-time lower bounds for $\mathrm{SPACE}[n]$-complete problems via the standard hierarchy argument, and $O(\sqrt{t})$-space certifying interpreters; under explicit locality assumptions, the framework extends to geometric $d$-dimensional models. Conceptually, the work isolates path bookkeeping as the chief obstruction to $O(\sqrt{t})$ and removes it via structural height compression with per-path analysis rather than barrier-prone techniques.
comment: The proof of the main theorem is incorrect. In Sections 2-4, the paper's height-compression/evaluation framework assumes an interval-based associative summary tree that does not correctly model the Tree Evaluation instances/dependencies arising in Williams's simulation
♻ ☆ Thinking on Maps: How Foundation Model Agents Explore, Remember, and Reason Map Environments
Map environments provide a fundamental medium for representing spatial structure. Understanding how foundation model (FM) agents understand and act in such environments is therefore critical for enabling reliable map-based reasoning and applications. However, most existing evaluations of spatial ability in FMs rely on static map inputs or text-based queries, overlooking the interactive and experience-driven nature of spatial understanding.In this paper, we propose an interactive evaluation framework to analyze how FM agents explore, remember, and reason in symbolic map environments. Agents incrementally explore partially observable grid-based maps consisting of roads, intersections, and points of interest (POIs), receiving only local observations at each step. Spatial understanding is then evaluated using six kinds of spatial tasks. By systematically varying exploration strategies, memory representations, and reasoning schemes across multiple foundation models, we reveal distinct functional roles of these components. Exploration primarily affects experience acquisition but has a limited impact on final reasoning accuracy. In contrast, memory representation plays a central role in consolidating spatial experience, with structured memories particularly sequential and graph-based representations, substantially improving performance on structure-intensive tasks such as path planning. Reasoning schemes further shape how stored spatial knowledge is used, with advanced prompts supporting more effective multi-step inference. We further observe that spatial reasoning performance saturates across model versions and scales beyond a certain capability threshold, indicating that improvements in map-based spatial understanding require mechanisms tailored to spatial representation and reasoning rather than scaling alone.
comment: 43 pages, 8 figures
♻ ☆ Mage: Cracking Elliptic Curve Cryptography with Cross-Axis Transformers
With the advent of machine learning and quantum computing, the 21st century has gone from a place of relative algorithmic security, to one of speculative unease and possibly, cyber catastrophe. Modern algorithms like Elliptic Curve Cryptography (ECC) are the bastion of current cryptographic security protocols that form the backbone of consumer protection ranging from Hypertext Transfer Protocol Secure (HTTPS) in the modern internet browser, to cryptographic financial instruments like Bitcoin. And there's been very little work put into testing the strength of these ciphers. Practically the only study that I could find was on side-channel recognition, a joint paper from the University of Milan, Italy and King's College, London\cite{battistello2025ecc}. These algorithms are already considered bulletproof by many consumers, but exploits already exist for them, and with computing power and distributed, federated compute on the rise, it's only a matter of time before these current bastions fade away into obscurity, and it's on all of us to stand up when we notice something is amiss, lest we see such passages claim victims in that process. In this paper, we seek to explore the use of modern language model architecture in cracking the association between a known public key, and its associated private key, by intuitively learning to reverse engineer the public keypair generation process, effectively solving the curve. Additonally, we attempt to ascertain modern machine learning's ability to memorize public-private secp256r1 keypairs, and to then test their ability to reverse engineer the public keypair generation process. It is my belief that proof-for would be equally valuable as proof-against in either of these categories. Finally, we'll conclude with some number crunching on where we see this particular field heading in the future.
comment: 7 pages
♻ ☆ Towards Acyclic Preference Evaluation of Language Models via Multiple Evaluators
Despite the remarkable success of Large Language Models (LLMs), evaluating their outputs' quality regarding preference remains a critical challenge. While existing works usually leverage a strong LLM as the judge for comparing LLMs' response pairwisely, such a single-evaluator approach is vulnerable to cyclic preference, i.e., output A is better than B, B than C, but C is better than A, causing contradictory evaluation results. To address this, we introduce PGED (Preference Graph Ensemble and Denoising), a novel approach that leverages multiple model-based evaluators to construct preference graphs, and then ensembles and denoises these graphs for acyclic, non-contradictory evaluation results. We provide theoretical guarantees for our framework, demonstrating its efficacy in recovering the ground truth preference structure. Extensive experiments on ten benchmarks demonstrate PGED's superiority in three applications: 1) model ranking for evaluation, 2) response selection for test-time scaling, and 3) data selection for model fine-tuning. Notably, PGED combines small LLM evaluators (e.g., Llama3-8B, Mistral-7B, Qwen2-7B) to outperform strong ones (e.g., Qwen2-72B), showcasing its effectiveness in enhancing evaluation reliability and improving model performance.
♻ ☆ Unified Embodied VLM Reasoning with Robotic Action via Autoregressive Discretized Pre-training
General-purpose robotic systems operating in open-world environments must achieve both broad generalization and high-precision action execution, a combination that remains challenging for existing Vision-Language-Action (VLA) models. While large Vision-Language Models (VLMs) improve semantic generalization, insufficient embodied reasoning leads to brittle behavior, and conversely, strong reasoning alone is inadequate without precise control. To provide a decoupled and quantitative assessment of this bottleneck, we introduce Embodied Reasoning Intelligence Quotient (ERIQ), a large-scale embodied reasoning benchmark in robotic manipulation, comprising 6K+ question-answer pairs across four reasoning dimensions. By decoupling reasoning from execution, ERIQ enables systematic evaluation and reveals a strong positive correlation between embodied reasoning capability and end-to-end VLA generalization. To bridge the gap from reasoning to precise execution, we propose FACT, a flow-matching-based action tokenizer that converts continuous control into discrete sequences while preserving high-fidelity trajectory reconstruction. The resulting GenieReasoner jointly optimizes reasoning and action in a unified space, outperforming both continuous-action and prior discrete-action baselines in real-world tasks. Together, ERIQ and FACT provide a principled framework for diagnosing and overcoming the reasoning-precision trade-off, advancing robust, general-purpose robotic manipulation. Project page: https://geniereasoner.github.io/GenieReasoner/
♻ ☆ Why Do Multilingual Reasoning Gaps Emerge in Reasoning Language Models?
Reasoning language models (RLMs) achieve strong performance on complex reasoning tasks, yet they still exhibit a multilingual reasoning gap, performing better in high-resource languages than in low-resource ones. While recent efforts have been made to address this gap, its underlying causes remain largely unexplored. In this work, we show that this gap primarily stems from failures in language understanding-specifically, the model's inability to translate multilingual inputs into the language dominating its reasoning traces (typically English). As identifying understanding failures can enable targeted mitigation of the gap, we evaluate a range of detection methods and find that understanding failures are detectable to a meaningful extent, with supervised approaches performing best. Building on this, we propose Selective Translation, a strategy that incorporates an English translation into the initial reasoning trace only when an understanding failure is detected. Experimental results using Qwen3-4B show that Selective Translation substantially bridges the multilingual reasoning gap, achieving near full-translation performance while translating only about 20% of inputs. Together, our results show that failures in language understanding are the primary driver of the multilingual reasoning gap and can be detected and selectively mitigated, clarifying its origin and suggesting a path toward more equitable multilingual reasoning. Our code and data are publicly available at https://github.com/deokhk/RLM_analysis
comment: v2: Fix typos and updated contents
♻ ☆ CubeBench: Diagnosing Interactive, Long-Horizon Spatial Reasoning Under Partial Observations
Large Language Model (LLM) agents, while proficient in the digital realm, face a significant gap in physical-world deployment due to the challenge of forming and maintaining a robust spatial mental model. We identify three core cognitive challenges hindering this transition: spatial reasoning, long-horizon state tracking via mental simulation, and active exploration under partial observation. To isolate and evaluate these faculties, we introduce CubeBench, a novel generative benchmark centered on the Rubik's Cube. CubeBench uses a three-tiered diagnostic framework that progressively assesses agent capabilities, from foundational state tracking with full symbolic information to active exploration with only partial visual data. Our experiments on leading LLMs reveal critical limitations, including a uniform 0.00% pass rate on all long-horizon tasks, exposing a fundamental failure in long-term planning. We also propose a diagnostic framework to isolate these cognitive bottlenecks by providing external solver tools. By analyzing the failure modes, we provide key insights to guide the development of more physically-grounded intelligent agents.
comment: Webpage: https://cubebench.c7w.tech/
♻ ☆ Improving Autoformalization Using Direct Dependency Retrieval
The convergence of deep learning and formal mathematics has spurred research in formal verification. Statement autoformalization, a crucial first step in this process, aims to translate informal descriptions into machine-verifiable representations but remains a significant challenge. The core difficulty lies in the fact that existing methods often suffer from a lack of contextual awareness, leading to hallucination of formal definitions and theorems. Furthermore, current retrieval-augmented approaches exhibit poor precision and recall for formal library dependency retrieval, and lack the scalability to effectively leverage ever-growing public datasets. To bridge this gap, we propose a novel retrieval-augmented framework based on DDR (\textit{Direct Dependency Retrieval}) for statement autoformalization. Our DDR method directly generates candidate library dependencies from natural language mathematical descriptions and subsequently verifies their existence within the formal library via an efficient suffix array check. Leveraging this efficient search mechanism, we constructed a dependency retrieval dataset of over 500,000 samples and fine-tuned a high-precision DDR model. Experimental results demonstrate that our DDR model significantly outperforms SOTA methods in both retrieval precision and recall. Consequently, an autoformalizer equipped with DDR shows consistent performance advantages in both single-attempt accuracy and multi-attempt stability compared to models using traditional selection-based RAG methods.
♻ ☆ From Description to Score: Can LLMs Quantify Vulnerabilities?
Manual vulnerability scoring, such as assigning Common Vulnerability Scoring System (CVSS) scores, is a resource-intensive process that is often influenced by subjective interpretation. This study investigates the potential of general-purpose large language models (LLMs), namely ChatGPT, Llama, Grok, DeepSeek, and Gemini, to automate this process by analyzing over 31{,}000 recent Common Vulnerabilities and Exposures (CVE) entries. The results show that LLMs substantially outperform the baseline on certain metrics (e.g., \textit{Availability Impact}), while offering more modest gains on others (e.g., \textit{Attack Complexity}). Moreover, model performance varies across both LLM families and individual CVSS metrics, with ChatGPT-5 attaining the highest precision. Our analysis reveals that LLMs tend to misclassify many of the same CVEs, and ensemble-based meta-classifiers only marginally improve performance. Further examination shows that CVE descriptions often lack critical context or contain ambiguous phrasing, which contributes to systematic misclassifications. These findings underscore the importance of enhancing vulnerability descriptions and incorporating richer contextual details to support more reliable automated reasoning and alleviate the growing backlog of CVEs awaiting triage.
comment: 10 pages
♻ ☆ LLM-Guided Exemplar Selection for Few-Shot Wearable-Sensor Human Activity Recognition
In this paper, we propose an LLM-Guided Exemplar Selection framework to address a key limitation in state-of-the-art Human Activity Recognition (HAR) methods: their reliance on large labeled datasets and purely geometric exemplar selection, which often fail to distinguish similar wearable sensor activities such as walking, walking upstairs, and walking downstairs. Our method incorporates semantic reasoning via an LLM-generated knowledge prior that captures feature importance, inter-class confusability, and exemplar budget multipliers, and uses it to guide exemplar scoring and selection. These priors are combined with margin-based validation cues, PageRank centrality, hubness penalization, and facility-location optimization to obtain a compact and informative set of exemplars. Evaluated on the UCI-HAR dataset under strict few-shot conditions, the framework achieves a macro F1-score of 88.78%, outperforming classical approaches such as random sampling, herding, and k-center. The results show that LLM-derived semantic priors, when integrated with structural and geometric cues, provide a stronger foundation for selecting representative sensor exemplars in few-shot wearable-sensor HAR.
comment: This paper has been accepted for presentation at ABC 2026. The manuscript is under revision prior to camera-ready submission
♻ ☆ Scaling Patterns in Adversarial Alignment: Evidence from Multi-LLM Jailbreak Experiments
Large language models (LLMs) increasingly operate in multi-agent and safety-critical settings, raising open questions about how their vulnerabilities scale when models interact adversarially. This study examines whether larger models can systematically jailbreak smaller ones - eliciting harmful or restricted behavior despite alignment safeguards. Using standardized adversarial tasks from JailbreakBench, we simulate over 6,000 multi-turn attacker-target exchanges across major LLM families and scales (0.6B-120B parameters), measuring both harm score and refusal behavior as indicators of adversarial potency and alignment integrity. Each interaction is evaluated through aggregated harm and refusal scores assigned by three independent LLM judges, providing a consistent, model-based measure of adversarial outcomes. Aggregating results across prompts, we find a strong and statistically significant correlation between mean harm and the logarithm of the attacker-to-target size ratio (Pearson r = 0.51, p < 0.001; Spearman rho = 0.52, p < 0.001), indicating that relative model size correlates with the likelihood and severity of harmful completions. Mean harm score variance is higher across attackers (0.18) than across targets (0.10), suggesting that attacker-side behavioral diversity contributes more to adversarial outcomes than target susceptibility. Attacker refusal frequency is strongly and negatively correlated with harm (rho = -0.93, p < 0.001), showing that attacker-side alignment mitigates harmful responses. These findings reveal that size asymmetry influences robustness and provide exploratory evidence for adversarial scaling patterns, motivating more controlled investigations into inter-model alignment and safety.
♻ ☆ GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning
We present GLM-4.1V-Thinking, GLM-4.5V, and GLM-4.6V, a family of vision-language models (VLMs) designed to advance general-purpose multimodal understanding and reasoning. In this report, we share our key findings in the development of the reasoning-centric training framework. We first develop a capable vision foundation model with significant potential through large-scale pre-training, which arguably sets the upper bound for the final performance. We then propose Reinforcement Learning with Curriculum Sampling (RLCS) to unlock the full potential of the model, leading to comprehensive capability enhancement across a diverse range of tasks, including STEM problem solving, video understanding, content recognition, coding, grounding, GUI-based agents, and long document interpretation. In a comprehensive evaluation across 42 public benchmarks, GLM-4.5V achieves state-of-the-art performance on nearly all tasks among open-source models of similar size, and demonstrates competitive or even superior results compared to closed-source models such as Gemini-2.5-Flash on challenging tasks including Coding and GUI Agents. Meanwhile, the smaller GLM-4.1V-9B-Thinking remains highly competitive-achieving superior results to the much larger Qwen2.5-VL-72B on 29 benchmarks. We open-source both GLM-4.1V-9B-Thinking and GLM-4.5V. We further introduce the GLM-4.6V series, open-source multimodal models with native tool use and a 128K context window. A brief overview is available at https://z.ai/blog/glm-4.6v. Code, models and more information are released at https://github.com/zai-org/GLM-V.
♻ ☆ Red Teaming Large Reasoning Models
Large Reasoning Models (LRMs) have emerged as a powerful advancement in multi-step reasoning tasks, offering enhanced transparency and logical consistency through explicit chains of thought (CoT). However, these models introduce novel safety and reliability risks, such as CoT-hijacking and prompt-induced inefficiencies, which are not fully captured by existing evaluation methods. To address this gap, we propose RT-LRM, a unified benchmark designed to assess the trustworthiness of LRMs. RT-LRM evaluates three core dimensions: truthfulness, safety and efficiency. Beyond metric-based evaluation, we further introduce the training paradigm as a key analytical perspective to investigate the systematic impact of different training strategies on model trustworthiness. We achieve this by designing a curated suite of 30 reasoning tasks from an observational standpoint. We conduct extensive experiments on 26 models and identify several valuable insights into the trustworthiness of LRMs. For example, LRMs generally face trustworthiness challenges and tend to be more fragile than Large Language Models (LLMs) when encountering reasoning-induced risks. These findings uncover previously underexplored vulnerabilities and highlight the need for more targeted evaluations. In addition, we release a scalable toolbox for standardized trustworthiness research to support future advancements in this important field. Our code and datasets will be open-sourced.
comment: 30 pages, 9 figures
♻ ☆ Coordinate Matrix Machine: A Human-level Concept Learning to Classify Very Similar Documents
Human-level concept learning argues that humans typically learn new concepts from a single example, whereas machine learning algorithms typically require hundreds of samples to learn a single concept. Our brain subconsciously identifies important features and learns more effectively. Contribution: In this paper, we present the Coordinate Matrix Machine (CM$^2$). This purpose-built small model augments human intelligence by learning document structures and using this information to classify documents. While modern "Red AI" trends rely on massive pre-training and energy-intensive GPU infrastructure, CM$^2$ is designed as a Green AI solution. It achieves human-level concept learning by identifying only the structural "important features" a human would consider, allowing it to classify very similar documents using only one sample per class. Advantage: Our algorithm outperforms traditional vectorizers and complex deep learning models that require larger datasets and significant compute. By focusing on structural coordinates rather than exhaustive semantic vectors, CM$^2$ offers: 1. High accuracy with minimal data (one-shot learning) 2. Geometric and structural intelligence 3. Green AI and environmental sustainability 4. Optimized for CPU-only environments 5. Inherent explainability (glass-box model) 6. Faster computation and low latency 7. Robustness against unbalanced classes 8. Economic viability 9. Generic, expandable, and extendable
comment: 16 pages, 3 figures
♻ ☆ KANO: Kolmogorov-Arnold Neural Operator
We introduce Kolmogorov--Arnold Neural Operator (KANO), a dual-domain neural operator jointly parameterized by both spectral and spatial bases with intrinsic symbolic interpretability. We theoretically demonstrate that KANO overcomes the pure-spectral bottleneck of Fourier Neural Operator (FNO): KANO remains expressive over generic position-dependent dynamics (variable coefficient PDEs) for any physical input, whereas FNO stays practical only for spectrally sparse operators and strictly imposes a fast-decaying input Fourier tail. We verify our claims empirically on position-dependent differential operators, for which KANO robustly generalizes but FNO fails to. In the quantum Hamiltonian learning benchmark, KANO reconstructs ground-truth Hamiltonians in closed-form symbolic representations accurate to the fourth decimal place in coefficients and attains $\approx 6\times10^{-6}$ state infidelity from projective measurement data, substantially outperforming that of the FNO trained with ideal full wave function data, $\approx 1.5\times10^{-2}$, by orders of magnitude.
♻ ☆ UltraGS: Real-Time Physically-Decoupled Gaussian Splatting for Ultrasound Novel View Synthesis
Ultrasound imaging is a cornerstone of non-invasive clinical diagnostics, yet its limited field of view poses challenges for novel view synthesis. We present UltraGS, a real-time framework that adapts Gaussian Splatting to sensorless ultrasound imaging by integrating explicit radiance fields with lightweight, physics-inspired acoustic modeling. UltraGS employs depth-aware Gaussian primitives with learnable fields of view to improve geometric consistency under unconstrained probe motion, and introduces PD Rendering, a differentiable acoustic operator that combines low-order spherical harmonics with first-order wave effects for efficient intensity synthesis. We further present a clinical ultrasound dataset acquired under real-world scanning protocols. Extensive evaluations across three datasets demonstrate that UltraGS establishes a new performance-efficiency frontier, achieving state-of-the-art results in PSNR (up to 29.55) and SSIM (up to 0.89) while achieving real-time synthesis at 64.69 fps on a single GPU. The code and dataset are open-sourced at: https://github.com/Bean-Young/UltraGS.
comment: Under Review
♻ ☆ PTQTP: Post-Training Quantization to Trit-Planes for Large Language Models
Post-training quantization (PTQ) of large language models (LLMs) to extremely low bit-widths remains challenging due to the fundamental trade-off between computational efficiency and representational capacity. While existing ultra-low-bit methods rely on binary approximations or quantization-aware training(QAT), they often suffer from either limited representational capacity or huge training resource overhead. We introduce PTQ to Trit-Planes (PTQTP), a structured PTQ framework that decomposes weight matrices into dual ternary {-1, 0, 1} trit-planes. This approach achieves multiplication-free additive inference by decoupling weights into discrete topology (trit-planes) and continuous magnitude (scales), effectively enabling high-fidelity sparse approximation. PTQTP provides: (1) a theoretically grounded progressive approximation algorithm ensuring global weight consistency; (2) model-agnostic deployment without architectural modifications; and (3) uniform ternary operations that eliminate mixed-precision overhead. Comprehensive experiments on LLaMA3.x and Qwen3 (0.6B-70B) demonstrate that PTQTP significantly outperforms sub-4bit PTQ methods on both language reasoning tasks and mathematical reasoning as well as coding. PTQTP rivals the 1.58-bit QAT performance while requiring only single-hour quantization compared to 10-14 GPU days for training-based methods, and the end-to-end inference speed achieves 4.63$\times$ faster than the FP16 baseline model, establishing a new and practical solution for efficient LLM deployment in resource-constrained environments. Code will available at https://github.com/HeXiao-55/PTQTP.
comment: Ternary Quantization, Under review
♻ ☆ Support Vector Machine Kernels as Quantum Propagators
Selecting optimal kernels for regression in physical systems remains a challenge, often relying on trial-and-error with standard functions. In this work, we establish a mathematical correspondence between support vector machine kernels and quantum propagators, demonstrating that kernel efficacy is determined by its spectral alignment with the system's Green's function. Based on this isomorphism, we propose a unified, physics-informed framework for kernel selection and design. For systems with known propagator forms, we derive analytical selection rules that map standard kernels to physical operators. For complex systems where the Green's function is analytically intractable, we introduce a constructive numerical method using the Kernel Polynomial Method with Jackson smoothing to generate custom, physics-aligned kernels. Numerical experiments spanning electrical conductivity, electronic band structure, anharmonic oscillators, and photonic crystals demonstrate that this framework consistently performs well as long as there is an alignment with a Green's function.
comment: Updated version, 17 pages, 7 figures
♻ ☆ FedSEA-LLaMA: A Secure, Efficient and Adaptive Federated Splitting Framework for Large Language Models
Private data holds promise for improving LLMs due to its high quality, but its scattered distribution across data silos and the high computational demands of LLMs limit their deployment in federated environments. To address this, the transformer-based federated split models are proposed, which offload most model parameters to the server (or distributed clients) while retaining only a small portion on the client to ensure data privacy. Despite this design, they still face three challenges: 1) Peer-to-peer key encryption struggles to secure transmitted vectors effectively; 2) The auto-regressive nature of LLMs means that federated split learning can only train and infer sequentially, causing high communication overhead; 3) Fixed partition points lack adaptability to downstream tasks. In this paper, we introduce FedSEA-LLaMA, a Secure, Efficient, and Adaptive Federated splitting framework based on LLaMA2. First, we inject Gaussian noise into forward-pass hidden states to enable secure end-to-end vector transmission. Second, we employ attention-mask compression and KV cache collaboration to reduce communication costs, accelerating training and inference. Third, we allow users to dynamically adjust the partition points for input/output blocks based on specific task requirements. Experiments on natural language understanding, summarization, and conversational QA tasks show that FedSEA-LLaMA maintains performance comparable to centralized LLaMA2 and achieves up to 8x speedups in training and inference. Further analysis of privacy attacks and different partition points also demonstrates the effectiveness of FedSEA-LLaMA in security and adaptability.
♻ ☆ Adaptive GPU Resource Allocation for Multi-Agent Collaborative Reasoning in Serverless Environments
Multi-agent systems powered by large language models have emerged as a promising paradigm for solving complex reasoning tasks through collaborative intelligence. However, efficiently deploying these systems on serverless GPU platforms presents significant resource allocation challenges due to heterogeneous agent workloads, varying computational demands, and the need for cost-effective scaling. This paper presents an adaptive GPU resource allocation framework that achieves 85% latency reduction compared to round-robin scheduling while maintaining comparable throughput to static allocation, using an O(N) complexity algorithm for real-time adaptation. Our approach dynamically allocates GPU resources based on workload characteristics, agent priorities, and minimum resource requirements, enabling efficient utilization while maintaining quality of service. The framework addresses three key challenges: (1) heterogeneous computational demands across lightweight coordinators and heavyweight specialists, (2) dynamic workload fluctuations requiring millisecond-scale reallocation, and (3) capacity constraints in serverless environments. Through comprehensive simulations modeling realistic multi-agent workflows with four heterogeneous agents, we demonstrate that adaptive allocation outperforms static equal and round-robin strategies across latency, cost, and GPU utilization metrics. The framework provides a practical solution for deploying cost-efficient multi-agent AI systems on serverless GPU infrastructure.
comment: 6 pages, 2 figures
♻ ☆ BOAD: Discovering Hierarchical Software Engineering Agents via Bandit Optimization
Large language models (LLMs) have shown strong reasoning and coding capabilities, yet they struggle to generalize to real-world software engineering (SWE) problems that are long-horizon and out of distribution. Existing systems often rely on a single agent to handle the entire workflow-interpreting issues, navigating large codebases, and implementing fixes-within one reasoning chain. Such monolithic designs force the model to retain irrelevant context, leading to spurious correlations and poor generalization. Motivated by how human engineers decompose complex problems, we propose structuring SWE agents as orchestrators coordinating specialized sub-agents for sub-tasks such as localization, editing, and validation. The challenge lies in discovering effective hierarchies automatically: as the number of sub-agents grows, the search space becomes combinatorial, and it is difficult to attribute credit to individual sub-agents within a team. We address these challenges by formulating hierarchy discovery as a multi-armed bandit (MAB) problem, where each arm represents a candidate sub-agent and the reward measures its helpfulness when collaborating with others. This framework, termed Bandit Optimization for Agent Design (BOAD), enables efficient exploration of sub-agent designs under limited evaluation budgets. On SWE-bench-Verified, BOAD outperforms single-agent and manually designed multi-agent systems. On SWE-bench-Live, featuring more recent and out-of-distribution issues, our 36B system ranks second on the leaderboard at the time of evaluation, surpassing larger models such as GPT-4 and Claude. These results demonstrate that automatically discovered hierarchical multi-agent systems significantly improve generalization on challenging long-horizon SWE tasks. Code is available at https://github.com/iamxjy/BOAD-SWE-Agent.
Computation and Language 64
☆ Learning Speech Representations with Variational Predictive Coding ACL
Despite being the best known objective for learning speech representations, the HuBERT objective has not been further developed and improved. We argue that it is the lack of an underlying principle that stalls the development, and, in this paper, we show that predictive coding under a variational view is the principle behind the HuBERT objective. Due to its generality, our formulation provides opportunities to improve parameterization and optimization, and we show two simple modifications that bring immediate improvements to the HuBERT objective. In addition, the predictive coding formulation has tight connections to various other objectives, such as APC, CPC, wav2vec, and BEST-RQ. Empirically, the improvement in pre-training brings significant improvements to four downstream tasks: phone classification, f0 tracking, speaker recognition, and automatic speech recognition, highlighting the importance of the predictive coding interpretation.
comment: Accepted to Transactions of the Association for Computational Linguistics (TACL); Pre MIT Press version
☆ The Agentic Leash: Extracting Causal Feedback Fuzzy Cognitive Maps with LLMs
We design a large-language-model (LLM) agent that extracts causal feedback fuzzy cognitive maps (FCMs) from raw text. The causal learning or extraction process is agentic both because of the LLM's semi-autonomy and because ultimately the FCM dynamical system's equilibria drive the LLM agents to fetch and process causal text. The fetched text can in principle modify the adaptive FCM causal structure and so modify the source of its quasi-autonomy--its equilibrium limit cycles and fixed-point attractors. This bidirectional process endows the evolving FCM dynamical system with a degree of autonomy while still staying on its agentic leash. We show in particular that a sequence of three finely tuned system instructions guide an LLM agent as it systematically extracts key nouns and noun phrases from text, as it extracts FCM concept nodes from among those nouns and noun phrases, and then as it extracts or infers partial or fuzzy causal edges between those FCM nodes. We test this FCM generation on a recent essay about the promise of AI from the late diplomat and political theorist Henry Kissinger and his colleagues. This three-step process produced FCM dynamical systems that converged to the same equilibrium limit cycles as did the human-generated FCMs even though the human-generated FCM differed in the number of nodes and edges. A final FCM mixed generated FCMs from separate Gemini and ChatGPT LLM agents. The mixed FCM absorbed the equilibria of its dominant mixture component but also created new equilibria of its own to better approximate the underlying causal dynamical system.
comment: 15 figures
☆ Universal Adaptive Constraint Propagation: Scaling Structured Inference for Large Language Models via Meta-Reinforcement Learning
Large language models increasingly require structured inference, from JSON schema enforcement to multi-lingual parsing, where outputs must satisfy complex constraints. We introduce MetaJuLS, a meta-reinforcement learning approach that learns universal constraint propagation policies applicable across languages and tasks without task-specific retraining. By formulating structured inference as adaptive constraint propagation and training a Graph Attention Network with meta-learning, MetaJuLS achieves 1.5--2.0$\times$ speedups over GPU-optimized baselines while maintaining within 0.2\% accuracy of state-of-the-art parsers. On Universal Dependencies across 10 languages and LLM-constrained generation (LogicBench, GSM8K-Constrained), MetaJuLS demonstrates rapid cross-domain adaptation: a policy trained on English parsing adapts to new languages and tasks with 5--10 gradient steps (5--15 seconds) rather than requiring hours of task-specific training. Mechanistic analysis reveals the policy discovers human-like parsing strategies (easy-first) and novel non-intuitive heuristics. By reducing propagation steps in LLM deployments, MetaJuLS contributes to Green AI by directly reducing inference carbon footprint.
☆ RIMRULE: Improving Tool-Using Language Agents via MDL-Guided Rule Learning
Large language models (LLMs) often struggle to use tools reliably in domain-specific settings, where APIs may be idiosyncratic, under-documented, or tailored to private workflows. This highlights the need for effective adaptation to task-specific tools. We propose RIMRULE, a neuro-symbolic approach for LLM adaptation based on dynamic rule injection. Compact, interpretable rules are distilled from failure traces and injected into the prompt during inference to improve task performance. These rules are proposed by the LLM itself and consolidated using a Minimum Description Length (MDL) objective that favors generality and conciseness. Each rule is stored in both natural language and a structured symbolic form, supporting efficient retrieval at inference time. Experiments on tool-use benchmarks show that this approach improves accuracy on both seen and unseen tools without modifying LLM weights. It outperforms prompting-based adaptation methods and complements finetuning. Moreover, rules learned from one LLM can be reused to improve others, including long reasoning LLMs, highlighting the portability of symbolic knowledge across architectures.
☆ The Trojan in the Vocabulary: Stealthy Sabotage of LLM Composition
The open-weight LLM ecosystem is increasingly defined by model composition techniques (such as weight merging, speculative decoding, and vocabulary expansion) that remix capabilities from diverse sources. A critical prerequisite for applying these methods across different model families is tokenizer transplant, which aligns incompatible vocabularies to a shared embedding space. We demonstrate that this essential interoperability step introduces a supply-chain vulnerability: we engineer a single "breaker token" that is functionally inert in a donor model yet reliably reconstructs into a high-salience malicious feature after transplant into a base model. By exploiting the geometry of coefficient reuse, our attack creates an asymmetric realizability gap that sabotages the base model's generation while leaving the donor's utility statistically indistinguishable from nominal behavior. We formalize this as a dual-objective optimization problem and instantiate the attack using a sparse solver. Empirically, the attack is training-free and achieves spectral mimicry to evade outlier detection, while demonstrating structural persistence against fine-tuning and weight merging, highlighting a hidden risk in the pipeline of modular AI composition. Code is available at https://github.com/xz-liu/tokenforge
☆ Scaling Open-Ended Reasoning to Predict the Future
High-stakes decision making involves reasoning under uncertainty about the future. In this work, we train language models to make predictions on open-ended forecasting questions. To scale up training data, we synthesize novel forecasting questions from global events reported in daily news, using a fully automated, careful curation recipe. We train the Qwen3 thinking models on our dataset, OpenForesight. To prevent leakage of future information during training and evaluation, we use an offline news corpus, both for data generation and retrieval in our forecasting system. Guided by a small validation set, we show the benefits of retrieval, and an improved reward function for reinforcement learning (RL). Once we obtain our final forecasting system, we perform held-out testing between May to August 2025. Our specialized model, OpenForecaster 8B, matches much larger proprietary models, with our training improving the accuracy, calibration, and consistency of predictions. We find calibration improvements from forecasting training generalize across popular benchmarks. We open-source all our models, code, and data to make research on language model forecasting broadly accessible.
comment: 45 pages
☆ Many Minds from One Model: Bayesian Transformers for Population Intelligence
Despite their scale and success, modern transformers are almost universally trained as single-minded systems: optimization produces one deterministic set of parameters, representing a single functional hypothesis about the data. Motivated by the idea that intelligence emerge from many minds, we propose Population Bayesian Transformers (B-Trans), which transform a standard Large Language Model into a Bayesian Transformer model to supports sampling diverse yet coherent model instances from a single set of pre-trained weights. B-Trans introduces a Bayesian-motivated posterior proxy by treating the bias-like offsets in normalization layers as stochastic variables with a Gaussian variational approximation, inducing a distribution over model behavior without the cost of training full Bayesian neural networks. Sampling from this proxy yields a set of model instances with diverse behaviors while maintaining general competence. To preserve coherence within each generation, we freeze the sampled noise at the sequence level, enforcing temporal consistency across tokens. B-Trans allows for population-level decision-making, where aggregating predictions across sampled individuals significantly enhances exploration. Experiments across zero-shot generation, Reinforcement Learning with Verifiable Rewards (RLVR), and RL without explicit labels demonstrate that B-Trans effectively leverage the wisdom of crowds, yielding superior semantic diversity while achieving better task performance compared to deterministic baselines.
☆ AdaGReS:Adaptive Greedy Context Selection via Redundancy-Aware Scoring for Token-Budgeted RAG
Retrieval-augmented generation (RAG) is highly sensitive to the quality of selected context, yet standard top-k retrieval often returns redundant or near-duplicate chunks that waste token budget and degrade downstream generation. We present AdaGReS, a redundancy-aware context selection framework for token-budgeted RAG that optimizes a set-level objective combining query-chunk relevance and intra-set redundancy penalties. AdaGReS performs greedy selection under a token-budget constraint using marginal gains derived from the objective, and introduces a closed-form, instance-adaptive calibration of the relevance-redundancy trade-off parameter to eliminate manual tuning and adapt to candidate-pool statistics and budget limits. We further provide a theoretical analysis showing that the proposed objective exhibits epsilon-approximate submodularity under practical embedding similarity conditions, yielding near-optimality guarantees for greedy selection. Experiments on open-domain question answering (Natural Questions) and a high-redundancy biomedical (drug) corpus demonstrate consistent improvements in redundancy control and context quality, translating to better end-to-end answer quality and robustness across settings.
comment: Preprint. Under review
☆ Modeling Language as a Sequence of Thoughts
Transformer language models can generate strikingly natural text by modeling language as a sequence of tokens. Yet, by relying primarily on surface-level co-occurrence statistics, they fail to form globally consistent latent representations of entities and events, lack of which contributes to brittleness in relational direction (e.g., reversal curse), contextualization errors, and data inefficiency. On the other hand, cognitive science shows that human comprehension involves converting the input linguistic stream into compact, event-like representations that persist in memory while verbatim form is short-lived. Motivated by this view, we introduce Thought Gestalt (TG) model, a recurrent Transformer that models language at two levels of abstraction - tokens and sentence-level "thought" states. TG generates the tokens of one sentence at a time while cross-attending to a memory of prior sentence representations. In TG, token and sentence representations are generated using the same set of model parameters and trained with a single objective, the next-token cross-entropy: by retaining the computation graph of sentence representations written to memory, gradients from future token losses flow backward through cross-attention to optimize the parameters generating earlier sentence vectors. In scaling experiments, TG consistently improves efficiency over matched GPT-2 runs, among other baselines, with scaling fits indicating GPT-2 requires ~5-8% more data and ~33-42% more parameters to match TG's loss. TG also reduces errors on relational direction generalization on a father-son reversal curse probe.
☆ MAMA-Memeia! Multi-Aspect Multi-Agent Collaboration for Depressive Symptoms Identification in Memes AAAI 2026
Over the past years, memes have evolved from being exclusively a medium of humorous exchanges to one that allows users to express a range of emotions freely and easily. With the ever-growing utilization of memes in expressing depressive sentiments, we conduct a study on identifying depressive symptoms exhibited by memes shared by users of online social media platforms. We introduce RESTOREx as a vital resource for detecting depressive symptoms in memes on social media through the Large Language Model (LLM) generated and human-annotated explanations. We introduce MAMAMemeia, a collaborative multi-agent multi-aspect discussion framework grounded in the clinical psychology method of Cognitive Analytic Therapy (CAT) Competencies. MAMAMemeia improves upon the current state-of-the-art by 7.55% in macro-F1 and is established as the new benchmark compared to over 30 methods.
comment: Accepted by AAAI 2026
☆ Classifying long legal documents using short random chunks
Classifying legal documents is a challenge, besides their specialized vocabulary, sometimes they can be very long. This means that feeding full documents to a Transformers-based models for classification might be impossible, expensive or slow. Thus, we present a legal document classifier based on DeBERTa V3 and a LSTM, that uses as input a collection of 48 randomly-selected short chunks (max 128 tokens). Besides, we present its deployment pipeline using Temporal, a durable execution solution, which allow us to have a reliable and robust processing workflow. The best model had a weighted F-score of 0.898, while the pipeline running on CPU had a processing median time of 498 seconds per 100 files.
☆ Large language models and the entropy of English
We use large language models (LLMs) to uncover long-ranged structure in English texts from a variety of sources. The conditional entropy or code length in many cases continues to decrease with context length at least to $N\sim 10^4$ characters, implying that there are direct dependencies or interactions across these distances. A corollary is that there are small but significant correlations between characters at these separations, as we show from the data independent of models. The distribution of code lengths reveals an emergent certainty about an increasing fraction of characters at large $N$. Over the course of model training, we observe different dynamics at long and short context lengths, suggesting that long-ranged structure is learned only gradually. Our results constrain efforts to build statistical physics models of LLMs or language itself.
comment: 8 pages, 6 figures
☆ CPJ: Explainable Agricultural Pest Diagnosis via Caption-Prompt-Judge with LLM-Judged Refinement
Accurate and interpretable crop disease diagnosis is essential for agricultural decision-making, yet existing methods often rely on costly supervised fine-tuning and perform poorly under domain shifts. We propose Caption--Prompt--Judge (CPJ), a training-free few-shot framework that enhances Agri-Pest VQA through structured, interpretable image captions. CPJ employs large vision-language models to generate multi-angle captions, refined iteratively via an LLM-as-Judge module, which then inform a dual-answer VQA process for both recognition and management responses. Evaluated on CDDMBench, CPJ significantly improves performance: using GPT-5-mini captions, GPT-5-Nano achieves \textbf{+22.7} pp in disease classification and \textbf{+19.5} points in QA score over no-caption baselines. The framework provides transparent, evidence-based reasoning, advancing robust and explainable agricultural diagnosis without fine-tuning. Our code and data are publicly available at: https://github.com/CPJ-Agricultural/CPJ-Agricultural-Diagnosis.
comment: This paper is 6 pages in length and contains 2 figures. Tao Fang (Corresponding Author), Lina Lu (Co-corresponding Author)
☆ RAIR: A Rule-Aware Benchmark Uniting Challenging Long-Tail and Visual Salience Subset for E-commerce Relevance Assessment
Search relevance plays a central role in web e-commerce. While large language models (LLMs) have shown significant results on relevance task, existing benchmarks lack sufficient complexity for comprehensive model assessment, resulting in an absence of standardized relevance evaluation metrics across the industry. To address this limitation, we propose Rule-Aware benchmark with Image for Relevance assessment(RAIR), a Chinese dataset derived from real-world scenarios. RAIR established a standardized framework for relevance assessment and provides a set of universal rules, which forms the foundation for standardized evaluation. Additionally, RAIR analyzes essential capabilities required for current relevance models and introduces a comprehensive dataset consists of three subset: (1) a general subset with industry-balanced sampling to evaluate fundamental model competencies; (2) a long-tail hard subset focus on challenging cases to assess performance limits; (3) a visual salience subset for evaluating multimodal understanding capabilities. We conducted experiments on RAIR using 14 open and closed-source models. The results demonstrate that RAIR presents sufficient challenges even for GPT-5, which achieved the best performance. RAIR data are now available, serving as an industry benchmark for relevance assessment while providing new insights into general LLM and Visual Language Model(VLM) evaluation.
☆ Iterative Deployment Improves Planning Skills in LLMs
We show that iterative deployment of large language models (LLMs), each fine-tuned on data carefully curated by users from the previous models' deployment, can significantly change the properties of the resultant models. By testing this mechanism on various planning domains, we observe substantial improvements in planning skills, with later models displaying emergent generalization by discovering much longer plans than the initial models. We then provide theoretical analysis showing that iterative deployment effectively implements reinforcement learning (RL) training in the outer-loop (i.e. not as part of intentional model training), with an implicit reward function. The connection to RL has two important implications: first, for the field of AI safety, as the reward function entailed by repeated deployment is not defined explicitly, and could have unexpected implications to the properties of future model deployments. Second, the mechanism highlighted here can be viewed as an alternative training regime to explicit RL, relying on data curation rather than explicit rewards.
☆ Vibe Coding, Interface Flattening
Large language models are reshaping programming by enabling 'vibe coding': the development of softwares through natural-language interaction with model-driven toolchains. This article argues that vibe coding is best understood as interface flattening, a reconfiguration in which previously distinct modalities (GUI, CLI, and API) appear to converge into a single conversational surface, even as the underlying chain of translation from intention to machinic effect lengthens and thickens. Drawing on Friedrich Kittler's materialist media theory and Alexander Galloway's account of interfaces as sites of protocol control, the paper situates programming as a historically localised interface arrangement rather than an essential relation to computation. Through a materialist reconstruction of the contemporary vibe-coding stack, it shows how remote compute infrastructures, latency and connectivity, structured outputs, function/tool calling, and interoperability standards such as the Model Context Protocol relocate control and meaning-making power to model and protocol providers. The apparent democratisation of technical capability therefore depends on new dependencies and new literacies. By foregrounding the tension between experiential flattening and infrastructural thickening, I demonstrate how LLM-mediated development redistributes symbolic labour/power, obscures responsibility, and privatises competencies previously dispersed across programming communities, contributing a critical lens on the political economy of AI-mediated human-computer interaction.
comment: 16 pages, 1 figure
☆ Adaptive Dependency-aware Prompt Optimization Framework for Multi-Step LLM Pipeline
Multi-step LLM pipelines invoke large language models multiple times in a structured sequence and can effectively solve complex tasks, but their performance heavily depends on the prompts used at each step. Jointly optimizing these prompts is difficult due to missing step-level supervision and inter-step dependencies. Existing end-to-end prompt optimization methods struggle under these conditions and often yield suboptimal or unstable updates. We propose ADOPT, an Adaptive Dependency-aware Prompt Optimization framework for multi-step LLM pipelines. ADOPT explicitly models the dependency between each LLM step and the final task outcome, enabling precise text-gradient estimation analogous to computing analytical derivatives. It decouples textual gradient estimation from gradient updates, reducing multi-prompt optimization to flexible single-prompt optimization steps, and employs a Shapley-based mechanism to adaptively allocate optimization resources. Experiments on real-world datasets and diverse pipeline structures show that ADOPT is effective and robust, consistently outperforming state-of-the-art prompt optimization baselines.
☆ BEDA: Belief Estimation as Probabilistic Constraints for Performing Strategic Dialogue Acts AAMAS 2026
Strategic dialogue requires agents to execute distinct dialogue acts, for which belief estimation is essential. While prior work often estimates beliefs accurately, it lacks a principled mechanism to use those beliefs during generation. We bridge this gap by first formalizing two core acts Adversarial and Alignment, and by operationalizing them via probabilistic constraints on what an agent may generate. We instantiate this idea in BEDA, a framework that consists of the world set, the belief estimator for belief estimation, and the conditional generator that selects acts and realizes utterances consistent with the inferred beliefs. Across three settings, Conditional Keeper Burglar (CKBG, adversarial), Mutual Friends (MF, cooperative), and CaSiNo (negotiation), BEDA consistently outperforms strong baselines: on CKBG it improves success rate by at least 5.0 points across backbones and by 20.6 points with GPT-4.1-nano; on Mutual Friends it achieves an average improvement of 9.3 points; and on CaSiNo it achieves the optimal deal relative to all baselines. These results indicate that casting belief estimation as constraints provides a simple, general mechanism for reliable strategic dialogue.
comment: Accepted by AAMAS 2026
☆ mHC: Manifold-Constrained Hyper-Connections
Recently, studies exemplified by Hyper-Connections (HC) have extended the ubiquitous residual connection paradigm established over the past decade by expanding the residual stream width and diversifying connectivity patterns. While yielding substantial performance gains, this diversification fundamentally compromises the identity mapping property intrinsic to the residual connection, which causes severe training instability and restricted scalability, and additionally incurs notable memory access overhead. To address these challenges, we propose Manifold-Constrained Hyper-Connections (mHC), a general framework that projects the residual connection space of HC onto a specific manifold to restore the identity mapping property, while incorporating rigorous infrastructure optimization to ensure efficiency. Empirical experiments demonstrate that mHC is effective for training at scale, offering tangible performance improvements and superior scalability. We anticipate that mHC, as a flexible and practical extension of HC, will contribute to a deeper understanding of topological architecture design and suggest promising directions for the evolution of foundational models.
☆ Let It Flow: Agentic Crafting on Rock and Roll, Building the ROME Model within an Open Agentic Learning Ecosystem
Agentic crafting requires LLMs to operate in real-world environments over multiple turns by taking actions, observing outcomes, and iteratively refining artifacts. Despite its importance, the open-source community lacks a principled, end-to-end ecosystem to streamline agent development. We introduce the Agentic Learning Ecosystem (ALE), a foundational infrastructure that optimizes the production pipeline for agent LLMs. ALE consists of three components: ROLL, a post-training framework for weight optimization; ROCK, a sandbox environment manager for trajectory generation; and iFlow CLI, an agent framework for efficient context engineering. We release ROME (ROME is Obviously an Agentic Model), an open-source agent grounded by ALE and trained on over one million trajectories. Our approach includes data composition protocols for synthesizing complex behaviors and a novel policy optimization algorithm, Interaction-based Policy Alignment (IPA), which assigns credit over semantic interaction chunks rather than individual tokens to improve long-horizon training stability. Empirically, we evaluate ROME within a structured setting and introduce Terminal Bench Pro, a benchmark with improved scale and contamination control. ROME demonstrates strong performance across benchmarks like SWE-bench Verified and Terminal Bench, proving the effectiveness of the ALE infrastructure.
comment: 36 pages, 15 figures
☆ Encyclo-K: Evaluating LLMs with Dynamically Composed Knowledge Statements
Benchmarks play a crucial role in tracking the rapid advancement of large language models (LLMs) and identifying their capability boundaries. However, existing benchmarks predominantly curate questions at the question level, suffering from three fundamental limitations: vulnerability to data contamination, restriction to single-knowledge-point assessment, and reliance on costly domain expert annotation. We propose Encyclo-K, a statement-based benchmark that rethinks benchmark construction from the ground up. Our key insight is that knowledge statements, not questions, can serve as the unit of curation, and questions can then be constructed from them. We extract standalone knowledge statements from authoritative textbooks and dynamically compose them into evaluation questions through random sampling at test time. This design directly addresses all three limitations: the combinatorial space is too vast to memorize, and model rankings remain stable across dynamically generated question sets, enabling reliable periodic dataset refresh; each question aggregates 8-10 statements for comprehensive multi-knowledge assessment; annotators only verify formatting compliance without requiring domain expertise, substantially reducing annotation costs. Experiments on over 50 LLMs demonstrate that Encyclo-K poses substantial challenges with strong discriminative power. Even the top-performing OpenAI-GPT-5.1 achieves only 62.07% accuracy, and model performance displays a clear gradient distribution--reasoning models span from 16.04% to 62.07%, while chat models range from 9.71% to 50.40%. These results validate the challenges introduced by dynamic evaluation and multi-statement comprehensive understanding. These findings establish Encyclo-K as a scalable framework for dynamic evaluation of LLMs' comprehensive understanding over multiple fine-grained disciplinary knowledge statements.
☆ Big AI is accelerating the metacrisis: What can we do?
The world is in the grip of ecological, meaning, and language crises which are converging into a metacrisis. Big AI is accelerating them all. Language engineers are playing a central role, persisting with a scalability story that is failing humanity, supplying critical talent to plutocrats and kleptocrats, and creating new technologies as if the whole endeavour was value-free. We urgently need to explore alternatives, applying our collective intelligence to design a life-affirming future for NLP that is centered on human flourishing on a living planet.
comment: 9 pages, 1 figure
☆ PrivacyBench: A Conversational Benchmark for Evaluating Privacy in Personalized AI
Personalized AI agents rely on access to a user's digital footprint, which often includes sensitive data from private emails, chats and purchase histories. Yet this access creates a fundamental societal and privacy risk: systems lacking social-context awareness can unintentionally expose user secrets, threatening digital well-being. We introduce PrivacyBench, a benchmark with socially grounded datasets containing embedded secrets and a multi-turn conversational evaluation to measure secret preservation. Testing Retrieval-Augmented Generation (RAG) assistants reveals that they leak secrets in up to 26.56% of interactions. A privacy-aware prompt lowers leakage to 5.12%, yet this measure offers only partial mitigation. The retrieval mechanism continues to access sensitive data indiscriminately, which shifts the entire burden of privacy preservation onto the generator. This creates a single point of failure, rendering current architectures unsafe for wide-scale deployment. Our findings underscore the urgent need for structural, privacy-by-design safeguards to ensure an ethical and inclusive web for everyone.
comment: 11 pages, 2 figures
☆ Triangulation as an Acceptance Rule for Multilingual Mechanistic Interpretability NeurIPS 2025
Multilingual language models achieve strong aggregate performance yet often behave unpredictably across languages, scripts, and cultures. We argue that mechanistic explanations for such models should satisfy a \emph{causal} standard: claims must survive causal interventions and must \emph{cross-reference} across environments that perturb surface form while preserving meaning. We formalize \emph{reference families} as predicate-preserving variants and introduce \emph{triangulation}, an acceptance rule requiring necessity (ablating the circuit degrades the target behavior), sufficiency (patching activations transfers the behavior), and invariance (both effects remain directionally stable and of sufficient magnitude across the reference family). To supply candidate subgraphs, we adopt automatic circuit discovery and \emph{accept or reject} those candidates by triangulation. We ground triangulation in causal abstraction by casting it as an approximate transformation score over a distribution of interchange interventions, connect it to the pragmatic interpretability agenda, and present a comparative experimental protocol across multiple model families, language pairs, and tasks. Triangulation provides a falsifiable standard for mechanistic claims that filters spurious circuits passing single-environment tests but failing cross-lingual invariance.
comment: NeurIPS 2025 Workshop Evaluating the Evolving LLM Lifecycle: Benchmarks, Emergent Abilities, and Scaling
☆ Practising responsibility: Ethics in NLP as a hands-on course
As Natural Language Processing (NLP) systems become more pervasive, integrating ethical considerations into NLP education has become essential. However, this presents inherent challenges in curriculum development: the field's rapid evolution from both academia and industry, and the need to foster critical thinking beyond traditional technical training. We introduce our course on Ethical Aspects in NLP and our pedagogical approach, grounded in active learning through interactive sessions, hands-on activities, and "learning by teaching" methods. Over four years, the course has been refined and adapted across different institutions, educational levels, and interdisciplinary backgrounds; it has also yielded many reusable products, both in the form of teaching materials and in the form of actual educational products aimed at diverse audiences, made by the students themselves. By sharing our approach and experience, we hope to provide inspiration for educators seeking to incorporate social impact considerations into their curricula.
☆ Compute-Accuracy Pareto Frontiers for Open-Source Reasoning Large Language Models
Large Language Models (LLMs) are demonstrating rapid improvements on complex reasoning benchmarks, particularly when allowed to utilize intermediate reasoning steps before converging on a final solution. However, current literature often overlooks the significant computational burden associated with generating long reasoning sequences. For industrial applications, model selection depends not only on raw accuracy but also on resource constraints and inference costs. In this work, we conduct a test-time-compute aware evaluation of both contemporary and older open-source LLMs, mapping their Pareto frontiers across math- and reasoning-intensive benchmarks. Our findings identify the Mixture of Experts (MoE) architecture as a strong candidate to balance performance and efficiency in our evaluation setting. Furthermore, we trace the trajectory of Pareto efficiency over time to derive an emergent trend regarding accuracy gain per unit of compute. Finally, we demonstrate that there is a saturation point for inference-time compute. Beyond a certain threshold, accuracy gains diminish, indicating that while extended reasoning capabilities are beneficial, they cannot overcome intrinsic model limitations regarding specific complexities.
☆ Uncertainty-aware Semi-supervised Ensemble Teacher Framework for Multilingual Depression Detection
Detecting depression from social media text is still a challenging task. This is due to different language styles, informal expression, and the lack of annotated data in many languages. To tackle these issues, we propose, Semi-SMDNet, a strong Semi-Supervised Multilingual Depression detection Network. It combines teacher-student pseudo-labelling, ensemble learning, and augmentation of data. Our framework uses a group of teacher models. Their predictions come together through soft voting. An uncertainty-based threshold filters out low-confidence pseudo-labels to reduce noise and improve learning stability. We also use a confidence-weighted training method that focuses on reliable pseudo-labelled samples. This greatly boosts robustness across languages. Tests on Arabic, Bangla, English, and Spanish datasets show that our approach consistently beats strong baselines. It significantly reduces the performance gap between settings that have plenty of resources and those that do not. Detailed experiments and studies confirm that our framework is effective and can be used in various situations. This shows that it is suitable for scalable, cross-language mental health monitoring where labelled resources are limited.
☆ BIOME-Bench: A Benchmark for Biomolecular Interaction Inference and Multi-Omics Pathway Mechanism Elucidation from Scientific Literature
Multi-omics studies often rely on pathway enrichment to interpret heterogeneous molecular changes, but pathway enrichment (PE)-based workflows inherit structural limitations of pathway resources, including curation lag, functional redundancy, and limited sensitivity to molecular states and interventions. Although recent work has explored using large language models (LLMs) to improve PE-based interpretation, the lack of a standardized benchmark for end-to-end multi-omics pathway mechanism elucidation has largely confined evaluation to small, manually curated datasets or ad hoc case studies, hindering reproducible progress. To address this issue, we introduce BIOME-Bench, constructed via a rigorous four-stage workflow, to evaluate two core capabilities of LLMs in multi-omics analysis: Biomolecular Interaction Inference and end-to-end Multi-Omics Pathway Mechanism Elucidation. We develop evaluation protocols for both tasks and conduct comprehensive experiments across multiple strong contemporary models. Experimental results demonstrate that existing models still exhibit substantial deficiencies in multi-omics analysis, struggling to reliably distinguish fine-grained biomolecular relation types and to generate faithful, robust pathway-level mechanistic explanations.
☆ MUSIC: MUlti-Step Instruction Contrast for Multi-Turn Reward Models
Evaluating the quality of multi-turn conversations is crucial for developing capable Large Language Models (LLMs), yet remains a significant challenge, often requiring costly human evaluation. Multi-turn reward models (RMs) offer a scalable alternative and can provide valuable signals for guiding LLM training. While recent work has advanced multi-turn \textit{training} techniques, effective automated \textit{evaluation} specifically for multi-turn interactions lags behind. We observe that standard preference datasets, typically contrasting responses based only on the final conversational turn, provide insufficient signal to capture the nuances of multi-turn interactions. Instead, we find that incorporating contrasts spanning \textit{multiple} turns is critical for building robust multi-turn RMs. Motivated by this finding, we propose \textbf{MU}lti-\textbf{S}tep \textbf{I}nstruction \textbf{C}ontrast (MUSIC), an unsupervised data augmentation strategy that synthesizes contrastive conversation pairs exhibiting differences across multiple turns. Leveraging MUSIC on the Skywork preference dataset, we train a multi-turn RM based on the Gemma-2-9B-Instruct model. Empirical results demonstrate that our MUSIC-augmented RM outperforms baseline methods, achieving higher alignment with judgments from advanced proprietary LLM judges on multi-turn conversations, crucially, without compromising performance on standard single-turn RM benchmarks.
☆ Quantum Visual Word Sense Disambiguation: Unraveling Ambiguities Through Quantum Inference Model
Visual word sense disambiguation focuses on polysemous words, where candidate images can be easily confused. Traditional methods use classical probability to calculate the likelihood of an image matching each gloss of the target word, summing these to form a posterior probability. However, due to the challenge of semantic uncertainty, glosses from different sources inevitably carry semantic biases, which can lead to biased disambiguation results. Inspired by quantum superposition in modeling uncertainty, this paper proposes a Quantum Inference Model for Unsupervised Visual Word Sense Disambiguation (Q-VWSD). It encodes multiple glosses of the target word into a superposition state to mitigate semantic biases. Then, the quantum circuit is executed, and the results are observed. By formalizing our method, we find that Q-VWSD is a quantum generalization of the method based on classical probability. Building on this, we further designed a heuristic version of Q-VWSD that can run more efficiently on classical computing. The experiments demonstrate that our method outperforms state-of-the-art classical methods, particularly by effectively leveraging non-specialized glosses from large language models, which further enhances performance. Our approach showcases the potential of quantum machine learning in practical applications and provides a case for leveraging quantum modeling advantages on classical computers while quantum hardware remains immature.
☆ R-Debater: Retrieval-Augmented Debate Generation through Argumentative Memory AAMAS 2026
We present R-Debater, an agentic framework for generating multi-turn debates built on argumentative memory. Grounded in rhetoric and memory studies, the system views debate as a process of recalling and adapting prior arguments to maintain stance consistency, respond to opponents, and support claims with evidence. Specifically, R-Debater integrates a debate knowledge base for retrieving case-like evidence and prior debate moves with a role-based agent that composes coherent utterances across turns. We evaluate on standardized ORCHID debates, constructing a 1,000-item retrieval corpus and a held-out set of 32 debates across seven domains. Two tasks are evaluated: next-utterance generation, assessed by InspireScore (subjective, logical, and factual), and adversarial multi-turn simulations, judged by Debatrix (argument, source, language, and overall). Compared with strong LLM baselines, R-Debater achieves higher single-turn and multi-turn scores. Human evaluation with 20 experienced debaters further confirms its consistency and evidence use, showing that combining retrieval grounding with structured planning yields more faithful, stance-aligned, and coherent debates across turns.
comment: Accepteed by AAMAS 2026 full paper
☆ Do Large Language Models Know What They Are Capable Of?
We investigate whether large language models (LLMs) can predict whether they will succeed on a given task and whether their predictions improve as they progress through multi-step tasks. We also investigate whether LLMs can learn from in-context experiences to make better decisions about whether to pursue a task in scenarios where failure is costly. All LLMs we tested are overconfident, but most predict their success with better-than-random discriminatory power. We find that newer and larger LLMs generally do not have greater discriminatory power, though Claude models do show such a trend. On multi-step agentic tasks, the overconfidence of several frontier LLMs worsens as they progress through the tasks, and reasoning LLMs perform comparably to or worse than non-reasoning LLMs. With in-context experiences of failure, some but not all LLMs reduce their overconfidence leading to significantly improved decision making, while others do not. Interestingly, all LLMs' decisions are approximately rational given their estimated probabilities of success, yet their overly-optimistic estimates result in poor decision making. These results suggest that current LLM agents are hindered by their lack of awareness of their own capabilities. We discuss the implications of LLMs' awareness of their capabilities for AI misuse and misalignment risks.
comment: 23 pages, 8 figures
☆ Youtu-LLM: Unlocking the Native Agentic Potential for Lightweight Large Language Models
We introduce Youtu-LLM, a lightweight yet powerful language model that harmonizes high computational efficiency with native agentic intelligence. Unlike typical small models that rely on distillation, Youtu-LLM (1.96B) is pre-trained from scratch to systematically cultivate reasoning and planning capabilities. The key technical advancements are as follows: (1) Compact Architecture with Long-Context Support: Built on a dense Multi-Latent Attention (MLA) architecture with a novel STEM-oriented vocabulary, Youtu-LLM supports a 128k context window. This design enables robust long-context reasoning and state tracking within a minimal memory footprint, making it ideal for long-horizon agent and reasoning tasks. (2) Principled "Commonsense-STEM-Agent" Curriculum: We curated a massive corpus of approximately 11T tokens and implemented a multi-stage training strategy. By progressively shifting the pre-training data distribution from general commonsense to complex STEM and agentic tasks, we ensure the model acquires deep cognitive abilities rather than superficial alignment. (3) Scalable Agentic Mid-training: Specifically for the agentic mid-training, we employ diverse data construction schemes to synthesize rich and varied trajectories across math, coding, and tool-use domains. This high-quality data enables the model to internalize planning and reflection behaviors effectively. Extensive evaluations show that Youtu-LLM sets a new state-of-the-art for sub-2B LLMs. On general benchmarks, it achieves competitive performance against larger models, while on agent-specific tasks, it significantly surpasses existing SOTA baselines, demonstrating that lightweight models can possess strong intrinsic agentic capabilities.
comment: 57 pages, 26 figures
☆ Recursive Language Models
We study allowing large language models (LLMs) to process arbitrarily long prompts through the lens of inference-time scaling. We propose Recursive Language Models (RLMs), a general inference strategy that treats long prompts as part of an external environment and allows the LLM to programmatically examine, decompose, and recursively call itself over snippets of the prompt. We find that RLMs successfully handle inputs up to two orders of magnitude beyond model context windows and, even for shorter prompts, dramatically outperform the quality of base LLMs and common long-context scaffolds across four diverse long-context tasks, while having comparable (or cheaper) cost per query.
comment: 9 pages, 33 with Appendix
☆ Understanding and Steering the Cognitive Behaviors of Reasoning Models at Test-Time
Large Language Models (LLMs) often rely on long chain-of-thought (CoT) reasoning to solve complex tasks. While effective, these trajectories are frequently inefficient, leading to high latency from excessive token generation, or unstable reasoning that alternates between underthinking (shallow, inconsistent steps) and overthinking (repetitive, verbose reasoning). In this work, we study the structure of reasoning trajectories and uncover specialized attention heads that correlate with distinct cognitive behaviors such as verification and backtracking. By lightly intervening on these heads at inference time, we can steer the model away from inefficient modes. Building on this insight, we propose CREST, a training-free method for Cognitive REasoning Steering at Test-time. CREST has two components: (1) an offline calibration step that identifies cognitive heads and derives head-specific steering vectors, and (2) an inference-time procedure that rotates hidden representations to suppress components along those vectors. CREST adaptively suppresses unproductive reasoning behaviors, yielding both higher accuracy and lower computational cost. Across diverse reasoning benchmarks and models, CREST improves accuracy by up to 17.5% while reducing token usage by 37.6%, offering a simple and effective pathway to faster, more reliable LLM reasoning.
☆ Korean Canonical Legal Benchmark: Toward Knowledge-Independent Evaluation of LLMs' Legal Reasoning Capabilities
We introduce the Korean Canonical Legal Benchmark (KCL), a benchmark designed to assess language models' legal reasoning capabilities independently of domain-specific knowledge. KCL provides question-level supporting precedents, enabling a more faithful disentanglement of reasoning ability from parameterized knowledge. KCL consists of two components: (1) KCL-MCQA, multiple-choice problems of 283 questions with 1,103 aligned precedents, and (2) KCL-Essay, open-ended generation problems of 169 questions with 550 aligned precedents and 2,739 instance-level rubrics for automated evaluation. Our systematic evaluation of 30+ models shows large remaining gaps, particularly in KCL-Essay, and that reasoning-specialized models consistently outperform their general-purpose counterparts. We release all resources, including the benchmark dataset and evaluation code, at https://github.com/lbox-kr/kcl.
☆ HaluNet: Multi-Granular Uncertainty Modeling for Efficient Hallucination Detection in LLM Question Answering
Large Language Models (LLMs) excel at question answering (QA) but often generate hallucinations, including factual errors or fabricated content. Detecting hallucinations from internal uncertainty signals is attractive due to its scalability and independence from external resources. Existing methods often aim to accurately capture a single type of uncertainty while overlooking the complementarity among different sources, particularly between token-level probability uncertainty and the uncertainty conveyed by internal semantic representations, which provide complementary views on model reliability. We present \textbf{HaluNet}, a lightweight and trainable neural framework that integrates multi granular token level uncertainties by combining semantic embeddings with probabilistic confidence and distributional uncertainty. Its multi branch architecture adaptively fuses what the model knows with the uncertainty expressed in its outputs, enabling efficient one pass hallucination detection. Experiments on SQuAD, TriviaQA, and Natural Questions show that HaluNet delivers strong detection performance and favorable computational efficiency, with or without access to context, highlighting its potential for real time hallucination detection in LLM based QA systems.
comment: 13 pages, 5 figures
☆ Safe in the Future, Dangerous in the Past: Dissecting Temporal and Linguistic Vulnerabilities in LLMs
As Large Language Models (LLMs) integrate into critical global infrastructure, the assumption that safety alignment transfers zero-shot from English to other languages remains a dangerous blind spot. This study presents a systematic audit of three state of the art models (GPT-5.1, Gemini 3 Pro, and Claude 4.5 Opus) using HausaSafety, a novel adversarial dataset grounded in West African threat scenarios (e.g., Yahoo-Yahoo fraud, Dane gun manufacturing). Employing a 2 x 4 factorial design across 1,440 evaluations, we tested the non-linear interaction between language (English vs. Hausa) and temporal framing. Our results challenge the prevailing multilingual safety gap narrative. Instead of a simple degradation in low-resource settings, we identified a mechanism of Complex Interference where safety is determined by the intersection of variables. While models exhibited a Reverse Linguistic with Claude 4.5 Opus proving significantly safer in Hausa (45.0%) than in English (36.7%) due to uncertainty-driven refusal they suffered catastrophic failures in temporal reasoning. We report a profound Temporal Asymmetry, where past-tense framing bypassed defenses (15.6% safe) while future-tense scenarios triggered hyper-conservative refusals (57.2% safe). The magnitude of this volatility is illustrated by a 9.2x disparity between the safest and most vulnerable configurations, proving that safety is not a fixed property but a context-dependent state. We conclude that current models rely on superficial heuristics rather than robust semantic understanding, creating Safety Pockets that leave Global South users exposed to localized harms. We propose Invariant Alignment as a necessary paradigm shift to ensure safety stability across linguistic and temporal shifts.
☆ More Than Bits: Multi-Envelope Double Binary Factorization for Extreme Quantization
For extreme low-bit quantization of large language models (LLMs), Double Binary Factorization (DBF) is attractive as it enables efficient inference without sacrificing accuracy. However, the scaling parameters of DBF are too restrictive; after factoring out signs, all rank components share the same magnitude profile, resulting in performance saturation. We propose Multi-envelope DBF (MDBF), which retains a shared pair of 1-bit sign bases but replaces the single envelope with a rank-$l$ envelope. By sharing sign matrices among envelope components, MDBF effectively maintains a binary carrier and utilizes the limited memory budget for magnitude expressiveness. We also introduce a closed-form initialization and an alternating refinement method to optimize MDBF. Across the LLaMA and Qwen families, MDBF enhances perplexity and zero-shot accuracy over previous binary formats at matched bits per weight while preserving the same deployment-friendly inference primitive.
comment: 14 pages, 2 figures
☆ From Building Blocks to Planning: Multi-Step Spatial Reasoning in LLMs with Reinforcement Learning
Spatial reasoning in large language models (LLMs) has gained increasing attention due to applications in navigation and planning. Despite strong general language capabilities, LLMs still struggle with spatial transformations and multi-step planning in structured environments. We propose a two-stage approach that decomposes spatial reasoning into atomic building blocks and their composition. First, we apply supervised fine-tuning on elementary spatial transformations, such as rotation, translation, and scaling, to equip the model with basic spatial physics. We then freeze this physics-aware model and train lightweight LoRA adapters within the GRPO framework to learn policies that compose these building blocks for multi-step planning in puzzle-based environments, in a closed-loop manner. To support this pipeline, we synthesize an ASCII-art dataset and construct a corresponding ASCII-based reinforcement learning environment. Our method consistently outperforms baselines, including the generic backbone, physics-aware model, and end-to-end RL models, under both Dynamic environments with explicit state updates and Static environments where the model must rely on its internal state across steps. In addition, the proposed approach converges faster and exhibits more stable training compared to end-to-end reinforcement learning from scratch. Finally, we analyze attention patterns to assess whether fine-tuning induces meaningful improvements in spatial understanding.
♻ ☆ GameTileNet: A Semantic Dataset for Low-Resolution Game Art in Procedural Content Generation
GameTileNet is a dataset designed to provide semantic labels for low-resolution digital game art, advancing procedural content generation (PCG) and related AI research as a vision-language alignment task. Large Language Models (LLMs) and image-generative AI models have enabled indie developers to create visual assets, such as sprites, for game interactions. However, generating visuals that align with game narratives remains challenging due to inconsistent AI outputs, requiring manual adjustments by human artists. The diversity of visual representations in automatically generated game content is also limited because of the imbalance in distributions across styles for training data. GameTileNet addresses this by collecting artist-created game tiles from OpenGameArt.org under Creative Commons licenses and providing semantic annotations to support narrative-driven content generation. The dataset introduces a pipeline for object detection in low-resolution tile-based game art (e.g., 32x32 pixels) and annotates semantics, connectivity, and object classifications. GameTileNet is a valuable resource for improving PCG methods, supporting narrative-rich game content, and establishing a baseline for object detection in low-resolution, non-photorealistic images. TL;DR: GameTileNet is a semantic dataset of low-resolution game tiles designed to support narrative-driven procedural content generation through visual-language alignment.
comment: Camera-ready version of a paper accepted for oral presentation at AIIDE 2025
♻ ☆ MTSQL-R1: Towards Long-Horizon Multi-Turn Text-to-SQL via Agentic Training
Multi-turn Text-to-SQL aims to translate a user's conversational utterances into executable SQL while preserving dialogue coherence and grounding to the target schema. However, most existing systems only regard this task as a simple text translation task and follow a short-horizon paradigm, generating a query per turn without execution, explicit verification, and refinement, which leads to non-executable or incoherent outputs. We present MTSQL-R1, an agentic training framework for long-horizon multi-turn Text-to-SQL. We cast the task as a Markov Decision Process (MDP) in which an agent interacts with (i) a database for execution feedback and (ii) a persistent dialogue memory for coherence verification, performing an iterative propose to execute -> verify -> refine cycle until all checks pass. Experiments on COSQL and SPARC demonstrate that MTSQL-R1 consistently outperforms strong baselines, highlighting the importance of environment-driven verification and memory-guided refinement for conversational semantic parsing. Full recipes (including code, trained models, logs, reasoning trajectories, etc.) will be released after the internal review to contribute to community research.
♻ ☆ Narrative-to-Scene Generation: An LLM-Driven Pipeline for 2D Game Environments
Recent advances in large language models (LLMs) enable compelling story generation, but connecting narrative text to playable visual environments remains an open challenge in procedural content generation (PCG). We present a lightweight pipeline that transforms short narrative prompts into a sequence of 2D tile-based game scenes, reflecting the temporal structure of stories. Given an LLM-generated narrative, our system identifies three key time frames, extracts spatial predicates in the form of "Object-Relation-Object" triples, and retrieves visual assets using affordance-aware semantic embeddings from the GameTileNet dataset. A layered terrain is generated using Cellular Automata, and objects are placed using spatial rules grounded in the predicate structure. We evaluated our system in ten diverse stories, analyzing tile-object matching, affordance-layer alignment, and spatial constraint satisfaction across frames. This prototype offers a scalable approach to narrative-driven scene generation and lays the foundation for future work on multi-frame continuity, symbolic tracking, and multi-agent coordination in story-centered PCG.
comment: Camera-ready version of a paper accepted at the AIIDE 2025 Workshop on Experimental AI in Games (EXAG)
♻ ☆ Esoteric Language Models
Diffusion-based language models offer a compelling alternative to autoregressive (AR) models by enabling parallel and controllable generation. Within this family, Masked Diffusion Models (MDMs) currently perform best but still underperform AR models in perplexity and lack key inference-time efficiency features, most notably KV caching. We introduce Eso-LMs, a new family of models that fuses AR and MDM paradigms, smoothly interpolating between their perplexities while overcoming their respective limitations. Unlike prior work, which uses transformers with bidirectional attention as MDM denoisers, we exploit the connection between MDMs and Any-Order autoregressive models and adopt causal attention. This design lets us compute the exact likelihood of MDMs for the first time and, crucially, enables us \to introduce KV caching for MDMs while preserving parallel generation for the first time, significantly improving inference efficiency. Combined with an optimized sampling schedule, Eso-LMs achieves a new state of the art on the speed-quality Pareto frontier for unconditional generation. On long contexts, it yields $\mathbf{14 - 65{}\times}$ faster inference than standard MDMs and $\mathbf{3 - 4{}\times}$ faster inference than prior semi-autoregressive approaches. We provide code, model checkpoints, and video tutorials on the project page: http://s-sahoo.github.io/Eso-LMs
♻ ☆ From Transformers to LLMs: A Systematic Survey of Efficiency Considerations in NLP
The emergence of Transformer-based Large Language Models (LLMs) has substantially augmented the capabilities of Natural Language Processing (NLP), thereby intensifying the demand for computational resources. Therefore, enhancing efficiency based on factors like computational requirements, energy consumption, carbon footprint and financial cost has become a vital area of research. This motivates us to conduct a systematic literature review on Transformer-based LLMs in NLP from the perspective of efficiency. In this survey of 312 articles published between the years 2011 and 2025, efficiency-improvement endeavors have been systematically discussed targeting various aspects such as data curation, model design, model downsizing, and dynamic inferencing. This has been augmented with efficiency considerations in model adaptation strategies like pre-training, fine-tuning, prompt-engineering and Retrieval-Augmented Generation (RAG). Furthermore, a statistical analysis of the articles has been performed followed by an in-depth evaluation of the efficiency and efficacy of more than 30 renowned NLP models has been conducted on 13 evaluation benchmarks. This paper offers valuable insights for researchers, professionals as well as scholars, and explores the trend of research toward sustainable practices in NLP.
comment: 63 pages, 5 tables and 22 figures
♻ ☆ Deep sequence models tend to memorize geometrically; it is unclear why
Deep sequence models are said to store atomic facts predominantly in the form of associative memory: a brute-force lookup of co-occurring entities. We identify a dramatically different form of storage of atomic facts that we term as geometric memory. Here, the model has synthesized embeddings encoding novel global relationships between all entities, including ones that do not co-occur in training. Such storage is powerful: for instance, we show how it transforms a hard reasoning task involving an $\ell$-fold composition into an easy-to-learn $1$-step navigation task. From this phenomenon, we extract fundamental aspects of neural embedding geometries that are hard to explain. We argue that the rise of such a geometry, as against a lookup of local associations, cannot be straightforwardly attributed to typical supervisory, architectural, or optimizational pressures. Counterintuitively, a geometry is learned even when it is more complex than the brute-force lookup. Then, by analyzing a connection to Node2Vec, we demonstrate how the geometry stems from a spectral bias that -- in contrast to prevailing theories -- indeed arises naturally despite the lack of various pressures. This analysis also points out to practitioners a visible headroom to make Transformer memory more strongly geometric. We hope the geometric view of parametric memory encourages revisiting the default intuitions that guide researchers in areas like knowledge acquisition, capacity, discovery, and unlearning.
♻ ☆ Semantic Parsing with Candidate Expressions for Knowledge Base Question Answering
Semantic parsers convert natural language to logical forms, which can be evaluated on knowledge bases (KBs) to produce denotations. Recent semantic parsers have been developed with sequence-to-sequence (seq2seq) pre-trained language models (PLMs) or large language models, where the models treat logical forms as sequences of tokens. For syntactic and semantic validity, the semantic parsers use grammars that enable constrained decoding. However, the grammars lack the ability to utilize large information of KBs, although logical forms contain representations of KB elements, such as entities or relations. In this work, we propose a grammar augmented with candidate expressions for semantic parsing on a large KB with a seq2seq PLM. The grammar defines actions as production rules, and our semantic parser predicts actions during inference under the constraints by types and candidate expressions. We apply the grammar to knowledge base question answering, where the constraints by candidate expressions assist a semantic parser to generate valid KB elements. We also introduce two special rules, sub-type inference and union types, and a mask caching algorithm. In particular, sub-type inference and the mask caching algorithm greatly increase the decoding speed of our semantic parser. We experimented on two benchmarks, KQA Pro and Overnight, where the constraints by candidate expressions increased the accuracy of our semantic parser, whether it was trained with strong supervision or weak supervision. In addition, our semantic parser had a fast decoding speed in the experiments. Our source code is publicly available at https://github.com/daehwannam/candexpr-sp.git.
♻ ☆ ReVision: A Dataset and Baseline VLM for Privacy-Preserving Task-Oriented Visual Instruction Rewriting AACL 2025
Efficient and privacy-preserving multimodal interaction is essential as AR, VR, and modern smartphones with powerful cameras become primary interfaces for human-computer communication. Existing powerful large vision-language models (VLMs) enabling multimodal interaction often rely on cloud-based processing, raising significant concerns about (1) visual privacy by transmitting sensitive vision data to servers, and (2) their limited real-time, on-device usability. This paper explores Visual Instruction Rewriting, a novel approach that transforms multimodal instructions into text-only commands, allowing seamless integration of lightweight on-device instruction rewriter VLMs (250M parameters) with existing conversational AI systems, enhancing vision data privacy. To achieve this, we present a dataset of over 39,000 examples across 14 domains and develop a compact VLM, pretrained on image captioning datasets and fine-tuned for instruction rewriting. Experimental results, evaluated through NLG metrics such as BLEU, METEOR, and ROUGE, along with semantic parsing analysis, demonstrate that even a quantized version of the model (<500MB storage footprint) can achieve effective instruction rewriting, thus enabling privacy-focused, multimodal AI applications.
comment: Accepted and to appear in IJCNLP-AACL 2025
♻ ☆ Large Multimodal Models for Low-Resource Languages: A Survey
In this survey, we systematically analyze techniques used to adapt large multimodal models (LMMs) for low-resource (LR) languages, examining approaches ranging from visual enhancement and data creation to cross-modal transfer and fusion strategies. Through a comprehensive analysis of 117 studies across 96 LR languages, we identify key patterns in how researchers tackle the challenges of limited data and computational resources. We categorize works into resource-oriented and method-oriented contributions, further dividing contributions into relevant sub-categories. We compare method-oriented contributions in terms of performance and efficiency, discussing benefits and limitations of representative studies. We find that visual information often serves as a crucial bridge for improving model performance in LR settings, though significant challenges remain in areas such as hallucination mitigation and computational efficiency. In summary, we provide researchers with a clear understanding of current approaches and remaining challenges in making LMMs more accessible to speakers of LR (understudied) languages. We complement our survey with an open-source repository available at: https://github.com/marianlupascu/LMM4LRL-Survey.
♻ ☆ Pre-DPO: Improving Data Utilization in Direct Preference Optimization Using a Guiding Reference Model
Direct Preference Optimization (DPO) simplifies reinforcement learning from human feedback (RLHF) for large language models (LLMs) by directly optimizing human preferences without an explicit reward model. We find that during DPO training, the reference model plays the role of a data weight adjuster. However, the common practice of initializing the policy and reference models identically in DPO can lead to inefficient data utilization and impose a performance ceiling. Meanwhile, the lack of a reference model in Simple Preference Optimization (SimPO) reduces training robustness and necessitates stricter conditions to prevent catastrophic forgetting. In this work, we propose Pre-DPO, a simple yet effective DPO-based training paradigm that enhances preference optimization performance by leveraging a guiding reference model. This reference model provides foresight into the optimal policy state achievable through the training preference data, serving as a guiding mechanism that adaptively assigns higher weights to samples more suitable for the model and lower weights to those less suitable. Extensive experiments on AlpacaEval 2.0 and Arena-Hard v0.1 benchmarks demonstrate that Pre-DPO consistently improves the performance of both DPO and SimPO, without relying on external models or additional data.
♻ ☆ MedQARo: A Large-Scale Benchmark for Evaluating Large Language Models on Medical Question Answering in Romanian
Question answering (QA) is an actively studied topic, being a core natural language processing (NLP) task that needs to be addressed before achieving Artificial General Intelligence (AGI). However, the lack of QA datasets in specific domains and languages hinders the development of robust AI models able to generalize across various domains and languages. To this end, we introduce MedQARo, the first large-scale medical QA benchmark in Romanian, alongside a comprehensive evaluation of state-of-the-art (SOTA) large language models (LLMs). We construct a high-quality and large-scale dataset comprising 105,880 QA pairs related to cancer patients from two medical centers. The questions regard medical case summaries of 1,242 patients, requiring either keyword extraction or reasoning to be answered correctly. MedQARo is the result of a time-consuming manual annotation process carried out by seven physicians specialized in oncology or radiotherapy, who spent a total of about 3,000 work hours to generate the QA pairs. Our benchmark contains both in-domain and cross-domain (cross-center and cross-cancer) test collections, enabling a precise assessment of generalization capabilities. We experiment with four open-source LLMs from distinct families of models on MedQARo. Each model is employed in two scenarios, namely one based on zero-shot prompting and one based on supervised fine-tuning. We also evaluate two state-of-the-art LLMs exposed only through APIs, namely GPT-5.2 and Gemini 3 Flash. Our results show that fine-tuned models significantly outperform zero-shot models, clearly indicating that pretrained models fail to generalize on MedQARo. Our findings demonstrate the importance of both domain-specific and language-specific fine-tuning for reliable clinical QA in Romanian. We publicly release our dataset and code at https://github.com/ana-rogoz/MedQARo.
♻ ☆ Toward Robust Legal Text Formalization into Defeasible Deontic Logic using LLMs
We present a comprehensive approach to the automated formalization of legal texts using large language models (LLMs), targeting their transformation into Defeasible Deontic Logic (DDL). Our method employs a structured pipeline that segments complex normative language into atomic snippets, extracts deontic rules, and evaluates them for syntactic and semantic coherence. We introduce a refined success metric that more precisely captures the completeness of formalizations, and a novel two-stage pipeline with a dedicated refinement step to improve logical consistency and coverage. The evaluation procedure has been strengthened with stricter error assessment, and we provide comparative results across multiple LLM configurations, including newly released models and various prompting and fine-tuning strategies. Experiments on legal norms from the Australian Telecommunications Consumer Protections Code demonstrate that, when guided effectively, LLMs can produce formalizations that align closely with expert-crafted representations, underscoring their potential for scalable legal informatics.
comment: This version is an extended version with additional results and discussion
♻ ☆ Multimodal Fact-Checking: An Agent-based Approach
The rapid spread of multimodal misinformation poses a growing challenge for automated fact-checking systems. Existing approaches, including large vision language models (LVLMs) and deep multimodal fusion methods, often fall short due to limited reasoning and shallow evidence utilization. A key bottleneck is the lack of dedicated datasets that provide complete real-world multimodal misinformation instances accompanied by annotated reasoning processes and verifiable evidence. To address this limitation, we introduce RW-Post, a high-quality and explainable dataset for real-world multimodal fact-checking. RW-Post aligns real-world multimodal claims with their original social media posts, preserving the rich contextual information in which the claims are made. In addition, the dataset includes detailed reasoning and explicitly linked evidence, which are derived from human written fact-checking articles via a large language model assisted extraction pipeline, enabling comprehensive verification and explanation. Building upon RW-Post, we propose AgentFact, an agent-based multimodal fact-checking framework designed to emulate the human verification workflow. AgentFact consists of five specialized agents that collaboratively handle key fact-checking subtasks, including strategy planning, high-quality evidence retrieval, visual analysis, reasoning, and explanation generation. These agents are orchestrated through an iterative workflow that alternates between evidence searching and task-aware evidence filtering and reasoning, facilitating strategic decision-making and systematic evidence analysis. Extensive experimental results demonstrate that the synergy between RW-Post and AgentFact substantially improves both the accuracy and interpretability of multimodal fact-checking.
comment: Code and dataset will be released at https://github.com/xudanni0927/AgentFact
♻ ☆ An Analysis of Hyper-Parameter Optimization Methods for Retrieval Augmented Generation AAAI 2026
Optimizing Retrieval-Augmented Generation (RAG) configurations for specific tasks is a complex and resource-intensive challenge. Motivated by this challenge, frameworks for RAG hyper-parameter optimization (HPO) have recently emerged, yet their effectiveness has not been rigorously benchmarked. To fill this gap, we present a comprehensive study involving five HPO algorithms over five datasets from diverse domains, including a newly curated real-world product documentation dataset. Our study explores the largest RAG HPO search space to date that includes full grid-search evaluations, and uses three evaluation metrics as optimization targets. Analysis of the results shows that RAG HPO can be done efficiently, either greedily or with random search, and that it significantly boosts RAG performance for all datasets. For greedy HPO approaches, we show that optimizing model selection first is preferable to the common practice of following the RAG pipeline order during optimization.
comment: AAAI 2026 Workshop on New Frontiers in Information Retrieval. For associated results, see https://github.com/IBM/rag-hpo-bench
♻ ☆ When F1 Fails: Granularity-Aware Evaluation for Dialogue Topic Segmentation
Dialogue topic segmentation supports summarization, retrieval, memory management, and conversational continuity. Despite decades of work, evaluation practice remains dominated by strict boundary matching and F1-based metrics. Modern large language model (LLM) based conversational systems increasingly rely on segmentation to manage conversation history beyond fixed context windows. In such systems, unstructured context accumulation degrades efficiency and coherence. This paper introduces an evaluation framework that reports boundary density and segment alignment diagnostics (purity and coverage) alongside window-tolerant F1 (W-F1). By separating boundary scoring from boundary selection, we evaluate segmentation quality across density regimes rather than at a single operating point. Cross-dataset evaluation shows that reported performance differences often reflect annotation granularity mismatch rather than boundary placement quality alone. We evaluate structurally distinct segmentation strategies across eight dialogue datasets spanning task-oriented, open-domain, meeting-style, and synthetic interactions. Boundary-based metrics are strongly coupled to boundary density: threshold sweeps produce larger W-F1 changes than switching between methods. These findings support viewing topic segmentation as a granularity selection problem rather than prediction of a single correct boundary set. This motivates separating boundary scoring from boundary selection for analyzing and tuning segmentation under varying annotation granularities.
comment: 34 pages, 4 figures. Evaluation and methodology study on dialogue topic segmentation
♻ ☆ A Survey of Efficient Reasoning for Large Reasoning Models: Language, Multimodality, and Beyond
Recent Large Reasoning Models (LRMs), such as DeepSeek-R1 and OpenAI o1, have demonstrated strong performance gains by scaling up the length of Chain-of-Thought (CoT) reasoning during inference. However, a growing concern lies in their tendency to produce excessively long reasoning traces, which are often filled with redundant content (e.g., repeated definitions), over-analysis of simple problems, and superficial exploration of multiple reasoning paths for harder tasks. This inefficiency introduces significant challenges for training, inference, and real-world deployment (e.g., in agent-based systems), where token economy is critical. In this survey, we provide a comprehensive overview of recent efforts aimed at improving reasoning efficiency in LRMs, with a particular focus on the unique challenges that arise in this new paradigm. We identify common patterns of inefficiency, examine methods proposed across the LRM lifecycle, i.e., from pretraining to inference, and discuss promising future directions for research. To support ongoing development, we also maintain a real-time GitHub repository tracking recent progress in the field. We hope this survey serves as a foundation for further exploration and inspires innovation in this rapidly evolving area.
comment: Update recent RL papers. Project page: https://github.com/XiaoYee/Awesome_Efficient_LRM_Reasoning
♻ ☆ Less is More: Improving LLM Reasoning with Minimal Test-Time Intervention
Recent progress in large language models (LLMs) has focused on test-time scaling to improve reasoning via increased inference computation, but often at the cost of efficiency. We revisit test-time behavior and uncover a simple yet underexplored phenomenon: reasoning uncertainty is highly localized-only a small subset of high-entropy tokens dominantly affects output correctness. Motivated by this, we propose Minimal Test-Time Intervention (MTI), a training-free framework that enhances reasoning accuracy and stability with minimal overhead. MTI includes: (i) Selective CFG intervention, applying classifier-free guidance only at uncertain positions; and (ii) Lightweight negative-prompt guidance, reusing the main model's KV cache to approximate unconditional decoding efficiently. MTI yields consistent gains across general, coding, and STEM tasks-e.g., +9.28% average improvement on six benchmarks for DeepSeek-R1-7B and +11.25% on AIME2024 using Ling-mini-2.0-while remaining highly efficient.
comment: Code: https://github.com/EnVision-Research/MTI
♻ ☆ Large Language Model Sourcing: A Survey
Due to the black-box nature of large language models (LLMs) and the realism of their generated content, issues such as hallucinations, bias, unfairness, and copyright infringement have become significant. In this context, sourcing information from multiple perspectives is essential. This survey presents a systematic investigation organized around four interrelated dimensions: Model Sourcing, Model Structure Sourcing, Training Data Sourcing, and External Data Sourcing. Moreover, a unified dual-paradigm taxonomy is proposed that classifies existing sourcing methods into prior-based (proactive traceability embedding) and posterior-based (retrospective inference) approaches. Traceability across these dimensions enhances the transparency, accountability, and trustworthiness of LLMs deployment in real-world applications.
comment: 31 pages
♻ ☆ Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities
Model merging is an efficient empowerment technique in the machine learning community that does not require the collection of raw training data and does not require expensive computation. As model merging becomes increasingly prevalent across various fields, it is crucial to understand the available model merging techniques comprehensively. However, there is a significant gap in the literature regarding a systematic and thorough review of these techniques. This survey provides a comprehensive overview of model merging methods and theories, their applications in various domains and settings, and future research directions. Specifically, we first propose a new taxonomic approach that exhaustively discusses existing model merging methods. Secondly, we discuss the application of model merging techniques in large language models, multimodal large language models, and more than ten machine learning subfields, including continual learning, multi-task learning, few-shot learning, etc. Finally, we highlight the remaining challenges of model merging and discuss future research directions. A comprehensive list of papers about model merging is available at https://github.com/EnnengYang/Awesome-Model-Merging-Methods-Theories-Applications.
♻ ☆ Quantifying Positional Biases in Text Embedding Models NeurIPS
Embedding models are crucial for tasks in Information Retrieval (IR) and semantic similarity measurement, yet their handling of longer texts and associated positional biases remains underexplored. In this study, we investigate the impact of content position and input size on text embeddings. Our experiments reveal that embedding models, irrespective of their positional encoding mechanisms, disproportionately prioritize the beginning of an input. Ablation studies demonstrate that insertion of irrelevant text or removal at the start of a document reduces cosine similarity between altered and original embeddings by up to 12.3% more than ablations at the end. Regression analysis further confirms this bias, with sentence importance declining as position moves further from the start, even with with content-agnosticity. We hypothesize that this effect arises from pre-processing strategies and chosen positional encoding techniques. These findings quantify the sensitivity of retrieval systems and suggest a new lens towards embedding model robustness.
comment: 13 pages, 11 figures, NeurIPS
♻ ☆ Do Language Models Associate Sound with Meaning? A Multimodal Study of Sound Symbolism
Sound symbolism is a linguistic concept that refers to non-arbitrary associations between phonetic forms and their meanings. We suggest that this can be a compelling probe into how Multimodal Large Language Models (MLLMs) interpret auditory information in human languages. We investigate MLLMs' performance on phonetic iconicity across textual (orthographic and IPA) and auditory forms of inputs with up to 25 semantic dimensions (e.g., sharp vs. round), observing models' layer-wise information processing by measuring phoneme-level attention fraction scores. To this end, we present LEX-ICON, an extensive mimetic word dataset consisting of 8,052 words from four natural languages (English, French, Japanese, and Korean) and 2,930 systematically constructed pseudo-words, annotated with semantic features applied across both text and audio modalities. Our key findings demonstrate (1) MLLMs' phonetic intuitions that align with existing linguistic research across multiple semantic dimensions and (2) phonosemantic attention patterns that highlight models' focus on iconic phonemes. These results bridge domains of artificial intelligence and cognitive linguistics, providing the first large-scale, quantitative analyses of phonetic iconicity in terms of MLLMs' interpretability.
comment: 33 pages, 27 tables, 10 figures
♻ ☆ On measuring grounding and generalizing grounding problems
The symbol grounding problem asks how tokens like cat can be about cats, as opposed to mere shapes manipulated in a calculus. We recast grounding from a binary judgment into an audit across desiderata, each indexed by an evaluation tuple (context, meaning type, threat model, reference distribution): authenticity (mechanisms reside inside the agent and, for strong claims, were acquired through learning or evolution); preservation (atomic meanings remain intact); faithfulness, both correlational (realized meanings match intended ones) and etiological (internal mechanisms causally contribute to success); robustness (graceful degradation under declared perturbations); compositionality (the whole is built systematically from the parts). We apply this framework to four grounding modes (symbolic; referential; vectorial; relational) and three case studies: model-theoretic semantics achieves exact composition but lacks etiological warrant; large language models show correlational fit and local robustness for linguistic tasks, yet lack selection-for-success on world tasks without grounded interaction; human language meets the desiderata under strong authenticity through evolutionary and developmental acquisition. By operationalizing a philosophical inquiry about representation, we equip philosophers of science, computer scientists, linguists, and mathematicians with a common language and technical framework for systematic investigation of grounding and meaning.
comment: resubmission: 39 pages, 85 sources, 3 figures
♻ ☆ Effective and Efficient Jailbreaks of Black-Box LLMs with Cross-Behavior Attacks
Despite recent advancements in Large Language Models (LLMs) and their alignment, they can still be jailbroken, i.e., harmful and toxic content can be elicited from them. While existing red-teaming methods have shown promise in uncovering such vulnerabilities, these methods struggle with limited success and high computational and monetary costs. To address this, we propose a black-box Jailbreak method with Cross-Behavior attacks (JCB), that can automatically and efficiently find successful jailbreak prompts. JCB leverages successes from past behaviors to help jailbreak new behaviors, thereby significantly improving the attack efficiency. Moreover, JCB does not rely on time- and/or cost-intensive calls to auxiliary LLMs to discover/optimize the jailbreak prompts, making it highly efficient and scalable. Comprehensive experimental evaluations show that JCB significantly outperforms related baselines, requiring up to 94% fewer queries while still achieving 12.9% higher average attack success. JCB also achieves a notably high 37% attack success rate on Llama-2-7B, one of the most resilient LLMs, and shows promising zero-shot transferability across different LLMs.
comment: Code is at https://github.com/gohil-vasudev/JCB
♻ ☆ Chunk Based Speech Pre-training with High Resolution Finite Scalar Quantization
Low latency speech human-machine communication is becoming increasingly necessary as speech technology advances quickly in the last decade. One of the primary factors behind the advancement of speech technology is self-supervised learning. Most self-supervised learning algorithms are designed with full utterance assumption and compromises have to made if partial utterances are presented, which are common in the streaming applications. In this work, we propose a chunk based self-supervised learning (Chunk SSL) algorithm as an unified solution for both streaming and offline speech pre-training. Chunk SSL is optimized with the masked prediction loss and an acoustic encoder is encouraged to restore indices of those masked speech frames with help from unmasked frames in the same chunk and preceding chunks. A copy and append data augmentation approach is proposed to conduct efficient chunk based pre-training. Chunk SSL utilizes a finite scalar quantization (FSQ) module to discretize input speech features and our study shows a high resolution FSQ codebook, i.e., a codebook with vocabulary size up to a few millions, is beneficial to transfer knowledge from the pre-training task to the downstream tasks. A group masked prediction loss is employed during pre-training to alleviate the high memory and computation cost introduced by the large codebook. The proposed approach is examined in two speech to text tasks, i.e., speech recognition and speech translation. Experimental results on the \textsc{Librispeech} and \textsc{Must-C} datasets show that the proposed method could achieve very competitive results for speech to text tasks at both streaming and offline modes.
Information Retrieval 11
☆ The Agentic Leash: Extracting Causal Feedback Fuzzy Cognitive Maps with LLMs
We design a large-language-model (LLM) agent that extracts causal feedback fuzzy cognitive maps (FCMs) from raw text. The causal learning or extraction process is agentic both because of the LLM's semi-autonomy and because ultimately the FCM dynamical system's equilibria drive the LLM agents to fetch and process causal text. The fetched text can in principle modify the adaptive FCM causal structure and so modify the source of its quasi-autonomy--its equilibrium limit cycles and fixed-point attractors. This bidirectional process endows the evolving FCM dynamical system with a degree of autonomy while still staying on its agentic leash. We show in particular that a sequence of three finely tuned system instructions guide an LLM agent as it systematically extracts key nouns and noun phrases from text, as it extracts FCM concept nodes from among those nouns and noun phrases, and then as it extracts or infers partial or fuzzy causal edges between those FCM nodes. We test this FCM generation on a recent essay about the promise of AI from the late diplomat and political theorist Henry Kissinger and his colleagues. This three-step process produced FCM dynamical systems that converged to the same equilibrium limit cycles as did the human-generated FCMs even though the human-generated FCM differed in the number of nodes and edges. A final FCM mixed generated FCMs from separate Gemini and ChatGPT LLM agents. The mixed FCM absorbed the equilibria of its dominant mixture component but also created new equilibria of its own to better approximate the underlying causal dynamical system.
comment: 15 figures
☆ AdaGReS:Adaptive Greedy Context Selection via Redundancy-Aware Scoring for Token-Budgeted RAG
Retrieval-augmented generation (RAG) is highly sensitive to the quality of selected context, yet standard top-k retrieval often returns redundant or near-duplicate chunks that waste token budget and degrade downstream generation. We present AdaGReS, a redundancy-aware context selection framework for token-budgeted RAG that optimizes a set-level objective combining query-chunk relevance and intra-set redundancy penalties. AdaGReS performs greedy selection under a token-budget constraint using marginal gains derived from the objective, and introduces a closed-form, instance-adaptive calibration of the relevance-redundancy trade-off parameter to eliminate manual tuning and adapt to candidate-pool statistics and budget limits. We further provide a theoretical analysis showing that the proposed objective exhibits epsilon-approximate submodularity under practical embedding similarity conditions, yielding near-optimality guarantees for greedy selection. Experiments on open-domain question answering (Natural Questions) and a high-redundancy biomedical (drug) corpus demonstrate consistent improvements in redundancy control and context quality, translating to better end-to-end answer quality and robustness across settings.
comment: Preprint. Under review
☆ RAIR: A Rule-Aware Benchmark Uniting Challenging Long-Tail and Visual Salience Subset for E-commerce Relevance Assessment
Search relevance plays a central role in web e-commerce. While large language models (LLMs) have shown significant results on relevance task, existing benchmarks lack sufficient complexity for comprehensive model assessment, resulting in an absence of standardized relevance evaluation metrics across the industry. To address this limitation, we propose Rule-Aware benchmark with Image for Relevance assessment(RAIR), a Chinese dataset derived from real-world scenarios. RAIR established a standardized framework for relevance assessment and provides a set of universal rules, which forms the foundation for standardized evaluation. Additionally, RAIR analyzes essential capabilities required for current relevance models and introduces a comprehensive dataset consists of three subset: (1) a general subset with industry-balanced sampling to evaluate fundamental model competencies; (2) a long-tail hard subset focus on challenging cases to assess performance limits; (3) a visual salience subset for evaluating multimodal understanding capabilities. We conducted experiments on RAIR using 14 open and closed-source models. The results demonstrate that RAIR presents sufficient challenges even for GPT-5, which achieved the best performance. RAIR data are now available, serving as an industry benchmark for relevance assessment while providing new insights into general LLM and Visual Language Model(VLM) evaluation.
☆ HiGR: Efficient Generative Slate Recommendation via Hierarchical Planning and Multi-Objective Preference Alignment
Slate recommendation, where users are presented with a ranked list of items simultaneously, is widely adopted in online platforms. Recent advances in generative models have shown promise in slate recommendation by modeling sequences of discrete semantic IDs autoregressively. However, existing autoregressive approaches suffer from semantically entangled item tokenization and inefficient sequential decoding that lacks holistic slate planning. To address these limitations, we propose HiGR, an efficient generative slate recommendation framework that integrates hierarchical planning with listwise preference alignment. First, we propose an auto-encoder utilizing residual quantization and contrastive constraints to tokenize items into semantically structured IDs for controllable generation. Second, HiGR decouples generation into a list-level planning stage for global slate intent, followed by an item-level decoding stage for specific item selection. Third, we introduce a listwise preference alignment objective to directly optimize slate quality using implicit user feedback. Experiments on our large-scale commercial media platform demonstrate that HiGR delivers consistent improvements in both offline evaluations and online deployment. Specifically, it outperforms state-of-the-art methods by over 10% in offline recommendation quality with a 5x inference speedup, while further achieving a 1.22% and 1.73% increase in Average Watch Time and Average Video Views in online A/B tests.
☆ OpenOneRec Technical Report
While the OneRec series has successfully unified the fragmented recommendation pipeline into an end-to-end generative framework, a significant gap remains between recommendation systems and general intelligence. Constrained by isolated data, they operate as domain specialists-proficient in pattern matching but lacking world knowledge, reasoning capabilities, and instruction following. This limitation is further compounded by the lack of a holistic benchmark to evaluate such integrated capabilities. To address this, our contributions are: 1) RecIF Bench & Open Data: We propose RecIF-Bench, a holistic benchmark covering 8 diverse tasks that thoroughly evaluate capabilities from fundamental prediction to complex reasoning. Concurrently, we release a massive training dataset comprising 96 million interactions from 160,000 users to facilitate reproducible research. 2) Framework & Scaling: To ensure full reproducibility, we open-source our comprehensive training pipeline, encompassing data processing, co-pretraining, and post-training. Leveraging this framework, we demonstrate that recommendation capabilities can scale predictably while mitigating catastrophic forgetting of general knowledge. 3) OneRec-Foundation: We release OneRec Foundation (1.7B and 8B), a family of models establishing new state-of-the-art (SOTA) results across all tasks in RecIF-Bench. Furthermore, when transferred to the Amazon benchmark, our models surpass the strongest baselines with an average 26.8% improvement in Recall@10 across 10 diverse datasets (Figure 1). This work marks a step towards building truly intelligent recommender systems. Nonetheless, realizing this vision presents significant technical and theoretical challenges, highlighting the need for broader research engagement in this promising direction.
☆ MDiffFR: Modality-Guided Diffusion Generation for Cold-start Items in Federated Recommendation
Federated recommendations (FRs) provide personalized services while preserving user privacy by keeping user data on local clients, which has attracted significant attention in recent years. However, due to the strict privacy constraints inherent in FRs, access to user-item interaction data and user profiles across clients is highly restricted, making it difficult to learn globally effective representations for new (cold-start) items. Consequently, the item cold-start problem becomes even more challenging in FRs. Existing solutions typically predict embeddings for new items through the attribute-to-embedding mapping paradigm, which establishes a fixed one-to-one correspondence between item attributes and their embeddings. However, this one-to-one mapping paradigm often fails to model varying data distributions and tends to cause embedding misalignment, as verified by our empirical studies. To this end, we propose MDiffFR, a novel generation-based modality-guided diffusion method for cold-start items in FRs. In this framework, we employ a tailored diffusion model on the server to generate embeddings for new items, which are then distributed to clients for cold-start inference. To align item semantics, we deploy a pre-trained modality encoder to extract modality features as conditional signals to guide the reverse denoising process. Furthermore, our theoretical analysis verifies that the proposed method achieves stronger privacy guarantees compared to existing mapping-based approaches. Extensive experiments on four real datasets demonstrate that our method consistently outperforms all baselines in FRs.
☆ MEIC-DT: Memory-Efficient Incremental Clustering for Long-Text Coreference Resolution with Dual-Threshold Constraints
In the era of large language models (LLMs), supervised neural methods remain the state-of-the-art (SOTA) for Coreference Resolution. Yet, their full potential is underexplored, particularly in incremental clustering, which faces the critical challenge of balancing efficiency with performance for long texts. To address the limitation, we propose \textbf{MEIC-DT}, a novel dual-threshold, memory-efficient incremental clustering approach based on a lightweight Transformer. MEIC-DT features a dual-threshold constraint mechanism designed to precisely control the Transformer's input scale within a predefined memory budget. This mechanism incorporates a Statistics-Aware Eviction Strategy (\textbf{SAES}), which utilizes distinct statistical profiles from the training and inference phases for intelligent cache management. Furthermore, we introduce an Internal Regularization Policy (\textbf{IRP}) that strategically condenses clusters by selecting the most representative mentions, thereby preserving semantic integrity. Extensive experiments on common benchmarks demonstrate that MEIC-DT achieves highly competitive coreference performance under stringent memory constraints.
♻ ☆ OxygenREC: An Instruction-Following Generative Framework for E-commerce Recommendation
Traditional recommendation systems suffer from inconsistency in multi-stage optimization objectives. Generative Recommendation (GR) mitigates them through an end-to-end framework; however, existing methods still rely on matching mechanisms based on inductive patterns. Although responsive, they lack the ability to uncover complex user intents that require deductive reasoning based on world knowledge. Meanwhile, LLMs show strong deep reasoning capabilities, but their latency and computational costs remain challenging for industrial applications. More critically, there are performance bottlenecks in multi-scenario scalability: as shown in Figure 1, existing solutions require independent training and deployment for each scenario, leading to low resource utilization and high maintenance costs-a challenge unaddressed in GR literature. To address these, we present OxygenREC, an industrial recommendation system that leverages Fast-Slow Thinking to deliver deep reasoning with strict latency and multi-scenario requirements of real-world environments. First, we adopt a Fast-Slow Thinking architecture. Slow thinking uses a near-line LLM pipeline to synthesize Contextual Reasoning Instructions, while fast thinking employs a high-efficiency encoder-decoder backbone for real-time generation. Second, to ensure reasoning instructions effectively enhance recommendation generation, we introduce a semantic alignment mechanism with Instruction-Guided Retrieval (IGR) to filter intent-relevant historical behaviors and use a Query-to-Item (Q2I) loss for instruction-item consistency. Finally, to resolve multi-scenario scalability, we transform scenario information into controllable instructions, using unified reward mapping and Soft Adaptive Group Clip Policy Optimization (SA-GCPO) to align policies with diverse business objectives, realizing a train-once-deploy-everywhere paradigm.
comment: 37 pages, 7 figures
♻ ☆ Proactive Recommendation in Social Networks: Steering User Interest with Causal Inference
Recommending items that solely cater to users' historical interests narrows users' horizons. Recent works have considered steering target users beyond their historical interests by directly adjusting items exposed to them. However, the recommended items for direct steering might not align perfectly with the evolution of users' interests, detrimentally affecting the target users' experience. To avoid this issue, we propose a new task named Proactive Recommendation in Social Networks (PRSN) that indirectly steers users' interest by utilizing the influence of social neighbors, i.e., indirect steering by adjusting the exposure of a target item to target users' neighbors. The key to PRSN lies in answering an interventional question: what would a target user' s feedback be on a target item if the item is exposed to the user' s different neighbors? To answer this question, we resort to causal inference and formalize PRSN as: (1) estimating the potential feedback of a user on an item, under the network interference by the item' s exposure to the user' s neighbors; and (2) adjusting the exposure of a target item to target users' neighbors to trade off steering performance and the damage to the neighbors' experience. To this end, we propose a Neighbor Interference Recommendation (NIRec) framework with two modules: (1) an interference representation-based estimation module for modeling potential feedback; (2) a post-learning-based optimization module for adjusting a target item' s exposure to trade off steering performance and the neighbors' experience through greedy search. We conduct extensive semi-simulation experiments on real-world datasets, validating the steering effectiveness of NIRec.
♻ ☆ Quantifying Positional Biases in Text Embedding Models NeurIPS
Embedding models are crucial for tasks in Information Retrieval (IR) and semantic similarity measurement, yet their handling of longer texts and associated positional biases remains underexplored. In this study, we investigate the impact of content position and input size on text embeddings. Our experiments reveal that embedding models, irrespective of their positional encoding mechanisms, disproportionately prioritize the beginning of an input. Ablation studies demonstrate that insertion of irrelevant text or removal at the start of a document reduces cosine similarity between altered and original embeddings by up to 12.3% more than ablations at the end. Regression analysis further confirms this bias, with sentence importance declining as position moves further from the start, even with with content-agnosticity. We hypothesize that this effect arises from pre-processing strategies and chosen positional encoding techniques. These findings quantify the sensitivity of retrieval systems and suggest a new lens towards embedding model robustness.
comment: 13 pages, 11 figures, NeurIPS
♻ ☆ Reveal Hidden Pitfalls and Navigate Next Generation of Vector Similarity Search from Task-Centric Views SIGMOD2026
Vector Similarity Search (VSS) in high-dimensional spaces is rapidly emerging as core functionality in next-generation database systems for numerous data-intensive services -- from embedding lookups in large language models (LLMs), to semantic information retrieval and recommendation engines. Current benchmarks, however, evaluate VSS primarily on the recall-latency trade-off against a ground truth defined solely by distance metrics, neglecting how retrieval quality ultimately impacts downstream tasks. This disconnect can mislead both academic research and industrial practice. We present Iceberg, a holistic benchmark suite for end-to-end evaluation of VSS methods in realistic application contexts. From a task-centric view, Iceberg uncovers the Information Loss Funnel, which identifies three principal sources of end-to-end performance degradation: (1) Embedding Loss during feature extraction; (2) Metric Misuse, where distances poorly reflect task relevance; (3) Data Distribution Sensitivity, highlighting index robustness across skews and modalities. For a more comprehensive assessment, Iceberg spans eight diverse datasets across key domains such as image classification, face recognition, text retrieval, and recommendation systems. Each dataset, ranging from 1M to 100M vectors, includes rich, task-specific labels and evaluation metrics, enabling assessment of retrieval algorithms within the full application pipeline rather than in isolation. Iceberg benchmarks 13 state-of-the-art VSS methods and re-ranks them based on application-level metrics, revealing substantial deviations from traditional rankings derived purely from recall-latency evaluations. Building on these insights, we define a set of task-centric meta-features and derive an interpretable decision tree to guide practitioners in selecting and tuning VSS methods for their specific workloads.
comment: SIGMOD2026
Artificial Intelligence 21
☆ Explicit Abstention Knobs for Predictable Reliability in Video Question Answering
High-stakes deployment of vision-language models (VLMs) requires selective prediction, where systems abstain when uncertain rather than risk costly errors. We investigate whether confidence-based abstention provides reliable control over error rates in video question answering, and whether that control remains robust under distribution shift. Using NExT-QA and Gemini 2.0 Flash, we establish two findings. First, confidence thresholding provides mechanistic control in-distribution. Sweeping threshold epsilon produces smooth risk-coverage tradeoffs, reducing error rates f
comment: Preprint. Diagnostic study of confidence-based abstention under evidence truncation
☆ Democratizing Electronic-Photonic AI Systems: An Open-Source AI-Infused Cross-Layer Co-Design and Design Automation Toolflow SP
Photonics is becoming a cornerstone technology for high-performance AI systems and scientific computing, offering unparalleled speed, parallelism, and energy efficiency. Despite this promise, the design and deployment of electronic-photonic AI systems remain highly challenging due to a steep learning curve across multiple layers, spanning device physics, circuit design, system architecture, and AI algorithms. The absence of a mature electronic-photonic design automation (EPDA) toolchain leads to long, inefficient design cycles and limits cross-disciplinary innovation and co-evolution. In this work, we present a cross-layer co-design and automation framework aimed at democratizing photonic AI system development. We begin by introducing our architecture designs for scalable photonic edge AI and Transformer inference, followed by SimPhony, an open-source modeling tool for rapid EPIC AI system evaluation and design-space exploration. We then highlight advances in AI-enabled photonic design automation, including physical AI-based Maxwell solvers, a fabrication-aware inverse design framework, and a scalable inverse training algorithm for meta-optical neural networks, enabling a scalable EPDA stack for next-generation electronic-photonic AI systems.
comment: 9 ages. Accepted to SPIE Photonics West, AI and Optical Data Sciences VII, 2026
☆ Toward Large-Scale Photonics-Empowered AI Systems: From Physical Design Automation to System-Algorithm Co-Exploration SP
In this work, we identify three considerations that are essential for realizing practical photonic AI systems at scale: (1) dynamic tensor operation support for modern models rather than only weight-static kernels, especially for attention/Transformer-style workloads; (2) systematic management of conversion, control, and data-movement overheads, where multiplexing and dataflow must amortize electronic costs instead of letting ADC/DAC and I/O dominate; and (3) robustness under hardware non-idealities that become more severe as integration density grows. To study these coupled tradeoffs quantitatively, and to ensure they remain meaningful under real implementation constraints, we build a cross-layer toolchain that supports photonic AI design from early exploration to physical realization. SimPhony provides implementation-aware modeling and rapid cross-layer evaluation, translating physical costs into system-level metrics so architectural decisions are grounded in realistic assumptions. ADEPT and ADEPT-Z enable end-to-end circuit and topology exploration, connecting system objectives to feasible photonic fabrics under practical device and circuit constraints. Finally, Apollo and LiDAR provide scalable photonic physical design automation, turning candidate circuits into manufacturable layouts while accounting for routing, thermal, and crosstalk constraints.
comment: 10 pages. Accepted to SPIE Photonics West, Optical Interconnects and Packaging 2026
☆ Constructing a Neuro-Symbolic Mathematician from First Principles
Large Language Models (LLMs) exhibit persistent logical failures in complex reasoning due to the lack of an internal axiomatic framework. We propose Mathesis, a neuro-symbolic architecture that encodes mathematical states as higher-order hypergraphs and uses a Symbolic Reasoning Kernel (SRK)--a differentiable logic engine that maps constraints to a continuous energy landscape. By defining a global energy function E(G), where zero energy implies logical consistency, the SRK yields gradient-based signals to train a Hypergraph Transformer Brain, turning proof search into energy minimization. Multi-step deduction is enabled via Monte Carlo Tree Search and Evolutionary Proof Search, guided by learned value functions and semantic unification.
☆ Ask, Clarify, Optimize: Human-LLM Agent Collaboration for Smarter Inventory Control
Inventory management remains a challenge for many small and medium-sized businesses that lack the expertise to deploy advanced optimization methods. This paper investigates whether Large Language Models (LLMs) can help bridge this gap. We show that employing LLMs as direct, end-to-end solvers incurs a significant "hallucination tax": a performance gap arising from the model's inability to perform grounded stochastic reasoning. To address this, we propose a hybrid agentic framework that strictly decouples semantic reasoning from mathematical calculation. In this architecture, the LLM functions as an intelligent interface, eliciting parameters from natural language and interpreting results while automatically calling rigorous algorithms to build the optimization engine. To evaluate this interactive system against the ambiguity and inconsistency of real-world managerial dialogue, we introduce the Human Imitator, a fine-tuned "digital twin" of a boundedly rational manager that enables scalable, reproducible stress-testing. Our empirical analysis reveals that the hybrid agentic framework reduces total inventory costs by 32.1% relative to an interactive baseline using GPT-4o as an end-to-end solver. Moreover, we find that providing perfect ground-truth information alone is insufficient to improve GPT-4o's performance, confirming that the bottleneck is fundamentally computational rather than informational. Our results position LLMs not as replacements for operations research, but as natural-language interfaces that make rigorous, solver-based policies accessible to non-experts.
☆ Mortar: Evolving Mechanics for Automatic Game Design
We present Mortar, a system for autonomously evolving game mechanics for automatic game design. Game mechanics define the rules and interactions that govern gameplay, and designing them manually is a time-consuming and expert-driven process. Mortar combines a quality-diversity algorithm with a large language model to explore a diverse set of mechanics, which are evaluated by synthesising complete games that incorporate both evolved mechanics and those drawn from an archive. The mechanics are evaluated by composing complete games through a tree search procedure, where the resulting games are evaluated by their ability to preserve a skill-based ordering over players -- that is, whether stronger players consistently outperform weaker ones. We assess the mechanics based on their contribution towards the skill-based ordering score in the game. We demonstrate that Mortar produces games that appear diverse and playable, and mechanics that contribute more towards the skill-based ordering score in the game. We perform ablation studies to assess the role of each system component and a user study to evaluate the games based on human feedback.
☆ The Agentic Leash: Extracting Causal Feedback Fuzzy Cognitive Maps with LLMs
We design a large-language-model (LLM) agent that extracts causal feedback fuzzy cognitive maps (FCMs) from raw text. The causal learning or extraction process is agentic both because of the LLM's semi-autonomy and because ultimately the FCM dynamical system's equilibria drive the LLM agents to fetch and process causal text. The fetched text can in principle modify the adaptive FCM causal structure and so modify the source of its quasi-autonomy--its equilibrium limit cycles and fixed-point attractors. This bidirectional process endows the evolving FCM dynamical system with a degree of autonomy while still staying on its agentic leash. We show in particular that a sequence of three finely tuned system instructions guide an LLM agent as it systematically extracts key nouns and noun phrases from text, as it extracts FCM concept nodes from among those nouns and noun phrases, and then as it extracts or infers partial or fuzzy causal edges between those FCM nodes. We test this FCM generation on a recent essay about the promise of AI from the late diplomat and political theorist Henry Kissinger and his colleagues. This three-step process produced FCM dynamical systems that converged to the same equilibrium limit cycles as did the human-generated FCMs even though the human-generated FCM differed in the number of nodes and edges. A final FCM mixed generated FCMs from separate Gemini and ChatGPT LLM agents. The mixed FCM absorbed the equilibria of its dominant mixture component but also created new equilibria of its own to better approximate the underlying causal dynamical system.
comment: 15 figures
☆ SpaceTimePilot: Generative Rendering of Dynamic Scenes Across Space and Time
We present SpaceTimePilot, a video diffusion model that disentangles space and time for controllable generative rendering. Given a monocular video, SpaceTimePilot can independently alter the camera viewpoint and the motion sequence within the generative process, re-rendering the scene for continuous and arbitrary exploration across space and time. To achieve this, we introduce an effective animation time-embedding mechanism in the diffusion process, allowing explicit control of the output video's motion sequence with respect to that of the source video. As no datasets provide paired videos of the same dynamic scene with continuous temporal variations, we propose a simple yet effective temporal-warping training scheme that repurposes existing multi-view datasets to mimic temporal differences. This strategy effectively supervises the model to learn temporal control and achieve robust space-time disentanglement. To further enhance the precision of dual control, we introduce two additional components: an improved camera-conditioning mechanism that allows altering the camera from the first frame, and CamxTime, the first synthetic space-and-time full-coverage rendering dataset that provides fully free space-time video trajectories within a scene. Joint training on the temporal-warping scheme and the CamxTime dataset yields more precise temporal control. We evaluate SpaceTimePilot on both real-world and synthetic data, demonstrating clear space-time disentanglement and strong results compared to prior work. Project page: https://zheninghuang.github.io/Space-Time-Pilot/ Code: https://github.com/ZheningHuang/spacetimepilot
comment: Project page: https://zheninghuang.github.io/Space-Time-Pilot/ Code: https://github.com/ZheningHuang/spacetimepilot
☆ Coordinated Humanoid Manipulation with Choice Policies
Humanoid robots hold great promise for operating in human-centric environments, yet achieving robust whole-body coordination across the head, hands, and legs remains a major challenge. We present a system that combines a modular teleoperation interface with a scalable learning framework to address this problem. Our teleoperation design decomposes humanoid control into intuitive submodules, which include hand-eye coordination, grasp primitives, arm end-effector tracking, and locomotion. This modularity allows us to collect high-quality demonstrations efficiently. Building on this, we introduce Choice Policy, an imitation learning approach that generates multiple candidate actions and learns to score them. This architecture enables both fast inference and effective modeling of multimodal behaviors. We validate our approach on two real-world tasks: dishwasher loading and whole-body loco-manipulation for whiteboard wiping. Experiments show that Choice Policy significantly outperforms diffusion policies and standard behavior cloning. Furthermore, our results indicate that hand-eye coordination is critical for success in long-horizon tasks. Our work demonstrates a practical path toward scalable data collection and learning for coordinated humanoid manipulation in unstructured environments.
comment: Code and Website: https://choice-policy.github.io/
☆ Vulcan: Instance-Optimal Systems Heuristics Through LLM-Driven Search
Resource-management tasks in modern operating and distributed systems continue to rely primarily on hand-designed heuristics for tasks such as scheduling, caching, or active queue management. Designing performant heuristics is an expensive, time-consuming process that we are forced to continuously go through due to the constant flux of hardware, workloads and environments. We propose a new alternative: synthesizing instance-optimal heuristics -- specialized for the exact workloads and hardware where they will be deployed -- using code-generating large language models (LLMs). To make this synthesis tractable, Vulcan separates policy and mechanism through LLM-friendly, task-agnostic interfaces. With these interfaces, users specify the inputs and objectives of their desired policy, while Vulcan searches for performant policies via evolutionary search over LLM-generated code. This interface is expressive enough to capture a wide range of system policies, yet sufficiently constrained to allow even small, inexpensive LLMs to generate correct and executable code. We use Vulcan to synthesize performant heuristics for cache eviction and memory tiering, and find that these heuristics outperform all human-designed state-of-the-art algorithms by upto 69% and 7.9% in performance for each of these tasks respectively.
comment: 27 pages, 11 figures, 7 tables
☆ Context-aware LLM-based AI Agents for Human-centered Energy Management Systems in Smart Buildings
This study presents a conceptual framework and a prototype assessment for Large Language Model (LLM)-based Building Energy Management System (BEMS) AI agents to facilitate context-aware energy management in smart buildings through natural language interaction. The proposed framework comprises three modules: perception (sensing), central control (brain), and action (actuation and user interaction), forming a closed feedback loop that captures, analyzes, and interprets energy data to respond intelligently to user queries and manage connected appliances. By leveraging the autonomous data analytics capabilities of LLMs, the BEMS AI agent seeks to offer context-aware insights into energy consumption, cost prediction, and device scheduling, thereby addressing limitations in existing energy management systems. The prototype's performance was evaluated using 120 user queries across four distinct real-world residential energy datasets and different evaluation metrics, including latency, functionality, capability, accuracy, and cost-effectiveness. The generalizability of the framework was demonstrated using ANOVA tests. The results revealed promising performance, measured by response accuracy in device control (86%), memory-related tasks (97%), scheduling and automation (74%), and energy analysis (77%), while more complex cost estimation tasks highlighted areas for improvement with an accuracy of 49%. This benchmarking study moves toward formalizing the assessment of LLM-based BEMS AI agents and identifying future research directions, emphasizing the trade-off between response accuracy and computational efficiency.
☆ AdaGReS:Adaptive Greedy Context Selection via Redundancy-Aware Scoring for Token-Budgeted RAG
Retrieval-augmented generation (RAG) is highly sensitive to the quality of selected context, yet standard top-k retrieval often returns redundant or near-duplicate chunks that waste token budget and degrade downstream generation. We present AdaGReS, a redundancy-aware context selection framework for token-budgeted RAG that optimizes a set-level objective combining query-chunk relevance and intra-set redundancy penalties. AdaGReS performs greedy selection under a token-budget constraint using marginal gains derived from the objective, and introduces a closed-form, instance-adaptive calibration of the relevance-redundancy trade-off parameter to eliminate manual tuning and adapt to candidate-pool statistics and budget limits. We further provide a theoretical analysis showing that the proposed objective exhibits epsilon-approximate submodularity under practical embedding similarity conditions, yielding near-optimality guarantees for greedy selection. Experiments on open-domain question answering (Natural Questions) and a high-redundancy biomedical (drug) corpus demonstrate consistent improvements in redundancy control and context quality, translating to better end-to-end answer quality and robustness across settings.
comment: Preprint. Under review
♻ ☆ GameTileNet: A Semantic Dataset for Low-Resolution Game Art in Procedural Content Generation
GameTileNet is a dataset designed to provide semantic labels for low-resolution digital game art, advancing procedural content generation (PCG) and related AI research as a vision-language alignment task. Large Language Models (LLMs) and image-generative AI models have enabled indie developers to create visual assets, such as sprites, for game interactions. However, generating visuals that align with game narratives remains challenging due to inconsistent AI outputs, requiring manual adjustments by human artists. The diversity of visual representations in automatically generated game content is also limited because of the imbalance in distributions across styles for training data. GameTileNet addresses this by collecting artist-created game tiles from OpenGameArt.org under Creative Commons licenses and providing semantic annotations to support narrative-driven content generation. The dataset introduces a pipeline for object detection in low-resolution tile-based game art (e.g., 32x32 pixels) and annotates semantics, connectivity, and object classifications. GameTileNet is a valuable resource for improving PCG methods, supporting narrative-rich game content, and establishing a baseline for object detection in low-resolution, non-photorealistic images. TL;DR: GameTileNet is a semantic dataset of low-resolution game tiles designed to support narrative-driven procedural content generation through visual-language alignment.
comment: Camera-ready version of a paper accepted for oral presentation at AIIDE 2025
♻ ☆ MTSQL-R1: Towards Long-Horizon Multi-Turn Text-to-SQL via Agentic Training
Multi-turn Text-to-SQL aims to translate a user's conversational utterances into executable SQL while preserving dialogue coherence and grounding to the target schema. However, most existing systems only regard this task as a simple text translation task and follow a short-horizon paradigm, generating a query per turn without execution, explicit verification, and refinement, which leads to non-executable or incoherent outputs. We present MTSQL-R1, an agentic training framework for long-horizon multi-turn Text-to-SQL. We cast the task as a Markov Decision Process (MDP) in which an agent interacts with (i) a database for execution feedback and (ii) a persistent dialogue memory for coherence verification, performing an iterative propose to execute -> verify -> refine cycle until all checks pass. Experiments on COSQL and SPARC demonstrate that MTSQL-R1 consistently outperforms strong baselines, highlighting the importance of environment-driven verification and memory-guided refinement for conversational semantic parsing. Full recipes (including code, trained models, logs, reasoning trajectories, etc.) will be released after the internal review to contribute to community research.
♻ ☆ Narrative-to-Scene Generation: An LLM-Driven Pipeline for 2D Game Environments
Recent advances in large language models (LLMs) enable compelling story generation, but connecting narrative text to playable visual environments remains an open challenge in procedural content generation (PCG). We present a lightweight pipeline that transforms short narrative prompts into a sequence of 2D tile-based game scenes, reflecting the temporal structure of stories. Given an LLM-generated narrative, our system identifies three key time frames, extracts spatial predicates in the form of "Object-Relation-Object" triples, and retrieves visual assets using affordance-aware semantic embeddings from the GameTileNet dataset. A layered terrain is generated using Cellular Automata, and objects are placed using spatial rules grounded in the predicate structure. We evaluated our system in ten diverse stories, analyzing tile-object matching, affordance-layer alignment, and spatial constraint satisfaction across frames. This prototype offers a scalable approach to narrative-driven scene generation and lays the foundation for future work on multi-frame continuity, symbolic tracking, and multi-agent coordination in story-centered PCG.
comment: Camera-ready version of a paper accepted at the AIIDE 2025 Workshop on Experimental AI in Games (EXAG)
♻ ☆ Memento 2: Learning by Stateful Reflective Memory
We study continual learning in large language model (LLM) based agents that integrate episodic memory with reinforcement learning. We focus on reflection, the ability of an agent to revisit past experience and adjust how it selects future actions, as the central mechanism for continual adaptation without fine tuning model weights. To formalise this, we introduce the Stateful Reflective Decision Process (SRDP), in which an agent maintains and updates episodic memory and alternates between writing new experiences to memory and reading relevant cases to guide decisions. This framework casts reflective memory dynamics as part of the decision process itself and makes them amenable to control and learning analysis. Building on this formulation, we develop a Read-Write Reflective Learning algorithm that incorporates memory retrieval into a soft policy iteration procedure and prove that it converges. We further show that as memory grows and more densely covers the task environment, the resulting policy approaches optimality. Our framework unifies memory based reasoning with reinforcement learning and provides a formal foundation for LLM agents capable of continual, experience driven learning.
comment: 35 pages, four figures
♻ ☆ Revisiting Out-of-Distribution Detection in Real-time Object Detection: From Benchmark Pitfalls to a New Mitigation Paradigm
Out-of-distribution (OoD) inputs pose a persistent challenge to deep learning models, often triggering overconfident predictions on non-target objects. While prior work has primarily focused on refining scoring functions and adjusting test-time thresholds, such algorithmic improvements offer only incremental gains. We argue that a rethinking of the entire development lifecycle is needed to mitigate these risks effectively. This work addresses two overlooked dimensions of OoD detection in object detection. First, we reveal fundamental flaws in widely used evaluation benchmarks: contrary to their design intent, up to 13% of objects in the OoD test sets actually belong to in-distribution classes, and vice versa. These quality issues severely distort the reported performance of existing methods and contribute to their high false positive rates. Second, we introduce a novel training-time mitigation paradigm that operates independently of external OoD detectors. Instead of relying solely on post-hoc scoring, we fine-tune the detector using a carefully synthesized OoD dataset that semantically resembles in-distribution objects. This process shapes a defensive decision boundary by suppressing objectness on OoD objects, leading to a 91% reduction in hallucination error of a YOLO model on BDD-100K. Our methodology generalizes across detection paradigms such as YOLO, Faster R-CNN, and RT-DETR, and supports few-shot adaptation. Together, these contributions offer a principled and effective way to reduce OoD-induced hallucination in object detectors. Code and data are available at: https://gricad-gitlab.univ-grenoble-alpes.fr/dnn-safety/m-hood.
comment: Accepted at IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
♻ ☆ Your Brain on ChatGPT: Accumulation of Cognitive Debt when Using an AI Assistant for Essay Writing Task
This study explores the neural and behavioral consequences of LLM-assisted essay writing. Participants were divided into three groups: LLM, Search Engine, and Brain-only (no tools). Each completed three sessions under the same condition. In a fourth session, LLM users were reassigned to Brain-only group (LLM-to-Brain), and Brain-only users were reassigned to LLM condition (Brain-to-LLM). A total of 54 participants took part in Sessions 1-3, with 18 completing session 4. We used electroencephalography (EEG) to assess cognitive load during essay writing, and analyzed essays using NLP, as well as scoring essays with the help from human teachers and an AI judge. Across groups, NERs, n-gram patterns, and topic ontology showed within-group homogeneity. EEG revealed significant differences in brain connectivity: Brain-only participants exhibited the strongest, most distributed networks; Search Engine users showed moderate engagement; and LLM users displayed the weakest connectivity. Cognitive activity scaled down in relation to external tool use. In session 4, LLM-to-Brain participants showed reduced alpha and beta connectivity, indicating under-engagement. Brain-to-LLM users exhibited higher memory recall and activation of occipito-parietal and prefrontal areas, similar to Search Engine users. Self-reported ownership of essays was the lowest in the LLM group and the highest in the Brain-only group. LLM users also struggled to accurately quote their own work. While LLMs offer immediate convenience, our findings highlight potential cognitive costs. Over four months, LLM users consistently underperformed at neural, linguistic, and behavioral levels. These results raise concerns about the long-term educational implications of LLM reliance and underscore the need for deeper inquiry into AI's role in learning.
comment: 216 pages, 102 figures, 4 tables and appendix
♻ ☆ Towards Streaming LiDAR Object Detection with Point Clouds as Egocentric Sequences WACV 2026
Accurate and low-latency 3D object detection is essential for autonomous driving, where safety hinges on both rapid response and reliable perception. While rotating LiDAR sensors are widely adopted for their robustness and fidelity, current detectors face a trade-off: streaming methods process partial polar sectors on the fly for fast updates but suffer from limited visibility, cross-sector dependencies, and distortions from retrofitted Cartesian designs, whereas full-scan methods achieve higher accuracy but are bottlenecked by the inherent latency of a LiDAR revolution. We propose Polar-Fast-Cartesian-Full (PFCF), a hybrid detector that combines fast polar processing for intra-sector feature extraction with accurate Cartesian reasoning for full-scene understanding. Central to PFCF is a custom Mamba SSM-based streaming backbone with dimensionally-decomposed convolutions that avoids distortion-heavy planes, enabling parameter-efficient, translation-invariant, and distortion-robust polar representation learning. Local sector features are extracted via this backbone, then accumulated into a sector feature buffer to enable efficient inter-sector communication through a full-scan backbone. PFCF establishes a new Pareto frontier on the Waymo Open dataset, surpassing prior streaming baselines by 10% mAP and matching full-scan accuracy at twice the update rate. Code is available at \href{https://github.com/meilongzhang/Polar-Hierarchical-Mamba}{https://github.com/meilongzhang/Polar-Hierarchical-Mamba}.
comment: Accepted to WACV 2026
♻ ☆ From Transformers to LLMs: A Systematic Survey of Efficiency Considerations in NLP
The emergence of Transformer-based Large Language Models (LLMs) has substantially augmented the capabilities of Natural Language Processing (NLP), thereby intensifying the demand for computational resources. Therefore, enhancing efficiency based on factors like computational requirements, energy consumption, carbon footprint and financial cost has become a vital area of research. This motivates us to conduct a systematic literature review on Transformer-based LLMs in NLP from the perspective of efficiency. In this survey of 312 articles published between the years 2011 and 2025, efficiency-improvement endeavors have been systematically discussed targeting various aspects such as data curation, model design, model downsizing, and dynamic inferencing. This has been augmented with efficiency considerations in model adaptation strategies like pre-training, fine-tuning, prompt-engineering and Retrieval-Augmented Generation (RAG). Furthermore, a statistical analysis of the articles has been performed followed by an in-depth evaluation of the efficiency and efficacy of more than 30 renowned NLP models has been conducted on 13 evaluation benchmarks. This paper offers valuable insights for researchers, professionals as well as scholars, and explores the trend of research toward sustainable practices in NLP.
comment: 63 pages, 5 tables and 22 figures
♻ ☆ Deep sequence models tend to memorize geometrically; it is unclear why
Deep sequence models are said to store atomic facts predominantly in the form of associative memory: a brute-force lookup of co-occurring entities. We identify a dramatically different form of storage of atomic facts that we term as geometric memory. Here, the model has synthesized embeddings encoding novel global relationships between all entities, including ones that do not co-occur in training. Such storage is powerful: for instance, we show how it transforms a hard reasoning task involving an $\ell$-fold composition into an easy-to-learn $1$-step navigation task. From this phenomenon, we extract fundamental aspects of neural embedding geometries that are hard to explain. We argue that the rise of such a geometry, as against a lookup of local associations, cannot be straightforwardly attributed to typical supervisory, architectural, or optimizational pressures. Counterintuitively, a geometry is learned even when it is more complex than the brute-force lookup. Then, by analyzing a connection to Node2Vec, we demonstrate how the geometry stems from a spectral bias that -- in contrast to prevailing theories -- indeed arises naturally despite the lack of various pressures. This analysis also points out to practitioners a visible headroom to make Transformer memory more strongly geometric. We hope the geometric view of parametric memory encourages revisiting the default intuitions that guide researchers in areas like knowledge acquisition, capacity, discovery, and unlearning.
Computation and Language 6
☆ Paragraph Segmentation Revisited: Towards a Standard Task for Structuring Speech
Automatic speech transcripts are often delivered as unstructured word streams that impede readability and repurposing. We recast paragraph segmentation as the missing structuring step and fill three gaps at the intersection of speech processing and text segmentation. First, we establish TEDPara (human-annotated TED talks) and YTSegPara (YouTube videos with synthetic labels) as the first benchmarks for the paragraph segmentation task. The benchmarks focus on the underexplored speech domain, where paragraph segmentation has traditionally not been part of post-processing, while also contributing to the wider text segmentation field, which still lacks robust and naturalistic benchmarks. Second, we propose a constrained-decoding formulation that lets large language models insert paragraph breaks while preserving the original transcript, enabling faithful, sentence-aligned evaluation. Third, we show that a compact model (MiniSeg) attains state-of-the-art accuracy and, when extended hierarchically, jointly predicts chapters and paragraphs with minimal computational cost. Together, our resources and methods establish paragraph segmentation as a standardized, practical task in speech processing.
☆ IELTS Writing Revision Platform with Automated Essay Scoring and Adaptive Feedback
This paper presents the design, development, and evaluation of a proposed revision platform assisting candidates for the International English Language Testing System (IELTS) writing exam. Traditional IELTS preparation methods lack personalised feedback, catered to the IELTS writing rubric. To address these shortcomings, the platform features an attractive user interface (UI), an Automated Essay Scoring system (AES), and targeted feedback tailored to candidates and the IELTS writing rubric. The platform architecture separates conversational guidance from a dedicated writing interface to reduce cognitive load and simulate exam conditions. Through iterative, Design-Based Research (DBR) cycles, the study progressed from rule-based to transformer-based with a regression head scoring, mounted with adaptive feedback. Early cycles (2-3) revealed fundamental limitations of rule-based approaches: mid-band compression, low accuracy, and negative $R^2$ values. DBR Cycle 4 implemented a DistilBERT transformer model with a regression head, yielding substantial improvements with MAE of 0.66 and positive $R^2$. This enabled Cycle 5's adaptive feedback implementation, which demonstrated statistically significant score improvements (mean +0.060 bands, p = 0.011, Cohen's d = 0.504), though effectiveness varied by revision strategy. Findings suggest automated feedback functions are most suited as a supplement to human instruction, with conservative surface-level corrections proving more reliable than aggressive structural interventions for IELTS preparation contexts. Challenges remain in assessing higher-band essays, and future work should incorporate longitudinal studies with real IELTS candidates and validation from official examiners.
☆ Cleaning English Abstracts of Scientific Publications
Scientific abstracts are often used as proxies for the content and thematic focus of research publications. However, a significant share of published abstracts contains extraneous information-such as publisher copyright statements, section headings, author notes, registrations, and bibliometric or bibliographic metadata-that can distort downstream analyses, particularly those involving document similarity or textual embeddings. We introduce an open-source, easy-to-integrate language model designed to clean English-language scientific abstracts by automatically identifying and removing such clutter. We demonstrate that our model is both conservative and precise, alters similarity rankings of cleaned abstracts and improves information content of standard-length embeddings.
comment: 2 tables, 2 figures
♻ ☆ Open-sci-ref-0.01: open and reproducible reference baselines for language model and dataset comparison AAAI
We introduce open-sci-ref, a family of dense transformer models trained as research baselines across multiple model (0.13B to 1.7B parameters) and token scales (up to 1T) on 8 recent open reference datasets. Evaluating the models on various standardized benchmarks, our training runs set establishes reference points that enable researchers to assess the sanity and quality of alternative training approaches across scales and datasets. Intermediate checkpoints allow comparison and studying of the training dynamics. The established reference baselines allow training procedures to be compared through their scaling trends, aligning them on a common compute axis. Comparison of open reference datasets reveals that training on NemoTron-CC HQ consistently outperforms other reference datasets, followed by DCLM-baseline and FineWeb-Edu. In addition to intermediate training checkpoints, the release includes logs, code, and downstream evaluations to simplify reproduction, standardize comparison, and facilitate future research.
comment: v.1.1. AAAI Workshop on Reproducible Artificial Intelligence (RAI, https://reproducibleai.github.io) 2026, camera ready version. Model weights and intermediate training checkpoints are available at https://huggingface.co/collections/open-sci/open-sci-ref-001; code for reproducing training, evaluation and raw experiments data at https://github.com/LAION-AI/open-sci-ref-0.01
♻ ☆ Automatic identification of diagnosis from hospital discharge letters via weakly-supervised Natural Language Processing
Identifying patient diagnoses from discharge letters is essential to enable large-scale cohort selection and epidemiological research, but traditional supervised approaches rely on extensive manual annotation, which is often impractical for large textual datasets. In this study, we present a novel weakly-supervised Natural Language Processing pipeline designed to classify Italian discharge letters without requiring manual labelling. After extracting diagnosis-related sentences, the method leverages a transformer-based model with an additional pre-training on Italian medical documents to generate semantic embeddings. A two-level clustering procedure is applied to these embeddings, and the resulting clusters are mapped to the diseases of interest to derive weak labels for a subset of data, eventually used to train a transformer-based classifier. We evaluate the approach on a real-world case study on bronchiolitis in a corpus of 33,176 Italian discharge letters of children admitted to 44 emergency rooms or hospitals in the Veneto Region between 2017 and 2020. The pipeline achieves an area under the curve (AUC) of 77.68% ($\pm 4.30\%)$ and an F1-score of 78.14% ($\pm 4.89\%$) against manual annotations. Its performance surpasses other unsupervised methods and approaches fully supervised models, maintaining robustness to cluster selection and promising generalizability across different disease types. It allows saving approximately 3 minutes of expert time per discharge letter, resulting in more than 1,500 hours for a dataset like ours. This study demonstrates the feasibility of a weakly-supervised strategy for identifying diagnoses from Italian discharge letters. The pipeline achieves strong performance, is adaptable to various diseases, and offers a scalable solution for clinical text classification, reducing the need for manual annotation while maintaining reliable accuracy.
comment: 49 pages, 7 figures
♻ ☆ Multi-step retrieval and reasoning improves radiology question answering with large language models
Clinical decision-making in radiology increasingly benefits from artificial intelligence (AI), particularly through large language models (LLMs). However, traditional retrieval-augmented generation (RAG) systems for radiology question answering (QA) typically rely on single-step retrieval, limiting their ability to handle complex clinical reasoning tasks. Here we propose radiology Retrieval and Reasoning (RaR), a multi-step retrieval and reasoning framework designed to improve diagnostic accuracy, factual consistency, and clinical reliability of LLMs in radiology question answering. We evaluated 25 LLMs spanning diverse architectures, parameter scales (0.5B to >670B), and training paradigms (general-purpose, reasoning-optimized, clinically fine-tuned), using 104 expert-curated radiology questions from previously established RSNA-RadioQA and ExtendedQA datasets. To assess generalizability, we additionally tested on an unseen internal dataset of 65 real-world radiology board examination questions. RaR significantly improved mean diagnostic accuracy over zero-shot prompting and conventional online RAG. The greatest gains occurred in small-scale models, while very large models (>200B parameters) demonstrated minimal changes (<2% improvement). Additionally, RaR retrieval reduced hallucinations (mean 9.4%) and retrieved clinically relevant context in 46% of cases, substantially aiding factual grounding. Even clinically fine-tuned models showed gains from RaR (e.g., MedGemma-27B), indicating that retrieval remains beneficial despite embedded domain knowledge. These results highlight the potential of RaR to enhance factuality and diagnostic accuracy in radiology QA, warranting future studies to validate their clinical utility. All datasets, code, and the full RaR framework are publicly available to support open research and clinical translation.
comment: Published in npj Digital Medicine
Information Retrieval 15
☆ On the Factual Consistency of Text-based Explainable Recommendation Models
Text-based explainable recommendation aims to generate natural-language explanations that justify item recommendations, to improve user trust and system transparency. Although recent advances leverage LLMs to produce fluent outputs, a critical question remains underexplored: are these explanations factually consistent with the available evidence? We introduce a comprehensive framework for evaluating the factual consistency of text-based explainable recommenders. We design a prompting-based pipeline that uses LLMs to extract atomic explanatory statements from reviews, thereby constructing a ground truth that isolates and focuses on their factual content. Applying this pipeline to five categories from the Amazon Reviews dataset, we create augmented benchmarks for fine-grained evaluation of explanation quality. We further propose statement-level alignment metrics that combine LLM- and NLI-based approaches to assess both factual consistency and relevance of generated explanations. Across extensive experiments on six state-of-the-art explainable recommendation models, we uncover a critical gap: while models achieve high semantic similarity scores (BERTScore F1: 0.81-0.90), all our factuality metrics reveal alarmingly low performance (LLM-based statement-level precision: 4.38%-32.88%). These findings underscore the need for factuality-aware evaluation in explainable recommendation and provide a foundation for developing more trustworthy explanation systems.
comment: 13 pages, 2 figures, 4 tables
☆ MaRCA: Multi-Agent Reinforcement Learning for Dynamic Computation Allocation in Large-Scale Recommender Systems
Modern recommender systems face significant computational challenges due to growing model complexity and traffic scale, making efficient computation allocation critical for maximizing business revenue. Existing approaches typically simplify multi-stage computation resource allocation, neglecting inter-stage dependencies, thus limiting global optimality. In this paper, we propose MaRCA, a multi-agent reinforcement learning framework for end-to-end computation resource allocation in large-scale recommender systems. MaRCA models the stages of a recommender system as cooperative agents, using Centralized Training with Decentralized Execution (CTDE) to optimize revenue under computation resource constraints. We introduce an AutoBucket TestBench for accurate computation cost estimation, and a Model Predictive Control (MPC)-based Revenue-Cost Balancer to proactively forecast traffic loads and adjust the revenue-cost trade-off accordingly. Since its end-to-end deployment in the advertising pipeline of a leading global e-commerce platform in November 2024, MaRCA has consistently handled hundreds of billions of ad requests per day and has delivered a 16.67% revenue uplift using existing computation resources.
comment: 12 pages, 5 figures
☆ RAGPart & RAGMask: Retrieval-Stage Defenses Against Corpus Poisoning in Retrieval-Augmented Generation AAAI 2026
Retrieval-Augmented Generation (RAG) has emerged as a promising paradigm to enhance large language models (LLMs) with external knowledge, reducing hallucinations and compensating for outdated information. However, recent studies have exposed a critical vulnerability in RAG pipelines corpus poisoning where adversaries inject malicious documents into the retrieval corpus to manipulate model outputs. In this work, we propose two complementary retrieval-stage defenses: RAGPart and RAGMask. Our defenses operate directly on the retriever, making them computationally lightweight and requiring no modification to the generation model. RAGPart leverages the inherent training dynamics of dense retrievers, exploiting document partitioning to mitigate the effect of poisoned points. In contrast, RAGMask identifies suspicious tokens based on significant similarity shifts under targeted token masking. Across two benchmarks, four poisoning strategies, and four state-of-the-art retrievers, our defenses consistently reduce attack success rates while preserving utility under benign conditions. We further introduce an interpretable attack to stress-test our defenses. Our findings highlight the potential and limitations of retrieval-stage defenses, providing practical insights for robust RAG deployments.
comment: Published at AAAI 2026 Workshop on New Frontiers in Information Retrieval [Oral]
☆ Time-Aware Adaptive Side Information Fusion for Sequential Recommendation WSDM'26
Incorporating item-side information, such as category and brand, into sequential recommendation is a well-established and effective approach for improving performance. However, despite significant advancements, current models are generally limited by three key challenges: they often overlook the fine-grained temporal dynamics inherent in timestamps, exhibit vulnerability to noise in user interaction sequences, and rely on computationally expensive fusion architectures. To systematically address these challenges, we propose the Time-Aware Adaptive Side Information Fusion (TASIF) framework. TASIF integrates three synergistic components: (1) a simple, plug-and-play time span partitioning mechanism to capture global temporal patterns; (2) an adaptive frequency filter that leverages a learnable gate to denoise feature sequences adaptively, thereby providing higher-quality inputs for subsequent fusion modules; and (3) an efficient adaptive side information fusion layer, this layer employs a "guide-not-mix" architecture, where attributes guide the attention mechanism without being mixed into the content-representing item embeddings, ensuring deep interaction while ensuring computational efficiency. Extensive experiments on four public datasets demonstrate that TASIF significantly outperforms state-of-the-art baselines while maintaining excellent efficiency in training. Our source code is available at https://github.com/jluo00/TASIF.
comment: 10 pages. Accepted by WSDM'26
☆ CogRec: A Cognitive Recommender Agent Fusing Large Language Models and Soar for Explainable Recommendation
Large Language Models (LLMs) have demonstrated a remarkable capacity in understanding user preferences for recommendation systems. However, they are constrained by several critical challenges, including their inherent "Black-Box" characteristics, susceptibility to knowledge hallucination, and limited online learning capacity. These factors compromise their trustworthiness and adaptability. Conversely, cognitive architectures such as Soar offer structured and interpretable reasoning processes, yet their knowledge acquisition is notoriously laborious. To address these complementary challenges, we propose a novel cognitive recommender agent called CogRec which synergizes the strengths of LLMs with the Soar cognitive architecture. CogRec leverages Soar as its core symbolic reasoning engine and leverages an LLM for knowledge initialization to populate its working memory with production rules. The agent operates on a Perception-Cognition-Action(PCA) cycle. Upon encountering an impasse, it dynamically queries the LLM to obtain a reasoned solution. This solution is subsequently transformed into a new symbolic production rule via Soar's chunking mechanism, thereby enabling robust online learning. This learning paradigm allows the agent to continuously evolve its knowledge base and furnish highly interpretable rationales for its recommendations. Extensive evaluations conducted on three public datasets demonstrate that CogRec demonstrates significant advantages in recommendation accuracy, explainability, and its efficacy in addressing the long-tail problem.
comment: 9 pages, 6 figures
☆ High-dimensional Regret Minimization
Multi-criteria decision making in large databases is very important in real world applications. Recently, an interactive query has been studied extensively in the database literature with the advantage of both the top-k query (with limited output size) and the skyline query (which does not require users to explicitly specify their preference function). This approach iteratively asks the user to select the one preferred within a set of options. Based on rounds of feedback, the query learns the implicit preference and returns the most favorable as a recommendation. However, many modern applications in areas like housing or financial product markets feature datasets with hundreds of attributes. Existing interactive algorithms either fail to scale or require excessive user interactions (often exceeding 1000 rounds). Motivated by this, we propose FHDR (Fast High-Dimensional Reduction), a novel framework that takes less than 0.01s with fewer than 30 rounds of interaction. It is considered a breakthrough in the field of interactive queries since most, if not all, existing studies are not scalable to high-dimensional datasets. Extensive experiments demonstrate that FHDR outperforms the best-known algorithms by at least an order of magnitude in execution time and up to several orders of magnitude in terms of the number of interactions required, establishing a new state of the art for scalable interactive regret minimization.
☆ An Comparative Analysis about KYC on a Recommendation System Toward Agentic Recommendation System
This research presents a cutting-edge recommendation system utilizing agentic AI for KYC (Know Your Customer in the financial domain), and its evaluation across five distinct content verticals: Advertising (Ad), News, Gossip, Sharing (User-Generated Content), and Technology (Tech). The study compares the performance of four experimental groups, grouping by the intense usage of KYC, benchmarking them against the Normalized Discounted Cumulative Gain (nDCG) metric at truncation levels of $k=1$, $k=3$, and $k=5$. By synthesizing experimental data with theoretical frameworks and industry benchmarks from platforms such as Baidu and Xiaohongshu, this research provides insight by showing experimental results for engineering a large-scale agentic recommendation system.
comment: 5 pages, 1 figure
☆ Deletion Considered Harmful
In a world of information overload, understanding how we can most effectively manage information is crucial to success. We set out to understand how people view deletion, the removal of material no longer needed: does it help by reducing clutter and improving the signal to noise ratio, or does the effort required to decide to delete something make it not worthwhile? How does deletion relate to other strategies like filing; do people who spend extensive time in filing also prune their materials too? We studied the behaviour of 51 knowledge workers though a series of questionnaires and interviews to evaluate a range of tactics they used aimed at organizing, filing, and retrieving digital resources. Our study reveals that deletion is consistently under-adopted compared to other tactics such as Filing, Coverage, Ontology, and Timeliness. Moreover, the empirical data indicate that deletion is actually detrimental to retrieval success and satisfaction. In this paper, we examine the practice of deletion, review the related literature, and present detailed statistical results and clustering outcomes that underscore its adverse effects.
♻ ☆ Illusions of Relevance: Arbitrary Content Injection Attacks Deceive Retrievers, Rerankers, and LLM Judges AACL
This work considers a black-box threat model in which adversaries attempt to propagate arbitrary non-relevant content in search. We show that retrievers, rerankers, and LLM relevance judges are all highly vulnerable to attacks that enable arbitrary content to be promoted to the top of search results and to be assigned perfect relevance scores. We investigate how attackers may achieve this via content injection, injecting arbitrary sentences into relevant passages or query terms into arbitrary passages. Our study analyzes how factors such as model class and size, the balance between relevant and non-relevant content, injection location, toxicity and severity of injected content, and the role of LLM-generated content influence attack success, yielding novel, concerning, and often counterintuitive results. Our results reveal a weakness in embedding models, LLM-based scoring models, and generative LLMs, raising concerns about the general robustness, safety, and trustworthiness of language models regardless of the type of model or the role in which they are employed. We also emphasize the challenges of robust defenses against these attacks. Classifiers and more carefully prompted LLM judges often fail to recognize passages with content injection, especially when considering diverse text topics and styles. Our findings highlight the need for further research into arbitrary content injection attacks. We release our code for further study.
comment: AACL Findings 2025
♻ ☆ An Ecosystem for Ontology Interoperability
Ontology interoperability is one of the complicated issues that restricts the use of ontologies in knowledge graphs (KGs). Different ontologies with conflicting and overlapping concepts make it difficult to design, develop, and deploy an interoperable ontology for downstream tasks. We propose an ecosystem for ontology interoperability. The ecosystem employs three state-of-the-art semantic techniques in different phases of the ontology engineering life cycle: ontology design patterns (ODPs) in the design phase, ontology matching and versioning (OM\&OV) in the develop phase, and data-driven ontology validation (DOVA) in the deploy phase, to achieve better ontology interoperability and data integration in real-world applications. A case study of sensor observation in the building domain validates the usefulness of the proposed ecosystem.
comment: 11 pages, 13 figures, 2 tables
♻ ☆ Can ensembles improve evidence recall? A case study
Feature attribution methods typically provide minimal sufficient evidence justifying a model decision. However, in many applications, such as compliance and cataloging, the full set of contributing features must be identified: complete evidence. We present a case study using existing language models and a medical dataset which contains human-annotated complete evidence. Our findings show that an ensemble approach, aggregating evidence from several models, improves evidence recall over individual models. We examine different ensemble sizes, the effect of evidence-guided training, and provide qualitative insights.
comment: Submitted to ESANN 2026
♻ ☆ SEDA: A Self-Adapted Entity-Centric Data Augmentation for Boosting Gird-based Discontinuous NER Models CIKM'25
Named Entity Recognition (NER) is a critical task in natural language processing, yet it remains particularly challenging for discontinuous entities. The primary difficulty lies in text segmentation, as traditional methods often missegment or entirely miss cross-sentence discontinuous entities, significantly affecting recognition accuracy. Therefore, we aim to address the segmentation and omission issues associated with such entities. Recent studies have shown that grid-tagging methods are effective for information extraction due to their flexible tagging schemes and robust architectures. Building on this, we integrate image data augmentation techniques, such as cropping, scaling, and padding, into grid-based models to enhance their ability to recognize discontinuous entities and handle segmentation challenges. Experimental results demonstrate that traditional segmentation methods often fail to capture cross-sentence discontinuous entities, leading to decreased performance. In contrast, our augmented grid models achieve notable improvements. Evaluations on the CADEC, ShARe13, and ShARe14 datasets show F1 score gains of 1-2.5% overall and 3.7-8.4% for discontinuous entities, confirming the effectiveness of our approach.
comment: 9 pages, 5 figures. This paper was presented at the CIKM'25 Workshop on Small and Efficient Large Language Models for Knowledge Extraction
♻ ☆ KG20C & KG20C-QA: Scholarly Knowledge Graph Benchmarks for Link Prediction and Question Answering
In this paper, we present KG20C and KG20C-QA, two curated datasets for advancing question answering (QA) research on scholarly data. KG20C is a high-quality scholarly knowledge graph constructed from the Microsoft Academic Graph through targeted selection of venues, quality-based filtering, and schema definition. Although KG20C has been available online in non-peer-reviewed sources such as GitHub repository, this paper provides the first formal, peer-reviewed description of the dataset, including clear documentation of its construction and specifications. KG20C-QA is built upon KG20C to support QA tasks on scholarly data. We define a set of QA templates that convert graph triples into natural language question--answer pairs, producing a benchmark that can be used both with graph-based models such as knowledge graph embeddings and with text-based models such as large language models. We benchmark standard knowledge graph embedding methods on KG20C-QA, analyze performance across relation types, and provide reproducible evaluation protocols. By officially releasing these datasets with thorough documentation, we aim to contribute a reusable, extensible resource for the research community, enabling future work in QA, reasoning, and knowledge-driven applications in the scholarly domain. The full datasets will be released at https://github.com/tranhungnghiep/KG20C/ upon paper publication.
comment: extracted and extended from author's PhD thesis, "Multi-Relational Embedding for Knowledge Graph Representation and Analysis"
♻ ☆ ITDR: An Instruction Tuning Dataset for Enhancing Large Language Models in Recommendations
Large language models (LLMs) have demonstrated outstanding performance in natural language processing tasks. However, in the field of recommender systems, due to the inherent structural discrepancy between user behavior data and natural language, LLMs struggle to effectively model the associations between user preferences and items. Although prompt-based methods can generate recommendation results, their inadequate understanding of recommendation tasks leads to constrained performance. To address this gap, we construct a comprehensive instruction tuning dataset, ITDR, which encompasses seven subtasks across two root tasks: user-item interaction and user-item understanding. The dataset integrates data from 13 public recommendation datasets and is built using manually crafted standardized templates, comprising approximately 200,000 instances. Experimental results demonstrate that ITDR significantly enhances the performance of mainstream open-source LLMs such as GLM-4, Qwen2.5, Qwen2.5-Instruct and LLaMA-3.2 on recommendation tasks. Furthermore, we analyze the correlations between tasks and explore the impact of task descriptions and data scale on instruction tuning effectiveness. Finally, we perform comparative experiments against closed-source LLMs with massive parameters. Our tuning dataset ITDR, the fine-tuned large recommendation models, all LoRA modules, and the complete experimental results are available at https://github.com/hellolzk/ITDR.
♻ ☆ Do LLMs Understand Collaborative Signals? Diagnosis and Repair
Collaborative information from user-item interactions is a fundamental source of signal in successful recommender systems. Recently, researchers have attempted to incorporate this knowledge into large language model-based recommender approaches (LLMRec) to enhance their performance. However, there has been little fundamental analysis of whether LLMs can effectively reason over collaborative information. In this paper, we analyze the ability of LLMs to reason about collaborative information in recommendation tasks, comparing their performance to traditional matrix factorization (MF) models. We propose a simple and effective method to improve LLMs' reasoning capabilities using retrieval-augmented generation (RAG) over the user-item interaction matrix with four different prompting strategies. Our results show that the LLM outperforms the MF model whenever we provide relevant information in a clear and easy-to-follow format, and prompt the LLM to reason based on it. We observe that with this strategy, in almost all cases, the more information we provide, the better the LLM performs.
Information Retrieval 8
☆ Nested Browser-Use Learning for Agentic Information Seeking
Information-seeking (IS) agents have achieved strong performance across a range of wide and deep search tasks, yet their tool use remains largely restricted to API-level snippet retrieval and URL-based page fetching, limiting access to the richer information available through real browsing. While full browser interaction could unlock deeper capabilities, its fine-grained control and verbose page content returns introduce substantial complexity for ReAct-style function-calling agents. To bridge this gap, we propose Nested Browser-Use Learning (NestBrowse), which introduces a minimal and complete browser-action framework that decouples interaction control from page exploration through a nested structure. This design simplifies agentic reasoning while enabling effective deep-web information acquisition. Empirical results on challenging deep IS benchmarks demonstrate that NestBrowse offers clear benefits in practice. Further in-depth analyses underscore its efficiency and flexibility.
☆ Scalable Residual Feature Aggregation Framework with Hybrid Metaheuristic Optimization for Robust Early Pancreatic Neoplasm Detection in Multimodal CT Imaging
The early detection of pancreatic neoplasm is a major clinical dilemma, and it is predominantly so because tumors are likely to occur with minimal contrast margins and a large spread anatomy-wide variation amongst patients on a CT scan. These complexities require to be addressed with an effective and scalable system that can assist in enhancing the salience of the subtle visual cues and provide a high level of the generalization on the multimodal imaging data. A Scalable Residual Feature Aggregation (SRFA) framework is proposed to be used to meet these conditions in this study. The framework integrates a pipeline of preprocessing followed by the segmentation using the MAGRes-UNet that is effective in making the pancreatic structures and isolating regions of interest more visible. DenseNet-121 performed with residual feature storage is used to extract features to allow deep hierarchical features to be aggregated without properties loss. To go further, hybrid HHO-BA metaheuristic feature selection strategy is used, which guarantees the best feature subset refinement. To be classified, the system is trained based on a new hybrid model that integrates the ability to pay attention on the world, which is the Vision Transformer (ViT) with the high representational efficiency of EfficientNet-B3. A dual optimization mechanism incorporating SSA and GWO is used to fine-tune hyperparameters to enhance greater robustness and less overfitting. Experimental results support the significant improvement in performance, with the suggested model reaching 96.23% accuracy, 95.58% F1-score and 94.83% specificity, the model is significantly better than the traditional CNNs and contemporary transformer-based models. Such results highlight the possibility of the SRFA framework as a useful instrument in the early detection of pancreatic tumors.
☆ RobustMask: Certified Robustness against Adversarial Neural Ranking Attack via Randomized Masking
Neural ranking models have achieved remarkable progress and are now widely deployed in real-world applications such as Retrieval-Augmented Generation (RAG). However, like other neural architectures, they remain vulnerable to adversarial manipulations: subtle character-, word-, or phrase-level perturbations can poison retrieval results and artificially promote targeted candidates, undermining the integrity of search engines and downstream systems. Existing defenses either rely on heuristics with poor generalization or on certified methods that assume overly strong adversarial knowledge, limiting their practical use. To address these challenges, we propose RobustMask, a novel defense that combines the context-prediction capability of pretrained language models with a randomized masking-based smoothing mechanism. Our approach strengthens neural ranking models against adversarial perturbations at the character, word, and phrase levels. Leveraging both the pairwise comparison ability of ranking models and probabilistic statistical analysis, we provide a theoretical proof of RobustMask's certified top-K robustness. Extensive experiments further demonstrate that RobustMask successfully certifies over 20% of candidate documents within the top-10 ranking positions against adversarial perturbations affecting up to 30% of their content. These results highlight the effectiveness of RobustMask in enhancing the adversarial robustness of neural ranking models, marking a significant step toward providing stronger security guarantees for real-world retrieval systems.
♻ ☆ Content-based Recommendation Engine for Video Streaming Platform
Recommendation engines suggest content, products, or services to the user by using machine learning algorithms. This paper proposes a content-based recommendation engine that provides personalized video suggestions based on users' previous interactions and preferences. The engine uses TF-IDF (Term Frequency-Inverse Document Frequency) text vectorization technique to evaluate the relevance of words in video descriptions, followed by the computation of cosine similarity between content items to determine their degree of similarity. The system's performance is evaluated using precision, recall, and F1-score metrics. Experimental results demonstrate the effectiveness of content-based filtering in delivering relevant and personalized video recommendations to users. This approach can enhance user engagement on video streaming platforms and reduce search time, providing a more intuitive, preference-based viewing experience.
♻ ☆ OM4OV: Leveraging Ontology Matching for Ontology Versioning
Due to the dynamic nature of the Semantic Web, version control is necessary to manage changes in widely used ontologies. Despite the long-standing recognition of ontology versioning (OV) as a crucial component of efficient ontology management, many approaches treat OV as similar to ontology matching (OM) and directly reuse OM systems for OV tasks. In this study, we systematically analyse similarities and differences between OM and OV and formalise the OM4OV pipeline to offer more advanced OV support. The pipeline is implemented and evaluated in the state-of-the-art OM system Agent-OM. The experimental results indicate that OM systems can be reused for OV tasks, but without necessary extensions, the current OM4OV pipeline can produce skewed measurements, poor performance in detecting update entities, and limited explainability of false mappings. To tackle these issues, we propose an optimisation method called the cross-reference (CR) mechanism, which builds on existing OM alignments to reduce the number of matching candidates and to improve overall OV performance.
comment: 16 pages, 8 figures, 1 table
♻ ☆ Topic-FlipRAG: Topic-Orientated Adversarial Opinion Manipulation Attacks to Retrieval-Augmented Generation Models USENIX Security 2025
Retrieval-Augmented Generation (RAG) systems based on Large Language Models (LLMs) have become essential for tasks such as question answering and content generation. However, their increasing impact on public opinion and information dissemination has made them a critical focus for security research due to inherent vulnerabilities. Previous studies have predominantly addressed attacks targeting factual or single-query manipulations. In this paper, we address a more practical scenario: topic-oriented adversarial opinion manipulation attacks on RAG models, where LLMs are required to reason and synthesize multiple perspectives, rendering them particularly susceptible to systematic knowledge poisoning. Specifically, we propose Topic-FlipRAG, a two-stage manipulation attack pipeline that strategically crafts adversarial perturbations to influence opinions across related queries. This approach combines traditional adversarial ranking attack techniques and leverages the extensive internal relevant knowledge and reasoning capabilities of LLMs to execute semantic-level perturbations. Experiments show that the proposed attacks effectively shift the opinion of the model's outputs on specific topics, significantly impacting user information perception. Current mitigation methods cannot effectively defend against such attacks, highlighting the necessity for enhanced safeguards for RAG systems, and offering crucial insights for LLM security research.
comment: Accepted by USENIX Security 2025
♻ ☆ ReaSeq: Unleashing World Knowledge via Reasoning for Sequential Modeling
Industrial recommender systems face two fundamental limitations under the log-driven paradigm: (1) knowledge poverty in ID-based item representations that causes brittle interest modeling under data sparsity, and (2) systemic blindness to beyond-log user interests that constrains model performance within platform boundaries. These limitations stem from an over-reliance on shallow interaction statistics and close-looped feedback while neglecting the rich world knowledge about product semantics and cross-domain behavioral patterns that Large Language Models have learned from vast corpora. To address these challenges, we introduce ReaSeq, a reasoning-enhanced framework that leverages world knowledge in Large Language Models to address both limitations through explicit and implicit reasoning. Specifically, ReaSeq employs explicit Chain-of-Thought reasoning via multi-agent collaboration to distill structured product knowledge into semantically enriched item representations, and latent reasoning via Diffusion Large Language Models to infer plausible beyond-log behaviors. Deployed on Taobao's ranking system serving hundreds of millions of users, ReaSeq achieves substantial gains: >6.0% in IPV and CTR, >2.9% in Orders, and >2.5% in GMV, validating the effectiveness of world-knowledge-enhanced reasoning over purely log-driven approaches.
♻ ☆ Optimizing Generative Ranking Relevance via Reinforcement Learning in Xiaohongshu Search KDD 2026
Ranking relevance is a fundamental task in search engines, aiming to identify the items most relevant to a given user query. Traditional relevance models typically produce scalar scores or directly predict relevance labels, limiting both interpretability and the modeling of complex relevance signals. Inspired by recent advances in Chain-of-Thought (CoT) reasoning for complex tasks, we investigate whether explicit reasoning can enhance both interpretability and performance in relevance modeling. However, existing reasoning-based Generative Relevance Models (GRMs) primarily rely on supervised fine-tuning on large amounts of human-annotated or synthetic CoT data, which often leads to limited generalization. Moreover, domain-agnostic, free-form reasoning tends to be overly generic and insufficiently grounded, limiting its potential to handle the diverse and ambiguous cases prevalent in open-domain search. In this work, we formulate relevance modeling in Xiaohongshu search as a reasoning task and introduce a Reinforcement Learning (RL)-based training framework to enhance the grounded reasoning capabilities of GRMs. Specifically, we incorporate practical business-specific relevance criteria into the multi-step reasoning prompt design and propose Stepwise Advantage Masking (SAM), a lightweight process-supervision strategy which facilitates effective learning of these criteria through improved credit assignment. To enable industrial deployment, we further distill the large-scale RL-tuned model to a lightweight version suitable for real-world search systems. Extensive offline evaluations and online A/B tests demonstrate that our approach consistently delivers significant improvements across key relevance and business metrics, validating its effectiveness, robustness, and practicality for large-scale industrial search systems.
comment: Accepted to the ADS Track at KDD 2026
Information Retrieval 1
☆ OrchANN: A Unified I/O Orchestration Framework for Skewed Out-of-Core Vector Search
Approximate nearest neighbor search (ANNS) at billion scale is fundamentally an out-of-core problem: vectors and indexes live on SSD, so performance is dominated by I/O rather than compute. Under skewed semantic embeddings, existing out-of-core systems break down: a uniform local index mismatches cluster scales, static routing misguides queries and inflates the number of probed partitions, and pruning is incomplete at the cluster level and lossy at the vector level, triggering "fetch-to-discard" reranking on raw vectors. We present OrchANN, an out-of-core ANNS engine that uses an I/O orchestration model for unified I/O governance along the route-access-verify pipeline. OrchANN selects a heterogeneous local index per cluster via offline auto-profiling, maintains a query-aware in-memory navigation graph that adapts to skewed workloads, and applies multi-level pruning with geometric bounds to filter both clusters and vectors before issuing SSD reads. Across five standard datasets under strict out-of-core constraints, OrchANN outperforms four baselines including DiskANN, Starling, SPANN, and PipeANN in both QPS and latency while reducing SSD accesses. Furthermore, OrchANN delivers up to 17.2x higher QPS and 25.0x lower latency than competing systems without sacrificing accuracy.
comment: 13 pages, 30 figures